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Masur’s criterion does not hold in the Thurston metric

Ivan Telpukhovskiy

Abstract. We show that there is a minimal, filling, and non-uniquely ergodic lamination � on the
seven-times punctured sphere with uniformly bounded annular projection distances. Moreover, we
show that there is a geodesic in the thick part of the corresponding Teichmüller space equipped with
the Thurston metric which converges to �. This provides a counterexample to an analog of Masur’s
criterion for Teichmüller space equipped with the Thurston metric.

1. Introduction

The Thurston metric is an asymmetric Finsler metric on Teichmüller space that was first
introduced by Thurston in [44]. The distance between marked hyperbolic surfaces X
and Y is defined as the log of the infimum over the Lipschitz constants of maps from X

to Y , homotopic to the identity. Thurston showed that when S has no boundary, the dis-
tance can be computed by taking the ratios of the hyperbolic lengths of the geodesic
representatives of simple closed curves (s.c.c.):

dTh.X; Y / D sup
˛-s.c.c.

log
`˛.Y /

`˛.X/
: (1.1)

A class of oriented geodesics for this metric called stretch paths was introduced in [44].
Given a maximal geodesic lamination � on a hyperbolic surface X , a stretch path starting
from X is obtained by stretching the leaves of � and extending this deformation to the
whole surface. The stretch path is controlled by the horocyclic foliation, obtained by foli-
ating the ideal triangles in the complement of � by horocyclic arcs and endowed with the
transverse measure that agrees with the hyperbolic length along the leaves of �. That is,
the projective class of the horocyclic foliation is invariant along the stretch path.

Thurston showed that there exists a geodesic between any two points in Teichmüller
space equipped with this metric that is a finite concatenation of stretch path segments.
In general, geodesics are not unique: the length ratio in equation (1.1) extends continu-
ously to the compact space of projective measured laminations PML.S/ and the supre-
mum is usually (in a sense of the word) realized on a single point which is a simple closed
curve, thus leaving freedom for a geodesic.

The following is our main theorem.
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Theorem 1.1. There are Thurston stretch paths in a Teichmüller space with minimal,
filling, but not uniquely ergodic horocyclic foliation, which stay in the thick part for the
whole time.

The theorem contributes to the study of the geometry of the Thurston metric in com-
parison to the better studied Teichmüller metric. Namely, our result is in contrast with
a criterion for the divergence of Teichmüller geodesics in the moduli space, given by
Masur.

Theorem 1.2 (Masur’s criterion, [30]). Let q be a unit area quadratic differential on
a Riemann surface X in the moduli space M.S/. Suppose that the vertical foliation of q

is minimal but not uniquely ergodic. Then the projection of the corresponding Teich-
müller geodesic Xt to the moduli space M.S/ eventually leaves every compact set as
t !1.

Remark 1.3. The horocyclic foliation is a natural analog of the vertical foliation in the
setting of the Thurston metric, see [11, 35].

Remark 1.4. Compare Theorem 1.1 to a result of Brock and Modami in the case of
the Weil–Petersson metric on Teichmüller space [10]: they show that there exist Weil–
Petersson geodesics with minimal, filling, non-uniquely ergodic ending lamination, that
are recurrent in the moduli space, but not contained in any compact subset. Hence our
counterexample disobeys Masur’s criterion even more than in their setting of the Weil–
Petersson metric.

Despite being asymmetric, and in general admitting more than one geodesic between
two points, the Thurston metric exhibits some similarities to the Teichmüller metric.
For example, it differs from the Teichmüller metric by at most a constant in the thick part1

and there is an analog of Minsky’s product region theorem [14]; every Thurston geodesic
between any two points in the thick part with bounded combinatorics is cobounded [25];2

the shadow of a Thurston geodesic to the curve graph is a reparameterized quasi-geo-
desic [26].

Nevertheless, the Thurston metric is quite different from the Teichmüller metric. For
one, the identity map between them is neither bi-Lipschitz [27], nor a quasi-isometry [14].
In the Teichmüller metric, whenever the vertical and the horizontal foliations of a geodesic
have a large projection distance in some subsurface, the boundary of that subsurface gets
short along the geodesic [39].3 However, it follows from our construction that the end-
points of a cobounded Thurston geodesic do not necessarily have bounded combinatorics.
The reason behind it is that a condition equivalent to a curve getting short along a stretch

1Here the constant C."/ depends on the thick part T".S/.
2For every x; y 2 T".S/ with K-bounded combinatorics [25, Definition 2.2], every G .x; y/ is in the

"0.";K; S/-thick part.
3For every " > 0, there exists K such that dW .�C; ��/ > K implies inft `@W .G .t// < ".
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path that is expressed in terms of the subsurface projections of the endpoints is more
restrictive than in the case of the Teichmüller metric [40], and involves only the annular
subsurface of ˛ (see Theorem 2.10 for a precise and more general statement). This allows
us to produce our counterexample by constructing a minimal, filling, non-uniquely ergodic
lamination with uniformly bounded annular subsurface projections.

The construction will be done on the seven-times punctured sphere. First, in Section 3
we construct a minimal, filling, non-uniquely ergodic lamination � using a modification
of the machinery developed in [24]. Namely, we choose a partial pseudo-Anosov map �
supported on a subsurface Y homeomorphic to the three-times punctured sphere with one
boundary component. We pick a finite-order homeomorphism �, such that the subsurface
�.Y / is disjoint from Y , and the orbit of the subsurface Y under � fills the surface. Then we
set 'r D � r ı � and provided with a sequence of natural numbers ¹riº1nD1 and a curve 0,
define

ˆi D 'r1 ı � � � ı 'ri ; i D ˆi .0/:

We show that under a mild growth condition on the coefficients ri , the sequence of
curves i forms a quasi-geodesic in the curve graph and converges to an ending lami-
nation � in the Gromov boundary. In Section 4, we introduce a ˆi -invariant bigon track
and provide matrix representations of the maps � and � ı �. In Section 5, we let 0 be
a multicurve and produce coarse estimates for the intersection numbers between the pairs
of multicurves in the sequence i . In Section 6, we show that � is non-uniquely ergodic
and we find all ergodic transverse measures on �. In Section 7, we prove that � has uni-
formly bounded annular subsurface projections. Finally, in Section 8 we show that there
are Thurston stretch paths whose horocyclic foliation is �, which stay in the thick part of
the Teichmüller space for the whole time.

2. Background

2.1. Notation

We adopt the following notation. Given two quantities (or functions) A and B , we write
A�K;C B if 1

K
B �C 6 A6KB CC . Further, unless explicitly stated, by the following

notation we will mean that there are universal constants K > 1, C > 0 such that

• A
C

� B means A 6 B C C .

• A
�

� B means A 6 KB .

• A
C

� B means A � C 6 B 6 AC C .

• A
�
� B means 1

K
B 6 A 6 KB .

• A
�
�
C
B means A 6 KB C C .

• A
�
�
C
B means 1

K
B � C 6 A 6 KB C C .
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2.2. Curves and markings

Let S DSg;n be the oriented surface of genus g> 0with n> 0 punctures and with negative
Euler characteristic. A simple closed curve on S is called essential if it does not bound
a disk or a punctured disk. We will call a curve on S the free homotopy class of an essential
simple closed curve on S . Given two curves ˛ and ˇ on S , we will denote the minimal
geometric intersection number between their representatives by i.˛; ˇ/. A multicurve is
a collection of pairwise disjoint curves on S . A pants decomposition P on S is a maximal
multicurve on S , i.e., whose complement in S is a disjoint union of three-times punctured
spheres. A collection of curves � is called filling if for any curve ˇ on S : i.˛; ˇ/ > 0 for
some ˛ 2 � . A marking � on S is a filling collection of curves. The intersection number
between two collections of curves � and � 0 is defined as

i.�; � 0/ D
X

2�;  02� 0

i.;  0/:

2.3. Curve graph

The curve graph C.S/ of a surface S is a graph whose vertex set C0.S/ is the set of all
curves on S . Two vertices ˛ and ˇ are connected by an edge if the underlying curves real-
ize the minimal possible geometric intersection number for two curves on S . This means
that i.˛; ˇ/ D 0, i.e., the curves are disjoint, unless S is one of the exceptional surfaces:
if S is the punctured torus, then i.˛; ˇ/ D 1, and if S is the four-times punctured sphere,
then i.˛; ˇ/ D 2. The curve graph is the 1-skeleton of the curve complex, introduced by
Harvey in [20]. The metric dS on the curve graph is induced by letting each edge have
unit length. Masur and Minsky showed in [31] that the curve graph is Gromov hyperbolic
using Teichmüller theory.

Theorem 2.1 ([31]). The curve graph C.S/ is Gromov hyperbolic.

Later, Bowditch gave another proof of this result and showed that the hyperbolicity
constant of C.Sg;n/ is bounded above by a function that is logarithmic in g C n [6].
It was then shown that the hyperbolicity constant is uniformly bounded independently
by Bowditch [7], Aougab [1], Hensel, Przytycki and Webb [22], Clay, Rafi and Schlei-
mer [15].

Although the compact annulus A is not a surface of a negative Euler characteristic, it
is crucial for us to consider it and we separately define its curve graph. Let the vertices
of C.A/ be the arcs connecting two boundary components of A, up to homotopies that
fix the endpoints. Two vertices are connected by an edge of length 1 if the underlying arcs
have representatives with disjoint interiors. It is easy to check that C.A/ is quasi-isometric
to Z with the standard metric, hence also Gromov hyperbolic (see [32, Section 2.4] for
more details).
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2.4. Measured laminations and measured foliations

We denote the space of geodesic laminations on S equipped with the Hausdorff topology
by GL.S/. For the background on geodesic laminations, we refer to [13, Chapter 4].
We fix some definitions. A geodesic lamination is minimal if it does not contain any proper
sublaminations. A geodesic lamination is maximal if it is not contained in any lamination
as a proper subset. A geodesic lamination is filling if the connected components of its
complement are open disks or once punctured open disks. A geodesic lamination is chain-
recurrent if it is in the closure of the set of multicurves in GL.S/.

We denote the space of measured laminations on S equipped with the weak� topology
by ML.S/. For the background on measured laminations, we refer to [29, Chapter 8]. The
stump of a geodesic lamination is its maximal sublamination that admits a transverse mea-
sure of full support. We note that a minimal, filling geodesic lamination admits a transverse
measure of full support. A geodesic lamination is uniquely ergodic if it supports a unique
transverse measure up to scaling. Otherwise, it is non-uniquely ergodic.

We denote the space of projective measured laminations on S equipped with the quo-
tient topology of ML.S/ n ¹0º by PML.S/. For a non-zero measured lamination � 2
ML.S/, we denote its projective class by Œ�� 2 PML.S/. The intersection number i.�; �/
extends continuously to the space of measured laminations (for a further extension to
the space of geodesic currents see [29, Chapter 8]). We say that the intersection number
between two projective measured laminations equals zero if it holds for every pair of their
representatives in ML.S/.

Consider the subspace of PML.S/ consisting of projective measured laminations
with minimal and filling support. Consider the quotient of this subspace by identifying the
laminations that have the same support. The resulting space equipped with the quotient
subspace topology is the space of ending laminations EL.S/. Alternatively, the topol-
ogy of EL.S/ can be described as follows: a sequence ¹�iº of minimal, filling geodesic
laminations converges to � 2 EL.S/ if every limit point of ¹�iº in GL.S/ contains � as
a sublamination. We refer to [19] for more details. Klarreich proved the following asser-
tion.

Theorem 2.2 ([23]). The Gromov boundary of the curve graph C.S/ is homeomorphic to
the space of ending laminations EL.S/. If a sequence of curves ¹�iº is a quasi-geodesic
in C.S/ that converges to � 2 EL.S/, then any limit point of ¹�iº in PML.S/ projects
to � under the forgetful map.

We denote the space of measured foliations on S equipped with the weak� topology
by MF .S/. For the background on measured foliations, we refer to [18]. The spaces
MF .S/ and ML.S/ are canonically identified, and sometimes we will not distinguish
between measured laminations and measured foliations; similarly for their projectiviza-
tions PML.S/ and PMF .S/.
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2.5. Teichmüller space and Thurston boundary

A marked hyperbolic surface is a complete finite-area Riemannian surface of constant
curvature �1 with a fixed homeomorphism from the underlying topological surface S .
Two marked hyperbolic surfaces X and Y are called equivalent if there is an isometry
between X and Y in the correct homotopy class. The collection of equivalence classes
of marked hyperbolic surfaces is called the Teichmüller space T .S/ of the surface S .
By `˛.X/ we denote the hyperbolic length of the unique geodesic representative of the
curve ˛ on the surface X . For " > 0, the "-thick part T".S/ of the Teichmüller space is the
set of all marked hyperbolic surfaces with no curves shorter than ". A Bers constant of S
is a number B.S/ such that for every X 2 T .S/, there exists a pants decomposition on X
such that the length of each curve in it is at most B.S/. We recall that the Teichmüller
space can be compactified via the Thurston boundary homeomorphic to PML.S/ so
that the compactification is homeomorphic to the closed ball of dimension 6g � 6C 2n.
For the details of the construction using the space of geodesic currents in the case of
a closed surface, we refer to [29, Chapter 8].

