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Post-Hopf algebras, relative Rota–Baxter operators
and solutions to the Yang–Baxter equation

Yunnan Li, Yunhe Sheng, and Rong Tang

Abstract. In this paper, first, we introduce the notion of post-Hopf algebra, which gives rise to
a post-Lie algebra on the space of primitive elements and the fact that there is naturally a post-
Hopf algebra structure on the universal enveloping algebra of a post-Lie algebra. A novel property
is that a cocommutative post-Hopf algebra gives rise to a generalized Grossman–Larson product,
which leads to a subadjacent Hopf algebra and can be used to construct solutions to the Yang–
Baxter equation. Then, we introduce the notion of relative Rota–Baxter operator on Hopf algebras.
A cocommutative post-Hopf algebra gives rise to a relative Rota–Baxter operator on its subadja-
cent Hopf algebra. Conversely, a relative Rota–Baxter operator also induces a post-Hopf algebra.
Finally, we show that relative Rota–Baxter operators give rise to matched pairs of Hopf algebras.
Consequently, post-Hopf algebras and relative Rota–Baxter operators give solutions to the Yang–
Baxter equation in certain cocommutative Hopf algebras.

1. Introduction

The notion of post-Lie algebra was introduced in [37]; it has important applications in
geometric numerical integration [9, 32]. Recently, post-Lie algebras play an important
role in regularity structures and planarly branched rough paths [5,35]. If the Lie algebra in
a post-Lie algebra is abelian, then we obtain a pre-Lie algebra [6]. Thus, a post-Lie alge-
bra can be viewed as a nonabelian generalization of a pre-Lie algebra. People pay much
attention to the studies of the universal enveloping algebras of a pre-Lie algebra as well
as a post-Lie algebra. First, in [34], Oudom and Guin constructed an associative product
on the symmetric module S.h/ of any pre-Lie algebra h. Then, this construction was gen-
eralized to the post-Lie case [12, 15, 17, 32, 33]. In particular, it was found that there is a
new Hopf algebra structure on the Lie enveloping algebra of a post-Lie algebra, by which
the Magnus expansions and Lie–Butcher series can be constructed. Moreover, Mencattini,
Quesney, and Silva introduced the notion of D-bialgebra in [31] and showed that there is
a functor from the category of post-Lie algebras to the category ofD-bialgebras [31, The-
orem 21]. This functor is full and faithful and provides an adjunction of categories whose
adjoint is the primitive elements functor from the category ofD-bialgebras to the category
of post-Lie algebras.
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Motivated by the aforementioned studies on the universal enveloping algebras of a pre-
Lie algebra as well as a post-Lie algebra, we introduce the notion of post-Hopf algebra. A
post-Hopf algebra is a Hopf algebra H equipped with a coalgebra homomorphism from
H ˝H toH , satisfying some compatibility conditions (see Definition 2.1). Magma alge-
bras, in particular ordered rooted trees, provide a class of examples of post-Hopf algebras.
A cocommutative post-Hopf algebra gives rise to a generalized Grossman–Larson prod-
uct, which leads to a subadjacent Hopf algebra. Note that the classical Grossman–Larson
product was defined in the context of polynomials of ordered rooted trees [33], and it has
important applications in the studies of Magnus expansions [1, 7, 11, 13, 30, 31] and Lie–
Butcher series [32,33]. The terminology of post-Hopf algebras is justified by the fact that
a post-Hopf algebra gives rise to a post-Lie algebra on the space of primitive elements.

Rota–Baxter operators on Lie algebras and associative algebras have important appli-
cations in various fields, such as Connes and Kreimer’s algebraic approach to renor-
malization of quantum field theory [8, 26]. Rota–Baxter operators lead to the classical
Yang–Baxter equation and integrable systems [27, 36], noncommutative symmetric func-
tions and noncommutative Bohnenblust–Spitzer identities [14], splitting of operads [2],
double Lie algebras [20], etc. See the book of Guo [23] for more details. Recently, the
notion of Rota–Baxter operator on groups was introduced in [24] and further studied in [4].
One can obtain Rota–Baxter operators of weight 1 on Lie algebras from those on Lie
groups by differentiation. Then, in the remarkable work of Goncharov [19], he succeeded
in defining Rota–Baxter operators on cocommutative Hopf algebras such that many clas-
sical results still hold in the Hopf algebra level. In this paper, we introduce a more general
notion of relative Rota–Baxter operator on Hopf algebras containing Goncharov’s Rota–
Baxter operators as special cases. A cocommutative post-Hopf algebra naturally gives
rise to a relative Rota–Baxter operator on its subadjacent Hopf algebra, and conversely, a
relative Rota–Baxter operator also induces a post-Hopf algebra.

The Yang–Baxter equation is an important subject in mathematical physics [25, 38].
Drinfeld highlighted the importance of the study of set-theoretical solutions to the Yang–
Baxter equation in [10]. The pioneer works on set-theoretical solutions are those of
Etingof–Schedler–Soloviev [16], Lu–Yan–Zhu [28], and Gateva-Ivanova–Van den Bergh
[18]. In this paper, we provide another approach to understanding the structure of set-
theoretical solutions to the Yang–Baxter equation in certain Hopf algebras. Note that a
relative Rota–Baxter operator on a cocommutative Hopf algebra naturally gives rise to
a matched pair of Hopf algebras. In particular, for a cocommutative post-Hopf algebra,
the original Hopf algebra and the subadjacent Hopf algebra form a matched pair of Hopf
algebras satisfying certain good properties. Based on this fact, we construct solutions to
the Yang–Baxter equation in a Hopf algebra using post-Hopf algebras as well as relative
Rota–Baxter operators and give explicit formulas of solutions for the post-Hopf algebras
coming from ordered rooted trees.

The paper is organized as follows. In Section 2, first, we introduce the notion of post-
Hopf algebra and show that a cocommutative post-Hopf algebra gives rise to a subadjacent
Hopf algebra together with a module bialgebra structure on itself. In Section 3, we intro-



Post-Hopf algebras, relative Rota–Baxter operators and solutions to YBE 3

duce the notion of relative Rota–Baxter operator and show that post-Hopf algebras are the
underlying structures, which give rise to relative Rota–Baxter operators on the subadjacent
Hopf algebras. In Section 4, we show that a relative Rota–Baxter operator gives rise to a
matched pair of Hopf algebras. In particular, a cocommutative post-Hopf algebra gives
rise to a matched pair of Hopf algebras. Consequently, one can construct solutions to the
Yang–Baxter equation using post-Hopf algebras and relative Rota–Baxter operators.

Convention. In this paper, we fix an algebraically closed ground field k of characteristic
0. For any coalgebra .C;�; "/, we compress the Sweedler notation of the comultiplication
� as

�.x/ D x1 ˝ x2

for simplicity. Furthermore, for n � 1, we write

�.n/.x/ D .�˝ id˝.n�1/
C / � � � .�˝ idC /�.x/ D x1 ˝ � � � ˝ xnC1:

Let .H; � ; 1; �; "; S/ be a Hopf algebra. Denote by G.H/ the set of group-like
elements in H , which is a group. Denote by Pg;h.H/ the subspace of .g; h/-primitive
elements in H for g; h 2 G.H/. Denote by P.H/ the subspace of primitive elements in
H , which is a Lie algebra. For other basic notions in the theory of Hopf algebras, we
follow the textbooks [29].

