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Virtually free groups are stable in permutations

Nir Lazarovich and Arie Levit

Abstract. We prove that finitely generated virtually free groups are stable in permutations. As an
application, we show that almost-periodic almost-automorphisms of labelled graphs are close to
periodic automorphisms.

1. Introduction

A finitely generated group G is called stable in permutations (in short P-stable) if every
almost action ofG on a finite set is close to an honest action (see Section 2 for definitions).
As a group property, this was first defined by Arzhantseva and Păunescu [1]. For the
ubiquitous class of sofic groups, the property of P-stability can be seen as a stronger form
of residual finiteness [1]. Our main result is the following.

Theorem A. Every finitely generated virtually free group is P-stable.

It is trivially true that free groups are P-stable. But while residual finiteness is pre-
served under passing to finite index subgroups (or rather to any subgroup), this fact is not
clear in general for P-stability.

To the best of our knowledge, Theorem A gives the first examples of P-stable groups
which are not free products of P-stable amenable groups. Note that while fundamental
groups of closed orientable surfaces are known to be flexibly P-stable [5], it is not clear if
these groups are P-stable in the strict sense.

As a special case of Theorem A, we answer the following question of Lubotzky.

Corollary 1.1. The modular group SL2.Z/ is P-stable.

Interestingly, P-stability is not, generally speaking, preserved under direct products,
for example, the groups F2 �Z are not P-stable [4]. This phenomenon is to be contrasted
with the fact that the product groups F2 � .Z=nZ/ are P-stable for all n 2 N, as follows
from Theorem A. As a consequence of the P-stability of these groups, we are able to
deduce the following assertion.
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Corollary B. Fix some d;n 2N. Let Fd be the free group of rank d and Gd be the family
of finite labelled Schreier graphs of Fd . Then for every graph � 2 Gd and every ı-almost
automorphism ˛ of � of ı-almost order n, there is a graph � 0 2 Gd on the same vertex
set as � and O.ı/-close to � and an automorphism ˛0 of � 0 which is O.ı/-close to ˛ and
has order n.

More details and a precise statement of Corollary B can be found in Section 8 below.

Stable epimorphisms

Stallings theorem on ends of groups [8, 9] implies that a finitely generated group G is
virtually free if and only if G is isomorphic to the fundamental group �1.G ; T / of a finite
graph of groups G with finite vertex groups with respect to some maximal spanning tree T
(see Section 3 for the definition of �1.G ; T /).

Naturally associated to the graph of groups G and the maximal spanning tree T there
is another group x�1.G ; T / admitting a quotient map x�1.G ; T /! �1.G ; T /. This group
is isomorphic to the free product of the vertex groups of G with the topological funda-
mental group of the underlying graph of G . As finite groups are P-stable [3], it follows
immediately that the group x�1.G ; T / is P-stable.

Motivated by this, we introduce a relative notion of P-stable epimorphisms, see Defini-
tion 2.1. In particular, a finitely generated groupG is P-stable in the usual sense if and only
if the natural epimorphism from the free group in the generators of G onto the group G
is P-stable. Theorem A is thereby reduced to the following statement, to which the major
part of this work is dedicated.

Theorem 1.2. The epimorphism x�1.G ; T /! �1.G ; T / is P-stable.

A detailed outline of the proof of Theorem 1.2 can be found in Section 3 below, after
the necessary definitions and notations are set in place.

2. P-stable epimorphisms

Let X be a finite set. Consider the normalized Hamming distance dX on the symmetric
group Sym.X/ given by

dX .�1; �2/ D
1

jX j
j¹x 2 X W �1.x/ ¤ �2.x/ºj

for all pairs �1; �2 2 Sym.X/. Note that the metric dX is bi-invariant. Let xG be a group
with finite generating set S . Define a metric dX;S on the set Hom. xG;Sym.X// of all group
homomorphisms �W xG ! Sym.X/ by

dX;S .�; �
0/ D

X
s2S

dX .�.s/; �.s
0//

for each pair �; �0 2 Hom. xG;Sym.X//.
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Let N C xG be a normal subgroup normally generated by some finite subset R � xG.
Denote G D xG=N . We say that an action �W xG ! Sym.X/ is a ı-almost G-action ifX

r2R

dX .�.r/; id/ � ı:

This terminology is justified by the observation that � is an honest G-action if and only
if it is a ı-almost G-action with respect to ı D 0. Note that, strictly speaking, this notion
depends on fixing the normal generating set R.

Definition 2.1. The epimorphism �W xG!G is P-stable if for every " > 0, there is a ı > 0
such that for every ı-almost G-action �W xG ! Sym.X/, there is a G-action �0WG !
Sym.X/ with dX;S .�; �0 ı �/ < ".

Lemma 2.2. The P-stability of the epimorphism �W xG!G is a well-defined notion (i.e., it
is independent of the choices of the finite sets S and R).

Proof. It is easy to see that if S1 and S2 are two finite generating sets for the group G,
then the resulting metrics dX;S1 and dX;S2 on the set Hom. xG; Sym.X// are bi-Lipschitz
equivalent. A similar argument, taking into account the bi-invariance of the normalized
Hamming metric dX , shows that if R1 and R2 are two finite normal generating sets for
the subgroup N C xG, then there is a constant

C D C.R1; C2/ > 1

such that

C�1
X
r2R2

dX .�.r/; id/ �
X
r2R1

dX .�.r/; id/ � C
X
r2R2

dX .�.r/; id/:

The conclusion follows from these observations.

