
J. Noncommut. Geom. (Online first)
DOI 10.4171/JNCG/543

© 2023 European Mathematical Society
Published by EMS Press

Twisted Hodge diamonds give rise
to non-Fourier–Mukai functors

Felix Küng

Abstract. We apply computations of twisted Hodge diamonds to construct an infinite number of
non-Fourier–Mukai functors with well-behaved target and source spaces.

To accomplish this, we first study the characteristic morphism introduced in Buchweitz and
Flenner [Adv. Math. 217 (2008), 205–242] in order to control it for tilting bundles. Then, we
continue by applying twisted Hodge diamonds of hypersurfaces embedded in projective space to
compute the Hochschild dimension of these spaces. This allows us to compute the kernel of the
embedding into the projective space in Hochschild cohomology. Finally, we use the above computa-
tions to apply the construction in Rizzardo, Van den Bergh, and Neeman [Invent. Math. 216 (2019),
927–1004] of non-Fourier–Mukai functors and verify that the constructed functors indeed cannot be
Fourier–Mukai for odd-dimensional quadrics.

Using this approach, we prove that there are a large number of Hochschild cohomology classes
that can be used for the construction of Rizzardo, Van den Bergh, and Neeman [Invent. Math. 216
(2019), 927–1004]. Furthermore, our results allow the application of computer-based calculations
to construct candidate functors for arbitrary degree hypersurfaces in arbitrary high dimensions. Ver-
ifying that these are not Fourier–Mukai still requires the existence of a tilting bundle.

In particular, we prove that there is at least one non-Fourier–Mukai functor for every odd-
dimensional smooth quadric.

1. Introduction

1.1. Background and results

The concept of Fourier–Mukai functors generalizes the idea of a correspondence to the
categorical level.

Definition 1.1. A functor f W Db.X/! Db.Y / between bounded derived categories of
schemes is called Fourier–Mukai if there exists an object M 2 Db.Y �X/ such that

f Š ˆM WD R�Y;�
�
M

L
˝ L��X . _ /

�
:

In this case, M is called the Fourier–Mukai kernel.
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In particular, these functors can be understood geometrically asˆM admits a complete
characterization by M 2 Db.Y �X/.

It also turns out that most functorial constructions done in algebraic geometry are
Fourier–Mukai. This means that understanding the property of being Fourier–Mukai, re-
spectively, of not being Fourier–Mukai, is essential for understanding which functors
between derived categories of sheaves may arise from geometric constructions and which
do not. Another indicator of the geometric nature of Fourier–Mukai functors are the fol-
lowing results by V. Orlov and B. Toën.

Theorem ([18]). Let X and Y be smooth projective schemes. Then, every fully faithful
exact functor‰M WDb.X/!Db.Y / is a Fourier–Mukai functor for some Fourier–Mukai
kernel M 2 Db.X � Y /.

Theorem ([25]). Let X and Y be smooth projective schemes. Then, a functor

Db.X/! Db.Y /

is precisely Fourier–Mukai if it is induced by a dg-functors between the canonical dg-
enhancements.

The above results show that a lot of functors between derived categories of smooth
projective schemes are Fourier–Mukai. So, Bondal, Larsen, and Lunts [4] conjectured
nearly 20 years ago that every exact functor between such derived categories admits a
description as a Fourier–Mukai functor.

This conjecture was disproven fifteen years later when A. Rizzardo, M. Van den Bergh,
and A. Neeman [22] constructed the first non-Fourier–Mukai functor

‰� W D
b.Q3/ ,! Db.P4/;

whereQ3 denotes the smooth three-dimensional quadric in P4. Shortly thereafter, V. Vol-
ogodsky constructed in a note [26] another class of non-Fourier–Mukai functors over a
field of characteristic p > 0. However, Vologodsky’s functor turns out to be liftable to a
Zp-linear dg-level, whereas the example from [22] can be proven to not even have a lift
to the spectral level if one works over the rational numbers.

In this work, we generalize the result from [22] to higher dimensions. In particular,
we will work over a field of characteristic zero in order to show that even in the nicest
possible case there is an abundance of non-Fourier–Mukai functors.

We then verify that in the case of a smooth odd-dimensional quadric we can apply our
result to get a non-Fourier–Mukai functors in arbitrary high dimensions.

Theorem. Let Q ,! P2k be the embedding of a smooth odd-dimensional quadric for
k > 2. Then, we have an exact functor

‰� W D
b.Q/! Db.Pn/

that cannot be Fourier–Mukai.
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1.2. Proof strategy

Generally, we follow the ideas from [22]. In order to conclude that we can construct more
non-Fourier–Mukai functors, we include auxiliary results on the kernel of the pushforward
in Hochschild cohomology. Furthermore, we will use more general objects, degrees, and
indices. We need to do this as the proof in [22] is very specialized to the three-dimensional
quadric, and one needs to take care when generalizing their strategy to a more general
setting.

Recall that the construction in [22] proceeds in two steps:

(1) First, the authors construct a prototypical non-Fourier–Mukai functor between not
necessarily geometric dg-categories.

(2) Second, using the behavior of Hochschild cohomology under embeddings, this
functor is turned into a geometric functor.

More precisely, in step (1), [22] constructs a functor

L W Db.X/! D1.X�/

for a smooth scheme X and � 2 HH�dimXC3, where D1.X�/ is the derived category of
an A1-category arising as infinitesimal deformation in the �-direction.

In step (2), the construction ofL is turned into a geometric one. In [22], this is achieved
by showing that the canonical � 2 HH2 dimQ3.Q3; !

˝2
Q3
/ is annihilated by the embedding

Q3 ,! P4, which allows the passing from the algebraic world to the geometric world.
The authors then define ‰� to be L composed with the pushforward into the geometric
category Db.P4/.

Although the construction in [22] is very general, it has two major drawbacks:
The first is that although L is constructed to be prototypical non-dg, it is not obvious

that the composition with the pushforward is again non-Fourier–Mukai. One usually han-
dles these complications by applying an inductive obstruction theory that gets unwieldy
quickly as one needs to keep track of inductively chosen lifts. Indeed, [22] only gives a sin-
gle example of a non-Fourier–Mukai functor although the construction given in steps (1)
and (2) is very general in nature.

We are able to solve this issue by restricting to Hochschild cohomology classes in
degree dim.X/C 3; this leads to the first obstruction vanishing, and so, we do not need
to control the previous lifts in order to conclude that the pushed forward obstruction does
not vanish.

The second drawback is that the results in [22] rely heavily on the existence of a tilting
bundle in order to conclude that the prototypical functor L cannot be dg. Furthermore,
in [20], T. Raedschelders, A. Rizzardo, and M. Van den Bergh construct an infinite amount
of non-Fourier–Mukai functors using the prototypicalLmentioned above. However, to do
this, they apply a geometrification result by Orlov and hence lose control over the target
space. In particular, the above mentioned geometrification result relies even more on the
existence of a tilting bundle. Although our concrete examples still require the existence
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of a tilting bundle, we study the naturality of the characteristic morphism, which might in
the future allow results using more general generators. In particular, we phrase our main
result such that a non-vanishing characteristic morphism suffices, which is guaranteed for
tilting objects.

Altogether this work improves on the construction from [22] to prove the existence of
non-Fourier–Mukai functors,

‰� W D
b.Q/! Db.PnC1/;

for Q a smooth quadric in arbitrary high dimension.
Furthermore, one can use our results to calculate the dimensions of choices for con-

structing candidate non-Fourier–Mukai functors as entries in twisted Hodge diamonds.
For instance, if one wants to deform a smooth degree 6 hypersurface f W X ,! PnC1

along the Hochschild cohomology of OX .�8/ in a way that might gives rise to a non-
Fourier–Mukai functor, we may pick an � in a 20993-dimensional space:

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

2996 20993 15267 917 0 0

1575 0 0 0 0

5775 0 0 0

10395 0 0

9002 0

2996:

Notation

Throughout this work, we consider k to be a field of characteristic zero, and all schemes,
algebras, A1-categories, and dg-categories are considered to be over k. We will assume
that all A1-structures are strictly unital and graded cohomologically.

Furthermore, the bounded derived category of coherent sheaves over a scheme X will
be denoted by Db.X/ or Db.coh.X// depending on the context; wherever we need to
pass to the category Db

cohX .Qch.X// using [10, Proposition 3.5] we will indicate this. We
denote the derived category of modules over a k-linear category X as D.X/ and also use
the same notation for dg-categories. We refer to the dg-category of A1-modules over an
A1-algebra X� with homotopic maps identified by D1.X�/; this is often also referred
to as the derived category of X�-modules.

The change of rings functor associated to a k-linear functor f WX!Y will be referred
to by f� W D.Y/! D.X/ in order to be compatible with the notation for schemes. Also,
wherever applicable, functors are intended as derived.
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2. Preliminaries: A1 deformations of schemes and objects

For the general notion of A1-structures, we refer to [13], for an English reference con-
sult [12] or [8].

We recall the following results from [22], which we will need to construct our can-
didate functors. In particular, we refer the interested reader to [22] for a more in-depth
approach.

Definition 2.1. Let X be a k-linear category. An X-bimodule M is called k-central if
the k-action induced by the left X-action coincides with the k-action induced by the right
X-action.

Definition 2.2. Let X be a small k-linear category, and let M be a k-central X-bimodule.
The Hochschild complex C�.X;M/ is defined as

Cn.X;M/ WD
Y

X0;:::;Xn2obj.X/

Hom.X.X0; X1/˝k � � � ˝k X.Xn�1; Xn/;M.X0; Xn//

with differential given by

df .x1 ˝ � � � ˝ xnC1/ WD x1f .x2 ˝ � � � ˝ xnC1/

C

nX
iD1

.�1/if .x1 ˝ � � � ˝ xixiC1 ˝ � � � ˝ xnC1/

C .�1/nC1f .x1 ˝ � � � ˝ xn/xnC1:

The Hochschild cohomology HH�.X;M/ is the cohomology of C�.X;M/.

Definition 2.3. Let X be an A1-category, and let � be a k-algebra. Then, we define the
A1-category X ˝k � to consist of the same objects as X and morphism spaces given by

.X ˝k �/.a; b/ WD X.a; b/˝k �;

with higher composition morphisms given by

mi;X˝k�..x1 ˝k 1/; : : : ; .xi ˝k i // WD mi;X.x1; : : : ; xi /˝k 1 � � � i

for composable arrows xj ˝ j 2 .X ˝k �/.aj�1; aj /.

Observe that there is no sign arising as we are considering � to be a k-linear algebra,
and so, all i are in degree 0.

We now will define a version of X deformed along a Hochschild cocycle �. For a more
in-depth discussion of this construction, we refer to [22, Section 6].

Definition 2.4. Let X be a small k-linear category, M a k-central X-bimodule, and let
� 2 C�3.X;M/ such that d� D 0.
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We define the A1-category X� to have the same objects as X, morphism spaces given
by

X�.a; b/ WD X.a; b/˚M.a; b/Œn � 2�

and non-zero composition morphisms

m2..x;m/; .x
0; m0// WD .xx0; xm0 Cmx0/

mn..x1; m1/; : : : ; .xn; mn// WD .0; �.x1; : : : ; xn//

for composable arrows x1; : : : ; xn.
The category X� comes with a canonical k-linear functor � W X� ! X acting by the

identity on objects and on morphisms by

� W X�.a; b/ D X.a; b/˚M.a; b/Œn � 2�! X.a; b/

.';  / 7! ':

Proposition 2.5 ([22, Lemma 6.1.1]). Let X be a k-linear category, let M be a k-central
X-bimodule, and let �;� 2 Cn.X;M/ with n � 3 such that x� D x� 2 HHn.X;M/. Then,
we have

X� Š X�:

Remark 2.6 ([22, Section 6.2]). Let X be a k-linear category, Ma k-central X-bimodule,
and � a k-algebra. Then, we define the morphism of Hochschild complexes

C�.X;M/! C�.X ˝ �;M ˝ �/

� 7! � [ Id

to send a Hochschild cocycle � in degree n to the degree n morphism

� [ Id W .X ˝ �/˝n ! .M ˝ �/

.a1 ˝ 1/˝ � � � ˝ .an ˝ n/ 7! �.a1 ˝ � � � ˝ an/˝ .1 � � � n/:

In particular, we get a morphism

HH�.X;M/! HH�.X ˝ �;M ˝ �/

� 7! � [ Id :

One can compute that this morphism is compatible with deformations, i.e.,

X� ˝ � Š .X ˝ �/�[1:

Definition 2.7 ([22, Section 6.4]). Let X be a small k-linear category, M a k-central X-
bimodule, � 2 HH�.X;M/, and let U 2 X-mod. A colift of U to X� is a pair .V; �/,
where V 2 D1.X�/ and � is an isomorphism of graded H�.X�/-modules:

V
�
�! HomX.H�.X�/; U /:



Twisted Hodge diamonds give rise to non-Fourier–Mukai functors 7

Although we will later discuss the geometric characteristic morphism in depth, we
recall the next proposition using the algebraic characteristic morphism from [22] here,
as it introduces obstructions against the existence of colifts. Later in Section 5, we will
compare the geometric and algebraic characteristic morphisms.