2. Post-Hopf algebras

In this section, first, we introduce the notion of a post-Hopf algebra and show that a
cocommutative post-Hopf algebra gives rise to a subadjacent Hopf algebra together with
a module bialgebra structure on itself. A post-Hopf algebra induces a post-Lie algebra
structure on the space of primitive elements, and conversely, there is naturally a post-Hopf
algebra structure on the universal enveloping algebra of a post-Lie algebra.

Recall from [32, 37] that a post-Lie algebra .h; Œ�; ��h;B/ consists of a Lie algebra
.h; Œ�; ��h/ and a binary product BW h˝ h! h such that

x B Œy; z�h D Œx B y; z�h C Œy; x B z�h; (2.1)

.Œx; y�h C x B y � y B x/ B z D x B .y B z/ � y B .x B z/: (2.2)

Any post-Lie algebra .h; Œ�; ��h;B/ has a subadjacent Lie algebra

hB WD .h; Œ�; ��hB
/

defined by
Œx; y�hB

WD x B y � y B x C Œx; y�h; 8x; y 2 h;

and equations (2.1)-(2.2) equivalently mean that the linear map L W h! gl.h/ defined by
Lxy D x B y is an action of the Lie algebra .h; Œ�; ��hB

/ on .h; Œ�; ��h/.
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A post-Lie algebra .h; Œ�; ��h;B/ reduces to a pre-Lie algebra if the Lie bracket Œ�; ��h
is abelian. More precisely, a pre-Lie algebra .h;B/ is a vector space h equipped with a
binary product BW h˝ h! h such that

.x B y � y B x/ B z D x B .y B z/ � y B .x B z/; 8x; y; z 2 h:

Recently, there are many fruitful studies on the universal enveloping algebra of a pre-
Lie algebra and a post-Lie algebra due to various applications. First, Oudom and Guin
constructed an associative product on the symmetric module S.h/ of any pre-Lie algebra
h in [34]. Then, this construction was generalized to the post-Lie case [12, 15, 17, 32,
33]. In particular, Mencattini, Quesney, and Silva introduced the notion of D-bialgebra
and showed that there is a functor from the category of post-Lie algebras to the category
of D-bialgebras [31, Theorem 21]. Recall from [31, Definition 19] that a D-bialgebra
consists of a bialgebra .D; �; 1;�;"/, a binary product BWD˝D!D, and an exhaustive,
increasing filtration

k1 D D0
� D1

� � � � � Dn
� � � �

such that Di �Dj � DiCj and

(i) 1 B X D X and X B 1 D ".X/1, for all X 2 D,

(ii) D1 D ker."/ \D1 D P.D/ which generates .D; �; 1/,

(iii) �.X B Y / D .X1 B Y1/˝ .X2 B Y2/, for all X; Y 2 D,

(iv) X B .Y �Z/ D .X1 B Y / � .X2 B Z/, for all X; Y;Z 2 D,

(v) .x �X/ B y D x B .X B y/ � .x B X/ B y, for all x; y 2 D1; X 2 D,

(vi) D1 is closed under the antisymmetrization of the associative product.

Motivated by all the aforementioned studies on the universal enveloping algebra of a
pre-Lie algebra and a post-Lie algebra, we propose the following definition of a post-Hopf
algebra.

Definition 2.1. A post-Hopf algebra is a pair .H;B/, where H is a Hopf algebra and
BW H ˝H ! H is a coalgebra homomorphism satisfying the following equalities:

x B .y � z/ D .x1 B y/ � .x2 B z/; (2.3)

x B .y B z/ D
�
x1 � .x2 B y/

�
B z (2.4)

for any x; y; z 2 H , and the left multiplication ˛B W H ! End.H/ defined by

˛B;xy D x B y; 8x; y 2 H;

is convolution invertible in Hom.H; End.H//. Namely, there exists unique ˇB W H !

End.H/ such that

˛B;x1ˇB;x2 D ˇB;x1˛B;x2 D ".x/ idH ; 8x 2 H: (2.5)
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A homomorphism from a post-Hopf algebra .H;B/ to .H 0;B0/ is a Hopf algebra
homomorphism f W H ! H 0 satisfying

f .x B y/ D f .x/ B0 f .y/; 8x; y 2 H:

It is obvious that post-Hopf algebras and homomorphisms between post-Hopf algebras
form a category, which is denoted by PH. We denote by cocPH the subcategory of PH
consisting of cocommutative post-Hopf algebras and homomorphisms between them.

Remark 2.2. By (ii) and (v) in the definition of a D-bialgebra, we deduce that

X B .Y B Z/ D
�
X1 � .X2 B Y /

�
B Z;

for all X; Y;Z 2 D. Moreover, by the exhaustive and increasing filtration, we obtain that
the left multiplication ˛B W D ! End.D/ defined by

˛B;XY D X B Y; 8X; Y 2 D;

is convolution invertible in Hom.D; End.D//. Therefore, a D-bialgebra is a particular
post-Hopf algebra.

Since a pre-Lie algebra can be viewed as a commutative post-Lie algebra, from this
perspective, we introduce the notion of pre-Hopf algebra as a special post-Hopf algebra.

Definition 2.3. A post-Hopf algebra .H;B/ is called a pre-Hopf algebra if H is a com-
mutative Hopf algebra.

We have the following properties for post-Hopf algebras.

Lemma 2.4. Let .H;B/ be a post-Hopf algebra. Then, for all x; y 2 H , we have

x B 1 D ".x/1; (2.6)

1 B x D x; (2.7)

S.x B y/ D x B S.y/: (2.8)

Proof. Since B is a coalgebra homomorphism, we have

x B 1 D .x1 B 1/".x2 B 1/ D .x1 B 1/ � .x2 B 1/ � S.x3 B 1/

(2.3)
D .x1 B 1/ � S.x2 B 1/ D ".x B 1/1 D ".x/1:

By equation (2.5), we have

˛B;1ˇB;1 D ˇB;1˛B;1 D idH ;

which means that ˛B;1 is a linear automorphism of H . On the other hand, we have

˛2
B;1x D 1 B .1 B x/

(2.4)
D .1 B 1/ B x

(2.6)
D 1 B x D ˛B;1x:
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Hence,
1 B x D ˛B;1x D x:

Finally, we have

S.x B y/ D S.x1 B y1/".x2/".y2/
(2.6)
D S.x1 B y1/ � .x2 B ".y2/1/

D S.x1 B y1/ � .x2 B .y2 � S.y3///

(2.3)
D S.x1 B y1/ � .x2 B y2/ � .x3 B S.y3//

D ".x1 B y1/.x2 B S.y2// D ".x1/".y1/.x2 B S.y2// D x B S.y/:

Now, we give the main result in this section.

Theorem 2.5. Let .H;B/ be a cocommutative post-Hopf algebra. Then

HB WD .H;�B; 1;�; "; SB/

is a Hopf algebra, which is called the subadjacent Hopf algebra, where for all x; y 2 H ,

x �B y WD x1 � .x2 B y/; (2.9)

SB.x/ WD ˇB;x1.S.x2//: (2.10)

Furthermore, .H; �; 1;�; "; S/ is a left HB-module bialgebra via the action B.

