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Topology of leaves for minimal laminations
by non-simply-connected hyperbolic surfaces

Sébastien Alvarez and Joaquin Brum

Abstract. We give the topological obstructions to be a leaf in a minimal lamination by hyperbolic
surfaces whose generic leaf is homeomorphic to a Cantor tree. Then, we show that all allowed
topological types can be simultaneously embedded in the same lamination. This result, together
with results in [arXiv:1906.10029] and [Comment. Math. Helv. 78 (2003), 845-864], completes the
panorama of understanding which topological surfaces can be leaves in minimal hyperbolic surface
laminations when the topology of the generic leaf is given. In all cases, all possible topologies can
be realized simultaneously.

1. Introduction

A surface lamination is a compact and metrizable topological space &£ locally modeled
on the product of the unit disc by a compact set. It comes with an atlas, giving coordi-
nates to these open sets, whose transition functions preserve the disc factor of the product
structure. These discs glue together to form surfaces whose global behavior may be very
complicated, we call these surfaces the leaves of the lamination. We are interested in
minimal laminations, i.e., those laminations in which every leaf is dense. Note that every
lamination contains a minimal lamination. We refer the reader to [9] for the general theory
of laminations.

The compact factors of the local product structure are called transversals, when these
transversals are homeomorphic to Cantor sets, we say that the lamination is a solenoid (see
[23,24]). When transition functions are holomorphic along the disc coordinate, we say that
&£ is a Riemann surface lamination (see [15] for the general theory). Finally, Riemann
surface laminations where all leaves are of hyperbolic type are called hyperbolic surface
laminations. In this case there exists a complete hyperbolic metric in every leaf which
varies continuously in the transverse direction (see [8]). Hyperbolic surface laminations
appear quite frequently and a topological characterization is given by Candel in [8].

Thanks to Cantwell-Conlon [10], we understand the topology of generic leaves of
minimal surface laminations. Here generic means the Baire point of view. According to
this work the generic leaf has 1, 2 or a Cantor set of ends, and either it has genus zero or
every end is accumulated by genus. This gives six possible topological types for a generic
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leaf. Moreover, all the leaves in a dense and saturated residual set are homeomorphic
[10, Theorem B]. See [14] for a probabilistic counterpart of this theorem.

The present work is devoted to the topological study of leaves of minimal hyperbolic
surface laminations. More precisely, we are interested in describing the possible topolo-
gies of non-generic leaves that can occur when the topological type of the generic leaf is
given.

In a companion paper [2], written together with Martinez and Potrie, we treated the
case of minimal hyperbolic solenoids with a simply connected generic leaf. More pre-
cisely, we constructed a minimal lamination by hyperbolic surfaces such that every non-
compact surface is homeomorphic to a leaf of the lamination. To achieve this we consid-
ered the inverse limit of a (very carefully chosen) tower of finite coverings over a closed
hyperbolic surface. In his unpublished PhD thesis [5], Blanc constructed a similar exam-
ple, with a completely different method (inspired by Ghys—Kenyon’s construction [15]).
It is worth mentioning that his lamination is not of hyperbolic type. We also refer to the
recent and interesting work of Menifio—Gusmao about realization of topological types in
leaves of minimal hyperbolic foliations of codimension 1; see [20].

In this paper, we treat the case of minimal hyperbolic laminations whose generic leaves
are Cantor trees, i.e., are homeomorphic to a sphere minus a Cantor set. An example of
such object is the classical Hirsch’s foliation (see [17] for the original construction and for
example [3, 10, 14] for the minimal model): its leaves are Cantor trees, except countably
many, which are homeomorphic to the torus minus a Cantor set. We show that, unlike
in the case of simply connected generic leaves, there are topological obstructions to be a
leaf of such laminations. Precisely, in Proposition 2.3 we show that if a minimal hyper-
bolic lamination has a non-simply-connected generic leaf, then all of its leaves satisfy
condition (x) defined below.

Condition (x) — A non-compact surface satisfies condition (x) if its isolated ends are
accumulated by genus.

Then, we prove that condition () is the only topological obstruction for being the leaf
of such a lamination. Our main result is the following theorem.

Theorem A. There exists a minimal hyperbolic surface lamination £ such that
e the generic leaf of £ is a Cantor tree,

e every non-compact surface satisfying condition (x) is homeomorphic to a leaf of £.

The method and formalism in the proof of Theorem A resemble the ones used in [2].
Namely, we construct laminations taking inverse limits of towers of finite coverings. How-
ever, in this case we reduce the proof of Theorem A to that of Theorem 3.3 which involves
towers of finite coverings of graphs. The idea of using towers of coverings of graphs to
get interesting solenoidal manifolds is not new and can be found for example in [19,22]
or [11].

However, there is a big difference between the proofs of Theorem 3.3 and those
appearing in [2]; in this case, due to the very combinatorial nature of the problem, we
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cannot prefix the topological types of the leaves that we want to embed in the graph
lamination. For this reason we need to define new objects called C-graphs which repre-
sent graphs up to some local information that does not affect the (large scale) topological
invariants that we need to realize in our leaves. It turns out that we can construct a “big”
family of such C-graphs, realizing the desired topological invariants and which we can
simultaneously “realize” inside an inverse limit lamination. See Section 3.3 for a more
precise outline of our strategy.

Other generic leaves. A Cantor tree with handles is by definition a non-compact and
orientable surface having a Cantor set of ends, each of which being accumulated by genus.
By performing a surgery, we obtain in Section A.1 the following corollary.

Corollary 1.1. There exists a minimal hyperbolic surface lamination £’ such that
o the generic leaf of £’ is a Cantor tree with handles;

e for every non-compact surface ¥ such that every end is accumulated by genus, there
exists a leaf of £’ homeomorphic to X.

Remark 1.2. Similarly, applying the same construction to the lamination constructed in
[2, Theorem A], we see that the previous result holds if we impose that the generic leaf is
an infinite Loch-Ness monster, i.e., having one end and infinite genus.

Notice that Proposition 2.3, together with Theorem A and Corollary 1.1, shows the
precise obstructions to be a leaf of a minimal lamination by hyperbolic surfaces whose
generic leaf has a Cantor set of ends. Moreover, we show how to embed all leaves with
allowed topological types simultaneously. On the other hand, [2, Theorem A] together
with Remark 1.2 gives analogous results for the case where the generic leaf has one end.

Finally, in [6] Blanc gives a complete description of which non-compact surfaces can
be realized as leaves of minimal laminations by surfaces where the generic leaf has two
ends: all leaves have one or two ends. If such a lamination carries a hyperbolic structure,
then Proposition 2.3 implies that the generic leaf must be a Jacob ladder (with two ends,
each of which being accumulated by genus) and the only surface that can appear, other
than the Jacob ladder, is the Loch-Ness monster. Blanc builds in [6, Section 2] an example
of minimal foliation by surfaces whose leaves are homeomorphic to a Jacob ladder with
the exception of four leaves which are homeomorphic to a Loch-Ness monster. Notice
that the previous example admits hyperbolic structures because all leaves are of infinite
topological type.

This completes the picture: we completely understand the possible topologies of leaves
of minimal laminations by hyperbolic surfaces in terms of the topology of the generic leaf.
Moreover, for each topological type of the generic leaf, all possible leaves can appear
simultaneously. This is summarized in Table 1.

1.1. Organization of the paper

In Section 2 we give basic definitions and notions that will be used throughout the text.
Then, in Section 3 we show how to deduce Theorem A from an analogous theorem for
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Generic leaf Possible leaves
Disc All surfaces
Cantor tree Surfaces with condition ()
Loch-Ness monster Surfaces with ends accumulated by genus
Cantor tree with handles Surfaces with ends accumulated by genus
Jacob ladder Jacob ladder and Loch-Ness monster

Table 1. Possible topologies of leaves of minimal hyperbolic surface laminations.

laminations by graphs (Theorem 3.3). In Section 3.3 we give an informal strategy of the
proof. In Section 4 we define C -graphs and prove their basic properties. Then, in Section 5
we define forests of C-graphs, their limit graphs, and their realizations inside towers of
finite coverings. In Section 6 we define the surgery operation and use it to prove our main
lemma (Lemma 6.6) saying that some families of forests can be included in towers. In
Section 7 we prove Theorem 3.3 by including a particular forest of C-graphs in a tower
but assuming the existence of this object. In Section 8 we give the proof of the existence of
the aforementioned forest of C-graphs (Proposition 7.2). Finally, in Appendix A we prove
Corollary 1.1 and a simple but highly technical lemma used in the proof of Proposition 7.2.

2. Preliminaries

In this section we define basic notions that will be used throughout the text. Also, we show
that condition () is an obstruction to be a leaf of a minimal hyperbolic surface lamination
with non-simply-connected generic leaf.

2.1. Non-compact surfaces and condition ()

Ends of a space. Let G be a connected, locally connected, and locally compact topolog-
ical space, and let (K, ),en be an exhausting and increasing sequence of compact subsets
of G. An end of G is a strictly decreasing and infinite sequence (€,),eNn Where €, is
a connected component of G \ K,. We denote by &(G) the space of ends of G. It is
independent of the choice of K.

The space of ends of G possesses a natural topology which makes it a totally discon-
nected, compact, and metrizable space. Therefore, it is homeomorphic to a closed subset
of a Cantor set. To be more precise, take an end e defined by a sequence (€,),en. Then,
any open set V' C G such that €,, C V for all but finitely many n € N defines a neighbor-
hood of e consisting of those ends whose defining sequences also lie inside V' for all but
finitely many n € N.

Classifying triples. In what follows, a classifying triple is the data t = (g, &g, &) of
e anumber g € N U {oo};
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e apair of nested spaces &y € & where &) is closed and & is a nonempty, totally discon-
nected, and compact topological space, satisfying that

e g =ooif and only if &y # 0.

We say that two classifying triples T = (g, &9, &) and t/ = (g’, &}, €’) are equivalent
if ¢ = g’ and there exists a homeomorphism / : & — &’ such that 1(&y) = &j.

Non-compact surfaces. We now recall the modern classification of surfaces as it appears
in [21]. We are only interested in orientable surfaces.

Say that an end e = (€,),en of a surface X is accumulated by genus if for every n €
N, the surface €, has genus. The ends accumulated by genus form a compact subset that
we denote by §¢(X) C &(X). In our terminology, the triple 7(X) = (g(X), (X)), E(X))
is a classifying triple.

Theorem 2.1 (Classification of surfaces). Two orientable non-compact surfaces ¥ and ¥’
are homeomorphic if and only if their classifying triples ©(X) and t(X') are equivalent.
Moreover, for every classifying triple T there exists an orientable non-compact surface %
such that T(X) is equivalent to t.

Condition (*). Say that a classifying triple T = (g, &o, &) satisfies condition (x) when
every isolated point of & belongs to &y. We also say that the pair (&g, &) satisfies condi-
tion ().

Say that a surface X satisfies condition (*) when its classifying triple does so. This
means that its isolated ends are accumulated by genus.

2.2. Hyperbolic surface laminations and towers of coverings

Reeb’s stability theorem. We need the classical Reeb stability theorem. It is usually
stated for foliations (see [7]), however the proof can be adapted in the laminated con-
text (see also the proof given by Lessa in his thesis [18]). We refer to any of these two
references ([7] or [18]) for the definition of the holonomy group of a leaf of a lamination.

Theorem 2.2 (Reeb’s stability theorem). Let &£ be a lamination and U an open subset
of some leaf L of £ with compact closure. Assume that the holonomy germ along every
closed path in U is trivial. Then, there exists a neighborhood W of U in £ and a homeo-
morphism ¢ : W — U x T, with the set T being a transversal to £, such that ¢ L is the
trivial lamination (U X {t});er.

Hyperbolic surface laminations. Let &£ be a compact metric space endowed with a
structure of Riemann surface lamination (see [15]). We say that it is a hyperbolic sur-
face lamination if the universal cover of every leaf is conformally equivalent to a disc.
Using Candel’s theorem [8], this is equivalent to the existence of a leafwise Riemannian
metric which varies transversally continuously in local charts, such that leaves have Gaus-
sian curvature —1 at every point. Recall that &£ is said to be minimal when all of its leaves
are dense.
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Next we give a topological obstruction for a surface to be the leaf of a compact minimal
hyperbolic surface lamination without a simply connected leaf.

Proposition 2.3. Let &£ be a minimal lamination by hyperbolic whose generic leaf is not
a disc. Then, isolated ends of leaves of £ are accumulated by genus; i.e., leaves satisfy
condition (x). Moreover, if there exists a leaf with genus and without holonomy, then every
end of every leaf of £ is accumulated by genus.

Proof. We present a slight variation of a proof that appears in [1]. Since the generic leaf
is a hyperbolic surface with trivial holonomy (that was proved independently by Epstein—
Millett—Tischler [12] and by Hector [16]) and which is not a disc by hypothesis, it contains
a simple closed geodesic without holonomy y.

Using Reeb’s stability theorem (Theorem 2.2), the transverse continuity of Candel’s
hyperbolic metric, and the persistence of closed geodesics under perturbations of hyper-
bolic metrics, we show that there exists a neighborhood U of y where &£ induces a trivial
lamination by annuli, each one of them containing a simple closed geodesic.