Proposition 2.8. Assume that M is an invertible k-central X-bimodule and X� is as
in Definition 2.4. Then, we have that the object U 2 D.X/ has a colift if and only if
cU .�/ D 0, where cU is the (algebraic) characteristic morphism

cU W HH�.X;M/! Ext�.U;M ˝ U/;

obtained by interpreting � 2 HH�.X;M/ as a degree n morphism X ! M in D.X ˝

Xop/ and applying _˝ U .

Proof. This is a combination of [22, Lemma 6.4.1] and [22, Lemma 6.3.1].

3. Equivariant sheaves and the characteristic morphism

In this section, we define �-equivariant sheaves on a schemeX for a k-algebra � . We will
use this in order to study the (geometric) �-equivariant characteristic morphism.

3.1. Equivariant sheaves and Fourier–Mukai functors

In this section, we introduce equivariant sheaves and prove that the equivariant structure
is compatible with Fourier–Mukai functors. In particular, we can use this later to get a
contradiction to being Fourier–Mukai.

Definition 3.1 ([15, Section 4]). Let � be a k-algebra and C a k-linear category. Then,
we define the category C� to consist of objects

obj.C�/ WD .M; W � ! EndC .M//;

where M 2 C and  is a morphism of k-algebras, and morphisms

C�..M; /; .N; '// WD ¹˛ 2 C.F;G/ j ˛ ı  ./ D './ ı ˛ 2 C.M;N / 8 2 �º:

We will mostly denote .T; '/ by T if the action is clear from context to avoid clumsy
notation.

Example 3.2. We give a few examples to illustrate Definition 3.1:

• Since C is required to be k-linear, we have that EndC . _ / comes with a canonical
k-action, and so, we have

Ck Š C :

• Let C be a k-linear category and M 2 C ; then we have canonically

M D .M; Id/ 2 CEndC .M/:
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• Let F W C ! C 0 be a k-linear functor between k-linear categories, and let � be a (pos-
sibly non-commutative) k-algebra. Then, we can extend F canonically to a functor

F W C� ! C 0�

M 7! FM WD .FM;F ı / 2 C 0� :

• Consider the point � D Spec.k/ and a k-algebra � . Then, .M; '/ 2 coh.�/� consists
ofM 2 coh.�/ Š Vectk and a k-algebra morphism ' W � ! Endk.M/, which means
that

coh.�/� Š �-mod:

• Let T 2 coh.X/ be tilting for X smooth projective, and set � WD EndX .T /. Then, we
have

Db.X/ Š Db.�/ Š Db.coh.�/�/:

We will prove in Lemma 3.19 that this equivalence is compatible with products of
schemes under mild conditions.
We will use the next specific version of the second example throughout this work:

• Let F 2 coh.X/ be a coherent sheaf on a scheme. Then, we have canonically

F D .F ; Id/ 2 coh.X/EndX .F /:

Remark 3.3. The categories D.C�/ and D.C/� may seem very similar in notion; how-
ever, they do not coincide. An object in M 2 D.C�/ can be interpreted as a complex
of equivariant objects; i.e., it admits an action in every degree and a differential that is
compatible with these actions. On the other hand, an object in D.C/� can be interpreted
as a complex of sheaves together with an action on the whole complex that suffices the
relations given by the �-action up to homotopy. The difference between these two notions
essentially boils down to the difference between commutative diagrams up to homotopy
not coinciding with homotopy commutative diagrams, which also led to the development
of derivators [9]. For some more information on this interplay, we refer to [21].

By the above discussions, there is a canonical forgetful functor

� W D.C�/! D.C/�

.M �; ' �/ 7! . xM �; x' �/;

where we denote by . _ / an equivalence class of . _ /. One can think of the above func-
tor as forgetting that � acts on every degree separately. However, this functor is neither
essentially injective nor surjective in general, which we will use later.

Remark 3.4 ([10, Remark 2.51]). Let f W C ! C 0 be a left or right exact functor between
abelian categories. Recall that an object M 2 A is called f -adapted if Rif .M/ Š 0,
respectively, Lif .M/ Š 0, for i > 0.
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Lemma 3.5. Let f W C ! C 0 be a right or left exact functor between abelian k-linear
categories such that C has enough f -adapted objects, and let � be a k-algebra. Then,
the canonical functor

f W D\.C�/! D\.C 0/�

.M; / 7! . xM;f ı  /

admits a lift
f� W D

\.C�/! D\.C 0�/;

with \2 ¹b;C;�; º. In the case, \D b, respectively, \D� for left exact and \DC for right
exact functors, we assume that every M 2 C admits a bounded f -adapted resolution.

Proof. We have by Example 3.2 a canonical functor

f� W C� ! C 0�

.M; / 7! .fM; f ı  /:

Now, as C� and C 0� are abelian with kernels and cokernels computed on objects, we
get that f� has the same exactness as f , and as cohomology also is computed onM only,
we get that every f -adapted object is also f� adapted.

Since we have enough f -adapted objects, we may consider for M 2 D\.C/ an f -
adapted replacement, which by assumption is also finite for \ D b, respectively, if f is
left exact and \ D � or f being right exact and \ D C. In particular, we may invoke
[27, Theorem 10.5.9] in order to find a well-defined derived functor:

f� W D
\.C�/! D\.C 0�/

.M; /� 7! .fM; f ı  /�:

Furthermore, [27, Theorem 10.5.9] allows us to freely use f -adapted resolutions to com-
pute f� on the derived category; i.e., we will assume from now on that every M � is
f -adapted.

Recall the functor from Remark 3.3:

� W D\.C 0�/! D\.C 0/�

.F;  /� 7! .F �;  �/:

We now just need to verify that the diagram

D\.C�/ D\.C 0�/

D\.C 0/�

f
�

f�

commutes.
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We indeed get

� ı f�.M; f ı  /� D �.fM; f ı  /�

D .fM �; f ı  �/

D f .M �; x �/

as claimed.

We will drop the � in f� if it is clear from context, respectively, from the target or
source categories.

Lemma 3.6. Let f W X ! Y be a morphism of finite-dimensional noetherian k-schemes,
� a k-algebra, and let M 2 Db.X/. Then, we have the following:

• If f is proper, then the functor f� W Db.coh.X/�/! Db.coh.Y //� admits a canon-
ical lift:

f�;� W D
b.coh.X/�/! Db.coh.Y /�/:

• If f is flat, then the functor f � W Db.coh.Y /�/! Db.coh.X//� admits a canonical
lift:

f �� W D
b.coh.Y /�/! Db.coh.X/�/:

• If X is regular, then the functor M ˝ _ W Db.coh.X/�/! Db.coh.X//� admits a
canonical lift:

M ˝� _ W Db.coh.X/�/! Db.coh.X/�/:

Proof. We check the cases separately.

f�. By Lemma 3.5, it suffices to show that every coherent sheafM admits an f�-adapted
finite resolution in coh.X/. By [10, Theorem 3.22], the object M admits an f�-adapted
resolution of finite length of quasi-coherent sheaves. By [10, Theorem 3.23], these quasi-
coherent sheaves can be picked to be coherent for f proper.

So, we can find by Lemma 3.5 a lift:

f�;� W D
b.coh.X/�/! Db.coh.Y /�/:

f �. As f is flat, f � is exact and does not need to be derived. In particular, we get by
Lemma 3.5 immediately a lift:

f �� W D
b.coh.Y /�/! Db.coh.X/�/:

M ˝ . _ /. By [10, Proposition 3.26], we have that every F 2 coh.X/ admits a bounded
locally free resolution, which is in particularM ˝ ._ / adapted. So, we get by Lemma 3.5
that M ˝ . _ / admits the lift

M ˝� . _ / W Db.coh.X/�/! Db.coh.X/�/

as claimed.
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Corollary 3.7. Let f W Db.X/ ! Db.Y / be a Fourier–Mukai functor between finite-
dimensional smooth projective k-schemes, and let � be a k-algebra. Then, we have that
the induced functor

f W Db.coh.X/�/! Db.coh.Y //�

admits a lift:
f� W D

b.coh.X/�/! Db.coh.Y /�/:

Proof. Observe first that X and Y being smooth projective immediately gives that

�1 W X � Y ! X is proper,

�2 W X � Y ! Y is flat

and X � Y is regular.

As f is a Fourier–Mukai functor, it has the form �1;�.M ˝ �
�
2 . _ // for some M 2

Db.Y �X/. So, we get by Lemma 3.6 that �1;�, ��2 , andM ˝ _ admit canonical lifts. In
particular, f admits the canonical lift

f� WD �1;�;�.M ˝� �
�
2;�. _ //

as claimed.

3.2. Hochschild cohomology and the characteristic morphism

As we want to study the characteristic morphism, we start by recalling the definition of
the (geometric) Hochschild cohomology.

Definition 3.8 ([24]). Let X be a separated scheme and M a sheaf on X . Then, the
Hochschild cohomology of X with coefficients in M is given by

HH�.X;M/ WD Ext�X�X .O�; ��M/;

where � W X ,! X �X is the diagonal embedding.

For the definition of the (geometric) characteristic morphism below, we follow [14]
and [6, Section 3.3].

Definition 3.9. Let X , Y be regular schemes, � a k-algebra, and let M; T 2 coh.X/.
Then, the (geometric) characteristic morphism is defined to be

cT .M/ W HH�.X;M/ D Ext�X�X .O�; ��M/! Ext�X .T;M ˝ T /

.˛ W O� ! †n��M/ 7!
�
T

�1�.˛˝�
�
2 Id/

���������! †nM ˝ T
�
;

where we use T Š �1�.O� ˝ ��2T / and M ˝ T Š �1�.��†nM ˝ ��2T /. If we have
a �-action on T , i.e., .T; '/ 2 coh.X/� , there also exists a �-equivariant characteristic
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morphism:

cT;�.M/ W HH�.X;M/ D Ext�X�X .O�; ��M/! Ext�coh.X/�
.T;M ˝ T /

˛ W .O� ! †n��M/ 7!
�
T

�1�.˛˝�
�
2 Id/

���������! †nM ˝ T
�
;

where we consider M ˝ T as an object in coh.X/� via the functor M ˝ . _ /, i.e.,

 W � ! End.M ˝ T /

 7! Id˝'./:

To study the characteristic morphism for special T , we will define the following func-
tor realizing the characteristic morphism on a categorical level.

Definition 3.10. Let X , Y be projective schemes, and let T D .T; '/ 2 coh.Y /� . Then,
we define the functor

CXT W D
b.X � Y /! Db.coh.X/�/

M 7! .�1�.M ˝ �
�
2T /;  7! �1�.Id˝��2 './//

.˛ WM ! N/ 7! CXT .˛/ D �1�.˛ ˝ �
�
2T /:

Remark 3.11. One can think of the functor CXT to send an object M 2 Db.X � Y / to
the image of T under the Fourier–Mukai functor with kernelM , equipped with the action
induced by ˆM;� , i.e.,

CXT W D
b.X � Y /! Db.coh.X/�/

M 7! ˆM .T /:

The functor CXT allows us to compute cT;� on a categorical level.

