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Quasi-isometry invariance of relative filling functions

Sam Hughes, Eduardo Martínez-Pedroza, and Luis Jorge Sánchez Saldaña
(with an appendix by Ashot Minasyan)

Abstract. For a finitely generated groupG and collection of subgroups P , we prove that the relative
Dehn function of a pair .G;P / is invariant under quasi-isometry of pairs. Along the way, we show
quasi-isometries of pairs preserve almost malnormality of the collection and fineness of the associ-
ated coned-off Cayley graphs. We also prove that for a cocompact simply connected combinatorial
G-2-complex X with finite edge stabilisers, the combinatorial Dehn function is well defined if and
only if the 1-skeleton of X is fine. We also show that if H is a hyperbolically embedded subgroup
of a finitely presented groupG, then the relative Dehn function of the pair .G;H/ is well defined. In
the appendix, it is shown that the Baumslag–Solitar group BS.k; l/ has a well-defined Dehn function
with respect to the cyclic subgroup generated by the stable letter if and only if neither k divides l
nor l divides k.

1. Introduction

The main objects of study in this article are pairs .G;P /, where G is a finitely generated
group with a chosen word metric distG , and P is a finite collection of subgroups; note that
these assumptions will stand throughout the introduction.

Let hdistG denote the Hausdorff distance between subsets of G, and let G=P denote
the collection of left cosets gP for g 2 G and P 2 P .

For constants L � 1, C � 0 and M � 0, an .L; C;M/-quasi-isometry of pairs

qW .G;P /! .H;Q/

is an .L; C /-quasi-isometry qWG ! H such that the relation

¹.A;B/ 2 G=P �H=QW hdistH .q.A/; B/ < M º

satisfies the condition that the projections to G=P and H=Q are surjective.
This article is part of the program of investigating which properties of pairs .G;P /

are invariant under quasi-isometry of pairs. There are recent results in this direction. For
example, it is a consequence of the quasi-isometric rigidity of relative hyperbolicity [1],
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that if .G;P / is a relatively hyperbolic pair, P is a collection of non-relatively hyperbolic
groups, and .G;P / and .H;Q/ are quasi-isometric pairs, then H is hyperbolic relat-
ive to a refinement of Q as defined below. Under natural assumptions, quasi-isometries
of pairs between relatively hyperbolic pairs induce canonical homeomorphisms between
their Bowditch boundaries [11] and canonical isomorphisms of JSJ trees [10]. Outside
the framework of relatively hyperbolic groups, it is known that quasi-isometries of pairs
preserve the number of Bowditch’s filtered ends [19] and under technical hypotheses acyl-
indrical hyperbolicity [13]. For a recent survey, we direct the reader to [14].

For a pair .G;P /, Osin introduced the notions of finite relative presentation and rel-
ative Dehn function �G;P as natural generalisations of their standard counterparts for
finitely generated groups, see [23]. These notions characterise relatively hyperbolic pairs
.G;P / as the ones which are relatively finitely presented and have relative Dehn function
bounded from above by a linear function. By quasi-isometric rigidity of relative hyperbol-
icity, among relatively finitely presented pairs, quasi-isometries of pairs preserve having
linear relative Dehn function.

The main result of this article confirms the natural expectation that among relatively
finitely presented pairs, quasi-isometric pairs have equivalent relative Dehn functions.
This is not an elementary statement, as we describe below.

Convention 1.1 (�G;P is well defined). By �G;P is well defined, we mean that G is
finitely presented relative to P and the relative Dehn function �G;P takes only finite
values with respect to a finite relative presentation of G and P . From here on, when we
refer to a relative Dehn function, we always assume that it has been defined using a finite
relative presentation.

Let P be a collection of subgroups of group G. A refinement P � of P is a set of rep-
resentatives of conjugacy classes of the collection of subgroups ¹CommG.gPg

�1/WP 2 P

and g 2 Gº, where CommG.P / denotes the commensurator of the subgroup P in G.

Theorem A. Let .G;P /! .H;Q/ be a quasi-isometry of pairs and let P � be a refine-
ment of P . If the relative Dehn function �H;Q is well defined, then �G;P� is well defined
and �G;P� � �H;Q.

A phenomenon that occurs for pairs .G;P / is that being relatively finitely presented
does not imply that the relative Dehn function is well defined. This is in sharp contrast
with the standard framework where a finitely presented group always has a well-defined
Dehn function. The proof of Theorem A provides an insight into this phenomenon via the
following results on which our argument relies on.

In the framework of relatively hyperbolic groups, Bowditch introduced the notion of
fine graph [2]. A circuit in a simplicial graph is an embedded close path. A simplicial
graph � is fine if for every n � 0 and every edge e in � , there are finitely many circuits of
length less than or equal to n which contain e. This is weaker than the graph being locally
finite. The relationship between this notion and isoperimetric functions was made explicit
by Groves and Manning [8, Proposition 2.50, Question 2.51]. The following result can be
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interpreted as a homotopical version of [17, Theorem 1.3] where an analogous statement
is proved for homological Dehn functions.

Theorem B (Theorem 2.1). Let X be a cocompact simply connected combinatorial G-2-
complex with finite edge stabilisers. The combinatorial Dehn function�X of X takes only
finite values if and only if the 1-skeleton of X is a fine graph.

It is obvious that being fine is not a property preserved by quasi-isometries in the
class of graphs. For a pair .G; P /, together with a finite generating set S of G, one
can assign a connected and cocompact G-graph known as the coned-off Cayley graph
y�.G; P ; S/; a notion introduced by Farb [5], see Definition 4.6. It is an observation
that the quasi-isometry type of y�.G;P ; S/ is independent of the finite generating set S ;
throughout the introduction y�.G;P / denotes the coned-off Cayley graph with respect
to some finite generating set of G. In this framework, under some assumptions, we are
able to prove that fineness is preserved under quasi-isometry of pairs in the class of
coned-off Cayley graphs. A collection of subgroups P of a group G is reduced if for
any P;Q 2 P and g 2 G, then P and gQg�1 being commensurable subgroups implies
P D Q and g 2 P .

Theorem C (Theorem 5.15). Let qW .G; P / ! .H;Q/ be a quasi-isometry of pairs.
Suppose that P and Q are reduced. Then there is an induced quasi-isometry of graphs
yqW y�.G;P /! y�.H;Q/, and if y�.H;Q/ is a fine graph, then y�.G;P / is a fine graph.

The condition that the coned-off Cayley graph y�.G;P / is fine forces the collection P

to be almost malnormal (see Definition 6.5). It is an observation that any almost malnormal
collection of infinite subgroups is reduced. We prove that the property of being almost
malnormal is preserved under quasi-isometry of pairs up to taking a refinement.

Theorem D (Theorem 6.12). Let qW .G;P /! .H;Q/ be a quasi-isometry of pairs. If Q

is an almost malnormal collection of infinite subgroups, then any refinement P � of P is
almost malnormal and qW .G;P �/! .H;Q/ is a quasi-isometry of pairs.

The previous results can be linked to Osin’s definition of relative Dehn function�G;P
of a relatively finitely presented pair .G;P / via the following result. A connected graph �
is called fillable if, when considering � with the length metric obtained by regarding each
edge as a segment of length one, there is an integer k such that the coarse isoperimetric
function f �

k
takes only finite values, see Section 3 for definitions.

Theorem E (See Theorem 4.17). If .G;P / is a relatively finitely presented pair, then

(1) y�.G;P / is fillable.

(2) The relative Dehn function �G;P is well defined if and only if y�.G;P / is fine
graph.

Conversely, if y�.G;P / is fine and fillable, then .G;P / is a relatively finitely presented
pair, and hence �G;P is well defined.
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The following result is a restatement of a result of Osin [23, Theorem 2.53], see Pro-
position 4.8. This statement allows us to translate his definition of relative Dehn function
to the realm of coarse isoperimetric functions of coned-off Cayley graphs.

Theorem F (Osin). Let G be a group and let P be a collection of subgroups. Suppose
that �G;P is well defined. Then �G;P is equivalent to the coarse isoperimetric function
f
y�.G;P /
N of y�.G;P / for all sufficiently large integers N .

Let us describe the argument proving Theorem A using the results that have been
stated.

Proof of Theorem A. Let us first observe that we can assume that the collections P and Q

contain only infinite subgroups. First note that if P1 and Q1 are the collections obtained
by removing finite subgroups from P and Q, respectively, then qW .G;P1/! .H;Q1/ is
a quasi-isometry of pairs as well. Moreover, for an arbitrary pair .K;L/, adding or remov-
ing a finite subgroup of K to L preserves having a well-defined relative Dehn function,
and if the functions are well defined, they are equivalent, see, for example, [23, Theo-
rem 2.40].

Assume that P and Q consist only of infinite subgroups. Since .H;Q/ is relatively
finitely presented and �H;Q is well defined, Theorem E implies that y�.H;Q/ is fillable
and fine. Since y�.H;Q/ is a fine graph, it follows that Q is an almost malnormal collec-
tion. Then Theorem D implies that P � is an almost malnormal collection. Hence, both Q

and P � are reduced collections, and qW .G;P �/! .H;Q/ is a quasi-isometry of pairs.
Now we can invoke Theorem C to obtain a quasi-isometry yqW y�.G;P �/! y�.H;Q/ and
also obtain that y�.G;P �/ is fine. It is a standard result in the literature that being fillable
is a property preserved by quasi-isometry in the class of connected graphs, and any two
quasi-isometric graphs have equivalent coarse isoperimetric functions (see, for instance,
[3, Proposition III.H.2.2]). The quasi-isometry yq implies that y�.G;P �/ is fillable and
both y�.G;P �/ and y�.H;Q/ have equivalent coarse isoperimetric inequalities. Then The-
orem E implies that .G;P �/ is relatively finitely presented and �G;P� is well defined.
The proof concludes by invoking Theorem F.

In the class of finitely generated groups, being finitely presented is a quasi-isometry
invariant. We do not know the answer to the following general question.