Let H be any group admitting a finite generating set S and F.S/ be the free group in
the generators S . Observe that the natural homomorphism F.S/! H is P-stable if and
only if the group H is P -stable in the usual sense.

Remark 2.3. Every split epimorphism is P-stable.

The next lemma follows immediately from Definition 2.1.

Lemma 2.4. Let xxG
�
� xG

 
� G be a sequence of epimorphisms with normally finitely

generated kernels. If � and  are P-stable, then  ı � is P-stable.

We have occasion to use Lemma 2.4 only in the following special form: if the group xG
is P -stable and �W xG� G is a P -stable epimorphism, then the group G is P -stable.

Remark 2.5. It seems an interesting problem to look for other non-trivial instances of
P-stable epimorphisms.
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3. The fundamental group of a graph of groups

We recall the definition of the fundamental group of a graph of groups and, in particular,
list its defining relations. This is followed by a detailed sketch of proof for our Theorem A
as well as for the “relative” Theorem 1.2. Lastly, we introduce some useful asymptotic
notations.

Graphs of groups

We use Serre’s notation for graphs [6]. In this notation, a graph � consists of a set of
vertices V.�/ and a set of edges E.�/. Each edge e 2 E.�/ has an origin o.e/ 2 V.�/
and a terminus t .e/ 2 V.�/. Moreover, each edge e 2 E.�/ admits a distinct opposite
edge xe 2 E.�/ that satisfies xxe D e, o.xe/ D t .e/ and t .xe/ D o.e/. Every pair of “oriented”
edges ¹e; xeº � E.�/ represents a single “geometric” edge. An orientation of the graph �
is a subset EE.�/ � E.�/ containing exactly a single edge from each pair ¹e; xeº.

Definition 3.1. A graph of groups G is

G D .�; ¹Gvºv2V.�/; ¹Geºe2E.�/; ¹ieWGe ! Gt.e/ºe2E.�//;

where � is a connected graph, Gv is a vertex group for all v 2 V.�/, Ge is an edge group
for all edges e 2 E.�/ with Ge D Gxe and ieWGe ! Gt.e/ are injective homomorphisms.

Let G be a graph of groups. Fix an orientation EE.�/ and a maximal spanning tree
T � � . Consider the group x�1.G ; T / defined as the free product

x�1.G ; T / D �v2V.�/Gv � F.¹seºe2 EE.�//;

where F.�/ denotes the free group over the given basis. It will be convenient to consider
the following generating set:

SG D

[
v2V.�/

Gv [ ¹seºe2 EE.�/:

Definition 3.2. The fundamental group �1.G ; T / of the graph of groups G with respect
to the subtree T is the quotient of the free product x�1.G ; T / by the normal subgroup
generated by the relations

RG D

´
se D 1 8e 2 EE.T /;

s�1e ie.ge/se D ixe.ge/ 8e 2 EE.�/; ge 2 Ge:

Remark 3.3. The fundamental group �1.G ; T / as well as the group x�1.G ; T / are inde-
pendent of the choice of maximal spanning tree T up to isomorphism [6, Chapitre I, §5].

For the remainder of the paper, we will assume that G is a finite graph of groups, with
finite vertex groups. In particular, SG is a finite generating set for the group x�1.G ; T /.
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Outline of the proof and of the paper

Note that the group x�1.G ; T / is a free product of finite groups and of a free group. As such
x�1.G ;T / is easily seen to be P-stable [3]. In light of Lemma 2.4 and the remarks following
it, our main result Theorem A follows immediately from Theorem 1.2 of the introduction.
In other words, it suffices to show that the epimorphism x�1.G ; T /! �1.G ; T / is P-stable.

Towards this goal, consider some ı-almost �1.G ; T /-action �W x�1.G ; T /! Sym.X/.
In particular, � restricts to actions of the finite vertex groupsGv . For � to factorize through
the fundamental group �1.G ; T /, it is necessary that for every edge e 2 EE.�/ the two
actions � ı ie and � ı ixe of the edge group Ge are isomorphic.

It is clear that the isomorphism type of an action of a finite group on a finite set is
characterized by the number of occurrences of each of its finitely many transitive action
types. In Section 4, we show how to represent this data using a vector in some canonical
Z-module associated to the group. The restriction maps �jGv 7! .� ı ie/jGe define a Z-
linear map dG between the respective Z-modules. The above mentioned condition (that
the two actions � ı ie and � ı ixe of the edge group Ge are isomorphic) can be described as
the kernel of this Z-linear map dG . Lastly, the fact that � is a ı-almost action of �1.G ; T /
translates to having a small image under the map dG .

In Section 5, we show that “Z-linear maps are stable” in the following sense: an exact
Z-solution to a linear system of equations and inequalities can be found nearby a ı-almost
solution. This is applied to the linear map dG . That is, near the almost solution corres-
ponding to �, there is an exact Z-solution. Such a solution represents a collection of
isomorphism types of actions, one for each vertex group of G , that satisfies the neces-
sary condition to be turned into an action of �1.G ; T / and which is statistically close to
the collection corresponding to �.

