
Groups Geom. Dyn. 17 (2023), 1393–1416
DOI 10.4171/GGD/734

© 2023 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On the geometry of a Picard modular group

Martin Deraux

Abstract. We study geometric properties of the action on the complex hyperbolic plane H2
C of

the Picard modular group � D PU.2; 1;O7/, where O7 denotes the ring of algebraic integers in
Q.i
p
7/. We list conjugacy classes of maximal finite subgroups in � and give an explicit description

of the Fuchsian subgroups that occur as stabilizers of mirrors of complex reflections in � . As an
application, we describe an explicit torsion-free subgroup of index 336 in � .

1. Introduction

The goal of this paper is to study some detailed geometric features of the Picard modular
group PU.J;O7/, where O7 denotes the ring of algebraic integers in Q.i

p
7/, and

J D

0@0 0 1

0 1 0

1 0 0

1A :
Since J has signature .2; 1/, PU.J / is isomorphic to the group PU.2; 1/ of holomor-
phic isometries of the complex hyperbolic plane H 2

C (which is a symmetric space with
1
4

-pinched sectional curvature).
It is a standard fact that U.J;O7/ D U.J / \ GL.3;O7/ is a lattice in U.J /, i.e.,

a discrete subgroup such that the quotient of H 2
C under the action of U.J;O7/ has finite

volume for the symmetric Riemannian metric. From this point on, to simplify notation,
we write

X D H 2
C; G D PU.J /; � D PU.J;O7/:

The first explicit information about � was an explicit finite generating set, see, e.g.,
Zhao [18]. A standard way to find such a generating set is to work out a fundamental
domain for the action, because the side-pairing maps of a fundamental domain generate
the group. In principle, one could use the standard construction of Ford domains, but the
Ford domain for � turns out to be very complicated. In fact, Zhao used coarser information
than the actual Ford domain.
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More recently, his method was refined by Mark and Paupert [13] to get an actual
presentation (generating set plus defining relations for the group), still without working
out an explicit fundamental domain. The rough idea is to use a coarse fundamental domain,
i.e., a set � such that �� D X , and such that

T D ¹ 2 �W� \ � ¤ ;º (1.1)

is finite. In that case, it is easy to see that T generates � , and there is a simple way to write
defining relations for the group (see [11, Section 13.4], for instance). In the discussion that
follows, we assume we have a coarse fundamental domain and an explicit finite set T as
above.

The goal of the present paper is to push the Mark–Paupert techniques a bit further, and
give a list of the conjugacy classes of torsion elements (and more generally of maximal
finite subgroups) in � . See Section 4 for the results.

This gives us some detailed information about the local structure of the quotient orb-
ifold X=�; as far as we know, its global structure is still not understood. Note that,
contrary to what was incorrectly stated in [3], the group � is not the same as the sporadic
group �.x�4;1/, which is contained in PU.H;O7/ for another Hermitian form. In fact,
the group �.x�4;1/ has trivial abelianization, whereas � has abelianization Z=2Z. This
was our initial motivation for studying the group � in detail.

We will also determine the mirror stabilizers for the two conjugacy classes of complex
reflections in � (see Section 5); it is a standard fact that these are Fuchsian subgroups, but
it is not exactly obvious how to describe these stabilizers explicitly (generating set, signa-
ture). We find that one stabilizer has a single cusp, whereas the other has two (the latter
case makes for much more complicated computations).

From our list of torsion conjugacy classes, we deduce the existence of a torsion-free
subgroup of index 336 in � , which is a principal congruence subgroup (the kernel of the
reduction modulo the ideal hi

p
7i). This is done in Section 7.

Note that the methods used in this paper work for all 1-cusped Picard groups (this
happens for slightly more values of d , namely d D 1; 2; 3; 7; 11; 19; 43; 67; 163), but they
require much heavier computation. Prior to this work, presentations were worked out in
the literature only for d D 1; 2; 3; 7; 11, see [6–9, 13, 16]. Other values of d are treated
in [5].

2. Complex hyperbolic geometry and Ford domains

In this section, we give a brief sketch of the geometry of the complex hyperbolic plane,
mainly to set up notation (we follow the notation in [13] quite closely). For much more
detail, the standard reference is [10].

We work in homogeneous coordinates v D .v1; v2; v3/ and write hv; wi D w�Jv,
kvk2 D hv; vi. As a set, the complex hyperbolic plane H 2

C is the set of complex lines
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in C3 that are spanned by a negative vector (i.e., a vector v 2 C3 with kvk2 < 0). This set
is contained in the affine chart v3 ¤ 0 of P 2C , where v can be represented as�v1

v3
;
v2

v3
; 1
�
D .z1; z2; 1/

with 2<.z1/C jz2j2 < 0. The distance function in complex hyperbolic space is given by
a simple formula in homogeneous coordinates, namely

cosh
�1
2
d.Œv�; Œw�/

�
D

jhv;wijp
hv; vihw;wi

;

where Œv� D Cv denotes the complex line spanned by v. The boundary at infinity of the
complex hyperbolic plane, which consists of complex lines spanned by null vectors (i.e.,
vectors v 2 C3 with kvk2 D 0), is almost entirely contained in the affine chart z3 ¤ 0,
only one point is missing, namely q1 D .1; 0; 0/. We usually refer to that point as the
point at infinity.

Rather than the affine coordinates .z1; z2/ described above, it is convenient to use
horospherical coordinates .z; t; u/, z 2 C, t; u 2 R, u > 0, defined by

2z1 C jz2j
2
D i t � u:

Using these coordinates, the hypersurfaces defined by taking u to be a fixed positive
constant are horospheres based at the point at infinity. Points with uD 0 give the boundary
at infinity @1H 2

C of H 2
C (minus the point at infinity, corresponding to q1 D .1; 0; 0/).

Each of these points has a unique representative of the form0B@�jzj
2Cit
2

z

1

1CA
with z 2 C and t 2 R.

Given a group � � PU.J /, we denote by �1 the stabilizer of q1 D .1; 0; 0/ in � , i.e.,
the subgroup of matrices that have q1 as an eigenvector. We start by describing the full
stabilizer in PU.J /.

