
Groups Geom. Dyn. 6 (2012), 579–618
DOI 10.4171/GGD/166

Groups, Geometry, and Dynamics
© European Mathematical Society

Isometry groups of proper CAT.0/-spaces of rank one

Ursula Hamenstädt

Abstract. LetX be a proper CAT.0/-space and letG be a closed subgroup of the isometry group
Iso.X/ of X . We show that if G is non-elementary and contains a rank-one element then its
second continuous bounded cohomology group with coefficients in the regular representation
is non-trivial. As a consequence, up to passing to an open subgroup of finite index, either G is
a compact extension of a totally disconnected group or G is a compact extension of a simple
Lie group of rank one.
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1. Introduction

A geodesic metric space .X; d/ is called proper if closed balls in X of finite radius
are compact. A proper CAT.0/-metric space X can be compactified by adding the
visual boundary @X . The isometry group Iso.X/ of X , equipped with the compact
open topology, is a locally compact � -compact topological group which acts as a
group of homeomorphisms on the compact space xX D X [ @X . The limit set ƒ of
a subgroup G of Iso.X/ is the set of accumulation points in @X of an orbit of the
action of G on X . The group G is called elementary if either its limit set consists of
at most two points or if G fixes a point in @X .
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The displacement function of an isometry g 2 Iso.X/ is the function x !
d.x; gx/ on X . The isometry g is called semisimple if its displacement function
assumes a minimum onX . If this minimum is zero then g has a fixed point inX and
is called elliptic, and otherwise g is called axial. If g is axial then the closed convex
subset of X of all minima of the displacement function of g is isometric to a product
space C � R where g acts on each of the geodesics fxg � R as a translation. Such a
geodesic is called an axis for g. We refer to the books [3], [4], [7] for basic properties
of CAT.0/-spaces and for references.

Call an axial isometry g of X rank-one if there is an axis � for g which does
not bound a flat half-plane. Here by a flat half-plane we mean a totally geodesic
embedded isometric copy of an euclidean half-plane in X .

A compact extension of a topological group H is a topological group G which
contains a compact normal subgroup K such that H D G=K as topological groups.
Extending earlier results for isometry groups of proper hyperbolic geodesic metric
spaces [15], [18], [20] we show

Theorem 1. Let X be a proper CAT.0/-space and let G < Iso.X/ be a closed
subgroup. Assume that G is non-elementary and contains a rank-one element. Then
one of the following two possibilities holds.

(1) Up to passing to an open subgroup of finite index, G is a compact extension of
a simple Lie group of rank one.

(2) G is a compact extension of a totally disconnected group.

Caprace and Monod showed the following version of Theorem 1 (Corollary 1.7
of [12]): A CAT.0/-space X is called irreducible if it is not a non-trivial metric
product. Let X 6D R be an irreducible proper CAT.0/-space with finite dimensional
Tits boundary. Assume that the isometry group Iso.X/ of X does not have a global
fixed point in @X and that its action onX does not preserve a non-trivial closed convex
subset ofX . Then Iso.X/ is either totally disconnected or an almost connected simple
Lie group with trivial center.

We also note the following consequence (see Corollary 1.24 of [12]). For its
formulation, an isometry of a CAT.0/-space is called parabolic if it is not semisimple.

Corollary 1. Let M be a closed Riemannian manifold of non-positive sectional
curvature. If the universal covering zM ofM is irreducible and if the isometry group
of zM contains a parabolic element, thenM is locally symmetric.

Our proof of Theorem 1 is different from the approach of Caprace and Monod
and uses second bounded cohomology for locally compact topological groups G
with coefficients in a separable Banach module for G. Such a separable Banach
module is a separable Banach spaceE together with a continuous homomorphism of
G into the group of linear isometries of E. For every separable Banach module E
for G and every i � 1, the group G naturally acts on the vector space Cb.G

i ; E/ of
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continuous bounded maps Gi ! E. If we denote by Cb.G
i ; E/G � Cb.G

i ; E/ the
linear subspace of all G-invariant such maps, then the second continuous bounded
cohomology group H 2

cb.G;E/ of G with coefficients E is defined as the second
cohomology group of the complex

0 ! Cb.G;E/
G d�! Cb.G

2; E/G
d�! � � �

with the usual homogeneous coboundary operator d (see [19]).
A closed subgroup G of Iso.X/ is a locally compact and � -compact topological

group and hence it admits a left invariant locally finite Haar measure �. In particular,
for every p 2 .1;1/ the separable Banach space Lp.G;�/ of functions onG which
are p-integrable with respect to� is a separable Banach module forG with respect to
the isometric action of G by left translation. Extending an earlier result for isometry
groups of proper hyperbolic spaces [15] (see also the work of Monod–Shalom [20], of
Mineyev–Monod–Shalom [18], of Bestvina–Fujiwara [6] and of Caprace–Fujiwara
[11] for closely related results) we obtain the following non-vanishing result for
second bounded cohomology.

Theorem 2. Let G be a closed non-elementary subgroup of the isometry group of a
proper CAT.0/-space X .

If G contains a rank-one element, then H 2
cb.G;L

p.G;�// 6D f0g for every
p 2 .1;1/.

It follows from the work of Burger and Monod [8] and Monod and Shalom [21]
that the conclusion in Theorem 2 does not hold for simple Lie groups of non-compact
type and higher rank. Such a group is the isometry group of a symmetric space of
non-compact type which is a finite dimensional complete Riemannian manifold of
non-positive curvature. Thus the assumption on the existence of a rank-one element
in G in Theorem 2 can not be removed. More precisely, we obtain the following
super-rigidity theorem as an application of Theorem 2.

Corollary 2. Let G be a connected semi-simple Lie group with finite center, no
compact factors and of rank at least 2. Let � be an irreducible lattice in G, let
X be a proper CAT.0/-space and let � W � ! Iso.X/ be a homomorphism. Let
H < Iso.X/ be the closure of �.�/. If H is non-elementary and contains a rank-
one element, then H is a compact extension of a simple Lie group L of rank one,
and up to passing to an open subgroup of finite index, � extends to a continuous
homomorphism G ! L.

Remark. As in [15], our proof of Theorem 2 also shows the following result of
Bestvina and Fujiwara [6]: Let G < Iso.X/ be a closed non-elementary subgroup
with limit set ƒ which contains a rank-one element. If G does not act transitively
on the complement of the diagonal in ƒ � ƒ then the second continuous bounded
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cohomology group H 2
cb.G;R/ is infinite-dimensional. Moreover, the arguments in

[15] together with the geometric discussion in Sections 2–5 of this paper show that if
G acts transitively on the complement of the diagonal inƒ�ƒ thenH 2

cb.G;R/ D 0.
Under the additional assumption thatG acts onX cocompactly, this is due to Caprace
and Fujiwara [11].

The organization of this note is as follows. In Section 2 we collect some geometric
properties of a proper CAT.0/-spaceX needed in the sequel. In particular, we discuss
contracting geodesics as introduced by Bestvina and Fujiwara [6].

In Section 3 we investigate for a fixed numberB > 0 the space of allB-contracting
geodesics in X . We construct a family of finite distance functions on the space of
pairs of endpoints of such geodesics which are parametrized by the points inX . These
distance functions are equivariant under the natural action of the isometry group ofX .
This construction is the main novelty of this work.

Let G < Iso.X/ be a closed non-elementary subgroup with limit set ƒ � @X

which contains a rank-one element. In Section 4 we use the distance functions on
the space of endpoints of B-contracting geodesics to construct continuous bounded
cocycles for G with values in Lp.G � G;� � �/ on a G-invariant closed subspace
of the space of triples of pairwise distinct points in ƒ

If the action of the groupG on the complement of the diagonal inƒ�ƒ is transitive,
then this space of triples equals the entire space of triples of pairwise distinct points
in ƒ. In this case standard arguments are used in Section 5 to show Theorem 2. The
case that G does not act transitively on the complement of the diagonal in ƒ �ƒ is
technically more difficult and is established in Section 6. The proof of Theorem 1
and of the corollaries is contained in Section 7.

Acknowledgement. I thank the referee for making me aware that the construction in
Section 6 can be used to construct second continuous bounded cohomology classes.

2. Metric contraction in CAT.0/-spaces

In this section we collect some geometric properties of CAT.0/-spaces needed in the
later sections. We use the books [3], [4], [7] as the main references.

2.1. Shortest distance projections. A proper CAT.0/-space has strong convexity
properties which we summarize in this subsection.

In a complete CAT.0/-space X , any two points can be connected by a unique
geodesic which varies continuously with the endpoints. The distance function is
convex: If �; � W J ! X are two geodesics in X parametrized on the same interval
J � R then the function t ! d.�.t/; �.t// is convex. More generally, we call a
function f W X ! R convex if for every geodesic � W J ! R the function t !
f .�.t// is convex [3].
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For a fixed point x 2 X , let @X be the space of all geodesic rays issuing from
x 2 X equipped with the topology of uniform convergence on compact sets. The
topological space @X does not depend on the choice of x and is called the visual
boundary ofX . We denote the point in @X defined by a geodesic ray � W Œ0;1/ ! X

by �.1/. We also say that � connects x to �.1/.
There is another description of the visual boundary of X as follows. For points

x; y; z 2 X define
bx.y; z/ D d.x; z/ � d.x; y/:

Then we have

bx.y; z/ D �bx.z; y/ for all y; z 2 X
and

jbx.y; z/ � bx.y; z
0/j � d.z; z0/ for all z; z0 2 X

and hence the function bx.y; � / W z ! bx.y; z/ is one-Lipschitz and vanishes at y.
Moreover, the function bx.y; � / is convex, and for Qy 2 X we have

bx. Qy; � / D bx.y; � /C bx. Qy; y/: (1)

LetC.X/ be the space of all continuous functions onX endowed with the topology
of uniform convergence on bounded sets. For fixed y 2 X , the assignment x !
bx.y; � / is an embedding of X into C.X/. A sequence fxng � X converges at
infinity if d.xn; y/ ! 1 and if the functions bxn

.y; �/ converge inC.X/. The visual
boundary @X ofX can also be defined as the subset ofC.X/ of all functions which are
obtained as limits of functions bxn

.y; � / for sequences fxng � X which converge at
infinity. In particular, the unionX[@X is naturally homeomorphic to a closed subset
ofC.X/ (Chapter II.1 and II.2 of [3]). In this identification, each � 2 @X corresponds
to a Busemann function b�.y; � / at � normalized at y. If � W Œ0;1/ ! X is the
geodesic ray which connects y to � then the Busemann function b�.y; � / satisfies
b�.y; �.t// D �t for all t � 0.

From now on let X be a proper (i.e., complete and locally compact) CAT.0/-
space. Then X [ @X is compact. A subset C � X is convex if for all x; y 2 C the
geodesic connecting x to y is contained inC . For every closed convex setC � X and
every x 2 X there is a unique point 	C .x/ 2 C of smallest distance to x (Proposition
II.2.4 of [7]).

Let J � R be a closed connected set and let � W J ! X be a geodesic arc. Then
�.J / � X is closed and convex and hence there is a shortest distance projection

	�.J / W X ! �.J /:

The projection point 	�.J /.x/ of x 2 X is the unique minimum for the restriction of
the function bx.y; � / to �.J /. By equality (1), this does not depend on the choice of
the basepoint y 2 X . The projection 	�.J / W X ! �.J / is distance non-increasing.
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For � 2 @X the function t ! b�.y; �.t// is convex. Let �.J / be the closure
of �.J / in X [ @X . If b�.y; � /j�.J / assumes a minimum then we can define
	�.J /.�/ � �.J / to be the closure in �.J / of the connected subset of �.J / of all such
minima. If b�.y; � /j�.J / does not assume a minimum then by continuity the set J is
unbounded, and by convexity either limt!1 b�.y; �.t// D inffb�.y; �.s// j s 2 J g
or limt!�1 b�.y; �.t// D inffb�.y; �.s// j s 2 J g. In the first case we define
	�.J /.�/ D �.1/ 2 @X , and in the second case we define 	�.J /.�/ D �.�1/.
Then for every � 2 @X the set 	�.J /.�/ is a closed connected subset of �.J / (which
may contain points in both X and @X ).

2.2. Contracting geodesics. A proper CAT.0/-space X can contain many totally
geodesic embedded flat subspaces, and it can also contain subsets with hyperbolic
behavior. To give a precise description of such hyperbolic behavior, Bestvina and
Fujiwara introduced a geometric property for geodesics in a CAT.0/-space (Defini-
tion 3.1 of [6]) which we repeat in the following definition. For the remainder of this
note, geodesics are always defined on closed connected subsets of R.

Definition 2.1. A geodesic arc � W J ! X is B-contracting for some B > 0 if for
every closed metric ball K � X which is disjoint from �.J / the diameter of the
projection 	�.J /.K/ does not exceed B .

We call a geodesic contracting if it is B-contracting for some B > 0. Lemma 3.3
of [16] relates B-contraction for a geodesic line � to the diameter of the projections
	�.R/.�/ where � 2 @X .

Lemma 2.2. Let � W R ! X be a B-contracting geodesic. Then for every � 2 @X �
f�.�1/; �.1/g the projection 	�.R/.�/ is a compact subset of �.R/ of diameter at
most 6B C 4.

Lemma 3.2 and 3.5 of [6] show that a connected subarc of a contracting geodesic
is contracting and that a triangle containing a B-contracting geodesic as one of its
sides is uniformly thin.