Proposition 3.12. Let X be a scheme, and let T 2 coh.X/� , and consider

CXT W D
b.X �X/! Db.coh.X/�/:

Then, we have that the equivariant characteristic morphism cT;�.M/ is given by evaluat-
ing the functor CXT on the morphism space ExtX�X .O�; ��M/:

cT;�.M/ D CXT W Ext�X�X .O�; ��M/! Ext�coh.X/�
.T;M ˝ T /:

Proof. By Definition 3.10, we have

CXT W Ext�X�X .O�; ��M/! Extcoh.X/� .C
X
T .O�/; C

X
T .��M//

˛ 7! �1�.˛ ˝ �
�
2T /:

We now have CXT .O�/ Š T and CXT .��M/ Š M � T . So, the above turns by Defini-
tion 3.9 into

cT;�.M/ W Ext�X�X .O�; ��M/! Ext�coh.X/�
.T;M ˝ T /

as claimed.
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Definition 3.13 ([3, Section 2.1]). Let C be a pointed category, i.e., a category admitting
a zero object. An object G 2 C is a generator if C.G;M/ D 0 implies M D 0.

Let T be a pointed graded category. An object G 2 T is called a generator if

T .G;MŒi�/ D 0

for all i 2 Z implies that M D 0.

Remark 3.14. In a pointed category C , the equation

C.M;N / D 0

for two objects M;N 2 C , this means that the only morphism between M and N is the
unique morphism factoring over 0.

Furthermore, we have for an object M 2 C that if

C.M;M/ D 0

means that M Š 0 as in that case 0 D Id, and so, the unique morphisms 0 ! M and
M ! 0 define isomorphisms.

Proposition 3.15. Let f� W C ! D be a faithful functor between pointed categories or
graded functor between pointed graded categories with a left adjoint f � W D ! C , and
let T 2 D be a generator. Then, f �T is a generator.

Proof. We cover the case of a graded functor. Observe that the same argument holds for
pointed categories by ignoring Œi �.

Let M be such that C.f �T Œi �;M/ D 0. Then, we have

C.f �T Œi �;M/ D D.T Œi �; f�M/ D 0I

in particular, f�M Š 0. Now, D.f�M;f�M/ D 0, and so, C.M;M/ D 0. This can only
hold if M Š 0, and so, f �T is a generator.

Proposition 3.16. Let C be a k-linear category or pointed graded category that admits a
generator G, and let � be a k-algebra. Then,�

G ˝ �; W  0 7!
�
G ˝ �

g˝ 7!g˝ 0
���������! G ˝ �

��
defines a generator of C� , where we denote by G ˝ � the sheaf arising by tensoring
locally with the k-algebra � as k-vector spaces and acting exclusively on � .

Proof. Let .X; '/ 2 C� , and let f W G! X be a morphism. Then, we have the following
morphism in C� :

Of W G ˝ � ! X

g ˝  7! './ ı f .g/:



F. Küng 14

This indeed defines a morphism in C� as

'. 0/ ı Of .g ˝ / D '. 0/ ı './ ı f .g/

D '. 0/ ı f .g/

D Of .g ˝  0/

D Of ı  . 0/.g ˝ /:

We can compute that if Of vanishes, then f has to vanish as well since

0 D Of .g ˝ Id/

D '.Id/ ı f .g/

D Id ıf .g/

D f .g/:

This means that if the morphism space C�.G˝�;.X;'// vanishes, then also C.G;X/

vanishes. Observe that the discussion so far did not assume G to be a generator.
We continue again by considering the graded pointed case. For the pointed case, it

again suffices to ignore the shift Œi �.
Now, assume that

C�.G ˝ �Œi �; .X; '// D 0:

Then, we have by the above discussion that

C.GŒi �; X/ D 0:

As G is a generator, we get that X has to be a zero object. And so, .X; '/ has to be a zero
object as well. In particular, we get that G ˝ � is indeed a generator of C� .

Remark 3.17. Proposition 3.16 is a consequence of M ˝ � being the free object in C�
over M .

Remark 3.18. Recall that an object T in an abelian category A is called tilting if T is a
generator in D.A/ and Exti .T; T / Š 0 for all i > 0.

Lemma 3.19. Let X , Y be smooth projective schemes such that X admits a generator
G 2 Db.X/ with RHomi .G; G/ finite dimensional for all i ; let Y be such that it admits
a tilting object T 2 coh.Y /, and set � WD End.T /. Then,

CXT W D
b.X � Y /! Db.coh.X/�/

is an equivalence of derived categories.

Proof. Throughout this proof, we denote by TD WD RHomY .T;OY / the dual of T and by
�S W S ! Spec.k/ the unique projection from a scheme S to the point Spec.k/. Observe
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that by [10, Proposition 3.26] we have TD 2 Db.Y / as smooth schemes, which are in
particular regular. Furthermore, we will use the following diagram for flat base change
twice:

X

X � Y

Y

Spec.k/.

�X

�1

�Y

�2

Since T is tilting, it is a generator of Db.Y / and TD is generating Db.Y / by [22,
Lemma 8.9.1]. So, we get that G � TD generates Db.X � Y / by [3, Lemma 3.4.1].
Furthermore, we have by [7, Paragraph 1.10] that � D EndY .T / is finite dimensional.

We first show that CXT .G � TD/ is isomorphic to G ˝ �:

CXT .G � TD/ D �1�..G � TD/˝ ��2T / definition of CXT
Š �1�.�

�
1G ˝ �

�
2T

D
˝ ��2T / definition of �

Š �1�.�
�
1G ˝ �

�
2 .T ˝ T

D// [10, (3.12)]

Š �1�.�
�
1G ˝ �

�
2RHomY .T; T // definition of TD

Š G ˝ �1��
�
2 .RHomY .T; T // [10, (3.11)]

Š G ˝ ��X�Y;�RHomY .T; T / flat base change

Š G ˝ �: T has no higher Ext-groups

The above computation is compatible with the �-action as all isomorphisms involved are
natural isomorphism. In particular, replacing ��2T by ��2  yields multiplication with 
in � .

As by Proposition 3.16,G˝� is a generator for Db.coh.X/�/, the functor CXT sends
a generator to a generator. So, it suffices to prove that

RHomX�Y .G � TD; G � TD/
CTX
��! RHomcoh.X/� .C

X
T .G � TD/; CXT .G � TD//

is an isomorphism.
To do that, we first compute the source and target spaces:

RHomX�Y .G � TD; G � TD/

Š RHomX�Y .��1G ˝ �
�
2T

D; ��1G ˝ �
�
2T

D/ definition of �

Š RHomX�Y .��1G;RHomX�Y .��2T
D; ��1G ˝ �

�
2T

D// [10, (3.14)]

Š RHomX�Y .��1G;�
�
1G ˝ RHomX�Y .��2T

D; ��2T
D// [10, (3.13)]
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Š �X�YRHomX�Y .��1G;�
�
1G ˝ RHomX�Y .��2T

D; ��2T
D// [10, p. 85]

Š �k;�RHomX�Y .��1G;�
�
1G ˝ RHomX�Y .��2T

D; ��2T
D// �X�Y Š�X�Y;�

Š �X�Y;�.RHomX�Y .��1G;�
�
1G/˝ RHomX�Y .��2T

D; ��2T
D// [10, (3.13)]

Š �X�Y;�.�
�
1RHomX .G;G/˝ ��2RHomY .T

D; TD// [10, (3.13)]

Š �X;� ı �1;�.�
�
1RHomX .G;G/˝ ��2RHomY .T

D; TD// �X�Y D�X ı�1

Š �X;� ı .�1;�.�
�
1RHomX .G;G/˝ ��2RHomY .T

D; TD/// ı is associative

Š �X;�.RHomX .G;G/˝ �1;���2RHomY .T
D; TD// [10, (3.11)]

Š �X;�.RHomX .G;G/˝ ��X�Y;�RHomY .T
D; TD// flat base change

Š �X;�.RHomX .G;G/˝ ��X�
op/ [10, p. 85]

Š �X;�RHomX .G;G/˝ �op [10, (3.11)]

Š RHomX .G;G/˝ �op: [10, p. 85]

Now, for RHomcoh.X/� .G ˝ �;G ˝ �/, we have

RHomcoh.X/� .G ˝ �;G ˝ �/ D RHomcoh.X/.G;G/˝ RHom�-mod.�; �/

Š RHomX .G;G/˝ �op:

As the two spaces are isomorphic and in particular degree-wise isomorphic, it suffices to
prove bijectivity on RHomi

X�Y .G � TD; G � TD/. Since

RHomi
X�Y .G � TD; G � TD/ Š RHomi

X .G;G/˝ �;

we know that RHomi
X�Y .G � TD; G � TD/ is finite dimensional as tensor product of

finite-dimensional vector spaces. So, it suffices to check that CXT is surjective. For this, let

˛ ˝ ˇ 2 RHomi
coh.X/�

.G ˝ �;G ˝ �/ Š RHomi .G;G/˝ �op:

Then, we can pick ˛ � ˇ 2 RHomi
X�Y .G � TD; G � TD/ and get

CXT .˛ � ˇ/ Š �1;�.˛ � ˇ ˝ ��2 IdT /

Š �1;�.˛ � ˇ/

Š ˛ ˝ ˇ 2 RHomi
coh.X/�

.G ˝ �;G ˝ �/:

This means that CXT is surjective on the generating set of morphisms of the form ˛˝ ˇ. In
particular, CXT is surjective and an isomorphism as it is surjective between vector spaces
of the same dimension which finishes the proof.

Lemma 3.20. Let f W X ! Y be a proper morphism of schemes, � a k-algebra, and let
T 2 coh.Y /� . We have f �T 2 coh.X/� . Consider the two functors

CXf �T W D
b.X �X/! Db.coh.X/�/

M 7! .�1�.M ˝ �
�
2 f
�T //

.˛ WM ! N/ 7! �1�.˛ ˝ �
�
2 f
�T /
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and

CXT ı .Id�f /� W D
b.X �X/! Db.X � Y /! Db.coh.X/�/

M 7! .Id�f /�M 7! .�1�.Id�f /�M ˝ ��2T /

.˛ WM ! N/ 7! .Id�f /�˛ 7! �1�..Id�f /�˛ ˝ ��2T /:

Then, we have a natural isomorphism CX
f �T
Š CXT ı .Id�f /�.

Proof. Observe that Id �f is proper as product of proper morphisms, and so, by [10,
Theorem 3.23],

.Id�f /� W Db.X �X/! Db.X � Y /

is well defined. We will use the following two commutative diagrams in order to construct
the isomorphism

X �X X � Y

X X

Id�f

�1

Id

� 01

X �X X � Y

X Y ,

Id�f

�2

f

� 02

where we distinguish between the projections from X � X and X � Y in order to avoid
confusion. This means that in this notation

CXT D �
0
1�.. _ /˝ � 0�2 T / and CXf �T D �1�.. _ /˝ ��2 f

�T /:

On objects and morphisms we have the following sequence of natural isomorphisms:

CXf �T . _ / D �1�.. _ /˝ ��2 f
�T / Definition 3.10

Š � 01�.Id�f /�.. _ /˝ .Id�f /�� 0�2 T /
�1 D �

0
1 ı .Id�f /

f ı �2 D �
0
2 ı .Id�f /

Š � 01�..Id�f /�. _ /˝ � 02
�
T / projection formula

D CXT ı .Id�f /�. _ /: Definition 3.10

Both functors also induce the same �-action as we get analogously:

�1�.Id˝��2 f
�/ Š � 01�.Id�f /�.Id˝.Id�f /

�� 0�2 /
�1 D �

0
1 ı .Id�f /

f ı �2 D �
0
2 ı .Id�f /

Š � 01�..Id�f /� Id˝� 02
�
/: projection formula

This means that the actions match up along the same natural isomorphisms, and so,

CXf �T Š C
X
T ı .Id�f /�

as claimed.
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Remark 3.21. Lemma 3.20 above can be interpreted very naturally using Remark 3.11.
As CXT sends an M to the image of T under the Fourier–Mukai functor ˆM and we have
by [10, Exercise 5.12]

ˆ.Id�f /�M Š ˆM ı f
�:

In particular, the two functors CX
f �T

and CXT ı .f � Id/� should be isomorphic.

Proposition 3.22. Let f W X ! Y be a proper morphism of schemes and T 2 coh.Y /� .
Then, we have

cf �T;�.M/ D CXT ı .Id�f /� W Ext�X�X .O�; ��M/! Ext�coh.X/�
.f �T;M ˝ f �T /:

Proof. By Proposition 3.12, we have

cf �T;�.M/ D CXf �T W Ext�X�X .O�; ��M/! Ext�coh.X/�
.T;M ˝ T /;

and by Lemma 3.20, we get

cf �T;�.M/ D CXf �T D C
X
T ı .Id�f /� W Ext�X�X .O�; ��M/

! Ext�coh.X/�
.f �T;M ˝ f �T /

as claimed.

