Virtually free groups are stable in permutations

Nir Lazarovich and Arie Levit

Abstract. We prove that finitely generated virtually free groups are stable in permutations. As an application, we show that almost-periodic almost-automorphisms of labelled graphs are close to periodic automorphisms.

1. Introduction

A finitely generated group G is called stable in permutations (in short P-stable) if every almost action of G on a finite set is close to an honest action (see Section 2 for definitions). As a group property, this was first defined by Arzhantseva and Păunescu [1]. For the ubiquitous class of sofic groups, the property of P-stability can be seen as a stronger form of residual finiteness [1]. Our main result is the following.

Theorem A. Every finitely generated virtually free group is P-stable.

It is trivially true that free groups are P-stable. But while residual finiteness is preserved under passing to finite index subgroups (or rather to any subgroup), this fact is not clear in general for P-stability.

To the best of our knowledge, Theorem A gives the first examples of P-stable groups which are not free products of P-stable amenable groups. Note that while fundamental groups of closed orientable surfaces are known to be flexibly P-stable [5], it is not clear if these groups are P-stable in the strict sense.

As a special case of Theorem A, we answer the following question of Lubotzky.

Corollary 1.1. *The modular group* $SL_2(\mathbb{Z})$ *is P-stable.*

Interestingly, P-stability is not, generally speaking, preserved under direct products, for example, the groups $F_2 \times \mathbb{Z}$ are not P-stable [4]. This phenomenon is to be contrasted with the fact that the product groups $F_2 \times (\mathbb{Z}/n\mathbb{Z})$ are P-stable for all $n \in \mathbb{N}$, as follows from Theorem A. As a consequence of the P-stability of these groups, we are able to deduce the following assertion.

²⁰²⁰ Mathematics Subject Classification. Primary 20B05; Secondary 20E05, 20E08.

Keywords. Free groups, permutation stability, graph of groups.

Corollary B. Fix some $d, n \in \mathbb{N}$. Let F_d be the free group of rank d and \mathcal{G}_d be the family of finite labelled Schreier graphs of F_d . Then for every graph $\Gamma \in \mathcal{G}_d$ and every δ -almost automorphism α of Γ of δ -almost order n, there is a graph $\Gamma' \in \mathcal{G}_d$ on the same vertex set as Γ and $O(\delta)$ -close to Γ and an automorphism α' of Γ' which is $O(\delta)$ -close to α and has order n.

More details and a precise statement of Corollary B can be found in Section 8 below.

Stable epimorphisms

Stallings theorem on ends of groups [8, 9] implies that a finitely generated group *G* is virtually free if and only if *G* is isomorphic to the fundamental group $\pi_1(\mathcal{G}, T)$ of a finite graph of groups \mathcal{G} with finite vertex groups with respect to some maximal spanning tree *T* (see Section 3 for the definition of $\pi_1(\mathcal{G}, T)$).

Naturally associated to the graph of groups \mathscr{G} and the maximal spanning tree T there is another group $\overline{\pi}_1(\mathscr{G}, T)$ admitting a quotient map $\overline{\pi}_1(\mathscr{G}, T) \to \pi_1(\mathscr{G}, T)$. This group is isomorphic to the free product of the vertex groups of \mathscr{G} with the topological fundamental group of the underlying graph of \mathscr{G} . As finite groups are P-stable [3], it follows immediately that the group $\overline{\pi}_1(\mathscr{G}, T)$ is P-stable.

Motivated by this, we introduce a relative notion of P-stable epimorphisms, see Definition 2.1. In particular, a finitely generated group G is P-stable in the usual sense if and only if the natural epimorphism from the free group in the generators of G onto the group Gis P-stable. Theorem A is thereby reduced to the following statement, to which the major part of this work is dedicated.

Theorem 1.2. The epimorphism $\overline{\pi}_1(\mathcal{G}, T) \to \pi_1(\mathcal{G}, T)$ is P-stable.

A detailed outline of the proof of Theorem 1.2 can be found in Section 3 below, after the necessary definitions and notations are set in place.

2. P-stable epimorphisms

Let X be a finite set. Consider the normalized Hamming distance d_X on the symmetric group Sym(X) given by

$$d_X(\sigma_1, \sigma_2) = \frac{1}{|X|} |\{x \in X : \sigma_1(x) \neq \sigma_2(x)\}|$$

for all pairs $\sigma_1, \sigma_2 \in \text{Sym}(X)$. Note that the metric d_X is bi-invariant. Let \overline{G} be a group with finite generating set S. Define a metric $d_{X,S}$ on the set $\text{Hom}(\overline{G}, \text{Sym}(X))$ of all group homomorphisms $\rho: \overline{G} \to \text{Sym}(X)$ by

$$d_{X,S}(\rho,\rho') = \sum_{s \in S} d_X(\rho(s),\rho(s'))$$

for each pair $\rho, \rho' \in \text{Hom}(\overline{G}, \text{Sym}(X))$.

Let $N \lhd \overline{G}$ be a normal subgroup normally generated by some finite subset $R \subset \overline{G}$. Denote $G = \overline{G}/N$. We say that an action $\rho: \overline{G} \to \text{Sym}(X)$ is a δ -almost G-action if

$$\sum_{r\in R} d_X(\rho(r), \mathrm{id}) \leq \delta.$$

This terminology is justified by the observation that ρ is an honest *G*-action if and only if it is a δ -almost *G*-action with respect to $\delta = 0$. Note that, strictly speaking, this notion depends on fixing the normal generating set *R*.

Definition 2.1. The epimorphism $\phi: \overline{G} \to G$ is *P*-stable if for every $\varepsilon > 0$, there is a $\delta > 0$ such that for every δ -almost *G*-action $\rho: \overline{G} \to \text{Sym}(X)$, there is a *G*-action $\rho': G \to \text{Sym}(X)$ with $d_{X,S}(\rho, \rho' \circ \phi) < \varepsilon$.

Lemma 2.2. The *P*-stability of the epimorphism $\phi: \overline{G} \to G$ is a well-defined notion (i.e., it is independent of the choices of the finite sets S and R).

Proof. It is easy to see that if S_1 and S_2 are two finite generating sets for the group G, then the resulting metrics d_{X,S_1} and d_{X,S_2} on the set $\text{Hom}(\overline{G}, \text{Sym}(X))$ are bi-Lipschitz equivalent. A similar argument, taking into account the bi-invariance of the normalized Hamming metric d_X , shows that if R_1 and R_2 are two finite normal generating sets for the subgroup $N \triangleleft \overline{G}$, then there is a constant

$$C = C(R_1, C_2) > 1$$

such that

$$C^{-1}\sum_{r\in R_2} d_X(\rho(r), \mathrm{id}) \leq \sum_{r\in R_1} d_X(\rho(r), \mathrm{id}) \leq C\sum_{r\in R_2} d_X(\rho(r), \mathrm{id}).$$

The conclusion follows from these observations.

Let *H* be any group admitting a finite generating set *S* and F(S) be the free group in the generators *S*. Observe that the natural homomorphism $F(S) \rightarrow H$ is P-stable if and only if the group *H* is *P*-stable in the usual sense.

Remark 2.3. Every split epimorphism is P-stable.

The next lemma follows immediately from Definition 2.1.

Lemma 2.4. Let $\overline{\overline{G}} \xrightarrow{\phi} \overline{G} \xrightarrow{\psi} G$ be a sequence of epimorphisms with normally finitely generated kernels. If ϕ and ψ are P-stable, then $\psi \circ \phi$ is P-stable.

We have occasion to use Lemma 2.4 only in the following special form: if the group \overline{G} is *P*-stable and $\phi:\overline{G} \twoheadrightarrow G$ is a *P*-stable epimorphism, then the group *G* is *P*-stable.

Remark 2.5. It seems an interesting problem to look for other non-trivial instances of P-stable epimorphisms.