The unipotent stabilizer of q1 in U.J / consists of the matrices of the form

T .z; t/ D

0B@1 �xz �jzj2Cit
2

0 1 z

0 0 1

1CA ;
and it acts simply transitively onH 2

C n ¹1º. This givesH 2
C n ¹1º the structure of a group,

usually called the Heisenberg group. In terms of the coordinates .z; t/ 2 C � R, the
Heisenberg group law is the following:

.z; t/ ? .z0; t 0/ D .z C z0; t C t 0 C 2i Im.zxz0//: (2.1)
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Non-unipotent parabolic elements are usually called twist-parabolic elements; they
can be written as RT.z; t/, where R D diag.1; �; 1/, j�j D 1, i.e.,

RT.z; t/ D

0B@1 �xz �jzj2Cit
2

0 � z

0 0 1

1CA : (2.2)

Recall that q1 D .1; 0; 0/.

Definition 2.1. Let � be a discrete subgroup of G. The Ford domain for � is defined as

F� D
®
Œx� 2 H 2

CW jhx; q1ij � jhx; q1ij for all  2 �
¯
:

In this definition, q1 stands for zq1 for any lift z 2 U.J / of  2 � � PU.J /. Since
lifts of a given element differ by multiplication by a complex number with modulus one,
the inequalities in Definition 2.1 are independent of the lift chosen.

It is easy to see that F� is invariant under the action of �1; indeed, if ˛ 2 �1 and
x 2 F� , then

jh˛x; q1ij D jhx; ˛
�1q1ij D jhx; q1ij � jhx; ˛

�1q1ij D jh˛x; q1ij;

so ˛.x/ 2 F� . In particular, F� cannot always be a fundamental domain for the action
of � . It is a standard fact that it is a fundamental domain if (and only if) �1 is trivial (see
of [1, Section 9.5] for a proof in the complex 1-dimensional case).

When �1 is not trivial, in order to get a fundamental domain for � , we select a funda-
mental domain P for the action of �1 in the Heisenberg group, and consider the cone CP
with base P in horospherical coordinates:

CP D ¹.z; t; u/W .z; t/ 2 P; u > 0º:

Then we have the following assertion.

Proposition 2.2. The intersection F� \ CP is a fundamental domain for � .

Note that even though F� \ CP need not have well-defined side-pairing maps, the
sides of the Ford domain F� are paired. In fact, given  2 � n �1, write

I./ D
®
Œx� 2 H 2

CW jhx; q1ij � jhx; q1ij
¯
:

It follows easily from the definition that �1.I.//D I.�1/, hence the set F� \ I./, if
it is a side (i.e., if it has dimension 3), must be paired with F� \ I.�1/ by �1.

The set I./,  2 � n �1 can be interpreted as a bisector (locus equidistant of two
points in H 2

C), or as an isometric sphere (locus of points where the Jacobian of the trans-
formation is 1), or as a metric sphere for the so-called extended Cygan distance, defined by

dCygan..z; t; u/; .z
0; t 0; u0// D ..jz � z0j2 C ju � u0j/2 C jt � t 0 C 2i Im.zxz0/j2/1=4:
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Using this distance, we can describe I./ as the Cygan sphere with center .1/, and
radius

q
2
ja31j

, where A D .ajk/j;kD1;2;3 is a matrix representative of  (see [13], for
instance).

It can be useful also to have an explicit expression for the Cygan sphere of radius r
centered at the point .c; d/ 2 C �R in the Heisenberg group, namely it consists of points
with horospherical coordinates .z; t; u/ 2 C �R �RC satisfying

.jz � cj2 C u/2 C jt � d C 2i Im.zxc/j2 D r4: (2.3)

The basic observation is that if .z; t; u/ is in that sphere, then jz � cj � r so the C-
component must be contained in the Euclidean disk of radius r centered at c. We also
have the basic estimates u � r2, and a slightly less efficient estimate for t given by

jt � d C 2i Im.zxc/j � r2;

which gives an estimate for the range of values of t for any fixed value of z.
We now focus on the special case of � D PU.J;O7/, and review some results of [13]

giving an explicit description of �1 (see also [15]).
We define

T1 D T .1;
p
7/; T� D T .�; 0/; Tv D T .0; 2

p
7/;

where � D 1Ci
p
7

2
.

Since we consider � D PU.J;O7/, in the definition of twist-parabolic elements given
in equation (2.2), we only allow � to be a unit in O7, i.e., ˙1. Here and in what follows,
we define

R D diag.1;�1; 1/:

In the C-factor of the Heisenberg group C � R, R acts as z 7! �z, and T1, T� act
as translations by 1 and � , respectively, (whereas Tv act trivially). Hence the triangle D
which is the Euclidean convex hull of 0, 1 and � gives a fundamental domain for the action
on C. Note that T1R, T�R and T1T�R act in the C-factor as half-turns fixing the midpoints
of the sides of the triangle, see Figure 1. The group �1 is actually generated by T1, T�
and R, see [15], for instance (note that Tv D ŒT� ; T1�). Since Tv acts as a translation
by 2
p
7 in the t -coordinate, it should be quite clear that the prism P D D � Œ0; 2

p
7� is

a fundamental domain for the action of �1 in C � R, see Figure 2. Note that T�R and
T1T�R are side-pairing maps for P (in fact, these are complex reflections), and Tv as
well (it gives the vertical translation pairing the top and bottom triangles of the prism).
However, T1R is not a side-pairing map (it is given by a glide-reflection), but this will be
inconsequential in the present paper.

The domain P is chosen to have affine sides in Heisenberg coordinates (since the
Heisenberg group acts on itself by affine transformations, see formula (2.1)). It can also
be adjusted to have well-defined side-pairing maps (this requires subdividing its sides into
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T�R.D/ T1T�R.D/

D

T1R.D/R.D/

Figure 1. Action of the cusp group on the C-
factor of the Heisenberg group C �R.

.0; 2
p
7/ .1; 2

p
7/

.1; 0/.0; 0/

.�; 2
p
7/

Figure 2. P D D � Œ0; 2
p
7� is a fundamental

domain for the action of �1 on C �R.

smaller polygons), but we will not do this, since we do not need it for any of the methods
used in this paper.

A few Ford domains in H 2
C have been studied explicitly, see [2, 14] among others.

Such domains are virtually present in [13, 18], but it is very complicated to determine
their combinatorial structure in detail (or even to describe it on paper!).