Assume that a leaf L possesses an isolated end e. Since £ is minimal, there exists
a sequence (x,)neN in L representing e such that x,, € U for every n. Therefore, there
exists a sequence (¥, )nen of disjoint simple closed geodesics inside L which converges
to e. This implies that e, which is isolated, is not represented by a decreasing sequence of
annuli, so it must be accumulated by genus.

On the other hand, notice that an end e is accumulated by genus if and only if there
exists a sequence of simple closed geodesics y,, y2 in L such that

. y,’; converges to e fori = 1,2,
e ¥, and y? intersect in exactly one point.

In this case we obtain the desired handles taking tubular neighborhoods of y,! U y2. Now,
suppose the existence of a leaf without holonomy and with genus, so it contains a pair of
simple closed geodesics y!, y? intersecting in exactly one point. Applying again Reeb’s
stability and closed geodesics under perturbations of hyperbolic metrics, we deduce that
every end of every leaf is accumulated by pairs of closed geodesics cutting exactly once,
as desired. ]

We show below that this obstruction is the only one and that it is possible to realize
simultaneously all surfaces satisfying condition () in a minimal lamination by hyperbolic
surfaces whose generic leaf is a Cantor tree. This lamination will be constructed as the
inverse limit of a carefully chosen tower of finite coverings of a genus 2 surface.

Towers of coverings and laminations. Define a tower of finite coverings over a hyper-
bolic surface as a sequence T = {p, : X,+1 — X,}, where ¥ is a closed hyperbolic
surface and each p,, is an isometric finite covering. We define the inverse limit of T as the
set

£ = {X = (Xp)neN € l—[ 3n: pn(Xp41) = x, foreveryn N}.
n
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Since [, =, is a product of compact spaces and &£ is defined by closed conditions,
it inherits a topology that makes it a compact and metrizable topological space. In order
to define the lamination structure on &£ consider I1y : £ — X the projection on the
0-coordinate, {D;};<» a finite cover of X by open discs, and {U; }i <, its associated
covering of &£, where U; := Ho_l(Di). It is not difficult to see that there exist home-
omorphisms ¢; : U; — D; x K; with K; being a Cantor set and that they satisfy the
compatibility conditions

@j 0@ (z.1) = (i (z.1), 1 (1)),

for (z,t) € ¢; (U; N U;), where {;; is holomorphic in z and 7;; is a homeomorphism of
the Cantor set. The connected components of &£ are called the leaves and are naturally
endowed with structures of Riemann surfaces (see [13] for more details). In particular,
[Ty is a Cantor bundle over Xy and its restriction to any leaf of £ defines an isometric
covering of .

A lamination obtained by an inverse limit of coverings is always minimal (see [2]).

Holonomy representation. As we mentioned before, the restriction of I1g to each leaf L
of £ induces a covering map onto 3. So if we choose a point x¢ € X, a preimage by the
projection x € L, and a closed path ¢ based at x¢, there is a unique lift of ¢ to L starting at x.
Its endpoint only depends on the homotopy class y € 1 (Z¢) of ¢ and is denoted by 7, (x).

The map 7, is a homeomorphism of the fiber K of xo (which is a Cantor set) and the
correspondence ¢ : 71(Xo) — Homeo(K), y — 7, ! defines a group morphism. In the
sequel this morphism will be called the holonomy representation of £.

Laminated bundles and suspension. Reciprocally any ¢ : 71(X) — Homeo(K) is the
holonomy representation of a laminated Cantor bundle over X, obtained by a process
called suspension. See for example [7,9] for a detailed treatment.

Let ¥ be the universal covering of Xy and let p be the action of 71 (X¢) on o by
deck transformations. The product p x ¢ defines the diagonal action of 1 (X¢) on Sox K
which is properly discontinuous. The quotient of this action is denoted by &£ and is called
the suspension of ¢.

The projection on the first coordinate descends to a fiber bundle IT : £ — X¢ with
fiber K. Moreover, the partition (¢ X {x})xex passes to the quotient and provides £
with a structure of lamination. We say that this lamination is transverse to the bundle
given by II. Finally, the holonomy representation of this lamination is given by ¢.

Furthermore, if two laminated Cantor bundles, IT : £ — ¥y and I1' : £’ — Xy, have
the same holonomy representation, then they are equivalent in the sense that there exists
a homeomorphism H : £ — £’ satisfying IT' o H = II (so in particular H preserves
fibers) and taking leaves of &£ onto leaves of &£’.

Finally, the holonomy representation of a lamination encodes all its dynamics. In par-
ticular, the lamination £ is minimal if and only if the action on K given by its holonomy
representation is minimal (i.e., all the orbits are dense). We refer to [7, Chapter V] for all
these facts.
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3. From graphs to surfaces

In this section we translate Theorem A into an analogous theorem in the context of graphs
(see Theorem 3.3). The second subsection is devoted to an outline of the strategy for the
proof of this theorem.

3.1. Graphs and laminations

A graph T consists of a set of vertices V(I") together with a set of edges E(I") contained in
V(') x V(I"). We will most of the time identify graphs with their topological realizations.
We say that a map f : 'y — I'; between graphs is a graph morphism if it is a continuous
map preserving vertices and sending each edge either to a vertex or to an edge.

Classifying triples and condition (%). Let I" be a non-compact, locally finite graph and
let (K,)nen be an increasing and exhausting sequence of finite subgraphs. Recall that an
end e € §(I") is a decreasing sequence (€, ),en of connected components of I' \ K,,. We
say that the end e is accumulated by homology if H;(€,,R) # 0 for every n. Notice that
the definition does not depend on the choice of the exhausting sequence. We denote by
& () the set of ends accumulated by homology which is a closed subset of &(I").

We define the classifying triple of a non-compact and locally finite graph I" as t(T") =
(g(T), &p(IM), &(I')), where &y(I") and & (T") have been defined above and where

g(T) := p1(T') = dim H(I".R)

is the first Betti number of I'. Finally, we say that a graph I' satisfies condition (x) if its
classifying triple 7(I") does so. This is equivalent to say that the isolated points of & (I")
belong to &y(I") (or that the isolated ends are accumulated by homology).

Notice that classifying triples are no longer complete invariants in the context of
graphs (i.e., there is no analog of Theorem 2.1). For example, we can imagine graphs
with different systoles but with equivalent classifying triples. However, in Section 3.2 we
formalize the procedure of thickening a graph to obtain a surface with equivalent classi-
fying triple justifying our terminology (see Proposition 3.2). Finally, note that we define
condition (x) for graphs so that the corresponding thickened surface also satisfies condi-
tion ().

Laminations by graphs and towers. Consider a tower of finite coverings U = {g, :
I'y+1 — Ty} over a finite graph Ty. As in the surface case, we can define M as the
inverse limit of the tower. For the same reason as in the surface case, M is a compact and
metrizable topological space, but in this case it is locally a product of a Cantor set by a
graph, and we call such a structure a lamination by graphs. As in the surface case, leaves
correspond to connected components of M and the restriction of the projection Iy to any
leaf of M is a covering of I'y.

Again as in the surface case, we say that M is transverse to a Cantor-fiber bundle. It is
possible to generalize the discussion on laminated bundles to this context, in particular we
use that M determines a holonomy representation ¢ : 71 (I'g) — Homeo(K) and that such
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A T
e =h%

k=1

Figure 1. A pinching map.

representation uniquely determines (up to equivalence) a Cantor-fiber bundle laminated by
graphs via the suspension process.

Generic leaf. The following result (whose proof will be omitted) is analogous to the
second part of Proposition 2.3 but in the context of graphs. We use it to guarantee that the
generic leaf of M is a tree.

Proposition 3.1. Consider U = {q, : Tn+1 — 'y} a tower of finite coverings of finite
graphs and M its inverse limit. If M contains a leaf which with finite dimensional homol-
0gy, then the generic leaf is a tree.

3.2. From graphs to surfaces

In this section we show how to produce surface laminations from graph laminations. Intu-
itively, we thicken the graphs and then remove the interior of the thickening.

Pinching maps. Given a graph I', we say that e C T is an open edge if it is a connected
component of I' \ V(T"). We say thatamap f : S — I between a surface S and a graph
I is a pinching map if it satisfies the two following properties:

e f7!(v) is homeomorphic to a n-holed sphere with boundary for every vertex of T,

where n is the valency of v;

e f71(e) is an open cylinder for every open edge e C T".
It is straightforward to check that if S and I" are non-compact and f : S — I is a pinching
map, then S and I" have equivalent classifying triples.

Consider now fj : (X9, x9) = (g, vo) a pinching map between a closed surface of
genus 2 and the wedge of two circles at the vertex vy, that we call the figure eight graph
(see Figure 1). Note that 71 (g, vo) is a free group on two generators, denoted by IF;.
Denote H = Ker( fo)« € 71(Z0, Xo) and by $o the covering space of X associated to
H . Finally, let [y denote the universal cover of T'g and Px; and let p denote the [F»-actions
by deck transformations in S0 and Ty, respectively.

Note that fp lifts to an F,-equivariant pinching map

ﬁ)iio%fo

(here we identify 71 (X¢, xo)/H with 1 (Lo, vg) >~ F>).
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From graph laminations to surface laminations. Let U ={g, : [';,+1 — '} be a tower
of finite coverings over I'g and let M be its inverse limit. Recall that the projection on
the O-coordinate ITgy : M — Ty is a Cantor bundle. We let ¢ : F, — Homeo(K) denote
holonomy representation so M is equivalent to the suspension of ¢, that is, as we recall,
the quotient of [o x K under the diagonal action given by ¢ = p x ¢. Then, the following
holds.

Proposition 3.2 (From graphs to surfaces). There exists a surface-laminated Cantor bun-
dle T1 : £ — X and a continuous map  : £ — M satisfying the following conditions:

o Iloy = Iy and ¥ is a fiberwise homeomorphism;

o sends leaves of £ to leaves of M and induces a bijection between the corresponding
sets of leaves;

e Y conjugates the holonomy representations of £ and M; in particular £ is minimal;

e the restriction of ¥ to every leaf of £ is a pinching map, so it preserves classifying
triples.

Proof. We define £ as the quotient of S0 x K under the diagonal action defined by ¢, =
px X . First notice that £ is the suspension of the representation ¢ o (fp)x so it is a
laminated Cantor-fiber bundle over ¥¢. In particular, £ is a compact lamination. Also,
since M is minimal, so is the action ¢ and, consequently, so is £.

Consider now the map F = f, x Id and notice that it is (¢« ¢)-equivariant. Therefore,
F descends to a continuous map v : £ — M. By construction ¥ induces a fiberwise
homeomorphism and conjugates the holonomy representations of £ and M; in particular
it induces a bijection between the corresponding sets of leaves. Finally, by definition of
fo, the restriction of ¥ to each leaf of & is a pinching map onto its image. ]

Therefore, the proof of Theorem A reduces to that of the following theorem.

Theorem 3.3. There exists a tower of finite coverings U = {q, : Tn+1 — 'y} over the
figure eight graph Ty, whose inverse limit M satisfies that

(1) its generic leaf is a tree;

(2) given any classifying triple © satisfying condition (%), there exists a leaf of M
whose classifying triple is equivalent to t.

3.3. Strategy of the proof of Theorem 3.3

Consider a tower of finite coverings of finite graphs U = {¢, : [';4+1 — T',} and denote
its inverse limit by M. In order to obtain Theorem 3.3 we must answer several questions.
How do we recognize the topological type of a leaf of M ? How do we construct a leaf with
prescribed classifying triple? How do we make sure that all classifying triples satisfying
condition () are realized by leaves of M?

Recognizing the topology of a leaf. The first tool we need in order to study the topol-
ogy of the leaves is the concept of direct limit of sequences of graph inclusions (see the
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definition given in Section 5.2). More precisely assume that there exist
¢ asequence of subgraphs G, C I';, and
e asequence of (1: 1)-lifts j, : G, — Gp41 satisfying j,(G,) € Int(Gy+1).
We then say that the chain of inclusions {j, : G, — Gy +1} is included inside the tower.
We can prove (this is done in Proposition 5.3) that in this case the direct limit of the chain
{jn : Gn = Gp41} is isomorphic to a leaf of M.

So our strategy consists in realizing all classifying triples satisfying condition (x) in
graphs obtained as direct limits of chains {j, : G, — G,+1}, and then including such
chains inside a tower of finite coverings of the figure eight graph, as defined above.

Constructing a leaf with prescribed classifying triple. To include such a chain inside a
tower of finite coverings requires to control the topology of graphs G, so as to prescribe
that of the direct limit. There are combinatorial constraints to do so, and it would be too
tedious to know exactly which chain can be included inside a tower and how to perform the
inclusion of a given chain. This is one of the reasons for providing our graphs with a deco-
ration, 1i.e., associate different types to the vertices. We define C -graphs, which represent
usual graphs up to some local information that does affect the asymprotic invariants we are
interested in (ends, ends accumulated by homology, etc.). Therefore, prescribing a chain
of C-graphs is equivalent to prescribing a chain of usual graphs up to some local invari-
ants, which will make much easier its inclusion inside a tower of finite coverings. These
C-graphs are related to classical graphs via an operation of collapsing which takes some
finite connected subgraphs with homology into a new type of vertices called /-vertices.