3. The fundamental group of a graph of groups

We recall the definition of the fundamental group of a graph of groups and, in particular, list its defining relations. This is followed by a detailed sketch of proof for our Theorem A as well as for the "relative" Theorem 1.2. Lastly, we introduce some useful asymptotic notations.

Graphs of groups

We use Serre's notation for graphs [6]. In this notation, a graph Γ consists of a set of vertices $V(\Gamma)$ and a set of edges $E(\Gamma)$. Each edge $e \in E(\Gamma)$ has an origin $o(e) \in V(\Gamma)$ and a terminus $t(e) \in V(\Gamma)$. Moreover, each edge $e \in E(\Gamma)$ admits a distinct opposite edge $\overline{e} \in E(\Gamma)$ that satisfies $\overline{\overline{e}} = e$, $o(\overline{e}) = t(e)$ and $t(\overline{e}) = o(e)$. Every pair of "oriented" edges $\{e, \overline{e}\} \subset E(\Gamma)$ represents a single "geometric" edge. An orientation of the graph Γ is a subset $\vec{E}(\Gamma) \subset E(\Gamma)$ containing exactly a single edge from each pair $\{e, \overline{e}\}$.

Definition 3.1. A graph of groups *G* is

$$\mathscr{G} = (\Gamma, \{G_v\}_{v \in V(\Gamma)}, \{G_e\}_{e \in E(\Gamma)}, \{i_e: G_e \to G_{t(e)}\}_{e \in E(\Gamma)}),$$

where Γ is a connected graph, G_v is a vertex group for all $v \in V(\Gamma)$, G_e is an edge group for all edges $e \in E(\Gamma)$ with $G_e = G_{\overline{e}}$ and $i_e: G_e \to G_{t(e)}$ are injective homomorphisms.

Let \mathscr{G} be a graph of groups. Fix an orientation $\vec{E}(\Gamma)$ and a maximal spanning tree $T \subset \Gamma$. Consider the group $\overline{\pi}_1(\mathscr{G}, T)$ defined as the free product

$$\overline{\pi}_1(\mathscr{G},T) = *_{v \in V(\Gamma)} G_v * F(\{s_e\}_{e \in \vec{E}(\Gamma)}),$$

where $F(\cdot)$ denotes the free group over the given basis. It will be convenient to consider the following generating set:

$$S_{\mathscr{G}} = \bigcup_{v \in V(\Gamma)} G_v \cup \{s_e\}_{e \in \vec{E}(\Gamma)}.$$

Definition 3.2. The *fundamental group* $\pi_1(\mathcal{G}, T)$ of the graph of groups \mathcal{G} with respect to the subtree *T* is the quotient of the free product $\overline{\pi}_1(\mathcal{G}, T)$ by the normal subgroup generated by the relations

$$R_{\mathcal{G}} = \begin{cases} s_e = 1 & \forall e \in \vec{E}(T), \\ s_e^{-1} i_e(g_e) s_e = i_{\overline{e}}(g_e) & \forall e \in \vec{E}(\Gamma), g_e \in G_e. \end{cases}$$

Remark 3.3. The fundamental group $\pi_1(\mathcal{G}, T)$ as well as the group $\overline{\pi}_1(\mathcal{G}, T)$ are independent of the choice of maximal spanning tree *T* up to isomorphism [6, Chapitre I, §5].

For the remainder of the paper, we will assume that \mathscr{G} is a finite graph of groups, with finite vertex groups. In particular, $S_{\mathscr{G}}$ is a finite generating set for the group $\overline{\pi}_1(\mathscr{G}, T)$.

Outline of the proof and of the paper

Note that the group $\overline{\pi}_1(\mathcal{G}, T)$ is a free product of finite groups and of a free group. As such $\overline{\pi}_1(\mathcal{G}, T)$ is easily seen to be P-stable [3]. In light of Lemma 2.4 and the remarks following it, our main result Theorem A follows immediately from Theorem 1.2 of the introduction. In other words, it suffices to show that the epimorphism $\overline{\pi}_1(\mathcal{G}, T) \to \pi_1(\mathcal{G}, T)$ is P-stable.

Towards this goal, consider some δ -almost $\pi_1(\mathcal{G}, T)$ -action $\rho: \overline{\pi}_1(\mathcal{G}, T) \to \text{Sym}(X)$. In particular, ρ restricts to actions of the finite vertex groups G_v . For ρ to factorize through the fundamental group $\pi_1(\mathcal{G}, T)$, it is necessary that for every edge $e \in \vec{E}(\Gamma)$ the two actions $\rho \circ i_e$ and $\rho \circ i_{\vec{e}}$ of the edge group G_e are isomorphic.

It is clear that the isomorphism type of an action of a finite group on a finite set is characterized by the number of occurrences of each of its finitely many transitive action types. In Section 4, we show how to represent this data using a vector in some canonical \mathbb{Z} -module associated to the group. The restriction maps $\rho|_{G_v} \mapsto (\rho \circ i_e)|_{G_e}$ define a \mathbb{Z} linear map $\mathbf{d}_{\mathscr{G}}$ between the respective \mathbb{Z} -modules. The above mentioned condition (that the two actions $\rho \circ i_e$ and $\rho \circ i_{\overline{e}}$ of the edge group G_e are isomorphic) can be described as the kernel of this \mathbb{Z} -linear map $\mathbf{d}_{\mathscr{G}}$. Lastly, the fact that ρ is a δ -almost action of $\pi_1(\mathscr{G}, T)$ translates to having a small image under the map $\mathbf{d}_{\mathscr{G}}$.

In Section 5, we show that " \mathbb{Z} -linear maps are stable" in the following sense: an exact \mathbb{Z} -solution to a linear system of equations and inequalities can be found nearby a δ -almost solution. This is applied to the linear map $\mathbf{d}_{\mathscr{G}}$. That is, near the almost solution corresponding to ρ , there is an exact \mathbb{Z} -solution. Such a solution represents a collection of isomorphism types of actions, one for each vertex group of \mathscr{G} , that satisfies the necessary condition to be turned into an action of $\pi_1(\mathscr{G}, T)$ and which is statistically close to the collection corresponding to ρ .

Finally, in Section 6, we show how given a δ -almost action ρ , and a nearby exact \mathbb{Z} -solution to the corresponding linear system of equations, one can find a nearby action ρ' factoring via $\pi_1(\mathcal{G}, T)$.

We will make repeated use of the finiteness of vertex and edge groups via the following observation.

Observation 3.4. Let *G* be a finite group. If *G* acts on a finite set *X* and $Y \subset X$, then there exists a *G*-invariant subset $Y' \subseteq Y$ such that

$$|X - Y'| \le |G||X - Y|.$$

Notations

We will need to consider inequalities involving quantities depending on the graph of groups \mathscr{G} in question (such as the number of vertices or edges, the sizes of the vertex groups G_v , etc.). To avoid cumbersome formulas it would be convenient to introduce the following asymptotic notation.

We write $A \prec B$ if there exists a constant $c = c(\bullet)$ such that $A \leq cB$. We omit the subscript when it is clear from the context.

4. Set of actions on finite sets

Let G be any group. Let Acts(G) denote the set of all actions of the group G on finite sets considered up to isomorphism. Similarly, let Trans(G) be the set of transitive actions of G on finite sets considered up to isomorphism.

Every action $\rho: G \to \text{Sym}(X)$ on some finite set X can be decomposed into a disjoint union of its finitely many orbits $O_1, \ldots, O_n \subseteq X$. The restriction

$$\rho \upharpoonright_{O_i} : G \to \operatorname{Sym}(O_i)$$

of ρ to each orbit O_i is transitive for all i = 1, ..., n. The isomorphism class of the action ρ is determined by counting the isomorphism classes of its restricted actions $\rho \upharpoonright_{O_i}$ with multiplicity.