To give a rough idea, pictures of (representatives of the isometry type of) the sides of
the Ford domain for � D U.J;O7/ are given in Figure 3. Needless to say, these pictures
will not be used anywhere in the paper, but they should give an idea of the intricacy of the
combinatorics.

3. Virtual fundamental domain, algorithms

Recall that a coarse fundamental domain for a discrete group � is a set � such that
�� D X , and such that T D ¹ 2 �W� \ � ¤ ;º is finite. In that case, one can prove
that T generates � , and write an explicit group presentation in terms of these generators
(see [11, Section 13.4]).

Of course, a fundamental domain is a coarse fundamental domain, and this is the
kind of coarse fundamental domain we will (virtually) use in this paper. Specifically, we
will use � D F� \ CP , where CP is the cone to the point at infinity in horospherical
coordinates, and P is the prism described in [13], i.e.,

� D ¹.aC b�; t/W 0 � a; b; aC b � 1; 0 � t � 2º:

By making virtual use of this domain, we mean that, rather than studying the combina-
torics of �, we will only use algorithmic procedures that allow us to do the following.

Method 3.1. (1) Determine whether a given algebraic point Œx� 2 H 2
C is inside �, and

list the sides of � that contain it.
(2) If Œx� is not in �, find an element  2 � such that Œx� 2 �.
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Figure 3. Sides of the Ford domain for PU.J;O7/ (four views for each side).

By an algebraic point Œx� 2 H 2
C , we mean a point that can be represented in homoge-

neous coordinates by a vector x 2 C3 with algebraic coordinates. Most algebraic points
we consider are actually K-rational (i.e., they are represented by a vector in K3), but not
all; indeed, the isolated fixed points of a regular elliptic isometry is an eigenvector of
a matrix with entries in K, but their eigenvalue need not be in K in general.

We briefly explain why such methods can be implemented effectively. The main diffi-
culty is that Œx� 2 � is defined in terms of an infinite set of inequalities.

We first make use of some results in [13], which allow us to reduce the list of  2 �
that occur Definition 2.1. This reduction is based on arithmetic considerations.

Here and in what follows, we write K D Q.i
p
7/, and O7 for the ring of algebraic

integers in K.

Definition 3.2. A K-rational point in P 2C is a point that can be represented in homoge-
neous coordinates as a vector with entries in O7.

A given rational point has an essentially unique primitive representative in O3
7 , i.e.,

a vector whose entries have greatest common divisor equal to 1 (see [13, Lemma 1] or [16,
Lemma 3]). The only freedom we have to change such a vector is to scale it by unit, and
the only units in O7 are˙1.

By the square norm of a point in P 2C , we mean kvk2 D v�Jv for any primitive rep-
resentative v 2 O3

7 . Points (resp. vectors) with square norm 0 are called null points (resp.
vectors). We will use the following result (see [13, Lemma 2]).

Proposition 3.3. For every A 2 U.J;O7/, the first column of A (which represents A.1/)
is a primitive null vector in O3

7 . Conversely, given any primitive null vector v 2 O3
7 , there

exists an A 2 U.J;O7/ whose first column is v.
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The converse direction says that the Picard group � DU.J;O7/ acts transitively on K-
rational null vectors; this can be seen as a reformulation of the statement that the quotient
X=� has exactly one cusp, which is a consequence of the fact that K has class number 1
(see [19] or [17, Section 4.1]). The theoretical result in Proposition 3.3 is unfortunately
difficult to make effective, as discussed in [13].

We review the following definition (see [13]).

Definition 3.4. (1) The depth of a K-rational point Œv�2 @1H 2
C n ¹1º is given by jv3j2,

where v D .v1; v2; v3/ is any primitive integral representative of Œv�.

(2) The depth of a matrix A 2 � n �1 is the depth of A.1/.

The notion of depth is important, in part because of the following proposition (see [12,
Proposition 4.3]).

Proposition 3.5. Let A 2 � . Then the Cygan center of the isometric sphere I.A/ is rep-
resented by A.1/, and its radius is given by

q
2
d

, where d is the depth of A.

Note that the depth of any A 2 � is a rational integer, but not every integer occurs as
the depth of an elementA 2 � (only integers that are norms in O7 occur). For example, the
first five numbers that occur as depths of elements in the Picard group � are 1, 2, 4, 7, 11.

If there exists an element of a given depth, then there exist infinitely many, since pre- or
post-composition with any element of �1 does not change the height. However, in a fixed
bounded region of the Heisenberg group C � R ' @1H 2

C n ¹1º, there are only finitely
many points of a given depth. This is true in particular in our fundamental domain P for
the action of �1. A list of K-rational points of small depth in P is given in [13].

The following result is a consequence of the covering depth estimate given in [13].

Theorem 3.6. The isometric spheres of elements of depth � 11 do not intersect the Ford
domain F� .

Remark 3.7. It turns out that the isometric spheres of the elements of depth 7 do inter-
sect the Ford domain, but in lower-dimensional facets only, i.e., they are not needed in
Definition 2.1. This fact is quite painful to prove however, and we will not use it in the
sequel.

We will also use the following list of 14 elements in the group, which is a slight
modification of the list given in [13] (we want the set of side-pairing maps to be closed
under inversion of matrices):

A1 D

0@0 0 1

0 �1 0

1 0 0

1A ; A2 D

0@ 2 �� 1 � 3�

x� 0 �2 � �

�� �1 �3C �

1A ; A3 D A
�1
2 ; A4 D A

�2
2 ;

A5 D A
�1
4 ; A6 D

0@ip7 0 4

0 1 0

2 0 �i
p
7

1A ; A7 D

0@�x� 1 1

� 0 1

2 x� ��

1A ;
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A8 D

0@ 1 2 � � �2

�1 � � �3 1C �

�2 �2C � 1

1A ; A9 D

0@ �1 0 i
p
7

0 1 0

i
p
7 0 6

1A ;
A10 D

0@ �2 0 i
p
7

0 1 0

i
p
7 0 3

1A ; A11 D A
�1
10 ; A12 D

0@ �4 0 3i
p
7

0 1 0

i
p
7 0 5

1A ;
A13 D A

�1
12 ; A14 D A

�1
9 :

The basic fact we will use from [13] is the following.