2.6. Mapping class group

The mapping class group of a surface S is the group of the isotopy classes of orientation-
preserving self-homeomorphisms of S . The mapping class group acts continuously on
the space of projective measured laminations PML.S/. A non-periodic element of the
mapping class group that has no invariant multicurves is called pseudo-Anosov. A pseudo-
Anosov mapping class has exactly two fixed points in PML.S/ that represent a pair of
transverse measured laminations that are minimal, filling and uniquely ergodic. Moreover,
given a pseudo-Anosov mapping class ‰, there is a number �‰ > 1 such that

‰.�u/ D �‰�
u; ‰.�s/ D ��1‰ �

s : (2.1)

The (classes of the) laminations �u;s in equation (2.1) are called the unstable and stable
laminations of ‰, respectively. We refer to [17, 18] for more background on pseudo-
Anosov homeomorphisms.

2.7. Subsurface projections

By a subsurface Y � S we mean the isotopy class of a proper, closed, connected, embed-
ded subsurface, such that its boundary consists of curves on S and its punctures agree with
those of S . Whenever we talk about curves or laminations on Y , we think of the boundary
components of Y as punctures. We allow Y to be an annular subsurface, whose core curve
is a curve on S . We assume Y is not a three-times punctured sphere.

The subsurface projection is a map �Y WGL.S/! 2C0.Y / from the space of geodesic
laminations on S to the power set of the vertex set of the curve graph of Y . Equip S with
a hyperbolic metric. Let zY be the Gromov compactification of the cover of S correspond-
ing to the subgroup �1.Y / of �1.S/ with the hyperbolic metric pulled back from S . There
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is a natural homeomorphism from to zY to Y , allowing to identify the curve graphs C. zY /

and C.Y /. For any geodesic lamination � on S , let z� be the closure of the complete preim-
age of � in zY . Suppose that Y � S is a non-annular subsurface. An arc ˇ 2 z� is essential
if no component of zY n ˇ has closure which is a disk. For each essential arc ˇ 2 z�, let Nˇ

be a regular neighborhood of ˇ [ @ zY . Define �Y .�/ to be the union of all curves which
are either curve components of z� or curve components of @Nˇ , where ˇ is an essential
arc in z�. If Y � S is an annular subsurface, define �Y .�/ to be the union of all arcs ˇ in z�
that connect two boundary components of zY .

We say that a lamination � intersects the subsurface Y essentially if �Y .�/ is non-
empty. The projection distance between two laminations �; �0 2 GL.S/ that intersect Y
essentially is

dY .�; �
0/ D diamC.Y /.�Y .�/ [ �Y .�

0//:

If Y is an annular subsurface with the core curve ˛, we will write d˛.�; �0/ instead of
dY .�; �

0/ for convenience (when the quantity makes sense). More generally, if � is a col-
lection of laminations, we define �Y .�/D

S
�2� �Y .�/ and denote by dY .�/ the quantity

diamC.Y /.�Y .�//. We say that a collection of laminations � intersects the subsurface Y
essentially if �Y .�/ is non-empty. Similarly, if � , � 0 are collections of laminations that
intersect Y essentially, we define dY .�; � 0/ D diamC.Y /.�Y .�/ [ �Y .�

0//. A collection
of subsurfaces � is called filling if for any � 2 GL.S/ there is Y 2 � such that �Y .�/ is
non-empty.

The following lemma provides an upper bound for a subsurface projection distance in
terms of intersection numbers.

Lemma 2.3 ([21, Lemma 2.1], [32, Section 2.4]). If Y � S is a subsurface or Y D S ,
and ˛, ˇ are curves on S that intersect Y essentially, then

dY .˛; ˇ/ 6 2i.˛; ˇ/C 2:

If Y is an annular subsurface, the above bound holds with multiplicative and additive
factors 1.

We state the bounded geodesic image theorem proved by Masur and Minsky in [32].

Theorem 2.4 ([32]). Given a surface S , there is a constant M DM.S/ such that when-
ever Y is a subsurface and g D ¹iºi2I is a geodesic in C.S/ such that i intersects Y
essentially for all i 2 I , then dY .g/ 6 M .

Later, Webb proved that the value of M can be chosen to be independent of the
surface [45]. We state a corollary of Theorem 2.4, which follows from the stability of
quasi-geodesics in Gromov hyperbolic spaces [8, Chapter III.H, Theorem 1.7].

Corollary 2.5. Given k > 1, c > 0 and a surface S , there exists a constantADA.k; c;S/
such that the following holds. Let ¹iºi2I be a .k; c/-quasi-geodesic in C.S/ which is also
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1-Lipschitz, and let Y be a subsurface of S . If every i intersects Y essentially, then for
every i; j 2 I ,

dY .i ; j / 6 A:

We say that two subsurfaces Y , Z are overlapping if the multicurve @Y intersects Z
essentially and the multicurve @Z intersects Y essentially. The following relationship
between subsurface projection distances was found in [2], and an elementary proof with
explicit constants was later obtained in [28].

Theorem 2.6 (Behrstock inequality). If Y; Z � S are overlapping subsurfaces and ˛ is
a lamination that intersects both of them essentially, then

dY .˛; @Z/ > 10 ) dZ.˛; @Y / 6 4:

We also state a useful lemma on the convergence of the projection distances (we note
that the definition of the projection distance in [10] is slightly different from ours, but this
only results in a bounded change of the additive error compared to their statement).

Lemma 2.7 ([10, Lemma 2.7]). Suppose that a sequence of curves ¹�iº converges to
a lamination � in the Hausdorff topology on GL.S/. Let Y be a subsurface, so that �
intersects Y essentially. Then for any geodesic lamination �0 that intersects Y essentially,
we have

dY .�i ; �
0/
C

�8 dY .�; �
0/

for all i sufficiently large.

Finally, we state the following proposition.

Proposition 2.8 ([34, pp. 121–122]). Let � be the unstable or stable lamination of a pseu-
do-Anosov map ‰ on a surface S and let � be a collection of curves on S . Then there is
a constantC‰;� >0 such that if Y � S is a subsurface such that � intersects Y essentially,
then

dY .�; �/ 6 C‰;� :

2.8. Relative twisting

In Section 2.7, the projection distances between laminations for the annular subsurfaces
were defined. Here we extend the definition to allow us to compute projection distances
between a lamination and a point in Teichmüller space, and between two points in Teich-
müller space. We refer to any of these quantities as the relative twisting around a curve ˛.

Suppose ˛ is a curve, X is a point in Teichmüller space and � is a geodesic lamina-
tion on S . Suppose that � intersects ˛ essentially. Consider the Gromov compactification
of the annular cover X˛ that corresponds to the cyclic subgroup h˛i in the fundamen-
tal group �1.S/, with the hyperbolic metric pulled back from X . Consider the complete
preimage z� of � inX˛ . Let ˛? be a geodesic arc inX˛ that is perpendicular to the geodesic
in the homotopy class of the core curve. Define d˛.X; �/ to be the maximal distance
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between z! and ˛? in C.X˛/, where z! is any arc of z� that connects two boundary com-
ponents of X˛ and ˛? is any perpendicular. We refer to [33, Section 3] for another way to
define the twisting of a lamination around a curve in a hyperbolic surface using the pro-
jection of lifts in the universal cover. We note that the quantity in their definition differs
from ours by at most 2.

Lastly, we define d˛.X; Y /, where X , Y are two points in Teichmüller space. Let S˛
be the compactification of the annular cover that corresponds to ˛. Let X˛ , Y˛ be the
compactified covers with the hyperbolic metrics defined as before. Using the first met-
ric, construct a geodesic arc ˛?X , perpendicular to the geodesic in the homotopy class
of the core curve. Similarly, construct a geodesic arc ˛?Y . Define d˛.X; Y / to be the
maximal distance between ˛?X and ˛?Y in C.S˛/, over all possible choices of the per-
pendiculars.

2.9. Thurston metric on Teichmüller space

We assume that S has no boundary. For a background on the Thurston metric, we refer
to [37, 44], while here we mention the necessary notions and state the results that we
will use.

In [44], Thurston showed that the best Lipschitz constant is realized by a homeo-
morphism from X to Y . Moreover, there is a unique largest chain-recurrent lamination
ƒ.X;Y /, called the maximally stretched lamination, such that any map from X to Y real-
izing the infimum in equation (1.1), multiplies the arc length along the lamination by the
factor of edTh.X;Y /. Generically, ƒ.X; Y / is a curve (see [44, Section 10]).

For a maximal lamination �, Thurston constructed a homeomorphism F� W T .S/ !

MF .�/, where MF .�/ is the subspace of measured foliations transverse to � and stan-
dard near the cusps (the latter means that every puncture has a neighborhood in which the
leaves are homotopic to that puncture and the transverse measure of a (non-compact) arc
going out to a cusp is infinite). The image of a pointX in the Teichmüller space under F� is
the horocyclic foliation of the pair .X; �/. The space MF .�/ has a natural cone structure
given by the shearing coordinates which produce an embedding s� W T .S/! Rdim T .S/

such that the image is an open convex cone. We refer to [5, 43] for the details of the con-
struction. We assume that � is not an ideal triangulation of S . The stretch paths form open
rays from the origin in the image of s� . Namely, given any X in Teichmüller space T .S/,
a maximal lamination �, and t 2 R, we let stretch.X; �; t/ be a unique point in T .S/

such that

s�.stretch.X; �; t// D ets�.X/:

Every stretch path converges to the projective class of the horocyclic foliation in the
Thurston boundary as t !1 (see [36, Theorem 5.1]). Every stretch path such that the
stump of � is uniquely ergodic converges to the projective class of the stump of � as
t ! �1 [42]. We summarize these results in one theorem.
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Theorem 2.9 ([36, 42]). Suppose that � is a maximal lamination on S that is not an
ideal triangulation. The stretch path stretch.X; �; t/ converges to the projective class of
the horocyclic foliation ŒF�.X/� in the Thurston boundary as t !1. Every stretch path
stretch.X; �; t/ such that stump.�/ is uniquely ergodic converges to the projective class of
the stump Œstump.�/� in the Thurston boundary as t ! �1.

2.10. Twisting parameter along a Thurston geodesic

We introduce the notions necessary to state Theorem 2.10. We say that a curve ˛ interacts
with a lamination � if ˛ is a leaf of � or if � intersects ˛ essentially. We call Œa; b� the "-
active interval for ˛ along a Thurston geodesic G .t/ if Œa; b� is the maximal interval such
that `˛.a/D `˛.b/D ". We use the notation Log.x/Dmax.1; log.x//. DenoteXt D G .t/.

Theorem 2.10 ([16, Theorem 3.1]). There exists a constant "0 > 0 such that the following
statement holds. Let X; Y 2 T"0.S/ and ˛ be a curve that interacts with ƒ.X; Y /. Let G

be any geodesic from X to Y and `˛ D mint `˛.t/. Then

d˛.X; Y /
�
�
C

1

`˛
Log

1

`˛
:

If `˛ < "0, then d˛.X; Y /
C

� d˛.Xa; Xb/, where Œa; b� is the "0-active interval for ˛.
Further, for all sufficiently small `˛ , the relative twisting d˛.Xt ; ƒ.X; Y // is uniformly
bounded for all t 6 a and `˛.t/

�
� et�b`˛.b/ for all t > b. All errors in this statement

depend only on "0.

Remark 2.11. We note that the statement of Theorem 2.10 remains true if the condi-
tion X; Y 2 T"0.S/ is replaced by the weaker condition `˛.X/; `˛.Y / > "0. The proof is
identical. This will be crucial for us to make Corollary 8.3.

3. Construction of the lamination

In this section, we construct a quasi-geodesic ¹˛iº in the curve graph of the seven-times
punctured sphere S0;7 converging to the ending lamination � in the Gromov boundary.
We thank the referee for suggesting simpler proofs.

3.1. Alpha sequence

Denote by S D S0;7 the seven-times punctured sphere, obtained by doubling of a regular
heptagon on the plane along its boundary. Consider four curves ˛0, ˛1, ˛2, ˛3 on S as
shown in Figure 1.

Let � be the finite order homeomorphism of S which is realized by the counterclock-
wise rotation along the angle of 6�

7
. In other words, the map � rotates S by 3 ‘clicks’

counterclockwise. Let Y0, Y1, Y2, Y3 be the subsurfaces of S with the boundary curves
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˛0 ˛1
˛2

ı0
ı1

˛3

Figure 1. The curves ˛0, ˛1, ˛2, ˛3 and ı0, ı1 on S .

˛0, ˛1, ˛2, ˛3, respectively, and with 3 punctures each. Denote by � the partial pseudo-
Anosov map on S supported on the subsurface Y2 and obtained as the composition of two
half-twists � D H�1

ı1
ıHı0 (the core curves are shown in Figure 1).

For any n 2N, let 'nD �n ı �. Let ¹rnº1nD1 be a sequence of natural numbers. We will
impose certain conditions on ¹rnº later in this section and also in Section 5. Set

ˆi D 'r1'r2 : : : 'ri�1'ri : (3.1)

Define the curves ˛i D ˆi .˛0/ for every i 2 N. Denote by Yi the subsurface with the
boundary curve ˛i and 3 punctures.