This observation enables us to identify the set of actions Acts(G) with a non-negative cone in the free \mathbb{Z} -module Λ_G with basis Trans(G), namely

$$\Lambda_G = \bigoplus_{\rho \in \operatorname{Trans}(G)} \mathbb{Z}\rho$$

More precisely, given an action $\rho \in Acts(G)$, we define

$$\rho^{\sharp} = \sum_{O \in G \setminus X} \rho \upharpoonright_{O} \in \Lambda_G.$$

The correspondence $\rho \mapsto \rho^{\sharp}$ is injective and its image $\operatorname{Acts}(G)^{\sharp}$ in Λ_G is the non-negative cone

$$\Lambda_G^+ := \{ (\lambda_\rho)_{\rho \in \operatorname{Trans}(G)} : \lambda_\rho \ge 0 \}.$$

We observe that the correspondence $\rho \to \rho^{\sharp}$ is additive in the following sense: any two actions $\rho_1, \rho_2 \in Acts(G)$ with $\rho_i: G \to Sym(X_i)$ for $i \in \{1, 2\}$ satisfy

$$(\rho_1 \bigsqcup \rho_2)^{\sharp} = \rho_1^{\sharp} + \rho_2^{\sharp}$$

where $\rho_1 \coprod \rho_2 : G \to \text{Sym}(X_1 \coprod X_2)$ is the disjoint union of ρ_1 and ρ_2 .

We find it convenient to introduce a norm $\|\cdot\|_G$ on the \mathbb{Z} -module Λ_G by

$$\|\lambda\|_{G} = \sum_{\substack{\rho \in \operatorname{Trans}(G)\\\rho: G \to \operatorname{Sym}(X_{\rho})}} |\lambda_{\rho}| \cdot |X_{\rho}| \quad \forall \lambda = (\lambda_{\rho}) \in \Lambda_{G}.$$

This norm is chosen in such a way that every action $\rho \in Acts(G)$ with $\rho: G \to Sym(X)$ satisfies $\|\rho^{\sharp}\|_{G} = |X|$.

Remark 4.1. The module Λ_G can be equipped with a multiplication given by $\rho \otimes \rho'$. The resulting ring is known as the Burnside ring of the group G [2, 7]. However, we will not make use of the Burnside ring structure in the rest of the paper.

Pullback on set of actions

Let *H* be any group admitting a homomorphism $i: H \to G$. There is a pullback map i^* on the corresponding sets of isomorphism classes of actions on finite sets given by

$$i^*$$
: Acts(G) \rightarrow Acts(H), $i^* \rho = \rho \circ i \quad \forall \rho \in$ Acts(G).

Allowing for a slight abuse of notation, we also let i^* denote the resulting \mathbb{Z} -linear map $i^*: \Lambda_G \to \Lambda_H$ defined in terms of the basis by

$$i^*(\rho^{\sharp}) = (\rho \circ i)^{\sharp}, \quad \rho \in \operatorname{Trans}(G).$$

Observation 4.2. Let $\phi: H \to \text{Sym}(X)$ be a group action such that $\phi^{\sharp} = i^*(\lambda)$ for some $\lambda \in \Lambda_G$. Then there exists a group action $\rho: G \to \text{Sym}(X)$ satisfying $\rho^{\sharp} = \lambda$ and $\rho \circ i = \phi$.

Set of actions for a graph of groups

We extend notions introduced above to the setting of graphs of groups. Recall that

$$\mathscr{G} = (\Gamma, \{G_v\}_{v \in V(\Gamma)}, \{G_e\}_{e \in E(\Gamma)}, \{i_e: G_e \to G_{t(e)}\}_{e \in E(\Gamma)})$$

is a finite graph of groups with finite vertex groups. We define the \mathbb{Z} -modules

$$\Lambda_V = \bigoplus_{v \in V(\Gamma)} \Lambda_{G_v} \quad \text{and} \quad \Lambda_E = \bigoplus_{e \in \vec{E}(\Gamma)} \Lambda_{G_e}$$

and the respective positive cones

$$\Lambda_V^+ = \bigoplus_{v \in V(\Gamma)} \Lambda_{G_v}^+ \quad \text{and} \quad \Lambda_E^+ = \bigoplus_{e \in \vec{E}(\Gamma)} \Lambda_{G_e}^+.$$

It will be convenient to consider the \mathbb{Z} -modules with the norms

$$\|\cdot\|_{V} = \frac{1}{|V(\Gamma)|} \sum_{v \in V(\Gamma)} \|\cdot\|_{G_{v}}, \quad \|\cdot\|_{E} = \frac{1}{|\vec{E}(\Gamma)|} \sum_{e \in \vec{E}(\Gamma)} \|\cdot\|_{G_{e}},$$

where $\|\cdot\|_{G_v}$ and $\|\cdot\|_{G_e}$ are the norms defined on the \mathbb{Z} -modules Λ_{G_v} and Λ_{G_e} as above.

Let $\mathbf{d}_{\mathscr{G}}: \Lambda_V \to \Lambda_E$ be the \mathbb{Z} -linear map defined on each direct summand Λ_{G_v} of the \mathbb{Z} -module Λ_V by

$$(\mathbf{d}_{\mathscr{G}})|_{\Lambda_{G_v}} = \sum_{e:t(e)=v} i_e^* - \sum_{e:o(e)=v} i_{\overline{e}}^*.$$

In other words, the image of the vector $\lambda = (\lambda_v)_v \in \Lambda_V$ under the \mathbb{Z} -linear map $\mathbf{d}_{\mathcal{G}}$ in each coordinate $e \in \vec{E}(\Gamma)$ is given by

$$(\mathbf{d}_{\mathscr{G}}(\lambda))_{e} = i_{e}^{*}(\lambda_{t(e)}) - i_{\overline{e}}^{*}(\lambda_{o(e)}).$$

Actions of the group $\overline{\pi}_1(\mathcal{G}, T)$ on finite sets

Let X be a fixed finite set. Given an action $\rho: \overline{\pi}_1(\mathcal{G}, T) \to \text{Sym}(X)$, we denote (abusing our previous notations)

$$\rho^{\sharp} \in \Lambda_V, \quad (\rho^{\sharp})_v = (\rho|_{G_v})^{\sharp} \quad \forall v \in V.$$

Note that $\|\rho^{\sharp}\|_{V} = |X|$. Moreover, the vector ρ^{\sharp} depends only on the restrictions of the action ρ to the vertex groups G_{v} 's but not to the free factor $F(\{s_{e}\})$.

Proposition 4.3. If the action $\rho: \overline{\pi}_1(\mathcal{G}, T) \to \text{Sym}(X)$ factors through $\pi_1(\mathcal{G}, T)$, then $\rho^{\sharp} \in \ker \mathbf{d}_{\mathcal{G}}$.

Proof. The Λ_{G_e} -coordinate of the image of the vector ρ^{\sharp} under the \mathbb{Z} -linear map $\mathbf{d}_{\mathscr{G}}$ for any fixed oriented edge $e \in \vec{E}(\Gamma)$ is given by

$$(\mathbf{d}_{\mathscr{G}}(\rho^{\sharp}))_{e} = i_{e}^{*}((\rho|_{G_{t(e)}})^{\sharp}) - i_{\overline{e}}^{*}((\rho|_{G_{o(e)}})^{\sharp}) = (\rho \circ i_{e})^{\sharp} - (\rho \circ i_{\overline{e}})^{\sharp} \in \Lambda_{G_{e}}.$$

The two actions $\rho \circ i_e$ and $\rho \circ i_{\overline{e}}$ of the edge group G_e on the finite set X are conjugate via the permutation $\rho(s_e)$. Therefore, $(\rho \circ i_e)^{\sharp} = (\rho \circ i_{\overline{e}})^{\sharp}$ so that the Λ_{G_e} -coordinate in question vanishes. This concludes the proof as the oriented edge $e \in \vec{E}(\Gamma)$ was arbitrary.