Question 1.2. Suppose that qW .G;P /! .H;Q/ is a quasi-isometry of pairs and .H;Q/
is relatively finitely presented. Is .G;P / relatively finitely presented?

There is a rich class of pairs .G;P / with well-defined relative Dehn function. Hyper-
bolically embedded subgroups were introduced in [4] by Dahmani, Guirardel and Osin.
Given a groupG,X �G andH �G, letH ,!h .G;X/ denote thatH is a hyperbolically
embedded subgroup of G with respect to X .

Theorem G (Theorem 7.2). Let G be a finitely presented group and H � G be a sub-
group. If H ,!h G, then the relative Dehn function �G;H is well defined.
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In the context of Theorem G, the relative Dehn function�G;P is bounded from above
by a linear function if and only if G is hyperbolic relative to H , see [23]. It is well known
that the class of pairs .G;H/ such that H ,!h G properly extends relative hyperbolicity,
for examples, see [4].

In a preliminary version of this manuscript, we asked whether there exist pairs .G;P /
such that �G;P is well defined, but P is not hyperbolically embedded in G. In this
regard, consider the Baumslag–Solitar groups BS.k; l/ D ha; t j takt�1 D ali, where
k; l 2 Z n ¹0º. In Example 7.6, we show that BS.k; l/ does not have a well-defined Dehn
function with respect to the cyclic subgroup generated by the stable letter t if either k
divides l or l divides k. On the other hand, in the appendix Ashot Minasyan shows that
the converse holds, that is, if neither k − l nor l − k, then �BS.k;l/;hti is well defined.

2. Combinatorial Dehn functions and fine graphs

The goal of this section is to prove Theorem B. We use the notion of disk diagram in
a combinatorial complex; for definitions see, for example, [20]. We begin by recalling the
definition of a combinatorial Dehn function, then we prove each direction of Theorem B
individually as Lemmas 2.3 and 2.4. Note that Lemma 2.4 does not require the hypothesis
of finite edge stabilisers.

Suppose X is a combinatorial 2-complex and let cWS1 ! X be a closed path in X .1/

that is null-homotopic in X . Then there is a disk diagram i WD2 ! X spanning c, that is,
i is a combinatorial map and i.@D2/ D c. Let Area.D/ denote the number of faces of D
and define

ıX .c/ WD min¹Area.D/WD is a disk spanning cº;

the combinatorial Dehn function �X of X is defined to be

�X .n/ WD max¹ıX .c/W c is a closed path in X .1/; null-homotopic in X; with jcj � nº:

Unless otherwise stated, all graphs in this article are assumed to be simplicial. A circuit
in a simplicial graph is an embedded close path. We recall the following definition due to
Bowditch [2, Proposition 2.1]. A graph � is fine if for every n � 0 and every edge e in � ,
there are finitely many circuits of length less than or equal to n which contains e.

Theorem 2.1 (Theorem B). Let X be a cocompact simply connected combinatorial G-2-
complex with finite edge stabilisers. The combinatorial Dehn function�X of X takes only
finite values if and only if the 1-skeleton of X is a fine graph.

The next three lemmas prove the theorem. The method is essentially a van Kampen
diagram approach to the proof of [17, Theorem 1.3]. The first lemma is a triviality.

Lemma 2.2. Let X be a cocompact simply connected combinatorial G-2-complex with
finite edge stabilisers. Then each edge is contained in finitely many 2-cells.
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The next lemma proves the “only if” direction of Theorem 2.1.

Lemma 2.3. LetX be a cocompact simply connected combinatorialG-2-complex with fi-
nite edge stabilisers. If the combinatorial Dehn function�X ofX is well defined, thenX .1/

is a fine graph.

Proof. Let D be a cellular 2-disk. We say D is golden if D has an enumeration of its 2-
cells f1; : : : ; fk with the property that @fiC1 contains a 1-cell of the subcomplex induced
by f1 [ � � � [ fi , and there is a cellular map D ! X .

Let R be a 2-cell and f1WR ! X , then a simple counting argument yields there are
only finitely many golden disks with at most n � 0 faces making the following diagram
commute:

R X

D:

f1

Observe that by taking the minimal area filling for a circuit c of length n in X gives
rise to a golden disk D with at most �X .n/ many 2-cells. Now, there are only finitely
many 2-cells containing a given edge e, so by the previous paragraph, there are only
finitely many golden disksD containing e with at most�X .n/many 2-cells. In particular,
for each n � 0, there are only finitely many circuits in X of length less than or equal n
containing e. It follows that X .1/ is a fine graph.

The next lemma proves the “if” direction of Theorem 2.1. Note that we can drop the
hypothesis of finite edge stabilisers.

Lemma 2.4. LetX be a cocompact simply connected combinatorialG-2-complex. IfX .1/

is a fine graph, then the combinatorial Dehn function �X of X is well defined.

Proof. Let Yn denote the set of circuits of length less than or equal to n in X .

Claim. The set Yn is a G-set with finitely many orbits.

Let ¹e1; : : : ; erº be edges representing the orbits of theG-action onX .1/. Every circuit
in X of length less than or equal to n can be translated to contain some ei , the claim now
follows from fineness of X .1/.

Let An be an upper bound for the area of a circuit of length less than or equal to
n in X , and it is well defined by the previous claim. Let  be a closed path without
backtracks inX , then  can be expressed as a concatenation of closed paths 1 : : : k such
that 1 � k � Len./, for i D 1; : : : ; k, we have Len.i / � Len./ and each i is a circuit.
Now, filling each i , we have

Area./ �
kX
iD1

Area.i / �
kX
iD1

ALen.i / � kALen./ � Len./ALen./:

This yields a finite upper bound for�X .`/ and so we conclude that�X is well defined.
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Remark 2.5. One can define a combinatorial Dehn function of a 2-complex using circuits
instead of arbitrary closed paths. Let us call this function �circ

X . In this case,

�circ
X .n/ � �X .n/ � �

circ
X .n/;

where �circ
X is the superadditive closure of �circ

X . We do not know whether �circ
X .n/ is

equivalent to �X .n/. This resembles a conjecture of Mark Sapir of whether the Dehn
function of a finitely presented group is equivalent to a superadditive function (see [9]).

3. Coarse isoperimetric functions

To prove quasi-isometry invariance, we will use the less general version of "-fillings for
graphs and 2-complexes defined in [23]. The original definition, set up for essentially
arbitrary metric spaces, can be found in [3, Chapter III.H.2]. The main result of this section
is Proposition 3.2 – a generalisation of a result of Osin [23, Theorem 2.53] alluded to in
the introduction.

Let X be a 2-complex. A singular combinatorial loop cWS1 ! X is a combinatorial
structure on S1 and a continuous map such that for every open cell of S1, either f je is
a homeomorphism onto an open cell of X , or else f .e/ is contained in the 0-skeleton
of X .

Let c be a combinatorial cycle in X . An "-filling of c is a pair .P; ˆ/ consisting of
a triangulation P of a 2-disk D2 and a singular combinatorial map ˆWP .1/ ! X .1/, such
that ˆjS1 D c and the image under ˆ of each face of P is a set of diameter at most ".
Define jˆj to be the number of faces of ˆ and

Area".c/ WD min¹jˆjW .P;ˆ/ an "-filling of cº:

The coarse isoperimetric function of X is then defined to be

f X" .`/ WD sup¹Area".c/WLen.c/ � `º:

Definition 3.1. For two functions f; gWN ! N, we say that f is asymptotically less
than g, and we write f � g if there exist constants C;K;L 2 N such that

f .n/ � Cg.Kn/C Ln:

Further, we say f is asymptotically equivalent to g, and write f � g if f � g and g � f .

Proposition 3.2. Let X be a cocompact simply connected combinatorial G-2-complex.
If �X takes only finite values, then for N 2 N large enough, f XN takes only finite values
and f XN � �X .

Proof. Since X is a cocompact G-2-complex, there are only finitely many G-orbits of 2-
cells in X . Let ¹D1; : : : ;Dnº denote a representative set of orbits and let N be an integer
greater than the maximum diameter of each disk Di for i D 1; : : : ; n.
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First, we will show f XN � �X . Let cW S1 ! X be a singular combinatorial loop.
Let ˆWD ! X be a disk diagram of minimal area that fills cW S1 ! X . Barycentric
subdividing D twice to obtain D00 yields a simplicial disk such that the image of each
face in X has diameter less than N , i.e., .D00; ˆ/ is an N -filling of c. It follows that
Area".c/ � 12N�X .Len.c//. In particular, f XN � �X .

It remains to show that �X � f XN . Consider an N -filling .P; ˆ/ of a combinatorial
loop c in X .1/. Considering .P;ˆ/ as a 3N -filling, we may assume that each 0-cell of P
maps to a 0-cell ofX and each 1-cell of P maps to an edge path inX of length at mostN .
Thus, after subdividing P at most N times, we may assume that ˆ is cellular on P .1/.
For each 2-cell of the subdivided P , its boundary map determines a cellular loop in X
with length bounded by 3N . Now, we fill each such loop with some disk diagramD! X

to obtain a diagram for c inX which has area at most�X .3N /f X3N .Len.c//. In particular,
we conclude that �X .Len.c// � �X .3N /f X3N .Len.c//.

A connected graph � is fillable if, when considering � with the length metric obtained
by regarding each edge as a segment of length one, there is an integer k such that the
coarse isoperimetric function f �

k
takes only finite values.

Proposition 3.3 ([3, Proposition III.H.2.2]). If � and � 0 are quasi-isometric connected
graphs such that � is fillable, then � 0 is fillable and f �

k
� f �

0

k
for large enough k.

Remark 3.4. If a connected graph � is fillable, then there is a positive integerm such that
the complex obtained by attaching 2-cells to all circuits of length less than or equal to m
is simply connected.

4. Relative Dehn functions of groups

Definition 4.1 (Finite relative presentation). Let G be a group, P an arbitrary collection
of subgroups of G, and let S be a subset of G. We say that G is generated by S relative
to P if G is generated by the set � D S t

F
P2P .P � ¹1º/, equivalently, the natural

homomorphism
F D F.S/ � �

P2P

P ! G (4.1)

is surjective. In the case where S is finite, G is relatively finitely generated with respect
to P .