The tower is built inductively. And the induction step, i.e., the construction of the
covering ¢, : I'y41 — Ty, requires to stabilize the topology of the subgraph G, (this
graph must be lifted to I',+1). This is done by an operation of surgery of coverings. The
formalism of C-graphs is also well suited for this surgery operation.

Realizing all classifying triples. In order to realize all the classifying triples, we shall
include several chains of C-graphs inclusions inside a tower of finite coverings. We can
see such a chain {j, : G, — G,+1} as a ray in some arborescent structure called a for-
est (a disjoint union of trees), whose ends will provide infinite graphs with the desired
classifying triples.

So in order to realize all classifying triples simultaneously, we have to generalize the
concept of inclusion of a single chain inside a tower to that of the inclusion of a whole
forest of graphs inside a tower of finite coverings. This is done in Section 5.1.

Finally, we have to make sure that the ends of those forests that we construct represent
(almost) all possible classifying triples of infinite graphs: this is the purpose of Section 8.
Actually, we will see that our formalism of forest and C-graphs forces us to treat sepa-
rately the case of infinite graphs with finite dimensional homology, and that of graphs with
infinite dimensional homology. Finally, the fact that generic leaves of the lamination are
trees will be deduced from Proposition 3.1 and the fact that the constructed laminations
contain leaves with finite dimensional homology.
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Figure 2. The figure eight C-graph with one s-vertex and two by-vertices. In that paper, all s-
vertices will be represented in black and all b-vertices will be represented in white.

4. C-graphs

As we explained above, it will be convenient to decorate our graphs in order to perform
the two key operations in the proof of Theorem 3.3: collapses and surgeries. We develop
in this section the formal framework of C-graphs. These graphs possess special vertices
called h-vertices which represent finite and connected subgraphs with positive first Betti
number which are related to the operation of collapse as we shall see. There is another type
of vertices, called boundary vertices, that will be useful in the treatment of subgraphs and
surgeries. There are also some restrictions on the valencies of different types of vertices
of C-graphs whose necessity will become clear in Section 6.

4.1. Definition of C-graphs

We say that I' is a C-graph (C stands for collapse) if it is a graph with three types of
vertices:

e boundary vertices, that may have valency 1 or 2,

o simple vertices, that have valency 4, and

e homology vertices, that may have valency 2 or 4.

Moreover, we ask edges to join vertices of different types, one of them being a boundary
vertex. We refer to these vertices as b, s or h-vertices. Sometimes, we add an index to
specify their valencies, that is we are going to have by, by, 54, h2, and hy-vertices.

In Figure 2 we see the figure eight (I', v) with one s-vertex, two b,-vertices, and four
edges. We call this graph the figure eight C -graph. Consider

U ={gn : Tnt1 = [u}

a tower of finite coverings with I'y a finite covering space of the figure eight C-graph.
Then, we say that U is a tower.

Given a C-graph G, denote by distg the path metric in G, where all the edges have
length 1 and Bg (v, r):={x € G : distg (v, x) <r}. We define the boundary of I" as the set

o' :={v € T" : v is a vertex or type b1}

and the interior of I as Int(T") :=T"\ dT.

It is practical for the construction of Theorem 3.3 that vertices in the topological
boundaries of subgraphs have valency-1, both in the subgraph and in its complement.
This is the reason for introducing boundary vertices and for the next definition, we say
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!
Figure 3. C-graphs with respectively 2, 4, and 6 ends. Proceeding as suggested in the figure, one
obtains C-graphs with all even numbers of ends.

that a subgraph S of G is a C -subgraph if for each vertex v € S which is not of boundary
type, it holds that Bg (v, 1) € S. Note that C-subgraphs are naturally C-graphs.

4.2. C-graphs and ends spaces

In that paper, we think /-vertices as vertices with non-trivial homology. But we do not
assign a particular Betti number to such vertices. Therefore, C-graphs with finite-dimen-
sional homology and finitely many /-vertices have undetermined Betti number. For this
reason, when working with C-graphs with A-vertices we use ends pairs instead of classi-
fying triples.

We define the ends space of a C-graph as the ends space of its underlying graph
(recall that h-vertices represent finite and connected subgraphs). On the other hand, since
h-vertices represent subgraphs with positive Betti number, we say that a vertex « € §(G),
represented by a decreasing sequence of subgraphs (€,),eN, belongs to &¢(G) if every
€, either has non-trivial homology or contains a vertex of i-type. We call §¢(G) the space
of ends of G accumulated by homology.

It is worth mentioning that &y(G) is closed in &(G) and its definition does not depend
on the choice of the sequence (€;);en. Given a C-graph G, we define its pair of ends
as the pair (8¢(G), §(G)). Finally, we say that two pairs of ends (&¢(G), &(G)) and
(Eo(H), E(H)) are equivalent if there exists a homeomorphism % : §(G) — &(H) satis-
fying 1(€0(G)) = &o(H).

Remark 4.1. Note that if a C-graph I' has an isolated end o which is not accumulated by
homology in the classical sense (i.e., it contains a neighborhood in I" which is topologi-
cally a tree) then, it must have a neighborhood containing only vertices of type b, and £5.
Therefore, ends pairs of C-graphs always satisfy condition ().

Examples of C -graphs. The next two pictures illustrate important examples of C -graphs
that have finitely many ends and that we will use during the proof of Theorem 3.3. Each
end of these graphs is accumulated by vertices of A-type. We first illustrate C-graphs with
an even number of ends in Figure 3 below. They are topologically trees and all ends are
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Figure 4. C-graphs with respectively 1, 3, and 5 ends. Proceeding as suggested in the figure, one
obtains C-graphs with all odd numbers of ends. Any such graph has a special end accumulated by
h4-vertices.

accumulated by vertices of type &, (in all figures, the subscripts of h-type vertices will
be omitted, as it only reflects their valencies, which will be clear from the pictures); this
illustrates Remark 4.1.

Note that if a C-graph with finitely many ends is topologically a tree then, since the
valency of each vertex equals 2 or 4, the number of ends must be even. Hence, to realize
C-graphs with an odd number of ends, we need to use vertices of type /4, as pictured in
Figure 4. Representing C -graphs with an odd number of ends is the only reason why we
consider vertices of type /4.

4.3. Collapses

If G is a graph and ¥ a countable family of finite and connected subgraphs of G, let G/ ¥
denote the quotient of G under the equivalence relation “being on the same subgraph of
% Notice that G/ has a natural graph structure.

Consider C-graphs G and H. Assume that G contains no h-vertices and denote by
H., the set of h-vertices of H. We say that amap f : G — H is a collapse (see Figure 5)
if it is a graph morphism and there exist

e ¥ adisjoint family of finite, connected, and homologically non-trivial subgraphs of
G contained in Int(G) and

. f : G/¥ — H a graph isomorphism such that
(1) f om = f,where m : G — G/¥ is the quotient map,
(2)  f induces a bijection between ¥ and Hsx,
(3) f preserves vertex types when restricted to G \ Uge# S.
Remark 4.2. Notice that, since the subgraphs in the family ¥ are finite, collapses are

proper maps. Also, conditions (1) and (2) imply that preimages of b; vertices under col-
lapses are b; vertices for any valency i = 1, 2.
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fh)

Figure 5. A collapse. Each shaded subgraph of the graph on the left is collapsed onto a vertex of the
graph on the right.

4.4. Collapses and end spaces

The following proposition shows that although collapses forget some topological infor-
mation, they preserve ends pairs.

Proposition 4.3. Consider infinite C-graphs G, H and a collapse f : G — H. Then, the
ends pairs (69(G), §(G)) and (&9(H ), E(H)) are equivalent.

In order to prove Proposition 4.3, we need the following lemma.

Lemma 4.4. Consider a collapse f : G — H and a connected subgraph Hy < H. Then,
f7Y(Hy) is connected.

Proof. Write f~1(Ho) = |_|,, Bn, where B, are the connected components of f ~!(Hy).
Since Hy is connected, there must exist i # j such that f(8;) N f(B;) # @. This is
absurd since by definition of collapse, pre-images of vertices are connected. ]

Proof of Proposition 4.3. Let (K, )n,eN be an exhaustion of H by compact subgraphs. Up
to modifying the sequence we can suppose that every connected component of H \ K,
is unbounded. Define L, := f~!(K,) and notice that, since collapses are proper (see
Remark 4.2), the sequence L1 € L, C ---is an exhaustion of G by compact subsets. Also
notice that, by Lemma 4.4, taking preimages induces a (1 : 1) correspondence between
the connected components of H \ K, and those of G \ L.

We proceed to define the homeomorphism between & (H ) and & (G). For this, take an
end « € &(H) defined by a decreasing sequence of subsets (€,),eN, Where each €, is a
connected component of H \ K. We define ¢ () as the end represented by the decreasing
sequence (B, )neN, Where B, = f~1(€,). This definition makes sense because f~1(€,)
is a connected component of G \ L. It is straightforward to check that ¢ is an homeo-
morphism.
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o h h

Figure 6. Basic pieces.

To prove that (Eo(H)) € &0(G), take o € &y(H) defined by a sequence (€,),eN
and denote B, = f~!(€,). We need to check that 8 (8,) > 0 for every n € N. For this
we distinguish two cases.

Case 1. 8,1(€,) # 0.

In this case we can find a by-vertex w € €, such that €, \ {w} is connected. Since
preimages of h,-vertices under collapses are b,-vertices, we have that wg := f~!(w) is
also a by-vertex (see Remark 4.2). On the other hand, Lemma 4.4 implies that f~1(€, \
{w}) (which equals B, \ {wp}) is connected. Finally, since wo has valency 2 and 8B, \
{wg} is connected, we conclude that 8, (8B;) > 0 as desired.

Case 2. €, contains a vertex v of type 4.

This case follows directly from the definition of collapse.

To finish we check that (¢ (H)¢) € &o(G)°. For this, consider an end « defined by
a sequence (C,),eN. In this case there must exist an integer ng > 0 such that €, is a tree
without h-vertices. Then, by definition of collapse we have that B,, = f ~!(€,,) is a tree
and, therefore, p(a) ¢ Eo(G) as desired. This finishes the proof of the proposition. |

4.5. Elementarily decomposable C -inclusions

According to the strategy of the proof of Theorem 3.3 outlined in Section 3.3, we need
to “realize” some inclusions of C-graphs as lifts inside a tower of coverings. Elementary
inclusions will be the basic blocks of those inclusions that our techniques allow us to
realize. This will become clear and formal in the next two sections.

Basic pieces and C -inclusions. Given a C-subgraph B, we say it is a basic piece if B =
Bg (v, 1), where v is a non-boundary vertex. We call them s, &, or h4-pieces according
to the vertex type of v (see Figure 6). Notice that basic pieces are the smallest possible
C -subgraphs.

An injective map between C-graphs ¢ : G; — G5 is a C-inclusion if it is injective,
preserves vertex types, and satisfies that ((G1) is a C-subgraph of G,. Notice that it may
happen that the C -inclusion sends a by-vertex of G into a b,-vertex of G».

Elementarily decomposable C -inclusions. We say that a C-inclusion ¢ : H; — H; is
elementary if it satisfies that H, = «(H;) U B, where B can be

(1) an h,-piece meeting t(H1) in a single boundary vertex,
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P 9 .
o % —o
HI ! I HZ
L

779 )
o ——> o — o — _0\/\\,\"’

A L Js =
H =K, K, Ji\,Ks’ j\Hz =K,

Figure 7. An elementary inclusion (upstairs) and an elementarily decomposable inclusion (down-
stairs): the graph H> is obtained from H7 by attaching successively an h4-piece, an s-piece, and an
h-piece.

(2) an s-piece meeting ¢(H7) in a single boundary vertex or

(3) an hy4-piece meeting ¢(H1) in exactly two boundary vertices.
Also, we say that ¢ : Hy — H> is an elementarily decomposable C -inclusion if there exist
e C-graphs Ky, ..., K, with K; = H; and K,, = H, and

¢ elementary C-inclusions j; : K; — Kjyq withi = 1,...,n — 1suchthatt = j,_j o
.-+ 0 jp (see Figure 7).

5. Forests of C-graphs

As outlined in Section 3.3, the leaves of the lamination by graphs constructed in Theorem
3.3 will be obtained as direct limits of C-subgraphs of coverings in the tower. In order
to include simultaneously all the desired leaves, we will consider a family of these C-
subgraphs organized in an “arborescent structure” called a forest of C-subgraphs. The
abstract version of forests of C-subgraphs are forests of C-graphs. In the first paragraph
we introduce these two concepts and the concept of realization of forests in towers which
relates them.

5.1. Forests of C-graphs and realization

Given an oriented graph I" and an edge e € E(T") € V(I')?, define its origin and terminal
vertices as the vertices o(e) and 7 (e) so that e = (o(e), z(e)).

Forests. A forestis an oriented graph 7 = (V(7), E(J")), where the set V(77) of vertices
and the set E(7) € V(7)? of oriented edges satisfy the following:

e V(7) has a countable partition V(T) = |_|,cn Va(T), where each V,,(T) is finite. We
call V,,(7) the n-th floor of 7.
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e E(T)is contained in |, cpy (Va(T) X Vig1(7)). In other words, given any edge, its
terminal vertex is one floor upper than its origin vertex.

e Every vertex in (-, V»(T) is the terminal vertex of exactly one edge.
o Every vertex is the origin vertex of at least one edge.