Finally, in Section 6, we show how given a ı-almost action �, and a nearby exact Z-
solution to the corresponding linear system of equations, one can find a nearby action �0

factoring via �1.G ; T /.
We will make repeated use of the finiteness of vertex and edge groups via the following

observation.

Observation 3.4. Let G be a finite group. If G acts on a finite set X and Y � X , then
there exists a G-invariant subset Y 0 � Y such that

jX � Y 0j � jGjjX � Y j:

Notations

We will need to consider inequalities involving quantities depending on the graph of
groups G in question (such as the number of vertices or edges, the sizes of the vertex
groups Gv , etc.). To avoid cumbersome formulas it would be convenient to introduce the
following asymptotic notation.

We write A �� B if there exists a constant c D c.�/ such that A � cB . We omit the
subscript when it is clear from the context.
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4. Set of actions on finite sets

Let G be any group. Let Acts.G/ denote the set of all actions of the group G on finite sets
considered up to isomorphism. Similarly, let Trans.G/ be the set of transitive actions ofG
on finite sets considered up to isomorphism.

Every action �WG ! Sym.X/ on some finite set X can be decomposed into a disjoint
union of its finitely many orbits O1; : : : ; On � X . The restriction

� �Oi W G ! Sym.Oi /

of � to each orbit Oi is transitive for all i D 1; : : : ; n. The isomorphism class of the
action � is determined by counting the isomorphism classes of its restricted actions � �Oi
with multiplicity.

This observation enables us to identify the set of actions Acts.G/ with a non-negative
cone in the free Z-module ƒG with basis Trans.G/, namely

ƒG D
M

�2Trans.G/

Z�:

More precisely, given an action � 2 Acts.G/, we define

�] D
X

O2GnX

� �O2 ƒG :

The correspondence � 7! �] is injective and its image Acts.G/] inƒG is the non-negative
cone

ƒCG WD ¹.��/�2Trans.G/W�� � 0º:

We observe that the correspondence �! �] is additive in the following sense: any two
actions �1; �2 2 Acts.G/ with �i WG ! Sym.Xi / for i 2 ¹1; 2º satisfy

.�1
`
�2/

]
D �

]
1 C �

]
2;

where �1
`
�2WG ! Sym.X1

`
X2/ is the disjoint union of �1 and �2.

We find it convenient to introduce a norm k � kG on the Z-module ƒG by

k�kG D
X

�2Trans.G/
�WG!Sym.X�/

j��j � jX�j 8� D .��/ 2 ƒG :

This norm is chosen in such a way that every action � 2 Acts.G/ with �WG ! Sym.X/
satisfies k�]kG D jX j.

Remark 4.1. The moduleƒG can be equipped with a multiplication given by �˝ �0. The
resulting ring is known as the Burnside ring of the group G [2, 7]. However, we will not
make use of the Burnside ring structure in the rest of the paper.
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Pullback on set of actions

Let H be any group admitting a homomorphism i WH ! G. There is a pullback map i�

on the corresponding sets of isomorphism classes of actions on finite sets given by

i�W Acts.G/! Acts.H/; i�� D � ı i 8� 2 Acts.G/:

Allowing for a slight abuse of notation, we also let i� denote the resulting Z-linear map
i�WƒG ! ƒH defined in terms of the basis by

i�.�]/ D .� ı i/]; � 2 Trans.G/:

Observation 4.2. Let �WH ! Sym.X/ be a group action such that �] D i�.�/ for some
� 2ƒG . Then there exists a group action �WG! Sym.X/ satisfying �]D � and � ı i D �.

Set of actions for a graph of groups

We extend notions introduced above to the setting of graphs of groups. Recall that

G D .�; ¹Gvºv2V.�/; ¹Geºe2E.�/; ¹ieWGe ! Gt.e/ºe2E.�//

is a finite graph of groups with finite vertex groups. We define the Z-modules

ƒV D
M
v2V.�/

ƒGv and ƒE D
M

e2 EE.�/

ƒGe

and the respective positive cones

ƒCV D
M
v2V.�/

ƒCGv and ƒCE D
M

e2 EE.�/

ƒCGe :

It will be convenient to consider the Z-modules with the norms

k � kV D
1

jV.�/j

X
v2V.�/

k � kGv ; k � kE D
1

j EE.�/j

X
e2 EE.�/

k � kGe ;

where k � kGv and k � kGe are the norms defined on the Z-modulesƒGv andƒGe as above.
Let dG WƒV ! ƒE be the Z-linear map defined on each direct summand ƒGv of the

Z-module ƒV by

.dG /jƒGv D
X

eW t.e/Dv

i�e �
X

eWo.e/Dv

i�xe :

In other words, the image of the vector � D .�v/v 2 ƒV under the Z-linear map dG in
each coordinate e 2 EE.�/ is given by

.dG .�//e D i
�
e .�t.e// � i

�
xe .�o.e//:
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Actions of the group x�1.G ; T / on finite sets

Let X be a fixed finite set. Given an action �W x�1.G ; T /! Sym.X/, we denote (abusing
our previous notations)

�] 2 ƒV ; .�]/v D .�jGv /
]
8v 2 V:

Note that k�]kV D jX j. Moreover, the vector �] depends only on the restrictions of the
action � to the vertex groups Gv’s but not to the free factor F.¹seº/.