Remark 3.23. The above result could be used to compute the injectivity of the char-
acteristic morphism if one can find an .f; Id/ W X � X ! X � Y that is injective on
Ext�X�X .O�;��M/ such that Y admits a tilting bundle. However, the existence of such a
morphism is not straightforward. In particular, a closed immersion of a divisor

f W X ,! Pn

is in general not injective on ExtiX . _; _ / as by the Grothendieck–Serre spectral sequence
there might be correction terms arising in degrees i > 1.

4. Twisted Hodge diamonds give kernels in Hochschild cohomology

We will show how twisted Hodge diamonds, and in particular their interior, can be used
to understand the pushforward of Hochschild cohomology under the closed embedding of
a smooth projective hypersurface of degree d .

Throughout this chapter, we will follow Brückmann’s paper “Zur Kohomologie von
projektiven Hyperflächen” [5] for computations.

Definition 4.1. Let X be a projective scheme of dimension n, and let OX .1/ be a very
ample line bundle. Then, we define the twisted Hodge numbers of X to be

hi;jp .X/ WD dim Hj .X;�iX .p//:
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Similarly to the ordinary Hodge numbers, the twisted Hodge numbers can be arranged in
a twisted Hodge diamond:

hn;np .X/

hn;0p .X/

h0;0p .X/:

h0;np .X/

We will drop the X if the space is clear from context.

Lemma 4.2. Let X be a smooth projective scheme of dimension n with canonical sheaf
of the form OX .t/. Then, we have

HHm.X;OX .p// Š
nM
iD0

Hi�mCn.X;�iX .t � p//:

In particular, this gives

dim HHm.X;OX .p// D
nX
iD0

hi;i�mCnt�p .X/:

Proof. We compute, using !X Š OX .t/ and the Hochschild–Kostant–Rosenberg (HKR)
isomorphism [24]:

HHm.X;OX .p// Š
nM
iD0

Extm�iX .�iX ;OX .p// HKR

Š

nM
iD0

Extn�mCiX .OX .p/;�
i
X .t//

� Serre duality

Š

nM
iD0

Extn�mCiX .OX ; �
i
X .t � p//

� twisting on both sides

Š

nM
iD0

Hn�mCi .X;�iX .t � p//
�: ExtjX .OX ; _ / Š Hj .X; _ /

Applying dimension on both sides gives

dim HHm.X;OX .p// D
nX
iD0

hi;i�mCnt�p .X/

as desired.
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Remark 4.3. By Lemma 4.2, one can compute dim HHm.X;OX .p// as the sum over the
mth column in the t � p twisted Hodge diamond:

hn;nt�p

hn;0t�p

h0;0t�p

h0;nt�p

hn;2n�mt�p

hm�n;0t�p

or

hn;nt�p

hn;0t�p

h0;0t�p:

h0;nt�p

hm;nt�p

h0;n�mt�p

4.1. The Hochschild cohomology of a smooth hypersurface

We will use the computations in [5] and Remark 4.3 to compute the Hochschild cohomol-
ogy of X .

Lemma 4.4. Let X ,! PnC1 be a smooth degree d hypersurface. Then,

hi;jp .X/ D 0

if .i; j / is not of the form .i; 0/, .i; n/, .i; n � i/, .i; i/, with 0 � i � n. And we have for
.i; i/

hi;ip .X/ D ıp;0 if i …
°
0;
n

2
; n
±
:

Moreover, we get

hi;n�ip .X/ D

nC2X
�D0

.�1/�
�
nC 2

�

��
�p C id � .� � 1/.d � 1/

nC 1

�
C ıp;0ıi;n�i : (1)

Proof. First of all, we can assume that 0 � i; j � n as outside of that range we have
�iX .p/ D 0, respectively, Hj .X;�iX .p// D 0 for dimension reasons.

By [5, Satz 2, (42), (40), (38), and (39)], we have for 0 < i < n

hi;jp .X/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�
�p�1
n�i

��
�pC1Ci
1Ci

�
C
Pn�iC1
�D1 .�1/�

�
nC2
�

��
�p��.d�1/Ci

nC1

�
if j D nPnC2

�D0.�1/
�
�
nC2
�

��
�pCid�.��1/.d�1/

nC1

�
C ıp;0ıi;j if i C j D n�

p�1
i

��
pCnC1�i
nC1�i

�
C
PiC1
�D1.�1/

�
�
nC2
�

��
pCn��.d�1/�i

nC1

�
if j D 0

ıp;0 if i D j … ¹0; nº

0 else:
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So, only the cases for i 2 ¹0; nº remain. Now, [5, Lemma 5] gives for j … ¹0; nº

h0;jp .X/ D 0 D hn;jp .X/;

which finishes the claim.

Remark 4.5. By Lemma 4.4, the p-twisted Hodge diamond of a smooth degree d hyper-
surface has the shape

hn;np

hn;0p

h0;0p :

h0;np

ı0;p

0

00

0

In particular, the only non-trivial entries appear along the indicated lines. More pre-
cisely, we have along the blue line the values for hi;n.X/, along the red line the values for
hi;n�i .X/, and along the green line the values for hi;0.X/. Furthermore, the dashed line
disappears if p ¤ 0 as these are the Kronecker deltas ıp;0.

Proposition 4.6. Let X ,! PnC1 be the embedding of a smooth degree d hypersurface.
Then, the following formulas hold:

hi;0p .X/ D hn�i;n�p .X/

hi;n�ip .X/ D hi�1;nC1�i
p�d

.X/ i … ¹0; 1; nº; p ¤ 0

hi;nC1
p�d

.PnC1/ � hi;nC1p .PnC1/ D hi;np .X/C hi�1;n
p�d

.X/ i … ¹0; 1; nº

hi;0p .PnC1/ � hi;0
p�d

.PnC1/ D hi;0p .X/C hi�1;0
p�d

.X/ i … ¹0; 1; nº:

Proof. We compute for the first equation:

hi;0p .X/ D dim H0.X;�iX .p// definition

D dim Ext0.OX ; �iX .p// Ext�.OX ; _ / Š H�.X; _ /

D dim Extn.�iX .p/;�
n
X / Serre duality

D dim Extn.OX ; �n�iX .�p//

D dim Hn.X;�n�iX .�p// Ext�.OX ; _ / Š H�.X; _ /

D hn�i;0p .X/: definition
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For the second equation, we have by (1) the following identity:

hi;n�ip .X/ D

nC2X
�D0

.�1/

�
nC 2

�

��
�p C id � .� � 1/.d � 1/

nC 1

�

D

nC2X
�D0

.�1/

�
nC 2

�

��
�p C d � d C id � .� � 1/.d � 1/

nC 1

�

D

nC2X
�D0

.�1/

�
nC 2

�

��
�p C d C .i � 1/d � .� � 1/.d � 1/

nC 1

�
D hi�1;nC1�i

p�d
.X/:

And for the last two, Brückmann gives the formula [5, (31)], which together with [5, Satz
2] gives both

hi;n
p�d

.X/ D hiC1;n
p�d

.PnC1/ � hiC1;np .PnC1/ � hiC1;np .X/;

hi;0p .X/ D hi;0p .PnC1/ � hi;0p .PnC1/ � hi�1;0
p�d

.X/:

After rearranging, these are

hi;n
p�d

.X/C hiC1;np .X/ D hiC1;n
p�d

.PnC1/ � hiC1;np .PnC1/;

hi;0p .X/C hi�1;0
p�d

.X/ D hi;0p .PnC1/ � hi;0p .PnC1/:

Index shifting in the first equation gives

hi;n
p�d

.PnC1/ � hi;np .PnC1/ D hi;np .X/C hi�1;n
p�d

.X/;

hi;0p .PnC1/ � hi;0
p�d

.PnC1/ D hi;0p .X/C hi�1;0
p�d

.X/

as claimed.

We can use Lemma 4.4 together with Lemma 4.2 to compute the dimensions of
HHm.X;OX .p//.

Corollary 4.7. Let X be a smooth n-dimensional hypersurface of degree d , and let t D
d � n � 2. Then, we have

dim HHm.X;OX .p//

D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

h0;nt�p.X/ for m D 0

hm�n;0t�p .X/C h
m
2 ;n�

m
2

t�p .X/C hm;nt�p.X/C .n � 2/ıt;pım;n for 0 < m < 2n even

hm�n;0t�p .X/C hm;nt�p.X/C .n � 1/ıt;pım;n for 0 < m < 2n odd

hn;0t�p.X/ for m D 2n

0 else.
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Proof. Observe that we have OX .t/Š !X and that we can assume 0�m� 2n for dimen-
sion reasons. By Lemma 4.2, we have

dim HHm.X;OX .p// D
nX
iD0

hi;i�mCnt�p .X/:

So, we can use Lemma 4.4 to compute every summand. In particular, we get for n D 0
and n D 2n

dim HH0.X;OX .p// D h0;nt�p.X/;

dim HH2n.X;OX .p// D hn;0t�p.X/

as only one summand appears.
Now, for 0 < m < 2n, we can use Lemma 4.4 to get for m ¤ n

dim HHm.X;OX .p// D
m�nX
i

hi;i�nCmt�p .X/

D

X
i�jDm�n

hi;jt�p.X/

D

8<: hm�n;0t�p .X/C h
2n�m
2 ;m2

t�p .X/C hm;nt�p.X/ for m even

hm�n;0t�p .X/C hm;nt�p.X/ for m odd:

FormD n, all the above calculations still hold; however, we get for all .i; i/with 0 < i < n
and .i; i/ ¤ .n

2
; n
2
/ an additional ı0;t�p D ıt;p , which means that

dim HHn.X;OX .p//

D

8<: h0;0t�p.X/C h
n
2 ;
n
2

t�p.X/C hn;nt�p.X/C .n � 2/ıt;pım;n for m even

h0;0t�p.X/C hn;nt�p.X/C .n � 1/ıt;pım;n for m odd

as claimed.

4.2. The Hochschild cohomology of the direct image

Since we want to control the pushforward in Hochschild cohomology, we will use com-
putations by [5] to understand the Hochschild dimensions of the direct image of a line
bundle under a smooth embedding.

Lemma 4.8. Let f W X ,! Y be an embedding of a smooth n-dimensional degree d
hypersurface, and assume that !X Š O.t/. Then, we have

HHm.Y; f�OX .p// Š
dimYM
iD0

Hn�mCi .X; f ��iY .t � p//:
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Proof. We can compute, using !X Š OX .t/ and the Hochschild–Kostant–Rosenberg iso-
morphism (HKR) [24]:

HHm.Y; f�OX .p// Š
dimYM
iD0

Extm�iY .�iY ; f�OX .p// HKR

Š

dimYM
iD0

Extm�iX .f ��iY ;OX .p// f � a f�

Š

dimYM
iD0

Extn�mCiX .OX .p/; f
��iY .t//

� Serre duality

Š

dimYM
iD0

Extn�mCiX .OX ; f
��iY .t � p//

� twisting on both sides

Š

dimYM
iD0

Hn�mCi .X; f ��iY .t � p//
� ExtjX .OX ; _ / Š Hj .X; _ /

as desired.

Lemma 4.9. Let f W X ,! PnC1 be a closed embedding of a smooth degree d hypersur-
face. Then, we have for .i; j / … ¹.0; 0/; .0; n/; .0; nC 1/; .n; 1/.n; n/; .n; nC 1/º

dim Hj .X; f ��iPnC1.p// D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

hi;0p .X/C hi�1;0
p�d

.X/ if j=0

hi;np .X/C hi�1;n
p�d

.X/ if j D n

ıp;0 if i D j … ¹0; nº

ıp;d if i � 1 D j … ¹0; nº

0 else.