In other words, forests are a disjoint union of finitely many trees whose vertices have
an integer graduation. We write E(7) = |_|,en En(T), where E,(T7) ={e € E(T) :
o(e) € V,(T)}. We consider all paths in 7 to be reduced, meaning: if p = e; ---¢ is a
pathin T, thene; # e;41 fori =1,...,k— 1.

Forests of C -(sub)graphs. We define a forest of C-graphs as a triple

H = (T {Hy}vev(ry. {tetecE([T))-

where T is a forest, { H, },ey(7) is a family of finite C-graphs, and {t. }cec g (7) is a family
of C-inclusions te : Hye) = Hy(e)-

There is a particular case of forest of C-graphs which is of particular interest for our
purpose. That is the case where the family of C-graphs (Hy)yev(7) is a family of C-
subgraphs included in the coverings of a tower. We proceed to give a formal definition.

Definition S.1. A forest of C -subgraphs is a forest of C-graphs

S = (T AGv}vev(@) {etecE(T))

so that there exists a tower U = {¢q, : I',+1 — I’} satisfying that

e {Gy:v € V,(T)} consists of a disjoint family of finite C-subgraphs of I';;

o the family of C-inclusions {j. : Goe) = Gy(e) : € € E(T)} consists of (1 : 1) lifts.
That is g, o jo = Id forevery e € E, (7).
In this case we say that S is included in the tower U.

Realization in towers. Let J = (7, {Hy}yer (7). {te}ecE (7)) be a forest of C-graphs.

We say that it is realized in a tower if there exist

e a C-subgraph forest § = (7, {Gy}vev(7). {je}ecE(T)) and

e afamily of collapses { f, : G, — Hy, : v e V(T)}

satisfying f(e) © je = te © fo(e) forevery e € E(T).

5.2. Limits of forests of C-graphs

In this paragraph we define limits of forest of C-(sub)graphs. These are families of C-
graphs, parametrized by the ends of the underlying forest, which are obtained taking direct
limits of sequences of C-inclusions. We show (under mild assumptions), that the limits of
subgraphs forests embed as leaves in the inverse limit lamination of the underlying tower
of coverings. Then, in the case we have a realization of a C-graph forest, we show that the
ends pairs of the limits of this C-graph forest are realized as leaves of ends pairs of the
lamination associated to the tower.
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Direct limits. Let (G,),eN be a sequence of C-graphs and {t, : G, — G, 41} a sequence
of C-inclusions. Then, we define the direct limit of the sequence as

Goo = lir_)n{tn :Gn = Gy} = I_lGn/ ~,

where ~ is the equivalence relation generated by Vx € G,, x ~ t,(x). The space Goo
is naturally a C-graph. Moreover, there exists a C-inclusion I, : G, — G4 such that
Iy4+1 01, = I, foreveryn € N.

We say that f : G — H is a collapse onto its image if

e f(G)is a C-subgraph of H, and
e f:G — f(G)isacollapse
Direct limits enjoy the following universal property which allows us to construct maps

defined on them.

Proposition 5.2 (Universal property). Let G be a C-graph. Assume that there exists a
sequence of maps ¢, . G, — G which satisfy the compatibility condition

On = Pn+10tn.

Then, there exists a map ¢ : Goo — G such that for everyn € N

¢n = ¢ oly.

Moreover,

(1) if the maps ¢, are C-inclusions, so is ¢ and

(2) if the maps ¢y, are collapses onto its image, so is .
Proof. Assume first that all ¢, are C-inclusions. Since all the ¢, are injective so is
¢. Also notice that unions of C-subgraphs are C-subgraphs and therefore ¢(Go) =
Unen @1(Gn) is a C-subgraph. Then, ¢ is a C-inclusion as desired.

Consider now the case where all ¢,, are collapses onto their images. First notice that

we can re-define H to be ¢ (Go) and the hypotheses hold. Also, by definition of collapse,
for each n € N there exist

e ¥, adisjoint family of finite, connected, and non-homologically trivial subgraphs con-
tained in Int(Gy);

e injective maps q@,, : Gp/ ¥, — H such that ¢, = $n o 1y, where 1, : G, —> G/,
is the quotient projection.

Since (E,, oy = ¢A>n+1 0 Tp+1 © Ly, there exists a map
U G/ Fn = Guy1/Frnr
satisfying the equations

(1) Tnt1 0ty =1y © Ty,
(2) én = P10
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From condition (1) we deduce that for each S € %, there exists S’ € %, 1.1 with ¢, (S) € S’.
Moreover, from condition (2) we deduce that 7, is injective and therefore ¢, (G,) N S’ =
tn(S).

On the other hand, since 7, (S) N 7, (0G,) = @ and 1, is injective, condition (1) imply
that 77, +1 (14 (S)) N 741 (1 (0G,)) = B. Taking preimages we get that S” N ¢, (0G,) = 0.
Then, since t,(0G,) = 0, (G,), we can decompose

S" = [Int (ta(Gn)) N S| U [ta(Gn) N S7].

On the other hand, since S’ is connected, we conclude that ¢, (S) = S’. This implies
that 1,,(%,) C I,+1(Fn+1). Therefore Foo := Upen 1, (F,) is a disjoint family of finite,
connected and non-homologically trivial subgraphs contained in Int(Go,). Then, by the
universal property of the quotient, ¢ = $ O Moo, Where oo : Goo = Goo/ 7, is the quotient
projection and $ is an isomorphism. Also, since ¢, preserve vertex types when restricted
to G, \ Useg, S, it holds that ¢ does the same when restricted to Go, \ Useg,,S. This
finishes the proof of the proposition. ]

Limits of forests of C-graphs. Now we are ready to define the limits of a forest of C-
graphs. For this consider a forest of C-graphs

H = (T AGv vev(m) {etecE(T))

and an end o € & (7). Denote by p* the semi-infinite ray starting at V,(7") and converging
to . Write p* = (e;)ien. We define the limit of H associated to « as the C-graph

G* =1lim{je, : Go(e,) = Gr(en}- G.1)

Finally, we define the limits of J as the family {G* : « € §(T)}.

Limits of forests of C-subgraphs and leaves. Consider a forest of C-subgraphs

S = (T AGu}vev). lelecE@))

included in a tower U = {gq,, : [';+1 — [',} and let M denote the inverse limit of U. We
will show how to embed the limits of § in the leaves of M.

Proposition 5.3. Assume that je(Go(e)) € Int(Gy(e)) for every edge e € E(T). Then, for
every end o € &(T), there exists a leaf £* of M and an isomorphism of C -graphs

% : GY — L7,
where Gy is the limit graph defined by (5.1).

Proof. For this, consider « € & (7) defined by a semi-infinite ray p* = (e;);eN starting
at Vo(77). Rewrite G, := Gy(e,), jn := Je, and notice that G* = li_r)n{jen 1 Gy = Gui}
We proceed to define a family of C-inclusions ¢3 : G, — M. For this, if n; < n, denotes
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° Jﬂlnz = jnz—l 00 jnl : Gnl g an and

° innz Zin O"'Oan—l : Fnz - Fnl,

then, define ¢ : G, — M as ¢ (x) = (xx)ken, Where

o xp=xifk =n,

o xp = Jup(x)ifk >n,

* Xi = an if k <n.

It follows directly from its definition that {¢2 : G, — M},en is a family of continuous

maps satisfying ¢y, | o j, = ¢, . Then, by the universal property we get a continuous map

¢ : G¥ — M. Moreover, since the image of ¢ is connected, it is contained in a leaf of M

that we denote by £¢. Notice that the maps ¢, : G, — £¢ are C-inclusions. Therefore, we

can apply the universal property for C-inclusions to obtain a C-inclusion ¢* : G* — £¢.
Suppose now that j.(Go(e,)) S Int(Gy(e,)) for every e € E(J). This implies that

Im(¢y) S Int(py, ;) forevery n € N and therefore Im(¢%), which equals | J,,cpy Im(ey ), is

both open and close. Then, in this case we have that ¢* is an isomorphism of C-graphs. m

5.3. Realization and leaves
In order to prove our next proposition we need the following lemma.

Lemma 5.4. Consider Gy, G,, Hy, and H» C-subgraphs. Also consider
e C-inclusions j : Gy — G and 1 : Hy — Hy; and
e collapses h; : Gy — H; fori = 1,2

such that hy o j = 1o hy and (1(Hy) C Int(H>).
Then, j(G1) C Int(G»).

Proof. First notice that, since 12(j(G1)) € t(H>), we obtain that j(G1) € hy ' («(Hy)).
Also, since h is a collapse, we get that ;' (Int(H>)) € Int(G>). Finally, by hypothesis
we get that 7151 («(H1)) € hy ' (Int(H>)).

Putting all this together, we conclude that j(G;) C Int(G») as desired. |

Proposition 5.5. Consider a forest H = (T ,{ Hy }yev(7), {le }ecE(T)) Which satisfies that
te(Hp(e)) € Int(Hy(e)) for every e € E(T). Assume that H is realized in a tower U with
associated lamination M. Then, for each a € & (T) there exists a leaf of M denoted by
£% such that

(Eo(H®). E(H)) = (Eo(£%). E(£)).

Proof. Write U = {q, : ['y4+1 — [, : n € N}. Since J is realized in U, there exist

 aforest of C-subgraphs § = (7, {Gy}vev(7), {Je}ecE(T)), Where Gy is a C-subgraph
of [, forevery v € V,(7)andn € N,

 afamily of collapses {hy : Gy — Hy : v € V(T)} satistying h(¢) 0 je = te © hy(e) for
every e € E(T).
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We first construct a family of collapses {h* : G* — H® : o € &(T)}. For this, take
o € &§(T7) and p = (e;);en the semi-infinite ray in I converging o with o(eg) € Vo (7).
Recall that

o G%*= li_r>n{je,, 2 Goten) = Golens) )
o H* =limit, : Hoee,) = Ho(e,11)} and

denote by I, : Hy(,) — H* and J, : Gy(e,) — G* the corresponding C-inclusions.
Define Y : G, — H* as Yy = I, 0 hy(e,). Since hy(e,) is a collapse and I, is a
C-inclusion, we have that ¢ is a collapse onto its image. On the other hand, since
tep © Noen) = Ni(ey) © Je, and Iy = Iy 41 0 e, We conclude that Yf = ¥, | © je,. There-
fore, by Proposition 5.2, there exists a collapse onto its image ¥* : G* — H*. To show
that ¢* is indeed an isomorphism note that

m(y®) = ) Im(y) = (| Im(I,) = H*.
neN neN
Then, applying Proposition 4.3 we deduce that the end pairs (Eo(H%), E(H®)) and
(E0(G%), E(G*)) are equivalent.

On the other hand, since t.(Hy()) S Int(H,()) for every e € E(7), Lemma 5.4
implies that j.(Gy)) € Int(Gy()) for every e € E(7). Then, we are in condition to
apply Proposition 5.3 to the forest § and find, for each @ € &(7), a leaf of M denoted by
£% which is isomorphic to G%. In particular, it holds that the end pairs (E9(G%), E(G%))
and (8o(L£%), &(L%)) are equivalent. This finishes the proof of the proposition. |

6. Surgeries and the main lemma

The main result of this section is Lemma 6.6, where we show how to realize some families
of C-graph forests in towers. The main ingredients in the proof of this lemma are Lemmas
6.2 and 6.3 which allow us to perform the inductive step. These lemmas heavily rely on
the surgery operation, which we proceed to define.

6.1. Surgeries of finite covers

Consider a C-graph I' together with a subset X C I' consisting of b,-vertices. We define
I'x as the C-graph obtained by cutting I' along the vertices in X. Namely, there exists
amap jy : 'y — I' such that jx|ry\x is (1 : 1) onto I' \ X and each a € X has two
preimages. In other words, each vertex in X splits into two b -vertices.

We proceed to define the operation of surgery. For this, consider a finite covering
po : I' = T’y together with finite subsets of b,-vertices X C I" and X¢ C I'g such that pg|x
is (2 : 1) onto Xo. For each a € X denote by e, and e, the edges of Iy adjacent to a.

Now, for each a € X denote by

e aj,a, its preimages in X under py,

[ e+

—_ . + p— . . )
4> €q, the preimages of e, and e, which are adjacent to a;,

. aii the copies of a; in I’y which are adjacent to j; 1 (ejl':

i)



Topology of leaves for minimal laminations II 201

r i

[SAS]

Figure 8. The surgery of a non-connected 2-fold covering I" of the figure eight C-graph I'g along a
set X of 2 boundary vertices pictured in white.

Define X T = {ai+ ta € Xg,i =1,2}and X~ ={a; :a € Xo,i = 1,2}. Then, we define
I'X as the quotient of 'y given by the equivalence relation af ~ay,ay ~ a;' for every
a € Xo. Denote by jX : Ty — I'X the quotient projection. Since pg o jx passes to the
quotient, we can define py : T'X — Ty satisfying px o j X = pg o jx. Itis straightforward
to check that py is indeed a covering map. We call px the surgery of po along X. We refer
to Figure 8. Note that non-connected covering spaces can become connected after surgery.