Observe that for any a; b; c 2 N,

˛1 D 'c.˛0/; ˛2 D 'b'c.˛0/; ˛3 D 'a'b'c.˛0/I

Y1 D 'c.Y0/; Y2 D 'b'c.Y0/; Y3 D 'a'b'c.Y0/:
(3.2)

In particular, for i D 1; 2; 3 we have that ˆi .˛0/ D ˛i , ˆi .Y0/ D Yi .
We begin with the observations on the sizes of the subsurface projections between the

curves in the sequence ¹˛iº.

Claim 3.1. There is a constant c > 0, so that for every i > 2

dYi .˛i�2; ˛iC2/ > cri�1 � 1:

Proof. First we expand the expression using equation (3.1), then simplify it by applying
equation (3.2) and using the fact that the mapping class group acts on the curve graph by
isometries, and then apply the triangle inequality:

dYi .˛i�2; ˛iC2/ D dˆi�2'ri�1'ri .Y0/.ˆi�2.˛0/; ˆi�2'ri�1'ri'riC1'riC2.˛0//

D dY2.˛0; 'ri�1.˛3// D dY2.˛0; �
ri�1.�˛3//

> dY2.˛0; �
ri�1.˛0// � dY2.�

ri�1.˛0/; �
ri�1.�˛3//

D dY2.˛0; �
ri�1.˛0// � dY2.˛0; �˛3/

D dY2.˛0; �
ri�1.˛0// � 1:

Since the mapping class � restricts to a pseudo-Anosov map on the surface Y2, by [31,
Proposition 3.6] we have dY2.˛0; �

n.˛0// > cn for some c > 0, so the result follows.
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From now on, we will assume that the sequence ¹rnº satisfies rn > R for all n 2 N,
where R > 0 is such that cR � 9 > M C 10, where M is the constant from Theorem 2.4.

Lemma 3.2. For every i < j < k with j � i > 2, k � j > 2, the curves ˛i , ˛k intersect Yj
essentially and

dYj .˛i ; ˛k/ > crj�1 � 9:

Proof. The proof is by induction on n D k � i .

Base: n D 4. It follows from Claim 3.1.

Step. Suppose that k � i D nC 1. We show that the curve ˛i intersects the subsurface Yj
essentially. If j � i < 4, it follows from equation (3.2) together with i.˛0; ˛2/ > 0,
i.˛0; ˛3/ > 0. If j � i > 4, then applying the induction hypothesis to the triple i <
j � 2 < j , we obtain dYj�2.˛i ; j̨ /> crj�3 � 9>M C 10. If i.˛i ; j̨ /D 0, then since the
subsurface projection distance for the disjoint curves is at most 2 (see [32, Lemma 2.2]),
we have dYj�2.˛i ; j̨ / 6 2, contradiction. Therefore, i.˛i ; j̨ /¤ 0 and hence the curve ˛i
intersects Yj essentially.

Next, if j � i > 4, then since dYj�2.˛i ; j̨ />M C 10> 10, by Theorem 2.6, we have
dYj .˛i ; j̨�2/6 4. If j � i < 4, then the curves ˛i , j̨�2 are disjoint and dYj .˛i ; j̨�2/6 2.
The same argument applied to the triple ¹j; j C 2;kº shows that the curve ˛k intersects Yj
essentially and that dYj .˛k ; j̨C2/ 6 4. Then from the triangle inequality together with
Claim 3.1, we obtain

dYj .˛i ; ˛k/ > dYj . j̨�2; j̨C2/ � dYj . j̨�2; ˛i / � dYj . j̨C2; ˛k/

> crj�1 � 1 � 4 � 4 D crj�1 � 9:

Next, we prove the main result of the section.

Proposition 3.3. The path ¹˛iº is a quasi-geodesic in the curve graph C.S/.

Proof. We prove that if k � i > 7d � 4 for d 2 N, then dS .˛i ; ˛k/ > d . Let G be
a geodesic between ˛i and ˛k in the curve graph. By Lemma 3.2 and Theorem 2.4, for
each j 2 ¹i C 2; : : : ; k � 2º there exists a curve v in G such that v does not intersect
the subsurface Yj essentially. We show that if a curve v does not intersect Yj and Yj 0
essentially for j; j 0 2 ¹i C 2; : : : ; k � 2º, then jj � j 0j < 7. Assume on the contrary that
jj � j 0j> 7. Observe that for every p 2N, the subsurfaces ¹Yp; YpC1; YpC2; YpC3º fill S .
Indeed, by equation (3.2) it is sufficient to consider the case p D 0, which easily follows
from Figure 1. This observation allows us to find m 2 N with j C 2 6 m 6 j 0 � 2, such
that the curve v intersects Ym essentially. From Lemma 3.2, we know that dYm. j̨ ; j̨ 0/ >
crm�1 � 9> 10. On the other hand, since i.v; j̨ /D i.v; j̨ 0/D 0, by the triangle inequal-
ity we have

dYm. j̨ ; j̨ 0/ 6 dYm. j̨ ; v/C dYm.v; j̨ 0/ 6 2C 2 D 4;

contradiction.
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For each j 2 ¹i C 2; : : : ; k � 2º, map the curve j̨ to some vertex in G that does
not intersect Yj essentially. We have shown that this map is at most 7-to-1. Also by
Lemma 3.2, it omits the endpoints of G , therefore if k � i > 7d � 4, then j¹i C 2; : : : ;
k � 2ºj > 7d � 7 and dS .˛i ; ˛k/ > d . It follows that path ¹˛iº is a quasi-geodesic.

We obtain an immediate corollary from Theorem 2.2.

Corollary 3.4. There is an ending lamination � on S representing a point in the Gromov
boundary of C.S/ such that

lim
i!1

˛i D �:

Furthermore, every limit point of ¹˛iº in PML.S/ defines a projective class of transverse
measures on �.

In the remainder of the section, we prove more claims about the sequence ¹˛iº that
will be used in Section 7.

Lemma 3.5. For every i < j with j � i > 5, the curves ˛i , j̨ fill S .

Proof. The triples i < i C 2 < j , i < i C 3 < j satisfy the conditions of Lemma 3.2.
Hence

dYiC2.˛i ; j̨ /; dYiC3.˛i ; j̨ / > M C 10:

If ˛i , j̨ are disjoint, then dYiC2.˛i ; j̨ /6 2, contradiction. If we have that dS .˛i ; j̨ /D 2,
let ¹˛i ; ˛0; j̨ º be a geodesic in the curve graph between ˛i and j̨ . By Theorem 2.4,
the curve ˛0 does not intersect YiC2 and YiC3 essentially. A curve that does not inter-
sect YiC2 and YiC3 essentially is either ˛iC2 or ˛iC3: indeed, by equation (3.2) it is
enough to consider the case i D 0, which follows from Figure 1. Equation (3.2) also
gives dS .˛i ; ˛iC2/ D dS .˛i ; ˛iC3/ D 2 > 1, contradiction. Therefore, the curves ˛i , j̨

fill S .

Remark 3.6. There is a constant R0 > 0 such that if rn > R0 for all n 2 N, then the
sequence of subsurfaces ¹Yiº satisfies the conditions of [9, Theorem 4.1] formD 2, nD 3
(in their notation). This gives another proof of Proposition 3.3.

Next, we prove the following claim.

Claim 3.7. For each i 2 N, there is a unique curve ˇi on S such that

i.ˇi ; ˛i / D i.ˇi ; ˛iC4/ D 0:

Further, ˇi is disjoint from ˛iC1, ˛iC2 and ˛iC3.

Proof. First we show that there is a unique curve ˇ0 on S that is disjoint from ˛0, ˛4 and
does not intersect Y2 essentially. A curve that is disjoint from ˛0 that does not intersect Y2



I. Telpukhovskiy 1448

ˇ0

�3.ˇ0/ ��1.ˇ0/

Figure 2. The curves ˇ0, ��1.ˇ0/, �3.ˇ0/ on S .

essentially is either ˛1 or any curve in Y1. The curve ˛4 intersects ˛1 essentially and
Y1 n .˛1 [ ˛4/ has two connected components: the twice punctured sphere and the three-
times punctured sphere. Hence ˇ0 is the curve in the second component that does not
bound a punctured disk in S . The curve ˇ0 is shown in Figure 2. Define the curves ˇi D
ˆi .ˇ0/ for i 2 N.

Next, any curve ˇ disjoint from ˛i , ˛iC4 cannot intersect YiC2 essentially, otherwise
we have

dYiC2.˛i ; ˛iC4/ 6 dYiC2.˛i ; ˇ/C dYiC2.ˇ; ˛iC4/ 6 2C 2 D 4;

which contradicts the lower bound of Claim 3.1: dYiC2.˛i ; ˛iC4/ > criC1 � 1 >M C 10.
Then by equation (3.2), the curve ˆ�1i .ˇ/ is disjoint from ˛0 and 'riC1.˛3/ and does
not intersect Y2 essentially. By an argument as above, we obtainˆ�1i .ˇ/D ˇ0. Therefore,
ˇD ˇi . Finally, the curve ˇ0 is disjoint from the curves ˛1, ˛2, ˛3, hence by equation (3.2)
ˇi is disjoint from ˛iC1, ˛iC2, ˛iC3.

Claim 3.8. For each i 2 N, there are exactly three curves on S that are disjoint from ˛i
and ˛iC3. Further, only one of them intersects both ˛i�1 and ˛iC4 essentially, and this
curve intersects both ˛iC1 and ˛iC2 essentially.

Proof. By applying the homeomorphism ˆ�1i and using equation (3.2), the problem re-
duces to finding the curves disjoint from ˛0 and ˛3. It follows from Figure 1 that these
curves are ��1.ˇ0/, ˇ0 and �3.ˇ0/, which are shown in Figure 2. By Claim 3.7, the
curvesˆi .��1.ˇ0//D ˇi�1,ˆi .ˇ0/D ˇi do not intersect essentially either ˛i�1 or ˛iC4.
By Claim 3.7, the curve ˆi .�3.ˇ0// intersects both ˛i�1 and ˛iC4 essentially. Further,
the curve �3.ˇ0/ intersects ˛1 and ˛2 essentially, hence by equation (3.2) ˆi .�3.ˇ0//
intersects both ˛iC1 and ˛iC2 essentially.

Claim 3.9. If a curve on S is disjoint from ˛i and ˛iC2 for some i 2 N, then it is also
disjoint from ˛iC1.
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Proof. By equation (3.2), it is sufficient to consider the case i D 0. Notice that the curve ˛1
is a boundary component of a unique subsurface which is filled by the curves ˛0 and ˛2.
Therefore, a curve on S that is disjoint from ˛0 and ˛2 is also disjoint from ˛1, which
proves the claim.

Claim 3.10. For each i 2 N, there is no curve on S that is disjoint from ˛iC1, ˛iC2 and
intersects ˛i , ˛iC3 essentially.

Proof. By equation (3.2), it is sufficient to consider the case i D 0. If a curve  on S is
disjoint from ˛1 and ˛2, then one of the following holds:  D ˛1,  D ˛2,  � Y1,  � Y2.
If  D ˛1 or  � Y1, then  is disjoint from ˛0, if  D ˛2 or  � Y2, then  is disjoint
from ˛3, so the result follows.

We have the following corollary.

Corollary 3.11. If a curve  on S is disjoint from some curves in the sequence ¹˛iº,
then one of the following holds:  is disjoint from 5 consecutive curves,  is disjoint from
two curves ˛i , j̨ with j � i D 3,  is disjoint from 3 consecutive curves or  is disjoint
from 1 curve.

Proof. Let ` 2N be the smallest index so that  is disjoint from ˛` and r > ` be the largest
index so that  is disjoint from ˛r . By Lemma 3.5, we have r � ` 6 4. If r � ` D 4, then
by Claim 3.7,  is disjoint from 5 consecutive curves. If r � ` D 3, then by Claim 3.8,
 is disjoint only from ˛` and ˛r . If r � ` D 2, then by Claim 3.9,  is disjoint from 3

consecutive curves. The case r � ` D 1 is impossible by Claim 3.10. If r � ` D 0, then 
is disjoint from 1 curve in ¹˛iº.

4. Invariant bigon track

In this section, we introduce a maximal birecurrent bigon track on S that is invariant under
the homeomorphisms ˆi defined in equation (3.1). We refer the reader to [38] for more
details on train tracks and specifically to [38, §3.4] for more details on bigon tracks. The
bigon track T is shown in Figure 3.

The complement to T in S consists of 7 punctured monogons, 3 trigons and one bigon.
The shaded region in Figure 4 shows a part of the bigon in the complement of T .

Let V.T / be the convex cone consisting of all non-negative real assignments of weights
to the branches of T that satisfy the switch conditions. Pick the ordered subset of 9 branch-
es of T as in Figure 3. Notice that every non-negative assignment of weights to the chosen
branches can be uniquely promoted to a vector in V.T /. Denote by ei the vector in V.T /
that assigns the weight 1 to the i -th branch (i D 1; : : : ; 9) and the weight 0 to all other
branches in the chosen set. It follows that V.T / is the non-negative orthant in the vector
spaceW.T / of all real assignments of weights to the branches of T (that satisfy the switch
conditions) with basis ¹e1; : : : ; e9º.
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Figure 3. The bigon track T with a numbering
of some of its branches.

Figure 4. The bigon in the complement of T .

Figure 5. A curve on S that can be represented as a vector in V.T / in two different ways.