Moreover, we get

dim H0.X; f ��nPnC1.p// D hn;0p .X/C hn�1;0
p�d

.X/ � hn�1;1
p�d

.X/

dim Hn.X; f ��1PnC1.p// D h1;np .X/C h0;n
p�d

.X/ � h1;n�1p .X/

dim H0.X; f ��0PnC1.p// D h0;0p .X/

dim Hn.X; f ��0PnC1.p// D h0;np .X/

dim H0.X; f ��nC1
PnC1

.p// D hn;0
p�d

.X/

dim Hn.X; f ��nC1
PnC1

.p// D hn;n
p�d

.X/:

Proof. First, observe that�i
PnC1
D 0 for i > nC 1 and i < 0. In particular, we can assume

that 0� i � nC 1, and for dimension reasons, we can additionally assume that 0� j � n.
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Furthermore, [5, Lemmas 5 and 6] give for 0 < j < n

dim Hj .X; f ��0.p// D 0;

dim Hj .X; f ��nC1.p// D 0:

By [5, Satz 1, Lemma 6, (21), and (25)], we have for 0 < i < nC 1

dim Hj .X; f ��iPnC1.p// D

8̂̂<̂
:̂

hi;0p .PnC1/ � hi;0
p�d

.PnC1/ if j D 0

hi;nC1p .PnC1/ � hi;nC1
d�p

.PnC1/ if j D n

ıp;0ıi;j C ıp;d ıi�1;j if j … ¹0; nº;

which gives after applying Proposition 4.6 for i … ¹1; nº

dim Hj .X; f ��iPnC1.p// D

8̂̂<̂
:̂

hi;0p .X/C hi�1;0
p�d

.X/ if j=0

hi;np .X/C hi�1;n
d�p

.X/ if j D n

ıp;0ıi;j C ıp;d ıi�1;j if j … ¹0; nº:

Now, we will consider the special cases.
We start with the case of i 2 ¹1; nº. By the discussion above, we have

dim H0.X; f ��nPnC1.p// D hn;0p .PnC1/ � hn;0
p�d

.PnC1/;

dim Hn.X; f ��1PnC1.p// D h1;nC1p .PnC1/ � h1;nC1
p�d

.PnC1/:

This turns, using [5, (31), (33), Satz 2 and Lemma 5] into

dim H0.X; f ��nPnC1.p// D hn;0p .X/C hn�1;0
p�d

.X/ � hn�1;1
p�d

.X/;

dim Hn.X; f ��1PnC1.p// D h1;np .X/C h0;n
p�d

.X/ � h1;n�1p .X/:

So, only the cases for i D 0 and i D nC 1 remain.
For i D 0, we have f ��0

PnC1
.p/ Š OX .p/, so we can apply Lemma 4.1 to get

dim H0.X;OX .p// D h0;0p .X/;

dim Hn.X;OX .p// D h0;np .X/:

Now, for i D nC 1, we have

f ��nC1
PnC1

.p/ Š f �OX .p � n � 2/

Š OX .d � n � 2C p � d/

Š �nX .p � d/:

And so, we get by Definition 4.1

dim H0.X;�nX .p � d// D hn;0
p�d

.X/;

dim Hn.X;�nX .p � d// D hn;n
p�d

.X/

as claimed.
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Remark 4.10. If we arrange the computation of the cohomology dimensions from Lemma
4.9 analogously to a twisted Hodge diamond, we get that it is of the shape

hn.X; f ��n.p//

hn;0p .X/C hn�1;0
p�d

.X/ � hn�1;1
p�d

.X/ D h0.X; f ��n.p//

h0;0p .X/ D h0.X; f ��0.p//;

hn.X; f ��0.p// D hn;0
p�d

.X/

hn.X; f ��1.p// D h1;np .X/C h0;n
p�d

.X/ � h1;n�1p .X/

h0.X; f ��1.p//

hn;0
p�d

.X/ D hn.X; f ��nC1.p//

hn.X; f ��nC1.p// D hn;n
p�d

.X/

h�;0p C h��1;0
p�d

ıp;0

h�;np C h��1;n
p�d

ıp;d

where apart from the two special cases

h0.X; f ��nPnC1.p// D hn;0p .X/C hn�1;0
p;d

.X/ � hn�1;1
d

.X/;

hn.X; f ��1PnC1.p// D h1;np .X/C h0;n
p�d

.X/ � h1;n�1
p�d

.X/;

the only non-trivial entries are along the indicated lines. There we have

h0.X; f ��iPnC1/ D h�;0p .X/C h��1;0
p�d

.X/;

hn.X; f ��iPnC1/ D h�;np .X/C h��1;n
p�d

.X/;

and along the two vertical diagonals, we have

hi .X; f ��iPnC1/ D ıp;0;

hi .X; f ��iC1
PnC1

/ D ıp;d :

Observe that this has the shape of the p and p � d twisted Hodge diamond for X laid on
top of each other with the interior middle line removed.

Since we will focus on the case p > d , we will be able to ignore the dashed lines.

Proposition 4.11. Let f WX,!PnC1be a smooth n-dimensional hypersurface of degree d ,
and set t D d � n � 2. Then, we have for m … ¹1; 2nº

dim HHm.PnC1; f�OX .p// D h0;m�nt�p .X/C h0;m�n�1
t�p�d

.X/C hn;mt�p.X/C hn;m�1
t�p�d

.X/;

C .n � 1/.ıd;pım;nC1 C ı0;pım;n/
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and for m D 1, m D 2n

dim HH1.PnC1; f�OX .p// D h1;nt�p.X/C h0;n
t�p�d

.X/ � h1;n�1t�p .X/;

dim HH2n.PnC1; f�OX .p// D hn;0t�p.X/C hn�1;0
t�p�d

.X/ � hn�1;1
t�p�d

.X/:

Proof. We will compute the cases separately using

OX .t/ Š !X :

We can use Lemma 4.8 to get for m … ¹1; 2nº

dim HHm.PnC1; f�OX .p// D
nX
iD0

dim Hn�mCi .X; f ��iPnC1.t � p//

D

X
i�jDm�n

dim Hj .X; f ��iPnC1.t � p//

D h0;m�nt�p .X/C h0;m�n�1
t�p�d

.X/C hn;mt�p.X/C hn;m�1
t�p�d

.X/

C .n � 1/.ıd;pım;nC1 C ı0;pım;n/:

For m D 1, we similarly get

dim HH1.PnC1; f�OX .p// D
nC1X
iD0

dim Hn�1Ci .X; f ��iPnC1.t � p//

D dim Hn.X; f ��1PnC1.t � p//

D h1;nt�p.X/C h0;n
t�p�d

.X/ � h1;n�1t�p .X/:

And for m D 2n, we get

dim HH2n.PnC1; f�OX .p// D
nC1X
iD0

dim H�n�1Ci .X; f ��iPnC1.t � p//

D dim H0.X; f ��nC1
PnC1

.t � p//

D hn;0t�p.X/C hn�1;0
t�p�d

.X/ � hn�1;1
t�p�d

.X/

which finishes the claim.

Remark 4.12. Since we will be able to assume that p … ¹0; dº in the next section, we
will exclude these cases. However, all of the following proofs and arguments still hold in
these cases; one just needs to keep track of the Kronecker deltas in dim HHn.X;OX .p//.

Proposition 4.13. Let f W X ,! PnC1 be a smooth n-dimensional hypersurface of de-
gree d , and let

t D d � n � 2:
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Then, we have for all p 2 Z such that t � p … ¹0; dº that dim HHm.PnC1; f�OX .p// is
given by8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

dim HH0.X;OX .p// m D 0

dim HH1.X;OX .p//C dim HH0.X;OX .p C d// � h1;n�1t�p .X/ m D 1

dim HHm.X;OX .p//C dim HHm�1.X;OX .p C d// � h
m
2 ;n�

m
2

t�p .X/
1<m<2n

even

dim HHm.X;OX .p//Cdim HHm�1.X;OX .p C d//�h
mC1
2 ;n�mC12

t�p .X/
1<m<2n

odd

dim HH2n.X;OX .p//C dim HH2n�1.X;OX .p C d// � hn�1;1
t�p�d

.X/ m D 2n

dim HH2n.X;OX .p C d// m D 2nC 1

0 else.

Proof. For dimension reasons, we immediately get dim HHm.PnC1; f�OX .p// D 0 for
m < 0, respectively, 2nC 1 < m. Now, for the computations.

m D 0. We compute

dim HH0.PnC1; f�OX .p// D h0;nt�p.X/ Proposition 4.11

D dim HH0.X;OX .p//: Corollary 4.7

m D 1. We get by Proposition 4.11 and Corollary 4.7

dim HH1.PnC1; f�OX .p// D h1;nt�p.X/C h0;n
t�p�d

.X/ � h1;n�1t�p .X/

D dim HH1.X;OX .p//C dim HH0.X;OX .p C d//

� h1;n�1t�p .X/:

1 < m < 2n. In this case, we have by Corollary 4.7 and Proposition 4.11

dim HHm.PnC1; f�OX .p//

D h0;m�nt�p .X/C h0;m�n�1
t�p�d

.X/C hn;mt�p.X/C hn;m�1
t�p�d

.X/

D h0;m�nt�p .X/C hn;mt�p.X/C h0;m�n�1
t�p�d

.X/C hn;m�1
t�p�d

.X/

D

8<: dim HHm.X;OX .p//C dim HHm�1.X;OX .p C d// � h
m
2 ;n�

m
2

t�p .X/ m even

dim HHm.X;OX .p//C dim HHm�1.X;OX .p C d// � h
m
2 ;n�

mC1
2

t�p .X/ m odd:

m D 2n. Here, we get by Proposition 4.11 and Corollary 4.7

dim HH2n.PnC1; f�OX .p// D hn;0t�p.X/C hn�1;0
t�p�d

.X/ � hn�1;1t�p .X/

D dim HH2n.X;OX .p//C dim HH2n�1.X;OX .p C d//

� hn�1;1
t�p�d

.X/:
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m D 2nC 1. We compute

dim HH2nC1.PnC1; f�OX .p// D hn;0
t�p�d

.X/ Proposition 4.11

D dim HHn.X;OX .p C d// Corollary 4.7.

So, we covered all cases, and the statement holds.

Proposition 4.14 ([22, Proposition 9.5.1]). Consider the embedding of a smooth n-dimen-
sional degree d hypersurface

X
f
,�! PnC1:

Then, we have a long exact sequence of the form

� � � ! HHi�2.X;OX .p C d//! HHi .X;OX .p//
f�
�! HHi .PnC1; f�OX .p//! � � � :

Theorem 4.15. Let f WX ,! PnC1 be the embedding of a smooth degree d hypersurface,
and set

t D d � n � 2:

Then, we have for all p 2 Z such that t � p … ¹0; dº

dim ker.f� W HHm.X;OX .p//! HHm.PnC1; f�OX .p///

D

8̂̂<̂
:̂

h
m
2 ;n�

m
2

t�p .X/ 0 < m < 2n even

hn�1;1
t�p�d

.X/ m D 2n

0 else.

Proof. For dimension reasons, we may assume that

0 � m � 2n:

In the diagrams for this proof, we will denote OX by O and PnC1 by P in order to avoid
clumsy notation.

We will proceed by induction over l with 2l D m using the long exact sequence from
Proposition 4.14:

� � � ! HHm�2.X;OX .p C d//! HHm.X;OX .p//
f�
�! HHm.PnC1; f�OX .p//! � � � :

This way, we can cover the odd case 2l � 1 and even case 2l in the induction step simul-
taneously.

We will start with l D 1 as induction start and include the case of m D 0 to cover the
cases for m D 0; 1; 2.

We compute all the dimensions in the long exact sequence in Proposition 4.14 using
Proposition 4.13 and proceed by diagram chase. Consider the following diagram, where
we denote the spaces on the left and their dimensions on the right. We will use the arrows
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on the right-hand side to indicate that the dimensions to the right of their tail are the
dimensions to the left of their tip:

0

HH0.X;O.p//

HH0.P ; f�O.p//

HH�1.X;O.p C d//

HH1.X;O.p//

HH1.P ; f�O.p//

HH0.X;O.p C d//

HH2.X;O.p//

0

dim HH0.X;O.p//

0

0

dim HH1.X;O.p//

dim HH0.X;O.p C d// � h1;n�1t�p

h1;n�1t�p

0

dim HH0.X;O.p//

0

0

dim HH1.X;O.p//

dim HH0.X;O.p C d// � h1;n�1t�p

h1;n�1t�p

h1;n�1t�p C dim HH2.X;O.p//:

C

C

C

C

C

C

�

f�

f�

By the above diagram chase, we get that the image of the last arrow on the left has dimen-
sion h1;n�1t�p .X/. So, by the exactness of the sequence from Proposition 4.14, we get that
this is also the dimension of the kernel of

f� W HH2.X;OX .p//! HH2.Pn; f�OX .p//:

And so, we get

dim ker.f� W HH0.X;OX .p//! HH0.Pn; f�OX .p/// D 0;

dim ker.f� W HH1.X;OX .p//! HH1.Pn; f�OX .p/// D 0;

dim ker.f� W HH2.X;OX .p//! HH2.Pn; f�OX .p/// D h1;n�1t�p .X/

as expected.
For the induction step, we will cover the casesmD 2l � 1 andmD 2l simultaneously.