Lemma 2.3. Let � W J ! X be a B-contracting geodesic.
(1) For every closed connected subset I � J , the subarc �.I / of � is B C 3-

contracting.
(2) For x 2 X and for every t 2 J the geodesic connecting x to �.t/ passes

through the 3B C 1-neighborhood of 	�.J /.x/.

Note that by convexity of the distance function, if �i W Œai ; bi 
 ! X .i D 1; 2/

are two geodesic segments such that d.�1.a1/; �2.a2// � R, d.�1.b1/; �2.b2// � R,
then the Hausdorff distance between the subsets �1Œa1; b1
, �2Œa2; b2
 ofX is at most
R. Here the Hausdorff distance between closed (not necessarily compact) subsets
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A, B of X is the infimum of all numbers R > 0 such that A is contained in the
R-neighborhood ofB andB is contained in theR-neighborhood ofA. (This number
can be infinite).

A visibility point is a point � 2 @X with the property that any � 2 @X � f�g
can be connected to � by a geodesic line. By Lemma 3.5 of [16], the endpoint of a
contracting geodesic ray is a visibility point. Geodesic rays which abut at an endpoint
of a contracting geodesic ray are themselves contracting.

Lemma 2.4. For every B > 0 there is a number C D C.B/ > B with the following
property. Let � W Œ0;1/ ! X be a B-contracting ray and let � 2 @X � �.1/.
Then every geodesic � connecting � D �.�1/ to �.1/ D �.1/ passes through
the 9B C 6-neighborhood of every point x 2 	�Œ0;1/.�/. If t 2 R is such that
d.�.t/; x/ � 9B C 6 then the geodesic ray �Œt;1/ is C -contracting.

Proof. Let � W Œ0;1/ ! X be a B-contracting geodesic ray and let � 2 @X � �.1/.
Let s � 0 be such that �.s/ 2 	�Œ0;1/.�/. By Lemma 2.2, the projection 	�Œ0;1/.�/

is contained in �Œs � 6B � 4; sC 6B C 4
. Let � W R ! X be a geodesic connecting
� to �.1/. Lemma 2.2 of [16] shows that for sufficiently large t we have

	�Œ0;1/.�.�t // 2 �Œs � 6B � 5; s C 6B C 5
:

Thus by Lemma 2.3, the geodesic ray �Œ�t;1/ connecting �.�t / to �.1/ passes
through the 9B C 6-neighborhood of �.s/. Since � was an arbitrary geodesic con-
necting � to �.1/, this shows the first part of the lemma.

From this and Lemma 3.8 of [6], the second part of the lemma is immediate
as well. Namely, let again � be a geodesic connecting � to �.1/ and let �.s/ 2
	�Œ0;1/.�/. Assume that � is parametrized in such a way that d.�.0/; �.s// � 9BC6.
The geodesic ray �Œ0;1/ is a locally uniform limit as t ! 1 of the geodesics
�t connecting �.0/ to �.t/. By Lemma 3.8 of [6], there is a number C > 0 only
depending onB such that each of the geodesics �t isC -contracting. Now Lemma 3.3
of [16] shows that a limit of a sequence of C -contracting geodesics is C -contracting.
This completes the proof of the lemma.

The next observation is an extension of Lemma 2.3. For its formulation, define
an ideal geodesic triangle to consist of three biinfinite geodesics �1, �2, �3 with
�i .1/ D �iC1.�1/ (where indices are taken modulo three). The points �i .1/

.i D 1; 2; 3/ are called the vertices of the ideal geodesic triangle. If a; b 2 @X are
visibility points then for every � 2 @X � fa; bg there is an ideal geodesic triangle
with vertices a, b, �. Note that such a triangle need not be unique.

Lemma 2.5. Let B > 0 and let � W R ! X be a B-contracting geodesic. Then for
every ideal geodesic triangle T with side � there is a point x 2 X whose distance to
each of the sides of T does not exceed 9B C 6. The diameter of the set of all such
points does not exceed 54B C 36.
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Proof. Let � W R ! X be a B-contracting geodesic and let T be an ideal geodesic
triangle with side � and vertex � 2 @X � f�.1/; �.�1/g opposite to � . Assume
that � is parametrized in such a way that �.0/ 2 	�.R/.�/. Let c W Œ0;1/ ! X

be the geodesic ray connecting c.0/ D �.0/ to � . By Lemma 2.4 and by CAT.0/-
comparison, the side ˛ of T connecting � to �.1/ is contained in the 9BC6-tubular
neighborhood of cŒ0;1/ [ �Œ0;1/, and the side ˇ of T connecting � to �.�1/ is
contained in the 9B C 6-tubular neighborhood of cŒ0;1/[ �.�1; 0
. The distance
between �.0/ D c.0/ and every side of T does not exceed 9B C 6.

Since the projection 	�.R/ is distance non-increasing and since 	�.R/.cŒ0;1// D
�.0/ (see [7] and the proof of Lemma 3.5 in [16]), if as before ˛, ˇ are the sides of
T connecting � to �.1/; �.�1/, respectively, then

	�.R/.˛/ � �Œ�9B � 6;1/ and 	�.R/.ˇ/ � �.�1; 9B C 6
:

Now if x 2 X is such that the distance between x and each side of T is at most 9BC6
then using again that 	�.R/ is distance non-increasing we conclude that 	�.R/.x/ 2
�Œ�18B � 12; 18B C 12
. But d.x; �.R// � 9B C 6 and hence d.x; �.0// �
27B C 18. This completes the proof of the lemma.

2.3. Isometries. For an isometry g of a proper CAT.0/-spaceX define the displace-
ment function dg of g to be the function x ! dg.x/ D d.x; gx/. An isometry g
of X is called semisimple if dg assumes a minimum in X . If g is semisimple and
min dg D 0 then g is called elliptic. Thus an isometry is elliptic if and only if it fixes
at least one point inX . A semisimple isometry g with min dg > 0 is called axial. By
Proposition 3.3 of [3], an isometry g of X is axial if and only if there is a geodesic
� W R ! X such that g�.t/ D �.t C �/ for every t 2 R where � D min dg > 0 is
the translation length of g. Such a geodesic is called an oriented axis for g. Note
that the geodesic t ! �.�t / is an oriented axis for g�1. The endpoint �.1/ of � is
a fixed point for the action of g on @X , which is called the attracting fixed point. The
closed convex set A � X of all points for which the displacement function dg of g
is minimal is isometric to a metric product A0 � R. For each x 2 A0 the set fxg � R
is an axis of g. The endpoints of this axis do not depend on x.

Bestvina and Fujiwara introduced the following notion to identify isometries of a
CAT.0/-space with geometric properties similar to the properties of isometries in a
hyperbolic geodesic metric space (Definition 5.1 of [6]).

Definition 2.6. For a number B > 0, an isometry g 2 Iso.X/ is called B-rank-one
if g is axial and admits a B-contracting axis.

We call an isometry g 2 Iso.X/ rank-one if g is B-rank-one for some B > 0. By
Lemma 2.4, if g is a rank-one isometry then there is a number C > 0 such that every
axis of g is C -contracting.

The following statement is Theorem 5.4 of [6].
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Proposition 2.7. An axial isometry ofX with axis � is rank-one if and only if � does
not bound a flat half-plane.

Let G < Iso.X/ be a subgroup of the isometry group of X . The limit set ƒ of G
is the set of accumulation points in @X of one (and hence every) orbit of the action of
G on X . The limit set is a compact G-invariant subset of @X (which may be empty).
Call G non-elementary if its limit set contains at least three points and if moreover
G does not fix a point in @X .

A compact space is perfect if it does not have isolated points. The action of
a group G on a topological space ƒ is called minimal if every orbit is dense. A
homeomorphism g of a space ƒ is said to act with north-south dynamics if it admits
two fixed points a 6D b 2 ƒ with the following property. For every neighborhood U
of a, V of b there is some k > 0 such that gk.ƒ � V / � U and g�k.ƒ � U/ � V .
The point a is called the attracting fixed point of g, and b is the repelling fixed point.
The following is shown in [16] (see also [3] for a similar discussion).

Lemma 2.8. LetG < Iso.X/ be a non-elementary group which contains a rank-one
element. Then the limit setƒ ofG is perfect, and it is the smallest closedG-invariant
subset of @X . The action ofG onƒ is minimal. An element g 2 G is rank-one if and
only if g acts on @X with north-south dynamics.

SinceX is proper by assumption, the isometry group Iso.X/ ofX can be equipped
with a natural locally compact � -compact metrizable topology, the so-called compact
open topology. With respect to this topology, a sequence .gi / � Iso.X/ converges
to some isometry g if and only if gi ! g uniformly on compact subsets ofX . In this
topology, a closed subset A � Iso.X/ is compact if and only if there is a compact set
K � X such that gK \K 6D ; for every g 2 A. In particular, the action of Iso.X/
onX is proper. In the sequel we always equip subgroups of Iso.X/with the compact
open topology.

Denote by  the diagonal in @X � @X . Lemma 6.1 of [15] shows the following.

Lemma 2.9. Let G < Iso.X/ be a closed subgroup with limit set ƒ. Let .a; b/ 2
ƒ�ƒ� be the pair of fixed points of a rank-one element of G. Then the G-orbit
of .a; b/ is a closed subset of ƒ �ƒ �.

The following technical observation is useful in Section 6.

Lemma 2.10. Let G < Iso.X/ be a closed non-elementary group with limit set ƒ.
If G contains a rank-one element g 2 G with fixed points a 6D b 2 ƒ and if G does
not act transitively on the complement of the diagonal in ƒ �ƒ, then there is some
h 2 G such that hb 6D b and the stabilizer inG of the pair of points .b; hb/ 2 ƒ�ƒ
is compact.
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Proof. Let g 2 G be a rank-one element with attracting fixed point a 2 ƒ, repelling
fixed point b 2 ƒ. Let � W R ! X be an axis for g connecting b to a. Then � is
B � 3-contracting for some B > 3.

Let h 2 G be such that hb 6D b. By Lemma 2.3, the rays �.�1; 0
 and
h.�.�1; 0
/ areB-contracting, with endpoints b; hb 2 ƒ. Now a biinfinite geodesic
� W R ! X with the property that there are numbers �1 < s < t < 1, C > 0

such that the rays �.�1; s
, �Œt;1/ areC -contracting isC 0-contracting for a number
C 0 > C only depending on C and on Œs; t 
. Therefore Lemma 2.4 implies that there
is a number B0 > B such that each geodesic connecting b to hb is B0-contracting.
As a consequence, the set A � X of all points which are contained in a geodesic
connecting b to hb is closed and convex and isometric to K0 � R for a compact
convex subset K0 of X .

An isometry u of X which fixes the pair of points .b; hb/ preserves the closed
convex set K0 � R. The restriction of u to K0 � R can be represented in the form
.u1; u2/ where u1 is an isometry of K0 and u2 is an isometry of R. Since K0 is
a compact convex subset of a CAT.0/-space, the map u1 has a fixed point. As a
consequence, u is semi-simple. Moreover, if u is not elliptic then u is rank-one.
Since G is a closed subgroup of Iso.X/, this implies that either the stabilizer of
.b; hb/ in G is compact or it contains a rank-one element.

Now assume that there is no h 2 G with hb 6D b such that the stabilizer of .b; hb/
in G is compact. Then each such stabilizer contains a rank-one element. Our goal is
to show that G acts transitively on the complement of the diagonal in ƒ �ƒ.

Let h 2 G with hb 62 fa; bg and let again � be an oriented axis for g connecting
b to a. By Lemma 2.2, we can assume that �.0/ 2 	�.R/.hb/. Since � is B-
contracting, by Lemma 2.4 and convexity the ray �.�1; 0
 is contained in the 9BC6-
neighborhood of every geodesic connecting b to hb. Let Gb be the stabilizer of b
in G. By assumption and the above discussion, there is a rank-one element u 2 Gb

with attracting fixed point hb and repelling fixed point b. By Lemma 2.8, u acts with
north-south dynamics onƒ and hence we have uia ! hb .i ! 1/. Since ga D a,
for every sequence .k.i// � Z we also have

uig�k.i/a ! hb .i ! 1/:

Let � > 0 be the translation length of g and let K be the closed 18B C 12C 2� -
neighborhood of �.0/. By the choice of the set K and the fact that u preserves
a geodesic connecting b to hb which contains the ray �.�1; 0
 in its 9B C 6-
neighborhood, for every i > 0 there is some k.i/ > 0 such that uig�k.i/�.0/ 2 K.
Since G is a closed subgroup of Iso.X/ and Gb < G is closed, up to passing to a
subsequence the sequence fuig�k.i/g � Gb converges to an element v 2 Gb with
va D hb.

As a consequence, for every � 2 Gb � fbg there is some v 2 Gb with va D � .
This implies that the image of .a; b/ under the action of the group G is dense in
ƒ�ƒ�. Namely, by Lemma 2.8, the G-orbit of b is dense inƒ. Thus it suffices
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to show that for every u 2 G and every � 2 Gb � fb; ubg there is some v 2 G with
v.a; b/ D .�; ub/. For this let y D u�1� 2 Gb. Then y 6D b and hence there is
some w 2 Gb with w.a/ D y. Then the isometry v D uw satisfies v.b/ D u.b/,
v.a/ D �.

By Lemma 2.9, the G-orbit of .a; b/ is closed in ƒ � ƒ � . We showed in
the previous paragraph that it is also dense and therefore G acts transitively on the
complement of the diagonal in ƒ �ƒ. The lemma follows.