The dimension of the space of measured laminations on S is equal to 8, and the natural
map from V.T / to ML.S/ is not injective because T has a bigon. Namely, we can show
that the following assertion is true.

Claim 4.1. The space of measured laminations carried by T is naturally identified with
the linear quotient cone V 0.T / D V.T /=�, where for �1; �2 2 V.T / we let �1 � �2
when �1 � �2 2 span.2e2 � 2e4 C e6 � e8 C e9/ � W.T /.

Proof. According to [38, Proposition 3.4.1] and since dimV.T / � dim ML.S/ D 1, it is
sufficient to find two distinct vectors v1; v2 2 V.T / that correspond to the same measured
lamination. Indeed, it then follows that vectors �1; �2 2 V.T / correspond to the same
measured lamination if and only if span.�1 � �2/ D span.v1 � v2/ � W.T /. Consider
v1 D 4e2 C 2e6 C 2e9 and v2 D 4e4 C 2e8. We leave it for the reader to verify that both
of them correspond to the curve in Figure 5.

Proposition 4.2. The bigon track T is ˆi -invariant.

Proof. It is enough to check that T is invariant under the mapping classes � and � ı �. We
refer to Figures 6 and 7 for the verification.
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Figure 6. The action of � on T .

Figure 7. The action of � followed by � on T .

Denote by A the matrix of the induced action of � on the cone V.T / in the basis
¹e1; : : : ; enº. Similarly, denote by B the matrix of the induced action of � ı � on the cone
V.T / in the same basis. We have the following proposition.

Proposition 4.3. The matrices A and B are as follows:0BBBBBBBBBBBBB@

2 1 0 0 1 0 1 2 0

1 1 0 0 0 1 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCA
;

0BBBBBBBBBBBBB@

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCA
:

Further, the vector v D .�; 1; 0; 0; 0; 0; 0; 0; 0/T is an eigenvector of A with the eigen-
value �2, where � D 1C

p
5

2
.

Proof. Let wi D 2ei . The matrices A and B do not change if expressed in the basis
¹w1; : : : ; w9º. It is sufficient to find the images of the vectors wi , i D 1; : : : ; 9. We
refer to Figures 8–16 and leave the verification for the reader. Finally, the vector v D
.�; 1; 0; 0; 0; 0; 0; 0; 0/T corresponds to the unstable lamination of � on S .
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Figure 8. The curve corresponding to the vector w1 and its images under � and � ı �, respectively.

Figure 9. The curve corresponding to the vector w2 and its images under � and � ı �, respectively.

Figure 10. The curve corresponding to the vector w3 and its images under � and � ı �, respectively.

Figure 11. The curve corresponding to the vector w4 and its images under � and � ı �, respectively.

Figure 12. The curve corresponding to the vector w5 and its images under � and � ı �, respectively.
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Figure 13. The curve corresponding to the vector w6 and its images under � and � ı �, respectively.

Figure 14. The curve corresponding to the vector w7 and its images under � and � ı �, respectively.

Figure 15. The curve corresponding to the vector w8 and its images under � and � ı �, respectively.

Figure 16. The curve corresponding to the vector w9 and its images under � and � ı �, respectively.

5. Estimating the intersection numbers

Let 0 be the multicurve on S that corresponds to the vector w1 C w3 2 V.T / as in Fig-
ure 17. Define the multicurves i D ˆi .0/. In this subsection, we will coarsely estimate
the intersection numbers between pairs of multicurves in the sequence ¹iº. To state the
result, we introduce some notations.
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0

Figure 17. The multicurve 0 on S .

Let f0 D 0, f1 D 1, fn D fn�1 C fn�2 for n > 2 be the Fibonacci sequence. Define
the numbers ci D 2f2ri�2 for i > 1. We assume that the sequence ¹rnº is such that

ci ¤ 0; ciC1 > ci ; i 2 N;
1X
iD1

ci

ciC1
<1: (5.1)

We prove the following assertion.

Proposition 5.1. There is a constant i0 2 N such that for i0 6 i < j with odd j � i , the
following holds:

i.i�1; j /
�
� i.i ; j /

�
� ciC1ciC3 � � � cj :

The multiplicative constants are independent of i and j .

To prove this proposition, we will study the asymptotic behavior of the matrix products
involving matrices A and B from Proposition 4.3. We start with elementary observations
about the Fibonacci sequence.

Claim 5.2. For m > 0, the following holds:

2fmC1 C fm D fmC3; 2fmC1 C fm C fmC2 D fmC4:

Proof. We have

2fmC1 C fm D fmC1 C fmC1 C fm D fmC1 C fmC2 D fmC3;

2fmC1 C fm C fmC2 D fmC3 C fmC2 D fmC4:

Let � D 1C
p
5

2
be the golden ratio.

Claim 5.3. For m > 1, the following holds:

��2f2m � �
�2m
D f2m�2; ��1f2m � �

�2m
D f2m�1;

�f2m C �
�2m
D f2mC1; �2f2m C �

�2m
D f2mC2:
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Proof. By Binet’s formula, we have

f2m D
�2m �  2m
p
5

; where  D
1 �
p
5

2
:

Since  2 D ��2, we have

f2m D
�2m � ��2m
p
5

:

Since �2 � ��2 D � � ��1 D
p
5, we have

��2f2m � �
�2m
D
�2m�2 � ��2m�2 � ��2m

p
5

p
5

D
�2m�2 � ��2m.��2 C

p
5/

p
5

D
�2m�2 � ��2mC2

p
5

D f2m�2;

��1f2m � �
�2m
D
�2m�1 � ��2m�1 � ��2m

p
5

p
5

D
�2m�1 � ��2m.��1 C

p
5/

p
5

D
�2m�1 � ��2mC1

p
5

D f2m�1;

�f2m C �
�2m
D
�2mC1 � ��2mC1 C ��2m

p
5

p
5

D
�2mC1 � ��2m.� �

p
5/

p
5

D
�2mC1 � ��2m�1

p
5

D f2mC1;

�2f2m C �
�2m
D
�2mC2 � ��2mC2 C ��2m

p
5

p
5

D
�2mC2 � ��2m.�2 �

p
5/

p
5

D
�2mC2 � ��2m�2

p
5

D f2mC2:

Next, we prove the following claim.

Claim 5.4. For n > 1, the matrix An is0BBBBBBBBBBBBB@

f2nC1 f2n 0 0 f2n f2n�1 � 1 f2n f2nC2 � 1 0

f2n f2n�1 0 0 f2n�1 � 1 f2n�2 C 1 f2n�1 � 1 f2nC1 � 1 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCA
:

Proof. The proof is by induction.
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Base: n D 1. It holds since f2 D 1, f3 D 2, f4 D 3.

Step. Using Claim 5.2 and introducing the shorthand notation sk WD fk C fkC1, we cal-
culate the matrix AnC1 D An � A:0BBBBBBBBBBBBB@

s2nCf2nC1 s2n 0 0 s2n s2n�1�1 s2n s2nCs2nC1�1 0

s2n�1Cf2n s2n�1 0 0 s2n�1�1 s2n�2C1 s2n�1�1 s2n�1Cs2n�1 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCA

D

0BBBBBBBBBBBBB@

f2nC3 f2nC2 0 0 f2nC2 f2nC1 � 1 f2n C 2 f2nC4 � 1 0

f2nC2 f2nC1 0 0 f2nC1 � 1 f2n2 C 1 f2nC1 � 1 f2nC3 � 1 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCA
:

This completes the proof.

Corollary 5.5. For n > 1, the matrix AnB is0BBBBBBBBBBBBB@

0 0 f2n f2nC1 � 1 f2nC2 f2nC2 � 1 f2n 0 f2n�1 � 1

0 0 f2n�1 � 1 f2n C 1 f2nC1 � 1 f2nC1 � 1 f2n�1 � 1 0 f2n�2 C 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCA
:

Proof. Direct check.

Claim 5.6. For n > 1, the matrix AnB can be expressed as

2f2nN CM C �
�2nL; (5.2)
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where matrices N , M and L are, respectively,0BBBBBBBBBBBBB@

0 0 1=2 �=2 �2=2 �2=2 1=2 0 1=2�

0 0 1=2� 1=2 �=2 �=2 1=2� 0 1=2�2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCA
;

0BBBBBBBBBBBBB@

0 0 0 �1 0 �1 0 0 �1

0 0 �1 1 �1 �1 �1 0 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCA
;

0BBBBBBBBBBBBB@

0 0 0 1 1 1 0 0 �1

0 0 �1 0 1 1 �1 0 �1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCA
:

Further, the following holds:

(1) N 2 D 0 and rk.N / D 1.

(2) .MN/2 DMN , MN is non-negative and

MN.v/ D v for v D .0; 0; �; 1; 0; 0; 0; 0; 0/T:

(3) .NM/2 D NM and NM is non-negative.

(4) NL D LN D 0.

(5) L2 D 0.

Proof. Equation (5.2) holds by Corollary 5.5 together with Claim 5.3. The rest is a direct
check.

Let k � k denote the operator norm induced by the standard norm on V.T / with basis
¹e1; : : : ; e9º.

Claim 5.7. There is a constant C > 0 such that for m; n > 1, the following holds:AnB
2f2n

�N
 6 C �

1

f2n
;

AmBAnB
2f2n

�MN
 6 C �

f2m

f2n
:

Proof. By Claim 5.6, we have

AnB

2f2n
�N D

1

2f2n
.M C ��2nL/:
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Hence AnB
2f2n

�N
 6

1

2f2n
kM C ��2nLk 6

1

2f2n
.kMk C kLk/:

By Claim 5.6, we have

AmBAnB D .2f2mN CM C �
�2mL/.2f2nN CM C �

�2nL/

D 2f2nMN C 2f2mNM CM
2
C ��2mLM C ��2nML: (5.3)

Hence

AmBAnB

2f2n
�MN D

f2m

f2n

�
NM C

1

2f2m
M 2
C
��2m

2f2m
LM C

��2n

2f2m
ML

�
:

Therefore,AmBAnB
2f2n

�MN
 6

f2m

f2n

�
kNMk C

1

2f2m
kMk2 C

��2m

2f2m
kLMk C

��2n

2f2m
kMLk

�
6
f2m

f2n
.kNMk C kMk2 C kLMk C kMLk/:

Letting C D max¹ kMkCkLk
2

; kNMk C kMk2 C kLMk C kMLkº, we complete the
proof.

Observe that the matrix AnB is the induced matrix of the homeomorphism 'nC1 since
'nC1 D �

nC1 ı � D �n ı .� ı �/.
Then the matrix Pi defined as

Pi D A
ri�1BAriC1�1B for i > 1

corresponds to 'ri'riC1 . We prove the following claim.

Claim 5.8. There are constants C 0 > 0 and j0 2 N such that for j0 6 j < k with odd
k � j , the following holds: Pj

cjC1
�
PjC2

cjC3
� � �
Pk�1

ck
�MN

 6 C 0 �

1X
iDj

ci

ciC1
;

ArjC1�1B
cjC1

�
PjC2

cjC3
�
PjC4

cjC5
� � �
Pk�1

ck
�NMN

 6 C 0 �

1X
iDj

ci

ciC1
:

Proof. By the definition of Pi and ci , we have

Pi

ciC1
D
Ari�1BAriC1�1B

2f2riC1�2
;

therefore by Claim 5.7, we get Pi

ciC1
�MN

 6 C �
ci

ciC1
:
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It follows from equation (5.1) that

1X
iD1

 Pi

ciC1
�MN

 <1:
Since the matrix MN is idempotent by Claim 5.6, we can invoke Lemma A.1 (see equa-
tion (A.3)) to conclude that there is a constant j0 2 N such that for j0 6 j < k, Pj

cjC1
�
PjC2

cjC3
� � �
Pk�1

ck
�MN

 6 2 �

�
C �

1X
iDj

ci

ciC1

�
� kMN k2:

Together with the triangle inequality and the first inequality in Claim 5.7, we obtainArjC1�1B
cjC1

�
PjC2

cjC3
� � �
Pk�1

ck
�NMN


6
ArjC1�1B

cjC1
�
PjC2

cjC3
� � �
Pk�1

ck
�
ArjC1�1B

cjC1
MN

C ArjC1�1B
cjC1

MN �NMN


6
�
kN k C

2C

cjC1

�
� 2 �

�
C �

1X
iDj

ci

ciC1

�
� kMN k2 C

2C

cjC1
� kMN k:

Letting C 0 D .kN k C 2C / � 2CkMN k2 C 2CkMN k concludes the proof.

We prove the main result of the section.