Remark 6.1. We point out that boundary vertices do not disconnect finite coverings of the
figure eight C-graph. To see this, consider a finite covering p : I' — I'g and a boundary
vertex v € I'. Let y be a simple closed curve through p(v). Since p is finite, the connected
component of p~!(yp) through v is also a simple closed curve that we denote by y. On the
other hand, since v is a boundary vertex, it holds that v has a neighborhood U such that
U \ {v} has two connected components. Finally, since y \ {v} joins these two components,
the remark follows.

6.2. Two important lemmas

The next two lemmas will be the two building blocks in order to construct towers of
coverings with an a priori fixed forest of C-graphs included in it. The first lemma shows
how to “realize” an elementary C-inclusion by a covering map: we call it an elementary
realization. The second lemma shows how to construct coverings to replicate subgraphs,
which is necessary to realize simultaneously various coverings.

Lemma 6.2 (Elementary realization). Consider I" a finite and connected covering space
of the figure eight C-graph satisfying f1(I') > 3. Assume that G, G are disjoint sub-
graphs of T, f : G — H is a collapse, and « : H — H' is an elementary C -inclusion.
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Figure 9. Elementary realization in Case 1. The graph G, represented by some blue “square” graph,
is collapsed onto a C-graph H, represented by the blue rhombus. We realize the operation of attach-
ing an hy-piece to H by performing a double covering of T" and attaching to the blue lift of G the
red graph, which has non-trivial homology, at a boundary vertex. This picture also serves for Case 2.
In that case, instead of attaching to j(G) the whole red graph, we only attach the red s-piece.

Then, there exist
e a connected and finite covering p : [' - I'and
o disjoint subgraphs G,.GycT satisfying that

- Goisa(1: 1)-lift of Gy,

— there exist a C-inclusion j : G — G anda collapse f -G — H' such that poj=

Idgandio f = foj.
Proof. Write
H' = ((H)U B.

According to the definition of elementary C -inclusion, we divide the proof in three cases
according to the type of B.

Case 1. B is an h,-piece meeting ¢(H ) in exactly 1 boundary vertex (see Figure 9).

Consider the vertex v € H such that ((v) = («(H) N B. By Remark 4.2 we have that
f~1(v) is a single b,-vertex that we denote by a.

Define A = 'V J T'® as the disjoint union of two copies of ' and ¢ : A — T
as the natural covering. Denote by X = {a1,a,} € A the copies of a in M and r®,
respectively. Note that Ay is naturally homeomorphic to F(l) u 1"(2).

Consider p : AX — T the surgery of ¢ along X, and

Jx i Ax = A, jX Ay — AX

the maps given in the definition of surgery. Notice that j X |1.,(i) is injective fori = 1, 2.
aj
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Since T\ {a} is connected (see Remark 6.1) so is AX which consists of the glueing
of two copies of I' \ {a}. Define j = jX o jy, where jj is the natural embedding of G in
thi) (recall that a is a by-vertex of G) and note that j is a (1 : 1)-lift of G under p. The
same argument shows the existence of a (1 : 1)-lift of Gy under p that we denote by Go.

On the other hand, G’ := j X (F(z)) is a subgraph of AX with non-trivial homology and
exactly two by -vertices which meets j(G) at j(a). Therefore, we can define the subgraph

= j(G) U G’ and a collapse f G— H' sending G’ to B and satisfying o f = f oj.
ThlS finishes the proof of the lemma in this case.

Case 2. B is an s-piece meeting ((H) in exactly 1 boundary vertex.

In this case we use the previous construction and notation but we change the definition
of G’. For this, let ¢ denote the s-vertex adjacent to j(a) in j¥ (F(2)) Then define G’ as
the ball of radius 1 around c. Note that G’ is an s-piece contained in j X (F ) Moreover,
since j X(F(Z)) and j(G) meet at ](a) sodo j(G) and G’. Therefore, we can define G:=
j(G) U G’ and the collapse f G — H' sending G’ to B and satisfying 1o f = f J-

Case 3. B is an h4-piece meeting ((H ) in exactly 2 boundary vertices.

Let vy, v, denote the vertices in B N «(H) and a; = f~'(t"!(v;)). Since B1(T") > 3,
there must exist a connected component of I'y, 4, with non-trivial homology; denote by
'Y ,, such a component. On the other hand, since 'Y, . has non-trivial homology, there
must exist a bp-vertex ag € Fgl ., Which is non-disconnecting. This implies that (the copy
of) ag does not disconnect I'y, nor I'y,. In other words, I';, 4, and Iy, 4, are connected.
Re-define ag as the copy of ag in T'.

Now, define A = I'D 1 T'@® 1 T3 a5 three disjoint copies of ' and ¢ : A — T as
the associated covering. Define

= {ag.a.43.43.a3. a3},
where aij is the copy of a; in I'/). Since each a; € {ag, a1, a»} has exactly two preimages
in X, we can define p : AX — T the surgery of ¢ along X and j X : Ay — AX.
We have that in this case, Ay decomposes as
Ay =T, uT urd
X = 1 “1 ’az
(see Figure 10). The graphs Fﬁ)al and I';?az are connected and jX((a(l))i) = jX((a(z)):F)
0°%1 0°%2
by definition of surgery; so we conclude that
’ (1) )]
6= (Mg U Tede)
is connected and contains 4 by -vertices which consists of two copies of a; and two copies
of a, (in Figure 10, this graph is obtained after glueing the first two graphs along the

vertices (ao)i) Argumg as in the first case, we can consider jy : G — 1"( ) 23 the natural
embedding of G in I 3) 3 (its image is the blue subgraph of Ay in F1gure 120) and j =
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Figure 10. The graph Ay.

jX o jo. Define G = j(G) U G’ and notice that j(G) and G’ meet exactly at j(a;) and
](az) Since B is an h4-piece meeting ((H) at {vl, vy}, we can define a collapse f

G —> H' sendlng G’ to B and satlsfylng to f = f o j. Finally, notice that there exists a
(1:1) lift Go of Gy in j X(F( 3) (we refer to Figure 11). This finishes the proof of the
lemma. ]

Lemma 6.3 (Replicate). Consider I" a finite and connected covering space of the figure
eight C-graph. Assume that G1, ..., Gy is a family of pairwise disjoint C-subgraphs of
I and let my, ..., my, be integers satisfying my > 1fork =1,...,n.

Then, there exists a finite covering p : [ — T with a family of different (1 : 1) lifts

j,i:Gk—>f,
wherel <k <nandl <[ < my.

Proof. Since I is connected and the subgraphs G; are disjoint, there exists a vertex a not
belonging to any of the G;. We are going to define a new covering with a slight variation
of the surgery operation defined in Section 6.1. Set N = m + - -+ 4+ m,,. Then, define

N
A=]| |T®
i=1
and consider ¢ : A — T the associated covering. Denote X = {ay,...,ay}, where a; is
the copy of a in T'¥). In this case Ay = UlN_l F(l) where each F,g) contains two copies
of a; that we denote by af and a; . In this case we define AX as the quotient of Ay under
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Figure 11. Elementary realization in Case 3. We realize the operation of attaching an h4-piece to
H by performing a 3-fold covering of I" and attaching to the blue lift of G the red graph, which has
non-trivial homology, at a pair of boundary vertices.

the equivalence relation generated by

af ~aij,; mod N withi =1,...,N.

Denote by jX : Ax — AX the quotient map. Note that ¢ o jx factors through jX
defining a finite and connected covering p : AX — T which consists of the “cyclic” glue-
ing of N copies of I'; (see Figure 12). Then, label these copies as

AX = U Cr.-

1<k<n;1<l<my

Since a ¢ UZN=1 G;, there exists a (1 : 1) lift of j,ﬁ : Gy = Cy, forevery 1 <k <n;
1 <1 < m;. This finishes the proof of the lemma. [

6.3. The main lemma

When the C-inclusions in a forest of C-graphs are elementarily decomposable, we say
that we have an elementarily decomposable forest. The main lemma says that (under some
assumptions), elementarily decomposable forests can be realized in towers. To prove this
lemma we first need to decompose the forest. After the decomposition we will use the pre-
vious lemmas on surgeries to realize our decomposed forest through an inductive process.

Compositions and decompositions. Consider a strictly increasing map ¢ : N — N and
a forest T = (V(T), E(T)). Then, we define the o-composition of T as the forest T, =
(V(Ts), E(T5)), where

o V(75) = Unen Vo(n):T and
e E,(T5)={p:pisapathin 7 joining Vo7 and Vo@u4+1)T }.
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Figure 12. Here the vertex a is pictured in white. The graph AX is obtained by cyclic surgery of
various copies of I" along copies of a.

Also, given a forest of C-graphs H = (7, {Hy}vev(7), {tetecE(T)), We define the
o-composition of J¢ as the forest

Ho = (To. {Hv}vev(z,). {tp}oeE))

with ¢, 1= 1, 0+ 0, Where p = ey -+ - e belongs to E(T5).

If for some increasing map o we have that #; is a o-composition of J,, we say that
H> is a decomposition of H.

The proof of the following proposition follows directly from the definitions.

Proposition 6.4. Consider an elementarily decomposable forest of C-graphs H =

(T, {Hv}vev @y, ltetecE(T)). Then, there exists a decomposition of H# denoted by & =

(7' {Hy}veva, {tetecE (7)) SO that for every n > 0 one of the following holds:

 either all C-inclusions in (L¢)ccE,(7) are bijective or

e o(e) # o(e') whenever e, e’ are different edges in E,(T”) and there exists ex € E,(T")
such that

= Je. is an elementary C -inclusion,

— Jje is bijective for e € E,(T') \ {e«}.
In this case we say that & is an elementary decomposition of J.

Remark 6.5. It is straightforward to check that if a forest of C-graphs # is realized in
atower U = {q, : Ty4+1 — I'n} and 0 : N — N is a strictly increasing map, then #,, is
included in the tower Uy = {7 : To(n+1) = Lo@m)}> Where g = gom) © *** © qo(n+1)—1-

Lemma 6.6 (Main lemma). Consider an elementarily decomposable forest H =
(T, {Hy}vev @), ltetecE(T)). Assume that there exists 'y a finite covering space of the
figure eight C -graph together with
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o {Gy:v € Vo(T)} adisjoint family of subgraphs of Ty and

o {fy:Gy— Hy v e Vo(T)} afamily of collapses.

Then, J€ can be realized in a tower.

Proof. Let H = (T ,{Hy}vev (7). {le}ecE (7)) be an elementarily decomposable forest and
& = (T, {Hy}vev(3). {le}ecE (7)) an elementary decomposition of # given by Propo-
sition 6.4. By Remark 6.5, in order to show that J# can be realized in a tower, it is enough

to show it for &.
A realization of & up to level  is defined as the following data:

o finite coverings {¢; : Ti4+1 > I :i =0,...,n—1};

e foreachi < n,afamily {G, : v € V;(T"')} of disjoint subgraphs of T;;

e foreachi <n — 1, afamily of C-inclusions {je : Goe) = Gi(e) : € € E;i(T')} satis-
fying ¢; o jo = Id and

o a family of collapses {f, : G, = Hy : v € E;(T'),i < n} satisfying fiy) © je =
ie 0 fo(e) forevery e € E;(7') withi <n — 1.
We are going to prove that any realization of & up to level n can be extended to a

realization up to level n + 1. Since the hypothesis of the lemma implies that & can be

realized up to level 0, the lemma will follow by induction.

For this, assume that & can be realized up to level n. By Proposition 6.4 we need to
distinguish between two cases.

Case 1. Forevery e € E,(T'), J. is bijective.

In that case, let m, = #{e € E,(T7') : o(e) = v}. Notice that in Case 1, we just need
to construct a finite covering g, : I',4+1 — [, containing m,, disjoint (1 : 1) lifts of G, for
each v € V(7). The existence of such covering follows directly from Lemma 6.3 which
allows to replicate these subgraphs. Denote by {je : Goe) = Gi(e); € € En(T')} the given
family of lifts under g, . Finally, define fi(e) := je © fo(e) © (4nlG,,) forevery e € Ey, 7.

Case 2. For every pair of different edges e, ¢’ in E,(7”), we have o(e) # o(e’) and
moreover there exists ex € E,(T') such that
* Je, is an elementary C -inclusion,
o Jje is bijective for e € E,(T') \ {ex}.
Let Go := | |,e, 7\ e} Gole)- In Case 2, we must construct a finite covering ¢y, :
I'h+1 — T, together with
e Gy, and Go = UeEE,,(T’)\{e*} G (e) subgraphs of ' 11,
¢ ey : Goen) = Gi(en) and jo : Go — Go, (1 : 1) lifts under ¢y,
e acollapse fi(e,) : Grien) = Hi(ew)

which satisfy that f;(.,) © je, = te, © fo(e,) and that jg isa (1: 1) lift. This follows directly
from Lemma 6.2 setting that

e Go:=Gopand G := Go(e*)’
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o [ = foew and f = fiie,),
e =1 and j = Je,.

This finishes the proof of Lemma 6.6. ]

7. Proof of Theorem 3.3

Recall that a pair (&g, &) satisfies condition (x) if &y is a closed subset of &, & is a
compact and totally disconnected metrizable space, and &, contains the isolated points
of &.

First, we prove the following weak version of Theorem 3.3.