Assume that

dim ker.f� W HH2l�2.X;OX .p//! HH2l�2.Pn; f�OX .p/// D hn�lC1;l�1t�p .X/:

We compute again the dimensions in the long exact sequence from Proposition 4.14
using our computations in Proposition 4.13. We write the long exact sequence on the left
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and the dimensions on the right. We draw the arrows on the right-hand side from left to
right to indicate that the dimensions to the right of their tail are the dimensions to the left
of their tip:

ker.f�/2l�2

HH2l�2.X;O.p//

HH2l�2.P ; f�O.p//

HH2l�3.X;O.p C d//

HH2l�1.X;O.p//

HH2l�1.P ; f�O.p//

HH2l�2.X;O.p � d//

HH2l .X;O.p//

hl�1;n�lC1t�p

�hl�1;n�lC1t�p C dim HH2l�2.X;O.p//

dim HH2l�2.X;O.p C d//

0

dim HH2l�1.X;O.p//

dim HH2l�2.X;O.p C d// � hl;n�lt�p

hl;n�lt�p

hl�1;n�lC1t�p C dim HH2l�2.X;O.p//

dim HH2l�2.X;O.p C d//

0

dim HH2l�1.X;O.p//

dim HH2l�2.X;O.p C d// � hl�1;n�lC1t�p

hl;n�lt�p .X/

hl;n�lt�p C dim HH2l .X;O.p//:

hl�1;n�lC1t�p

�

�

C

C

C

C

C

f�

f�

By the exactness of the sequence, this means that

dim ker.f� W HH2l�1.X;OX .p//! HH2l�1.Pn; f�OX .p/// D 0;

dim ker.f� W HH2l .X;OX .p//! HH2l .Pn; f�OX .p/// D hn�l;lt�p .X/:

Now, finally, for the case of l D n.
By the above induction, we have

dim ker.f� W HH2n�2.X;OX .p//! HH2n�2.Pn; f�OX .p///

D h1;n�1t�p .X/:

We apply again diagram chase along long exact sequence from Proposition 4.14 using
the computations in Proposition 4.13. We continue to write the long exact sequence on
the left and the dimensions on the right. The diagonal arrows on the right again symbolize
that the dimensions to the right of their tail are the dimensions of the kernel to the left of
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their tip:

ker.f�/2n�2

HH2n�2.X;O.p//

HH2n�2.P ; f�O.p//

HH2n�3.X;O.p C d//

HH2n�1.X;O.p//

HH2n�1.P ; f�O.p//

HH2n�2.X;O.p � d//

HH2n.X;O.p//

hn�1;1t�p

�hn�1;1t�p C dim HH2n�2.X;O.p//

dim HH2n�2.X;O.p C d//

0

dim HH2n�1.X;O.p//

dim HH2n�2.X;O.p C d// � hn�1;1
t�p�d

hn�1;1
t�p�d

hn�1;1t�p C dim HH2n�2.X;O.p//

dim HH2n�3.X;O.p C d//

0

dim HH2n�1.X;O.p//

dim HH2n�2.X;O.p C d// � hn�1;1t�p

hn�1;1
t�p�d

dim HH2n.X;O.p// � hn�1;1
t�p�d

:

hn�1;1t�p

C

�

C

C

C

C

C

f�

f�

This diagram gives us

dim ker.f� W HH2n�1.X;OX .p//! HH2n�1.Pn; f�OX .p/// D 0;

dim ker.f� W HH2n.X;OX .p//! HH2n.Pn; f�OX .p/// D hn�1;1
t�p�d

.X/:

So, we covered the case for m D 2n and we are done as for m < 0 and m > 0 the
source space is trivial.

We now finally state the following in order to guarantee the existence of non-trivial
kernels of pushforwards of Hochschild cohomology.

Proposition 4.16. Let f W X ,! P2k be an embedding of a smooth odd-dimensional
degree d > 1 hypersurface of dimension n D 2k � 1 for k > 2, and let p D �kd � d .
Then, we have

ker.HHnC3.X;OX .p//! HHnC3.PnC1; f�OX .p/// Š k:

Proof. By Theorem 4.15, we have

dim ker.HHnC3.X;OX .p//! HHnC3.PnC1; f�OX .p/// D hkC1;k�2t�p .X/

with t D d � n � 2 D d � 2k � 1.
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So, it suffices to compute that hkC1;k�2t�p .X/ D 1, with t � p D kd C 2d � 2k � 1.
By (1), this is

hkC1;k�2t�p .X/

D

2k�1C2X
�D0

.�1/�
�
2k � 1C 2

�

��
�kd � 2d C 2k C 1C .k C 1/d � .� � 1/.d � 1/

2k � 1C 1

�

D

2kC1X
�D0

.�1/�
�
2k C 1

�

��
�kd � 2d C 2k C 1C kd C d � �d C d C � � 1

2k

�

D

2kC1X
�D0

.�1/�
�
2k C 1

�

��
2k � �d C �

2k

�
D

�
2k C 1

0

��
2k

2k

�
D 1:

Here, we used that for � > 1 we have 2k � �d C � < 2k as d > 1, which means that the
terms

�
2kC1
�

��
2kC�dC�

2k

�
vanish for � � 1.

So, we get

dim ker.HHnC3.X;OX .p//! HHnC3.PnC1; f�OX .p/// D 1

as claimed.

4.3. Examples

We collect a few examples of twisted Hodge diamonds that were computed using the Sage
package by Pieter Belmans and Piet Glas [1].

The first two examples illustrate the general shape as given in Lemma 4.4, and the
third will be an explicit example of Proposition 4.16.

Example 4.17. Let f W X ,! P6 be a smooth degree 7 hypersurface; then, the 8-twisted
Hodge diamond is

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

2996 20993 15267 917 0 0

1575 0 0 0 0

5775 0 0 0

10395 0 0

9002 0

2996:



F. Küng 34

And so, we have by Theorem 4.15, since t � 8 D �8,

dim ker.f� W HH4.X;OX .�8//! HH4.X; f�OX .�8/// D 917;

dim ker.f� W HH6.X;OX .�8//! HH6.X; f�OX .�8/// D 15267;

dim ker.f� W HH8.X;OX .�8//! HH8.X; f�OX .�8/// D 20993:

Example 4.18. Let f W X ,! P8 be a smooth degree 5 hypersurface, then the �7-twisted
Hodge diamond is

6390

0 20511

0 0 25704

0 0 0 16840

0 0 0 0 4950

0 0 0 0 0 720

0 0 0 0 0 0 36

0 0 0 486 13051 30276 8451 165

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0:

And so, we have by Theorem 4.15, since t C 7 D 3,

dim ker.f� W HH2.X;OX .3//! HH2.X; f�OX .3/// D 8451;

dim ker.f� W HH4.X;OX .3//! HH4.X; f�OX .3/// D 15267;

dim ker.f� W HH6.X;OX .3//! HH6.X; f�OX .3/// D 13051;

dim ker.f� W HH8.X;OX .3//! HH8.X; f�OX .3/// D 486:

The next example illustrates a case of Proposition 4.16:

Example 4.19. Let
f W X ,! P10

be a smooth degree 5 hypersurface, and consider OX .�30/. Then, we can compute, using
Theorem 4.15,

dim ker.f� W HHm.X;OX .�30//! HHm.X; f�OX .�30///:
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To do this, we need to compute the t � p D 24 twisted Hodge diamond:

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

11979044 100298 2882 1 0 0 0 0 0 0

107439618 0 0 0 0 0 0 0 0

523445109 0 0 0 0 0 0 0

1580020794 0 0 0 0 0 0

3149538513 0 0 0 0 0

4236318471 0 0 0 0

3815626243 0 0 0

2209626573 0 0

744650346 0

111098130:

And as expected, by Proposition 4.16, we get

dim ker.f� W HH12.X;OX .�30//! HH12.X; f�OX .�30/// D 1:

5. Non-trivial kernel in Hochschild cohomology give
non-Fourier–Mukai functors

In this section, we follow the ideas from [22] to construct candidate non-Fourier–Mukai
functors for hypersurfaces of arbitrary degree. We then verify that under assumptions on
the characteristic morphisms and some concentrated Ext-groups these indeed cannot be
Fourier–Mukai. We finish the chapter by computing that these assumptions are satisfied
when the source category is the derived category of an odd-dimensional quadric, which
gives concrete non-Fourier–Mukai functors between well-behaved spaces in arbitrary high
dimensions.

Since we follow the approach from [22], we will consider functors of a similar form:

‰� W D
b.X/

L
�! Db

w coh.X/.X
dg
� /

 X;�;�

����! Db
w coh.X/.X�/

Qf�
�! Db.PnC1/; (2)

where X
dg
� denotes the dg-hull of X� and  X;�;� is the induced comparison functor.
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5.1. Constructing candidate non-Fourier–Mukai functors

We start by collecting a few results from [22], which are central for our construction. We
refer the interested reader to [22] for an in-depth discussion.

In order to apply Definition 5.1, Lemmas 5.2, 5.3, and 5.4, we assume that every
quasi-projective scheme X comes equipped with an open affine cover

X D

m[
iD0

Ui :

The following construction was originally introduced by W. Lowen and M. Van den
Bergh in [16].

Definition 5.1 ([20, Definition 4.2]). Let X D
Sm
iD1 Ui be an open affine covering of a

quasi-projective scheme. Consider for I � ¹1; : : : ;mº the sets UI WD
T
i2I Ui indexed by

I 2 	 WD P.X/ n ;. Then, X is the category with objects 	 and morphisms:

X.I; J / WD

´
OX .UJ / I � J

0 else,

where composition is induced by composing with the restriction morphism.

Roughly X-mod acts as the category of presheaves associated to an affine covering.
This means that it comes with the following useful properties.

Lemma 5.2 ([16]). Let X be quasi-projective. Then, there is a fully faithful embedding

w W D.QchX/ ��! Dw Qch.X/.X/ ,! D.X/

and a fully faithful embedding

W W ��D.QchX/! D.X ˝k Xop/;

where ��.QchX/ is the essential image of the direct image of the diagonal embedding
� W X ! X �X . In particular, we have for quasi-coherent M

HH�.X;M/ Š HH�.X; WM/:

Proof. The construction of w can be found in [22, (8.5)]. The functor W gets constructed
in the following paragraph of [22]. For the Hochschild cohomology comparison, we can
use that W is a fully faithful embedding to get

W W HH�.X;M/ WD Ext�X�X .O�; ��M/
�
�! Ext�X˝Xop .X; WM/ DW HH�.X; WM/

as desired.

Lemma 5.3. Let X be quasi-projective, and let � be a k-algebra. Then, there is an
embedding

w W D.coh.X/�/ ,! D.X ˝ �/:
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Proof. By [22, Section 8.5], we have an embedding

w W D.Qch.X/�/ ,! D.X ˝ �/:

There is also a canonical embedding

D.coh.X/�/ ,! D.Qch.X/�/:

In particular, we get the desired embedding by composition.

Lemma 5.4 ([22, Section 8.7]). Let f WX! Y be a closed embedding of quasi-projective
schemes. Then, we have an induced functor

f W Y ! X

such that the diagram

D.X/

D.X/

D.Y /

D.Y/

w w

f�

f�

commutes.

Proof. The construction of f is done in [22, Section 8.7]. By [10, Proposition 3.5], we have
an inclusion D.X/ ,! D.Qch.X//. So, we can restrict the diagram from [22, Lemma
8.7.1] to D.X/.

We use the following construction from [22] as the core of our candidate functors.