We remark that the converse of Proposition 4.3 is also true, in the sense that if a vector $\lambda \in \Lambda_V^+$ is in ker $\mathbf{d}_{\mathscr{G}}$, then there exists a finite set Y with $\|\lambda\|_V = |Y|$ and some action $\rho: \pi_1(\mathscr{G}, T) \to \operatorname{Sym}(Y)$ such that $\rho^{\sharp} = \lambda$. We will need a much sharper version of this fact proved in Proposition 6.1 below.

Proposition 4.4. Let $\rho: \overline{\pi}_1(\mathcal{G}, T) \to \text{Sym}(X)$ be an action. If ρ is a δ -almost $\pi_1(\mathcal{G}, T)$ -action, then

$$\|\mathbf{d}_{\mathscr{G}}(\rho^{\sharp})\|_{E} \prec_{\mathscr{G}} \delta \|\rho^{\sharp}\|_{V}.$$

Proof. Fix an oriented edge $e \in \vec{E}(\Gamma)$ with t(e) = u and o(e) = v. For each group element $g \in G_e$, consider the subset

$$X_g = \{x \in X \colon \rho(s_e^{-1}i_e(g)s_e)(x) = \rho(i_{\overline{e}}(g))(x)\}.$$

The assumption that ρ is a δ -almost $\pi_1(\mathcal{G}, T)$ -action implies that $|X_g| \ge (1 - \delta)|X|$. Denote $X_e = \bigcap_{g \in G_e} X_g$ so that $|X_e| \ge (1 - \delta|G_e|)|X|$ and

$$\rho(s_e^{-1}i_e(g)s_e)(x) = \rho(i_{\overline{e}}(g))(x) \quad \forall x \in X_e, \ g \in G_e.$$

According to Observation 3.4, there is some $i_{\overline{e}}(G_e)$ -invariant subset $Y_e \subset X_e$ satisfying $|Y_e| \ge (1 - \delta |G_e|^2)|X|$. Note that the set $\rho(s_e)(Y_e)$ is $i_e(G_e)$ -invariant. Moreover, the two actions $(\rho \circ i_e) \upharpoonright_{\rho(s_e)(Y_e)}$ and $(\rho \circ i_{\overline{e}}) \upharpoonright_{Y_e}$ of the group G_e are isomorphic (via conjugation by the permutation $\rho(s_e)$).

To simplify our notations, let $\rho_u = \rho|_{G_u}$ and $\rho_v = \rho|_{G_v}$ for the remainder of this proof. The previous paragraph implies that

$$((\rho_u \circ i_e) \upharpoonright_{\rho(s_e)(Y_e)})^{\sharp} = ((\rho_v \circ i_{\overline{e}}) \upharpoonright_{Y_e})^{\sharp}.$$

The norm of the coordinate of the vector $\mathbf{d}_{\mathscr{G}}(\rho^{\sharp})$ corresponding to the edge *e* is given by

$$\begin{split} \| (\mathbf{d}_{\mathscr{G}}(\rho^{\sharp}))_{e} \|_{G_{e}} &= \| i_{e}^{*}(\rho_{u}^{\sharp}) - i_{\overline{e}}^{*}(\rho_{v}^{\sharp}) \|_{G_{e}} \\ &= \| ((\rho_{u} \circ i_{e}) \upharpoonright_{\rho(s_{e})(Y_{e})})^{\sharp} + ((\rho_{u} \circ i_{e}) \upharpoonright_{X-\rho(s_{e})(Y_{e})})^{\sharp} \\ &- ((\rho_{v} \circ i_{\overline{e}}) \upharpoonright_{Y_{e}})^{\sharp} - ((\rho_{v} \circ i_{\overline{e}}) \upharpoonright_{X-Y_{e}})^{\sharp} \|_{G_{e}} \\ &\leq \| i_{e}^{*}(\rho_{u} \upharpoonright_{X-\rho(s_{e})(Y_{e})})^{\sharp} \|_{G_{e}} + \| i_{\overline{e}}^{*}(\rho_{v} \upharpoonright_{X-Y_{e}})^{\sharp} \|_{G_{e}} \\ &= |X - s_{e}(Y_{e})| + |X - Y_{e}| \leq 2\delta |G_{e}|^{2} |X|. \end{split}$$

Averaging the above estimate over all oriented edges $e \in \vec{E}(\Gamma)$ gives

$$\|\mathbf{d}_{\mathscr{G}}(\boldsymbol{\rho}^{\sharp})\|_{E} \leq c\delta|X| = c\delta\|\boldsymbol{\rho}^{\sharp}\|_{V}$$

with respect to the constant $c = 2 \max_{e \in \vec{E}(\Gamma)} |G_e|^2$. This constant depends only on the graph of groups \mathscr{G} .

5. Linear algebra and cones

This section is, formally speaking, independent of the rest of the paper. Its goal is to show that " \mathbb{Z} -linear maps are stable", in the sense that an approximate solution to a system of linear equations and inequalities must be close to an exact \mathbb{Z} -solution (see Lemma 5.3 below for a precise statement).

Let Λ_1 and Λ_2 be a pair of finitely generated free \mathbb{Z} -modules. Let $\mathbf{d}: \Lambda_1 \to \Lambda_2$ be a \mathbb{Z} -linear map.

Let $V_i = \Lambda_i \otimes \mathbb{R}$ be the \mathbb{R} -vector spaces obtained by extending scalars from Λ_i and $\|\cdot\|_i$ be norms on V_i for i = 1, 2. By abuse of notation, we continue using $\mathbf{d}: V_1 \to V_2$ to denote the \mathbb{R} -linear extension of $\mathbf{d}: \Lambda_1 \to \Lambda_2$. We will make essential use of the fact that $\mathbf{d}: V_1 \to V_2$ is defined over \mathbb{Q} . Denote $K = \ker \mathbf{d}$ so that K is a \mathbb{Q} -subspace of the \mathbb{R} -vector space V_1 .

Assume that $C \subset V_1$ is a closed positive cone¹ defined by finitely many inequalities over \mathbb{Q} and satisfying $\text{Span}(C) = V_1$. Denote $\Lambda_1^+ = C \cap \Lambda_1$ so that the subset Λ_1^+ is closed under addition.

Lemma 5.1. For all $v \in C$, there exists $v'' \in C \cap K$ such that $||v - v''||_1 \prec ||\mathbf{d}v||_2$.

¹A positive cone is a subset C of a real vector space satisfying $C \cap -C = \{0\}, C + C \subset C$ and $\lambda C \subset C$ for any $\lambda \geq 0$.

We point out that the intersection $C \cap K$ is non-empty for it contains the zero vector $0 \in V_1$. Lemma 5.1 does not require the assumption that the subspace K, the linear map **d** and the positive cone C are all defined over \mathbb{Q} . We do need however the assumption that C is defined by finitely many inequalities.

Proof of Lemma 5.1. We argue by induction on the \mathbb{R} -dimension of V_1 . The base case where dim_{\mathbb{R}} $V_1 = 0$ is trivial.

Consider the \mathbb{R} -subspace $\mathbf{d}(V_1)$ of the \mathbb{R} -vector space equipped with two different norms, namely the restriction of norm $\|\cdot\|_2$ coming from V_2 , and the quotient norm $\|\cdot\|'_1$ defined by

$$\|\mathbf{d}v\|'_1 := \inf_{w \in K} \|v - w\|_1 \quad \forall v \in V_1.$$

Since any two norms on a finite-dimensional \mathbb{R} -vector space are bi-Lipschitz equivalent, there is some constant c > 0 such that $\|\mathbf{d}v\|'_1 \le c \|\mathbf{d}v\|_2$ for all $v \in V_1$.