Theorem 3.8. Let  2 � n �1 be such that I./ intersects the Ford domain. Then there
exist ˛; ˇ 2 �1 and j 2 ¹1; : : : ; 14º such that  D ˛Ajˇ�1.

The remaining difficulty is that �1 is an infinite group, and we cannot check infinitely
many inequalities with a computer; we now explain how to handle this difficulty.

In Sections 3.1–3.4, we sketch the general algorithms we will use. We then list the
specific results (conjugacy classes of torsion elements, maximal finite subgroups) for the
group U.J;O7/ in Section 4.

3.1. Basic algorithms

Recall that we are after algorithmic methods stated in Method 3.1. Let us assume x 2 C3

has algebraic coordinates, and kxk2 < 0. We can compute the (algebraic) horospherical
coordinates .z; t; u/ of x, using

z D
x2

x3
; i t � u D 2

x1

x3
C

ˇ̌̌x2
x3

ˇ̌̌2
:

We would like to find a cusp element  2 �1 such that .x/ has horospherical coordinates
.z0; t 0; u0/with .z0; t 0/ 2 P . Recall that P �C �R is T � Œ0; 2

p
7�, where T is the convex

hull of 0, 1 and � .
First solve

aC b� D z $

8<:aC
b

2
D Re.z/;

b
p
7 D Im.z/

for real algebraic a, b, and compute the floors kDbac and l Dbbc, "DbaC bc. By apply-
ing T �k1 T �l� for suitably chosen k; l 2 Z, we may assume the horospherical coordinates
.z; t;u/ satisfy z 2 T . Computing b t

2
p
7
c, we get a power of Tv that brings the t -coordinate

in Œ0; 2
p
7�.

In other words, we may assume that .z; t/ 2 P . Now we use the following.

Proposition 3.9. Let j 2 ¹1; : : : ; 14º. There is an explicit set Ej � �1 such that for all
 2 �1 nEj , we have .I.Aj // \ CP D ;.
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Without the “explicit” request, this is a consequence of discreteness of �1. The ex-
plicit character follows from elementary estimates using the values of the Cygan radius
of I.Aj / (for details on these estimates, see [5]).

Using Proposition 3.9, we can list all the isometric spheres ˛.I.Aj // that contain Œx�
(or such that Œx� is in the interior of the corresponding Cygan ball). This gives method (1).

For method (2), we first proceed as above to bring the Heisenberg coordinate to P ,
then find the Cygan spheres ˛.I.Aj // that contain x, and apply the isometry .˛Aj /�1

to x. This decreases the number of Cygan balls defining the Ford domain that contain Œx�
in their interior. Then repeat the preceding procedure until that number is 0.

3.2. Conjugacy classes of torsion elements

Clearly, every torsion element is conjugate to a torsion element that fixes a point in the
fundamental domain � D F� \ CP . Moreover, the discreteness of � implies that there
exists a precisely invariant horoball, i.e., a horoball B based at q1 which is invariant
under �1, and .B/\B D ; for every  2 � n �1. Moreover, the fact that � is a lattice
implies that �1 acts cocompactly on every horosphere based at q1.

It follows that there are actually finitely many torsion elements fixing a point in�; we
now explain a method for listing these elements.

Suppose  2 � has finite order. There are two possibilities, either  2 �1 or not.

Case  2 �1. In this case,  must be a complex reflection, and we may assume that its
mirror meets the Heisenberg group C � R in a vertical line that intersects the boundary
of the prism P . Projecting to the C-factor, it is easy to see that the boundary at infinity of
the mirror is given by ¹.z0; t /W t 2 Rº for z0 D 0, 1

2
, �
2

, 1C�
2

. This implies that  has one
of the following forms:

RT kv ; T1RT
k
v ; T�RT

k
v ; T1T�RT

k
v

for some k 2 Z (we will give more details about this in Section 4.1). The only complex
reflections of this form are

R; T1R; T1T�R:

Case  … �1. Suppose  fixes a point Œx� 2 P . It is easy to see from the definition of
isometric spheres that we must have Œx� 2 I./ \ I.�1/, and in particular,

I./ \ I.�1/ ¤ ;:

Also, because the fixed point Œx� is in the Ford domain,  must have depth � 7, so
 D ˛Ajˇ

�1 for some j 2 ¹1; : : : ; 14º and ˛; ˇ 2 �1 (see Theorem 3.8).
Since we only want to list torsion elements up to conjugacy, we may assume ˇ D Id,

i.e.,  D ˛Aj , and we get

; ¤ I./ \ I.�1/ D ˛.I.Aj // \ I.A
�1
j /:
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Note that we chose the set ¹A1; : : : ; A14º to be invariant under the operation of taking
inverses, so there is a k 2 ¹1; : : : ; 14º such that I.A�1j / D I.Ak/, and we must have

˛.I.Aj // \ Ak ¤ ;:

Proposition 3.10. There is an explicit finite set Tjk such that for all ˛ 2 �1 n Tjk ,
˛.I.Aj // \ Ak D ;.

The set can be made explicit by using elementary estimates using the triangle inequal-
ity and the known radii of the Cygan spheres I.Aj /, I.Ak/ (see equation (2.3)). For more
details, see [5].

From this, we get that every torsion element in � n �1 is conjugate to an element
of the finite sets Tjk for j; k 2 ¹1; : : : ; 14º (and we may restrict to pairs j , k such that
AjAk D Id).

Moreover, given an element  2 Tjk , there is an algorithm to determine whether  has
finite order. Indeed, the eigenvalues of the matrix representative for  (which is unique up
to multiplication by � Id) are algebraic integers, and we can determine whether they are
roots of unity by examining their minimal polynomial.

If the eigenvalues are all roots of unity, we can check whether or not the matrix is
diagonalizable by computing its minimal polynomial. Hence we have an algorithm to do
the following.

Method 3.11. Produce a finite set that contains a representative of every conjugacy class
of torsion element in � .

For elements with isolated fixed points, we can use methods of Section 3.1, we remove
all elements whose fixed point set is not in the fundamental domain�, since they must be
conjugate to another element in the list.

3.3. Eliminating redundancy

The list obtained by applying the method explained in Section 3.2 may have redundancies,
in the sense that some elements in the list may be conjugate to each other.