Proof. In order to show that .H; �B; 1; �; "/ is a cocommutative bialgebra, the simple
computations analogous to those for the universal enveloping algebras of pre-Lie alge-
bras and post-Lie algebras [12, 34] are enough. Here, we just emphasize on clarifying the
antipode formula (2.10).

Since B is a coalgebra homomorphism and H is cocommutative, we know that

�ˇB;x D .ˇB;x1 ˝ ˇB;x2/�;

and SB is a coalgebra homomorphism. Also, note that

x1 �B SB.x2/
(2.9)
D x1 � .x2 B SB.x2//

(2.10)
D x1 � .˛B;x2.ˇB;x3.S.x4////

(2.5)
D x1 � .".x2/S.x3//

D ".x/1:

Using such an equality, we have

˛B;x1˛B;SB.x2/
(2.4); (2.9)
D ˛B;x1�BSB.x2/ D ˛B;".x/1

(2.7)
D ".x/idH I

i.e.,
ˇB;x D ˛B;SB.x/;
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as ˇB is also the convolution inverse of ˛B. So, equation (2.10) can be rewritten as

SB.x/ D SB.x1/ B S.x2/; 8x 2 H: (2.11)

Again by the cocommutativity of H , we obtain that

SB.x1/ �B x2
(2.9)
D SB.x1/ � .SB.x2/ B x3/

(2.11)
D .SB.x1/ B S.x2// � .SB.x3/ B x4/

D .SB.x1/ B S.x3// � .SB.x2/ B x4/

(2.3)
D SB.x1/ B .S.x2/ � x3/

(2.6)
D ".SB.x1//".x2/1

D ".x/1:

Therefore, .H;�B; 1;�; "; SB/ is a cocommutative Hopf algebra.
Moreover, we have

.x �B y/ B z D .x1 � .x2 B y// B z D x B .y B z/:

Then, by (2.3) and (2.6), .H; �; 1/ is a leftHB-module algebra. Since B is also a coalgebra
homomorphism, .H; �; 1;�; "; S/ is a left HB-module bialgebra via the action B.

Remark 2.6. The product (2.9) generalizes the Grossman–Larson product [21, 33, 34]
defined in the context of (noncommutative) polynomials of (ordered) rooted trees. The
Grossman–Larson product plays important roles in the theories of Magnus expansions [1,
7, 13, 31] and Lie–Butcher series [32, 33].

In the sequel, we study the relation between post-Hopf algebras and post-Lie algebras.

Theorem 2.7. Let .H;B/ be a post-Hopf algebra. Then, its subspace P.H/ of primitive
elements is a post-Lie algebra.

Proof. Since B is a coalgebra homomorphism, for all x; y 2 P.H/, we have

�.x B y/ D .x1 B y1/˝ .x2 B y2/

D .1 B 1/˝ .x B y/C .1 B y/˝ .x B 1/

C .x B 1/˝ .1 B y/C .x B y/˝ .1 B 1/

(2.6); (2.7)
D 1˝ .x B y/C .x B y/˝ 1:

Thus, we obtain a linear map BW P.H/˝P.H/! P.H/. By (2.3), for all x;y 2 P.H/,
we have

x B .y � z/ D .1 B y/ � .x B z/C .x B y/ � .1 B z/

(2.7)
D y � .x B z/C .x B y/ � z:
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Thus, we have

x B Œy; z� D x B .y � z/ � x B .z � y/

D y � .x B z/C .x B y/ � z � z � .x B y/ � .x B z/ � y

D Œx B y; z�C Œy; x B z�:

By (2.4), we have

x B .y B z/ D .1 � .x B y// B z C .x � .1 B y// B z D .x B y/ B z C .x � y/ B z:

Thus, we have

Œx; y� B z D .x � y/ B z � .y � x/ B z

D x B .y B z/ � .x B y/ B z � y B .x B z/C .y B x/ B z:

Therefore, .P.H/; Œ�; ��;B/ is a post-Lie algebra.

In [12, 34], the authors studied the universal enveloping algebra of a pre-Lie alge-
bra and also of a post-Lie algebra. By [12, Proposition 3.1 and Theorem 3.4], the binary
product B in a post-Lie algebra .h; Œ�; ��h;B/ can be extended to its universal envelop-
ing algebra and induces a subadjacent Hopf algebra structure isomorphic to the universal
enveloping algebra U.hB/ of the subadjacent Lie algebra hB.

We summarize their result in the setting of post-Hopf algebras as follows. We do not
claim any originality (see [12, 34] for details).

Theorem 2.8. Let .h; Œ�; ��h;B/ be a post-Lie algebra with its subadjacent Lie algebra
hB. Then, .U.h/; NB/ is a post-Hopf algebra, where NB is the extension of B determined by

1 NBu D u; x1 � � � xr NBu D x1 NB.x2 � � � xr NBu/ � .x1 NBx2 � � � xr / NBu

for all x1; : : : ; xr 2 h and u 2 U.h/ with r � 1.
Moreover, the subadjacent Hopf algebra U.h/ NB is isomorphic to the universal envel-

oping algebra U.hB/ of the subadjacent Lie algebra hB.

Theorem 2.9. Let .V;B/ be a magma algebra. Extend the magma operation BWV ˝V !
V on the vector space V to the coshuffle Hopf algebra .TV; �; �cosh/ (using the same
notation B) as follows:

1 B a D a;

x B a D x B a;

.x ˝ x1/ B a D x B .x1 B a/ � .x B x1/ B a;

:::

.x ˝ x1 ˝ � � � ˝ xn/ B a D x B ..x1 ˝ � � � ˝ xn/ B a/

�

nX
iD1

.x1 ˝ � � � ˝ xi�1 ˝ .xBxi /˝ xiC1 ˝ � � � ˝ xn/Ba;
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and

1 B 1 D 1;

x B 1 D 0;

X B .a1 ˝ � � � ˝ am/ D .X1 B a1/˝ � � � ˝ .Xm B am/;

where x; x1; : : : ; xn; a; a1; : : : ; am 2 V and X 2 TV ,

�cosh.m�1/X D X1 ˝ � � � ˝Xm:

Then, .TV; �; �cosh;B/ is a post-Hopf algebra.

Proof. According to the discussion in [17, Proposition 1 and Lemma 1], it is straightfor-
ward to obtain that .TV; �; �cosh;B/ is a post-Hopf algebra.

Example 2.10. Let OT be the set of isomorphism classes of ordered rooted trees, which
is denoted by

OT D

´
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; : : :

µ
:

Let k¹OT º be the free k-vector space generated by OT . The left grafting operator ÕW
k¹OT º ˝ k¹OT º ! k¹OT º is defined by

� Õ ! D
X

s2Nodes.!/

� ıs !; 8�; ! 2 OT ;

where � ıs ! is the ordered rooted tree resulting from attaching the root of � to the node
s of the tree ! from the left. For example, we have

Õ D C C C ;

Õ D C C C :

It is obvious that .k¹OT º;Õ/ is a magma algebra. By Theorem 2.9,

.Tk¹OT º; �; �cosh;B/

is a post-Hopf algebra, where the underlying coshuffle Hopf algebra

.Tk¹OT º; �; �cosh/

has the linear basis consisting of all ordered rooted forests, and its antipode S is given by

S.�1�2 � � � �m/ D .�1/
m�m�m�1 � � � �1; 8�1; �2; : : : ; �m 2 OT :
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Moreover, it is the universal enveloping algebra of the free post-Lie algebra on one gener-
ator ¹ º. See [17, 32, 37] for more details about free post-Lie algebras and their universal
enveloping algebras.