Proposition 5.5. LetX be smooth projective of dimension n, and let � 2HH�nC3.X;M/.
Then, there exists an exact functor

Db.X/
L
�! Db

w coh.X/.X
dg
� /

such that RHomX�
.X; L. _ // Š w.

Proof. First, observe that by Lemma 5.2 we have an isomorphism

HH�.X;M/ Š HH�.X; WM/;

and so, we may consider � 2 HH�nC3.X; WM/.
By [22, Lemma 10.1] and since Qch.X/ has global dimension n and HiX� vanishes

in the right degrees, we can apply [22, Proposition 5.3.1] with ADwQch.X/ and cDX�

to get a functor

L0 W Db.Qch.X// Š Db.wQchX/! Db
w Qch.X/.X

dg
� /:
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Now, we can use [10, Proposition 3.5] to turn this into a functor:

L W Db.X/
�
,�! Db

coh.X/.Qch.X//
L0

�! Db.Xdg
� /

with the desired property.
Finally, by [22, Corollary 10.4], we know that the essential image of this functor is

contained in Db
w cohX .X

dg
� /.

We will also use the following notation from [22] for Qf .

Proposition 5.6 ([22, Proposition 7.2.6]). Let f W P nC1 ! X be a functor of k-linear
categories, and let � 2 HHk.X;M/ such that

f�� D 0:

Then, there exists an A1-functor Qf making the diagram

X P nC1

X�

f

�
Qf

commute. In particular, we have
� ı Qf D f:

Now, we construct a candidate functor ‰� for � 2 HH�nC3.X;OX .p//.

Construction 5.7. Let X ,! PnC1 be the embedding of a smooth n-dimensional scheme
with n � 3, and let

0 ¤ � 2 ker.f� W HHnC3.X;OX .p//! HHnC3.PnC1; f�OX .p///:

Then, a functor of the form (2) is constructed to be

‰� W D
b.coh.X//

L
�! Db

w coh.X/.X
dg
� /

 X�;�

����! Db
w coh.X/.X�/

Qf�
�! Db

w coh.PnC1/.P
nC1/ Š Db.coh.PnC1//;

where we have the functor L by Proposition 5.5,  X� ;� is the functor constructed in [22,
Section D.1], and Qf� exists by Proposition 5.6.

Corollary 5.8. Let f W X ! PnC1 be the embedding of a degree d hypersurface, and
let m > nC 2; then, we have a h

m
2 ;n�

m
2

p .X/-dimensional space of choices to construct a
candidate functor

‰� W D
b.X/! Db.PnC1/:
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Proof. In order for Construction 5.7 to work, we need

0 ¤ � 2 ker.f� W HHm.X;OX .p//! HHm.PnC1; f�OX .p///:

By Theorem 4.15, ker.f� W HHm.X;OX .p//! HHm.PnC1; f�OX .p/// has dimension
h
m
2 ;n�

m
2

p .X/ which finishes the claim.

Now, we can state our main theorem, which we will prove throughout Section 5.2.

Theorem 5.9. Let f W X ,! PnC1 be an embedding of a smooth degree d hypersurface
of dimension n � 3, and let

0 ¤ � 2 ker.f� W HHnC3.X;OX .p//! HHnC3.PnC1; f�OX .p///

such that there exists a k-algebra � and G 2 Db.coh.X/�/ with

cG;�.�/ ¤ 0

ExtiX .G.�p/;G/ D 0 for i ¤ n

Extn�1X .G;G.p C d// Š Extn�2X .G;G.p C d// Š 0:

Then, we have that the functor

‰� W D
b.coh.X//! Db.coh.PnC1//

is well defined and not a Fourier–Mukai functor.

Remark 5.10. By the same proof as [22, Proposition B.2.1], the functors  � do not admit
a lift to the spectral level in the case of k D Q.

5.2. Proving Theorem 5.9

We fix for the rest of this section an embedding of a smooth degree d hypersurface f W
X ,! PnC1, a non-vanishing Hochschild cohomology class � 2 HHnC3.X;O.p//, such
that f�� D 0, � a k-algebra, and G 2 D.coh.X/�/ such that

cG;�.�/ ¤ 0 (I)

ExtiX .G.�p/;G/ D 0 for i ¤ n (II)

Extn�1X .G;G.p C d// Š Extn�2.G;G.p C d// Š 0: (III)

Observe first that by Construction 5.7 ‰� is well defined and even unique up to a
choice of Qf . So, we may focus for the rest of this section on verifying that ‰� cannot be
Fourier–Mukai.

We follow mostly the ideas from [22].
We start by recalling Lemma 5.11 from [22] in order to have obstructions against lifts

of zG to D.X� ˝ �/. These obstructions and their naturality will be later used in order to
conclude that ‰� cannot be Fourier–Mukai.
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Lemma 5.11 ([22, Lemma 7.3.1]). .1/ Let X be a dg-category, � a k-algebra, and let
G 2 D.X/� . Then, there is a sequence of obstructions

oiC2.G / 2 HHiC2.�;Ext�iX .G ;G //

for i � 1 such that G lifts to an object in D.X˝k �/ if and only if all obstructions vanish.
More precisely, oiC1.G / is only defined if o3.G /; : : : ; oi .G / vanish, and it depends on
choices.

.2/ If f WY!X is a dg-functor and f� WD.X/!D.Y/ is the corresponding change
of rings functor, then after having made choices for G we may make corresponding choices
for f�.G / in such a way that

f�.oiC2.G // D oiC2.f�.G //:

We now use the assumptions on G to prove that the negative part of Ext�X�
.LG;LG/

is concentrated in degree �1, which allows us to control which A1-obstruction does not
vanish. This obstruction we will then push forward to prove that ‰� cannot be Fourier–
Mukai. In order to avoid clumsy notation, we start by setting

G WD wG 2 X-mod and zG WD L.G/: (3)

Remark 5.12. We have by [22, Section D.1] an equivalence  X�
W X

dg
�
�
�! X� and by

Definition 2.4 a canonical functor � W X� ! X. So, we will denote the functor

 �1X� ;�
ı �� W D.X/! D1.X�/! D.Xdg

� /

simply by �� and

 X� ;� ı �
�
W D.Xdg

� /! D1.X�/! D.X/

by �� to avoid clumsy and confusing notation.

Definition 5.13. Consider the distinguished triangle in D.X
dg
� / [22, Lemma 10.3]:

G
˛
�! zG

ˇ
�! †�n�1G ˝ wOX .�p/


�! †G ; (4)

where G is considered as an X
dg
� -module via �� W Db.X/! D.X

dg
� /. Then, define the

morphism ' by

' W ExtnC1CiX .G.�p/;G/! Exti
X
dg
�

. zG ; zG /

.g W †�n�1�iG.�p/! G/ 7! ˛ ı ��.w.g// ı†
�iˇ W .†�i zG ! zG /:

Lemma 5.14. For i < 0, the morphism

' W ExtnC1CiX .G.�p/;G/ Š Exti
X
dg
�

. zG ; zG /

is an isomorphism.
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Proof. We will check that for i < 0 the morphisms involved in the definition of

' W ExtnC1CiX .G.�p/;G/! Exti
X
dg
�

. zG ; zG /

.g W †�n�1�iG.�p/! G/ 7! .˛ ı ��/.w.g// ı†
�iˇ W .†�i zG ! zG /

are isomorphisms.

w. By Lemma 5.2, w W Db.X/ ! Db.X/ is a fully faithful embedding; in particular,
using G D wG (3), we have

w W ExtnC1CiX .G;G/
�
�! ExtnC1Ci

X
.G ;G /:

˛ ı ��. _ /. We have by [22, Corollary 5.3.2] an adjunction:

RHom
X
dg
�
.G ˝ wOX .�p/; zG / Š RHomX.G ˝ wOX .�p/;G /:

This isomorphism can be computed explicitly to be

˛ ı �� W RHom
X
dg
�
.G ˝ wOX .�p/; zG / Š RHomX.G ˝ wOX .�p/;G /I

see [22, (11.6)].

_ ı ˇ. Consider the distinguished triangle (4) in D.X
dg
� /:

G
˛
�! zG

ˇ
�! †�n�1G ˝ wOX .�p/:

Apply RHom
X
dg
�
. _; zG / to get the distinguished triangle:

RHom
X
dg
�
.†�n�1G ˝ wOX .�p/; zG /

_ıˇ
��! RHom

X
dg
�
. zG ; zG /! RHom

X
dg
�
.G ; zG /:

Now, we may use [22, Corollary 5.3.2] and Proposition 5.1,

RHom
X
dg
�
.G ; zG / Š RHomX�

.G ; zG / Š RHomX.G ;G / Š RHomX .G;G/;

to get

RHom
X
dg
�
.†�n�1G ˝ wOX .�p/; zG /

_ıˇ
��! RHom

X
dg
�
. zG ; zG /! RHomX .G;G/:

Applying Hi turns this into the long exact sequence:

� � � ! Exti�1X .G;G/! ExtnC1Ci
X
dg
�

.G ˝ wOX .�p/; zG /
_ıˇ
��! Exti

X
dg
�

. zG ; zG /! � � � :

And as G is a sheaf on X , specializing to i < 0 yields the long exact sequence:

� � � ! 0! ExtnC1Ci
X
dg
�

.G ˝ wOX .�p/; zG /
_ıˇ
��! Exti

X
dg
�

. zG ; zG /! 0! � � � :
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In particular,

_ ı ˇ W ExtnC1Ci
X
dg
�

.G ˝ wOX .�p/; zG /
�
�! Exti

X
dg
�

. zG ; zG /

is an isomorphism for i < 0.
So altogether, we get that

' W ExtnC1CiX .G.�p/;G/
�
�! Exti

X
dg
�

. zG ; zG /

.g W †�n�1�iG.�p/! G/ 7! .˛ ı ��.w.g// ı†
�iˇ W †�i zG ! zG /

is indeed an isomorphism for i < 0 as it is a composition of isomorphisms.

Corollary 5.15. Let p < �n � 1 and i > 1. Then, Ext�iX�
. zG ; zG / D 0.

Proof. By (II), we have that Ext�X .G.�p/;G/ is concentrated in degree n, and so, we have
by Lemma 5.14

Ext�i
X
dg
�

. zG ; zG / Š ExtnC1�iX .G.�p/;G/ Š 0

for i > 1.
And since we have a quasi-equivalence X� Š X

dg
� , we get

Ext�iX�
. zG ; zG / Š ExtnC1�iX .G.�p/;G/

as claimed.

Definition 5.16 ([22, Lemma 11.4]). Let X be a k-linear category, � a k-algebra, and
let M be a k-central X-bimodule. Then, we have for a �-equivariant X-module G , i.e.,
G 2 X-mod� , the (algebraic) �-equivariant characteristic morphism

cG ;� W HH�.X;M/ D Ext�X˝Xop.X;M/! Ext�X˝�.G ;G ˝M/

� 7! G ˝X �:

Observe that this morphism factors naturally as

cG ;� W HH�.X;M/
� 7!�[1
�����! HH�.X ˝ �;M ˝ �/

cG
�! Ext�X˝�.G ;G ˝M/;

where cG W HH�.X ˝ �;M˝ �/! Ext�X˝�.G ;G ˝M/ is the (algebraic) characteristic
morphism for G 2 D.X ˝ �/; see Proposition 2.8.

Lemma 5.17. There is a commutative diagram:

HHnC3.X;OX .p//

HHnC3.X; wOX .p//

ExtnC3coh.X/�
.G;G.p//

ExtnC3
X˝�

.G ;G ˝ wOX .p//,

� �

cG;�

cG ;�
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where cG;� is the (geometric) equivariant characteristic morphism discussed in Section 3
and cG ;� is the (algebraic) characteristic morphism from Definition 5.16.

Proof. By [22, (8.13)], we have the commutative diagram

��D.X/

D.X ˝Xop/

D.coh.X/�/

D.X ˝ �/;

W� w �

�1;�._˝ ��2G/

G ˝X _

where we denote by��D.X/�D.X �X/ the essential image of the direct image along
the diagonal embedding � W X ! X �X .

Considering the induced diagram on morphism spaces for

HHnC3.X;O.p// D ExtnC3X�X .O�;O�.p// D ExtnC3
��D.X/

.O�;O�.p//

gives that the diagram

HHnC3.X;OX .p//

HHnC3.X; wOX .p//

ExtnC3coh.X/�
.G;G.p//

ExtnC3
X˝�

.G ;G ˝ wOX .p//

� �

cG;�

cG ;�

commutes.