Fix some vector $v \in C$. The infimum appearing in the definition of the quotient norm $\|\mathbf{d}v\|'_1$ is attained at some vector $w \in K$, hence

$$\|\mathbf{d}v\|_{1}' = \|v - w\|_{1} \le c \|\mathbf{d}v\|_{2}.$$

If $w \in C$, then we are done by choosing $v' = w \in C \cap K$. Otherwise, let u be the closest point to w along the closed segment $[w, v] \subseteq V_1$ and belonging to the closed cone C. Then, since u is on the segment [w, v],

$$\|v - u\|_1 \le \|v - w\|_1 = \|\mathbf{d}v\|_1' \le c \|\mathbf{d}v\|_2,$$

and since du is on the segment [0, dv],

$$\|\mathbf{d}u\|_2 \leq \|\mathbf{d}v\|_2.$$

Since the point u lies on the boundary of the positive cone C, it belongs to some proper face $D \subset C$ spanning a \mathbb{Q} -subspace $U_1 = \operatorname{Span}_{\mathbb{R}}(D) \subset V_1$ of strictly lower dimension. By the induction hypothesis there exists some constant c_D , such that for $u \in D$ there exists a point $v' \in D \cap K$ with $||u - v'||_1 \leq c_D ||\mathbf{d}u||_2$. Hence,

$$\|v - v'\|_1 \le \|v - u\|_1 + \|u - v'\|_1 \le (c + c_D) \|\mathbf{d}v\|_2 \le c_1 \|\mathbf{d}v\|_2,$$

where $c_1 = c + \max_{D \subset C} c_D$ and the maximum is taken over the finite set of proper faces of the positive cone *C*.

Recall that *K* denotes the kernel of the linear map **d** regarded as a \mathbb{Q} -subspace of the \mathbb{R} -vector space V_1 .

Lemma 5.2. There are constants c_1 , A > 0 such that if $v \in C$, then there is a vector $\lambda \in \Lambda_1^+ \cap K$ satisfying $||v - \lambda||_1 \le c_1 ||\mathbf{d}v||_2 + A$.

Proof. Let $v \in C$ be any vector. By Lemma 5.1, there exists a vector $v'' \in C \cap K$ such that $||v - v''||_1 \le c_1 ||\mathbf{d}v||_2$ for some constant $c_1 > 0$ independent of v.

Note that $C \cap K$ is a positive cone defined over \mathbb{Q} . Let $U = \operatorname{Span}_{\mathbb{R}}(C \cap K) \subseteq V_1$ so that $C \cap U = C \cap K$ is a closed cone with a non-empty interior in the vector subspace U. Denote $B_A = \{w \in V_1 : \|w\|_1 \leq A\}$. Therefore, $C \cap U \cap B_A$ contains in its interior a ball in U of an arbitrary large radius, provided the radius A > 0 is sufficiently large. Since $\Lambda_1 \cap U$ is a lattice in the \mathbb{R} -vector space U, the set $C \cap U \cap B_A$ surjects onto $U/(U \cap \Lambda_1)$ for all A > 0 sufficiently large. Fix any sufficiently large such A > 0.

Since $v'' \in C \cap K$, the translated set $v'' + C \cap U \cap B_A \subset C \cap K$ also surjects onto $U/(U \cap \Lambda_1)$. In particular, this set admits a point $\lambda \in \Lambda_1 \cap C \cap K = \Lambda_1^+ \cap K$. We conclude that $\|v - \lambda\|_1 \le \|v - v''\|_1 + \|v'' - \lambda\|_1 \le c_1 \|\mathbf{d}v\|_2 + A$ as required.

Lemma 5.3. For any vector $\lambda \in \Lambda_1^+$, there is another vector $\lambda' \in \Lambda_1^+ \cap K$ satisfying $\|\lambda - \lambda'\|_1 \prec \|\mathbf{d}\lambda\|_2$ and $\|\lambda'\|_1 \leq \|\lambda\|_1$.

Proof. Let the vector $\lambda \in \Lambda_1^+$ be fixed. If $\lambda \in K = \ker \mathbf{d}$, then there is nothing to prove, for we may simply take $\lambda' = \lambda \in \Lambda_1^+ \cap K$. Assume therefore that $\lambda \notin K$.

Since the linear map **d** is defined over \mathbb{Q} , there is a constant M > 0 such that

$$\|\mathbf{d}\lambda\|_2 \geq M$$

for every vector $\lambda \in \Lambda_1 - K$. Denote

$$\theta = \frac{c_1 \|\mathbf{d}\lambda\|_2 + A}{\|\lambda\|_1},$$

where the constants c_1 and A are as in Lemma 5.2.

If $\theta \ge 1$, then we may take $\lambda' = 0$. This vector λ' satisfies $0 = \|\lambda'\|_1 \le \|\lambda\|_1$ and

$$\|\lambda - \lambda'\|_1 \le \theta \|\lambda\|_1 = c_1 \|\mathbf{d}\lambda\|_2 + A \le (c_1 + \frac{A}{M}) \|\mathbf{d}\lambda\|_2$$

as desired (the constants c_1 , A and M are all independent of λ).

Finally, assume that $0 < \theta < 1$. Apply Lemma 5.2 to the vector $v = (1 - \theta)\lambda$. This gives a new vector $\lambda' \in \Lambda_1^+ \cap K$ with

$$\|v - \lambda'\|_1 \le c_1 \|\mathbf{d}v\|_2 + A \le c_1 \|\mathbf{d}\lambda\|_2 + A.$$

Therefore,

$$\|\lambda'\|_{1} \le \|v\|_{1} + \|v - \lambda'\|_{1} \le (1 - \theta)\|\lambda\|_{1} + c_{1}\|\mathbf{d}\lambda\|_{2} + A = \|\lambda\|_{1}.$$

This verifies the second condition. As for the first condition, we have

$$\begin{aligned} \|\lambda - \lambda'\|_{1} &\leq \|\lambda - v\|_{1} + \|v - \lambda'\|_{1} \leq \theta \|\lambda\|_{1} + c_{1} \|\mathbf{d}\lambda\|_{2} + A \leq 2c_{1} \|\mathbf{d}\lambda\|_{2} + 2A \\ &\leq 2 \Big(c_{1} + \frac{A}{M}\Big) \|\mathbf{d}\lambda\|_{2}. \end{aligned}$$

This concludes the proof, noting as above that the constants c_1 , A and M are all independent of the vector λ .

6. From linear algebra back to actions

We show that any δ -almost $\pi_1(\mathcal{G}, T)$ -action ρ whose isomorphism type ρ^{\sharp} is compatible with some $\pi_1(\mathcal{G}, T)$ -action, can be corrected to such an action. More precisely, we establish the following result, using without further mention all the notations introduced in Sections 2, 3 and 4.

Proposition 6.1. Let $\rho: \overline{\pi}_1(\mathscr{G}, T) \to \operatorname{Sym}(X)$ be a δ -almost $\pi_1(\mathscr{G}, T)$ -action with $\lambda = \rho^{\sharp}$. Let $\lambda' \in \Lambda_V^+$ be any vector with $\|\lambda'\|_V = \|\lambda\|_V$. If

- (a) $\lambda' \in \ker \mathbf{d}_{\mathscr{G}}$,
- (b) $\|\lambda \lambda'\|_V \leq \delta \|\lambda\|_V$,

then there is a group action $\rho': \pi_1(\mathcal{G}, T) \to \operatorname{Sym}(X)$ satisfying

- (i) $\lambda' = (\rho')^{\sharp}$,
- (ii) $d_{X,S_{\mathscr{G}}}(\rho,\rho') \prec_{\mathscr{G}} \delta$.

We precede the proof of Proposition 6.1 with an analogous statement in the simpler context of a single group homomorphism.