Let R � F be a set that normally generates the kernel of the above homomorphism,
then we say

G D hS;P j Ri (4.2)

is a presentation of G relative to P . If both S and R are finite, we say G is relatively
finitely presented with respect to P , or just, relatively finitely presented if the collection P

is clear from the context, and (4.1) is a relative finite presentation.



Quasi-isometry invariance of relative filling functions 9

Definition 4.2 (Relative Dehn function of a relative presentation). Let G D hS;P j Ri
be a relative presentation. For a word W over the alphabet � D S t

F
P2P .P � ¹1º/

representing the trivial element in G, there is an expression

W D

kY
iD1

f �1i Rifi ; (4.3)

where Ri 2 R and fi 2 F .
We say a function f WN ! N is a relative isoperimetric function of the presentation

GDhS;P jRi if, for any n2N, and any wordW as above of length� n, one can writeW
as in (4.3) with k � f .n/. The smallest relative isoperimetric function of G D hS;P j Ri
is called the relative Dehn function of G with respect to P , and it is denoted �G;P .

Definition 3.1 and Theorem 4.3 below justify the notation �G;P for the relative Dehn
function of G with respect to P .

Theorem 4.3 ([23, Theorem 2.34]). Let G be a finitely presented group relative to P .
Let �1 and �2 be the relative Dehn functions associated to two finite relative presenta-
tions. If �1 takes only finite values, then �2 takes only finite values, and �1 � �2.

Definition 4.4 (Osin–Cayley graph and Osin–Cayley complex). Assume G has a relative
presentation as in (4.2). We call the Cayley graph �.G;�/ with � D S t

F
P2P .P � ¹1º/

the Osin–Cayley graph and denote it by x�.G;P ; S/. Note that in general this graph is not
simplicial.

For each P 2 P , denote by RP the set of all words in the alphabet P � ¹1º that
represent the identity in P , that is, we have the presentation P D hP � ¹1º j RP i. We also
have the following presentation:

F D
D
S;
G
P2P

.P � ¹1º/ j
G
P2P

RP

E
:

The Osin–Cayley complex xX.G;P ; S/ is the 2-complex with 1-skeleton x�.G;P ; S/,
and we attach

• One 2-cell for each loop labelled with a word inR, which we call from now onR-cells.

• One 2-cell for each loop labelled by a word in
F
P2P RP , which we call from now on

P -cells.

Remark 4.5. By [23, Definition 2.31], the relative Dehn function�G;P can be described
as follows. For any combinatorial loop  WS1 ! xX.G;P ; S/, the relative area Arearel./

of  is the number of R-cells in a minimal disk diagram for  , where minimality is with
respect to the number of R-cells. Then

�G;P .n/ D max¹Arearel./W  is a loop in xX.G;P ; S/ of length at most nº:
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Definition 4.6 (Coned-off Cayley graph). Let G be a group, let P be an arbitrary collec-
tion of subgroups of G, and let S be a generating set of G. Denote by G=P the set of all
cosets gP with g 2 G and P 2 P . The coned-off Cayley graph of G with respect to P is
the graph y�.G;P ; S/ with the vertex set G [G=P and edges are of the following type:

• ¹g; gsº for s 2 S ,

• ¹x; gP º for g 2 G, P 2 P and x 2 gP .

We call vertices of the form gP cone points.

Note that y�.G;P ; S/ contains the Cayley graph of G with respect to the generating
set S , and the quasi-isometry type of y�.G;P ; S/ is independent of the finite generating
set S of G. This justifies the notation y�.G;P / that we use throughout the article.

Definition 4.7 (A natural quasi-isometry between x�.G; P ; S/ and y�.G; P ; S/). As-
sume G is generated by S relatively to P . Let

'W x�.G;P ; S/! y�.G;P ; S/

be the map defined as follows. Add a vertex at the midpoint of each edge e D ¹g; ghº of
x�.G;P ; S/ with h 2 P , p 2 P , and label in P . Consider the inclusion of the vertex set
of x�.G;P ; S/ into the vertex set of y� D y�.G;P ; S/. Observe that this map extends to
a G-equivariant cellular map between x�.G;P ; S/ and y�.G;P ; S/. Specifically, for an
edge e D ¹g; ghº with h 2 P and label in P of x�.G;P ; S/, the midpoint of e maps to the
vertex gP ; an edge ¹g; gsº with label in S is an edge that is common to both x�.G;P ; S/
and y�.G;P ; S/. Observe that the map 'W x�.G;P ; S/! y�.G;P ; S/ is indeed a .1; 1/-
quasi-isometry.

Proposition 4.8. Let G be a group and let P be a collection of subgroups. If �G;P is
well defined, then �G;P �f

y�.G;P /
N for all sufficiently large integers N .

Proof. This is a restatement of Osin’s result [23, Theorem 2.53] modulo the fact that
y�.G;P ; S/ and the Cayley graph x�.G;P ; S/ are quasi-isometric graphs, see Defini-
tion 4.7.

Proposition 4.9. Let G be a group, P be a collection of subgroups, and S a relative
generating set. Let zG be the free product F.S/ � �P2PP , and consider the short exact
sequence,

1! N ,! zG
'
�! G ! 1;

where ' is the homomorphism induced by the inclusion S [
Sn
iD1 Pi into G, and N is

the kernel of '. Then the coned-off Cayley graph y� D y�.G;P ; S/ is connected and for
any vertex x0 of y� , there is a group isomorphism

N ! �1.y�; x0/; g 7! Œg �;

where g is a combinatorial closed path in y� based at x0.
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Proof. Consider the splitting of zG as the fundamental group of the graph of groups Y that
consists of a vertex v labelled with the trivial group, one vertex vP labelled with each
P 2 P , respectively, one edge eP that joins v with vP for each P 2 P labelled with the
trivial group, and one edge loop es based at v for each s 2 S labelled with the trivial group.

Let T be the Bass–Serre tree of Y, see [24]. Since each subgroup P of zG survives
in the quotient G, we have that the subgroup N acts freely on T , and the quotient map
�W T ! T =N is a covering map. Moreover, G acts on the quotient T =N . We leave the
reader to verify that the quotient T =N is G-homeomorphic to the coned-off Cayley graph
y�.G;P ; S/.

Fix a vertex zx0 of T such that �.zx0/D x0. Then any element g ofN induces a unique
embedded path ˛g from zx0 to gzx0. Let g D � ı ˛g and note it is a closed combinatorial
path in y� based at x0. Since T is simply connected, standard covering space theory implies
that the map N ! �1.y�; �.x0// given by g 7! Œg � is a group isomorphism.

Definition 4.10 (Coned-off Cayley complex yX.G;P ; S/). Consider a finite relative pr-
esentation G D hS; P j Ri. The coned-off Cayley complex yX.G; P ; S/ of G is a 2-
dimensional G-complex with 1-skeleton the coned-off Cayley graph y�.G;P ; S/ defined
as follows.

We use the setup of Proposition 4.9. In particular, N is the normal subgroup of zG
generated by R, we have fixed a vertex x0 of y� , and we have a group isomorphism N !

�1.y�; x0/ given by g 7! Œg �, where g is a combinatorial closed path based at x0.
For g 2 G and r 2 R, let g � r be the translated closed path in y� without an initial

point, i.e., these are cellular maps from S1 ! y� . Consider the G-set � D ¹g:r W r 2 R;
g 2Gº of closed paths in y� . The complex yX is then obtained by attaching a 2-cell to y� for
every closed path in �. In particular, the pointwise G-stabiliser of a 2-cell of yX coincides
with the pointwise G-stabiliser of its boundary path. The natural isomorphism from N to
�1.y�; �.x0// implies that yX is simply connected. Moreover, the G-action is cocompact
since R is finite.

Definition 4.11 (A natural map between xX.G;P ; S/ and yX.G;P ; S/). There exists aG-
map 'W xX.G;P ; S/! yX.G;P ; S/ that extends the natural quasi-isometry

'W x�.G;P ; S/! y�.G;P ; S/:

In particular, we have a commutative diagram

x�.G;P ; S/ y�.G;P ; S/

xX.G;P ; S/ yX.G;P ; S/:

'

'

Specifically, every R-cell in xX.G;P ; S/ is sent homeomorphically to the corresponding
2-cell in yX.G;P ; S/, while every P -cell in xX.G;P ; S/ is collapsed to a star-like 1-
complex as we see in Figure 1.
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P

Figure 1. The image of the boundary of a P -cell on x�.G;P ; S/ under the quasi-isometry '.

Remark 4.12. The following statements are straightforward to verify from the definition
of 'W xX.G;P ; S/! yX.G;P ; S/ and Figure 1. Denote by � yX the combinatorial Dehn
function of yX.G;P ; S/.

(1) Let y W S1 ! yX.G;P ; S/ be a loop with no backtracks in the coned-off Cayley
complex. Then we can pull back y to a loop  WS1 ! xX.G;P ; S/ in such a way
that the following diagram commutes:

S1

9Š

zz

y

$$

x�.G;P ; S/
'

// y�.G;P ; S/:

Let D ! xX.G;P ; S/ be a disk diagram filling a combinatorial loop  W S1 !
xX.G;P ; S/. Then there exists a disk diagram yD ! yX.G;P ; S/ so that the fol-

lowing diagram commutes:

S1

// xX.G;P ; S/

'
// yX.G;P ; S/

@D // D //

OO

yD:

OO

(2) Let  WS1! xX.G;P ; S/ be a combinatorial loop of length n, then we can push it
to a loop y D ' ı  WS1 ! yX.G;P ; S/ of length at most 2n, that is, we have the
following commutative diagram:

S1



zz

'ı

$$

x�.G;P ; S/
'

// y�.G;P ; S/:
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Let yD ! yX.G;P ; S/ be a disk diagram filling the cycle y D ' ı  . Then there
exists a disk diagram D ! xX such that the following diagram commutes:

xX.G;P ; S/
'
// yX.G;P ; S/ S1

y
oo

D //

OO

yD

OO

@ yD:_?
oo

(3) In both items above, Arearel.D/ D Area. yD/.