Proposition 7.1. There exists a tower U = {q,, : Tn41 — T} whose inverse limit M
satisfies that

e its generic leaf is a tree;

e given any pair T = (&9, 8) satisfying condition (x), there exists a leaf of M whose
ends pair is equivalent to t.

Notice that the only missing classifying triples in Proposition 7.1 are those of the form
(g,9, &). Also notice that by condition (x), those classifying triples must satisfy that &
is perfect and therefore homeomorphic to a Cantor set. After proving Proposition 7.1, we
will show how to modify the construction in order to realize also these countably many
missing triples.

In order to prove Proposition 7.1, we need another proposition whose proof will be
postponed until the next section.

Proposition 7.2. There exists an elementarily decomposable forest of C-graphs ¥ =

(T AHv}vev(r): {tetecE(T)) satisfying that

o Vo(T) consists of three vertices, that one denotes by vy, va, and v3; moreover, Hy, is
an hy-piece, Hy, is an s-piece, and H,, is an ha-piece;

e .(Hoe)) S Int(Hye)) for every e € E(T);

e for every pair T = (&9, &1) satisfying condition (x), there exists a € &(T) such that
(Eo(H%), E(HY)) is equivalent to .

Proof of Proposition 7.1 using Proposition 7.2. Consider the forest of C-graphs

F = (T AHy}vev(r). lte}ecE@))
constructed in Proposition 7.2. Notice that V4 (7") consists of three vertices, that we denote
by {v1, v2, v3}, and that H,, is an h,-piece, H,, is an h4-piece, and H,, is an s-piece. In
order to realize ¥ in a tower using Lemma 6.6, we need to construct a finite covering of
the figure eight C-graph I'y together with

¢ Gy,, Gy,, and Gy, disjoint C-subgraphs of I'y and
» collapses f; : Gy, — Hy, fori =1,2,3.
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Figure 13. A 7-fold covering with the three basic pieces needed to initialize our induction: the
purple subgraph collapses onto an /5-piece, the orange one onto a h4-piece, and the blue one is an
s-piece.

This can be done with a 7-fold covering graph over 'y as shown in Figure 13. Then, we
can apply Lemma 6.6 and realize ¥ inside a tower U as desired. Let M denote the inverse
limit of U. Since ¥ satisfies that ¢, (Hy(¢)) < Int(Hy()) for every e € E(T), Proposition
5.5 implies the existence of a family of leaves {£% : « € &(T)} of M verifying that
(Eo(HY), E(HY)) is equivalent to (§o(L£%), &E(L£Y)) for every « € &(T). Therefore, by
Proposition 7.2, all equivalence classes of end pairs satisfying condition (x) are realized
in {(Eo(£Y),E(LY)) 1 € E(T)}.

Finally, since there exists a leaf £% with &y(£%*) = @ we can apply Proposition 3.1 to
show that the generic leaf of M is a tree. ]

Modifying the construction to realize the missing triples. We proceed to show how to
modify the construction of Proposition 7.1 in order to (also) include leaves realizing the
classifying triples

{(¢.9.K) : g > 0and K a Cantor set}.

For this we need to introduce some definitions and notations. Denote by T the tree
with a unique b;-vertex that is obtained by glueing s-pieces. Given a C-graph G, define
T (G) as the C-graph obtained by glueing copies of T at each by-vertex of G (see Figure
14). Note that 81(T(G)) = B1(G). Finally, define

T(G,r)= {w € T(G) : distrg)(G, w) < 2r}.

Notice there exist natural C-inclusions ¢, : T(G,r) — T(G,r + 1) for every r > 1 and
that 7 (G) is isomorphic to li_r)n{t, :T(G,r) > T(G,r + 1)}

Roughly speaking, our idea is to modify the construction in Lemma 6.6 while also
including C -subgraphs of the form 7' (G, r) and lifts of the form ¢, : T(G,r)—>T(G,r+1)
inside our tower. We proceed with our construction.

First we show the following result

Proposition 7.3 (Including graphs with finite dimensional homology). There exist

o atower U ={qy, : Tn41 — [y} realizing the forest ¥ of Proposition 7.2 via a C -
subgraph forest § = (T .{Gv}vev (7). {Je}ecE()):
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Figure 14. The tree Tx, a C-graph G with $1(G) = 2 and four b -vertices, and the corresponding
infinite graph T'(G).

e foreachn > 1, a disjoint family of C -subgraphs of T', denoted by {G;, : 1 <i < n}
such that

— Gy is disjoint from G, for every v € V,(T) and i < n;
- B1(Giy) =ifori > 1;
= Giny1 =T(Gip, D forl <i <n;
o afamily of C-inclusions { jin : Gin = Gipn+1) such that
- gnojin=1Idand
= Jin(Gin) S Int(Gj p11).

To prove that such a tower exists, we use the following lemma which is a variant of
Lemma 6.2, and whose proof is left to the reader.

Lemma 7.4. Consider I" a finite covering space of the figure eight C graph G, Gy dis-
jomt C- subgraphs of T, and m € N. Then, there exists a finite covering p : [ > T and
G, GO, F disjoint C-subgraphs of [ such that

« B1(F)=m;
o Gy isalift of Go;
e Gis isomorphic to T(G, 1);
o thereexists j : G — G such that
- poj=Idand
- J(G) € Iny(G).
Proof of Proposition 7.3. Following the proof and notations of Lemma 6.6, we say that
the inductive property (IP) is satisfied up to level k and we denote it by (IP)g if there exist

e arealization of ¥ up to level k denoted by {¢; : T'j41 — [3; i =0,...,k — 1} (recall
the definition of realization given in Section 5.1);
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» afamily of disjoint C-subgraphs {G; , : 1 <i <n <k} with G; , C I, satisfying all
the properties stated above and

e afamily of C-inclusions j;; : G;; — Gj ;41 with 1 <i <[ < k, satisfying all the
properties stated above.

Now, we prove that (IP); implies (IP)g4;. To do so, let ¢ = |J; .4 Gi k. Now, we
are going to proceed as in Lemma 6.6 but with a slight variation. Consider a covering
q:T ,j s Iy extending the realization of ¥ one more floor so that, in addition, I" ; +1
contains a C-subgraph ¥, which is a (1 : 1) lift of . Then, apply Lemma 7.4 with

r= F;(‘H, Go = Uver_H(T) G,, G= ﬁ,ﬁ, and kK = m to construct a finite covering p :
Cry1 = TF 1 together with all the C-subgraphs and C-inclusions as stated in the lemma.

We claim that gx 41 :=¢q o p: 'y 41 — 'k is the desired covering. To see this, compose
the C-inclusion associated to the covering g with those associated to p. It is straightfor-
ward to check that 'y contains all the desired C-subgraphs and therefore that {g; :
g1 = Ty i =0,..., k} satisfies (IP)g 4. Finally, by induction, we obtain the desired
tower U. |

End of proof of Theorem 3.3. To check that U satisfies the two conditions required in
Theorem 3.3, let M denote the inverse limit of the tower U. Since U realizes ¥, M real-
izes all classifying triples satisfying condition (x) with infinite dimensional homology.
To check that classifying triples satistfying condition () with finite dimensional homol-
ogy are realized, note that for every k > 1, T(Gg ) is isomorphic to the direct limit
li_r)n{jk,l : Gr,1 = Gi,1+1: | > k}. Therefore, we can argue as in Proposition 5.3 to show
the existence of leaves isomorphic to T'(Gg x), for every k > 1. Since B1(T(Grx)) =k
and &(T (G )) is a Cantor set, this finishes the proof of Theorem 3.3. |

8. Proof of Proposition 7.2

Recall that we endow C-graphs with the path distance where all edges have length one.
Let dist denote this distance and Bg (v,r) = {w € G : dist(v, w) < r}. We say that (G, v)
is a pointed C-graph if v € G is not of boundary type. We omit the pointing from the
notation unless it creates confusion. In this spirit, when (G, v) is a pointed C-graph we
write Bg(n) instead of Bg (v, n). Finally, denote by [(G, v)] the class of (G, v) up to
pointing-preserving isomorphisms.

8.1. The construction

In order to construct our forest of C-graphs with the desired limits, we take the reverse
path. First, we define a family of C-graphs that we want to realize as limits and then we
construct the forest of C-graphs realizing the family as limits. We proceed to define this
family.

The family €. Say that a pointed C-graph (G, v) belongs to the family € if
(1) 0G = @ and
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(2) Bg(v,2n + 1) is obtained from Bg (v,2n — 1) by adding a disjoint union of
e hi4-pieces meeting dBg (v, 2n — 1) at exactly two boundary vertices and
e s and hy-pieces meeting dBg (v, 2n — 1) at exactly 1 boundary vertex.

Remark 8.1. Note that, since pointings are not of boundary type, the balls Bg (2n + 1)
are C-subgraphs. Also, by condition (2) we have that the C -inclusions

t:Bg(2n—-1) - Bg(2n + 1)

are elementarily decomposable. Finally, by definition, we have that Bg(2n + 1) strictly
contains Bg(2n — 1) which in particular implies that every graph G in § is infinite.

Remark 8.2. It is easy to check that the C-graphs illustrated in Figures 3 and 4 belong to
the family € (independently on the pointing).

The construction of 7. We proceed to construct the underlying forest 77, for this define
Va(T) ={[Bc(2n +1)] : G € €, n >0},

where, as we recall, we are considering pointed C-graphs up to pointing-preserving iso-
morphisms. Clearly V,, (7) is finite for every n. Moreover, V(7)) consists of three vertices
v1, U2, and v3 corresponding respectively to an h,-piece, an f4-piece, and an s-piece. On
the other hand, we define that

([B1].[B2]) € En(T) S Va(T) X Vit (T)

if there exists a C-inclusion ¢ : B; — B; preserving the pointing. Notice that, since we
are considering C -inclusions preserving the pointing, for every [B] € V,,(7) withn > 0
there exists exactly one edge e € E(J") with (e) = [B]. Therefore, T has no cycle.

The construction of ¥. First we construct a forest of pointed C-graphs with pointing
preserving C-inclusions. Given [B] € V(T7), define H|p] as any representative of [B] and
given

e = ([B1].[B2]) € E(T),
define ¢, as any pointing preserving C-inclusion from H[p,] to H|p,]. Then, we define our
forest of C-graphs as

F = (T’ {H[B]}[B]eV(T)’ {Le}eeE(T))’

where we forget the pointings of the { H[p1}[Blev(T)-
Notice that by Remark 8.1, the forest of C-graphs ¥ is elementarily decomposable.
Also note that, since elements of € have empty boundary, it holds that

le (Ho(e)) C Int (H,(e)) for every e € E(T).

Remark 8.3. By construction we have that if G € €, then ([Bg(2n + 1)]),en is a path
in 7 converging to an end o € &(7) with H* isomorphic to G. In other words,

all the elements in the family € are realized as limits of the forest ¥ .
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In order to finish the proof of Proposition 7.2, it remains to show that the ends pairs of
the elements of € realize all pairs satisfying condition ().

8.2. The ends pairs of elements in €

First, we show that every pair (Ko, K1) satisfying condition (*) with K infinite is realized
as an end pair of an element in €. That is the content of the following proposition.

Proposition 8.4. For every pair (K, K1) satisfying condition (x) with Ky infinite, there
exists a C-graph G € € such that (§9(G), §(G)) is equivalent to (Ky, K1). Therefore,
every such pair is realized as an ends pair of a limit of ¥ .

In order to prove Proposition 8.4, we need to introduce some definitions and notations.

Adapted sequences of partitions. If X is a set, § C #(X) a partition, and x € X, we
define £(x) = A, where x € A and A € £. Given a set X with partitions &;, &,, we say that
&, is finer than & if £;(x) C &1 (x) for every x € X. In this case we note that §; < &;.

Let (Ky, K1) be a pair satisfying condition (*) with K infinite. Recall that by def-
inition this means that isolated points of K; belong to Ky. Let &1, &5, ... be a sequence
of partitions of K;. We say that (§,),en is adapted to the pair (Ky, K1) if it satisfies the
following properties:

(A1) §&; is a finite partition by clopen sets for every i € N;

(A2) #&) = 1 and #&; = 2 or 4,

(A3) & < &4 foreveryi € N (i.e., &4 refines &);

(A4) foreveryi > 1,if A € & \ & 41, then there exist three different and non-empty
elements By, By, B3 € & +1 suchthat A = B; U B, U Bs;

(AS) foreveryi > 1 and A € & we have that AN K¢ # @ifandonlyif A € &_; U
it

(A6) given two distinct points x, y € K, there exists i € N such that y ¢ & (x) (i.e.,
the sequence separates points).

Remark 8.5. Notice that conditions (A2), (A3), and (A4) imply that #§; < 4371,

From adapted sequences to pointed C-graphs. Consider a pair (Ko, K;) satisfying
condition () with K infinite, and £ = (&;);eN a sequence of partitions adapted to the pair
(Ko, K1). We will construct a pointed C-graph G¢ € € satisfying that (Eo(G¢), €(G¢))
is equivalent to (Ko, K1). This construction together with the following lemma (whose
proof we leave to the appendix, see Section A) will finish the proof of Proposition 8.4.