Proof of Proposition 5.1. Using equation (3.1), we can write

i.i�1; j / D i.ˆi�1.0/; ˆi�1'ri : : : 'rj .0// D i.0; 'ri : : : 'rj .0//:

We can express the multicurve 'ri : : : 'rj .0/ as the vector PiPiC2 : : :Pj�1.w1Cw3/
in V.T /. Recall that by Proposition 4.3, the unstable lamination of the homeomorphism �

can be represented (up to a positive scalar) as the vector � � w1 C w2. Notice that the
measured lamination that corresponds to the vector

MN.w1 C w3/ D
1

2
w3 C

1

2�
w4

is the unstable lamination of the homeomorphism ����1, which has a positive intersec-
tion number with the curve that corresponds to w3, hence also with the multicurve 0.
Since the natural map V.T /! ML.S/ and the intersection number i.�; �/ are continu-
ous, by Claim 5.8 we can choose i0 2 N so that for i0 6 i < j , the intersection number
of the measured lamination Pi

ciC1
�
PiC2
ciC3
� � �

Pj�1
cj
.w1 C w3/ and 0 is bounded above and

below from zero, where the bound is independent of i and j . Hence for i0 6 i < j , the
intersection number i.i�1; j / is equal to ciC1ciC3 � � � cj up to a fixed multiplicative
constant.
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Similarly, we can write

i.i ; j / D i.ˆi .0/; ˆi'riC1 : : : 'rj .0// D i.0; 'riC1 : : : 'rj .0//:

We can express 'riC1 : : : 'rj .0/ as the vector AriC1�1BPiC2PiC4 : : : Pj�1.w1 C w3/
in V.T /. Notice that the measured lamination that corresponds to the vector

NMN.w1 C w3/ D
1

2
w1 C

1

2�
w2

is the unstable lamination of the homeomorphism � , which has a positive intersection
number with the curve that corresponds to w1, hence also with the multicurve 0. By
Claim 5.8, for i0 6 i < j the intersection number of the measured lamination AriC1�1B

ciC1
�

PiC2
ciC3
�
PiC4
ciC5
� � �

Pj�1
cj
.w1 C w3/ and 0 is bounded above and below from zero, where the

bound is independent of i and j . Hence for i0 6 i < j , the intersection number i.i ; j /
is equal to ciC1ciC3 � � � cj up to a fixed multiplicative constant.

6. Non-unique ergodicity

In this section, we show that the ending lamination � constructed in Section 3 is not
uniquely ergodic. Namely, we prove that the appropriately scaled subsequences of multic-
urves ¹iº with even and odd indices converge to non-zero measured laminations that are
not multiples of each other. Further, we show that the limiting measured laminations are
ergodic and are the only ergodic transverse measures on �.

Claim 6.1. There are �e; �o 2ML.S/ such that the following holds as n!1:

2n

c2c4 � � � c2n
! �e;

2nC1

c1c3 � � � c2nC1
! �o:

Proof. Notice that the vectors .
Qn
iD1

P2i�1
c2i

/.w1Cw3/ and Ar1�1B
c1

.
Qn
iD1

P2i
c2iC1

/.w1Cw3/

correspond to 2n
c2c4���c2n

and 2nC1
c1c3���c2nC1

, respectively. In accordance with equation (5.1),
Claim 5.7 and Lemma A.1, the infinite products

Q1
iD1

P2i�1
c2i

and
Q1
iD1

P2i
c2iC1

converge. So
.
Qn
iD1

P2i�1
c2i

/.w1Cw3/ and Ar1�1B
c1

.
Qn
iD1

P2i
c2iC1

/.w1Cw3/ converge as n!1, and the
result follows.

Claim 6.2. As n!1,

i.2n; �e/

i.2n; �o/
! 0;

i.2nC1; �e/

i.2nC1; �0/
!1:

Proof. Suppose that 2n > i0, where i0 2 N is the constant from Proposition 5.1. Then by
Proposition 5.1, for m > n, we have

i
�
2n;

2m

c2c4 � � � c2m

�
D
i.2n; 2m/

c2c4 � � � c2m

�
�
c2nC2c2nC4 � � � c2m

c2c4 � � � c2m
D

1

c2c4 � � � c2n
:
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Since it holds for every m > n, by passing to the limit as m!1, we have i.2n; �e/
�
�

1
c2c4���c2n

. In particular, i.2n; �e/ ¤ 0.
Similarly, for m > n we have

i
�
2n;

2mC1

c1c3 � � � c2mC1

�
D
i.2n; 2mC1/

c1c3 � � � c2mC1

�
�
c2nC1c2nC3 � � � c2mC1

c1c3 � � � c2mC1
D

1

c1c3 � � � c2n�1
:

Since it holds for every m > n, by passing to the limit as m!1, we have i.2n; �o/
�
�

1
c1c3���c2n�1

. In particular, i.2n; �o/ ¤ 0.
Putting this together, we obtain

i.2n; �e/

i.2n; �o/

�
�
c1c3 � � � c2n�1

c2c4 � � � c2n
:

It follows from equation (5.1) that c2n�1
c2n
! 0 as n ! 1. Hence c1c3���c2n�1

c2c4���c2n
! 0, and

therefore i.2n;�e/
i.2n;�o/

! 0 as n!1.
Similarly, for m > n we have

i.2nC1;
2m

c2c4���c2m
/

i.2nC1;
2mC1

c1c3���c2mC1
/
D
c1c3 � � � c2mC1

c2c4 � � � c2m
�
i.2nC1; 2m/

i.2nC1; 2mC1/

�
�
c1c3 � � � c2mC1

c2c4 � � � c2m
�
c2nC2c2nC4 � � � c2m

c2nC3c2nC5 � � � c2mC1
D
c1c3 � � � c2nC1

c2c4 � � � c2n
:

Since it holds for every m > n, by passing to the limit as m!1, we have i.2nC1;�e/
i.2nC1;�o/

�
�

c1c3���c2nC1
c2c4���c2n

. It follows from equation (5.1) that c2nC1
c2n
!1, hence c1c3���c2nC1

c2c4���c2n
!1 and

therefore i.2nC1;�e/
i.2nC1;�0/

!1 as n!1.

Corollary 6.3. The measured laminations �e , �o are non-zero and are not multiples of
each other.

Proof. It was shown in Claim 6.2 that i.2n;�e/¤ 0 and i.2n;�o/¤ 0 for 2n> i0, hence
�e ¤ 0 and �o ¤ 0. If �e , �o are multiples of each other, then the sequence i.2n;�e/

i.2n;�o/
is

constant, which contradicts Claim 6.2.

Proposition 6.4. The ending lamination � is not uniquely ergodic.

Proof. The measured lamination �e can be expressed as �e D �0e C �
00
e , where �0e is the

measured lamination that corresponds to the vector .
Q1
iD1

P2i�1
c2i

/.w1/, �00e is the measured
lamination that corresponds to the vector .

Q1
iD1

P2i�1
c2i

/.w3/. The simple closed curve that
corresponds to the vector

Qn
iD1 P2i�1.w1/ is at distance 2 from the curve ˛2n in the curve

graph for each n> 1, hence the sequence of curves
Qn
iD1P2i�1.w1/;n> 1 converges to �

in the Gromov boundary as n!1. Then by Theorem 2.2, the measured lamination �0e is
supported either on � or at zero. Repeating the same argument for �00e and since �e ¤ 0 by
Corollary 6.3, we obtain that �e is supported on �. By a similar argument, the measured
lamination �o is supported on �. By Corollary 6.3, � is not uniquely ergodic.
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Let C.�/ denote the convex cone of transverse measures supported on �. Since the
measured lamination �e is carried by T , the ending lamination �, being the support of �e ,
is carried by T . Hence every measured lamination in C.�/ is carried by T . In fact, we can
show more:

Claim 6.5. For every n > 1, the image of the convex cone P1P3 : : : P2n�1.V .T // under
the natural map to ML.S/ contains C.�/.

Proof. Notice that P1P3 : : : P2n�1.V .T // is isomorphic to the convex cone of the non-
negative real assignments of weights to the branches of the train track 'r1 : : : 'r2n.T /
that satisfy the switch conditions. It is then sufficient to show that the measured lamina-
tion �e is carried by the train track 'r1 : : : 'r2n.T /. Indeed, in this case every measured
lamination in C.�/ is carried by 'r1 : : : 'r2n.T /. Since the measured lamination corre-
sponding to the vector .

Q1
iDnC1

P2i�1
c2i

/.w1 C w3/ is carried by T , then the measured
lamination corresponding to the vector P1

c2

P3
c4
� � �

P2n�1
c2n
� .
Q1
iDnC1

P2i�1
c2i

/.w1 Cw3/ is car-
ried by 'r1 : : : 'r2n.T /. Since the latter measured lamination is �e , the result follows.

To find all ergodic transverse measures on �, we study the shapes of the convex cones
P1P3 : : : P2n�1.V .T // as n!1. Roughly speaking, we will show that for each n > 1,
the set of the generators of the coneP1P3 : : :P2n�1.V .T // can be divided into two subsets
such that the angles between pairs of generators within each of the subsets converge to zero
as n!1 (Lemma 6.10). From this the upper bound on the number of ergodic transverse
measures will follow.

Endow V.T / with the standard inner product with respect to the basis ¹e1; : : : ; e9º.
We start with the following helpful observation.

Claim 6.6. For i > 1,

hPi .e1/; e1i D
ci

2
; hPi .e3/; e3i D

ciC1

2
:

Proof. By equation (5.3), we have

Pi D ciC1MN C ciNM CM
2
C ��2.ri�1/LM C ��2.riC1�1/ML:

Notice that MN.e1/ D 0 since e1 2 kerN . We have NM.e1/ D 1
2
e1 C

1
2�
e2. It is also

a direct check that

hM 2.e1/; e1i D hLM.e1/; e1i D hML.e1/; e1i D 0;

hence hPi .e1/; e1i D ci
2

.
Similarly, we have MN.e3/ D 1

2
e3 C

1
2�
e4 and

hNM.e3/; e3i D hM
2.e3/; e3i D hLM.e3/; e3i D hML.e3/; e3i D 0:

Hence hPi .e3/; e3i D
ciC1
2

.
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Next, we prove the following assertion.

Claim 6.7. For every n > 1, the following holds. If ei … kerN , then

kP1P3 : : : P2n�1MN.ei /k >
c2c4 � � � c2n

2nC1�
:

If ei 2 kerN , then

kP1P3 : : : P2n�1NM.ei /k >
c1c3 � � � c2n�1

2nC1�
:

Proof. Notice that if ei … kerN , then hMN.ei /; e3i > 1
2�

. Since the matrices Pj are non-
negative for j > 1, we have

hPj .v/; e3i > hPj .hv; e3i � e3/; e3i

for all v 2 V.T /. Since the matrix MN is non-negative by Claim 5.6, applying Claim 6.6
n times, it follows that hP1P3 : : : P2n�1MN.ei /; e3i > c2c4���c2n

2nC1�
, therefore

kP1P3 : : : P2n�1MN.ei /k >
c2c4 � � � c2n

2nC1�
:

Similarly, if ei 2 kerN , then hNM.ei /; e1i > 1
2�

. Since the matrices Pj are non-
negative for j > 1 and NM is non-negative by Claim 5.6, together with Claim 6.6 it fol-
lows that hP1P3 : : : P2n�1NM.ei /; e1i > c1c3���c2n�1

2nC1�
, hence kP1P3 : : : P2n�1NM.ei /k >

c1c1���c2n�1
2nC1�

.

Let Ki be the matrix defined as Ki D M 2 C ��2.ri�1/LM C ��2.riC1�1/ML for
i > 1. Then

Pi D ciC1MN C ciNM CKi : (6.1)

Notice that kKik 6 kMk2 C kLMk C kMLk for all i > 1.

Claim 6.8. There is a constant D > 0 such that for every n > 1, the following holds:

kP1P3 : : : P2n�1NMk 6 DnC1
� c1c3 � � � c2n�1;

kP1P3 : : : P2n�1MN k 6 DnC1
� c2c4 � � � c2n;

kP1P3 : : : P2n�1K2nC1k 6 DnC1
� c2c4 � � � c2n:

Proof. Consider the first inequality. Expressing each matrix Pi in P1P3 : : : P2n�1NM as
in equation (6.1) and expanding the brackets, we obtain a sum of 3n terms, where each
term is an .nC 1/-factor product of matrices MN , NM and Ki for i D 1; 3; : : : ; 2n � 1
multiplied by a coefficient which is certain product of numbers cj for j D 1; 2; : : : ; 2n. It
follows from the identityN 2D 0 (Claim 5.6) that some of the matrices in the sum are zero.
Eliminating all terms in the sum whose matrices have an N 2 in their expression, we get
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from equation (5.1) that c1c3 � � � c2n�1 is the largest of the remaining coefficients. Since
the operator norm is sub-multiplicative, the norm of each matrix in the sum is at most
.max¹kMN k; kNMk; kMk2 C kLMk C kMLkº/nC1, hence by the triangle inequality
we have

kP1P3 : : : P2n�1NMk

6 3n � c1c3 � � � c2n�1 � .max¹kMN k; kNMk; kMk2 C kLMk C kMLkº/nC1:

Letting D D 3 � max¹kMN k; kNMk; kMk2 C kLMk C kMLkº concludes the first in-
equality.

For the second and the third inequalities, notice that by equations (6.1) and (5.1) for
i > 1 we have

kPik 6 ciC1kMN k C cikNMk C kKik

6 3 � ciC1 �max¹kMN k; kNMk; kMk2 C kLMk C kMLkº D D � ciC1;

from which the upper bound follows.

Remark 6.9. It is possible to obtain better upper bounds for kP1P3 : : : P2n�1MN k and
kP1P3 : : : P2n�1K2nC1k using Claim 5.8, but weaker bounds will suffice for our pur-
poses.