Proposition 4.13. Let G D hS;P j Ri be a finite relative presentation, and let �G;P
and yX be the corresponding relative Dehn function and coned-off Cayley complex, re-
spectively. Then �G;P .n/ � � yX .n/ for every n 2 N.

Proof. Let y W S1 ! yX.G;P ; S/ be a loop of length n with no backtracks in the coned-
off Cayley complex. By the first item of Remark 4.12 and considering a minimal relative
area disk diagram D! xX.G;P ; S/ filling a pullback cycle y WS1 ! y�.G;P ; S/ of  , it
follows that

�G;P .jy j/ � �G;P .j j/ � Arearel.D/ D Area. yD/ � Area.y/;

where the equality comes from the third item of Remark 4.12. Therefore, �G;P .n/ �
� yX .n/ for all n 2 N. Analogously, let  W S1 ! xX.G;P ; S/ be a combinatorial loop.
By the second item of Remark 4.12 and considering a minimal area disk diagram yD !
yX.G;P ; S/ filling y D ' ı  , it follows that

Arearel./ � Arearel.D/ D Area. yD/ � � yX .jy j/ � � yX .2j j/;

and hence �G;P .n/ � � yX .2n/ for all n 2 N.

The following corollary is a direct consequence of Theorem 2.1 and Proposition 4.13.

Corollary 4.14. Let G be finitely presented relative to a collection of subgroups P . The
following statements are equivalent:

(1) The relative Dehn function �G;P takes only finite values.

(2) The graph y�.G;P / is fine.

The proof of [8, Proposition 2.50] contains an argument proving .1/ implies .2/ of the
above corollary.

The following corollary is a straightforward consequence of Propositions 4.13 and 3.2.

Corollary 4.15. Let G be a group finitely presented relative to a finite collection of sub-
groups P . If �G;P takes only finite values, then y�.G;P / is fillable for some integer m.

Proposition 4.16. LetG be a group finitely generated by S with respect to P . If the graph
y�.G;P ; S/ is connected, fine, cocompact, and k-fillable, then G is finitely presented rel-
ative to P .
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Proof. We use the setup of Proposition 4.9. In particular, N is the normal subgroup of zG
generated by R, we fix a vertex x0 of y� D y�.G;P ; S/, and we have a group isomorphism
 WN ! �1.y�; x0/.

Since y� is k-fillable, there is an integerm such that the complex yX obtained by attach-
ing 2-cells with boundary paths the circuits of length at most m is simply connected, see
Remark 3.4.

Since y� is fine and there are finitely many G-orbits of edges, there are finitely many
G-orbits of circuits of length at mostm. Let ¹1; : : : ; `º be a collection of representatives
of circuits of length m, and after translations assume that each i contains the vertex x0
corresponding to the identity element of G. Then each i defines an element of the funda-
mental group �1.y�; x0/. Let ri 2 N be defined by  .ri / D i .

Since yX is simply connected, we have that �1.y�; x0/ is generated by the closed paths
arising as concatenations of the form ˛g � i � x̨g for g 2 zG, where ˛g is the projection
via � of the unique path from zx0 to g:zx0. Equivalently, N is generated by the elements
grig

�1 for g 2 zG. We have shown that N is normally generated by R D ¹r1; : : : ; r`º.
Since y� D y�.G;P / is cocompact, the collection P is finite. Therefore, hS;P j Ri is

a finite relative presentation of G.

Summarising the results of this section, we obtain Theorem 4.17 below.

Theorem 4.17 (Theorem E). Let G be a group finitely generated relative to a finite col-
lection of subgroups P . If G is finitely presented relative to P , then

(1) y�.G;P / is fillable.

(2) The relative Dehn function �G;P is well defined if and only if y�.G;P / is fine
graph.

Conversely, if y�.G;P / is fine and fillable, then G is finitely presented relative to P and
hence �G;P is well defined.

Proof. This follows from Corollaries 4.14, 4.15 and Proposition 4.16.

Note that Theorem E from the introduction is a particular case Theorem 4.17.

5. Fineness and quasi-isometries of pairs

In this section, we will prove Theorem C from the introduction. The heart of the argu-
ment is establishing Proposition 5.6 which gives conditions on a quasi-isometry of pairs
qW .G;P /! .H;Q/ to induce a quasi-isometry of coned-off Cayley graphs. The remainder
of the section then works towards replacing the geometric-set-theoretic conditions on q
with algebraic conditions on P and Q. This yields Proposition 5.12. Finally, we give
a proof of Theorem C.

Another equivalent definition of Bowditch’s fine graphs is used in this section [2,
Proposition 2.1].
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Definition 5.1 (Fine). Let � be a graph and let v be a vertex of � . Let

Tv� D ¹w 2 V.�/W ¹v;wº 2 E.�/º

denote the set of the vertices adjacent to v. For x; y 2 Tv� , the angle metric †v.x; y/ is
the length of the shortest path in the graph � n ¹vº between x and y, with †v.x; y/ D1
if there is no such path. The graph � is fine at v if .Tv�;†v/ is a locally finite metric
space. The graph � is fine at C � V.�/ if � is fine at v for all v 2 C . The graph � is
a fine graph if it is fine at every vertex.

Definition 5.2 (Quasi-isometry of pairs). Consider two pairs .G;P / and .H;Q/, whereG
andH are finitely generated groups with chosen word metrics distG and distH with respect
to some finite generating sets. Denote the Hausdorff distance between subsets of H by
hdistH . An .L; C /-quasi-isometry qWG ! H is an .L; C; M/-quasi-isometry of pairs
qW .G;P /! .H;Q/ if the relation

Pq D ¹.A;B/ 2 G=P �H=QW hdistH .q.A/; B/ < M º

satisfies that the projections into G=P and H=Q are surjective.

In this section, we explicitly use the relational approach of the notion of a function
between sets: a function f from A to B is a subset of A�B so that for every a 2 A, there
is a unique b 2 B such that .a; b/ 2 f .

The proof of Theorem C, the main objective of this section, relies on the study of the
relation Pq defined by a quasi-isometry of pairs qW .G;P /! .H;Q/. We will show that in
the case where Pq defines a bijectionG=P !H=Q, the coned-off Cayley graphs y�.G;P /
and y�.H;Q/ share global a local geometric conditions, see Proposition 5.6. In the second
part of the section, we provide algebraic conditions guaranteeing that the relation Pq is
a bijection, see Proposition 5.12.

Remark 5.3. Note that in Definition 5.2, the notion of a quasi-isometry of pairs is inde-
pendent of the chosen finite generating sets for G and H . In the case where we want
to keep track of specific generating sets we use the following notation. If G and H are
groups generated by finite generating sets S0 and T0, respectively, by a quasi-isometry of
pairs .G;P ; S0/! .H;Q; T0/, we mean a quasi-isometry of pairs .G;P /! .H;Q/ with
respect to the word metrics induced by S0 and T0.

Remark 5.4. If P is a finite collection, then the metric space .G=P ; hdist/ is locally
finite. Indeed, when fixing P 2 P and r > 0, there are finitely many left cosets in G=P
such that

hdist.P; gP / < r:

Moreover, the left G-action on G=P by multiplication on the left preserves the Hausdorff
distance hdist between subsets of G and hence it is an action by isometries.
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Remark 5.5. If qW .G;P /! .H;Q/ is an .L; C;M/-quasi-isometry of pairs, and Pq is
a function G=P ! H=Q, then

1

L
hdist.A;B/ � C � 2M � hdist. Pq.A/; Pq.B// � L hdist.A;B/C C C 2M:

In particular, PqW .G=P ; hdist/! .H=Q; hdist/ is a quasi-isometry.

The main technical result of this section is the following proposition. Note that given
a connected graph � , we consider the vertex set as a metric space with metric induced by
the path metric. In particular, a quasi-isometry between graphs is a function of the vertex
sets satisfying the usual axioms.

Proposition 5.6. Let G and H be groups, let S � G and T � H , and let S0 � S and
T0 � T be finite generating sets of G and H , respectively. Consider collections P and Q

of subgroups of G and H , respectively. Let qWG ! H be a function.
Suppose q is a quasi-isometry �.G; S/ ! �.H; T /, yq is a quasi-isometry of pairs

.G;P ; S0/! .H;Q; T0/, and Pq is a bijection G=P ! H=Q.

(1) If yq D q [ Pq, then yq is a quasi-isometry y�.G;P ; S/! y�.H;Q; T /.

(2) If y�.H;Q; T / is fine at cone vertices, then y�.G;P ; S/ is fine at cone vertices.

Remark 5.7. There are algebraic conditions on P and Q that imply that Pq is a bijection,
see Proposition 5.12.

Corollary 5.8. Suppose that qW .G;P /! .H;Q/ is a quasi-isometry of pairs and Pq is
a bijection. Then yqW y�.G;P /! y�.H;Q/ is a quasi-isometry, and if y�.H;Q/ is a fine
graph, then y�.G;P / is a fine graph.

The following argument is patterned from the proof of [18, Proposition 5.4].

Proof of Proposition 5.6. Suppose qW�.G;S/! �.H;T / is a .xL; xC/-quasi-isometry and
qW .G;P ; S0/! .H;Q; T0/ is a .L; C;M/-quasi-isometry of pairs.

For any path ˛ D Œv0; v1; : : : ; v`� in y�.G;P ; S/, let yq.˛/ denote a path in y�.H;Q; T /
from yq.v0/ to yq.v`/ obtained as the concatenation of paths ˇ0; : : : ; ˇ`�1, where ˇi is
a path from yq.vi / to yq.viC1/ defined as follows:

(1) If vi and viC1 are elements of G, then ˇi is a geodesic in �.H; T / from q.vi / to
q.viC1/. Since qW�.G; S/! �.H; T / is a .xL; xC/-quasi-isometry, ˇi has length
bounded by xLC xC .