Proposition 4.3. If the action �W x�1.G ; T / ! Sym.X/ factors through �1.G ; T /, then
�] 2 ker dG .

Proof. The ƒGe -coordinate of the image of the vector �] under the Z-linear map dG for
any fixed oriented edge e 2 EE.�/ is given by

.dG .�
]//e D i

�
e ..�jGt.e//

]/ � i�xe ..�jGo.e//
]/ D .� ı ie/

]
� .� ı ixe/

]
2 ƒGe :

The two actions � ı ie and � ı ixe of the edge group Ge on the finite set X are conjug-
ate via the permutation �.se/. Therefore, .� ı ie/] D .� ı ixe/] so that the ƒGe -coordinate
in question vanishes. This concludes the proof as the oriented edge e 2 EE.�/ was arbit-
rary.

We remark that the converse of Proposition 4.3 is also true, in the sense that if a vector
� 2 ƒCV is in ker dG , then there exists a finite set Y with k�kV D jY j and some action
�W �1.G ; T /! Sym.Y / such that �] D �. We will need a much sharper version of this
fact proved in Proposition 6.1 below.

Proposition 4.4. Let �W x�1.G ; T /! Sym.X/ be an action. If � is a ı-almost �1.G ; T /-
action, then

kdG .�
]/kE �G ık�

]
kV :

Proof. Fix an oriented edge e 2 EE.�/with t .e/D u and o.e/D v. For each group element
g 2 Ge , consider the subset

Xg D ¹x 2 X W �.s
�1
e ie.g/se/.x/ D �.ixe.g//.x/º:

The assumption that � is a ı-almost �1.G ; T /-action implies that jXg j � .1 � ı/jX j.
Denote Xe D

T
g2Ge

Xg so that jXej � .1 � ıjGej/jX j and

�.s�1e ie.g/se/.x/ D �.ixe.g//.x/ 8x 2 Xe; g 2 Ge:

According to Observation 3.4, there is some ixe.Ge/-invariant subset Ye � Xe satisfying
jYej � .1� ıjGej

2/jX j. Note that the set �.se/.Ye/ is ie.Ge/-invariant. Moreover, the two
actions .� ı ie/ ��.se/.Ye/ and .� ı ixe/ �Ye of the groupGe are isomorphic (via conjugation
by the permutation �.se/).
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To simplify our notations, let �u D �jGu and �v D �jGv for the remainder of this proof.
The previous paragraph implies that

..�u ı ie/ ��.se/.Ye//
]
D ..�v ı ixe/ �Ye /]:

The norm of the coordinate of the vector dG .�
]/ corresponding to the edge e is given by

k.dG .�
]//ekGe D ki

�
e .�

]
u/ � i

�
xe .�

]
v/kGe

D k..�u ı ie/ ��.se/.Ye//
]
C ..�u ı ie/ �X��.se/.Ye//

]

� ..�v ı ixe/ �Ye /] � ..�v ı ixe/ �X�Ye /]kGe
� ki�e .�u �X��.se/.Ye//

]/kGe C ki
�
xe .�v �X�Ye /

]/kGe

D jX � se.Ye/j C jX � Yej � 2ıjGej
2
jX j:

Averaging the above estimate over all oriented edges e 2 EE.�/ gives

kdG .�
]/kE � cıjX j D cık�

]
kV

with respect to the constant c D 2max
e2 EE.�/

jGej
2. This constant depends only on the

graph of groups G .

5. Linear algebra and cones

This section is, formally speaking, independent of the rest of the paper. Its goal is to show
that “Z-linear maps are stable”, in the sense that an approximate solution to a system of
linear equations and inequalities must be close to an exact Z-solution (see Lemma 5.3
below for a precise statement).

Let ƒ1 and ƒ2 be a pair of finitely generated free Z-modules. Let dWƒ1 ! ƒ2 be
a Z-linear map.

Let Vi D ƒi ˝ R be the R-vector spaces obtained by extending scalars from ƒi and
k � ki be norms on Vi for i D 1; 2. By abuse of notation, we continue using dW V1 ! V2
to denote the R-linear extension of dWƒ1 ! ƒ2. We will make essential use of the fact
that dW V1 ! V2 is defined over Q. Denote K D ker d so that K is a Q-subspace of the
R-vector space V1.

Assume that C � V1 is a closed positive cone1 defined by finitely many inequalities
over Q and satisfying Span.C / D V1. Denote ƒC1 D C \ ƒ1 so that the subset ƒC1 is
closed under addition.

Lemma 5.1. For all v 2 C , there exists v00 2 C \K such that kv � v00k1 � kdvk2.

1A positive cone is a subset C of a real vector space satisfying C \ �C D ¹0º, C C C � C and
�C � C for any � � 0.
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We point out that the intersection C \K is non-empty for it contains the zero vector
0 2 V1. Lemma 5.1 does not require the assumption that the subspaceK, the linear map d
and the positive cone C are all defined over Q. We do need however the assumption that C
is defined by finitely many inequalities.