Lemma 6.10. There is a constant D0 > 0 such that for every n 2 N the following holds.
If ei ; ej … kerN , then

1 � cos†.P1P3 : : : P2nC1.ei /; P1P3 : : : P2nC1.ej // 6 .D0/nC1 �
c1c3 � � � c2nC1

c2c4 � � � c2nC2
:

If ei ; ej 2 kerN , then

1 � cos†.P1P3 : : : P2nC1.ei /; P1P3 : : : P2nC1.ej // 6 .D0/nC1 �
c2c4 � � � c2n

c1c3 � � � c2nC1
:

Further, in either case †.P1P3 : : : P2nC1.ei /; P1P3 : : : P2nC1.ej //! 0 as n!1.

Proof. By equation (6.1), we can write

P1P3 : : : P2nC1 D P1P3 : : : P2n�1.c2nC2MN C c2nC1NM CK2nC1/:

Consider the first inequality. Let

v1 D c2nC2P1P3 : : : P2n�1MN.ei /;

v2 D c2nC2P1P3 : : : P2n�1MN.ej /;

w1 D P1P3 : : : P2n�1.c2nC1NM CK2nC1/.ei /;

w2 D P1P3 : : : P2n�1.c2nC1NM CK2nC1/.ej /:
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Notice that v1 Cw1 D P1P3 : : : P2nC1.ei / and v2 Cw2 D P1P3 : : : P2nC1.ej /. We also
have †.v1; v2/ D 0 since the vectors MN.ei / and MN.ej / are collinear. By Claims 6.7
and 6.8, we have
c2c4 � � � c2nC2

2nC1�
6 kv1k; kv2k 6 DnC1

� c2c4 � � � c2nC2;

kw1k; kw2k 6 DnC1
� .c1c3 � � � c2nC1 C c2c4 � � � c2n/ 6 2 �DnC1

� c1c3 � � � c2nC1:

Then by Lemma A.2, we have

1 � cos†.P1P3 : : : P2nC1.ei /; P1P3 : : : P2nC1.ej //

6
2.4 �D2nC2 � c2c4 � � � c2nC2 � c1c3 � � � c2nC1 C 4 �D

2nC2 � .c1c3 � � � c2nC1/
2/

c2c4���c2nC2
2nC1�

�
c2c4���c2nC2
2nC1�

6 22nC2�2 � 8 �D2nC2
�
2c2c4 � � � c2nC2 � c1c3 � � � c2nC1

.c2c4 � � � c2nC2/2

6 22nC6�2 �D2nC2
�
c1c3 � � � c2nC1

c2c4 � � � c2nC2
:

For the second inequality, notice that

c2nC2P1P3 : : : P2n�1MN.ei / D c2nC2P1P3 : : : P2n�1MN.ej / D 0

since N.ei / D N.ej / D 0. We let

v01 D c2nC1P1P3 : : : P2n�1NM.ei /;

v02 D c2nC1P1P3 : : : P2n�1NM.ej /;

w01 D P1P3 : : : P2n�1K2nC1.ei /;

w02 D P1P3 : : : P2n�1K2nC1.ej /:

Notice that v01 C w
0
1 D P1P3 : : : P2nC1.ei / and v02 C w

0
2 D P1P3 : : : P2nC1.ej /. We

also have †.v01; v
0
2/ D 0 since the vectors NM.ei / and NM.ej / are collinear. Then by

Lemma A.2 and Claims 6.7 and 6.8, we have

1 � cos†.P1P3 : : : P2nC1.ei /; P1P3 : : : P2nC1.ej //

6
2.2 �D2nC2 � c1c3 � � � c2nC1 � c2c4 � � � c2n CD

2nC2 � .c2c4 � � � c2n/
2/

c1c3���c2nC1
2nC1�

�
c1c3���c2nC1
2nC1�

6 22nC2�2 � 2 �D2nC2
�
3c1c3 � � � c2nC1 � c2c4 � � � c2n

.c1c3 � � � c2nC1/2

6 22nC3�2 � 3 �D2nC2
�
c2c4 � � � c2n

c1c3 � � � c2nC1
:

Letting D0 D 24� � 3 �D2 concludes the desired inequalities. By equation (5.1), we have
cn
cnC1
! 0 as n!1. Hence for sufficiently large n, the upper bounds for 1� cos†.P1P3

: : : P2nC1.ei /; P1P3 : : : P2nC1.ej // decrease at least exponentially with n, therefore

†.P1P3 : : : P2nC1.ei /; P1P3 : : : P2nC1.ej //! 0 as n!1:
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Proposition 6.11. The measured laminations �e , �o are ergodic. Further, any transverse
measure on � is a linear combination of �e and �o.

Proof. Let � D ¹x1e1 C � � � C x9e9 j
P9
iD1 xi D 1º � V.T / be the standard unit sim-

plex. Notice that the set P1P3 : : : P2n�1.V .T // \ � is the convex hull of the points
span.P1P3 : : : P2n�1.ei // \ � for i D 1; : : : ; 9. Since

Q1
iD1

P2i�1
c2i

converges (see the
proof of Claim 6.1), the sequence of compact sets P1P3 : : : P2n�1.V .T // \� converges
in the Hausdorff metric on V.T / as n!1. It follows from Lemma 6.10 that the limiting
set is either an interval or a point. If � admits at least three ergodic transverse measures up
to scalar, then the set of points in� that correspond to measured laminations in C.�/ con-
tains a convex triangle. LetR>0 be the radius of the circumscribed circle of such triangle.
For sufficiently large n such that the Hausdorff distance from P1P3 : : : P2n�1.V .T //\�

to the limiting set is less than R
8

, the set P1P3 : : : P2n�1.V .T // \� cannot contain a 2-
dimensional disk of radius r : it is immediate if the limiting set is a point and if the limiting
set is an interval it follows from Lemma A.3 since R > 2

p
2.8 � 1/R

8
. Since the projec-

tive class of every non-zero measure in C.�/ is represented in P1P3 : : :P2n�1.V .T //\�
by Claim 6.5, we arrive at a contradiction. Hence � admits at most two ergodic transverse
measures up to a scalar. Together with Proposition 6.4, we obtain that � admits exactly
two ergodic transverse measured up to scalar.

Together with Claim 6.2, it now follows that �e and �o are ergodic by a well-known
argument, see, for example, [9, Lemma 6.3].

7. Relative twisting bounds

In this section, we prove that the lamination � constructed in Section 3 has uniformly
bounded annular projection distances. To show this, we return to the sequence of curves
¹˛iº, defined in Section 3.1. First we prove the following lemma.

Lemma 7.1. For every i > 2,

d˛i .˛i�2; ˛iC2/ 6 7:

Proof. By equation (3.2), the triangle inequality and Lemma 2.3, we have

d˛i .˛i�2; ˛iC2/ D d˛2.˛0; 'ri�1˛3/ D d˛2.˛0; �
ri�1.�˛3//

6 d˛2.˛0; �˛3/C d˛2.�˛3; �
ri�1.�˛3//

6 .i.˛0; �˛3/C 1/C d˛2.�˛3; �
ri�1.�˛3//

D 3C d˛2.�˛3; �
ri�1.�˛3//:

We will prove that d˛2.�˛3; �
ri�1.�˛3// 6 4. We remark that this is not trivial since by

equation (5.1) the sequence ¹rnº converges to infinity, and a partial pseudo-Anosov home-
omorphism can act as a root of the Dehn twist on a boundary curve.
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Choose a marked complete hyperbolic metric X on S of finite volume. In what fol-
lows, we refer to Figure 18. Let ę2 and e�˛3 be geodesic lifts of ˛2 and �˛3 in the universal
cover zX Š H2 intersecting at the point O 2 H2 (geodesics intersecting perpendicularly
is not meant literally, but for the convenience of the picture). Let ı0, ı1 be the curves on S
shown in Figure 1. Let eı0 and eı00 be the geodesic lifts of ı0 in H2 that intersect e�˛3 at the
points A;A0 2 H2, respectively, such that the geodesic segment ŒAA0� � H2 contains the
point O and does not contain any other intersection points of lifts of ı0 with e�˛3 (such
lifts exist since i.�˛3; ı0/ > 0). Let q; r 2 @H2 be the endpoints of eı0 and let q0; r 0 2 @H2

be the endpoints of eı00. Let .qr/ � @H2 be an open interval such that q0; r 0 … .qr/ and let
.q0r 0/ � @H2 be an open interval such that q; r … .q0r 0/. We will show that there is a lift
z� WH2 ! H2 of � such that the endpoints of z�n.e�˛3/ are in .qr/ [ .q0r 0/ for all n 2 N.
Assuming this, we can conclude as follows. Consider the orbit of e�˛3 under the hyper-
bolic isometry h˛2i corresponding to the curve ˛2 that fixes ę2. Notice that the endpoints
of the elements in the orbit are contained in the corresponding elements in the orbits of
the intervals .qr/, .q0r 0/. Since the curve ı0 is simple, the lift e�˛3 is the only element
in the orbit with endpoints in .qr/ [ .q0r 0/. It follows that for every n 2 N, the geodesic
representative of z�n.e�˛3/ intersects at most one such element. Projecting to the annulus
H2=h˛2i, we obtain lifts of �˛3 and �n.�˛3/ connecting two boundary components that
intersect at most once. Then from the definition of the distance in the curve graph of an
annulus, it follows that

d˛2.�˛3; �
n.�˛3// 6 2C 1C 1 D 4 for every n 2 N.

Now we show that there is a lift z� WH2!H2 of � such that an endpoint of z�n.e�˛3/ is
in .qr/ for all n 2N, the argument for .q0r 0/ is similar. Let eHı0 WH2 ! H2 be a lift of the
half-twist Hı0 such that eHı0.O/ D O . Similarly, let eH�1

ı1
WH2 ! H2 be a lift of the half-

twistH�1
ı1

such that eH�1
ı1
.O/ D O . Then the map z� WH2!H2 defined as z� D eH�1

ı1
ıeHı0

is a lift of � . Let p 2 .qr/ be an endpoint of e�˛3. Let eı1 be the geodesic lift of ı1 in H2

that intersects eı0 at the point B 2H2 such that B 2 ŒA; q/ and such that the geodesic seg-
ment ŒAB� �H2 does not contain any other intersection points of lifts of ı1 with eı0 (such

A0 O A z�˛3

z̨2

zı0

r

q

zı00

q0

r 0

O pAz�˛3

z̨2

r

q

zı0

s

tB

zı1

Figure 18. Left: lifts of the curves ˛2, �˛3, ı0 in the universal cover. Right: lifts of the curves ˛2,
�˛3, ı0, ı1 in the universal cover.
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a lift exists since i.ı0; ı1/ > 0). Let s; t 2 @H2 be the endpoints of eı1 and let .st/ � @H2

be an open interval such that q 2 .st/. Since ı1 does not intersect �˛3 essentially, we
have p … .st/. It follows from [41, Proposition 2.1] that the boundary extension of eHı0
fixes q; r 2 @H2 and moves all points in .qr/ counterclockwise (Proposition 2.1 is about
Dehn twists, but the argument applies to half-twists as well). Similarly, the boundary
extension of eH�1

ı1
fixes s; t 2 @H2 and moves all points in .st/ clockwise. Then since

Hı0.�˛3/ intersects ı1 essentially, it follows that eHı0.p/ 2 .qt/. Then z�.p/ 2 .qt/ and
hence z�n.p/ 2 .qr/ for all n > 1 since z�n..q; t// � .q; t/ � .q; r/.

Let � D ¹˛0; ˛5º be a collection of curves on S . By Lemma 3.5, � is a marking on S .
We prove the following assertion.