(2) Suppose vi 2 G and viC1 2 G=P . Observe that vi is an element of the left
coset viC1. Since qW .G;P ; S0/ ! .H;Q; T0/ is an .L; C; M/-quasi-isometry
of pairs, there is a geodesic of length at mostM in �.H;T0/ from q.vi / to an ele-
ment w of the left coset Pq.viC1/. Let ˇi be the concatenation of this geodesic in
�.H; T0/ followed by the edge between w and the cone vertex Pq.viC1/. Observe
that ˇi is a path of length at most M C 1 in y�.H;Q; T /.
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(3) If vi 2 G=P and viC1 2 G, then ˇi is defined in an analogous way as in the
previous case, and also has length at most M C 1.

Observe that jyq.˛/j � .xL C xC CM C 1/j˛j. The above inequality applied in the case
where ˛ is a geodesic between vertices x and y of y�.G;P ; S/ implies that

disty�.H;Q;T /.yq.x/; yq.y// � .xLC xC CM C 1/ disty�.G;P ;S/.x; y/

for any pair of vertices x, y of y�.G;P ; S/. By symmetry, an analogous inequality holds
for vertices of y�.H;Q/. Since Pq is a bijection, the definition of yq.˛/ shows that ˛ passes
through a cone vertex A if and only if yq.˛/ passes through the cone vertex Pq.A/. We sum-
marise this discussion in the following lemma.

Lemma 5.9. There are constants yL � 1 and yC � 0 such that

(1) The function yq is a .yL; yC/-quasi-isometry from y�.G;P ; S/ to y�.H;Q; T /.
(2) Let ˛ be a path in y�.G;P ; S/.

(a) For any A 2 G=P , ˛ passes through the cone vertex A if and only if yq.˛/
passes through the cone vertex Pq.A/.

(b) jyq.˛/j � yL j˛j.

We prove the contrapositive of the second statement of the proposition. See Figure 2
for a schematic of the argument that follows. Suppose that y�.G;P ; S/ is not fine at cone
vertices. Then there is P 2 P such that .TP y�;†P / is not locally-finite. Let r > 0 and let
¹giº � P be an infinite subset such that †P .gi ; gj / � r for every i , j . Let ˛i;j be a path
in y�.G;P ; S/ from gi to gj of length at most r that does not contain the cone vertex P .
Let Q denote the left coset Pq.P /. Let i be a geodesic in �.H; T0/ from an element hi
ofQ to q.gi / such that distH .hi ; q.gi //D distH .Q;q.gi //. Since q is a .L;C;M/ quasi-
isometry of pairs, each i has length at most M .

Let us prove that the set ¹hiº is infinite. Suppose, for contradiction, that ¹hiº is a finite
set. Since T0 is a finite generating set, �.H;T0/ is a locally finite graph and hence it admits
only finitely many paths of length at most M with initial vertex in ¹hiº. Since each i has
length at most M with initial vertex in ¹hiº, it follows that the set ¹q.gi /º is finite and,
in particular, bounded. Since q is a quasi-isometry �.G; S0/! �.G; T0/, it follows that
the set ¹giº is a bounded subset of vertices in the locally finite graph �.G; S0/, hence the
set ¹giº is finite, a contradiction.

To conclude the proof, we show that y�.H;Q; T / is not fine at the cone vertex Q.
Since ¹hiº is an infinite subset of Q, it is enough to show that †Q.hi ; hj / � r yL CM
for any i , j . Consider the path ˇi;j from hi to hj obtained as the concatenation of the
path i from hi to yq.gi /, followed by the path yq.˛i;j / from yq.gi / to yq.gj /, and then
the path xj from yq.gj / to hj . The paths i and j have length bounded by M , and they
do not contain the cone vertex Q as they are paths in �.H; T0/; the path yq.˛i;j / has
length at most r yL and does not contain the cone vertex Q by Lemma 5.9. Therefore,
†Q.hi ; hj / � ji j C jyq.˛i;j /j C jj j � 2M C r yL as desired. This completes the proof of
Proposition 5.6.
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Figure 2. Illustration of the proof of Proposition 5.6.

The goal for the remainder of this section is to give algebraic conditions on P and Q

to ensure Pq is a bijection. The following key definition will provide such criteria.

Definition 5.10 (Reduced collection). A collection of subgroups P of a group G is
reduced if for any P;Q 2 P and g 2 G, then P and gQg�1 being commensurable sub-
groups implies P D Q and g 2 P .

Remark 5.11. If P is a reduced collection of subgroups of a group G, then

P D CommG.P / for any P 2 P :

Proposition 5.12. Let qW .G;P /! .H;Q/ be a .L;C;M/-quasi-isometry of pairs. Then

(1) Pq is a surjective function G=P ! H=Q if Q is reduced.

(2) Pq is a bijection G=P ! H=Q if P and Q are reduced.

There are different versions of the following lemma in the literature: [21, Lemma 2.2],
[16, Lemma 4.7] and [12, Proposition 9.4], the statement below is taken from the later
reference. For A � G, Nk.A/ denotes the closed neighbourhood of A in .G; distG/.

Lemma 5.13. LetG be a finitely generated group with word metric distG . Let gP and fQ
be arbitrary left cosets of subgroups of G. Then for any k > 0 there is M > 0 such that

Nk.gP / \Nk.fQ/ � NM .gPg
�1
\ fQf �1/:

Lemma 5.14. Let G be a finitely generated group with a word metric distG , let P and Q
be subgroups, and let g 2 G. Then P and gQg�1 are commensurable subgroups if and
only if hdistG.P; gQ/ <1.
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Proof. Suppose K is a finite index subgroup of P and gQg�1. Then hdist.K; P / <1
and hdist.K; gQg�1/ are finite. Since hdist.gQg�1; gQ/ � dist.1; g/ < 1, it follows
that

hdist.P; gQ/ � hdist.P;K/C hdist.K; gQg�1/C hdist.gQg�1; gQ/ <1:

Conversely, suppose hdist.P; gQ/ is finite. Then P � P \Nk.gQ/ for some k, and
therefore Lemma 5.13 implies that P � NM .P \ gQg

�1/ for some M . It follows that
P \ gQg�1 is a finite index subgroup of P . In an analogous way, one shows that P \
gQg�1 is a finite index subgroup of gQg�1. Whence, P and gQg�1 are commensurable
subgroups.

Proof of Proposition 5.12. To prove the first statement, we only need to show that the
relation Pq is a function. Suppose that Q is reduced and the pairs .A;h1Q1/ and .A;h2Q2/
belong to Pq. Then h1Q1; h2Q2 2 H=Q and hdistH .h1Q1; h2Q2/ < 1. Lemma 5.14
implies that h1Q1h�11 and h2Q2h�12 are commensurable subgroups. Since Q is reduced,
it follows that Q1 D Q2 and h2 2 h1Q1. In particular, h1Q1 D h2Q2 and hence Pq is
a function. The second statement of the lemma follows from the first one.

We are now ready to prove Theorem C from the introduction.

Theorem 5.15 (Theorem C). Let qW .G;P /! .H;Q/ be a quasi-isometry of pairs. Sup-
pose P and Q are reduced finite collections. Then there is an induced quasi-isometry of
graphs yqW y�.G;P /! y�.H;Q/, and if y�.H;Q/ is a fine graph, then y�.G;P / is a fine
graph.

Proof. The result follows from applying Proposition 5.12 to Corollary 5.8.

6. Almost malnormal collections and quasi-isometries of pairs

In this section, we will prove Theorem D from the introduction. First, we introduce
a refinement P � of a collection P . In Proposition 6.3, we show under a mild hypothesis
that .G;P / and .G;P �/ are quasi-isometric pairs under the identity map.

Definition 6.1. Let P be a collection of subgroups of a group G. A refinement P � of P

is a set of representatives of conjugacy classes of the collection of subgroups

¹CommG.gPg
�1/WP 2 P and g 2 Gº:

Remark 6.2. Observe that for a collection of subgroups P of a groupG, there is a refine-
ment P � such that each of its elements are of the form CommG.P / for some P 2P . This
is a consequence of CommG.gPg

�1/ D g CommG.P /g
�1 for each subgroup P of G.

Proposition 6.3. Let P � be a refinement of a finite collection of subgroups P of a finitely
generated group G. If P is a finite index subgroup of CommG.P / for every P 2 P , then
.G;P / and .G;P �/ are quasi-isometric pairs via the identity map on G.
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Proof. Let P D ¹P1; : : : ; Pkº. By the previous remark, we may assume that every sub-
group in P � is of the form CommG.P / for some P 2 P . Let qWG ! G be the identity
map. Since q is a .1; 0/-quasi-isometry, it is enough to show that there is M > 0 such that
the relation

Pq D ¹.A;B/ 2 G=P �G=P �W hdist.A;B/ < M º

satisfies that it projects surjectively on G=P and on G=P �.
For any Pi 2 P , note that hdist.Pi ;CommG.Pi // <1 since Pi has finite index in

CommG.Pi /. Let

M1 D max¹hdist.Pi ;CommG.Pi //W 1 � i � kº:

By definition of P �, for any Pi , there is Qi 2 P � and gi 2 G such that CommG.Pi / D

giQig
�1
i . In particular, hdist.CommG.Pi /; giQi / is finite. Let

M2 D max¹hdist.CommG.Pi /; giQi /W 1 � i � kº:

LetM >M1 CM2. Then for any gPi 2 G=P , .gPi ; ggiQi / 2 Pq. On the other hand,
if gQ 2 G=P �, then Q D CommG.P / for some P 2 P and hence .gP; gQ/ 2 Pq.

Remark 6.4. Note that in the previous proposition if P is infinite, the map PqWG=P !
G=P � must be finite-to-one. Otherwise after conjugating, there will be a sequence of sub-
groups Pi � CommG.P0/ such that jCommG.P0/ W Pi j !1, in particular, the sequence
of Hausdorff distances hdist.CommG.P0/; Pi / is not bounded.

Definition 6.5. A collection of subgroups P of a group G is almost malnormal if for any
P;P 0 2 P and g 2 G, either gPg�1 \ P 0 is finite, or P D P 0 and g 2 P .