Lemma 6.2. Let $i: H \to G$ be a homomorphism of finite groups. Let $\phi: H \to \text{Sym}(X)$ and $\rho: G \to \text{Sym}(X)$ be a pair of group actions. Denote $\lambda = \rho^{\sharp}$. If $\lambda' \in \Lambda_{G}^{+}$ and $\delta > 0$ are such that

- (a) $d_{X,H}(\rho \circ i, \phi) \leq \delta$,
- (b) $i^*(\lambda') = \phi^{\sharp}$,

(c)
$$\|\lambda - \lambda'\|_G \leq \delta \|\lambda\|_G$$
,

then there exists a group action $\rho': G \to \text{Sym}(X)$ satisfying

- (i) $\rho' \circ i = \phi$,
- (ii) $\lambda' = (\rho')^{\sharp}$,
- (iii) $d_{X,G}(\rho, \rho') \prec_{G,H} \delta$.

Note that the "small" action ϕ of the group *H* is not being changed, rather the "large" action ρ is being replaced with a new action ρ' compatible with ϕ .

Proof of Lemma 6.2. We combine assumption (a) and Observation 3.4 applied with respect to the finite group H in order to find a $\phi(H)$ -invariant subset $X_0 \subset X$ satisfying $\phi \upharpoonright_{X_0} = (\rho \circ i) \upharpoonright_{X_0}$ and $|X_0| \ge (1 - \delta |H|)|X|$. By applying Observation 3.4 a second time with respect to the finite group G, we find a $\rho(G)$ -invariant subset $X_1 \subset X_0$ satisfying $|X_1| \ge (1 - \delta |H||G|)|X|$.

Consider the vector $\lambda_1 = (\rho \upharpoonright_{X_1})^{\sharp} \in \Lambda_G^+$. Let $\mu_1 \in \Lambda_G^+$ be the component-wise minimum of the two vectors λ' and λ_1 , i.e., μ_1 is the vector given by

$$(\mu_1)_{\chi} = \min\{(\lambda')_{\chi}, (\lambda_1)_{\chi}\} \quad \forall \chi \in \operatorname{Trans}(G).$$

The previous paragraph implies that $\|\lambda - \lambda_1\|_G \le \delta |H| |G| |X|$. Therefore, assumption (c) gives

$$\max\{\|\lambda' - \mu_1\|_G, \|\lambda_1 - \mu_1\|_G\} \le \|\lambda' - \lambda_1\|_G \le \|\lambda' - \lambda\|_G + \|\lambda - \lambda_1\|_G \\ \le \delta|X| + \delta|H||G||X| = \delta(1 + |H||G|)|X|.$$

Let $Y_1 \subset X_1$ be any $\rho(G)$ -invariant subset satisfying $\mu_1 = (\rho \upharpoonright_{Y_1})^{\sharp}$. Write $\mu_2 = \lambda' - \mu_1 \in \Lambda_G^+$ and $Y_2 = X - Y_1$ so that $\lambda' = \mu_1 + \mu_2$ and $X = Y_1 \coprod Y_2$. It will not be the case in general that $(\rho \upharpoonright Y_2)^{\sharp}$ coincides with μ_2 . However $|Y_2| = \|\mu_2\|_G$ and, in particular, the size of the subset Y_2 is bounded by

$$|Y_2| = \|\mu_2\|_G \le \delta(1 + |H||G|)|X|.$$

We define a new action $\rho': G \to \text{Sym}(X)$ as follows. To begin with, the restriction of ρ' to the $\rho(G)$ -invariant subset Y_1 coincides with ρ , namely $\rho' \upharpoonright_{Y_1} = \rho \upharpoonright_{Y_1}$. As $i^*(\lambda') = \phi^{\sharp}$ by assumption (b) and as $i^*(\mu_1) = (\phi \upharpoonright_{Y_1})^{\sharp}$ by the choice of the subset Y_1 , we have $i^*(\mu_2) = (\phi \upharpoonright_{Y_2})^{\sharp}$. It remains to define the action ρ' on the $\rho(G)$ -invariant complement $Y_2 = X - Y_1$. Taking into account Observation 4.2, we let $\rho' \upharpoonright_{Y_2}$ be an arbitrary action satisfying $(\rho' \circ i) \upharpoonright_{Y_2} = \phi \upharpoonright_{Y_2}$ and $(\rho' \upharpoonright_{Y_2})^{\sharp} = \mu_2$. This completes the definition of the new action ρ' .

Statements (i) and (ii) of the lemma hold true since $\rho' \circ i = \phi$ and

$$\rho'^{\sharp} = (\rho' \upharpoonright_{Y_1})^{\sharp} + (\rho' \upharpoonright_{Y_2})^{\sharp} = \mu_1 + \mu_2 = \lambda'$$

To verify statement (iii), we compute

$$\begin{aligned} d_X(\rho(g), \rho'(g)) &= \frac{|Y_1|}{|X|} d_{Y_1}(\rho(g) \upharpoonright_{Y_1}, \rho'(g) \upharpoonright_{Y_1}) + \frac{|Y_2|}{|X|} d_{Y_2}(\rho(g) \upharpoonright_{Y_2}, \rho'(g) \upharpoonright_{Y_2}) \\ &\leq \frac{|Y_2|}{|X|} \leq (1 + |H||G|) \delta \leq 2|H||G|\delta \end{aligned}$$

for all elements $g \in G$. Therefore, $d_{X,G}(\rho, \rho') \leq 2|H||G|^2\delta$ as required.

We are now in a position to prove the main result of Section 6.

Proof of Proposition 6.1. We define the new action $\rho': \pi_1(\mathcal{G}, T) \to \text{Sym}(X)$ of the fundamental group $\pi_1(\mathcal{G}, T)$ by specifying it on the finite generating set $S_{\mathcal{G}}$. This is done in two steps: first we define ρ' on the vertex groups G_v and then on the generators of the form s_e .

Step 1. Defining ρ' on G_v for all $v \in V(\Gamma)$. Fix an arbitrary base vertex v_0 in $V(\Gamma)$. We define the vertex group actions $\rho'|_{G_v}$ by induction on the distance in the spanning tree T of the vertex v from the base vertex v_0 such that

- (1) $(\rho'|_{G_v})^{\sharp} = \lambda'_v$,
- (2) $d_{X,G_v}(\rho|_{G_v}, \rho'|_{G_v}) \prec \delta$,

(3) $\rho|_{G_{t(e)}} \circ i_e = \rho|_{G_{o(e)}} \circ i_{\overline{e}}$ for the unique edge $e \in E(T)$ such that t(e) = v and such that the unique path in the tree T from v_0 to v passes through o(e).

Base of the induction. We apply Lemma 6.2 with the following data: the group *G* is the vertex group G_{v_0} with the action $\rho|_{G_{v_0}}$ on *X*, the group *H* and the homomorphism $i: H \to G$ are trivial, and the vector $\lambda' \in \Lambda_G^+$ is the coordinate $\lambda'_{v_0} \in \Lambda_{G_{v_0}}^+$. This results in a new action $\rho'|_{G_{v_0}}$ of the base vertex group G_{v_0} satisfying $d_{X,G_{v_0}}(\rho|_{G_{v_0}}, \rho'|_{G_{v_0}}) \prec \delta$ and $(\rho'|_{G_{v_0}})^{\sharp} = \lambda'_{v_0}$.

Induction step. Let $v \in V(\Gamma)$ be a vertex at distance $n \in \mathbb{N}$ from the base vertex v_0 in the tree T and $e \in E(T)$ be the unique edge such that t(e) = v and o(e) is at distance n-1 from the base vertex v_0 . Denote u = o(e). By the induction hypothesis, the vertex group action $\rho'|_{G_u}$ has been defined and satisfies $(\rho'|_{G_u})^{\sharp} = \lambda'_u$.

We apply Lemma 6.2 with the following data: the group *G* is the vertex group G_v , the group *H* is the edge group G_e , the homomorphism $i: H \to G$ is the map i_e , the action ϕ of the group *H* is $(\rho'|_{G_u}) \circ i_{\overline{e}}$, the action ρ of the group *G* is $\rho|_{G_v}$ and lastly, the vector $\lambda' \in \Lambda_G^+$ is the coordinate $\lambda'_v \in \Lambda_{G_v}^+$.