A free group with two generators is hyperbolic in the sense of Gromov [13]. In
particular, it admits a Gromov boundary which can be viewed as a compactification
of the group. The following result is contained in [6] (see also Proposition 5.8 of [16]
and [11], [5]).

Lemma 2.11. Let G < Iso.X/ be a closed non-elementary group which contains a
rank-one element. Letƒ � @X be the limit set of G. If G does not act transitively on
ƒ�ƒ�, thenG contains a free subgroup � with two generators and the following
properties.

(1) Every element e 6D g 2 � is rank-one.

(2) There is a �-equivariant embedding of the Gromov boundary of � into ƒ.

(3) There are infinitely many elements ui 2 � (i > 0) with fixed points ai , bi such
that for all i the G-orbit of .ai ; bi / 2 ƒ � ƒ �  is distinct from the orbit of
.bj ; aj / (j > 0) or .aj ; bj / (j 6D i ).

3. The space of B-contracting geodesics

In the previous section we introduced for a number B > 0 a B-contracting geodesic
in a proper CAT.0/-space X . In this section we investigate in more detail the space
of all such geodesics in X .

The main idea is as follows: Even though the geometry of a CAT.0/-space X
may be very different from the geometry of a hyperbolic geodesic metric space, if X
admits B-contracting geodesics then by Lemma 2.5, these geodesics have the same
global geometric properties as geodesics in a ı-hyperbolic geodesic metric space
where ı > 0 only depends on B . As a consequence, given a fixed point x 2 X , we
can describe the position of two such geodesics � , � relative to each other as seen
from x by introducing a metric quantity which can be thought of being equivalent to
the (oriented) sum of the Gromov distances at x of their endpoints in the case that
the space X is hyperbolic.

We continue to use the assumptions and notations from Section 2. In the remainder
of this section, a geodesic in X is always defined on a closed connected subset J of
R. For some B > 0 denote by

A.B/ � @X � @X �
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the set of all ordered pairs of points in @X which are connected by a B-contracting
geodesic. We have

Lemma 3.1. A.B/ is a closed subset of @X � @X �.

Proof. Let f.�i ; �i /g � A.B/ be a sequence which converges in @X � @X � to a
point .�; �/. For each i let �i be a B-contracting geodesic connecting �i to �i . We
first claim that the geodesics �i pass through a fixed compact subset of X .

Namely, choose a point x 2 X and let xi D 	�i .R/.x/. If the geodesics �i do
not pass through a fixed compact subset of X then we have d.xi ; x/ ! 1. Since
X[@X is compact, after passing to a subsequence we may assume that xi ! ˛ 2 @X
as i ! 1. On the other hand, the geodesic �i is B-contracting and therefore by
Lemma 2.3 the geodesics connecting x to �i D �i .�1/; �i D �i .1/ both pass
through the 3B C 1-neighborhood of xi . By CAT.0/-comparison, this implies that
�i ! ˛, �i ! ˛, which contradicts the assumption that �i ! � , �i ! � 6D � .

Thus the geodesics �i pass through a fixed compact subset of X and therefore
after passing to a subsequence we may assume that �i ! � locally uniformly where
� is a geodesic connecting � to �. The limit geodesic is B-contracting by Lemma 3.6
of [16].

For a positive number B , a point x 2 X and an ordered pair .�1 W J1 ! X;

�2 W J2 ! X/ of oriented geodesics in X which share at most one endpoint in @X
define a number �B.x; �1; �2/ � 0 as follows.

By convexity of the distance function, there are (perhaps empty) closed connected
subsets Œa1; b1
 � J1; Œa2; b2
 � J2 such that

Œai ; bi 
 D ft j d.�i .t/; �iC1.JiC1// � 6B C 2g:
(Here i D 1; 2 and indices are taken modulo two. If �1, �2 have a common endpoint
in @X then one of the numbers a1, b1 may be infinite, and this is the case if and only
if Œai ; bi 
 6D ; and if one of the numbers a2, b2 is infinite.)

If Œai ; bi 
 6D ; then let si ; ti 2 Ji [ f˙1g be such that

	�i .Ji /.�iC1.aiC1// D �i .si / and 	�i .Ji /.�iC1.biC1// D �i .ti /

(i D 1; 2 and indices are taken modulo two).
Let xi D 	�i .Ji /.x/ (i D 1; 2). If si < ti and if xi 2 �i Œai ; bi 
 for i D 1; 2, then

define
�B.x; �1; �2/ D minfd.xi ; �i .ai //; d.xi ; �i .bi // j i D 1; 2g:

In all other cases define �B.x; �1; �2/ D 0. Note that �B.x; �1; �2/ depends on the
orientation of �1, �2 but not on the parametrization of �1, �2 defining a fixed orientation.

We collect some first easy properties of the function �B .

Lemma 3.2. For any two geodesics �1, �2 in X and any x 2 X the following holds
true.
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(1) �B.x; �1; �2/ D �B.x; �2; �1/.

(2) If O�i equals the geodesic obtained from �i by reversing the orientation, then
�B.x; O�1; O�2/ D �B.x; �1; �2/.

(3) �B.x; �1; �2/ � �B.y; �1; �2/C d.x; y/ for all x; y 2 X .

Proof. The first and the second property in the lemma is obvious from the definition.
To show the third property simply note that for a geodesic � W J ! X the projection
	�.J / is distance non-increasing.

Moreover we observe

Lemma 3.3. Let �i W Ji ! X be B-contracting geodesics .i D 1; 2/ such that
�B.x; �1; �2/ > 0. Then we have

d.	�1.J1/.x/; 	�2.J2/.x// � 24B C 8:

Proof. If �B.x; �1; �2/ > 0 and if (after reparametrization) we have 	�i .Ji /.x/ D
�i .0/ .i D 1; 2/ then by definition of the function �B there is some t 2 J2 such that
d.�1.0/; �2.t// � 6B C 2. This shows that

d.x; �2.J2// � d.x; �1.J1//C 6B C 2:

By symmetry we conclude that

jd.x; �1.J1// � d.x; �2.J2//j � 6B C 2:

Since d.�1.0/; �2.t// � 6B C 2 we have

d.x; �2.t// � d.x; �1.J1//C 6B C 2 � d.x; �2.J2//C 12B C 4: (2)

On the other hand, by Lemma 2.3, the geodesic connecting x to �2.t/ passes
through the 3B C 1-neighborhood of �2.0/ and hence

d.x; �2.t// � d.x; �2.J2//C jt j � 6B � 2: (3)

The two inequalities (2) and (3) together show that jt j � 18B C 6 and therefore
d.	�1.J1/.x/; 	�2.J2/.x// � 24B C 8, as claimed.

We also have

Lemma 3.4. Let �i W Œ0;1/ ! X (i D 1; 2) be two geodesic rays with the same
endpoint �1.1/ D �2.1/. Let s 2 Œ1;1/ be such that

p D �B.�1.s/; �1; �2/ � 1:

Then �B.�1.s C t /; �1; �2/ � p C t � 12B � 4 for all t � 0.
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Proof. Let �i W Œ0;1/ ! X be geodesic rays in X (i D 1; 2) with �1.1/ D �2.1/.
Let s 2 Œ0;1/ be such that �B.�1.s/; �1; �2/ � 1. Then the geodesic ray �2Œ0;1/

passes through the 6B C 2-neighborhood of �1.s/. If s0 2 Œ0;1/ is such that
d.�1.s/; �2.s

0// � 6B C 2, then by convexity of the distance function we have

d.�1.s C t /; �2.s
0 C t // � 6B C 2 for all t � 0:

Now let t � 0 and let � 2 R be such that 	�2Œ0;1/.�1.s C t // D �2.�/. Then
d.�1.s C t /; �2.�// � 6B C 2 and hence the triangle inequality shows that � 2
Œs0 C t � 12B � 4; s0 C t C 12B C 4
. From this and the definition of the function
�B the lemma follows.

The next observation is the analog of the familiar ultrametric inequality for Gro-
mov products in hyperbolic spaces.

Lemma 3.5. There is a number L > 0 such that for every B > 0 and for all
B-contracting geodesics �i W Ji ! X (i D 1; 2; 3) we have

�B.x; �1; �3/ � minf�B.x; �1; �2/; �B.x; �2; �3/g � LB:
Proof. Let �i W Ji ! X be B-contracting geodesics .i D 1; 2; 3/ and let x 2 X .
Taking indices modulo 3, assume without loss of generality that

�B.x; �1; �3/ D minf�B.x; �i ; �iC1/ j i D 1; 2; 3g
and that r1 D �B.x; �1; �2/ � r2 D �B.x; �2; �3/. If r1 D 0 then there is nothing to
show. So assume that r1 > 0. By Lemma 3.3 we then have

d.	�2.J2/.x/; 	�j .Jj /.x// � 24B C 8 .j D 1; 3/ (4)

and hence d.	�1.J1/.x/; 	�3.J3/.x// � 48BC16: Since the lemma is only significant
if r1 is large, without explicit mentioning we successively increase a lower bound for
r1 by a controlled amount in the course of the proof so that all the geometric estimates
are meaningful.

For simplicity parametrize the geodesics �i in such a way that 	�i .Ji /.x/ D �i .0/

(i D 1; 2; 3). By definition of the function �B there is a number t2 � 0 such that
d.�1.r1/; �2.t2// � 6B C 2. By the distance estimate (4), we have

t2 D d.�2.t2/; 	�2.J2/.x// 2 Œr1 � 30B � 10; r1 C 30B C 10


and hence d.�1.r1/; �2.r1// � 36B C 12.
Now r2 � r1 by assumption and therefore using once more the definition of the

function �B we have d.�2.r1/; �3.J3// � 6B C 2. Thus if we write R0 D 42B C 18

then we have d.�1.r1/; �3.J3// � R0 and similarly d.�1.�r1/; �3.J3// � R0. Since
d.�1.0/; �3.0// � 48B C 16 by the estimate (4) above, we conclude that for R1 D
48B C 16CR0 there are numbers s3; t3 � r1 �R1 such that Œ�s3; t3
 � J3 and

d.�1.�r1/; �3.�s3// � R0 and d.�1.r1/; �3.t3// � R0: (5)
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By assumption, �1 and �3 are B-contracting. Let � W Œ0; b
 ! X be the geodesic
connecting �1.�r1/ D �.0/ to �3.t3/ D �.b/. Let

z D 	�1.J1/.�3.t3//:

Then d.z; �3.t3// � d.�1.r1/; �3.t3// and hence by the estimate (5), the distance
between z and �3.t3/ is at most R0. It follows from (5) and the triangle inequality
that the distance between z and �1.r1/ is bounded from above by 2R0.

Since �1 is B-contracting, by Lemma 2.3 and the remark thereafter, there is a
number T � b such that the Hausdorff distance between the subarc of �1 connecting
�1.�r1/ to z and the arc �Œ0; T 
 is at most 3B C 1. Moreover, by (5) above we can
choose T in such a way that T � b �R0.

Similarly, if
w D 	�3.J3/.�1.�r1//

then the distance between w and �1.�r1/ is at most R0. By (5) above, there is a
number S � R0 such that the Hausdorff distance between �ŒS; b
 and the subarc of
�3 connecting w to �3.t3/ is at most 3B C 1.

As a consequence, there are two subarcs �0
1 of �1.J1/, �0

3 of �3.J3/ whose Haus-
dorff distance to the geodesic arc �ŒS; T 
 is at most 3B C 1. Hence the Hausdorff
distance between �0

1 and �0
3 is at most 6B C 2.

To summarize the above discussion, if r1 is sufficiently large depending on B
then there is a number L > 0 and there is a subarc �0

1, �0
3 of �1.J1/, �3.J3/ with the

following property. The arc �0
1, �0

3 contains x1, x3 as an interior point, and the distance
of x1, x3 to the endpoints of �0

1, �0
2 is at least r1 � LB . Moreover, the Hausdorff

distance in X between �0
1, �0

3 is smaller than 6B C 2. This shows that

�B.x; �1; �3/ � r1 � LB � �B.x; �1; �2/ � LB;
which completes the proof of the lemma.

For distinct pairs of points .�1; �1/; .�2; �2/ 2 A.B/ define

�B.x; .�1; �1/; .�2; �2// � 0

to be the infimum of the numbers �B.x; �1; �2/ over all B-contracting geodesics �i

connecting �i to �i (i D 1; 2). Clearly we have

�B.x; ˛1; ˛2/ D �B.x; ˛2; ˛1/ for all x 2 X; ˛1; ˛2 2 A.B/:

Moreover, by Lemma 3.5, there is a numberL > 0 such that for all˛1; ˛2; ˛3 2 A.B/

we have

�B.x; ˛1; ˛3/ � minf�B.x; ˛1; ˛2/; �B.x; ˛2; ˛3/g � LB:
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Now we follow Section 7.3 of [13]. Namely, let � > 0 be sufficiently small that
�0 D e�LB � 1 <

p
2 � 1. Note that � only depends on B . For this number � and

for x 2 X , ˛1; ˛2 2 A.B/ � A.B/ define

Qıx.˛1; ˛2/ D e���B .x;˛1;˛2/: (6)

From Lemma 3.5 and Proposition 7.3.10 of [13] we obtain the following.

Corollary 3.6. There is a family fıxg (x 2 X ) of distances on A.B/ with the
following properties.

(1) The topology on A.B/ defined by the distances ıx is the restriction of the product
topology on @X � @X �. In particular, .A.B/; ıx/ is locally compact.

(2) The distances ıx are invariant under the involution � of A.B/ which exchanges
the two points � 6D � 2 @X in a pair .�; �/ 2 A.B/.