Proposition 7.2. There is a constant E > 0 such that the following holds. For every
curve  on S , there is j 2N such that for all j > j , the curve j̨ intersects  essentially
and

d .�; j̨ / 6 E:

Proof. If the curve  intersects every curve j̨ essentially for j 2N, then by Corollary 2.5
we have

d .�; j̨ / D max¹d .˛0; j̨ /; d .˛5; j̨ /º 6 A

for every j 2N. Otherwise, the curve  is disjoint from some curves in the sequence ¹˛iº.
If  is disjoint from ˛0, then by Lemma 3.5,  intersects every j̨ essentially for j > 5.
Then by Corollary 2.5,

d .�; j̨ / D d .˛5; j̨ / 6 A

for every j > 5. If  intersects ˛0 essentially, let ` 2 N be the smallest index so that  is
disjoint from ˛` and r > ` be the largest index so that  is disjoint from ˛r . By Lemma 3.5,
we have r � ` 6 4. Let j D r C 1. Then for j > j D r C 1, by the triangle inequality
we have

d .�; j̨ / 6 d .�; ˛`�1/C d .˛`�1; ˛rC1/C d .˛rC1; j̨ /: (7.1)

By Corollary 2.5, d .˛rC1; j̨ / 6 A. From now on, we assume that A > 4. Next, we
show that d .�; ˛`�1/ 6 AC d .˛`�1; ˛rC1/, thus it will remain to find an upper bound
for d .˛`�1; ˛rC1/. If  intersects ˛0 essentially and is disjoint from ˛5, then by Corol-
lary 2.5,

d .�; ˛`�1/ D d .˛0; ˛`�1/ 6 A:

Suppose that  intersects both ˛0 and ˛5 essentially. If ` � 1 > 5, then by Corollary 2.5,

d .�; ˛`�1/ D max¹d .˛0; ˛`�1/; d .˛5; ˛`�1/º 6 A:
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If ` � 1 < 5 and r C 1 6 5, then by the triangle inequality and Corollary 2.5,

d .˛5; ˛`�1/ 6 d .˛5; ˛rC1/C d .˛rC1; ˛`�1/ 6 AC d .˛`�1; ˛rC1/:

Therefore, we have

d .�; ˛`�1/ D max¹d .˛0; ˛`�1/; d .˛5; ˛`�1/º 6 max¹A;AC d .˛`�1; ˛rC1/º

D AC d .˛`�1; ˛rC1/:

If ` � 1 < 5 and r C 1 > 5, then since  intersects ˛5 essentially, we have ` < 5 and
r > 5. Then the curves in ¹˛iº that are disjoint from  are not consecutive. It follows from
Corollary 3.11 that either r � 1 D 5 or r � 2 D 5 and that  intersects ˛r�1 essentially.
In the first case, by Lemma 2.3 and equation (3.2) we have

d .˛5; ˛rC1/ D d .˛r�1; ˛rC1/ 6 i.˛r�1; ˛rC1/C 1 D i.˛0; ˛2/C 1 D 3:

In the second case, by the triangle inequality

d .˛5; ˛rC1/ D d .˛r�2; ˛rC1/ 6 d .˛r�2; ˛r�1/C d .˛r�1; ˛rC1/:

Notice that d .˛r�2; ˛r�1/D 1 since ˛r�2 and ˛r�1 are disjoint. As d .˛r�1; ˛rC1/ 6 3,
we have d .˛5; ˛rC1/ 6 4. We obtain that if ` � 1 < 5 and r C 1 > 5, then

d .�; ˛`�1/ D max¹d .˛0; ˛`�1/; d .˛5; ˛`�1/º

6 max¹A; d .˛5; ˛rC1/C d .˛rC1; ˛`�1/º

6 max¹A; 4C d .˛rC1; ˛`�1/º

6 AC d .˛`�1; ˛rC1/: (7.2)

Now we find an upper bound for d .˛`�1; ˛rC1/. Depending on the value of r � `, we
consider the following cases.

Case r � ` D 4. By Claim 3.7, we have  D ˇ`. By equation (3.2), we have

d .˛`�1; ˛rC1/ D dˇ`.˛`�1; ˛`C5/ D dˇ0.'
�1
r`
.˛0/; 'r`C1'r`C2.˛3//:

Recall that 'nD �n�, where � is partial pseudo-Anosov supported on Y2. Let �s and �u be
the stable and unstable laminations of � contained in Y2. Let ı0; ı1 � Y2 be the curves as in
Figure 1. Curves in Y2 converge to �u under positive powers of � and to �s under negative
powers of � in the Hausdorff topology, possibly together with finitely many extra leaves
(for the convergence argument, see, for example, [12, pp. 24–26]). Thus, by Lemma 2.7
we can find N 2 N sufficiently large so that for all n > N , dı0.�

u; �n.ı1// 6 9 and
dı1.�

s; ��n.ı0// 6 9.
Since Y2 and �.Y2/ D Y3 are disjoint, for m; n > 1 we have

'm'n.�
�1ı1/ D ��

n.ı1/:
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Note that ı0 is disjoint from ˛0 and that ˇ0 D ��1.ı1/. Likewise, ��1.ı1/ is disjoint
from ˛3 and ˇ0 D �.ı0/. Also note that ˇ0 � Y1 D ��1.Y2/, so ��1.�s/ intersects ˇ0
essentially. Likewise, ˇ0 � Y3D �.Y2/, so �.�u/ also intersects ˇ0 essentially. Combining
these facts, and using the triangle inequality, we get that for all k;m; n > N ,

dˇ0.'
�1
k .˛0/; 'm'n.˛3//

6 4C dˇ0.'
�1
k .ı0/; 'm'n.�

�1ı1// D 4C dˇ0.�
�1��k.ı0/; ��

n.ı1//

6 4C dı1.�
�k.ı0/; �

s/C dˇ0.�
�1.�s/; �.�u//C dı0.�

u; �n.ı1//

6 22C dˇ0.�
�1.�s/; �.�u//:

Recall that by equation (5.1), the sequence ¹rnº goes to infinity. Then there exists I 2 N
such that ri > N for all i > I . Let

K D max
16i6I

¹dˇ0.'
�1
ri
.˛0/; 'riC1'riC2.˛3//º:

Then we have
d .˛`�1; ˛rC1/ 6 22C dˇ0.�

�1.�s/; �.�u//CK: (7.3)

Case r � ` D 3. By Claim 3.8 and the triangle inequality, we can write

d .˛`�1; ˛rC1/ D d .˛`�1; ˛`C4/

6 d .˛`�1; ˛`C1/C d .˛`C1; ˛`C2/C d .˛`C2; ˛`C4/:

Notice that d .˛`C1; ˛`C2/D 1 since ˛`C1 and ˛`C2 are disjoint. By Lemma 2.3, we also
have

d .˛`�1; ˛`C1/ 6 i.˛`�1; ˛`C1/C 1 D i.˛0; ˛2/C 1 D 3:

Similarly, d .˛`C2; ˛`C4/ 6 3. Hence d .˛`�1; ˛rC1/ 6 7.

Case r � ` D 2. If  is disjoint from ˛` and ˛`C2, then one of the following holds:
 D ˇ`�1,  D ˛`C1,  � Y`C1. Indeed, by applying the homeomorphism ˆ�1

`�1
and

by equation (3.2) it is enough to consider the case ` D 1, which follows from Figure 1.
If  D ˇ`�1, then by Claim 3.7  is disjoint from ˛`C3, which is impossible. If  D ˛`C1,
then by Lemma 7.1, we have

d .˛`�1; ˛rC1/ D d˛`C1.˛`�1; ˛`C3/ 6 7:

If  � Y`C1, we have

d .˛`�1; ˛rC1/ D d .˛`�1; ˛`C3/ D dˆ�1
`�1
 .˛0; �

r`.�˛3//;

where ˆ�1
`�1
 is a curve in Y2. Denote the curve ˆ�1

`�1
 by  0.

Notice that �Y2.˛0/ D ı0 and that ˛0 is disjoint from ı0. Likewise, �Y2.�˛3/ D ı1
and �˛3 is disjoint from ı1. Note that if a curve on S intersects Y2 essentially, then it
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intersects  0 essentially if and only if its projection to Y2 intersects  0 essentially. This is
because every essential arc of intersection with Y2 projects to a disjoint curve, and any
two distinct curves in Y2 intersect each other. It follows that ı0 intersects  0 essentially.
Further, if �k.ı1/ intersects  0 essentially for some k 2 N, then �k.�˛3/ does as well.
Then if n 2 N is sufficiently large so that d 0.�u; �n.ı1// 6 9, we have

d 0.˛0; �
n.�˛3// 6 4C d 0.ı0; �

n.ı1//

6 4C d 0.ı0; �
u/C d 0.�

u; �n.ı1//

6 13C d 0.ı0; �
u/:

By Proposition 2.8, we have d 0.ı0; �u/ 6 C�;ı0 . Then using the triangle inequality, we
can write

d 0.˛0; �
r`.�˛3// 6 d 0.˛0; �

n.�˛3//C d 0.�
n.�˛3/; �

r`.�˛3//

6 .13C C�;ı0/C d��r` . 0/.�
n�r`.�˛3/; �˛3/:

Denote the curve ��r`. 0/ by  00. Notice that

d 00.�
n�r`.ı1/; �

u/ D d 0.�
n.ı1/; �

r`.�u// D d 0.�
n.ı1/; �

u/ 6 9:

Then we similarly have

d 00.�
n�r`.�˛3/; �˛3/ 6 4C d 00.�

n�r`.ı1/; ı1/

6 4C d 00.�
n�r`.ı1/; �

u/C d 00.�
u; ı1/

6 13C C�;ı1 :

Therefore,
d .˛`�1; ˛rC1/ 6 C�;ı0 C C�;ı1 C 26: (7.4)

Case r � ` D 1. This case is impossible by Claim 3.10.

Case r � ` D 0. By Lemma 2.3, we have

d .˛`�1; ˛rC1/ D d .˛`�1; ˛`C1/ 6 i.˛`�1; ˛`C1/C 1 D i.˛0; ˛2/C 1 D 3:

Finally, according to equations (7.1) and (7.2), if we set E D 2AC 2F , where F > 0

is the maximum of the expressions obtained in equations (7.3) and (7.4), then

d .�; j̨ / 6 E

for every j > j D r C 1, which concludes the proof.

In the following corollary, � is the non-uniquely ergodic ending lamination on S con-
structed in Section 3.

Corollary 7.3. There is a constant E 0 > 0 such that d .�; �/ 6 E 0 for all curves  on S .
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Proof. By Corollary 3.4, there is a subsequence of ¹˛iº that converges in the Hausdorff
topology on GL.S/ to a geodesic lamination �0 that contains �. Taking an index i 2 N in
the subsequence sufficiently large so that Lemma 2.7 applies to the annular subsurface of
a curve  on S and so that ˛i intersects  essentially, we obtain

d .�; ˛i /
C

�8 d .�; �
0/:

Since � � �0, we have d .�; �/ 6 d .�; �
0/. Taking i 2 N sufficiently large so that

Proposition 7.2 applies as well, we have

d .�; �/ 6 d .�; �
0/ 6 d .�; ˛i /C 8 6 E C 8:

Letting E 0 D E C 8 concludes the proof.

We remark that not all projection distances for � are uniformly bounded. We prove the
following assertion.

Claim 7.4. Let � be a minimal, filling geodesic lamination on S such that dY .�; �/ 6 G

for some constant G > 0 and all subsurfaces Y � S . Then

dYi .�; �/ > cri�1 �G � 18

for all i > 2.

Proof. By Lemma 3.2, we have

dYi .�; j̨ / > cri�1 � 9

for all i > 2 and j > i C 2. By an argument, similar to the one in Corollary 7.3, we have

dYi .�; �/ > .cri�1 � 9/ � 9

for all i > 2. Then by the triangle inequality, we have

dYi .�; �/ > dYi .�; �/ � dYi .�; �/ > cri�1 � 18 �G

for all i > 2.

We obtain the following corollary which in contrast with Theorem 1.1.

Corollary 7.5. Suppose Xt is a Teichmüller geodesic such that the support of the lami-
nation that corresponds to its vertical foliation contains the support of � constructed in
Section 3, and such that the support of the lamination that corresponds to its horizontal
foliation contains the support of � as in Claim 7.4. Then for all sufficiently large i 2 N,
the minimal length `˛i of the curve ˛i along Xt satisfies

`˛i
�

�
1

ri�1
:
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Proof. Since by equation (5.1), the sequence ¹rnº converges to infinity, we can choose
iG > 2 such that cri�1 �G � 18 > c

2
ri�1 for all i > iG . Then the statement follows from

Claim 7.4 and [39, Theorem 6.1]. In particular, Xt does not stay in the thick part of the
Teichmüller space. Moreover, it follows from Theorem 1.2 that Xt diverges in the moduli
space as t !1.

8. Geodesics in the thick part

In this section, we prove Theorem 1.1. First, we prove some technical lemmas.

Lemma 8.1. Let Xn 2 T .S/ be a sequence in Teichmüller space converging to Œ�� in the
Thurston boundary, and let �n be a curve on S such that `�n.Xn/ 6 C for some C > 0.
If Œ�� is a limit point of the sequence Œ�n� in the Thurston boundary, then i.�; �/ D 0.

Proof. By definition, there is a sequence ¹anº of positive numbers, such that anXn ! �

as geodesic currents. We have (see [4, Proposition 15])

i.anXn; anXn/ D a
2
n i.Xn; Xn/ D a

2
n�

2
j�.S/j:

By the continuity of the intersection number, i.anXn; anXn/ ! i.�; �/ D 0, since � 2
ML.S/. Hence a2n ! 0, and in particular, an ! 0. By definition, there is a sequence
¹bnº of non-negative numbers, such that bn�n! � as geodesic currents. Let  be a filling
collection of curves on S , then i.; bn�n/ D bni.; �n/ > bn. We also have i.; bn�n/!
i.; �/ < 1. Hence the sequence ¹bnº is bounded from above, so suppose bn 6 B for
some B > 0. Then

i.anXn; bn�n/ D anbn`�n.Xn/ 6 anBC:

Since i.anXn; bn�n/! i.�; �/, we obtain i.�; �/ D 0.

Let B.S/ be a Bers constant of S . We prove the following lemma.

Lemma 8.2. Let Xn; Yn 2 T .S/ be sequences in Teichmüller space converging to Œ��
and Œ�� in the Thurston boundary, respectively. Suppose that the supports of � and � are
minimal and filling. If ˛ is a curve on S such that `˛.Xn/; `˛.Yn/ > B.S/ for all n 2 N,
then

d˛.Xn; Yn/
C

� d˛.�; �/

for infinitely many n 2 N.