We now explain how to test whether two torsion elements 1, 2 are conjugate to each
other, assuming that they both have an isolated fixed point. We call xj the isolated fixed
point of j ; by the methods of Section 3.1, we may assume x1, x2 are both in �.

Suppose 1, 2 are conjugate in � , i.e., there exists ˛ 2 � such that 2 D ˛1˛
�1.

Then ˛.x1/ D x2, and in particular,

� \ ˛.�/ ¤ ;:

This implies that for some j 2 ¹1; : : : ; 14º, ˛.I.Aj // must intersect P , and there are
finitely many choices of ˛ such that this is the case (as before, this can be made explicit).

Hence we only need to check finitely many candidate conjugators ˛ in order to deter-
mine whether the two elements are conjugate, making this special case of the conjugation
problem solvable.
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For pairs of complex reflections, it is more complicated to write a general algorithm
to test conjugacy (because the stabilizer of the mirror of one such complex reflection is
infinite). In order to treat the special case of PU.J;O7/, it suffices to use the following
two observations:

(1) It two elements are conjugate, then we can find an element that conjugates them by
listing all group elements, by listing words in a fixed generating set in increasing
word length.

(2) If two complex reflections have different orders, or different Jordan forms, or dif-
ferent square norms for their (primitive) polar vector, then they are not conjugate.

For a general group, we are likely to find pairs of elements with the same rough conjugacy
invariants (order, Jordan form, square norm of polar vector), but the enumeration of the
group fails finding a conjugator (say, because we run out of time or memory).

3.4. Finding maximal finite subgroups

In this section, we explain how to determine maximal finite subgroups. We assume that
we have applied the methods of Section 3 successfully, and that we have a finite list of all
torsion elements whose fixed points contain a point in �.

The interesting maximal finite subgroups contain an element with an isolated fixed
point, since generic points on the mirror of a complex reflection have a cyclic group as
their stabilizer, generated by a single complex reflection.

Now take the list of torsion elements with an isolated fixed point in �. For each such
fixed point Œx�, we use the methods of Section 3.1 to find the list of Ford spheres and sides
of CP containing Œx�.

Now build a graph whose vertex set is in bijection with the set of these isolated fixed
points, and join two vertices by a directed edge if there is a side-pairing map sending one
to the other (either coming from the Ford domain, or from the prism P ); note that the
edges may join a vertex to itself.

The conjugacy classes of maximal finite groups in � are then given by connected
component of this graph (take the image of the obvious representation of the fundamental
group of the graph into �).

For concreteness, we work out a couple of explicit examples.

(1) Consider M D .RT1IT
�1
1 /2, for instance (see the first entry in Table 2). Its

isolated fixed point is given by Œv1�, where v1 D .�x�; 0; 1/, which has horospherical
coordinates Œ0;

p
7; 1�. This point is on two sides of the cone CP (namely the ones with

side-pairing T�R and T1R), as well as on three Ford–Cygan spheres, namely

I.A6/; T1.I.A1//; T �11 Tv.I.A1//:

The side-pairing maps associated to these sides are given respectively by

A6; T1A1T
�1
1 ; T �11 TvA1T

�1
v T1;

and each of these elements actually fixes Œv�.
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v2

T1T�R

T�RR, A6, T1A1T�11 ,

T�11 TvA1T
�1
v T1

T1R

v1

v3

Figure 4. Cycle graph for the vertex v1. We omit the Ford side-pairing maps that fix v2 (resp. v3),
since these are simply conjugates of the elements in the label for the loop from v1 to itself.

Using the side-pairings coming from CP , we find two other points Œv2�, Œv3� given
by v2 D T �Rv1 and v3 D T1Rv1. Each is on three Ford–Cygan spheres, which are simply
the images of the above three Cygan spheres under T�R (or T1R).

Hence the connected component of the graph containing Œv1� is a triangle as in Fig-
ure 4. The stabilizer of Œv1� is generated by A6, T1A1T �11 , T �11 TvA1T

�1
v T1 together with

the element

.T1R/
�1T1T�RT�R D R:

The linear group generated by R, A6, T1A1T �11 , T �11 TvA1T
�1
v T1 has order 16, and

its subgroup of scalar matrices has order 2. In other words, the stabilizer of Œv1� in � has
order 8.

It is easy to check (for instance, by enumerating the elements in the stabilizer) that the
stabilizer contains four complex reflections.

Let us denote v1; : : : ; v4 polar vectors to the mirrors of these reflections, which we may
and do choose to be primitive vectors in O3

7 . Explicit computation shows that, perhaps
after permuting these vectors, we have hv1; v1i D hv2; v2i D 1, hv1; v1i D hv2; v2i D 2.

This kind of information is gathered in columns 4 through 6 of Tables 2–6 (see also
Definition 4.2).

(2) Consider the element N D .T�R/ � T1R.T1I /
2T �11 RT1IT

�1
1 � .RT �1� /, which

is the element of order 6 given in Table 5, conjugated by T�R so that its isolated fixed
point Œw� is in �.

The corresponding point is not on any side of the coneCP , but it is on five Ford–Cygan
spheres, namely

I.A2/; I.A3/; RT �1� .I.A4//; RT �1� T �11 .I.A5//; T� .I.A6//:

The point ŒA�12 w� is inside the Ford domain, but it is not in the cone CP , so we bring it
back to the cone by a cusp element. It turns out, T�R does the job, i.e., T�RA�12 w 2 �.
Note that the Cygan sphere for .T�RA�12 /

�1 D A2 � RT
�1
� is of course the same as the

one for A2, since these two elements differ by pre-composition by a cusp element.
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Similar considerations show that (adjusted) side-pairing maps corresponding to the
above five Cygan spheres are

T�R � A
�1
2 ; T1T�R � A

�1
3 ; T 2� R � .T�A

�1
6 T

�1
� /;

T1 � .RT
�1
� A�14 T�R/; T �11 � .RT

�1
� T �11 A�15 T1T�R/

and all these elements fix Œw�. In other words, the relevant (connected component of the)
cycle graph has a single vertex, and 5 loops.

The above five matrices generate a linear group of order 12, whose projectivization is
a cyclic group of order 6. There is a complex reflection in this group, obtained by taking
the third power of a generator (see Table 5).