(3) .1 � 2�0/ Qıx � ıx � Qıx for all x 2 X .

(4) e��d.x;y/ıx � ıy � e�d.x;y/ıx for all x; y 2 X .

(5) The family fıxg is invariant under the action of Iso.X/ on A.B/ �X .

Proof. The existence of a family fıxg .x 2 X/ of distance functions on A.B/ with
the property stated in the third part of the corollary is immediate from Lemma 3.5
and Proposition 3.7.10 of [13]. The fourth part follows from the construction of the
distance ıx from the functions Qıx and from the third part of Lemma 3.2. Invariance
under the action of the isometry group and under the involution � is an immediate
consequence of invariance of the function �B .

We are left with showing that for a given x 2 X the distance ıx induces the
restriction of the product topology on @X�@X�. By the definition of the distances
ıx , if .�i ; �i / ! .�; �/ in .A.B/; ıx/ then there are B-contracting geodesics �i

connecting �i to �i which have longer and longer subsegments contained in a tubular
neighborhood of radius 6BC 2 about some geodesic � connecting � to �. Moreover,
these segments all pass through a fixed compact subset ofX . By the definition of the
topology on @X , this implies that .�i ; �i / ! .�; �/ in @X�@X�. As a consequence,
the inclusion .A.B/; ıx/ ! @X � @X � is continuous.

Continuity of the identity A.B/ � @X � @X �  ! .A.B/; ıx/ follows in the
same way. Namely, by Lemma 3.1 and its proof, if .�i ; �i / � A.B/, if .�i ; �i / !
.�; �/ 2 @X�@X�with respect to the product topology and if �i is aB-contracting
geodesic connecting �i to �i then up to passing to a subsequence, we may assume that
the geodesics �i converge uniformly on compact sets to a B-contracting geodesic �
connecting � to �. By convexity, by Lemma 2.3 and by the definition of the function
�B , this implies that .�i ; �i / ! .�; �/ in .A.B/; ıx/ for every x 2 X .

Using Corollary 3.6, we obtain the following analog of Lemma 2.1 of [15] (with
identical proof).
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Lemma 3.7. A.B/�X admits a natural Iso.X/-invariant �-invariant distance func-
tion Qd inducing the product topology. There is a number c > 0 such that for every
x 2 X , the restriction of Qd to A.B/ � fxg satisfies

cıx.˛; ˇ/ � Qd..˛; x/; .ˇ; x// � ıx.˛; ˇ/ for all ˛; ˇ 2 A.B/:

Remark. The results of this section are valid for general proper geodesic metric
spaces which admit a family A.B/ of B-contracting geodesics. However, due to the
lack of convexity of geodesics in this more general setting, the bounds in the estimates
can change. This is in the spirit of [6].

Even more generally, for a number C > 0 define a coarse geodesic � in a metric
space .X; d/ to be a map � W J ! X such that jd.�.s/; �.t// � js � t j j � C for all
s; t 2 J . The construction above also applies to a family of B-contracting C -coarse
geodesics in X .

4. Continuous bounded cocycles

In this section we consider again a proper CAT.0/-space X . Let G be a closed non-
elementary subgroup of the isometry group ofX with limit setƒ. ThenG is a locally
compact � -compact topological group. Assume that G contains a rank-one element.

As in Section 3, for a number B > 0 denote by A.B/ � @X � @X �  the
set of pairs of distinct points in @X which can be connected by a B-contracting
geodesic. Define T � ƒ3 to be the space of triples of pairwise distinct points in
ƒ. By Lemma 2.8, T is a locally compact uncountable topological G-space without
isolated points. Let moreover

T .B/ � T

be the set of triples .a1; a2; a3/ 2 T with the additional property that .ai ; aiC1/ 2
A.B/ (1 � i � 3 and where indices are taken modulo three). By Lemma 3.1, T .B/
is closed subset of T which is invariant under the diagonal action of G.

The goal of this section is to construct continuous bounded cocycles for the
action of G on T .B/ (see Definition 4.2 below). We begin with constructing G-
equivariant continuous bounded functions on A.B/ with values in the topological
vector space Cb.G � G/ of continuous bounded functions on G � G, equipped
with the compact open topology (which is strictly weaker than the Banach space
topology). The group G acts continuously on Cb.G � G/ by left translation via
.gf /.h; u/ D f .g�1h; g�1u/.

Proposition 4.1. Let X be a proper CAT.0/-space and let G < Iso.X/ be a closed
non-elementary subgroup which contains a B-rank-one element for some B > 0.
Then for every triple .a; b; �/ 2 T .B/ such that .a; b/ 2 A.B/ \ƒ �ƒ is the pair
of fixed points of a rank-one element of G, there is a continuous map ˛ W A.B/ !
Cb.G �G/ with the following properties.
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(1) g�1˛.g�; g�/ D ˛.�; �/ D �˛.�; �/ for all .�; �/ 2 A.B/ and all g 2 G.

(2) For every point x0 2 X , all .�; �/ 2 A.B/ and all neighborhoods A1 of � ,
A2 of � in X [ @X the intersection of the support of ˛.�; �/ with the set
f.g; h/ 2 G �G j gx0 2 X � .A1 [ A2/g is compact.

(3) There are elements g, h in G such that ˛.a; b/.g; h/ 6D 0 and ˛.a; �/.g; h/ D
˛.b; �/.g; h/ D 0.

Proof. Let G < Iso.X/ be a closed non-elementary subgroup which contains a B-
rank-one element for some B > 0. We divide the proof of the proposition into three
steps.

Step 1: Let x0 2 X be an arbitrary point and denote by Gx0
the stabilizer of

x0 in G. Then Gx0
is a compact subgroup of G, and the quotient space G=Gx0

is
G-equivariantly homeomorphic to the orbit Gx0 � X of x0. Note that Gx0 is a
closed subset of X and hence it is locally compact. The group G acts on the locally
compact space A.B/ �Gx0 as a group of homeomorphisms.

The Iso.X/-invariant metric Qd on A.B/ � X constructed in Lemma 3.7 induces
a G-invariant metric on A.B/ �G=Gx0

which defines the product topology. Hence
we obtain a G-invariant symmetrized product metric Od on

V D A.B/ �G=Gx0
�G=Gx0

by defining
Od..�; x; y/; .� 0; x0; y0// D 1

2
. Qd..�; x/; .� 0; x0//C Qd..�; y/; .� 0; y0///: (7)

The topology defined on V by this metric is the product topology, in particular it is
locally compact.

Since V is a locally compact G-space, the quotient space W D GnV admits a
natural metric d0 as follows. Let

P W V ! W

be the canonical projection and define

d0.x; y/ D inff Od. Qx; Qy/ j P Qx D x; P Qy D yg: (8)

The topology induced by this metric is the quotient topology for the projection P . In
particular, W is a locally compact metric space. A set U � W is open if and only
if P�1.U / � V is open. In other words, open subsets of W correspond precisely to
G-invariant open subsets ofV . The projectionP is open and distance non-increasing.

The distance Qd on A.B/ � X is invariant under the involution � W .�; �; x/ !
.�; �; x/ exchanging the two components of a point in A.B/ and hence the distance Od
onV is invariant under the natural extension of � (again denoted by �). Since the action
of G commutes with the isometric involution �, the map � descends to an isometric
involution of the metric space .W; d0/, which we denote again by �.
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For someR1; R2 > 0, an open subsetU ofW is said to have property .R1; R2/ if
for every ..�; �/; gx0; hx0/ 2 P�1.U / � V the distance inX between gx0, hx0 and
any geodesic inX connecting � to � is at mostR1 and if moreover d.gx0; hx0/ � R2.

We claim that for every w 2 W there are numbers R1; R2 > 0 and there
is a neighborhood of w in W which has property .R1; R2/. Namely, let v D
..�; �/; gx0; hx0/ 2 P�1.w/. Then � can be connected to � by a B-contracting
geodesic � and therefore by Lemma 2.3, any geodesic connecting � to � is contained
in the 3B C 1-tubular neighborhood of � . By the discussion in Section 3 (see the
proof of Lemma 3.1), there is a neighborhood A of .�; �/ in A.B/ such that for all
.� 0; �0/ 2 A, any geodesic connecting � 0 to �0 passes through a fixed compact neigh-
borhood of gx0. Thus by continuity, there are numbers R1 > 0, R2 > 0 and there is
an open neighborhood U 0 of v in V such that for every ..� 0; �0/; g0x0; h

0x0/ 2 U 0 the
distance between g0x0, h0x0 and any geodesic connecting � 0 to �0 is at most R1 and
that moreover d.g0x0; h

0x0/ � R2. However, distances and geodesics are preserved
under isometries and hence every point in zU D S

g2G gU
0 has this property. Since

zU is open, G-invariant and contains v, the set zU projects to an open neighborhood
of w in W . This neighborhood has property .R1; R2/.

Step 2: In equation (8) in step 1 above, we defined a distance d0 on the space
W D GnV . With respect to this distance, the involution � acts non-trivially and
isometrically. Choose a small closed metric ball D in W which is disjoint from its
image under �. In step 3 below we will construct explicitly such balls D; however
for the moment, we simply assume that such a ball exists. By step 1 above, we may
assume that D has property .R1; R2/ for some R1; R2 > 0.

Let H be the vector space of all Hölder continuous functions f W W ! R sup-
ported in D. An example of such a function can be obtained as follows.

Let z be an interior point of D and let r > 0 be sufficiently small that the closed
metric ball B.z; r/ of radius r about z is contained in D. Choose a smooth function
� W R ! Œ0; 1
 such that �.t/ D 1 for t 2 .�1; r=2
 and �.t/ D 0 for t 2 Œr;�1/

and define f .y/ D �.d0.z; y//. Since the function y ! d0.z; y/ on W is one-
Lipschitz and � is smooth, the function f on W is Lipschitz, does not vanish at z
and is supported in D.

Since D is disjoint from �.D/ by assumption and since � is an isometry, every
function f 2 H admits a natural extension to a Hölder continuous function f0 onW
supported inD[ �.D/whose restriction toD coincides with the restriction of f and
which satisfies f0.�z/ D �f0.z/ for all z 2 W . The function Of D f0 B P W V ! R
is invariant under the action ofG, and it is anti-invariant under the involution � of V ,
i.e., it satisfies Of .�.v// D � Of .v/ for all v 2 V (here as before, P W V ! W denotes
the canonical projection).

Equip zV D A.B/ � G � G with the product topology. The group G acts on
G �G by left translation, and it acts diagonally on zV . There is a natural continuous
projection … W zV ! V which is equivariant with respect to the action of G and with
respect to the action of the involution � on zV and V . The function Of on V lifts to a
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G-invariant �-anti-invariant continuous function Qf D Of B… on zV .
For .�; �/ 2 A.B/ write

F.�; �/ D f.�; �; z/ j z 2 G �Gg:
The sets F.�; �/ define a G-invariant foliation F of zV . The leaf F.�; �/ of F can
naturally be identified withG �G. For all .�; �/ 2 A.B/ and every function f 2 H

we denote by f�;� the restriction of the function Qf to F.�; �/, viewed as a continuous
bounded function on G � G. For every f 2 H , all .�; �/ 2 A.B/ and all g 2 G

we then have fg�;g� B g D f�;� D �f�;� . Since the functions f�;� are restrictions
to the leaves of the foliation F of a globally continuous bounded function on zV , the
assignment

.�; �/ 2 A.B/ ! ˛.�; �/ D f�;� 2 Cb.G �G/
is a continuous map of A.B/ into Cb.G �G/. By construction, it satisfies

g�1˛.g�; g�/ D ˛.�; �/ D �˛.�; �/ for all .�; �/ 2 A.B/ and all g 2 G:
Thus the map ˛ fulfills the first requirement in the statement of the proposition. The
second requirement is also satisfied since the set D is assumed to have property
.R1; R2/ and since moreover for every geodesic � W R ! X , for every open neigh-
borhood A of �.1/[ �.�1/ in X [ @X and for every R > 0 the intersection of the
closed R-neighborhood of � with X � A is compact.

Step 3: To show that we can construct the function ˛ in such a way that is satisfies
the third property in the proposition, let g 2 G be aB-rank-one isometry, let a 6D b 2
@X be the attracting and repelling fixed point for the action of g on @X , respectively,
and let � 2 ƒ � fa; bg be such that .a; b; �/ 2 T .B/. We have to show that we can
choose ˛ in such a way that ˛.a; b/.g; h/ 6D 0 and ˛.a; �/.g; h/ D ˛.b; �/.g; h/ D 0

for some g; h 2 G.
For this let � be a B-contracting oriented axis for g and let x0 2 	�.R/.�/ be

the basepoint for the above construction. The orbit of x0 under the infinite cyclic
subgroup of G generated by g is contained in the geodesic � . Write �0 D 9B C 6.
Since gjx0 ! a; g�jx0 ! b .j ! 1/, there are numbers k < `, R1 > 2�0 such
that the R1 C �0-neighborhood of a geodesic connecting a to � and the R1 C �0-
neighborhood of a geodesic connecting b to � contains at most one of the points gkx0,
g`x0 and that moreover the distance between gkx0, g`x0 is at least 4�0 (compare
Lemma 2.5 and its proof). Choose R2 > 2d.g

kx0; g
`x0/.