Proof of Lemma 5.1. We argue by induction on the R-dimension of V1. The base case
where dimR V1 D 0 is trivial.

Consider the R-subspace d.V1/ of the R-vector space equipped with two different
norms, namely the restriction of norm k � k2 coming from V2, and the quotient norm k � k01
defined by

kdvk01 WD inf
w2K
kv � wk1 8v 2 V1:

Since any two norms on a finite-dimensional R-vector space are bi-Lipschitz equivalent,
there is some constant c > 0 such that kdvk01 � ckdvk2 for all v 2 V1.

Fix some vector v 2 C . The infimum appearing in the definition of the quotient norm
kdvk01 is attained at some vector w 2 K, hence

kdvk01 D kv � wk1 � ckdvk2:

If w 2 C , then we are done by choosing v0 D w 2 C \ K. Otherwise, let u be the
closest point to w along the closed segment Œw; v� � V1 and belonging to the closed
cone C . Then, since u is on the segment Œw; v�,

kv � uk1 � kv � wk1 D kdvk01 � ckdvk2;

and since du is on the segment Œ0;dv�,

kduk2 � kdvk2:

Since the point u lies on the boundary of the positive cone C , it belongs to some proper
face D � C spanning a Q-subspace U1 D SpanR.D/ � V1 of strictly lower dimension.
By the induction hypothesis there exists some constant cD , such that for u 2D there exists
a point v0 2 D \K with ku � v0k1 � cDkduk2. Hence,

kv � v0k1 � kv � uk1 C ku � v
0
k1 � .c C cD/kdvk2 � c1kdvk2;

where c1 D c CmaxD�C cD and the maximum is taken over the finite set of proper faces
of the positive cone C .

Recall that K denotes the kernel of the linear map d regarded as a Q-subspace of the
R-vector space V1.

Lemma 5.2. There are constants c1; A > 0 such that if v 2 C , then there is a vector
� 2 ƒC1 \K satisfying kv � �k1 � c1kdvk2 C A.
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Proof. Let v 2 C be any vector. By Lemma 5.1, there exists a vector v00 2 C \K such
that kv � v00k1 � c1kdvk2 for some constant c1 > 0 independent of v.

Note that C \K is a positive cone defined over Q. Let U D SpanR.C \K/ � V1 so
that C \U D C \K is a closed cone with a non-empty interior in the vector subspace U .
DenoteBAD¹w 2 V1W kwk1 �Aº. Therefore,C \U \BA contains in its interior a ball in
U of an arbitrary large radius, provided the radiusA>0 is sufficiently large. Sinceƒ1 \U
is a lattice in the R-vector space U , the set C \U \BA surjects onto U=.U \ƒ1/ for all
A > 0 sufficiently large. Fix any sufficiently large such A > 0.

Since v00 2 C \K, the translated set v00 C C \ U \ BA � C \K also surjects onto
U=.U \ƒ1/. In particular, this set admits a point � 2 ƒ1 \ C \K D ƒC1 \K. We con-
clude that kv � �k1 � kv � v00k1 C kv00 � �k1 � c1kdvk2 C A as required.

Lemma 5.3. For any vector � 2 ƒC1 , there is another vector �0 2 ƒC1 \ K satisfying
k� � �0k1 � kd�k2 and k�0k1 � k�k1.

Proof. Let the vector � 2 ƒC1 be fixed. If � 2 K D ker d, then there is nothing to prove,
for we may simply take �0 D � 2 ƒC1 \K. Assume therefore that � … K.

Since the linear map d is defined over Q, there is a constant M > 0 such that

kd�k2 �M

for every vector � 2 ƒ1 �K. Denote

� D
c1kd�k2 C A
k�k1

;

where the constants c1 and A are as in Lemma 5.2.
If � � 1, then we may take �0 D 0. This vector �0 satisfies 0 D k�0k1 � k�k1 and

k� � �0k1 � �k�k1 D c1kd�k2 C A � .c1 C
A

M
/kd�k2

as desired (the constants c1, A and M are all independent of �).
Finally, assume that 0 < � < 1. Apply Lemma 5.2 to the vector v D .1 � �/�. This

gives a new vector �0 2 ƒC1 \K with

kv � �0k1 � c1kdvk2 C A � c1kd�k2 C A:

Therefore,

k�0k1 � kvk1 C kv � �
0
k1 � .1 � �/k�k1 C c1kd�k2 C A D k�k1:

This verifies the second condition. As for the first condition, we have

k� � �0k1 � k� � vk1 C kv � �
0
k1 � �k�k1 C c1kd�k2 C A � 2c1kd�k2 C 2A

� 2
�
c1 C

A

M

�
kd�k2:

This concludes the proof, noting as above that the constants c1,A andM are all independ-
ent of the vector �.
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6. From linear algebra back to actions

We show that any ı-almost �1.G ; T /-action � whose isomorphism type �] is compat-
ible with some �1.G ; T /-action, can be corrected to such an action. More precisely, we
establish the following result, using without further mention all the notations introduced
in Sections 2, 3 and 4.