We proceed to verify the assumptions of Lemma 6.2. The induction hypothesis combined with the assumption that $\lambda' \in \ker \mathbf{d}_{\mathscr{G}}$ imply

$$i^{*}(\lambda'_{v}) = i^{*}_{e}(\lambda'_{v}) = i^{*}_{\overline{e}}(\lambda'_{u}) = i^{*}_{\overline{e}}((\rho'|_{G_{u}})^{\sharp}) = (\rho' \circ i_{\overline{e}})^{\sharp} = \phi^{\sharp}.$$

By the triangle inequality, the two actions $\rho \circ i$ and ϕ of the edge group G_e satisfy

$$\begin{aligned} d_{X,G_e}(\rho \circ i, \phi) &= d_{X,G_e}(\rho \circ i_e, \rho' \circ i_{\overline{e}}) \\ &\leq d_{X,G_e}(\rho \circ i_e, \rho(s_e) \cdot (\rho \circ i_e)) \\ &+ d_{X,G_e}(\rho(s_e) \cdot (\rho \circ i_e), \rho(s_e) \cdot (\rho \circ i_e) \cdot \rho(s_e)^{-1}) \\ &+ d_{X,G_e}(\rho(s_e) \cdot (\rho \circ i_e) \cdot \rho(s_e)^{-1}, \rho \circ i_{\overline{e}}) \\ &+ d_{X,G_e}(\rho \circ i_{\overline{e}}, \rho' \circ i_{\overline{e}}). \end{aligned}$$

The normalized Hamming metric d_X is bi-invariant so that the first and second summands are both less than $d_{X,G_e}(\rho(s_e), id) < \delta$. The third summand is also less than δ as ρ is a δ almost $\pi_1(\mathcal{G}, T)$ -action and taking into account the corresponding relation in $R_{\mathcal{G}}$. Lastly, the fourth summand satisfies

$$d_{X,G_e}(\rho \circ i_{\overline{e}}, \rho' \circ i_{\overline{e}}) \prec \delta$$

by the induction hypothesis. We conclude that

$$d_{X,G_e}(\rho \circ i, \phi) \prec \delta.$$

Having verified all of the assumptions for Lemma 6.2, we get a new action $\rho'|_{G_v}$ of the vertex group G_v such that $\rho' \circ i_e = \rho' \circ i_{\overline{e}}$ on the edge group G_e , $d_{X,G_v}(\rho|_{G_v}, \rho'|_{G_v}) \prec \delta$ and $(\rho'|_{G_v})^{\sharp} = \lambda'_v$. This completes the step of the induction.

Proceed with the induction until the new action ρ' is defined on all vertex groups.

Step 2. Defining ρ' on the generators s_e for all $e \in \vec{E}(\Gamma)$. Let $e \in \vec{E}(\Gamma)$ be a directed edge with o(e) = u and t(e) = v.

Assume that $e \in E(T)$. Define $\rho'(s_e) = id$. Recall that the action ρ' of the edge group G_e satisfies $\rho' \circ i_e = \rho' \circ i_{\overline{e}}$ by step 1. Therefore,

$$\rho'(i_e(g_e)s_e)(x) = \rho'(s_e i_{\overline{e}}(g_e))(x)$$

for all points $x \in X$ and all elements $g_e \in G_e$. Moreover, since ρ is a δ -almost $\pi_1(\mathcal{G}, T)$ -action, we have $d_X(\rho(s_e), \rho'(s_e)) \leq \delta$.

Assume that $e \in E(\Gamma) - E(T)$. According to Observation 3.4, there exists a $\rho'|_{i_e(G_e)}$ invariant subset $X_e \subseteq X$ such that $|X - X_e| \prec \delta |X|$ and such that the following conditions
are satisfied for all points $x \in X_e$ and all elements $g_e \in G_e$:

$$\rho(i_e(g_e)s_e)(x) = \rho(s_e i_{\overline{e}}(g_e))(x),$$

$$\rho(i_{\overline{e}}(g_e))(x) = \rho'(i_{\overline{e}}(g_e))(x),$$

$$\rho(i_e(g_e))(\rho(s_e)x) = \rho'(i_e(g_e))(\rho(s_e)x)$$

Define the restriction $\rho'(s_e) \upharpoonright_{X_e}$ of the new action to be the same as $\rho(s_e) \upharpoonright_{X_e}$. The above conditions imply that the permutation $\rho'(s_e)$ satisfies

$$\rho'(i_e(g_e)s_e)(x) = \rho'(s_e i_{\overline{e}}(g_e))(x)$$

for all points $x \in X_e$ and all edge group elements $g_e \in G_e$.

It remains to define the permutation $\rho'(s_e)$ on the complement $X - X_e$ and verify the above relation for all points $x \in X - X_e$. The two actions $\rho' \circ i_e$ and $\rho' \circ i_{\overline{e}}$ of the edge group G_e are conjugate as $\lambda' \in \ker \mathbf{d}_{\mathscr{G}}$ and $\rho'^{\ddagger} = \lambda'$. Since the permutation $\rho(s_e)$ conjugates $(\rho' \circ i_e) \upharpoonright_{X_e}$ to $(\rho' \circ i_{\overline{e}}) \upharpoonright_{\rho(s_e)X_e}$, we know that their complements must be conjugate as well. Define the restriction $\rho'(s_e) \upharpoonright_{X-X_e}$ to be an arbitrary bijection from $X - X_e$ to $X - \rho(s_e)X_e$ implementing this isomorphism of actions. Note that $d_X(\rho(s_e), \rho'(s_e)) \prec \delta$. This concludes the definition of the permutation $\rho'(s_e)$ for this particular oriented edge e.

A bound on $d_{X,S_{\mathscr{G}}}(\rho, \rho')$. The $\pi_1(\mathscr{G}, T)$ -action ρ' has been constructed in steps 1 and 2. It was specified in terms of the finite generating set $S_{\mathscr{G}}$ while making sure that the defining relations $R_{\mathscr{G}}$ of the fundamental group $\pi_1(\mathscr{G}, T)$ hold true. It follows from the construction that $\rho'^{\sharp} = \lambda'$. To conclude the proof it remains to bound the normalized Hamming distance $d_{X,S_{\mathscr{G}}}(\rho, \rho')$. Namely,

$$\begin{aligned} d_{X,S_{\mathscr{G}}}(\rho,\rho') &= \sum_{\sigma \in S_{\mathscr{G}}} d_X(\rho(\sigma),\rho'(\sigma)) \\ &= \sum_{v \in V(G)} \sum_{g \in G_v} d_X(\rho(g),\rho'(g))d + \sum_{e \in E(T)} d_X(\rho(s_e),\rho'(s_e)) \\ &+ \sum_{e \in E(\Gamma) - E(T)} d_X(\rho(s_e),\rho'(s_e)) \prec \delta \end{aligned}$$

as required.

7. Proof of the main theorem

We are ready to show that the epimorphism $\overline{\pi}_1(\mathcal{G}, T) \to \pi_1(\mathcal{G}, T)$ is P-stable.

Proof of Theorem 1.2. Let *X* be a finite set admitting a δ -almost $\pi_1(\mathcal{G}, T)$ -action

$$\rho: \overline{\pi}_1(\mathscr{G}, T) \to \operatorname{Sym}(X).$$

Denote $\lambda = \rho^{\sharp}$. We know by Proposition 4.4 that

$$\|\mathbf{d}_{\mathscr{G}}(\lambda)\|_{E} \prec_{\mathscr{G}} \delta \|\lambda\|_{V}.$$

Lemma 5.3 allows us to find a vector $\lambda'' \in \Lambda_V^+ \cap \ker \mathbf{d}_{\mathscr{G}}$ such that

$$\|\lambda'' - \lambda\|_V \prec \delta \|\lambda\|_V$$
 and $\|\lambda''\|_V \leq \|\lambda\|_V$.