Let BC W Tk¹OT º ! k¹OT º be the linear map producing an ordered tree � from any
ordered rooted forest �1 � � � �m by grafting the m trees �1; : : : ; �m on a new root in order.
For example, we have

BC. / D :

Let B� W k¹OT º ! Tk¹OT º be the linear map producing an ordered forest from any
ordered rooted tree � by removing its root. For example, we have

B�. / D :

Moreover, the operation B� extends to Tk¹OT º by

B�.�1 � � � �m/ D B
�.�1/ � � �B

�.�m/; 8�1; : : : ; �m 2 OT :

Note that the subadjacent Hopf algebra .Tk¹OT º; �B; �
cosh; SB/ is isomorphic to

the Grossman-Larson Hopf algebra of ordered rooted trees defined in [21]. Using the left
grafting operation, the multiplication �B is given by

X �B Y D B�.X B BC.Y//

for all ordered rooted forests X;Y, and the antipode SB can be recursively defined by

SB.1/ D 1; SB.X/
(2.7); (2.11)
D S.X/C .idTk¹OT º��"/.SB.X1// B S.X2/;

where � is the unit map and " is the counit map.

Next, we provide a class of examples of cocommutative post-Hopf algebras not com-
ing from post-Lie algebras.

Example 2.11. In [24], the authors introduced the notion of a Rota–Baxter operator on a
group. Namely, given any group G, a map B W G ! G is a Rota–Baxter operator on G if

B.g/B.h/ D B.gB.g/hB.g/�1/; 8g; h 2 G:

A group endowed with a Rota–Baxter operator is called a Rota–Baxter group. Also, Rota–
Baxter groups have been studied by Bardakov and Gubarev recently relating to skew left
braces and the Yang–Baxter equation [4].

Given any Rota–Baxter group .G; B/, define the binary operation BW G � G ! G

associated to B by
g B h D B.g/hB.g/�1; 8g; h 2 G:

Now, consider the group algebra kŒG� of a Rota–Baxter group G with the multiplication
B linearly extending that on G. It is straightforward to check that .kŒG�;B/ is a cocom-
mutative post-Hopf algebra. Especially when G is abelian, .kŒG�;B/ is a cocommutative
pre-Hopf algebra.
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Note that the post-Hopf algebra structure can be equipped on non-cocommutative
Hopf algebras. The following example may give an illustration.

Example 2.12. We classify all post-Hopf algebra structures on the smallest noncom-
mutative and non-cocommutative Hopf algebra, namely, Sweedler’s 4-dimensional Hopf
algebra:

H4 D kh1; g; x; gx j g2
D 1; x2

D 0; gx D �xgi;

with its coalgebra structure and its antipode given by

�.g/ D g ˝ g; �.x/ D x ˝ 1C g ˝ x;

".g/ D 1; ".x/ D 0;

S.g/ D g; S.x/ D �gx:

Further,
G.H4/ D ¹1; gº; P1;g.H4/ D kx; Pg;1.H4/ D kgx:

Let .H4;B/ be a post-Hopf algebra structure on H4. Then

�.g B g/ D .g B g/˝ .g B g/;

�.g B x/ D .g B x/˝ .g B 1/C .g B g/˝ .g B x/

(2.6)
D .g B x/˝ 1C .g B g/˝ .g B x/:

Namely,
g B g 2 G.H4/ and g B x 2 P1;gBg.H4/:

Since g 2 G.H4/ implies that ˛B;g is invertible by equation (2.5), we know that

g B g D g and g B x 2 P1;g.H4/ n ¹0º:

Also,
g B .g B x/

(2.4)
D .g.g B g// B x D g2 B x D 1 B x

(2.7)
D x:

Therefore, g B x D x or �x. On the other hand,

�.x B g/D .x B g/˝ .1B g/C .g B g/˝ .x B g/
(2.7)
D .x B g/˝ gC g˝ .x B g/:

Then, x B g 2 Pg;g.H4/, and thus,

x B g D 0:

So,

�.x B x/ D .x B x/˝ .1 B 1/C .g B x/˝ .x B 1/

C .x B g/˝ .1 B x/C .g B g/˝ .x B x/

(2.6);(2.7)
D .x B x/˝ 1C g ˝ .x B x/:
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That is, x B x 2 P1;g.H4/, and we can set

x B x D ax

for some a 2 k. Then

a.g B x/ D x B .g B x/
(2.4)
D .x.1 B g/C g.x B g// B x D xg B x D �gx B x

D g B .x B x/
(2.4)
D .g.g B x// B x:

It implies that
g B x D �x

unless a D 0.
In summary, one can easily check that there is a post-Hopf algebra structure .H4;

Ba/ for any a 2 k defined as below such that ˛Ba is the convolution inverse of itself.

Ba 1 g x gx

1 1 g x gx

g 1 g �x �gx

x 0 0 ax agx

gx 0 0 ax agx

Moreover, if a ¤ 0, there is a post-Hopf algebra isomorphism from .H4;Ba/ to
.H4;B1/ mapping g to g and x to ax. Hence, the Sweedler 4-dimensional Hopf alge-
bra has three non-isomorphic post-Hopf algebra structures:

.H4; "˝ idH4/; .H4;B0/; .H4;B1/:

3. Relative Rota–Baxter operators on Hopf algebras

In this section, first, we recall relative Rota–Baxter operators on Lie algebras and groups
and Rota–Baxter operators on cocommutative Hopf algebras. Then, we introduce a more
general notion of relative Rota–Baxter operator of weight 1 on cocommutative Hopf alge-
bras with respect to module bialgebras. We establish the relation between the category
of relative Rota–Baxter operators of weight 1 on cocommutative Hopf algebras and the
category of cocommutative post-Hopf algebras.

Let � W h! Der.k/ be an action of a Lie algebra .h; Œ�; ��h/ on a Lie algebra .k; Œ�; ��k/.
A linear map T W k ! h is called a relative Rota–Baxter operator of weight 1 on h with
respect to .kI�/ if

ŒT .u/; T .v/�h D T .�.T .u//v � �.T .v//uC Œu; v�k/; 8u; v 2 k:
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Let ˆ W H ! Aut.K/ be an action of a group H on a group K . A map T WK ! H

is called a relative Rota–Baxter operator of weight 1 if

T .h/ �H T .k/ D T .h �K ˆ.T .h//k/; 8h; k 2K:

Given any Hopf algebra .H;�; "; S/, define the adjoint action of H on itself by

adx y D x1yS.x2/:

A Rota–Baxter operator of weight 1 on a cocommutative Hopf algebra H was defined by
Goncharov in [19], which is a coalgebra homomorphism B W H ! H satisfying

B.x/B.y/ D B.x1 adB.x2/ y/ D B.x1B.x2/yS.B.x3///; 8 x; y 2 H:

In the sequel, all the relative Rota–Baxter operators under consideration are of weight
1, so we will not emphasize it anymore.