We claim that there is no h 2 G with hgkx0 D gkx0, hg`x0 D g`x0 and
h.a/ D b, h.b/ D a. Namely, any isometry h which exchanges a and b and fixes
a point on the axis � of g, say the point �.t/, maps the geodesic ray �Œt;1/ to the
geodesic ray �.�1; t 
. Thus a fixed point of h on � is unique which shows the claim.
As a consequence, the projection of .a; b; gkx0; g

`x0/ 2 V into the space W is not
fixed by the involution �.
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Let zD � V be a neighborhood of .a; b; gkx0; g
`x0/ in V which is small enough

that for all .a0; b0; x; y/ 2 zD a geodesic connecting a0 to b0 passes through the 2�0-
neighborhood of gkx0, g`x0, and d.x; gkx0/ � �0; d.y; g

`x0/ � �0. The projection
of zD into W contains a ball D � W about the projection of .a; b; gkx0; g

`x0/

with property .R1; R2/ which is disjoint from its image under �. Let f 2 H be a
Hölder continuous function supported in D which does not vanish at the projection
of .a; b; gkx0; g

`x0/. Then the lift Qf of f to zV does not vanish at .a; b; gk; g`/. By
the choice of D, we have fa;b.g

k; g`/ 6D 0 and fb;�.g
k; g`/ D f�;a.g

k; g`/ D 0.
In other words, the function ˛ constructed as above from f has property (3) stated
in the proposition.

Proposition 4.1 is used for the construction of continuous bounded cocycles for
the action of G on T .B/.

Definition 4.2. Let E be a separable Banach-module for G. An E-valued contin-
uous bounded two-cocycle for the action of G on T .B/ is a continuous bounded
G-equivariant map ! W T .B/ ! E which satisfies the following two properties.

(1) For every permutation � of the three variables, the anti-symmetry condition
! B � D sgn.�/! holds.

(2) For every quadruple .a1; a2; a3; a4/ of distinct points in ƒ such that .ai ; aj / 2
A.B/ for i 6D j the cocycle equality

!.a2; a3; a4/ � !.a1; a3; a4/C !.a1; a2; a4/ � !.a1; a2; a3/ D 0 (9)

is satisfied.

The separable Banach modules for G we are interested in are as follows. Every
locally compact � -compact topological group G admits a left invariant locally finite
Haar measure �. For p 2 .1;1/ denote by Lp.G �G;���/ the Banach space of
all functions on G � G which are p-integrable with respect to the product measure
� � �. The group G acts continuously and isometrically on Lp.G � G;� � �/ by
left translation via .gf /.h; u/ D f .g�1h; g�1u/.

The following theorem is the main result in this section.

Theorem 4.3. Let˛ W A.B/ ! Cb.G�G/ be a continuousmap as in Proposition 4.1.
Then for every p 2 .1;1/ the assignment

! W .�; �; ˇ/ 2 T .B/ ! !.�; �; ˇ/ D ˛.�; �/C ˛.�; ˇ/C ˛.ˇ; �/

is anLp.G �G;���/-valued continuous bounded two-cocycle for the action of G
on T .B/.

Proof. As in step 1 of the proof of Proposition 4.1, let x0 2 X be a fixed point and
let V D A.B/ �G=Gx0

�G=Gx0
. Choose a compact ball D � W D GnV which
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is disjoint from its image under the involution � and which has property .R1; R2/ for
some R1; R2 > 0. Let H be the vector space of all Hölder continuous functions
f W W ! R supported in D. Every f 2 H lifts to a Hölder continuous G-invariant
�-anti-invariant function

Of W V ! R

and to a continuous function Qf on A.B/�G �G. As in the proof of Proposition 4.1
we denote by f�;� the restriction of Qf to .�; �/ � G � G, viewed as a function on
G �G.

For f 2 H and for an ordered triple .�; �; ˇ/ 2 T .B/ define

!.�; �; ˇ/ D f�;� C f�;ˇ C fˇ;� 2 Cb.G �G/: (10)

Since f�;� D �f�;� for all .�; �/ 2 A.B/, we have

! B � D .sgn.�//!

for every permutation � of the three variables. As a consequence, the cocycle con-
dition for ! is also satisfied. The assignment .�; �; ˇ/ 2 T .B/ ! !.�; �; ˇ/ 2
Cb.G �G/ is continuous with respect to the compact open topology on Cb.G �G/.
Moreover, it is equivariant with respect to the natural action of G on the space T .B/
and on Cb.G�G/. This means that ! is a continuous bounded cocycle for the action
of G on T .B/ with values in the topological vector space Cb.G �G/.

For the proof of the theorem, we have to show the following.

(1) !.�; �; ˇ/ 2 Lp.G �G;� � �/ for every p 2 .1;1/, with Lp-norm bounded
from above by a constant which does not depend on .�; �; ˇ/ 2 T .B/.

(2) The assignment .�; �; ˇ/ ! !.�; �; ˇ/ 2 Lp.G �G;� � �/ is continuous.

For this let .�; �; ˇ/ 2 T .B/ and let � be a B-contracting geodesic connecting �
to �. By Lemma 2.3 and Lemma 2.5 there is a point y0 2 X which is contained in
the �0 D �0.B/ D 9B C 6-neighborhood of every side of any geodesic triangle Q
with vertices �, �, ˇ and side � .

Assume that � is parametrized in such a way that d.�.0/; y0/ � �0. Also, let
� W R ! X be the side of Q connecting ˇ to � which is parametrized in such
a way that d.y0; �.0// � �0. We may assume that � is B-contracting. Then
�Œ0;1/; �Œ0;1/ are two sides of a geodesic triangle inX with vertices �.0/; �.0/; �.
Since d.�.0/; �.0// � 2�0, the convexity of the distance function implies that
d.�.t/; �.t// � 2�0 for all t � 0. In particular, the R1-neighborhood of �Œ0;1/ is
contained in the R1 C 2�0-neighborhood of �Œ0;1/.

Let R1 > 0;R2 > 0 be as in the beginning of this proof. For a subset C of X
write

CG;R2
D f.u; h/ 2 G �G j ux0 2 C; d.ux0; hx0/ � R2g:

Let � D ��� be the left invariant product measure onG�G. We claim that there is
a numberm > 0 such that for every subsetC ofX of diameter at most 2R1 C4�0 C1
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the �-mass of the set CG;R2
is at most m. Namely, the set

K D f.u; h/ 2 G �G j d.ux0; x0/ � 2R1 C 4�0 C 1; d.ux0; hx0/ � R2g
of G �G is compact and hence its �-mass is finite, say this mass equals m > 0. On
the other hand, if C � X is a set of diameter at most 2R1 C 4�0 C 1 and if there is
some g 2 G such that gx0 2 C then any pair .u; h/ 2 CG;R2

is contained in gK.
Our claim now follows from the fact that � is invariant under left translation.

By construction, ifN.C; r/ denotes the r-neighborhood of a set C � X , then the
support of the function f�;� is contained in N.�.R/; R1/G;R2

and similarly for the
functions f�;ˇ ; fˇ;� . As a consequence, the support of the function ! defined in (10)
above is the union of the three sets

N.�Œ0;1/; R1 C 2�0/G;R2
; N.�.�1; 0
; R1 C 2�0/G;R2

;

N.�.�1; 0
; R1 C 2�0/G;R2
:

Moreover, there is a number � > 0 only depending on R1, R2 and �0 such that the
restriction of ! to N.�Œ�;1/; R1 C 2�0/G;R2

coincides with the restriction of the
function f�;� C f�;ˇ and similarly for the other two sets in the above decomposition
of the support of !.

Since ! is uniformly bounded, to show that ! is contained in Lp.G � G; �/ it
is now enough to show that there is constant cp > 0 only depending on p and the
Hölder norm of f such thatZ

N.�Œ�;1/;R1C2	0/G;R2

jf�;� C f�;ˇ jpd� < cp:

However, we observed above that for every integer k � 0 the �-mass of the set
N.�Œ�Ck; �CkC1
; R1 C2�0/G;R2

is bounded from above by a universal constant
m > 0. Thus it suffices to show that there are numbers r > 0; � > 0 such that the
value of the function jf�;� C fˇ;�j on this set does not exceed re�
.�Ck/. Then the
inequality holds true with cp D mrp

P1
kD0 e

�p
.
Ck/.
For an estimate of jf�;� C f�;ˇ j, apply Lemma 2.3 to the geodesic ray �Œ0;1/

and a geodesic � connecting ˇ to �. We conclude that there is a subray of � whose
Hausdorff distance to �Œ2�0;1/ is bounded from above by 3B C 1. Then by the
definition of the distances ıx on A.B/ and by Lemma 3.4 and Corollary 3.6, there is
a number r0 > 0 depending on �0; R1; R2 such that if t � 0 and if y 2 X satisfies
d.�.t/; y/ < �0 CR1 CR2 then

ıy..�; �/; .ˇ; �// � r0e
��t ;

where � > 0 is as in Corollary 3.6. Moreover, by the definition (7) of the distance
function Od on V and by the estimate in Lemma 3.7 for the distance function Qd on
A.B/ �X , we have

Od..�; �; ux0; hx0/; .ˇ; �; ux0; hx0// � 1
2
.ıux0

..�; �/; .ˇ; �//C ıhx0
..�; �/; .ˇ; �///

� r0e
��t (11)
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whenever d.ux0; �.t// � �0 CR1 and ..�; �/; ux0; hx0/ is contained in the support
of f�;� or of f�;ˇ .

The function Of W V ! R is Hölder continuous and �-anti-invariant. Therefore by
the estimate (11) there are numbers � > 0; r1 > r0 only depending on the Hölder
norm for f with the following property. Let 0 � t and let u; h 2 G be such that
d.ux0; �.t// < �0 CR1; d.hx0; �.t// < �0 CR1 CR2; then

j Of .�; �; ux0; hx0/C Of .�; ˇ; ux0; hx0/j � r1e
���t : (12)

The function f is bounded in absolute value by a universal constant. Hence from
the definition of the functions f�;� and f�;ˇ and from the estimate (12) we obtain the
existence of a constant r > r1 (depending on the Hölder norm of f ) such that

j.f�;� C f�;ˇ /.u; h/j � re���t

whenever d.ux0; �.t// � �0 CR1. This is the estimate we were looking for.
To show continuity of the assignment .�; �; ˇ/ 2 T .B/ ! !.�; �; ˇ/ 2 Lp.G �

G; �/, we use again the above estimate. Namely, let .�i ; �i ; �i / � T .B/ be a sequence
of triples of pairwise distinct points converging to a triple .�; �; ˇ/ 2 T .B/. By the
above consideration, for every " > 0 there is a compact subset A of G � G such
that

R
G�G�A

j!.�i ; �i ; ˇi /jpd� � " for all sufficiently large i > 0 and that the same
holds true for !.�; �; �/. Let �A be the characteristic function of A. By continuity
of the function Qf on zV and compactness, the functions �A!.�i ; �i ; ˇi / converge as
i ! 1 in Lp.G � G; �/ to �A!.�; �; �/. Since " > 0 was arbitrary, the required
continuity follows.

By construction, the assignment .�; �; ˇ/ ! !.�; �; ˇ/ is equivariant under the
action ofG on the space T .B/ and onLp.G�G; �/ and satisfies the cocycle equality
(9). In other words, ! defines a continuous Lp.G � G; �/-valued bounded cocycle
for the action of G on T .B/ as required. This completes the proof of the theorem.

5. Second continuous bounded cohomology I

Let X be a proper CAT.0/-space with isometry group Iso.X/. Let G < Iso.X/
be a closed non-elementary subgroup with limit set ƒ which contains a rank-one
element. Under the additional assumption thatG acts transitively on the complement
of the diagonal inƒ�ƒwe use Theorem 4.3 to construct nontrivial second bounded
cohomology classes for G.

We use the arguments from Section 3 of [15] (see also [18], [20] for earlier results
along the same line). Namely, let P .ƒ/ be the space of all probability measures on
ƒ, equipped with the weak�-topology. Denote moreover by P�3.ƒ/ � P .ƒ/ the
set of all probability measures which are not concentrated on at most two points. We
first show
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Lemma 5.1. Let G < Iso.X/ be a non-elementary closed subgroup with limit set
ƒ. If G contains a rank-one element and acts transitively on the complement of the
diagonal in ƒ � ƒ, then the action of G on P�3.ƒ/ is tame with compact point
stabilizers.

Proof. LetG < Iso.X/ be a closed non-elementary group with limit setƒwhich acts
transitively on the complement of the diagonal  in ƒ �ƒ and contains a rank-one
element g 2 G. Then there is a numberB > 0 and for every pair .�; �/ 2 ƒ�ƒ�
there is a B-contracting geodesic � W R ! X . This geodesic is the image of an axis
of g under an element of G.

LetT � ƒ3 be the space of triples of pairwise distinct points inƒ. By Lemma 2.3,
if � W R ! X is a B-contracting geodesic then every other geodesic connecting
�.�1/ to �.1/ is contained in the 3B C 1-tubular neighborhood of � . Thus by
Lemma 2.5, for every triple .a; b; c/ 2 T there is a pointx0 2 X whose distance to any
of the sides of some geodesic triangle inX with verticesa, b, c is at most 12BC7. The
setK.a; b; c/ of all points with this property is clearly closed. Lemma 2.5 shows that
its diameter is bounded from above by a constant not depending on .a; b; c/ 2 T .B/.
In other words,K.a; b; c/ is compact and hence it has a unique centerˆ.a; b; c/ 2 X
where a center of a compact set K � X is a point x 2 X such that the radius of the
smallest closed ball about x containing K is minimal (see p. 10 in [4]).