We will make an auxiliary use of the action of the fundamental group $\pi_1(\mathcal{G}, T)$ on a singleton. Denote this action by *s*. By Proposition 4.3, we know that $s^{\sharp} \in \ker \mathbf{d}_{\mathcal{G}}$. Moreover, $\|s^{\sharp}\|_{V} = 1$. Let

$$\lambda' = \lambda'' + (\|\lambda\|_V - \|\lambda''\|_V)s^{\sharp}.$$

It is clear that $\lambda' \in \ker \mathbf{d}_{\mathscr{G}}, \|\lambda'\|_{V} = \|\lambda\|_{V} = \|\rho^{\sharp}\|_{V} = |X|$ and

$$\|\lambda' - \lambda\|_V \le \|\lambda - \lambda''\|_V + \|\lambda' - \lambda''\|_V \prec \delta|X|.$$

To conclude the proof, we apply Proposition 6.1 and obtain the desired action

$$\rho' \colon \pi_1(\mathcal{G}, T) \to \operatorname{Sym}(X)$$

satisfying $(\rho')^{\sharp} = \lambda'$ and $d_{X,S_{\mathscr{G}}}(\rho, \rho') \prec \delta$.

Remark 7.1. It follows from the proof that one can take $\delta \prec \varepsilon$ for the P-stability of $\pi_1(\mathcal{G}, T)$.

The derivation of Theorem A from the above Theorem 1.2 is immediate and has been discussed in Section 3.

8. Graph automorphisms of finite order

Fix some $d \in \mathbb{N}$ and let $F_d = F(s_1, \dots, s_d)$ be the free group of rank d.

A finite Schreier graph A of the group F_d is a finite directed graph edge-labelled by the generators s_1, \ldots, s_d such that every vertex has exactly one incoming and one outgoing edge of each label. Let $\vec{E}(A)$ be the directed edges of A. We indicate the labelling using a function $c = c_A: \vec{E}(A) \rightarrow \{s_1, \ldots, s_d\}$.

A weak δ -almost-automorphism α of the Schreier graph A is a pair of bijections $\alpha: V(A) \to V(A)$ and $\alpha: \vec{E}(A) \to \vec{E}(A)$ (we use the same letter for both by abuse of notation) such that for all directed edges $e \in \vec{E}(A)$ except for a subset of size $\delta |\vec{E}(A)|$, we have

 $c(\alpha(e)) = c(e), \quad o(\alpha(e)) = \alpha(o(e)) \text{ and } t(\alpha(e)) = \alpha(t(e)).$

A δ -almost-automorphism α is a weak δ -almost-automorphism that moreover satisfies the first two conditions, namely $c(\alpha(e)) = c(e)$ and $o(\alpha(e)) = \alpha(o(e))$, for all directed edges $e \in \vec{E}(A)$.

Observation 8.1. Let α be a weak δ -almost-automorphism of the finite Schreier graph A. Up to changing α on at most $O(\delta |\vec{E}(A)|)$ edges, we can make α into a δ -almost-automorphism.

Fix some integer $n \in \mathbb{N}$.

Definition 8.2. A (weak) δ -almost-automorphism α has δ -almost order n if the condition $\alpha^n(v) = v$ holds true for all $v \in V(A)$ except for a subset of size $\delta |V(A)|$.

Given an action $\rho: F_d * \langle a \rangle \to \text{Sym}(X)$ on some finite set X, we denote by A_ρ the Schreier graph of the restricted action $\rho|_{F_d}: F_d \to \text{Sym}(X)$. Let α_ρ denote the bijection on the vertices of the Schreier graph A_ρ defined by $\alpha_\rho = \rho(a)$. Moreover, by abuse of notation, let α_ρ denote the bijection of the directed edges of A_ρ defined for every $e \in \vec{E}(A)$ by $\alpha_\rho(e) = e'$, where e' is the unique edge satisfying c(e) = c(e') and $o(e') = o(\alpha_\rho(e))$.

Observation 8.3. If $\rho: F_d * \langle a \rangle \to \text{Sym}(X)$ is a δ -almost $(F_d \times \mathbb{Z})$ -action (resp. δ -almost $(F_d \times (\mathbb{Z}/n\mathbb{Z}))$ -action) on some finite set X, then α_ρ is a δ -almost-automorphism of the Schreier graph A_ρ (resp. of δ -almost-order n).

Vice versa, if A is a finite Schreier graph of the group F_d and α is δ -almost-automorphism (resp. of δ -almost-order n) of the free group F_d , then there exists a δ -almost $(F_d \times \mathbb{Z})$ -action (resp. δ -almost $(F_d \times (\mathbb{Z}/n\mathbb{Z}))$ -action)

$$\rho: F_d * \langle a \rangle \to \operatorname{Sym}(X)$$

such that $A = A_{\rho}$ and $\alpha = \alpha_{\rho}$.

Theorem A applied to the virtually free group $F_d \times (\mathbb{Z}/n\mathbb{Z})$ and combined with the above observations immediately gives the following corollary.

Corollary 8.4. Let A be a finite Schreier graph of the free group F_d and let α be a weak δ -almost automorphism of δ -almost order n. Then there exist a Schreier graph A' of the group F_d with V(A) = V(A'), and an automorphism α' of A' of order n such that the graphs A and A' differ on at most $O(\delta |\vec{E}|)$ edges, and the automorphisms α and α' differ on at most $O(\delta |\vec{E}|)$ edges, and the automorphisms α and α' differ on at most $O(\delta |\vec{V}|)$ vertices.

Note that Corollary 8.4 is false without requiring that α has δ -almost order *n* since $F_d \times \mathbb{Z}$ is not P-stable by [4].

We end this paper with the following related question.

Question 8.5. Is the conclusion of Corollary 8.4 true in the setting of general *d*-regular graphs and graph automorphisms (rather than Schreier graphs of F_d)?

Funding. The work of the first author was supported by the Israel Science Foundation (grant No. 1562/19) and the German-Israeli Foundation for Scientific Research and Development.

References

- G. Arzhantseva and L. Păunescu, Almost commuting permutations are near commuting permutations. J. Funct. Anal. 269 (2015), no. 3, 745–757 Zbl 1368.20025 MR 3350728
- [2] W. Burnside, *Theory of groups of finite order*. 2nd edn., Cambridge University Press, Cambridge, 1911 Zbl 42.0151.02
- [3] L. Glebsky and L. M. Rivera, Almost solutions of equations in permutations. *Taiwanese J. Math.* 13 (2009), no. 2A, 493–500 Zbl 1203.20003 MR 2500002
- [4] A. Ioana, Stability for product groups and property (τ). J. Funct. Anal. 279 (2020), no. 9, article no. 108729 Zbl 1485.20004 MR 4134896
- [5] N. Lazarovich, A. Levit, and Y. Minsky, Surface groups are flexibly stable. 2019, arXiv:1901.07182, to appear in J. Eur. Math. Soc. (JEMS)
- [6] J.-P. Serre, Arbres, amalgames, SL₂. Rédigé avec la collaboration de Hyman Bass. Astérisque 46 (1977), 189 pp. Zbl 0369.20013 MR 0476875
- [7] L. Solomon, The Burnside algebra of a finite group. J. Combin. Theory 2 (1967), 603–615
 Zbl 0183.03601 MR 214679
- [8] J. Stallings, On torsion-free groups with infinitely many ends. Ann. of Math. (2) 88 (1968), 312–334 Zbl 0238.20036 MR 228573
- [9] J. Stallings, Group theory and three-dimensional manifolds. Yale Math. Monogr. 4, Yale University Press, New Haven, Conn., 1971 Zbl 0241.57001 MR 0415622

Received 29 July 2021.

Nir Lazarovich

Department of Mathematics, Technion – Israel Institute of Technology, Technion Campus, 32000 Haifa, Israel; lazarovich@technion.ac.il

Arie Levit

School of Mathematical Sciences, Department of Pure Mathematics, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel; arielevit@tauex.tau.ac.il