Lemma 8.6. Let (Ko, K1) be a pair satisfying condition (x) with K infinite. Then, there
exists (§;)ieN, a sequence of finite partitions adapted to (Ky, K1).

Proof of Proposition 8.4. Let (K, K1) be a pair satisfying condition (x) with K infinite
and let £ = (&;);en be a sequence of finite partitions adapted to (Ko, K7). We build a
C-graph G¢ € € whose ends pair is equivalent to (Ko, K1) (see Figure 15). First define a
tree T as
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&1
3

13 2 &
&

Figure 15. An adapted sequence of partition (on the left) and the associated C-graph G (on the
right).

e V(Tg) = | |;en & (condition (A1) implies that each &; is a finite set);

e (A,B) € E(Tg) € V(T¢) x V(T¢) if and only if there exists n € N such that 4 € §,,
B € &,41,and B C A (conditions (A2) and (A3) imply that every vertex has valency
at least 2).

Notice that by conditions (A2) and (A4), the valency of vertices is either two or four.

To transform T into a pointed C-graph G¢ € €, consider the pointing of T at K; €
&0, add boundary vertices in edges midpoints, and label other vertices according to their
valencies: valency two vertices of non-boundary type become h,-vertices and valency four
vertices become s-vertices. This finishes the construction of Gg.

Proposition 8.4 now follows from the next lemma. ]

Lemma 8.7. The pair (§0(G¢), &E(Gg)) is equivalent to (Ko, K1).

Proof of Lemma 8.7. Take x € K; and consider the sequence (&;(x));en. Note that this
sequence defines an infinite ray in T, which represents an end; see Figure 15. Define the
map ¢ : K;1 — &(G¢) sending each x € K to the ray represented by (& (x));en. We
proceed to show that ¢ induces the desired equivalence of pairs.

The injectivity of ¢ comes from condition (A6). The surjectivity comes from the fact
that decreasing sequences of nonempty compact metric spaces have nonempty intersec-
tions.

Given A € &, a vertex of G¢ not of boundary type, we can define Wy as the set of ends
represented by embedded rays that start at the pointing of G¢ and pass through A. Notice
that

{Wy4 : A vertex of non-boundary type}

is a basis of the topology of &(G¢). Then, since ¢! (Wy4) = {x : x € A} is a clopen set,
we get that ¢ is continuous as desired.
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It remains to prove that ¢ induces a bijective correspondence between Ky and & (Ge).
Note first that G¢ is topologically a tree. Hence an end of £ belongs to &¢(G¢) if and only
if it is accumulated by h-vertices.

Let xo € Ko and let &,(x() be the sequence of elements of &, containing x¢. These
are clopen sets and the sequence (£,),eN separates points, so {&,(xg) : n € N} forms a
neighborhood basis of xg. Using condition (AS5) above, we see that for infinitely many
n €N, &,(x0) = &,4+1(x0). So the ray defined by the sequence (&, (x¢))neN has infinitely
many 2-valent vertices which are s-vertices. This proves that ¢(x¢) € Eo(Gg).

Now we consider x € K; \ Ky and look at the ray defined by (&,(x))sen. Since
x ¢ Ko, which is closed inside K, there exists a neighborhood V' of x such that V' N
Ko = @ and, therefore, there exists no € N such that &,,(x) C V. Let C * be the cone
of G¢ consisting of the union of the connected components of G¢ \ {£,,(x)} which do
not contain the pointing. There are three of such components by definition because Ky N
&, (x) = @ (this is implied by conditions (A4) and (AS)). The same argument shows that
every (non-boundary) vertex inside C* has valency 4 (since for every y € &,,(x) and
n > ng, £&,(y) N Ko = @). This means in particular that the end represented by the ray
(52 (x))nen is not accumulated by h-vertices (which are 2-valent). Hence ¢(x) € &(Gg) \
€0(G¢). This finishes the proof of the lemma. |

Realizing finite ends pairs with elements of €. In order to finish the proof of Proposi-
tion 7.2 it remains to show that finite ends pairs satisfying condition () are realized as
ends pairs of elements of €. Examples of C-graphs with 1, 2, and 3 ends are shown in
Figures 3 and 4. In order to construct C-graphs with arbitrary number of ends we define
an inductive procedure which, from a given C-graph with finitely many ends produces a
new one with 2 more ends. For this, we define the /1,-ray as the one-ended C-graph with
exactly one valency 1 boundary vertex which is obtained by concatenating infinitely many
hy-pieces. Also, we define the h,-trident as the C-graph obtained by gluing 3 /4,-rays at
an s-piece. Note that if a C-graph has finitely many ends, the result of the substitution of
an hjp-ray by an hj-trident increases by 2 the number of ends. Some examples are shown
in Figures 3 and 4. The first one shows how to realize C-graphs which are topological
trees with an even number of ends. The second one shows how to treat C-graphs with an
odd number of ends. Such a graph is not a topological tree, and one special end is approx-
imated by vertices of &4-type. As noticed in Remark 8.2 these graphs belong to the family
€ and their ends pairs satisfy condition ().

A. Appendix

A.1. Proof of Corollary 1.1

Consider the lamination &£ constructed in Theorem A. By construction it comes with a
structure of bundle Il : £ — X whose fiber is a Cantor set K. Let D C X be a small
open disc trivializing the bundle so that U = P, !(D) is homeomorphic to D x K and
dU is homeomorphic to dD x K. Define M := £\ U and dM := dU . Consider T a copy
of the one holed torus and define V := T x C and 0V := 0T x K.
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We define £’ by (continuously) identifying the boundaries of M and V so that dD x
{x} identifies with 9T x {x} for every x € K. Given x € M(= £ N £’) let £, and L,
denote the leaves through x for £ and £’, respectively.

Lemma A.1. £’ satisfies that
(1) &' is minimal;
(2) &(£Lx) is homeomorphic to &(L’,) for every x € M;
(3) every end of every leaf of £ is accumulated by genus;
(4) the generic leaf of £’ has a Cantor set of ends.

We leave the proof of the lemma to the end of the section. Since every possible space
of ends is realized by a leaf of £, Lemma A.l implies that every possible classifying
triple of the form (oo, €, &) is realized by a leaf of £’. Finally, notice that £’ admits a
hyperbolic lamination structure by [8] (every leaf of &£’ is of infinite topological type).

We need a definition before proving Lemma A.1.

Given a solenoid N, we say that a Cantor set J C N is a transverse section of N if
for some r > 0 we have that

U B(x,r)

xeJ

is an open set and B(x,r) N J = {x} for every x € J and if all leaves of N intersect
J . Note that the pseudogroup of holonomy restricted to J is minimal if and only if £ is
minimal (see [9]).

Proof of Lemma A.1. Consider a transverse section J of &£ contained inside &£ \ U (this
is possible by the structure of Cantor bundle of £). Since &£ is minimal, the holonomy
pseudogroup acts minimally on J. Notice that removing U does not affect the holonomy
pseudogroup restricted to J and therefore the holonomy pseudogroup of &£’ restricted to
J is also minimal which implies 1.

Take x € M; to show that &(Ly) is homeomorphic to &(L’,) consider an exhaustion
of L, by compact connected subsurfaces with boundary

$S1€85H S S8 S

such that 0S; N U = @ for every i € N and such that different boundary components of
S; correspond to different connected components of L, \ S; (this can be done using the
core tree construction of [4]). Since dS; N U = @ for every i € N, this induces a natural
exhaustion of L',

ncnc---cr, < -

which induces a homeomorphism between the inverse limits of the system of connected
components of Ly \ S; and that of L/, \ T; proving 2.

Notice that by the minimality of £, every connected component of Ly \ S; inter-
sects U and therefore every connected component of L', \ 7; has non-trivial genus which
implies condition (3). Finally, since the generic leaf of &£ has a Cantor set of ends, there
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exists R C J a generic subset such that & (L) is a Cantor set for every x € R. Therefore,
condition (2) implies that &(L’.) is a Cantor set for every x € R which implies condi-
tion (4). [

A.2. Proof of Lemma 8.6

From now on (K, K1) will be a pair satisfying condition (). We shall give a criterion to
prove that a sequence of partitions (&;);cn is adapted to a pair (Ko, K1). Consider (i;)ieN
a sequence of partitions by clopen sets of K; separating points (i.e., for every x, y € K;
there exists n € N with y ¢ u,(x)). We call a sequence with this property a separating
sequence.

A criterion for adaptability. Consider a separating sequence (i4;);eN. Assume that we
have a sequence of partitions by clopen sets (&;);en and a sequence of integers k,, — +00
satisfying that for every n € N we have that

e §&1,...,&, satisfies conditions (A1), (A2), (A3), and (A4) in the definition of adapted
sequence of partitions,

and
(A5) if A € & for some i < ky, then (defining & = @ fori <OQori > k,)

ANKy#@ ifandonlyif A €&_1UE& 4,

(A6) pn < &k,

Then, the sequence (£;);en is adapted for (Ko, K1). To see this, notice that conditions
(A1), (A2), (A3), and (A4) are automatic. On the other hand, since k,, — +00, we have
that (A5) follows from condition (A5)’. Finally, to check condition (A6) take x, y € K
and n € N such that y ¢ u,(x). By condition (A6)" we have that , < &, and therefore

£, (¥) € n (x) in particular y ¢ &, (x).
From now on, we fix a separating sequence ({4;);eN-
Two useful lemmas. The proof of the following lemma is left to the reader.
Lemma A.2. Given a compact, perfect, and totally disconnected space K and n € N,
there exists vy, . . . , Vy, partitions by clopen sets satisfying
* vo ={K},
* Vi <Viyyp,
e foreveryi <nand A € vj, there exists infinite clopen sets {B1, By, B3} C vj41 such

that A = By U B, U Bs.

The following lemma is the key for proving Lemma 8.6 and its proof is postponed
until the final section of this appendix.

Lemma A.3 (Partition lemma). Consider finite partitions by clopen sets & and | such
that all finite elements of & are singletons. Then, there exists finite partitions by clopen
sets &g, &1, . .., &, satisfying that
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(B1) the sequence is increasing &g = &€ < &1 < -+ < &,
(B2) if A € & \ &1, then there exist three different and nonempty elements
By, By, B3 € &+ such that A = By U B, U B3;
(B3) if A € & for some i < n, then (defining & = @ fori <0ori > n)
ANKy#@ ifandonlyif A€ & _1U& 4 fori =0,...,ky;

(B4) < &y

(BS) finite elements of &, are singletons.

A.3. Partition Lemma A.3 implies Lemma 8.6

We proceed to construct (§;);eN, an adapted sequence of partitions for (Kg, K1) satisfying
the criterion for adaptability stated above.

Define §) = {K;} and &) = {L;, L,} with L, and L, infinite clopen sets (the exact
same argument works if we choose E? ={Ly, L, L3, L4} with Ly, L,, L3, L4 infinite
and clopen). Since L; and L are infinite, we can apply Lemma A.3 to the partitions &?
and p1. This gives a sequence E? = Eé <§l <o <E) , that in particular satisfies that

e finite elements of E,ill are singletons;
o 1 <Ey.

Therefore, E,lnl satisfies the hypothesis of Lemma A.3. Repeating this procedure we
apply Lemma A3 infinitely many times and get a family of finite sequences ((&ik),-sm JkeN
satisfying
o EX =K1 fork > 1,

mg—1
o Up < gr’;k fork > 1,
e items (B2) and (B3) from the conclusion of Lemma A.3.
Concatenating ég, S? with the families (fg'ik)lgsmk, we obtain a sequence (§,)neN
for (Ko, K1) satisfying the criterion of adaptability (with the sequence k, = Y j_; mg).
Indeed, items (A1), (A2), and (A3) are clearly satisfied. Items (B2) and (B3) are guar-

anteed in the whole construction of (§,),en: so the sequence (§,),en satisfies (A4) and
(A5)'. Finally, by construction of k, we have ju, < &, for all n, providing (A6)’.

A.4. Proof of the partition Lemma A.3

Before starting the proof of Lemma A.3 we need to introduce some notations and defini-
tions.

Prepartitions. We say that n € P (X) is a prepartition of X if different elements of 7
have empty intersection. Denote
7= 4,

Aen
and note that if 7 = X, then 7 is a true partition of X. All the prepartitions that we will
consider will consist of finitely many clopen subsets.
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Given two prepartitions 71, 172 of the same set X, we say that 1, is finer than n,, and
we write 1 < 1y if

(1) for every A € n; we have that
o either A C 7, or
e ANT =0,
(2) n2(x) € n1(x) for every x € 12
We say that a sequence of prepartition n = (o, . .., 1)n) is increasing if ng < --- < ny.
We define the partition by minimal elements associated to such an increasing family as

P = {A:Aeni and A N 741 =Q)f0rsomei}.

Here we set flu1 = @ so P is the union of 7, with finitely elements called stopping
elements. Tt is clear that P is a partition of 7o, which induces the partition 1, on the
set .

Finally, we define the depth function of the increasing family as the function

0:P — N satisfying A € 054y and A N Gpa)+1 = 9.
Note 0(A) < n if and only if A is a stopping element.