This construction defines a map ˆ W T ! X which is equivariant with respect to
the action ofG. Moreover, it is continuous. Namely, if .a1

i ; a
2
i ; a

3
i / ! .a1; a2; a3/ in

T then by the discussion in the proof of Lemma 3.1 there is a compact neighborhood
A of K.a1; a2; a3/ such that for all sufficiently large i , every geodesic connecting a
pair of points .aj

i ; a
j C1
i / 2 ƒ�ƒ� passes through A. Since the diameters of the

sets K.a1
i ; a

2
i ; a

3
i / are uniformly bounded, there is a compact subset Q of X which

contains the sets K.a1
i ; a

2
i ; a

3
i / for all sufficiently large i . Therefore up to passing

to a subsequence, we may assume that the compact sets K.a1
i ; a

2
i ; a

3
i / converge in

the Hausdorff topology for compact subsets of X to a compact set K. The set K is
contained in the set of all limits of sequences .bi`/, where i` is a subsequence of the
set of natural numbers and bi` 2 K.a1

i`
; a2

i`
; a3

i`
/.

On the other hand, up to passing to a subsequence and reparametrization, a se-
quence of geodesics �j

i connecting aj
i to aj C1

i converges as i ! 1 locally uniformly
to a geodesic �j connecting aj to aj C1. By continuity of the distance function and
the definitions, this implies that K � K.a1; a2; a3/.

LetG.aj ;aj C1/ < G be the stabilizer of .aj ; aj C1/ inG. SinceG acts transitively
on ƒ �ƒ�, the topological space ƒ �ƒ� is G-equivariantly homeomorphic
toG=G.aj ;aj C1/. In particular, there is a sequence gi � G converging to the identity

such that .aj
i ; a

j C1
i / D gi .a

j ; aj C1/. However, this implies that every geodesic
connecting aj to aj C1 is a limit as i ! 1 of a sequence of geodesics connecting
a

j
i to aj C1

i and therefore K D K.a; b; c/. Since the map which associates to a
compact subset of X its center is continuous with respect to the Hausdorff topology
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on compact subsets of X , we conclude that the map ˆ is in fact continuous. Since
the action of G on X is proper, Lemma 3.4 of [1] then shows that the action of G on
T is proper as well.

Let P .T / be the space of probability measures on the locally compact space
T . Since the action of G on T is proper, the action of G on P .T / is tame, with
compact point stabilizers. For � 2 P�3.ƒ/ let a� > 0 be the total mass of the open
set T � ƒ3 with respect to the measure � � � � �. The map P�3.ƒ/ ! P .T /

which associates to a measure � 2 P�3.ƒ/ the normalized product � � � � �=a�

is Borel and G-equivariant (see Theorem 5.2 of [1]). Since the action of G on P .T /

is tame, with compact point stabilizers, Lemma 3.4 of [1] shows that the action of G
on P�3.ƒ/ is tame with compact point stabilizers. This completes the proof of the
lemma.

The next easy consequence of a result ofAdams and Ballmann [2] will be important
for the proof of Theorem 1. For later reference, recall that the closure of a normal
subgroup of a topological groupG is normal, and the closure of an amenable subgroup
of G is amenable (Lemma 4.1.13 of [22]).

Lemma 5.2. Let G < Iso.X/ be a closed non-elementary subgroup which contains
a rank-one element. Then a closed normal amenable subgroup N of G is compact,
and N fixes the limit set of G pointwise.

Proof. LetG < Iso.X/ be a closed non-elementary group which contains a rank-one
element and letN C G be a closed normal amenable subgroup. SinceN is amenable,
eitherN fixes a point � 2 @X orN fixes a flat F � X , i.e., a closed convex subspace
of X which is isometric to a finite dimensional euclidean space [2].

Assume first thatN fixes a point � 2 @X . SinceN is normal inG, for every g 2 G
the point g� is a fixed point for gNg�1 D N . On the other hand, by Lemma 2.8, the
closure in @X of every orbit for the action ofG contains the limit setƒ ofG, and the
action of G on ƒ is minimal. Therefore by continuity, N fixes ƒ pointwise. Then
Lemma 5.1 shows that N is compact.

If N fixes a flat F � X of dimension at least two then we argue in the same way.
Namely, the image of F under an isometry of X is a flat. Let a 6D b 2 ƒ be the
attracting and repelling fixed points, respectively, of a rank-one element g ofG. Then
a, b are visibility points in @X and hence there is no flat inX of dimension at least two
whose boundary in @X contains one of the points a; b. Thus the boundary @F � @X

of F is contained in @X � fbg and consequently gk@F ! fag .k ! 1/. But by the
argument in the previous paragraph, N fixes gk@F D @.gkF / and therefore N fixes
a by continuity. In other words, N fixes a point in @X . The first part of this proof
then shows that indeed N is compact.

The same reasoning is also valid if N fixes a flat F of dimension one, i.e., a
geodesic. Namely, in this case Lemma 2.8 shows that there is a rank-one element
g 2 G such that the repelling fixed point of g is not an endpoint ofF . Then the above
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argument applies and shows that N is indeed compact. This completes the proof of
the lemma.

Remark. Caprace and Monod (Theorem 1.6 of [12], see also [11]) found geometric
conditions which guarantee that an amenable normal subgroup of a non-elementary
group G of isometries of X is trivial. This however need not be true under the above
more general assumptions. A simple example is a space of the form X D H2 � X2

where H2 is the hyperbolic plane and where X2 is a compact CAT.0/-space whose
isometry group H is non-trivial. Then the compact group H is a normal subgroup
of the isometry group of X . On the other hand, any axial isometry of H2 acts as a
rank-one isometry on X .

As in [15] we use Lemma 5.1 and Lemma 5.2 to show

Proposition 5.3. Let G < Iso.X/ be a non-elementary closed subgroup with limit
set ƒ. If G contains a rank-one element and acts transitively on the complement of
the diagonal in ƒ �ƒ, thenH 2

cb.G;L
p.G;�// 6D 0 for every p 2 .1;1/.

Proof. A strong boundary for a locally compact topological group G is a standard
Borel space .B; �/ with a probability measure � and a measure class preserving
amenable action of G which is doubly ergodic (we refer to [19] for a detailed expla-
nation of the significance of a strong boundary). A strong boundary exists for every
locally compact topological group G [17].

Let G < Iso.X/ be a non-elementary closed subgroup with limit set ƒ. Assume
thatG acts transitively on the complement of the diagonal inƒ�ƒ. Since the action
of G on its strong boundary .B; �/ is amenable, there is a G-equivariant measurable
Furstenberg map' W .B; �/ ! P .ƒ/ [22]. By ergodicity of the action ofG on .B; �/,
either the set of all x 2 B with '.x/ 2 P�3.ƒ/ has full mass or vanishing mass.

Assume that this set has full mass. By Lemma 5.1, the action of G on P�3.ƒ/ is
tame, with compact point stabilizers. Thus ' induces a G-invariant measurable map
.B; �/ ! P�3.ƒ/=G which is almost everywhere constant by ergodicity. Therefore
by changing the map ' on a set of measure zero, we can assume that ' is a G-
equivariant map .B; �/ ! G=G� where G� is the stabilizer of a point in P�3.ƒ/

and hence it is compact.
Following the reasoning in Section 3 of [20], since the action of G on .B; �/ �

.B; �/ is ergodic as well, the cocycle defined by the identity homomorphismG ! G

is equivalent to a cocycle ranging in a compact subgroup of G (see the proof of
Lemma 3.4 of [20]). By Lemma 3.2 and Lemma 3.1 of [20], this implies that G
is elementary which is a contradiction (the proofs of these lemmas are valid in the
situation at hand without any change).

As a consequence, the image under ' of �-almost every x 2 B is a measure
supported on at most two points. By Lemma 5.1 and its proof, the action ofG on the
space of triples of pairwise distinct points in ƒ is proper and hence the assumptions
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in Lemma 23 of [18] are satisfied. We can then use Lemma 23 of [18] as in the proof
of Lemma 3.5 of [20] to conclude that the image under ' of almost every x 2 B is
supported in a single point. In other words, ' is aG-equivariant Borel map of .B; �/
intoƒ. Note that since the action of G onƒ is minimal, by equivariance the support
of the measure class '�.�/ is all of ƒ.

Let� be a Haar measure onG. By invariance under the action ofG, there is some
B > 0 such that .a; b/ 2 A.B/ for all .a; b/ 2 ƒ �ƒ �. Thus by Theorem 4.3,
for every p 2 .1;1/ there is a nontrivial bounded continuous Lp.G � G;� � �/-
valued cocycle ! on the space of triples of pairwise distinct points in ƒ. Then the
Lp.G�G;���/-valued �����-measurable bounded cocycle! B'3 onB�B�B
is non-trivial on a set of positive measure. Since B is a strong boundary for G, this
cocycle then defines a non-trivial class inH 2

cb.G;L
p.G �G;���// (see [19]). On

the other hand, the isometric G-representation space Lp.G � G;� � �/ is a direct
integral of copies of the isometricG-representation spaceLp.G;�/ and therefore by
Corollary 2.7 of [20] and Corollary 3.4 of [21], ifH 2

cb.G;L
p.G;�// D f0g then also

H 2
cb.G;L

p.G �G;� � �// D f0g. This shows the proposition.

6. Second continuous bounded cohomology II

In this section we investigate non-elementary closed subgroups of Iso.X/ with limit
set ƒ which contain a rank-one element and which do not act transitively on the
complement of the diagonal in ƒ � ƒ. Such a group G is a locally compact � -
compact group which admits a Haar measure �. Our goal is to show that for every
p 2 .1;1/ the second continuous bounded cohomology group H 2

cb.G;L
p.G;�//

is infinite-dimensional.
Unlike in Section 5, for this we can not use Theorem 4.3 directly since the cocycle

constructed in this theorem may not be defined on the entire space of triples of pairwise
distinct points in ƒ. Instead we use the strategy from the proof of Theorem 4.3 to
construct explicitly for every p 2 .1;1/ bounded cocycles for G with values in
Lp.G;�/ which define an infinite-dimensional subspace of H 2

cb.G;L
p.G;�//.

For the construction of these classes we use a relative version of the construction
in Section 3. The following lemma is analogous to Corollary 3.6.

Lemma 6.1. Let G < Iso.X/ be a closed non-elementary group with limit set ƒ.
Assume that G does not act transitively on the complement of the diagonal inƒ�ƒ
and that it contains a rank-one element with pair of fixed points .a; b/ 2 ƒ�ƒ�.
Let A.b/ be the union of the set of ordered pairs of distinct points in Gb with the
G-translates of .a; b/, .b; a/. Then for some � > 0 there is a family of distance
functions ırel

x .x 2 X/ on A.b/ with the following properties.

(1) The distances ırel
x are invariant under the involution � of A.b/ which exchanges

the two points � 6D � 2 @X in a pair .�; �/ 2 A.b/.
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(2) e��d.x;y/ırel
x � ırel

y � e�d.x;y/ırel
x for all x; y 2 X .

(3) The family fırel
x g is invariant under the action of G on A.b/ �X .

(4) The function A.b/ � A.b/ � X ! Œ0;1/ defined by .�; �; x/ ! ırel
x .�; �/ is

Borel for the restriction of the product topology on .@X/4 �X .

(5) The point .b; a/ 2 A.b/ is not isolated for the distances ırel
x .

Proof. Let G < Iso.X/ be a closed non-elementary group with limit set ƒ � @X .
Assume that G does not act transitively on the complement of the diagonal inƒ�ƒ
and that it contains a rank-one element g with fixed points a 6D b 2 ƒ. Let B0 > 0

be such that every geodesic inX connecting b to a isB0-contracting. Such a number
exists by Lemma 2.4. By Lemma 2.10, we can find some h 2 G such that hb 6D
b and that the stabilizer Stab.b; hb/ in G of the ordered pair of points .b; hb/ is
compact.

By the consideration in the proof of Lemma 2.10, there is a number B > B0

depending onB0 and h such that every geodesic connecting b to hb isB-contracting.
Thus by invariance under isometries, for every k 2 Z, every geodesic connecting b to
gkh�1b isB-contracting. Moreover, the set of all points inX which are contained in
a geodesic connecting b to hb is isometric toK � R whereK is a compact CAT.0/-
space. The group Stab.b; hb/ acts on K � R as a group of isometries preserving the
orientation of the lines fxg � R.

Every isometry ' of K � R can be represented as a product ' D .'1; '2/ where
'1 is an isometry of K and '2 is an isometry of R. A group of isometries acting
on a compact CAT.0/-space has a fixed point. Since Stab.b; hb/ is compact, this
implies that there is a geodesic � connecting b to hb which is fixed pointwise by
Stab.b; hb/. Let ��1 be the geodesic obtained by reversing the orientation of � (note
that for all of our constructions, only the orientation of a geodesic but not an explicit
parametrization plays any role). For v 2 G, the geodesic v��1 connects vhb to vb,
and it is B-contracting. Moreover, it depends continuously on v with respect to the
topology of uniform convergence on compact sets.

We use the translates of � under G (which are all B-contracting) to construct
uniformly contracting rays with endpoints inGb. Similar to the approach in Section 3,
these geodesics are used to define the distance functions ırel

x on A.b/. There are
additional technical difficulties we have to overcome, and the remainder of this proof
is devoted to address these technical points.