Now, we generalize the above adjoint action to arbitrary actions and introduce the
notion of relative Rota–Baxter operator on cocommutative Hopf algebras.

Definition 3.1. Let H and K be two cocommutative Hopf algebras such that K is a (left)
H -module bialgebra via an action *. A coalgebra homomorphism T W K ! H is called
a relative Rota–Baxter operator (on the cocommutative Hopf algebra H ) with respect to
the cocommutative H -module bialgebra .K;*/ if the following equality holds:

T .a/T .b/ D T .a1.T .a2/ * b//; 8a; b 2 K: (3.1)

A homomorphism between two relative Rota–Baxter operators T WK!H and T 0 WK 0!
H 0 is a pair of Hopf algebra homomorphisms f W H ! H 0 and g W K ! K 0 such that

f T D T 0g; g.x * a/ D f .x/ * g.a/; 8 x 2 H; a 2 K: (3.2)

It is obvious that relative Rota–Baxter operators on cocommutative Hopf algebras and
homomorphisms between them form a category, which is denoted by rRB.

LetK be a cocommutativeH -module bialgebra via an action*. It is obvious that via
the restrictions of the action *, we obtain actions of G.H/ on G.K/ and of P.H/ on
P.K/, for which we use the same notations. As expected, a relative Rota–Baxter operator
with respect to a cocommutativeH -module bialgebra .K;*/ will naturally induce a rela-
tive Rota–Baxter operator on the group G.H/ and on the Lie algebra P.H/, respectively.

Theorem 3.2. Let T W K ! H be a relative Rota–Baxter operator with respect to a
cocommutative H -module bialgebra .K;*/.

(i) T jG.K/ is a relative Rota–Baxter operator on the group G.H/ with respect to
the action .G.K/;*/;

(ii) T jP.K/ is a relative Rota–Baxter operator on the Lie algebraP.H/ with respect
to the action .P.K/;*/.
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Proof. Since T is a coalgebra homomorphism, it follows that T jG.K/ is a map fromG.K/

to G.H/, and T jP.K/ is a map from P.K/ to P.H/.
For any a; b 2 G.K/, we have

T .a/T .b/ D T .a.T .a/ * b//;

which implies that T jG.K/ is a relative Rota–Baxter operator on the group G.H/ with
respect to the action .G.K/;*/.

For any a; b 2 P.K/, we have

T .a/T .b/ D T .ab/C T .T .a/ * b/;

and thus,
ŒT .a/; T .b/� D T

�
T .a/ * b

�
� T

�
T .b/ * a

�
C T .Œa; b�/:

Hence, T jP.K/ is a relative Rota–Baxter operator on the Lie algebra P.H/ with respect
to the action .P.K/;*/.

It was proved in [3] that a relative Rota–Baxter operator T W k! h on a Lie algebra h

with respect to an action .kI�/ endows k with the following post-Lie algebra structure B:

u B v D �.T .u//v; 8u; v 2 k: (3.3)

Moreover, associated to a post-Lie algebra, the identity map is naturally a relative Rota–
Baxter operator on the subadjacent Lie algebra. In the sequel, we generalized this impor-
tant relationship to the context of Hopf algebras. First, we show that a cocommutative
post-Hopf algebra naturally gives rise to a relative Rota–Baxter operator.

Proposition 3.3. Let .H;B/ be a cocommutative post-Hopf algebra and HB the subad-
jacent Hopf algebra. Then, the identity map idH W H ! HB is a relative Rota–Baxter
operator on HB with respect to the HB-module bialgebra .H;B/.

Moreover, if g WH !H 0 is a cocommutative post-Hopf algebra homomorphism from
.H;B/ to .H 0;B0/, then .g; g/ is a homomorphism from the relative Rota–Baxter opera-
tor idH WH !HB to idH 0 WH

0!H 0
B0

. Consequently, we obtain a functor ‡ W cocPH!
rRB from the category of cocommutative post-Hopf algebras to the category of relative
Rota–Baxter operators with respect to cocommutative module bialgebras.

Proof. For any x; y; z 2 H , we have

idH .x/ �B idH .y/ D x �B y D x1 � .x2 B y/ D idH .x1 � .idH .x2/ B y//;

so idH W H ! HB is a relative Rota–Baxter operator with respect to the HB-module
bialgebra .H;B/.

Let g WH !H 0 be a cocommutative post-Hopf algebra homomorphism from .H;B/
to .H 0;B0/. Then, .g; g/ obviously satisfy equation (3.2). Since g is a coalgebra homo-
morphism and

g.x �B y/ D g.x1 � .x2 B y// D g.x1/ �
0 .g.x2/ B0 g.y// D g.x/ �B0 g.y/;
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we deduce that g is a homomorphism from the Hopf algebra HB to H 0
B0

. Therefore,
.g; g/ is a homomorphism from the relative Rota–Baxter operator idH W H ! HB to
idH 0 W H

0 ! H 0
B0

. It is straightforward to check that this provides the stated functor ‡ W
cocPH! rRB.

Theorem 3.4. Let T W K ! H be a relative Rota–Baxter operator on a cocommutative
Hopf algebra H with respect to a cocommutative H -module bialgebra .K;*/. Then,
there exists a post-Hopf algebra structure BT W K ˝K ! K on K given by

a BT b D T .a/ * b: (3.4)

Let T W K ! H and T 0 W K 0 ! H 0 be two relative Rota–Baxter operators and .f; g/
a homomorphism between them. Then, g is a homomorphism from the post-Hopf algebra
.K;BT / to .K 0;BT 0/. Consequently, we obtain a functor „ W rRB! cocPH from the cat-
egory of relative Rota–Baxter operators on cocommutative Hopf algebras to the category
of cocommutative post-Hopf algebras.

Moreover, the functor „ is right adjoint to the functor ‡ given in Proposition 3.3.

Proof. Since T is a coalgebra homomorphism and* is the module bialgebra action com-
patible with each other as in (3.1), it is straightforward to check that BT is a coalgebra
homomorphism satisfying (2.3) and (2.4). Define linear map ST W K ! K by

ST .a/ D SH .T .a1// * SK.a2/; (3.5)

which actually satisfies

T .ST .a// D SH .T .a//; 8a 2 K: (3.6)

Furthermore, define ˇBT
2 Hom.K;End.K// by

ˇBT ;a WD ˛BT ;ST .a/ for a 2 K:

That is,
ˇBT ;ab D ˛BT ;ST .a/b D ST .a/ BT b:

Then, applying (3.1), (3.6), one can see that ˇBT
is the convolution inverse of ˛BT

. Hence,
.K;BT / is a post-Hopf algebra.

Let .f; g/ be a homomorphism from the relative Rota–Baxter operator T to T 0. Then,
we have

g.a BT b/ D g.T .a/ * b/ D f .T .a// * g.b/ D T 0.g.a// * g.b/ D g.a/ BT 0 g.b/;

which implies that g is a homomorphism from the post-Hopf algebra .K;BT / to .K 0;
BT 0/. So, it clearly provides the desired functor „ W rRB! cocPH.

Finally, we prove that „ W rRB! cocPH is right adjoint to ‡ W cocPH! rRB. Namely,

HomrRB.idH 0 W H
0
! H 0B0 ; T W K ! H/ ' HomcocPH..H

0;B0/; .K;BT //;
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where T W K ! H is a relative Rota–Baxter operator with respect to a cocommutative
H -module bialgebra .K;*/ and .H 0;B0/ is a cocommutative post-Hopf algebra.