Proposition 6.1. Let �W x�1.G ; T /! Sym.X/ be a ı-almost �1.G ; T /-action with �D �].
Let �0 2 ƒCV be any vector with k�0kV D k�kV . If

(a) �0 2 ker dG ,

(b) k� � �0kV � ık�kV ,

then there is a group action �0W�1.G ; T /! Sym.X/ satisfying

(i) �0 D .�0/],

(ii) dX;SG
.�; �0/ �G ı.

We precede the proof of Proposition 6.1 with an analogous statement in the simpler
context of a single group homomorphism.

Lemma 6.2. Let i WH ! G be a homomorphism of finite groups. Let �WH ! Sym.X/
and �WG ! Sym.X/ be a pair of group actions. Denote � D �]. If �0 2 ƒCG and ı > 0
are such that

(a) dX;H .� ı i; �/ � ı,

(b) i�.�0/ D �],

(c) k� � �0kG � ık�kG ,

then there exists a group action �0WG ! Sym.X/ satisfying

(i) �0 ı i D �,

(ii) �0 D .�0/],

(iii) dX;G.�; �
0/ �G;H ı.

Note that the “small” action � of the group H is not being changed, rather the “large”
action � is being replaced with a new action �0 compatible with �.

Proof of Lemma 6.2. We combine assumption (a) and Observation 3.4 applied with re-
spect to the finite group H in order to find a �.H/-invariant subset X0 � X satisfying
� �X0D .� ı i/ �X0 and jX0j � .1 � ıjH j/jX j. By applying Observation 3.4 a second
time with respect to the finite groupG, we find a �.G/-invariant subsetX1�X0 satisfying
jX1j � .1 � ıjH jjGj/jX j.

Consider the vector �1 D .� �X1/] 2 ƒCG . Let �1 2 ƒCG be the component-wise min-
imum of the two vectors �0 and �1, i.e., �1 is the vector given by

.�1/� D min¹.�0/�; .�1/�º 8� 2 Trans.G/:
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The previous paragraph implies that k�� �1kG � ıjH jjGjjX j. Therefore, assumption (c)
gives

max¹k�0 � �1kG ; k�1 � �1kGº � k�0 � �1kG � k�0 � �kG C k� � �1kG
� ıjX j C ıjH jjGjjX j D ı.1C jH jjGj/jX j:

Let Y1 � X1 be any �.G/-invariant subset satisfying �1 D .� �Y1/]. Write �2 D
�0 � �1 2 ƒ

C

G and Y2 D X � Y1 so that �0 D �1 C �2 and X D Y1
`
Y2. It will not

be the case in general that .� � Y2/] coincides with �2. However jY2j D k�2kG and, in
particular, the size of the subset Y2 is bounded by

jY2j D k�2kG � ı.1C jH jjGj/jX j:

We define a new action �0WG! Sym.X/ as follows. To begin with, the restriction of �0

to the �.G/-invariant subset Y1 coincides with �, namely �0 �Y1D � �Y1 . As i�.�0/ D �]

by assumption (b) and as i�.�1/ D .� �Y1/] by the choice of the subset Y1, we have
i�.�2/ D .� �Y2/]. It remains to define the action �0 on the �.G/-invariant complement
Y2 D X � Y1. Taking into account Observation 4.2, we let �0 �Y2 be an arbitrary action
satisfying .�0 ı i/ �Y2D � �Y2 and .�0 �Y2/] D �2. This completes the definition of the
new action �0.

Statements (i) and (ii) of the lemma hold true since �0 ı i D � and

�0] D .�0 �Y1/] C .�0 �Y2/] D �1 C �2 D �0:

To verify statement (iii), we compute

dX .�.g/; �
0.g// D

jY1j

jX j
dY1.�.g/ �Y1 ; �0.g/ �Y1/C

jY2j

jX j
dY2.�.g/ �Y2 ; �0.g/ �Y2/

�
jY2j

jX j
� .1C jH jjGj/ı � 2jH jjGjı

for all elements g 2 G. Therefore, dX;G.�; �0/ � 2jH jjGj2ı as required.

We are now in a position to prove the main result of Section 6.

Proof of Proposition 6.1. We define the new action �0W�1.G ; T /! Sym.X/ of the fun-
damental group �1.G ; T / by specifying it on the finite generating set SG . This is done
in two steps: first we define �0 on the vertex groups Gv and then on the generators of the
form se .

Step 1. Defining �0 on Gv for all v 2 V.�/. Fix an arbitrary base vertex v0 in V.�/. We
define the vertex group actions �0jGv by induction on the distance in the spanning tree T
of the vertex v from the base vertex v0 such that

(1) .�0jGv /
] D �0v ,

(2) dX;Gv .�jGv ; �
0jGv / � ı,
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(3) �jGt.e/ ı ie D �jGo.e/ ı ixe for the unique edge e 2 E.T / such that t .e/ D v and
such that the unique path in the tree T from v0 to v passes through o.e/.

Base of the induction. We apply Lemma 6.2 with the following data: the group G is
the vertex group Gv0 with the action �jGv0 on X , the group H and the homomorphism
i WH ! G are trivial, and the vector �0 2 ƒCG is the coordinate �0v0 2 ƒ

C

Gv0
. This results

in a new action �0jGv0 of the base vertex group Gv0 satisfying dX;Gv0 .�jGv0 ; �
0jGv0

/ � ı

and .�0jGv0 /
] D �0v0 .