Proof. It follows from the definition of a Bers constant that for every n 2 N, there are
curves �n and �n on S that intersect ˛ essentially such that `�n.Xn/; `�n.Xn/ 6 B.S/. By
the triangle inequality, we have

jd˛.Xn; Yn/ � d˛.�n; �n/j 6 d˛.Xn; �n/C d˛.Yn; �n/:
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Hence it is sufficient to show that d˛.Xn; �n/; d˛.Yn; �n/
C

� 0 and that d˛.�n; �n/
C

�

d˛.�; �/ for infinitely many n 2 N.
We show that the relative twisting coefficients d˛.Xn; �n/ are uniformly bounded,

the case of d˛.Yn; �n/ is identical. Let `n D `˛.Xn/. By the collar lemma [17, Sec-
tion 13.5], the !n-neighborhood (collar) of the geodesic representative of ˛ in Xn for
!n D arcsinh. 1

sinh.`n=2/
/ is embedded in Xn. Consider an arc y�n of the geodesic represen-

tative of �n inside the collar of ˛ in Xn with one endpoint on ˛ and the other endpoint
on the boundary of the neighborhood. Since the collar is embedded, the length of y�n is
at most B.S/. From the trigonometry of right triangles, we find a lower bound on the
angle ın that y�n makes with ˛ in Xn:

sin ın >
sinh!n

sinhB.S/
:

Denote by Ln the length of the orthogonal projection of a lift of �n on a lift of ˛ in the
universal cover of Xn that intersect at the angle ın. Then from the angle of parallelism
formula, we have cosh Ln

2
sin ın D 1. Since sinhx 6 ex

2
and arccoshx 6 ln 2x for x > 0,

we find

Ln 6 2 arccosh
sinhB.S/

sinh!n
D 2 arccosh

�
sinhB.S/ sinh

`n

2

�
6 2 ln.sinhB.S/e`n=2/ 6 `n C 2B.S/ � 2 ln 2 < 3`n:

We estimate the relative twisting coefficients (see [33, Section 3])

d˛.Xn; �n/
C

�2
Ln

`n

C

�3 0:

We show that d˛.�n; �n/
C

� d˛.�; �/ for infinitely many n 2 N. Let Œ�� 2 PML.S/ be
the limit of a subsequence of Œ�n�. By Lemma 8.1, i.�; �/ D 0. Since � is minimal and
filling, we have supp.�/D supp.�/, in particular, � intersects ˛ essentially and d˛.�; �/D
d˛.�; �/. Let �0 be the limit of a further subsequence of ¹�nº in GL.S/. Then supp.�/ �
supp.�0/, hence d˛.�; �/

C

�1 d˛.�
0; �/. By Lemma 2.7, d˛.�0; �/

C

� d˛.�n; �/ for infinitely
many n 2 N. By a similar argument for ¹�nº, we have d˛.�n; �/

C

� d˛.�n; �n/, hence
d˛.�; �/

C

� d˛.�n; �n/ for infinitely many n 2 N, which proves the lemma.

Together with Theorem 2.10, we obtain the following corollary.

Corollary 8.3 (Bounded annular combinatorics implies cobounded). Let G .t/, t 2 R be
a stretch path in T .S/ with the horocyclic foliation Œ�� such that G .t/! Œ�� 2 PML.S/

as t ! �1. Suppose that the supports of � and � are minimal and filling. If there exists
a numberK 2 N such that d˛.�; �/ 6 K for all curves ˛ on S , then there exists ".K/ > 0
such that G .t/ lies in the thick part T".S/ for all t 2 R.

Proof. Suppose that there is a curve ˛ on S that gets shorter than "0 along the geodesic
G .t/, where "0 > 0 is the constant in the statement of Theorem 2.10, otherwise there
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is nothing to prove. Since G .t/ is a stretch path, Theorem 2.10 is applicable. Let Œa; b�
be the "0-active interval for ˛. Indeed, this interval is bounded: for example, if there is
a sequence ti !1 such that `˛.G .ti // 6 "0, then by Lemma 8.1 we have i.˛; �/ D 0,
which is impossible since � is minimal and filling. By a similar argument, it can be shown
that there are infinitely many numbersm 2N such that `˛.G .�m// > B.S/. By choosing
large enough n, so that the interval Œ�n; n� contains the interval Œa; b� and Lemma 8.2
applies for Xn D G .�n/, Yn D G .n/, we conclude by combining Theorems 2.9 and 2.10
with the condition d˛.�; �/ 6 K that there is a lower bound on the minimal length of ˛
along G .t/ that depends only on K.

Finally, we prove our main result.

Proof of Theorem 1.1. Let Œ�� be the projective class of some non-zero transverse measure
on the non-uniquely ergodic ending lamination � constructed in Section 3. Let � be an
unstable or stable lamination of a pseudo-Anosov map ‰ on S , and let y� be a maximal
lamination on S obtained from � by adding finitely many leaves. Consider the projective
measured foliation on S that corresponds to Œ�� and that is standard near the cusps; we
also denote it by Œ��. Since � is minimal, filling and uniquely ergodic, the set of projective
measured foliations transverse to y� contains Œ��. Thus there is a point X 2 T .S/ such that
ŒFy�.X/� D Œ�� (see Section 2.9). Since stump.y�/ D �, by Theorem 2.9 the stretch path
stretch.X; y�; t/ converges to Œ�� as t !1 and to Œ�� as t ! �1.

By Corollary 8.3, to prove that stretch.X; y�; t/ stays in the thick part, it is sufficient to
show that the relative twisting coefficients d˛.�;�/ are uniformly bounded for all curves ˛
on S . Let � be the marking on S from Proposition 7.2. By the triangle inequality, we have

d˛.�; �/ 6 d˛.�; �/C d˛.�; �/: (8.1)

By Proposition 2.8 and Corollary 7.3, we have d˛.�; �/ 6 C‰;� C E
0, which completes

the proof.

A. Appendix

A.1. Convergence lemma

Let k � k denote the operator norm. Then kY k> 1 for any non-trivial idempotent matrix Y .
The following lemma is a slight improvement over Lemma 11.1 in [3].

Lemma A.1. Let Y be an idempotent matrix and let ¹�iº1iD1 be a sequence of matrices
such that

P1
iD1 k�ik <1. Let "j D

P1
iDj k�ik for j 2 N. Then there is j0 2 N such

that for every j > j0, the infinite product

1Y
iDj

.Y C�i /
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converges to a matrix Xj with kXj � Y k 6 2"j kY k
2. Moreover, the kernel of Y is con-

tained in the kernel of Xj .

Proof. Let j0 2 N be such that "j0 6 1
2kY k

. Now fix some j > j0. For k > j , write

Y C†k D

kY
iDj

.Y C�i /:

Then .Y C†k/.Y C�kC1/ D Y C†kC1 and since Y 2 D Y , it follows that

†kC1 D †kY C Y�kC1 C†k�kC1: (A.1)

Multiplying on the right by Y and using Y 2 D Y , we get

†kC1Y D †kY C Y�kC1Y C†k�kC1Y

and applying the norm to the both sides of the equation, we get

k†kC1Y k 6 k†kY k C k�kC1k � kY k2 C k†kk � k�kC1k � kY k:

For m > j , by applying these inequalities for k D j; : : : ; m � 1, we get

k†mY k 6 k†jY k C .k�jC1k C � � � C k�mk/ � kY k2

C .k†j k � k�jC1k C � � � C k†m�1k � k�mk/ � kY k:

Since kY k 6 kY k2 and using †j D �j , we can write

k†mY k 6 .k�j k C � � � C k�mk/ � kY k
2

C .k†j k � k�jC1k C � � � C k†m�1k � k�mk/ � kY k:

Putting this together with equation (A.1) and using kY k2 > kY k, kY k > 1, we get

k†kC1k 6 k†kY k C k�kC1k � kY k C k†kk � k�kC1k
6 .k�j k C � � � C k�kC1k/ � kY k

2

C .k†j k � k�jC1k C � � � C k†kk � k�kC1k/ � kY k

6 "j kY k
2
C .k†j k � k�jC1k C � � � C k†kk � k�kC1k/ � kY k: (A.2)

Now we show by induction that k†kk 6 "j kY k
2

1�"jC1kY k
for all k > j .

Base: kD j . Since†j D�j , we have k†j kD k�j kD "j � "jC1. Next, using kY k2 > 1

we trivially have

."j � "jC1/.1 � "jC1kY k/ 6 "j � "jC1 6 "j 6 "j kY k
2:

By the choice of j0, we have that 1 � "jC1kY k > 0, hence by dividing both sides by
.1 � "jC1kY k/, we obtain

k†j k 6
"j kY k

2

1 � "jC1kY k

as desired.
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Step. By equation (A.2), we have

k†kC1k 6 "j kY k
2
C

"j kY k
2

1 � "jC1kY k
.k�jC1k C � � � C k�kC1k/ � kY k

6 "j kY k
2
C

"j kY k
2

1 � "jC1kY k
� "jC1kY k D

"j kY k
2

1 � "jC1kY k
:

By the choice of j0, we also have "j kY k
2

1�"jC1kY k
6 2"j kY k

2. This shows that

k†kk 6 2"j kY k
2: (A.3)

It also follows that kXj � Y k 6 2"j kY k
2 if we assume the convergence.

To prove the convergence, we show that the partial products form a Cauchy sequence.
For j < k < m,

mY
iDj

.Y C�i / �

kY
iDj

.Y C�i / D

k�1Y
iDj

.Y C�i /

� mY
iDk

.Y C�i / � .Y C�k/

�
and applying the norm to the both sides of the equation, we get mY

iDj

.Y C�i / �

kY
iDj

.Y C�i /

 6
 k�1Y
iDj

.Y C�i /

� mY
iDk

.Y C�i / � Y

C k�kk�
6 .kY k C 2"j kY k

2/.2"kkY k
2
C k�kk/;

which proves the sequence is Cauchy.
For the last statement, let v be a unit vector with Yv D 0. Then for k > j ,

kXkvk D k.Xk � Y /vk 6 kXk � Y k � kvk 6 2"kkY k
2:

Since Xj D .Y C†k�1/Xk , we have

kXj vk 6 k.Y C†k�1/kkXkvk 6 .kY k C 2"j kY k
2/.2"kkY k

2/:

Since this is true for all k > j , letting k !1 yields Xj v D 0.

A.2. Angle estimate lemma

Let V be an inner product space.

Lemma A.2. Let v1; v2; w1; w2 2 V be such that †.v1; v2/ D 0 and v1 C w1 ¤ 0,
v2 C w2 ¤ 0. Then

1 � cos†.v1 C w1; v2 C w2/ 6
2.kv1k � kw2k C kv2k � kw1k C kw1k � kw2k/

kv1k � kv2k
:
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Proof. Writing the definition of the cosine of the angle, using the triangle inequality, the
fact that hv1; v2i D kv1k � kv2k and that hv;wi > �kvk � kwk for v;w 2 V , we get

cos†.v1 C w1; v2 C w2/

D
hv1 C w1; v2 C w2i

kv1 C w1k � kv2 C w2k
>

hv1 C w1; v2 C w2i

.kv1k C kw1k/.kv2k C kw2k/

D
hv1; v2i C hv1; w2i C hv2; w1i C hw1; w2i

.kv1k C kw1k/.kv2k C kw2k/

>
kv1k � kv2k � kv1k � kw2k � kv2k � kw1k � kw1k � kw2k

.kv1k C kw1k/.kv1k C kw1k/
: (A.4)

Then by equation (A.4) and since kw1k; kw2k > 0,

1 � cos†.v1 C w1; v2 C w2/ 6
2.kv1k � kw2k C kv2k � kw1k C kw1k � kw2k/

.kv1k C kw1k/.kv2k C kw2k/

6
2.kv1k � kw2k C kv2k � kw1k C kw1k � kw2k/

kv1k � kv2k
:

This completes the proof.

A.3. Interval neighborhood lemma

Lemma A.3. Let I � Rn, n > 2 be a closed line segment. Let Ir � Rn be the r-neigh-
borhood of I for r > 0. Then for every 2-dimensional closed disk DR � Rn of radius
R > 2

p
2.n � 1/r , DR 6� Ir .

Proof. Without loss of generality, assume that I D ¹.x1; 0; : : : ; 0/ j �t 6 x1 6 tº for some
t > 0. Let Br D ¹.x1; x2; : : : ; xn/ j �t � r 6 x1 6 t C r; �r 6 xi 6 r; 2 6 i 6 nº. Notice
that Ir � Br . We prove that DR 6� Br , hence DR 6� Ir .

Assume on the contrary thatDR �Br . Let c 2DR be the center ofDR and a;b 2 @DR
be such that the vector a � c is perpendicular to the vector b � c. Thus there are points
a; b; c 2 Br such that ka � ck D R, kb � ck D R and ha � c; b � ci D 0. Let vi denote
the i -th coordinate of a vector v 2 Rn. Since j.a � c/i j; j.b � c/i j 6 2r for 2 6 i 6 n,
we have

R2 D ka � ck2 6 .a � c/21 C .n � 1/ � 4r
2;

R2 D kb � ck2 6 .b � c/21 C .n � 1/ � 4r
2:

Hence .a � c/21 > R2 � 4.n � 1/r2, .b � c/21 > R2 � 4.n � 1/r2. Then by the triangle
inequality, we have

jha � c; b � cij > j.a � c/1j � j.b � c/1j �
nX
iD2

j.a � c/i j � j.b � c/i j

> R2 � 4.n � 1/r2 � 4.n � 1/r2 D R2 � 8.n � 1/r2:

Since R > 2
p
2.n � 1/r , we have jha � c; b � cij > 0, contradiction.
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