Indeed, for any post-Hopf algebra homomorphism g W .H 0;B0/! .K;BT /, let f D
Tg, and then, .f;g/ is a homomorphism between the relative Rota–Baxter operators idH 0 W

H 0!H 0
B0

and T WK!H . Conversely, if .f;g/ is a homomorphism between the relative
Rota–Baxter operators idH 0 WH

0!H 0
B0

and T W K !H , we have f D Tg and g W .H 0;
B0/! .K;BT / is a post-Hopf algebra homomorphism.

By Theorem 3.4 and Theorem 2.5, we immediately get the following result.

Corollary 3.5. Let T W K ! H be a relative Rota–Baxter operator on a cocommutative
Hopf algebra H with respect to a cocommutative H -module bialgebra .K;*/. Then

.K;�T ; 1;�; "; ST /

is a Hopf algebra, which is called the descendent Hopf algebra and denoted byKT , where
the antipode ST is given by (3.5) and the multiplication �T is given by

a �T b D a1.T .a2/ * b/:

Moreover, T W KT ! H is a Hopf algebra homomorphism.

Let � W h! Der.k/ be an action of a Lie algebra .h; Œ�; ��h/ on .k; Œ�; ��k/. Then, � can
be extended to a module bialgebra action N� W U.h/! End.T.k// by

N�.x/.1/ D 0; N�.x/.y1 � � �yr / D

rX
iD1

y1 � � �yi�1�.x/.yi /yiC1 � � �yr ;

where T.k/ is the tensor k-algebra of k, x 2 h and y1; : : : ; yr 2 k; r � 1. As h acts on k

by derivations, it induces a module bialgebra action N� of U.h/ on U.k/.
The following extension theorem of relative Rota–Baxter operators from Lie algebras

to their universal enveloping algebras generalizes the case of Rota–Baxter operators given
in [19, Theorem 2]. See also [12,15] for more details about the Hopf algebra of a post-Lie
algebra.

Theorem 3.6. Any relative Rota–Baxter operator T W k ! h on a Lie algebra h with
respect to an action .kI �/ can be extended to a unique relative Rota–Baxter operator
NT W U.k/! U.h/ with respect to the extended U.h/-module bialgebra .U.k/; N�/ by

NT .y1 � � �yn/

D
�
T .y1/ NT � NT N�.T .y1//

�
� � �
�
T .yn/ NT � NT N�.T .yn//

�
.1/; 8y1; : : : ; yn 2 k; n � 1;

where those T .yk/’s left to NT are interpreted as the left multiplication by them.
Furthermore, the post-Hopf algebra .U.k/;B NT / induced by the relative Rota–Baxter

operator NT W U.k/ ! U.h/ as in Theorem 3.4 coincides with the extended post-Hopf
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algebra .U.k/; NBT / from .k;BT / given in Theorem 2.8. Namely, we have the following
diagram:

.k;BT /
extension // .U.k/;B NT /

k
T
�! h

extension //

Rota–Baxter action

OO

U.k/
NT
�! U.h/:

Rota–Baxter action

OO

Proof. Let
Jk D .yz � zy � Œy; z�k j y; z 2 k/

be the ideal of T.k/ such that
U.k/ ' T.k/=Jk:

We recursively define a linear map NT W T.k/! U.h/ by

NT .1/ D 1; NT .yu/ D T .y/ NT .u/� NT
�
N�.T .y//u

�
; 8y 2 k; u 2 k˝n; n � 0: (3.7)

Then, it is straightforward to deduce that NT .Jk/ D 0, and we have the induced linear map
NT W U.k/! U.h/.

Next, we prove that NT W U.k/! U.h/ is a relative Rota–Baxter operator. Namely,

NT .u/ NT .v/ D NT
�
u1
N�. NT .u2//v

�
for any u 2 U.k/m; v 2 U.k/n. It can be done by induction onm. The case whenm D 1 is
due to the recursive definition (3.7) of NT . For yu2U.k/mC1, since N� is a module bialgebra
action, we have

NT .yu/ NT .v/ D T .y/ NT .u/ NT .v/ � NT
�
N�.T .y//u

�
NT .v/

D T .y/ NT
�
u1
N�. NT .u2//v

�
� NT

��
N�.T .y//u1

��
N�. NT .u2//v

��
� NT

�
u1

�
N�
�
NT . N�.T .y//u2/

�
v
��

D NT
�
yu1
N�. NT .u2//v

�
C NT

�
N�.T .y//

�
u1
N�. NT .u2//v

��
� NT

��
N�.T .y//u1

��
N�. NT .u2//v

��
� NT

�
u1

�
N�
�
NT . N�.T .y//u2/

�
v
��

D NT
�
yu1
N�. NT .u2//v

�
C NT

�
u1
N�
�
T .y/ NT .u2/

�
v
�

� NT
�
u1

�
N�
�
NT . N�.T .y//u2/

�
v
��

D NT
�
yu1
N�. NT .u2//v

�
C NT

�
u1
N�
�
NT .yu2/

�
v
�

D NT
�
.yu/1 N�. NT ..yu/2//v

�
;

which implies that NT W U.k/! U.h/ is a relative Rota–Baxter operator. The above proce-
dure also implies that the extension from T W k ! h to NT W U.k/! U.h/ is unique.

By (3.3), the induced post-Lie product BT on k is given by

y BT z D �.T .y//z; 8y; z 2 k:
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Then, by Theorem 2.8, the extended post-Hopf product NBT on U.k/ is recursively defined
by

y NBT 1 D 0; y NBT zv D .y BT z/v C z.y NBT v/;

1 NBT v D v; yu NBT v D y NBT .u NBT v/ � .y NBT u/ NBT v;

for any y; z 2 k; u; v 2 U.k/. On the other hand, by (3.4), we know that

u B NT v D N�. NT .u//v; 8u; v 2 U.k/:

In particular, y B NT 1 D 0, 1 B NT v D v and

y B NT zv D N�.T .y//.zv/ D .�.T .y//z/v C z N�.T .y//v
D .y BT z/v C z.y B NT v/;

yu B NT v D N�. NT .yu//v D N�
�
T .y/ NT .u/ � NT

�
N�.T .y//u

��
v

D N�.T .y//
�
N�. NT .u//v

�
� N�

�
NT
�
N�.T .y//u

��
v

D y B NT .u B NT v/ � .y B NT u/ B NT v:

Therefore, the two post-Hopf products on U.k/ coincide, and we get the desired diagram.

4. Matched pairs of Hopf algebras and solutions to the Yang–Baxter
equation

In this section, we show that a relative Rota–Baxter operator on cocommutative Hopf alge-
bras naturally gives rise to a matched pair of Hopf algebras. As applications, we construct
solutions to the Yang–Baxter equation using post-Hopf algebras and relative Rota–Baxter
operators on cocommutative Hopf algebras.