Induction step. Let v 2 V.�/ be a vertex at distance n 2 N from the base vertex v0
in the tree T and e 2 E.T / be the unique edge such that t .e/ D v and o.e/ is at distance
n � 1 from the base vertex v0. Denote u D o.e/. By the induction hypothesis, the vertex
group action �0jGu has been defined and satisfies .�0jGu/

] D �0u.
We apply Lemma 6.2 with the following data: the group G is the vertex group Gv , the

group H is the edge group Ge , the homomorphism i WH ! G is the map ie , the action �
of the group H is .�0jGu/ ı ixe , the action � of the group G is �jGv and lastly, the vector
�0 2 ƒCG is the coordinate �0v 2 ƒ

C

Gv
.

We proceed to verify the assumptions of Lemma 6.2. The induction hypothesis com-
bined with the assumption that �0 2 ker dG imply

i�.�0v/ D i
�
e .�
0
v/ D i

�
xe .�
0
u/ D i

�
xe ..�

0
jGu/

]/ D .�0 ı ixe/
]
D �]:

By the triangle inequality, the two actions � ı i and � of the edge group Ge satisfy

dX;Ge .� ı i; �/ D dX;Ge .� ı ie; �
0
ı ixe/

� dX;Ge .� ı ie; �.se/ � .� ı ie//

C dX;Ge .�.se/ � .� ı ie/; �.se/ � .� ı ie/ � �.se/
�1/

C dX;Ge .�.se/ � .� ı ie/ � �.se/
�1; � ı ixe/

C dX;Ge .� ı ixe; �
0
ı ixe/:

The normalized Hamming metric dX is bi-invariant so that the first and second summands
are both less than dX;Ge .�.se/; id/ < ı. The third summand is also less than ı as � is a ı-
almost �1.G ; T /-action and taking into account the corresponding relation in RG . Lastly,
the fourth summand satisfies

dX;Ge .� ı ixe; �
0
ı ixe/ � ı

by the induction hypothesis. We conclude that

dX;Ge .� ı i; �/ � ı:

Having verified all of the assumptions for Lemma 6.2, we get a new action �0jGv of the
vertex group Gv such that �0 ı ie D �0 ı ixe on the edge group Ge , dX;Gv .�jGv ; �

0jGv / � ı

and .�0jGv /
] D �0v . This completes the step of the induction.

Proceed with the induction until the new action �0 is defined on all vertex groups.
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Step 2. Defining �0 on the generators se for all e 2 EE.�/. Let e 2 EE.�/ be a directed
edge with o.e/ D u and t .e/ D v.

Assume that e 2 E.T /. Define �0.se/ D id. Recall that the action �0 of the edge
group Ge satisfies �0 ı ie D �0 ı ixe by step 1. Therefore,

�0.ie.ge/se/.x/ D �
0.seixe.ge//.x/

for all points x 2 X and all elements ge 2 Ge . Moreover, since � is a ı-almost �1.G ; T /-
action, we have dX .�.se/; �0.se// � ı.

Assume that e 2 E.�/�E.T /. According to Observation 3.4, there exists a �0jie.Ge/-
invariant subsetXe �X such that jX �Xej � ıjX j and such that the following conditions
are satisfied for all points x 2 Xe and all elements ge 2 Ge:

�.ie.ge/se/.x/ D �.seixe.ge//.x/;

�.ixe.ge//.x/ D �
0.ixe.ge//.x/;

�.ie.ge//.�.se/x/ D �
0.ie.ge//.�.se/x/:

Define the restriction �0.se/ �Xe of the new action to be the same as �.se/ �Xe . The above
conditions imply that the permutation �0.se/ satisfies

�0.ie.ge/se/.x/ D �
0.seixe.ge//.x/

for all points x 2 Xe and all edge group elements ge 2 Ge .
It remains to define the permutation �0.se/ on the complement X �Xe and verify the

above relation for all points x 2 X � Xe . The two actions �0 ı ie and �0 ı ixe of the edge
groupGe are conjugate as �0 2 kerdG and �0]D�0. Since the permutation �.se/ conjugates
.�0 ı ie/ �Xe to .�0 ı ixe/ ��.se/Xe , we know that their complements must be conjugate as
well. Define the restriction �0.se/ �X�Xe to be an arbitrary bijection from X � Xe to
X � �.se/Xe implementing this isomorphism of actions. Note that dX .�.se/; �0.se// � ı.
This concludes the definition of the permutation �0.se/ for this particular oriented edge e.

A bound on dX;SG
.�; �0/. The �1.G ; T /-action �0 has been constructed in steps 1 and 2. It

was specified in terms of the finite generating set SG while making sure that the defining
relationsRG of the fundamental group �1.G ;T / hold true. It follows from the construction
that �0]D �0. To conclude the proof it remains to bound the normalized Hamming distance
dX;SG

.�; �0/. Namely,

dX;SG
.�; �0/ D

X
�2SG

dX .�.�/; �
0.�//

D

X
v2V.G/

X
g2Gv

dX .�.g/; �
0.g//d C

X
e2E.T /

dX .�.se/; �
0.se//

C

X
e2E.�/�E.T /

dX .�.se/; �
0.se// � ı

as required.