Subdividing elements of £. Now we are ready to start the proof of Lemma A.3. Consider
¢ and p as in the hypothesis of that lemma. The first step is to subdivide every element of
&€ in a way similar to Lemma A.3. Given A € &, define

na:={ANB:Beu}

Since finite elements of ¢ are singletons, up to subdividing some elements we can assume
that finite elements of 4 are singletons and #/14 is odd. We now define a monotone family
of prepartitions

nt = (A
for every A € &. For this enumerate ugq = {B1,..., Bop41} and note B = U;>; B;. In
order to construct our family we proceed inductively and discuss several cases.

Case 1. #uy = 1. In this case define n := ({A}).

Case 2. #u4 = 3. In this case we have two possibilities:

o if AN Ko = @, define n? := ({4}, {B1. B2, B3});

e if AN Ko # @, define n := ({A},{A},{B1, B2, B3)}).

Case 3. #uy > 3. In this case we construct 7 concatenating some monotone families of
prepartition. For this, given an odd integer i < 2m — 1 define

o vi={Br}vi={Bi Bit1. B} ,}, and vi = (vi,vd)if B} N Ko # 0;

o vy ={Bi, Biy1, B/ ,} and V' = (v})if B N Ko = 0.

Finally, define r;A as the concatenation of {A}, vl, v3,.. . v27"=1,
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By construction, it is clear that 77 is an increasing family of finite prepartitions of A

by clopen sets. We denote n4 = (né, e, n,‘fA), where
#/,LA -1
ng=m=——-

4 2

It is also clear that p4, which is finer than p, is the partition by minimal elements of A
associated to 4.

The joint sequence of prepartitions. We now put together the sequences of prepartitions
of elements of & constructed above in a coherent way. Define

77ii=U’IiA-

i<ny

Since for two different elements 4 and A’ of £ we have 724 N ﬁf’ = @, n; is a prepar-
tition. Moreover, it follows directly from the construction of prepartitions 77;4 that they
form an increasing family of prepartitions starting at £ that we call the joint sequence of
prepartitions. Define N := max{nyq : A € £} and set n = (19,...,9N)-

By the remark above the partition by minimal elements P associated to 1, which is a
partition of § = K, is finer than u.

Now we transform our increasing family of prepartitions 7 into a family of actual
partitions satisfying the thesis of Lemma A.3 by subdividing element of P thanks to the
process of “natural continuation” that we define below.

The “natural” continuations. Given a clopen set C € K; and i < N + 1, we define
the natural continuation of C associated to i and N + 1 as the family of prepartitions
vC = (UOC, e vf,_H) obtained as follows.

Case 1. C N Koy # @. In this case we define

. vjc =@forj <i,

. UJCZ{C}fOI'j>l

Case 2. C N Ky = 0. In this case, since (Kj, K1) satisfies condition () and C is clopen,
we deduce that C does not contain isolated points and therefore it is perfect. Then, we can
apply Lemma A.2 to C and N + 1 —i to obtain an increasing family of (actual) partitions

of C ({C} =6o,...,8n+1-i)- Recall that every §; is obtained from §;_; by dividing it in
three different infinite clopen sets. Finally, define

. vjc =@forj <i,
o vﬁk:(ﬁkfork:l,...,N—i—l—i.
The construction of the family (£¢,...,&n+1). Consider P the partition by minimal

elements of the increasing family of prepartitions n = (19, ..., nn). As we saw above P
is a partition of K. Then, for every C € P consider the natural continuation vC of C that
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is associated to the integers 0(C) and N + 1. Now define

& :=n U Uv,c

CeP

First notice that by the definition of the partition P, the increasing family n and the fami-
lies vC, this union is indeed a disjoint union. It follows directly from the construction that
(&0, ..., EN+1) is an increasing family of genuine partitions of K;. Furthermore, we have
by construction

w<P <ENtr.

To check that finite elements of £y are singletons notice that (by the construction
of the 114) the finite elements appearing in the prepartitions ’72'4 are indeed singletons. On
the other hand, the natural continuations do not create new finite subsets of K.

Condition (B2) in the thesis follows from the definition of the increasing families
{n4 : A € £} and the natural continuations {v¢ : C € P}. Finally, we need to check that
given A € & we have

ANKy#0 ifandonlyif A€ &_1 UE1q,

(where §; = Qifi <Qori > N + 1).
We need to discuss three cases.

Case 1. A € n; and A ¢ P. In this case (following the notation used in the construction
of n) we have that 4 = B forsome i, B = B; U B;+1 U B[, ,, and
{Bi,Bi+1, B2} S nit1 C &it1-

Case2. Aenjand A e P.If AN Ky = @, it follows from the construction of r]A and
the definition of natural continuation. On the other hand, notice that we performed natural
continuation up to N + 1 (which is strictly greater than o(A) for every A € P). Therefore,
if AN Ko # 0, we have that A € Vf(A)+1 C&o(a)+1-

Case3. A€ le. This case also follows from the definition of the natural continuation v4.

This finishes the proof of Lemma A.3 and thus that of Lemma 8.6.

Acknowledgments. It is a pleasure to thank Matilde Martinez and Rafael Potrie for very
fruitful discussions during the elaboration of this paper. Also, we want to thank Gilbert
Hector for kindly communicating to us Blanc’s thesis [5]. Last but not least, we wish to
thank the anonymous referee for their valuable comments.

Funding. This research supported in part by CSIC 618, CSIC I+D 389, FCE-135352,
FCE-148740 and MathAmSud RGSD 19-MATH-04 as well as by Distinguished Profes-
sor Fellowships of FSMP. S. Alvarez acknowledges the support of LIA-IFUM. J. Brum
acknowledges the support of CONICYT via FONDECYT Postdoctorate 3190719.



S. Alvarez and J. Brum 222

References

(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]
[12]
(13]
(14]

(15]

(16]

(17]

(18]
(19]
(20]

(21]

F. Alcalde Cuesta, F. Dal’Bo, M. Martinez, and A. Verjovsky, Minimality of the horocycle
flow on laminations by hyperbolic surfaces with non-trivial topology. Discrete Contin. Dyn.
Syst. 36 (2016), no. 9, 4619-4635 Zbl 1366.37064 MR 3541498

S. Alvarez, J. Brum, M. Martinez, and R. Potrie, Topology of leaves for minimal laminations
by hyperbolic surfaces. 2019, arXiv:1906.10029

S. Alvarez and P. Lessa, The Teichmiiller space of the Hirsch foliation. Ann. Inst. Fourier
(Grenoble) 68 (2018), no. 1, 1-51 Zbl 1409.57029 MR 3795469

J. Bavard and A. Walker, Two simultaneous actions of big mapping class groups. 2018,
arXiv:1806.10272

E. Blanc, Propriétés génériques des laminations. Ph.D. thesis, Université Claude Bernard
Lyon I, 2001

E. Blanc, Laminations minimales résiduellement a 2 bouts. Comment. Math. Helv. 78 (2003),
no. 4, 845-864 Zbl 1031.37012 MR 2016699

C. Camacho and A. Lins Neto, Geometric Theory of Foliations. Birkhduser, Boston, MA, 1985
Zbl 0568.57002 MR 824240

A. Candel, Uniformization of surface laminations. Ann. Sci. Ecole Norm. Sup. (4) 26 (1993),
no. 4,489-516 Zbl 0785.57009 MR 1235439

A. Candel and L. Conlon, Foliations. 1. Graduate Studies in Mathematics 23, American Math-
ematical Society, Providence, RI, 2000 Zbl 0936.57001 MR 1732868

J. Cantwell and L. Conlon, Generic leaves. Comment. Math. Helv. 73 (1998), no. 2, 306-336
Zbl 0903.57016 MR 1611711

A. Clark, R. Fokkink, and O. Lukina, The Schreier continuum and ends. Houston J. Math. 40
(2014), no. 2, 569-599 Zbl 1311.57039 MR 3248654

D. B. A. Epstein, K. C. Millett, and D. Tischler, Leaves without holonomy. J. London Math.
Soc. (2) 16 (1977), no. 3, 548-552 Zbl 0381.57007 MR 464259

J. E. Fornass, N. Sibony, and E. F. Wold, Examples of minimal laminations and associated
currents. Math. Z. 269 (2011), no. 1-2, 495-520 Zbl 1233.32022 MR 2836081

E. Ghys, Topologie des feuilles génériques. Ann. of Math. (2) 141 (1995), no. 2, 387422

Zbl 0843.57026 MR 1324140

E. Ghys, Laminations par surfaces de Riemann. In Dynamique et géométrie complexes (Lyon,
1997), pp. ix, xi, 49-95, Panor. Syntheses 8, Soc. Math. France, Paris, 1999 Zbl 1018.37028
MR 1760843

G. Hector, Feuilletages en cylindres. In Geometry and Topology (Proc. 11l Latin Amer. School
of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), pp. 252-270, Lecture Notes
in Math. 597, Springer, Berlin, 1977 Zbl 0361.57020 MR 0451260

M. W. Hirsch, A stable analytic foliation with only exceptional minimal sets. In Dynamical
Systems—Warwick 1974, pp. 9-10, Lecture Notes in Math. 468, Springer, Berlin, 1975

Zbl 0309.53053

P. Lessa, Reeb stability and the Gromov-Hausdorff limits of leaves in compact foliations. Asian
J. Math. 19 (2015), no. 3, 433463 Zbl 1323.57017 MR 3361278

M. C. McCord, Inverse limit sequences with covering maps. Trans. Amer. Math. Soc. 114
(1965), 197-209 Zbl 0136.43603 MR 173237

C. Menifio and P. Gusmao, Every noncompact surface is a leaf of a minimal foliation. 2001,
arXiv:1910.13839

L. Richards, On the classification of noncompact surfaces. Trans. Amer. Math. Soc. 106 (1963),
259-269 Zbl 0156.22203 MR 143186


https://zbmath.org/?q=an:1366.37064&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3541498
https://arxiv.org/abs/1906.10029
https://zbmath.org/?q=an:1409.57029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3795469
https://arxiv.org/abs/1806.10272
https://zbmath.org/?q=an:1031.37012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2016699
https://zbmath.org/?q=an:0568.57002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=824240
https://zbmath.org/?q=an:0785.57009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1235439
https://zbmath.org/?q=an:0936.57001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1732868
https://zbmath.org/?q=an:0903.57016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1611711
https://zbmath.org/?q=an:1311.57039&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3248654
https://zbmath.org/?q=an:0381.57007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=464259
https://zbmath.org/?q=an:1233.32022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2836081
https://zbmath.org/?q=an:0843.57026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1324140
https://zbmath.org/?q=an:1018.37028&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1760843
https://zbmath.org/?q=an:0361.57020&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0451260
https://zbmath.org/?q=an:0309.53053&format=complete
https://zbmath.org/?q=an:1323.57017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3361278
https://zbmath.org/?q=an:0136.43603&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=173237
https://arxiv.org/abs/1910.13839
https://zbmath.org/?q=an:0156.22203&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=143186

Topology of leaves for minimal laminations II 223

[22] R. M. Schori, Inverse limits and homogeneity. Trans. Amer. Math. Soc. 124 (1966), 533-539
Zbl 0145.19604 MR 198416

[23] D. Sullivan, Solenoidal manifolds. J. Singul. 9 (2014), 203-205 Zbl 1323.57018
MR 3249058

[24] A. Verjovsky, Commentaries on the paper Solenoidal manifolds by Dennis Sullivan. J. Singul.
9 (2014), 245-251 Zbl 1330.57043 MR 3249062

Received 25 May 2020.

Sébastien Alvarez
CMAT, Facultad de Ciencias, Universidad de la Republica, Igua 4225, eq. Mataojo,
11400 Montevideo, Uruguay; salvarez@cmat.edu.uy

Joaquin Brum
IMERL, Facultad de Ingenieria, Universidad de la Republica, Julio Herrera y Reissig 565,
11300 Montevideo, Uruguay; joaquinbrum@gmail.com


https://zbmath.org/?q=an:0145.19604&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=198416
https://zbmath.org/?q=an:1323.57018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3249058
https://zbmath.org/?q=an:1330.57043&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3249062
mailto:salvarez@cmat.edu.uy
mailto:joaquinbrum@gmail.com

	1. Introduction
	1.1. Organization of the paper

	2. Preliminaries
	2.1. Non-compact surfaces and condition (\ast)
	2.2. Hyperbolic surface laminations and towers of coverings

	3. From graphs to surfaces
	3.1. Graphs and laminations
	3.2. From graphs to surfaces
	3.3. Strategy of the proof of Theorem 3.3

	4. C-graphs
	4.1. Definition of C-graphs
	4.2. C-graphs and ends spaces
	4.3. Collapses
	4.4. Collapses and end spaces
	4.5. Elementarily decomposable C-inclusions

	5. Forests of C-graphs
	5.1. Forests of C-graphs and realization
	5.2. Limits of forests of C-graphs
	5.3. Realization and leaves

	6. Surgeries and the main lemma
	6.1. Surgeries of finite covers
	6.2. Two important lemmas
	6.3. The main lemma

	7. Proof of Theorem 3.3
	8. Proof of Proposition 7.2
	8.1. The construction
	8.2. The ends pairs of elements in \mathcal{C}

	A. Appendix
	A.1. Proof of Corollary 1.1
	A.2. Proof of Lemma 8.6
	A.3. Partition Lemma A.3 implies Lemma 8.6
	A.4. Proof of the partition Lemma A.3

	References