For this let x0 2 � be a fixed point and let G0 be the space of all geodesic lines
� W R ! X which are parametrized in such a way that �.0/ D 	�.x0/. The space G0

is equipped with the topology of uniform convergence on compact sets. The group
G acts on G0 as a group of transformations. For the number B > 0 as above let
C D C.B/ > 0 be as in Lemma 2.4. The G-orbit of b consists of visibility points.
Thus for v 2 G and z 2 @X � vb there is an oriented geodesic � 2 G0 connecting
z to vb. By Lemma 2.4, the geodesic � passes through the 9B C 6-neighborhood of
every point in 	v��1.R/.z/.
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Let ˇ.v; �/ 2 R [ f�1g be the infimum of all numbers t 2 R such that �.t/ is
contained in the closed 9B C 6-neighborhood of a point in v��1.R/. Note that we
retain the information on v 2 G since the stabilizer of b in G is unbounded and the
geodesic v��1 is not determined by vb. By convexity, the geodesic ray �.ˇ.v; �/;1/

is contained in the closed 9BC6-neighborhood of v��1.R/, and it is C -contracting.
Since � is fixed pointwise by Stab.b; hb/, the ray �.ˇ.v; �/;1/ only depends on the
geodesic line � and on the coset Œv
 of v in G=Stab.b; hb/. If v D gkh�1 and if � is
a geodesic connecting b to vb then we have b.v; �/ D �1.

Let B be the space of all pairs .v; �/ where v 2 G and where � 2 G0 satisfies
�.1/ D vb. Equip B with the topology induced from the product topology ofG�G0

(where G carries the compact open topology). The function

ˇ W B ! R [ f�1g; .v; �/ 7! ˇ.v; �/;

is lower semi-continuous and hence Borel. Namely, if vi ! v inG then the geodesics
vi�

�1 converge to v��1 pointwise. Now if for each i there is a geodesic �i 2 G0

with �i .1/ D vib and if �i ! � in G0 (i.e., locally uniformly as parametrized
geodesics) then �.0/ D 	�.x0/. Moreover, up to passing to a subsequence, the
points �i .ˇ.vi ; �i // converge as i ! 1 to a point y 2 � whose distance to v��1

does not exceed9BC6. But this just means that this limit is contained in �Œˇ.v; �/;1/

and hence ˇ.v; �/ � lim inf i!1 ˇ.vi ; �i /. This shows lower semi-continuity of the
function ˇ as claimed.

If both endpoints of � 2 G0 are contained in Gb, i.e., if the endpoints of � are
ub; vb for some u; v 2 G, then we can define similarly a number ˛.u; �/ 2 R [ f1g
using the above procedure for the inverse of the geodesic � and the geodesic u��1.
The resulting geodesic ray �.�1; a.u; �// only depends on the geodesic � and on
Œu
 2 G=Stab.b; hb/. The function ˛ is upper semi-continuous.

Let A.b/ be the union of the ordered pairs of distinct points in Gb with the
G-translates of .a; b/; .b; a/. Denote by G0.b/ the subspace of G0 of all oriented
geodesics whose ordered pair of endpoints is contained in A.b/. The group G acts
on G0 as a group of transformations.

For a geodesic line � 2 G0 with an ordered pair of endpoints .ub; vb/ .u; v 2 G/
define

ˇ.�/ D inffˇ. Qv; �/ j Qv 2 G; Qv.b/ D v.b/g
and

˛.�/ D supf˛. Qu; �/ j Qu 2 G; Qu.b/ D u.b/g:
If the endpoints of � are contained in a G-translate of .a; b/ then define a.�/ D
1; b.�/ D �1. The rays �.�1; a.�//; �.b.�/;1/ are C -contracting. Moreover,
since for every v 2 G the set f Qv 2 G j Qv.b/ D v.b/g � G is closed, the above
discussion shows that their dependence on � is Borel. Note that we may have ˛.�/ D
1 or ˇ.�/ D �1.
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Let G .C / be the set of all triples consisting of an (oriented) geodesic � W R !
X and two closed C -contracting subrays �.�1; ˛.�/
; �Œˇ.�/;1/ (which are not
necessarily proper). For � 2 G .C /, the subrays �.�1; ˛.�/
; �Œˇ.�/;1/ are part of
the structure of �. Thus the same geodesic with distinct distinguished subrays defines
two distinct points in G .C /. The group G naturally acts on G .C / from the left.

The above construction associates to any ordered pair of points .�; �/ 2 A.b/

and every geodesic � connecting � to � two subrays �.�1; ˛.�/
, �Œˇ.�/;1/ of �
in such a way that .�; �.�1; ˛.�/
; �Œˇ.�/;1// 2 G .C /. The assignment

… W G0.b/ ! G .C /; � 7! ….�/ D .�; �.�1; ˛.�/
; �Œˇ.�/;1//;

satisfies the following properties.

(1) Invariance under change of orientation: If O� is the geodesic obtained from �

by reversal of orientation then O�Œˇ. O�/;1/ D �.�1; ˛.�/
 and O�.�1; ˛. O�/
 D
�Œˇ.�/;1/ (as subsets of X ).

(2) Invariance under the action of G: For u 2 G we have ….u�/ D u….�/.
(3) Borel dependence on �: The assignments �.R/ 7! �.�1; ˛.�/
 and �.R/ 7!

�Œˇ.�/;1/ are Borel for the topology on G0 and the Hausdorff topology for
compact subsets of X [ @X .

Recall from Section 3 the definition of the function �C which associates to a point
x 2 X and two (finite or infinite) geodesic arcs �1, �2 with at most one common
endpoint in @X a number �C .x; �1; �2/ � 0. For x 2 X and for two geodesics
�1; �2 2 G .C / with at most one common endpoint define

�C rel.x; �1; �2/ D maxf�C .x; �1Œˇ.�1/;1/; �2Œˇ.�2/;1//;

�C .x; �1.�1; ˛.�1/
; �2.�1; ˛.�2/
/g:
Notice that if ˛.�i / D 1 or ˇ.�i / D �1 .i D 1; 2/, then �C rel.x; �1; �2/ D
�C .x; �1; �2/. Note also that �C rel.x; �1; �2/ depends on an orientation of �1; �2 but
not on a specific parametrization.

For .�1; �1/; .�2; �2/ 2 A.b/ and x 2 X define

�C rel.x; .�1; �1/; .�2; �2// D inf �C rel.x; �1; �2/;

where the infimum is taken over all elements ….�1/;….�2/ 2 G .C / defined by all
geodesics �1; �2 connecting �1 to �1 and �2 to �2. By construction, we have

�C rel.x; .�1; �1/; .�2; �2// D �C rel.x; .�2; �2/; .�1; �1//

for all .�1; �1/; .�2; �2/ 2 A.b/.
Lemma 3.5 shows that the function �C rel on A.b/ satisfies the ultrametric inequal-

ity. Thus as in Section 3, for each x 2 X we can use the function �C rel.x; � ; � / to
define a distance ırel

x on A.b/. The family fırel
x g is invariant under the natural ac-

tion of G on A.b/ � X , and it is invariant under the natural involution � defined by
�.�; �/ D .�; �/. Thus these distances have properties 1)-4) stated in the lemma.
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Since for each geodesic � in X connecting a to b or connecting b to gkh�1b we
have a.�/ D 1 and b.�/ D �1, for each x 2 X the points .b; gkh�1b/ 2 A.b/

converge as k ! 1 in .A.b/; ıC rel
x / to .b; a/. In particular, the point .b; a/ 2 A.b/

is not isolated for ırel
x and hence property 5) holds as well.

A twisted Lp.G;�/-valued quasi-morphism for a closed subgroup G of Iso.X/
is a map  W G ! Lp.G;�/ such that

sup
g;h

k .g/C g .h/ �  .gh/kp < 1

where k kp is the Lp-norm for functions on G.
Every unbounded twisted Lp.G;�/-valued quasi-morphism for G defines a sec-

ond bounded cohomology class in H 2
b
.G;Lp.G;�// which vanishes if and only if

there is a cocycle � W G ! Lp.G;�/ (i.e., � satisfies the cocycle equation �.g/ C
g�.h/ � �.gh/ D 0) such that  � � is bounded (compare the discussion in [14]).
We use twisted quasimorphisms to complete the proof of Theorem 2 from the intro-
duction.

Proposition 6.2. Let G < Iso.X/ be a closed non-elementary subgroup with limit
set ƒ which contains a rank-one element. If G does not act transitively on the com-
plement of the diagonal in ƒ �ƒ, then for every p 2 .1;1/ the second continuous
bounded cohomology groupH 2

cb.G;L
p.G;�// is infinite-dimensional.

Proof. Let G < Iso.X/ be a closed subgroup with limit set ƒ � @X which contains
a rank-one element and which does not act transitively on the complement of the
diagonal  in ƒ �ƒ.

By Lemma 2.11 there are infinitely many rank-one elements g 2 G with attracting
and repelling fixed points a; b 2 ƒ and the additional property that there is no u 2 G
with u.a; b/ D .b; a/. Thus let g 2 G be such a rank-one element with fixed points
a 6D b 2 ƒ. Let A.b/ be the union of the set of all ordered pairs of distinct points
in Gb with the G-translates of .a; b/, .b; a/. For x 2 X denote by ırel

x the distance
function on A.b/ constructed in Lemma 6.1. In the sequel we always equip A.b/

with the topology induced by one (and hence each) of these distance functions. As in
Lemma 3.7, we use the distances ırel

x to construct aG-invariant distance � on A.b/�X
with the properties stated in Lemma 3.7. Then � induces the product topology on
A.b/ �X .

We now use the strategy from the proof of Theorem 4.3. Namely, let x0 2 X be
a point on an axis for the rank-one element g 2 G. Let Gx0

be the stabilizer of x0 in
G and let

V.b/ D A.b/ �G=Gx0
D A.b/ �Gx0:

The group G acts on V.b/ as a group of isometries with respect to the restriction of
the distance �. Define W D GnV.b/ and let

P W V.b/ ! W
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be the canonical projection. The distance � on V.b/ induces a distance O� on W by
defining O�.x; y/ D inff�. Qx; Qy/ j P Qx D x; P Qy D yg. Note that we have O�.x; y/ > 0
for x 6D y by the definition of the distance � and the fact that the distances fırel

x g
depend uniformly Lipschitz continuously on x 2 X .

The isometric involution � of .A.b/�X; �/which exchanges the two components
of the point in A.b/ descends to an isometric involution on W again denoted by �.
Since there is no u 2 G with u.a; b/ D .b; a/, we can find an open neighborhoodD
of

w D P..b; a/; x0/ 2 W
which is disjoint from its image under �. We choose D to be contained in the image
under the projection P of the set A.b/ � K where K is the closed ball of radius 1
about x0 in Gx0 � X .

Let Cb.Gx0/ be the vector space of continuous bounded functions on Gx0 � X ,
equipped with the topology of uniform convergence on compact sets. Call a set
A � Cb.Gx0/ bounded if the norm of every element in A is bounded from above by
a fixed constant. As in the proof of Theorem 4.3, we use the induced distance on W
to construct from a Hölder continuous function f supported in D with f .w/ > 0

a G-invariant �-anti-invariant bounded continuous map Q� W A.b/ ! Cb.Gx0/ (i.e.,
a map with bounded range) which lifts to a bounded continuous map � W A.b/ !
Cb.G/ with the equivariance properties as stated in this theorem. Since the function
.�; �; x/ 2 A.b/ � A.b/ � X ! ırel

x .�; �/ is Borel for the restriction of the product
topology on ƒ4 � X , the map f.u; v/ 2 G � G j ub 6D vbg ! �.ub; vb/ 2 Cb.G/

is Borel.
Now we use the constructions and notations in the proof of Lemma 6.1. Namely,

by invariance and the definition of the distances ırel
x , if .�; �/ 2 A.b/ and if z 2 G is

such that zx0 is contained in the support of the function Q�.�; �/, then there is a geodesic
� 2 G .C / connecting � to � so that zx0 is contained in a tubular neighborhood of
�.�1; a.�// [ �.b.�/;1/ of uniformly bounded radius.

Let h 2 G be as in the construction of the distances ırel
x , i.e., such that hb 6D b and

that the stabilizer of .b; hb/ inG is compact. LetA be a small compact neighborhood
of b inX [@X which does not contain the attracting fixed point a of g and is disjoint
from h�1A. In particular, we have b 62 h�1A. For u 2 G with ub 6D b define a
function ‰
 .u/ W G ! R by

‰
 .u/.w/ D �.b; ub/.w/

if wx0 2 X � .A [ uA/ and let ‰
 .u/.w/ D 0 otherwise. If ub D b then define
‰
 .u/ � 0. By the construction of the function � , the function .u;w/ 2 G �G !
‰
 .u/.w/ is Borel and pointwise uniformly bounded.

For fixed u 2 G, the support of ‰
 .u/ is compact. More precisely, for every
compact subset K0 of G there is a compact subset C of G containing the support of
each of the functions ‰
 .u/ .u 2 K0/. In particular, we have ‰
 .u/ 2 Lp.G;�/
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for every p > 1, and for every compact subset K0 of G the set f‰
 .u/ j u 2 K0g �
Lp.G;�/ is bounded.

We claim that‰
 is unbounded. For this recall from Lemma 6.1 and its proof that
as k ! 1 we have .b; gkh�1b/ ! .b; a/ in A.b/. Since h�1A is compact and does
not contain b, Lemma 2.8 shows that gkh�1A ! fag in @X . In particular, if � is the
axis of the rank-one element g containing the point x0 thenX�A�gkh�1A contains
longer and longer subsegments of � which uniformly fellow-travel the geodesic gk�

connecting b to gkh�1b. Now the function �.b; a/ is invariant under the action of the
rank-one element g and its support contains the point x0. This implies that �.b; a/ is
not integrable. But then for p > 1 the Lp-norm of the functions ‰
 .g

kh�1/ tends
to infinity as k ! 1.