Remark 6.6. If P is an almost malnormal collection of infinite subgroups of a group G,
then P is reduced.

Remark 6.7. If a group G acts by automorphisms on a fine graph � such that edge sta-
bilisers are finite and P is a collection of representatives of conjugacy classes of vertex
stabilisers, then P is an almost malnormal collection.

Proposition 6.8. Let qW .G;P /! .H;Q/ be a quasi-isometry of pairs. If Q is an almost
malnormal finite collection of infinite subgroups and P is a finite collection, then any
refinement P � of P is almost malnormal.

The proof of Proposition 6.8 relies on the following lemmas.

Lemma 6.9. Let P be a collection of subgroups of a groupG. Suppose P is a finite index
subgroup of CommG.P / for every P 2 P . Then any refinement P � of P is a reduced
collection.

Proof. Since commensurable subgroups have equal commensurator,

CommG.CommG.P // D CommG.P /
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for every P 2P . Let P1;P2 2P such that CommG.P1/ and CommG.P2/ are in P �, and
let g 2 G. Suppose CommG.P1/ and g CommG.P2/g

�1 are commensurable subgroups.
Then

CommG.P1/ D CommG.CommG.P1// D CommG.g CommG.P2/g
�1/

D CommG.CommG.gP2g
�1// D CommG.gP2g

�1/

D g CommG.P2/g
�1:

Since, by definition, P � does not have two subgroups that are conjugate to each other,
it follows that CommG.P1/ D CommG.P2/ and g 2 CommG.P1/. Therefore, P � is
reduced.

Lemma 6.10. Let P be a finite collection of infinite subgroups of a finitely generated
group G. Then P is almost malnormal if and only if for any A;B 2 G=P , either A D B
or Nn.A/ \Nn.B/ is a finite subset of G for every n.

Proof. Suppose that P is an almost malnormal collection of infinite subgroups. Let g1P1;
g2P2 2 G=P and suppose that Nn.g1P1/ \Nn.g2P2/ is an infinite (and hence unboun-
ded) subset of G for some integer n. By Lemma 5.13, there is an integer m such that
Nn.g1P1/\Nn.g2P2/�Nm.g1P1g

�1
1 \ g2P2g

�1
2 /. It follows that g1P1g�11 \ g2P2g

�1
2

is an infinite subgroup and hence P1 D P2 and g�11 g2 2 P1 by almost malnormality.
Therefore, g1P1 D g2P2.

Conversely, suppose that for any A; B 2 G=P , either A D B or Nn.A/ \ Nn.B/ is
a finite set for every n. Let P; P 0 2 P and g 2 G and suppose that gPg�1 \ P 0 is an
infinite subgroup. It follows that there is n > 0 such that Nn.gP / \Nn.P

0/ is an infinite
subset of G. Hence gP D P 0 and, in particular, P D P 0 and g 2 P .

Lemma 6.11. Let qW .G;P / ! .H;Q/ be a quasi-isometry of pairs. Suppose that P

and Q are finite collections, and Q is reduced. If Q is of finite index in CommH .Q/ for
every Q 2 Q, then P is of finite index in CommG.P / for every P 2 P .

Proof. Since Q is reduced, Pq is a function from G=P ! G=Q. Since both P and Q

are finite collections, it follows that PqW .G=P ; hdist/! .H=Q; hdist/ is a quasi-isometry
between locally finite metric spaces. Suppose thatP 2P has infinite index in CommG.P /.
Lemma 5.14 implies that there is an infinite collection of left cosets A D ¹giP W i 2 I º

such that hdist.giP; gjP / <1 for any i; j 2 I . By local finiteness of .G=P ; hdist/, the
collection A is an unbounded subset of G=P . It follows that B D ¹Pq.giP /W i 2 I º is an
unbounded subset of H=Q. Since Q is a finite collection, and Pq.giP / D hiQi for some
hi 2H andQi 2Q, the pigeonhole principle implies that we can assume that allQi ’s are
a fixed Q 2 Q. By Lemma 5.14, the subgroup Q has infinite index in CommH .Q/.

Proof of Proposition 6.8. Suppose that qW .G;P /! .G;Q/ is a quasi-isometry of pairs.
Since Q is an almost malnormal collection of infinite subgroups, it is a reduced collection
and every element of Q has a finite index in its commensurator. Since P and Q are finite
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collections, Lemma 6.11 implies that every element of P has a finite index in its commen-
surator. Let P � be a refinement of P in G. By Proposition 6.3, there is a quasi-isometry
of pairs pW .G;P �/! .G;P /. Then the composition r D p ı q is an .L; C;M/-quasi-
isometry of pairs .G;P �/! .H;Q/. Lemma 6.9 implies that P � is a reduced collection.
Therefore, Pr is a bijection G=P �!H=Q by Proposition 5.12. To conclude that P � is an
almost malnormal, we verify the hypothesis of Lemma 6.10.

Claim. The collection P � is a finite collection of infinite subgroups.

Since P is finite, then P � is finite. Every element of P � is a conjugate of a sub-
group of the form CommG.P / for some P 2 P , hence it is enough to show that P

contains only infinite subgroups. Observe that any P 2 P is an infinite subgroup since
hdist. Pq.P /;Q/ <1 for some Q 2 H=Q and every subgroup in Q is infinite.

Claim. For any A;B 2 G=P �, either A D B or Nn.A/ \Nn.B/ is a finite subset of G
for every n.

Let A;B 2 G=P � and suppose that A ¤ B . Since Pr WG=P � ! H=Q is a bijection, it
follows that Pr.A/ and Pr.B/ are distinct elements of H=Q. Since Q is an almost malnor-
mal collection, Lemma 6.10 implies that for any integer m, the intersection Nm. Pr.A// \

Nm. Pr.B// is a finite (and hence bounded) subset of H . Since r WG ! H is a quasi-
isometry, it follows that for every n, the intersection Nn.A/ \Nn.B/ is a bounded (and
hence finite) subset of G.

Theorem 6.12 (Theorem D). Let qW .G;P /! .H;Q/ be a quasi-isometry of pairs. If Q

is an almost malnormal finite collection of infinite subgroups and P is a finite collection,
then any refinement P � of P is almost malnormal and qW .G;P �/! .H;Q/ is a quasi-
isometry of pairs.

Proof. The result follows from Propositions 6.3 and 6.8.

7. Examples

In this section, we show that there are examples of pairs .G;H/ with a well-defined rel-
ative Dehn function outside of the context of relatively hyperbolic groups. Hyperbolically
embedded subgroups were introduced in [4] by Dahmani, Guirardel and Osin. Given
a group G, X � G and H � G, let H ,!h .G; X/ denote that H is a hyperbolically
embedded subgroup of G with respect to X . There is a characterisation in [18] of H
being hyperbolically embedded intoG that fits into the context of our Theorem E, namely,
in terms of fine vertices in coned-off Cayley graphs (see Definition 5.1).

Proposition 7.1 ([18, Proposition 1.4]). Let G be a group, X � G and H � G. Then
H ,!h .G; X/ if and only if y�.G;H;X/ is connected, hyperbolic, and fine at cone ver-
tices.
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The following theorem provides our examples.

Theorem 7.2 (Theorem G). Let G be a finitely presented group and H � G be a sub-
group. If H ,!h G, then the relative Dehn function �G;H is well defined.

The proof of the theorem is discussed after the following lemma.

Lemma 7.3. Let G be a finitely generated group and H a finitely presented subgroup.
Then G is finitely presented if and only if G is finitely presented relative to H .

Proof. Suppose that G has a finite presentation hA j Ri. Let RH be the collection of
all relations in H over the generating set H � ¹1º, that is, H D hH � ¹1º j RH i. Let
¹h1; : : : ; hkº be a finite generating set of H . Then, there is a word wi over the alphabet A
that represents hi . Observe that

hA t .H � ¹1º/ j R;RH ; h1 D w1; : : : ; hk D wki

yields a finite relative presentation of G with respect to H .
Conversely, suppose that hA;H j Ri is a finite relative presentation of G with respect

toH , and let hB j T i be a finite presentation ofH . Then hAtB;H jR t T;h1 Dw1; : : : ;
hk Dwki is a finite relative presentation ofG with respect toH , where ¹h1; : : : ; hkº �H
is a finite generating set of H and wi is a word over B that represents the element hi
(after choosing an isomorphism F.B/=hhT ii ! H ). This relative presentation yields a
standard presentation hA t B t .H � ¹1º/ j R t T t RH t ¹h1 D w1; : : : ; hk D wkºi
of G, where RH is the collection of all relations in H over the generating set H � ¹1º.
Since the ¹h1; : : : ; hkº generateH , using Tietze transformations one obtains that hAtB j
R t T t ¹h1 D w1; : : : ; hk D wkºi is a presentation of G which is finite.

Proof of Theorem 7.2. First, note that the theorem is trivial in the case whereH is a finite
subgroup of G. Indeed, any finite subgroup is hyperbolically embedded by definition and
a finite relative presentation of a group with respect to a finite subgroup is in fact a finite
presentation. In particular, the relative Dehn function coincides with the Dehn function
and the Dehn function of a finitely presented group is always well defined.

Since G is finitely presented andH ,!h G, it follows from [4, Corollary 4.32] thatH
is finitely presented. Hence, by Lemma 7.3, G is finitely presented relative to H .

Let S be a finite generating set ofG. In view of Theorem E (2), to conclude that�G;H
is well defined, it is enough to prove that y�.G;P ; S/ is a fine graph.

Suppose H ,!h .G; X/ for some X � G. Without loss of generality, assume that X
contains the finite generating set S , see [4, Corollary 4.27]. It follows that y�.G;H; S/ is
a subgraph of y�.G;H;X/. Since S is finite, observe that every vertex of y�.G;H; S/ has
either finite degree or is cone-vertex. By Proposition 7.1, the graph y�.G;H;X/ is fine at
every cone vertex, and hence so is y�.G;H; S/. Therefore, y�.G;H; S/ is a fine graph.