4. Results

4.1. Torsion in �1

First consider cusp elements. Suppose  2 �1 and .�/\� ¤ ;. Then .P /\ P ¤ ;.
Looking at the first component in Heisenberg space C � R, we easily find neighboring
triangles in the tiling, which are obtained by applying elements of the form

 D T
j
1 T

k
� .T1T�R/

"T lv

with �1 � j; k; j C k � 1, " D 0 or 1. A picture of the corresponding tiling is given in
Figure 5. For each such element, it is easy to check which values of l give .P /\ P ¤ ;
(in all cases �1 � l � 1 is necessary).

I T1T�11

T�T
�1
1

T�RT
�1
�

T�

T1RT
�1
1T1R

T1T�RT�R

R

T�1� T1T
�1
�

Figure 5. Horizontal tiling in Heisenberg space, using coordinates in the R-basis 1; � .
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Checking the corresponding elements, we find that the only cusp elements in T (see
equation (1.1)) are

R; T1RT
�1
1 ; T�RT

�1
� ; T�R; T1T�R;

each of order 2.
We will shortly see that T�R and T1T�R are conjugate in � , but they are not conjugate

to R. In particular, we have (1) in the following.

Proposition 4.1. Let  2 �1.

(1) If  is a non-trivial torsion element, then it is conjugate in � to R or to T �R.

(2) If  is parabolic but not unipotent, then it is conjugate in � to T1RT kv , RT kv or
T�RT

k
v for some k 2 Z.

Point (2) follows from the fact that the prism is a fundamental domain for the action
of �1 in Heisenberg space. Indeed, invariant complex lines for non-unipotent cusp ele-
ments can be assumed to meet the boundary at infinity in one of the four vertical lines
.0; t/, .1

2
; t /, . �

2
; t /, .1C�

2
; t / in Heisenberg space. The last two are conjugate in � (but the

first three have distinct conjugacy classes in �1).
Since our method is not algorithmic for complex reflections, we list the conjugations

needed in order to show that there are indeed just two conjugacy classes of complex reflec-
tions in � (both of order 2):

.T1R/
2T �11 .T�R/..T1R/

2T �11 /�1 D I; ŒT1; I �.T�R/ŒT1; I �
�1
D T1T�R;0@ip7 0 4

0 �1 0

2 0 �i
p
7

1A D T1IT �11 .R/.T1IT1/
�1:

The first two equations show that T�R and T1T�R are both conjugate to I . The left-hand
side of the last equation is one of the complex reflections produced by listing elements of
finite order  with � \ � ¤ ;.

4.2. Conjugacy classes of torsion elements

The results below were of course obtained with the help of a computer (using the methods
of Section 3). After this paper was written, we have developed a computer program that
performs this analysis systematically (for general 1-cusped Picard lattices), see [4].

For complex reflections, there are precisely two conjugacy classes, listed in Table 1.
Note that the two classes can be distinguished by the square norm of the primitive

vector polar to their mirror, which suggests the following definition.

Definition 4.2. For j D 1; 2, a j -line is a complex line polar to a primitive vector v 2 O7
such that hv; vi D j .

The following result follows from the list of conjugacy classes of complex reflections
in � (see Table 1).
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Matrix Polar to mirror v hv; vi

R D
�
1 0 0
0 �1 0
0 0 1

�
.0; 1; 0/ 1

I D
�
0 0 1
0 �1 0
1 0 0

�
.1; 0; 1/ 2

Table 1. Representatives of conjugacy classes of elements of complex reflections (of order 2) in
PU.2; 1;O7/.

Matrix Fixed pt v hv; vi jStabj 1-lines 2-lines

.RT1IT
�1
1 /2 D

�
i
p
7 0 4
0 1 0
2 0 �i

p
7

�
.�x�; 0; 1/ �1 8 2 2

IR D
�
0 0 1
0 1 0
1 0 0

�
.�1; 0; 1/ �2 4 1 1

T 21 I.T
�1
1 I /2T 21 I D

�
�x� � 2
� 2 x�
2 x� ��

�
.�; 1; x�/ �2 8 0 4

Table 2. Representatives of conjugacy classes of elements of order 2 with an isolated fixed point in
PU.2; 1;O7/.

Matrix Fixed pt v hv; vi jStabj 1-lines 2-lines

T1.IT
�1
1 /2.IT1/

2 D

�
�1 � 1
�x� 1 0
1 0 0

�
.�; 1;��/ �3 6 0 3

T 21 .IT
�1
1 /2.IT1/

2 D

�
�1 �x� 1
� 1 0
1 0 0

�
.�x�; 1; x�/ �3 6 0 3

.RT1/
2IT1IT

�1
1 RT1IT

�1
1

D

�
5 0 �3i

p
7

0 �1 0
�i
p
7 0 �4

�
… K3 6 1 0

Table 3. Representatives of conjugacy classes of elements of order 3 (isolated fixed point) in
PU.2; 1;O7/.

Proposition 4.3. The group � acts transitively on the set of primitive vectors of square
norm 1 (resp. 2) in O3

K .

Proof. To each j -line (j D 1 or 2) polar to v, the associated complex reflection is indeed
in U.J;O7/, since it is given by

Rv.x/ D x � 2
hx; vi

hv; vi
v; (4.1)

and hv; vi divides 2. The transitivity now follows from the fact that there are exactly two
conjugacy classes of complex reflections in � .

We list the conjugacy classes of torsion elements with isolated fixed points in Ta-
bles 2–6. For each class, we give the norm of a primitive vector representing the fixed
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Matrix Fixed pt v hv; vi jStabj 1-lines 2-lines

IT�11 RT1 D
�
0 0 1
0 1 2
1 �2 �2

�
.�1;�1; 1/ �1 8 2 2

.T�11 I /2.T1I /
2 D

�
0 0 1
0 1 1Cx�
1 �1�� �2

�
.x�;��;�x�/ �2 8 0 2C 2

Table 4. Representatives of conjugacy classes of elements of order 4 (isolated fixed point) in
PU.2; 1;O7/. The occurrence of 2C 2 in the last column means that there are four 2-lines through
the fixed point, that come in two distinct orbits under the action of the stabilizer.