N. Lazarovich and A. Levit 1432

7. Proof of the main theorem

We are ready to show that the epimorphism x�1.G ; T /! �1.G ; T / is P-stable.

Proof of Theorem 1.2. Let X be a finite set admitting a ı-almost �1.G ; T /-action

�W x�1.G ; T /! Sym.X/:

Denote � D �]. We know by Proposition 4.4 that

kdG .�/kE �G ık�kV :

Lemma 5.3 allows us to find a vector �00 2 ƒCV \ ker dG such that

k�00 � �kV � ık�kV and k�00kV � k�kV :

We will make an auxiliary use of the action of the fundamental group �1.G ; T / on
a singleton. Denote this action by s. By Proposition 4.3, we know that s] 2 ker dG .
Moreover, ks]kV D 1. Let

�0 D �00 C .k�kV � k�
00
kV /s

]:

It is clear that �0 2 ker dG , k�0kV D k�kV D k�]kV D jX j and

k�0 � �kV � k� � �
00
kV C k�

0
� �00kV � ıjX j:

To conclude the proof, we apply Proposition 6.1 and obtain the desired action

�0W �1.G ; T /! Sym.X/

satisfying .�0/] D �0 and dX;SG
.�; �0/ � ı.

Remark 7.1. It follows from the proof that one can take ı � " for the P-stability of
�1.G ; T /.

The derivation of Theorem A from the above Theorem 1.2 is immediate and has been
discussed in Section 3.

8. Graph automorphisms of finite order

Fix some d 2 N and let Fd D F.s1; : : : ; sd / be the free group of rank d .
A finite Schreier graphA of the group Fd is a finite directed graph edge-labelled by the

generators s1; : : : ; sd such that every vertex has exactly one incoming and one outgoing
edge of each label. Let EE.A/ be the directed edges of A. We indicate the labelling using
a function c D cAW EE.A/! ¹s1; : : : ; sd º.
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A weak ı-almost-automorphism ˛ of the Schreier graph A is a pair of bijections
˛W V.A/ ! V.A/ and ˛W EE.A/ ! EE.A/ (we use the same letter for both by abuse of
notation) such that for all directed edges e 2 EE.A/ except for a subset of size ıj EE.A/j, we
have

c.˛.e// D c.e/; o.˛.e// D ˛.o.e// and t .˛.e// D ˛.t.e//:

A ı-almost-automorphism ˛ is a weak ı-almost-automorphism that moreover satisfies
the first two conditions, namely c.˛.e// D c.e/ and o.˛.e// D ˛.o.e//, for all directed
edges e 2 EE.A/.

Observation 8.1. Let ˛ be a weak ı-almost-automorphism of the finite Schreier graph A.
Up to changing ˛ on at most O.ıj EE.A/j/ edges, we can make ˛ into a ı-almost-automor-
phism.

Fix some integer n 2 N.

Definition 8.2. A (weak) ı-almost-automorphism ˛ has ı-almost order n if the condition
˛n.v/ D v holds true for all v 2 V.A/ except for a subset of size ıjV.A/j.

Given an action �WFd � hai ! Sym.X/ on some finite set X , we denote by A� the
Schreier graph of the restricted action �jFd WFd ! Sym.X/. Let ˛� denote the bijection
on the vertices of the Schreier graph A� defined by ˛� D �.a/. Moreover, by abuse of
notation, let ˛� denote the bijection of the directed edges ofA� defined for every e 2 EE.A/
by ˛�.e/ D e0, where e0 is the unique edge satisfying c.e/ D c.e0/ and o.e0/ D o.˛�.e//.

Observation 8.3. If �WFd � hai! Sym.X/ is a ı-almost .Fd �Z/-action (resp. ı-almost
.Fd � .Z=nZ//-action) on some finite set X , then ˛� is a ı-almost-automorphism of the
Schreier graph A� (resp. of ı-almost-order n).

Vice versa, if A is a finite Schreier graph of the group Fd and ˛ is ı-almost-auto-
morphism (resp. of ı-almost-order n) of the free group Fd , then there exists a ı-almost
.Fd � Z/-action (resp. ı-almost .Fd � .Z=nZ//-action)

�W Fd � hai ! Sym.X/

such that A D A� and ˛ D ˛�.

Theorem A applied to the virtually free group Fd � .Z=nZ/ and combined with the
above observations immediately gives the following corollary.

Corollary 8.4. Let A be a finite Schreier graph of the free group Fd and let ˛ be a weak
ı-almost automorphism of ı-almost order n. Then there exist a Schreier graph A0 of the
group Fd with V.A/ D V.A0/, and an automorphism ˛0 of A0 of order n such that the
graphs A and A0 differ on at most O.ıj EEj/ edges, and the automorphisms ˛ and ˛0 differ
on at most O.ıjV j/ vertices.

Note that Corollary 8.4 is false without requiring that ˛ has ı-almost order n since
Fd � Z is not P-stable by [4].
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We end this paper with the following related question.

Question 8.5. Is the conclusion of Corollary 8.4 true in the setting of general d -regular
graphs and graph automorphisms (rather than Schreier graphs of Fd )?
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