Example 7.4. In [6], the author shows that amongst graph products of finite groups vari-
ous eccentric subgroups (see loc. cit. for a definition) are quasi-isometrically rigid in the
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sense of [19]. Let G be a graph product of finite groups that is not virtually cyclic or
a direct product of two infinite groups, then G is acylindrically hyperbolic. Suppose H is
an eccentric subgroup, then H ,!h G if and only if H is almost malnormal. In particu-
lar, if H is almost malnormal, then by Theorem 7.2, we see that �G;H is well defined.
Moreover, for any graph product of finite groups G0 quasi-isometric to G, there exists
a subgroup H 0 < G0, such that �G0;H 0 � �G;H .

The following example demonstrates that �G;P being well defined is not implied
by P being a qi-characteristic collection in the sense of [19].

Example 7.5. Let F be a finite group and let H be a finitely presented one-ended group.
Consider the wreath product G D F oH . In the work of Genevois and Tessera [7, Proof
of Theorem 7.1], they show that a quasi-isometry of qWG ! G is a quasi-isometry of
pairs qW .G;H/! .G;H/. Moreover, H is an almost malnormal subgroup and, in fact,
is qi-characteristic in the sense of [19], see [7, Theorem 1.18]. However, the coned-off
Cayley graph of G with respect to H is not fine, so the group G cannot have a well-
defined Dehn function by Theorem 4.17. To prove this, suppose F is the group with two
elements and let H be a group with an element of infinite order a. Consider the wreath
product G D F oH . If F has non-trivial element x, then G has a relative presentation

hx;H j x2; Œx; gxg�1� for all G � ¹eºi:

Let us observe that the coned-off Cayley graph y�.G;H; ¹xº/ is not fine. Consider the edge
¹e;H º. We will show that there are infinitely many circuits of length twelve that contain
this edge, each of them induced by a word

wn D xa
nxa�nxanxa�n

which represents the identity. For an arbitrary integer n > 0, the sequence of vertices

n D ŒH; e; x; xH; xa
n; xanx; xanxH; xanxa�n; anxa�n; anxH; anx; an;H �

is a closed path of length twelve in y� containing the edge ¹e; H º; the only non-trivial
adjacency follows from xanxa�n D anxa�n. It follows that n is a circuit since one
can show that the left cosets H , xH , xanxH , anxH are all distinct. On the other hand,
anxH D amxH if and only if n D m, and therefore n ¤ m if m ¤ n. Note, we do not
know the existence of a finite relative presentation for G with respect to H , but observe
that we do not use this in the remark.

Finally, we will show the relative Dehn function of BS.k; l/ with respect to the stable
letter is not well defined if either k or l divides the other one.

Example 7.6. LetG D BS.k; l/D ha; t j takt�1 D ali. We claim that if k j l or l j k, then
�G;hti is not well defined. As in the previous example, we will show that the coned-off
Cayley graph y�.G; hti; ¹a; tº/ is not fine and apply Theorem 4.17.
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Without loss of generality, let ` D km and consider wn D tnakt�natna�kt�na�1.
Observe that wn D 1G since tnakt�n D ak`

n
and tna�kt�n D a�k`

n
. The word wn

describes a circuit of length 2k C 6 in y�.G; hti; ¹a; tº/ because the four left cosets hti,
tnakhti D ak`

n
hti, tnakt�nahti D ak`

nC1hti, and tnakt�na�khti D ahti are all distinct.
In particular, the coned-off Cayley graph y�.G; hti; ¹a; tº/ is not fine.

A. Relative Dehn functions of Baumslag–Solitar groups (by Ashot
Minasyan)

For two non-zero integers k and l , we define the Baumslag–Solitar group BS.k; l/ by the
presentation

BS.k; l/ D ha; t j takt�1 D ali:

Evidently, BS.k; l/ is finitely presented relative to its cyclic subgroup hti and we can
consider the relative presentation

BS.k; l/ D ha; hti j Ri; (A.1)

where R consists of all cyclic permutations of the relator takt�1a�l and its inverse.
Let F D F.a; t/ be the free group freely generated by ¹a; tº. The generating set

¹aº [ hti of F gives rise to the relative word length k � k¹aº[hti for words over the alphabet
¹aº˙1 [ hti.

The goal of this appendix is to provide a characterisation for the Dehn function of
BS.k; l/ with respect to hti to be well defined (we shall use the definitions of the relative
area and relative Dehn functions from Remark 4.5).

Theorem A.1. Let G D BS.k; l/, for some non-zero integers k, l . The relative Dehn
function �G;hti is well defined if and only if k does not divide l and l does not divide k.

Remark A.2. Theorem A.1 implies that the relative Dehn function of the group G D
BS.2; 3/ with respect to the cyclic subgroup hti is well defined. However, we note that
hti 6,!hG, so the converse of Theorem G is false. In fact, G does not contain any proper
infinite hyperbolically embedded subgroups: see [22, Theorem 1.2 and Example 7.4].

Proof of Theorem A.1. The necessity has already been proved in Example 7.6, using The-
orem 4.17. Below we give a different argument, based on the results of Osin [23].

Throughout the argument, we will use the following well-known elementary facts
about G D BS.k; l/: the elements a and t have infinite order and hai \ hti D ¹1º in G.

Assume, without loss of generality, that k divides l , so that l D km for some m 2
Z n ¹0º. Arguing by contradiction, suppose that the Dehn function �G;hti is well defined.
Then, in accordance with [23, Proposition 2.36], hti is a malnormal subgroup of G (i.e.,
ghtig�1 \ hti D ¹1º for any g 2 G n hti).
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If l D ˙k, then t2akt�2 D ak , so that a�kt2ak D t2 2 a�khtiak \ hti D ¹1º, con-
tradicting to the fact that t has infinite order in G. Therefore, we can further assume that
jkj ¤ jl j, so that jmj > 1.

For any s 2 N, we have t sakt�s D am
sk in G, whence the commutator word

Ws D Œt
sakt�s; a� D t sakt�sat sa�kt�sa�1

represents the trivial element of G. Note that kWsk¹aº[hti D 2k C 6, so, since the Dehn
function �G;hti is well defined, there exists a constant C � 0 such that

Arearel.Ws/ � C for all s 2 N:

For each s 2 N, let qs be the cycle in the Cayley graph �.G; ¹aº [ hti n ¹1º/ based
at the identity element and labelled by the word Ws . By the definition of Ws , qs is a con-
catenation of eight subpaths p1; p2; : : : ; p8, where p1 is the edge labelled by tk , p2 has
length jkj and is labelled by ak , and so on: see Figure 3.

akp2 a�k p6

ts t�s

tst�s

a�1

a

p4

p8

p1 p7

p3 p5

Figure 3. The cycle qs (markings inside the polygon represent the labels of the subpaths p1; : : : ;p8).

Using Osin’s terminology from [23, Section 2.2], we see that p1, p3, p5 and p7 is the
list of hti-components of q. Let us show that p1 is an isolated component of qs . Indeed,
if p1 is connected to p3, then the label of p2, ak , must represent an element of hti in G.
The latter is impossible since hai \ hti D ¹1º in G and ak ¤ 1. Similarly, p1 cannot be
connected to p7. Finally, if p1 is connected to p5, then the label of the path p1p2p3p4
must represent an element of hti in G. However, this label is equal to t sakt�sa, which
simplifies to am

skC1 in G. This again yields a contradiction becausemsk C 1¤ 0 (which
is true as jmj > 1 and s 2 N).

Therefore, we can apply [23, Lemma 2.27] to the cycle qs , claiming that

jt sj� �MArearel.Ws/;

where � D ¹t; t�1º and M D max¹kRk¹aº[hti j R 2 Rº D jkj C jl j C 2. It follows that
s �MC for all s 2 N. This contradiction shows that the Dehn function�G;hti is not well
defined, so the necessity statement of the theorem has been proved.
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The proof of the sufficiency occupies the rest of the appendix and will be completed
in Theorem A.8 below.

A.1. Notation

We will use Z to denote the set of all integers, N D ¹1; 2; : : : º – the set of natural numbers
and N0 D N [ ¹0º. Given a prime p and an integer n 2 Z n ¹0º, we will write

�p.n/ D max¹s 2 N0Wp
s divides nº 2 N0:

Evidently, �p.n/ � logp.jnj/ and �p.mn/ D �p.m/C �p.n/ for all m; n 2 Z n ¹0º.
Further on k, l will be some fixed non-zero integers and G will be the Baumslag–

Solitar group BS.k; l/, equipped with the relative presentation (A.1). For two words W
and W 0 over the alphabet ¹aº [ hti, we will write W G

D W 0 if W and W 0 represent the
same element of G.

A.2. Some terminology

By the normal form theorem for free products, we know that any wordW over the alphabet
¹aº˙1 [ hti is equal in F D F.a; t/ to a unique freely reduced word, which has the form

au0 tv1au1 : : : tvmaum ; where m � 0; u0; um 2 Z;

u1; : : : ; um�1; v1; : : : ; vm 2 Z n ¹0º; (A.2)

and tv1 ; : : : ; tvm 2 hti n ¹1º are treated as single letters from the alphabet ¹aº˙1 [ hti. We
will call the number m the syllable length of W and will denote it sl.W /. Observe that
sl.W / � kW k¹aº[hti for any freely reduced word W .

Definition A.3 (Reduction of the first type). Suppose that W is a word of form (A.2).
If for some i 2 ¹1; : : : ;m� 1º, we have vi > 0, viC1 < 0 and ui 2 kZ n ¹0º, then we can
perform a reduction of the first type on W as follows.

Set s D ui=k 2 Z and observe that, by applying a defining relation from presenta-
tion (A.1) jsj times, we get

taui t�1
G
D .takt�1/s

G
D als in G:

Therefore, W is equal in G to the word

W 0 D au0 tv1au1 : : : aui�1 tvi�1alstviC1C1auiC1 : : : tvmaum : (A.3)

We will say that W 0 has been obtained from W by applying a reduction of the first type at
place i , writing W 1

�!
i
W 0.