Matrix Fixed pt v jStabj 1-lines 2-lines

T1R.T1I /
2T�11 RT1IT

�1
1 D

�
�5 0 3i

p
7

0 �1 0
i
p
7 0 4

�
… K3 6 1 0

Table 5. Representatives of conjugacy classes of elements of order 6 (isolated fixed point) in
PU.2; 1;O7/.

Matrix Fixed pt v jStabj 1-lines 2-lines

IRT1 D
�
0 0 1
0 1 1
1 �1 �x�

�
… K3 7 0 0

Table 6. Representatives of conjugacy classes of elements of order 7 (isolated fixed point) in
PU.2; 1;O7/.

point. We also list the order of the stabilizer of the fixed point (obtained with the method
explained in Section 3.4), as well as the number of 1-lines and 2-lines through that point,
see Definition 4.2. Recall that being a 1-line (resp. 2-line) is equivalent to being in the
�-orbit of the mirror of R (resp. of I ).

5. Study of the mirror stabilizers

5.1. Mirror of R

The mirror of R is given by the complex lines in e?2 , so it is quite clear that its stabilizer
is isomorphic to ¹˙1º � U.1; 1;O7/. In terms of our standard horospherical coordinates
.z; t; u/, the mirror is simply given by the points with z D 0, i.e., we get a copy of the
upper half-space .t; u/ 2 R2, u > 0.

The stabilizer can be understood with the same method as in [13], only the computa-
tions are simpler. Concretely, to work out the Ford domain for the stabilizer, we restrict
to z D 0 and consider the domain bounded by Cygan spheres for elements  2 � only
when  preserves z D 0 (this is equivalent to saying that its matrix representative should
have .1; 0; 0/ as an eigenvector, and it implies that .1/ have 0 as its second homoge-
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neous coordinate). Of course, there are infinitely many such elements, but up to the action
of �1, the points .1/ must be the ones listed in [13].

Also, the cusp elements that preserve z D 0 consist precisely of elements in the infinite
cyclic group generated by the vertical translation Tv .

It turns out that, up to the action of the group generated by Tv , there is a unique element
of depth 1, namely

I D

0@0 0 1

0 �1 0

1 0 0

1A ;
and a unique element of depth 2, given by

M D

0@ip7 0 4

0 1 0

2 0 �i
p
7

1A :
Moreover, the corresponding Cygan spheres intersect at the (isolated) fixed point of

MTvI;

which has order 6 (its cube is actually equal to R, so the transformation acts as an element
of order 3 in restriction to the mirror of R).

It follows from the results in [13] that the Cygan spheres of level 11 or higher do not
intersect the Ford domain, so the determination of the Ford domain for the stabilizer is
reduced to finitely many verifications, and one verifies that the Tv-translates of the two
Cygan spheres for I and M actually bound the domain, and that a fundamental domain
for the action of the stabilizer is as illustrated in Figure 6.

M

Tv

I

Figure 6. Fundamental domain with side-pairing for the action of the stabilizer of the mirror of R.
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It is also easy to work out the vertex cycles of the corresponding Ford polygon, to get
a presentation for the fixed point stabilizer of the form

h�; �; � j �2; �2; .���/3i:

The stabilizer is a central extension of this group with presentation

h�; �; �; � j �2; �2; �2; .���/3��1; Œ�; ��; Œ�; ��; Œ�; ��i:

The above discussion shows in particular that the mirror stabilizer has precisely three
orbits of points with non-trivial isotropy groups, represented by

• the common fixed point of I and R (intersection of one 1-line and one 2-line);

• the fixed point of .RT1IT �11 /2 (intersection of two 1-lines and two 2-lines);

• the fixed point of MTvI (only one 1-line).

5.2. Mirror of I

Instead of considering the stabilizer of the mirror of I , we will study the mirror of T�R
(which is conjugate to I in �), because its mirror goes through the point at infinity in the
Siegel half-space.

Let L be the mirror of T�R, which is given by v? with v D .1;��; 0/. The structure
of the stabilizer of L in � is significantly more difficult to study. Our main result is the
following.

Theorem 5.1. The projection of the stabilizer of L to PU.1; 1/ is the lattice generated by
seven elements r1, r2, r3, r4, s1, s2, with presentation

hr1; r2; r3; r4; s1; s2; tv j r
2
1 ; r

3
2 ; r

2
3 ; r

2
4 ; .s

�1
2 s1/

2; s�11 r4r1r3tvr2i: (5.1)

This group has precisely two cusps, corresponding to the cyclic groups generated by tv
and s2. The image of the mirror in the quotient is a P 1C with 2 punctures and 4 orbifold
points of weight 2.

Just as in Section 5.1, Stab.L/ is in fact a central extension of this group, with center
generated by the complex reflection T�R itself (which acts trivially on L).

We obtained this group by using the computer to list many primitive vectors v 2 O3
7

with norm 1 or 2, and keeping only those that are orthogonal to v D .1;��; 0/ (so that
the corresponding complex reflections Rv preserves L). We then studied the Ford domain
(see Figure 7) for the group generated by those reflections, whose side-pairing maps are
the above generators.

The group elements r1; : : : ; r4 are complex reflections with mirror a 2-line. We de-
scribe them by giving vectors v1; : : : ; v4 polar to their mirror; recall that the matrix of the
reflection Rv fixing v? can be obtained by using formula (4.1):

v1 D .1; 1; x�/; v2 D .�i
p
7; �; 2/; v3 D .i

p
7; �; 2/; v4 D .0; 1; x�/:
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For the other two, we give the full matrices, namely

s1 D

0@�� � 1 � � 2 x� C 2

3� 4 �5

6 3x� 5� � 4

1A ; s2 D

0@ � � 3 i
p
7 �i

p
7

x� C 3 1 � i
p
7 i

p
7

�2i
p
7 �� � 3 � C 4

1A :
It is easy to check that s2 is a parabolic element, whose fixed point is represented by the
primitive vector .�1; 1; x�/.

A fundamental domain for the action of the stabilizer of L is described in Figure 7.
From this, one easily deduces a presentation of the stabilizer of L (modulo the fixed point
stabilizer of L, which is a group of order 2), by using the Poincaré polygon theorem.
Indeed, the relations that occur in the presentation of equation (5.1) are the cycle relations
coming from the vertices of the fundamental domain.

r1

r4 r3r2

s2

s1

Tv

Figure 7. A fundamental domain for the action in L of Stab.L/.