Define a Borel function ! W G3 ! Lp.G;�/ by

!.u; uw; uv/ D !.e;w; v/ D ‰
 .w/C w‰
 .v/ �‰
 .wv/

if ub; uwb; uvb are pairwise distinct, and let !.u; uw; uv/ D 0 otherwise. Then !
is invariant under the diagonal action of G, and we have ! B � D sgn.�/! for every
permutation of the three variables. Moreover, ! satisfies the cocycle identity

!.v;w; z/ � !.u;w; z/C !.u; v; z/ � !.u; v; w/ D 0:

This is immediate if the points ub; vb;wb; zb are pairwise distinct. If two of these
points coincide, say if ub D vb, then !.v;w; z/ D !.u;w; z/ and !.u; v; z/ D 0 D
!.u; v; w/ and hence in this case the cocycle equality holds as well. In other words,
for every p 2 .1;1/, ! is a Borel two-cocycle for G with values in Lp.G;�/.

We claim that the image of ! is uniformly bounded. For this we argue as in
the proof of Theorem 4.3. Namely, by assumption, if ‰
 .v/.w/ 6D 0 then the
point wx0 is contained in a uniformly bounded neighborhood of a geodesic Qvh�1�

for some Qv 2 G with Qvb D vb. Let � be a geodesic connecting b to vb. Let
N be a bounded neighborhood of the ray �.b.�/;1/. By the choice of the rays
�.�1; a.�//; �.b.�/;1/ and by the estimate in Lemma 3.4, for every z 2 G with
zb 6D vb the Lp-norm of the restriction of ˛.b; vb/C ˛.vb; zb/ to the set fy 2 G j
yx0 2 N g is uniformly bounded. By symmetry and the properties of the support of
the functions ˛.b; vb/, this implies as in the proof of Theorem 4.3 that! is a bounded
cocycle.

As a consequence, ! is a boundedLp.G;�/-valued Borel two-cocycle forG. By
construction, this cocycle is moreover nontrivial on a set of positive Haar measure on
G � G � G. Since Lp.G;�/ is a coefficient G-module in the sense of [19] (recall
that p 2 .1;1/ by assumption), Proposition 7.5.1 of [19] shows that ! defines an
element in H 2

cb.G;L
p.G;�//.

We are now left with showing that the cocycles constructed in this way define an
infinite-dimensional subspace of H 2

cb.G;L
p.G;�//.

Since G does not act transitively on its limit set, Lemma 2.11 shows that G
contains a free subgroup � with two generators consisting of rank-one elements
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which contains elements from infinitely many conjugacy classes of G. Using the
above notations, we may assume that � is generated by g, h. If ! is any Lp.G;�/-
valued bounded cocycle which defines a trivial cohomology class for � then there is
a bounded function � W � ! Lp.G;�/ such that

!.e; v; w/ D �.v/C v�.w/ � �.vw/:
By construction of the cocycle !, in this case there is an unbounded function

‰
 W � ! Lp.G;�/ such that

�.v/C v�.w/ � �.vw/ D ‰
 .v/C v‰
 .w/ �‰
 .vw/

whenever b, vb, wb are pairwise distinct. In other words, ��‰
 is the restriction to
the set of all v 2 � with vb 6D b of a Lp.G;�/-valued one-cocycle, i.e., a function
ˇ W � ! Lp.G;�/ which satisfies

ˇ.v/C vˇ.w/ � ˇ.vw/ � 0:

Since‰
 is unbounded and � is bounded, the map‰
 �� is unbounded and therefore
the one-cocycle determined in this way is non-trivial.

Now a one-cocycle is determined by its values on a generating set. On the other
hand, since the G-orbit of any pair of fixed points of rank-one elements in G is a
closed subset ofƒ�ƒ�, if .ai ; bi / 2 ƒ�ƒ are fixed points of elements gi 2 �
.i D 1; : : : ; k/ in distinct conjugacy classes in G then for each i we can choose the
function f in the above construction in such a way that ‰
 .g

k
j / D 0 for j 6D i and

all k 2 Z and such that ‰
 .g
k
i / is unbounded as k ! ˙1. This implies that there

are indeed infinitely many linearly independent distinct such classes which pairwise
can not be obtained from each other by adding a bounded function. This shows the
proposition.

7. Structure of the isometry group

In this section we use the results from Section 5 and Section 6 to complete the proof
of Theorem 1 from the introduction.

Proposition 7.1. Let X be a proper CAT.0/-space and let G < Iso.X/ be a closed
subgroup which contains a rank-one element. Then one of the following three possi-
bilities holds.

(1) G is elementary.

(2) G contains an open subgroupG0 of finite index which is a compact extension of
a simple Lie group of rank one.

(3) G is a compact extension of a totally disconnected group.
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Proof. LetG be a closed subgroup of the isometry group Iso.X/ of a proper CAT.0/-
spaceX . ThenG is locally compact. Assume thatG is non-elementary and contains
a rank-one element. Then by Lemma 5.2, the maximal normal amenable subgroupN
of G is compact, and the quotient L D G=N is a locally compact � -compact group.
Moreover, N acts trivially on the limit set ƒ of G.

By the solution to Hilbert’s fifth problem (see Theorem 11.3.4 in [19]), after
possibly replacing L by an open subgroup of finite index (which we denote again by
L for simplicity), the group L splits as a direct product L D H �Q where H is a
connected semisimple Lie group with finite center and without compact factors and
Q is totally disconnected.

We show next that one of the groups H;Q is trivial. For this assume that H is
nontrivial. Let H0 < G and Q0 < G be the preimage of H;Q under the projection
G ! L. ThenH0 is not compact and the limit setƒ0 � ƒ ofH0 < G is nontrivial.
Since Q commutes with H and the group N acts trivially on ƒ, the group Q0 acts
trivially onƒ0 (this is discussed in the proof of Proposition 4.3 of [15], and the proof
given there is valid in our situation as well). In particular, if ƒ0 consists of a single
point then G is elementary. Since G is non-elementary by assumption, ƒ0 contains
at least two points.

We claim that ƒ0 D ƒ. Since ƒ0 � ƒ is closed, by Lemma 2.8 it suffices to
show that the fixed points of every rank-one element of G are contained inƒ0. Thus
let g 2 G be a rank-one element. By Lemma 2.8, g acts on @X with north-south
dynamics, with attracting fixed point a 2 ƒ and repelling fixed point b 2 ƒ. Since
ƒ0 contains at least two points, if a 62 ƒ0 then there is a point � 2 ƒ0 �fa; bg. Write
g D g0q with g0 2 H0, q 2 Q0. Since g0 and q commute up to a compact normal
subgroup which fixes ƒ 	 ƒ0 pointwise, we have gk

0 � D gk
0q

k� D gk� ! a

(k ! 1). But gk
0 � 2 ƒ0 for all k > 0 and therefore by compactness we have

a 2 ƒ0 (which contradicts the assumption that a 62 ƒ0). Now a was an arbitrary
fixed point of a rank-one element in G and therefore ƒ0 D ƒ and Q0 fixes the limit
set of G pointwise. However, since G is non-elementary by assumption, in this case
the argument in the proof of Lemma 5.2 shows that Q0 is compact and hence Q is
trivial.

To summarize, if G is non-elementary then up to passing to an open subgroup of
finite index, either G is a compact extension of a totally disconnected group or G is
a compact extension of a connected semisimple Lie group H with finite center and
without compact factors.

We are left with showing that if the groupG is a compact extension of a connected
semisimple Lie group H with finite center and without compact factors then H is
simple and of rank one. Now Propositions 5.3 and 6.2 show thatH 2

cb.G;L
2.G;�// 6D

f0g. By Corollary 8.5.2 of [19], this implies that H 2
cb.H;L

2.H;�// 6D f0g as well.
By the super-rigidity result for bounded cohomology of Burger and Monod [8], we
conclude that H is simple of rank one (see [20], [15] for details of this argument).
The proposition is proven.
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Now we are ready for the proof of the corollary from the introduction (which also
follows from Corollary 1.24 of [12]). For this recall that a simply connected complete
Riemannian manifold zM of non-positive sectional curvature is called irreducible if
zM does not split as a non-trivial product. A parabolic isometry of zM is an isometry

which is not semisimple. We have

Corollary 7.2. Let M be a closed Riemannian manifold of non-positive sectional
curvature. If the universal covering zM of M is irreducible and if Iso. zM/ contains
a parabolic element, thenM is locally symmetric.

Proof. Let M be a closed Riemannian manifold of non-positive sectional curvature
with irreducible universal covering zM . The fundamental group 	1.M/ of M acts
cocompactly on the Hadamard space zM as a group of isometries. By the celebrated
rank-rigidity theorem (we refer to [3] for a discussion and for references), either
	1.M/ contains a rank-one element orM is locally symmetric of higher rank. These
two possibilities are exclusive.

Assume that 	1.M/ contains a rank-one element. By Lemma 5.2, the amenable
radical N of Iso. zM/ is compact and hence it fixes a point x 2 zM by convexity.
Moreover, it fixes the limit set of 	1.M/ pointwise. Since the action of 	1.M/ <

Iso. zM/ on zM is cocompact, the limit set ƒ of 	1.M/ is the entire ideal boundary
@ zM of zM . Then N fixes every geodesic ray issuing from x. This implies that N is
trivial.

By Theorem 1, either the isometry group of zM is an almost connected simple Lie
group G of rank one or Iso. zM/ is totally disconnected. In the first case, 	1.M/ is
necessarily a cocompact lattice in G D Iso. zM/ since the action of Iso. zM/ on zM is
proper and cocompact. The dimension of the symmetric space G=K associated to G
coincides with the cohomological dimension of any of its uniform lattices and hence
it coincides with the dimension ofM . But then the action of G on zM is open. Since
this action is also closed, the action is transitive and hence zM is a symmetric space
of rank one.

We are left with showing that if Iso. zM/ contains a parabolic element then the
isometry group of zM is not totally disconnected. Assume to the contrary that Iso. zM/

is totally disconnected. Since the action of Iso. zM/ on zM is cocompact, there is no
non-trivial closed convex Iso. zM/-invariant subset of zM . Since Iso. zM/ is totally
disconnected, by Theorem 5.1 of [12], point stabilizers of Iso. zM/ are open. Then
Corollary 3.3 of [10] implies that every element of Iso. zM/with vanishing translation
length is elliptic. This is a contradiction to the assumption that Iso. zM/ contains a
parabolic element.

Finally we show Corollary 2 from the Introduction.

Corollary 7.3. LetG be a semi-simple Lie groupwith finite center, no compact factors
and rank at least 2. Let � < G be an irreducible lattice, let X be a proper CAT.0/-
space and let � W � ! Iso.X/ be a homomorphism. If �.�/ is non-elementary and
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contains a rank-one element, then there is closed subgroup H of Iso.X/ which is
a compact extension of a simple Lie group L of rank one and there is a surjective
homomorphism � W G ! L.

Proof. Let � < G be an irreducible lattice and let � W � ! Iso.X/ be a homomor-
phism. Let H < Iso.X/ be the closure of �.�/. Then H is a closed subgroup of
Iso.X/ which admits a Haar measure �.

If �.�/ is non-elementary and contains a rank-one element then the same is true
for H . By Proposition 5.3 and Proposition 6.2, in this case the second bounded
cohomology group H 2

cb.H;L
2.H;�// is non-trivial. Via pullback by �, the second

bounded cohomology group H 2
b .�;L

2.H;�// is non-trivial as well.
By Proposition 4.2 of [8], via inducing we deduce that the second continuous

bounded cohomology group H 2
cb.G;L

Œ2.G=�;L2.H;�/// does not vanish. Here
LŒ2.G=�;L2.H;�// denotes the HilbertG-module of all measurable mapsG=� !
L2.H;�/ with the additional property that for each such map ' the function x !
k'.x/k is square integrable onG=� with respect to the projection of the Haar measure.
The G-action is the twisted action determined by the homomorphism �.

We can now conclude as in the proof of Proposition 5.2 of [15]. Namely, let� � G

be a Borel fundamental domain for the action of � on G. We obtain a measurable
cocycle ˇ W G �G=� ! H as follows. For z 2 � and g 2 G, let �.g; z/ 2 � be the
unique element such that gz 2 �.g; z/� and define ˇ.g; z/ D �.�.g; z//. Since the
rank of G is at least two by assumption, the results of Monod and Shalom [20] show
that if G is simple then there is a ˇ-equivariant map G=� ! L2.H;�/. However,
this implies that H is compact (see Section 3 of [20]) which is impossible since H
contains a rank-one element.

If G D G1 � G2 for semi-simple Lie groups G1; G2 with finite center and no
compact factor then the results of Burger and Monod [8], [9] show that via possibly
exchangingG1 andG2 we may assume that there is a mapG=� ! L2.H;�/ which
is equivariant with respect to the restriction of ˇ to G1. Since � is irreducible by
assumption, the action of G1 on G=� is ergodic [22]. By Lemma 5.2, the amenable
radical N of H is compact and we deduce as in [20] that there is a continuous
homomorphism  W G ! H=N . Since G is connected, the image  .G/ D H=N is
connected and hence by Proposition 7.1,H=L is a simple Lie group of rank one.
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