We can similarly define basic reductions of the second type.
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Definition A.4 (Reduction of the second type). Suppose that W is a word of form (A.2).
If for some i 2 ¹1; : : : ;m� 1º, we have vi < 0, viC1 > 0 and ui 2 lZ n ¹0º, then we can
perform a reduction of the second type on W as follows.

Set s D ui=l 2 Z and observe that, by applying a defining relation from presenta-
tion (A.1) jsj times, we get

t�1aui t
G
D .t�1al t /s

G
D aks in G:

Therefore, W is equal in G to the word

W 0 D au0 tv1au1 : : : aui�1 tviC1alstviC1�1auiC1 : : : tvmaum : (A.4)

We will say thatW 0 has been obtained fromW by applying a reduction of the second type
at place i , writing W 2

�!
i
W 0.

When the type of the reduction does not matter, we will simply write W �!
i
W 0.

Note that after applying a reduction (of any type) to a freely reduced word W the result-
ing word W 0 satisfies sl.W 0/ � sl.W /. Moreover, if sl.W 0/ D sl.W / then the word W 0

(from (A.3) or (A.4)) is again freely reduced in the above sense.

Definition A.5 (Trimming chain). Let W be a freely reduced word over the alphabet
¹aº˙1 [ hti and i 2 ¹1; : : : ; sl.W / � 1º. For any ` 2 N, a trimming chain of the first type
at place i of length ` is a sequence of reductions

W D W0
1
�!
i
W1

1
�!
i
� � �

1
�!
i
W`�1

1
�!
i
W`;

where sl.W / D sl.W1/ D � � � D sl.W`�1/ and sl.W`/ < sl.W /.
A trimming chain of the second type at place i of length `,

W D W0
2
�!
i
W1

2
�!
i
� � �

2
�!
i
W`�1

2
�!
i
W`;

is defined similarly.

A.3. Technical lemmas

From now on, we assume that k − l and l − k. In this case, we can choose some primes
p; q 2 N such that �p.k/ > �p.l/ and �q.l/ > �q.k/.

Lemma A.6. LetW be the word given by (A.2) with sl.W /Dm > 0. IfW represents the
trivial element ofG, then there is i 2 ¹1; : : : ;m� 1º such that eitherW admits a trimming
chain of the first type at place i of length at most �p.ui / or it admits a trimming chain of
the second type at place i of length at most �q.ui /.

Proof. We will prove the statement by induction on the total number of t ’s occurring
in W , i.e., on the number v.W / D

Pm
rD1 jvr j.
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Since W G
D 1, by Britton’s lemma (see [15, Section IV.2]), the number v.W / must

be at least 2, and if v.W / D 2, then sl.W / D m D 2 and either v1 D 1, v2 D �1 and
u1 2 kZ n ¹0º (i.e., W admits a reduction of the first type) or v1 D �1, v2 D 1 and
u1 2 lZ n ¹0º (i.e., W admits a reduction of the second type). Without loss of generality,
let us assume that we are in the former case. Applying a reduction of the first type to W ,
we obtain a word W 0 with sl.W 0/ D 0 < sl.W /, so W 1

�!
i
W 0 is a trimming chain of

the first type at place 1 of length 1. Moreover, 1 � �p.u1/, as p j k j u1, so the base of
induction has been established.

Suppose now that v.W /> 2. By Britton’s lemma,W admits a reduction (of some type)
at some place i 2 ¹1; : : : ; sl.W / � 1º, and again, without loss of generality, we assume
that it is a reduction of the first type (the other case is similar). Let W 0 be the word (A.3)
resulting in this reduction.

If sl.W 0/ < sl.W /, then W 1
�!
i
W 0 is a trimming chain of the first type of length

1 � �p.ui /, as required. So we can further assume that sl.W 0/D sl.W /D m, whenceW 0

is again freely reduced and v.W 0/ D v.W / � 2 < v.W /. By induction, W 0 must admit
a trimming chain (of one of the two types) at some place j 2 ¹1; : : : ; m � 1º of length
` 2 N. If j ¤ i , then we can perform the same trimming chain on W since uj is not
affected by the original reduction W 1

�!
i
W 0 and sl.W 0/ D sl.W /. The desired inequality

on ` will then follow by induction.
Now let us suppose that j D i . Since sl.W 0/ D sl.W /, the trimming chain at place i

for W 0 must have the same type as the original reduction from W to W 0, thus we have
a trimming chain

W 0 D W0
1
�!
i
W1

1
�!
i
� � �

1
�!
i
W`�1

1
�!
i
W`:

By precomposing this trimming chain with the original reduction W 1
�!
i
W 0, we obtain

a trimming chain of the first type at place i of length `C 1 for W . By induction and the
construction of W 0 (see (A.3)), we have ` � �p.ls/, where s D ui=k 2 Z n ¹0º. Since
�p.k/ � �p.l/C 1, we can conclude that

`C 1 � �p.ls/C 1 D �p.l/C �p.s/C 1 � �p.k/C �p.s/ D �p.ks/ D �p.ui /:

Thus we have established the step of induction, and so the statement is proved.

Denote

˛ D max
°ˇ̌̌ l
k

ˇ̌̌
;
ˇ̌̌k
l

ˇ̌̌±
> 1: (A.5)

Lemma A.7. Let W be a word of form (A.2), representing the trivial element of G. Sup-
pose that

W D W0�!
i
W1�!

i
� � � �!

i
W`�1�!

i
W` (A.6)
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is a sequence of reductions (of the same type) at place i 2 ¹1; : : : ; sl.W /� 1º, where ` 2N
and sl.W / D sl.W1/ D � � � D sl.W`�1/. Denote n D kW k¹aº[hti 2 N, then

kW`k¹aº[hti � ˛
`n and Arearel.W / � Arearel.W`/C

˛` � 1

˛ � 1
n: (A.7)

Proof. Without loss of generality, we will assume that all of the reductions in the se-
quence (A.6) are of the first type. We will argue by induction on `.

Suppose, first, ` D 1 and W1 D au0 tv1au1 : : : aui�1 tvi�1alstviC1C1auiC1 : : : tvmaum ,
where s D ui=k. Then

n D kW k¹aº[hti D mC

mX
rD0

jur j and kW1k¹aº[hti � mC

mX
rD0;r¤i

jur j C jlsj:

Since jlsj=jui j D jl=kj � ˛ and ˛ > 1, we see that kW1k¹aº[hti � ˛n. The word W1
can be obtained from the word W by applying a defining relation from presentation (A.1)
jsj times, so, since jsj � jui j � n, we have

Arearel.W / � Arearel.W1/C jsj � Arearel.W1/C n:

Now assume that ` � 2 and set n1 D kW1k¹aº[hti. By induction, we know that

kW`k¹aº[hti � ˛
`�1n1 and Arearel.W1/ � Arearel.W`/C

˛`�1 � 1

˛ � 1
n1: (A.8)

We have shown above that n1 � ˛n and Arearel.W / � Arearel.W1/C n. Combining this
with inequalities (A.8), we obtain (A.7).

A.4. Proof of the sufficiency in Theorem A.1

Theorem A.8. Let G be the Baumslag–Solitar group BS.k; l/ for some k; l 2 Z n ¹0º. If
neither of k, l divides the other one, then the relative Dehn function�G;hti is well defined.

Proof. Choose primes p;q 2N as in the beginning of Section A.3 and let ˛ > 1 be defined
by (A.5).

To prove that �G;hti is well defined, it is sufficient to show that there is a function
hWN0 � N0 ! N0 such that for all m; n 2 N0 if W is a freely reduced word over the
alphabet ¹aº˙1 [ hti, representing the trivial element of G and satisfying sl.W /D m and
kW k¹aº[hti D n, then

Arearel.W / � h.m; n/:

(Since sl.W / � kW k¹aº[hti, the function f WN0 ! N0, f .n/ D max¹h.m0; n0/W 0 � m0;
n0 � nº will serve as a relative isoperimetric function of G with respect to hti.)

The proof will use induction on m. By Britton’s lemma, a freely reduced word W of
syllable length at most 1 cannot represent the trivial element of G, hence we can define
h.0; n/ D h.1; n/ D 0 for all n 2 N0.
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Now suppose that m � 2 and the values of the desired function h.s; n/ have been
found for all s 2 ¹0; : : : ; m � 1º and all n 2 N0. Take any n 2 N0. If there are no freely
reduced words W such that sl.W / D m, kW k¹aº[hti D n and W G

D 1 in G, then we set
h.m; n/ D 0. Otherwise, let W be such a word (in particular, n � m � 2).

If W is given by (A.2), then according to Lemma A.6, W admits a trimming chain

W D W0�!
i
W1�!

i
� � � �!

i
W`�1�!

i
W`

at some place i 2 ¹1; : : : ;m� 1º of length ` 2 N, where ` � max¹�p.ui /; �q.ui /º. Since
jui j � n, we see that ` � max¹logp.n/; logq.n/º D logr .n/, where r D min¹p; qº.

Define ˇ D logr .˛/C 1 and observe that

˛`n � ˛logr .n/n D r logr .˛/ logr .n/n D nlogr .˛/C1 D nˇ ;

and
˛` � 1

˛ � 1
n �

1

˛ � 1
˛`n �

1

˛ � 1
nˇ :

Thus inequalities (A.7), given by Lemma A.7, imply that

kW`k¹aº[hti � n
ˇ and Arearel.W / � Arearel.W`/C

1

˛ � 1
nˇ : (A.9)

Since m0 D sl.W`/ < sl.W /, by induction we have Arearel.W`/ � h.m
0; n0/, where

n0 D kW`k¹aº[hti. In view of (A.9), after defining

h.m; n/ D max
°
h.m0; n0/C

j 1

˛ � 1
nˇ
k ˇ̌̌

0 � m0 � m � 1; 0 � n0 � nˇ
±
2 N0;

we shall have Arearel.W / � h.m; n/.
Thus we have found the required function hWN0 � N0 ! N0, so the proof of the

theorem is complete.

Remark A.9. The argument from the proof of Theorem A.8 gives a double exponen-
tial upper bound �G;hti.n/ � nˇ

n
for all n 2 N0, where ˇ > 1 is the constant from that

proof.
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