First, we recall the smash product and matched pairs of Hopf algebras. Let H and K
be two Hopf algebras such that K is a left H -module algebra via an action *. There is
the following smash product on K ˝H :

.a#x/.a0#x0/ D a.x1 * a0/#x2x
0

for any x;x0 2H; a; a0 2K, where a˝ x 2K ˝H is rewritten as a#x to emphasize this
smash product. We denote such a smash product algebra by K ÌH . Especially, if H is
cocommutative and K is a left H -module bialgebra via *, then K ÌH becomes a Hopf
algebra with the usual tensor product comultiplication and the antipode defined by

S.a#x/ D .SH .x1/ * SK.a//#SH .x2/:

Definition 4.1. A matched pair of Hopf algebras is a 4-tuple .H;K;*;(/, whereH and
K are Hopf algebras, *W H ˝K ! K and (W H ˝K ! H are linear maps such that
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K is a left H -module coalgebra, and H is a right K-module coalgebra and the following
compatibility conditions hold:

x * .ab/ D .x1 * a1/..x2 ( a2/ * b/

x * 1K D "H .x/1K

.xy/ ( a D .x ( .y1 * a1//.y2 ( a2/

1H ( a D "K.a/1H

.x1 ( a1/˝ .x2 * a2/ D .x2 ( a2/˝ .x1 * a1/

for all x; y 2 H and a; b 2 K.

Let .H;K;*;(/ be a matched pair of Hopf algebras. The double crossproduct K ‰
H of K and H is the k-vector space K ˝H with the unit 1K ˝ 1H such that its product,
coproduct, counit, and antipode are given by

.a˝ x/.b ˝ y/ D a.x1 * b1/˝ .x2 ( b2/y;

�.a˝ x/ D a1 ˝ x1 ˝ a2 ˝ x2;

".a˝ x/ D "K.a/"H .x/;

S.a˝ x/ D .SH .x2/ * SK.a2//˝ .SH .x1/ ( SK.a1//;

for all a; b 2 K and x; y 2 H . See [29] for further details of the double crossproducts.
By [29, Proposition 21.6], we have the following proposition.

Proposition 4.2. With the above notations, .H;K;*;(/ is a matched pair of Hopf alge-
bras if and only if there exist a Hopf algebraA and injective Hopf algebra homomorphisms
iK W K ! A, iH W H ! A such that the map

� W K ˝H ! A; a˝ x 7! iK.a/iH .x/

is a linear isomorphism.

Let T W K ! H be a relative Rota–Baxter operator on a cocommutative Hopf algebra
H with respect to a cocommutative H -module bialgebra .K;*/. Define a linear map
(W H ˝K ! H by

x ( a D SH

�
T .x1 * a1/

�
x2T .a2/: (4.1)

Theorem 4.3. With the above notations,H is a rightKT -module coalgebra via the action
( given in equation (4.1). Moreover, the 4-tuple .H; KT ; *;(/ is a matched pair of
cocommutative Hopf algebras.

Proof. We define a linear map ˆT W K ˝H ! K ˝H as follows:

ˆT .a˝ x/ D a1 ˝ T .a2/x; 8x 2 H; a 2 K: (4.2)



Y. Li, Y. Sheng, and R. Tang 20

Since T is a coalgebra homomorphism, the linear map ˆT is invertible. Moreover, we
have

ˆ�1
T .a˝ x/ D a1 ˝ SH .T .a2//x; 8x 2 H; a 2 K:

Transfer the smash product Hopf algebra structureK ÌH toK˝H via the linear isomor-
phism ˆT W K ˝H ! K ÌH , we obtain a Hopf algebra .K ˝H; �T ; 1T ; �T ; "T ;ST /.
Denote elements in K ˝H by a ‰ x, b ‰ y for x; y 2 H , a; b 2 K; by the cocommu-
tativity of K, we have

.a ‰ x/ �T .b ‰ y/

D ˆ�1
T

�
ˆT .a ‰ x/ˆT .b ‰ y/

�
D ˆ�1

T

�
a1.T .a2/x1 * b1/#T .a3/x2T .b2/y

�
D a1.T .a2/x1 * b1/‰ SH

�
T .a3.T .a4/x2 * b2//

�
T .a5/x3T .b3/y

D a1.T .a2/ * .x1 * b1//‰ SH

�
T .a3.T .a4/ * .x2 * b2///

�
T .a5/x3T .b3/y

(3.1)
D a1 �T .x1 * b1/‰ SH

�
T .a2/T .x2 * b2/

�
T .a3/x3T .b3/y

D a1 �T .x1 * b1/‰ SH

�
T .x2 * b2/

�
SH .T .a2//T .a3/x3T .b3/y

D a �T .x1 * b1/‰ SH

�
T .x2 * b2/

�
x3T .b3/y

D a �T .x1 * b1/‰ .x2 ( b2/y;

and

�T .a ‰ x/ D .ˆ�1
T ˝ˆ

�1
T /.�ˆT .a ‰ x//

D .ˆ�1
T ˝ˆ

�1
T /�.a1#T .a2/x/

D ˆ�1
T .a1#T .a3/x1/˝ˆ

�1
T .a2#T .a4/x2/

D .a1 ‰ SH .T .a2//T .a5/x1/˝ .a3 ‰ SH .T .a4//T .a6/x2/

D .a1 ‰ SH .T .a2//T .a3/x1/˝ .a4 ‰ SH .T .a5//T .a6/x2/

D .a1 ‰ x1/˝ .a2 ‰ x2/;

ST .a ‰ x/ D ˆ�1
T .SÌˆT .a ‰ x//

D ˆ�1
T .SÌ.a1#T .a2/x//

D ˆ�1
T ..SH .T .a1/x1/ * SK.a2//#SH .T .a3/x2//

D ˆ�1
T ..SH .x1/ * .SH .T .a1// * SK.a2///#SH .T .a3/x2//

(3.5)
D ˆ�1

T ..SH .x1/ * ST .a1//#SH .x2//SH .T .a2//

D .SH .x1/ * ST .a1//‰ SH .T .SH .x2/ * ST .a2///SH .x3/SH .T .a3//

(3.6)
D .SH .x1/ * ST .a1//‰ SH .T .SH .x2/ * ST .a2///SH .x3/T .ST .a3//

(4.1)
D .SH .x1/ * ST .a1//‰ .SH .x2/ ( ST .a2//:

Moreover, it is obvious that 1T D 1‰ 1 and

"T .a ‰ x/ D "K.a1/"H .T .a2/x/ D "K.a/"H .x/:
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Define linear maps iKT
W KT ! K ˝H and iH W H ! K ˝H by

iKT
.a/ D a ‰ 1; iH .x/ D 1‰ x:

Then, it is obvious that iKT
and iH are injective Hopf algebra homomorphisms, and

.a ‰ 1/ �T .1‰ x/ D a �T .1 * 1/‰ .1 ( 1/x D a1.T .a2/ * 1/‰ x

D a1"H .T .a2//‰ x D a ‰ x:

Therefore, we obtain that .K ˝ H; �T ; 1T ; �T ; "T ;ST / is a Hopf algebra that can be
factorized into Hopf algebras KT and H . Thus, we deduce that H is a right KT -module
coalgebra via the action( andKT is a leftH -module coalgebra via the action*, and the
4-tuple .H;KT ;*;(/ is a matched pair of Hopf algebras by Proposition 4.2. Moreover,
the Hopf algebra

.K ˝H; �T ; 1T ; �T ; "T ;ST /

is exactly the double crossproduct KT ‰ H .