A priori the above group is only the (projection to PU.1;1/ of the) subgroup of Stab.L/
generated by all the complex reflections in Stab.L/, but in fact this gives full stabilizer,
because any holomorphic symmetry of our domain would have to exchange the two cusps
(but it is easy to see that there is noA 2U.2;1;O7/ that exchanges .1;0;0/ and .�1;1;x�/).

6. A 2-generator presentation

Theorem 6.1. The group �7 D PU.2; 1;O7/ has the following presentation:

ha; b; c; d j a7; b2; c6; .ad2/4; .c�2d2/4; .cd�1c2d�2/3; .cd�2c2d�1/3;

.d2c�1a�2d3c2a�2/2; c�1ab; d�1bai: (6.1)

Moreover, every torsion element in the group is conjugate to an element that occurs in one
of these power relators.
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Order Group element Fixed point v hv; vi Other description

2 b .1;��; 0/ 2 T�R

2 .ba/3 D d3 D a�1c3a .�; 0; 1/ 1 T1IT
�1
1 RT1IT

�1
1

2 ..aba/�1babab/2 D .d�2c2/2 .�; 1; x�/ �2 #3
2 .ababa/2 D .ad2/2 .� C 1; 1; x�/ �1 A2.#1/A�12

3 .ba/2 D d2 not in Q.i
p
7/ T1.IT

�1
1 R/3

3 Œb; a�1babab� D c�1d2c�2d .3C i
p
7; 1; x�/ �3 TvI.T�J /IT v

�1

4 .aba/�1babab D d�2c2 .�; 1; x�/ �2 IT�11 .IT1/
2IT�11

4 ababa D ad .� C 1; 1; x�/ �1 T1I.T
�1
1 I /2T1IRT1IT

�1
1

6 ab D c not in Q.i
p
7/ RT1IR.T1I /

2T�21

7 a not in Q.i
p
7/ T1RT1IRT1I

Table 7. Obvious elements of finite order, obtained from presentation (6.1).

Note that we write this as a 4-generator presentation to help readability, but it should
be clear (by looking at the last two relators) that a, b generate the group, and this can
clearly be turned into a 2-generator presentation (this is useful to speed up computations
using group-theory software like GAP or MAGMA).

An explicit isomorphism �WG ! PU.2; 1;O7/ extends

�.a/ D A; �.b/ D B;

where

A D

0@�� � 2 i
p
7 i
p
7

�1 1 0

� � 1 1 1

1A ; B D

0@1 x� �1

0 �1 �

0 0 1

1A :
The fact that �.a/ D A, �.b/ D B extends to a group homomorphism (still denoted

by �) follows from explicit matrix computation. The fact that this extension is an isomor-
phism follows from comparison of G with the presentation for PU.2; 1;O7/ given in [13]
using the SearchForIsomorphism command in MAGMA.

We would like to find an element of each torsion conjugacy class expressed as an
explicit word in a, b. We start by gathering geometric data for the obvious elements that
occur in the presentation in equation (6.1), see Table 7.

In order to get all torsion conjugacy classes (up to replacing any element to a power
that generates the same finite cyclic group), we need to write a conjugate of IR and
a conjugate of T �1

x� J as explicit words in a and b. This can be done using the above
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Order Group element Fixed point v hv; vi Other description

2 .aba/�1.d2c�1a�2d3c2a�2/aba .1; 0;�1/ �2 J D RI

3 a�1ba�1bababa�1bab D d�2c2d�1c .� C 1; x�;��/ �3 T1I.T
�1
x�
J /IT�11

Table 8. Non-obvious elements of finite order.

explicit isomorphism between the presentations (or alternatively by geometric methods
using a suitable Dirichlet domain for the group).

The results are given in Table 8.

7. Torsion-free subgroups

We now use the results of the previous sections to exhibit an explicit torsion-free subgroup
of � . Computer code to find this subgroup (as well as many other torsion-free subgroups
of PU.J;Od / for other values of d ) is available in [4].

Recall that � contains elements of order 2, 3, 4, 6 and 7, so the index of any torsion-
free subgroup has to be a multiple of lcm.¹4; 6; 7º/ D 84.

Consider the ideal I Dhi
p
7i in O7 that satisfies O7=I �F7, and let �W�!GL.3;F7/

be the corresponding homomorphism (reduce all coefficients modulo I ). We use the matri-
ces A and B from Section 6, and compute

�.A/ D

0@ 1 0 0

�1 1 0

3 1 1

1A ; �.B/ D

0@1 4 �1

0 �1 4

0 0 1

1A :
Proposition 7.1. The group �0 D Ker.�/ is a torsion-free subgroup of index 336 in � ,
which is torsion-free at infinity as well.

Proof. It is easy to verify that the subgroup generated by �.A/ and �.B/ has order 336
(this is most conveniently done with group theory software, say GAP or MAGMA), which
gives the statement about the index.

The claim about �0 being torsion-free amounts to verifying that every representative 
of a conjugacy class of torsion elements has the property that �./ has the same order as  .

Torsion-free at infinity is equivalent to �.T1R/�.Tv/k being non-trivial for every k.
In fact, �.Tv/ has order 4, so it enough to check this for k D 0; 1; 2; 3.

All these verifications are checked by direct computations in GL.3;F7/.

Remark 7.2. (1) Applying the same construction, but replacing I by the ideal I 0 D h�i
(which satisfies O7=I

0 � F2) gives a subgroup of index 168, which is not torsion-free.

(2) Using MAGMA, one can check that � has exactly two normal subgroups of index
336, and only one of them is torsion-free.
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(3) The group G D Im.�/ of order 336 is not isomorphic to the Shephard–Todd
group G24 that was used in [3]. In fact, G has trivial center, whereas G24 has center
of order 2.

(4) Still using MAGMA, one can check that the subgroup �0 has finite abelianization
isomorphic to .Z=7Z/8. Using methods similar to the ones used in the companion com-
puter file of [17], one can also count the number of cusps of �0. It turns out it has 24 cusps,
each with self-intersection �7; more details on this are given in [5] (see also the computer
code [4] related to that paper).
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