Conversely, let H and K be two cocommutative Hopf algebras such that K is an H -
module bialgebra via an action *. Let T W K ! H be a coalgebra homomorphism, and
.K ˝H; �T ; 1T ; �T ; "T ;ST / the Hopf algebra obtained from the smash product K ÌH
via the linear isomorphism ˆT given in (4.2).

Proposition 4.4. If K ˝ 1 is a subalgebra of the Hopf algebra

.K ˝H; �T ; 1T ; �T ; "T ;ST /;

then T is a relative Rota–Baxter operator with respect to theH -module bialgebra .K;*/.

Proof. Since K ˝ 1 is a subalgebra of .K ˝H; �T ; 1T ; �T ; "T ;ST /, for any a; b 2 K,
we have

.a ‰ 1/ �T .b ‰ 1/

D ˆ�1
T

�
ˆT .a ‰ 1/ˆT .b ‰ 1/

�
D ˆ�1

T

�
a1.T .a2/ * b1/#T .a3/T .b2/

�
D a1.T .a2/ * b1/‰ SH

�
T .a3.T .a4/ * b2//

�
T .a5/T .b3/ 2 K ˝ 1:

Applying mH .T ˝ idH / and T ˝ "H to it, respectively, we obtain that

T .a/T .b/ D T .a1.T .a2/ * b1//SH

�
T .a3.T .a4/ * b2//

�
T .a5/T .b3/

D T .a1.T .a2/ * b1//"H .SH

�
T .a3.T .a4/ * b2//

�
T .a5/T .b3//

D T .a1.T .a2/ * b1//:

Namely, (3.1) holds, and T is a relative Rota–Baxter operator.
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Let .H;B/ be a cocommutative post-Hopf algebra and

HB WD .H;�B; 1;�; "; SB/

the subadjacent Hopf algebra given in Theorem 2.5. By Proposition 3.3, the identity map
idH WH !HB is a relative Rota–Baxter operator. By Theorem 4.3, we have the following
corollary.

Corollary 4.5. Let .H;B/ be a cocommutative post-Hopf algebra. Then, the 4-tuple
.HB;HB;B;C/ is a matched pair of cocommutative Hopf algebras, where C is given by

a C b D SB

�
a1 B b1

�
�B a2 �B b2:

Moreover, we have the compatibility condition

a �B b D .a1 B b1/ �B .a2 C b2/: (4.3)

Proof. We only need to check the stated compatibility condition, which follows from

.a1 B b1/ �B .a2 C b2/ D .a1 B b1/ �B

�
SB

�
a2 B b2

�
�B a3 �B b3

�
D
�
.a1 B b1/ �B SB

�
a2 B b2

��
�B a3 �B b3

D ".a1 B b1/a2 �B b2

D ".a1/".b1/a2 �B b2

D a �B b:

At the end of this section, we show that post-Hopf algebras and relative Rota–Baxter
operators on cocommutative Hopf algebras give rise to solutions to the Yang–Baxter
equation.

Definition 4.6. A solution of the Yang–Baxter equation on a vector space V is an invert-
ible linear endomorphism R W V ˝ V ! V ˝ V such that

.R˝ idV /.idV ˝R/.R˝ idV / D .idV ˝R/.R˝ idV /.idV ˝R/:

Theorem 4.7 ([22, Theorem 5.11]). LetH be a cocommutative Hopf algebra and .H;H;
*;(/ a matched pair of cocommutative Hopf algebras such that

xy D .x1 * y1/.x2 ( y2/; 8x; y 2 H:

Then
R.x ˝ y/ D .x1 * y1/˝ .x2 ( y2/

is a solution to the Yang–Baxter equation on the vector space H .

Theorem 4.8. Let .H;B/ be a cocommutative post-Hopf algebra. Then, R W H ˝H !
H ˝H defined by

R.a˝ b/ D .a1 B b1/˝
�
SB.a2 B b2/ �B a3 �B b3

�
is a solution to the Yang–Baxter equation on the vector space H .



Post-Hopf algebras, relative Rota–Baxter operators and solutions to YBE 23

Proof. By Corollary 4.5, we deduce that .HB; HB;B;C/ is a matched pair of cocom-
mutative Hopf algebras and satisfies the condition (4.3). Moreover, by Theorem 4.7, we
obtain that R is a solution of the Yang–Baxter equation on the vector space H .

Example 4.9. Consider the post-Hopf algebra .Tk¹OT º;�cosh;B/ given in Example 2.10.
Then

R W Tk¹OT º ˝ Tk¹OT º ! Tk¹OT º ˝ Tk¹OT º

defined by

R.X ˝ Y/ D .X1 B Y1/˝ .X2 C Y2/; X;Y 2 Tk¹OT º

is a solution to the Yang–Baxter equation on the vector space Tk¹OT º. More precisely,
we have

R.X ˝ Y/ D .X1 B Y1/˝ B
�
�
SB.X2 B Y2/ B .X3 B BC.Y3//

�
;

where

�cosh.2/
X D X1 ˝X2 ˝X3 and �cosh.2/

Y D Y1 ˝ Y2 ˝ Y3:

Let T W K ! H be a relative Rota–Baxter operator on H with respect to a cocom-
mutative H -module bialgebra .K;*/. By Theorem 3.4, .K;BT / is a cocommutative
post-Hopf algebra. By Corollary 3.5, there is a descendent Hopf algebra

KT D .K;�T ; �; "; ST /

such thatK is aKT -module bialgebra via the action BT defined in (3.4). By Corollary 4.5,
we have the following corollary.

Corollary 4.10. The 4-tuple .KT ; KT ;BT ;CT / is a matched pair of cocommutative
Hopf algebras; here, BT is given by (3.4), and CT is given by

a CT b D ST

�
a1 BT b1

�
�T a2 �T b2: (4.4)

Moreover, we have the compatibility condition

a �T b D .a1 BT b1/ �T .a2 CT b2/:

By Theorem 4.8, we have the following corollary.

Corollary 4.11. Let T W K ! H be a relative Rota–Baxter operator with respect to a
cocommutative H -module bialgebra .K;*/. Then, R W K ˝K ! K ˝K defined by

R.a˝ b/ D .a1 BT b1/˝ .a2 CT b2/

is a solution to the Yang–Baxter equation on the vector space K, where BT and CT are
defined by (3.4) and (4.4), respectively.
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In this paper, we introduce the notions of post-Hopf algebra and relative Rota–Baxter
operator on cocommutative Hopf algebras. A cocommutative post-Hopf algebra gives rise
to a generalized Grossman–Larson product, which leads to a subadjacent Hopf algebra
and can be used to construct solutions to the Yang–Baxter equation. Moreover, a relative
Rota–Baxter operator on cocommutative Hopf algebras naturally induces a cocommuta-
tive post-Hopf algebra, and conversely, the identity map is a relative Rota–Baxter operator
on the subadjacent Hopf algebra of a cocommutative post-Hopf algebra. Note that a rel-
ative Rota–Baxter operator is defined on a cocommutative Hopf algebra; how to define
it on a general Hopf algebra is still an interesting question. On the other hand, since the
universal enveloping algebra of a post-Lie algebra is a post-Hopf algebra, it is natural to
expect further applications of post-Hopf algebras in Magnus expansions and related areas.
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