SinceG 2Db.coh.X/�/, we get a �-action on G and zG via the functorsw andL, i.e.,
zG 2D.X

dg
� /� . So, Lemma 5.11 gives well-defined obstructions against zG 2D1.X�/� Š

D.X
dg
� /� admitting a lift to an A1-module in D1.X� ˝ �/:

oi . zG / 2 HHi .�;Ext2�iX�
. zG ; zG // for i > 2:

Remark 5.18. The next lemma will use the obstruction obtained from the equivariant
characteristic morphism (I) in order to conclude that the first A1-obstruction against an
equivariant lift of zG cannot vanish. We do this by observing that a colift of G to X� would
also give an equivariant lift of zG . The control of o3. zG / is necessary as we want to push
forward the obstruction from X� to P nC1 which cannot be done with the obstruction
arising by the characteristic morphism.
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Lemma 5.19. We have

0 ¤ o3. zG / 2 HH3.�;Ext�1X�
. zG ; zG //:

Proof. Assume that o3. zG / vanishes. Then, by Corollary 5.15, Ext�iX�
. zG ; zG /D 0 for i > 1,

and so
oi . zG / 2 HHi .�;Ext2�iX�

. zG ; zG // D 0

for all i > 2.
So, zG would admit a lift, i.e., an object

yG 2 D.Xdg
� ˝ �/ Š D1.X� ˝ �/

with yG Š zG in D.X�/� .
Consider the triangle (4) in D1.X�/ Š D.X

dg
� /

G ! zG Š yG ! †nC1G ˝ wOX .�p/! †G ;

where we use the shorthand G for ��G . This gives

H�. yG/ Š G ˚†nC1G ˝ wOX .�p/:

By the construction of the triangle (4) in [22, Section 10], the above isomorphism is com-
patible with the X�-action. So, by Definition 2.7, yG is a colift of G 2 D.X ˝k �/ to
D1..X� ˝k �/�[1/.

By Proposition 2.8, the obstruction against such a colift is the image of � [ 1 under
the characteristic morphism

HHnC3.X ˝ �;wOX .p/˝ �/! ExtnC3
X˝�

.G ;G ˝ wOX .p//:

However, this obstruction cannot vanish. As if we consider the equivariant characteristic
morphism

cG ;� W HHnC3.X; wOX .p//
� 7!�[1
�����! HHnC3.X ˝ �;wOX .p/˝ �/

cG
�! ExtnC3

X˝�
.G ;G ˝ wOX .p//;

we have the commutative diagram from Lemma 5.17:

HHnC3.X;OX .p//

HHnC3.X; wOX .p//

ExtnC3coh.X/�
.G;G.p//

ExtnC3
X˝�

.G ;G ˝ wOX .p//:

� �

cG;�

cG ;�

By assumption (I), we have that cG;�.�/ ¤ 0. So cG .� [ 1/ ¤ 0, which means that such
a colift of zG to .X ˝ �/�[1 cannot exist. Now, by the discussion above, this means that a
lift of zG to D1.X� ˝ �/ cannot exist, and so, o3. zG / cannot be zero.
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Lemma 5.20. There is a commutative diagram

ExtnX .G.�p/;G/

ExtnPnC1.f�.G.�p//; f�.G//

Ext�1X�
. zG ; zG /

Ext�1
P nC1. Qf�. zG /; Qf�. zG //,

f� Qf� ı  X� ;�

'

Qf�'

(5)

where the lower morphism is given by

Qf�' W ExtnPnC1.f�G.�p/; f�G/! Ext�1
P nC1. Qf� zG ; Qf� zG /

g 7! Qf�˛ ı w.g/ ı Qf�ˇ:

Proof. Recall that by Definition 5.13 the morphism ' is given by

' W ExtnC1CiX .G.�p/;G/! Ext�1
X
dg
�

. zG ; zG /

.g W †�n�1�iG.�p/! G/ 7! .˛ ı ��.wg/ ı ˇ W †
i zG ! zG /;

where ˛ and ˇ are the first and second morphisms in the distinguished triangle (4) in
D.X

dg
� /:

G
˛
�! zG

ˇ
�! †�n�1G ˝ wOX .�p/


�! †G :

Applying the exact functor Qf� ı  X� ;� gives the distinguished triangle in D.P nC1/:

Qf�G
Qf�˛
��! Qf� zG

Qf�ˇ
��! †�n�1 Qf�G ˝ wOX .�p/

Qf�
��! † Qf�G ;

which is a shorthand for

Qf���G
Qf�˛
��! Qf� zG

Qf�ˇ
��! †�n�1 Qf���G ˝ wOX .�p/

Qf�
��! † Qf���G :

So, we may use � ı Qf D f to get

f�G
Qf�˛
��! Qf� zG

Qf�ˇ
��! †�n�1f�G ˝ wOX .�p/

Qf�
��! †f�G : (6)

In particular,

Qf�' W ExtnPnC1.f�.wOX .p/˝ G /; f�.G //! Ext�1
P nC1. Qf�. zG /; Qf�. zG //

g 7! Qf�˛ ı wg ı Qf�ˇ

is well defined.
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Now, we compute

Qf� ı '.g/ D ef�.˛ ı ��.wg/ ı ˇ/ Definition of '

D Qf�˛ ı . Qf� ı ��/.wg/ ı Qf�ˇ Qf� is a functor

D Qf�˛ ı .f� ı w/.g/ ı Qf�ˇ Qf� ı ��.g/ D f�g

D Qf�˛ ı .w ı f�/.g/ ı Qf�ˇ [22, Lemma 8.7.1]

D Qf�'.f�g/; Definition of Qf�'

and the diagram indeed commutes.

Corollary 5.21. The right map in the diagram (5)

Qf� ı  �;� W Ext�1
X
dg
�

. zG ; zG /
�
�! Ext�1

P nC1. Qf�. zG /; Qf�. zG //

is an isomorphism.

Proof. Since G, G.�p/ are coherent sheaves on X and f� is exact, we have

Ext1
P nC1.f�.†

�n�1G ˝ wOX .�p//; f�.G //

Š Ext1PnC1.f�.†
�n�1G ˝OX .�p//; f�.G// Lemma 5.2

Š ExtnC2
PnC1

.f�.G.�p//; f�.G// Exti .†�j _; _ / Š ExtiCj . _; _ /

D 0: dim PnC1 D nC 1

So, in the distinguished triangle (6)

f�G
Qf�˛
��! Qf� zG

Qf�ˇ
��! †�n�1f�G ˝ wOX .�p/

Qf�
��! †f�G ;

Qf� vanishes, and we have

Qf�. zG / Š f�.G /˚ f�.†
�n�1wOX .�p/˝X G /

via the splitting morphisms Qf�˛ and Qf�ˇ.
This means that both the top morphism, by Lemma 5.14, and the lower morphism, by

splitting, in (5) are isomorphisms. So, by Lemma 5.20, it suffices to prove that

f� W ExtnX .OX .�p/˝G;G/! ExtnPnC1.f�.OX .�p/˝G/; f�.G//

is an isomorphism.
As tensoring with OX .p/ is an autoequivalence, this is equivalent to

f� W ExtnX .G;G.p//! ExtnPnC1.f�G; f�G.p//

being an isomorphism. Consider the long exact sequence associated to a divisor [22,
(9.13)]:

� � � ! Extn�2X .G;G.p C d//! ExtnX .G;G.p//
f�
�! ExtnPnC1.f�.G/; f�G.p//! � � � :
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By assumption (III), we have

Extn�2X .G;G.p C d// Š 0 and Extn�1X .G;G.p C d// Š 0;

so the long exact sequence has the shape

� � � ! 0! ExtnX .G;G.p//
f�
�! ExtnPnC1.f�.G/; f�G.p//! 0! � � � :

By exactness, that immediately gives that

f� W ExtnX .G.�p/;G/
�
�! ExtnPnC1.f�G.�p/; f�G/

is an isomorphism, which finishes the proof.

Lemma 5.22. The obstruction o3.‰�.G// 2HH3.�;Ext�1PnC1.‰.G/;‰.G/// against lift-
ing to D.P nC1 ˝ �/ from Lemma 5.11 does not vanish.

Proof. By part (2) of Lemma 5.11, we have

o3.‰.G// D . Qf� ı  X� ;�/o3.
zG / 2 HH3.�;Ext�1PnC1.‰.G/;‰.G///:

Furthermore, as o3 is the first obstruction, we do not need to keep track of any choices.
So, we can use Corollary 5.21 to get that Qf� ı  X� ;� induces an isomorphism in degree
�1, and by Lemma 5.19, we have 0 ¤ o3. zG /. So altogether,

0 ¤ . Qf� ı  X� ;�/o3.
zG / D o3.‰.G// 2 HH3.�;Ext�1PnC1.‰.G/;‰.G///:

Now, we can finally finish the proof of Theorem 5.9.

Proof. Assume that ‰� is Fourier–Mukai. Then, by Corollary 3.7, ‰� admits a lift

‰�;� W D
b.coh.X/�/! Db.coh.PnC1/�/:

This means that ‰�.G/ 2 Db.PnC1/� has a lift to Db.coh.PnC1/�/ ,! D1.P
nC1 ˝k

�/. Since we have by Lemma 5.22 that

o3.‰�.G// ¤ 0;

such a lift cannot exist.
So, ‰� cannot be Fourier-Mukai.

5.3. Application: Odd-dimensional quadrics

We will show that the tilting bundle G for an odd-dimensional quadric hypersurface and
its endomorphism algebra � satisfy the assumptions of Theorem 5.9. For this, we start by
recalling that quadrics admit an exceptional sequence, which gives rise to a tilting bundle.
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Theorem 5.23 ([2, Corollary 3.2.8]). LetQ,!P2k be the embedding of a smooth quadric.
Then, Q admits an exceptional sequence:

.S.�2k C 1/;OQ.�2k C 2/; : : : ;OQ.�1/;OQ/;

where S denotes the spinor bundle.

In particular, we may consider for the embedding of a smooth quadric

f W Q ,! P2k

the tilting bundle:

G WD S.�2k C 1/˚

�2kC2M
lD0

OQ.�l/ and � WD End.G/:

Now, we need to verify the assumptions on the concentration of Ext�Q.G.�p/;G/ and
Ext�Q.G;G.p C d//. We will use p D �2k � 2 and

0 ¤ � 2 ker.f� W HHnC3.X;OQ.�2k � 2//! HHnC3.P2k ; f�OQ.�2k � 2///

as we know by Proposition 4.16 that

f� W HHnC3.Q;OQ.�2k � 2//! HHnC3.PnC1; f�OQ.�2k � 2//

has one-dimensional kernel.
For the Ext-calculations, we will need the following statement which also holds for

even quadrics. However, as in the even case we would need to track the different spinor
bundles depending on the equivalence class of the dimension modulo four, we will restrict
to the odd case for legibility.

Lemma 5.24. Let Q ,! P2k be a smooth odd-dimensional quadric, and let S be the
spinor bundle. Then, the following hold:

(1) We have for i … ¹0; 1; nº

ExtiQ.S; S.m// Š Exti�1Q .S; S.mC 1//:

(2) If m � �1, we have additionally

ExtiQ.S; S.m// Š Exti�1Q .S; S.mC 1//;

ExtiQ.S; S.m// Š Exti�1Q .S; S.mC 1//:

Proof. Consider the short exact sequence [19, Theorem 2.8]

0 7! S 7! O2kC1

Q ! S.1/! 0
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which gives after applying ExtiQ. _; S.mC 1// the long exact sequence

� � � Exti�1Q .O2kC1

Q ; S.mC 1// Exti�1Q .S; S.mC 1//

ExtiQ.S.1/; S.mC 1// ExtiQ.O
2kC1

Q ; S.mC 1// � � � .

In particular, we have

ExtiQ.S; S.m// Š ExtiQ.S.1/; S.mC 1// Š ExtiC1Q .S; S.m � 1//

if we have for j 2 ¹i; i � 1º

Extj .O2kC1

Q ; S.mC 1// Š

2kC1M
lD0

Extj .OQ; S.mC 1// Š
2kC1M
lD0

Hj .X; S.mC 1// D 0:

By [19, Theorem 2.3], we have Hj .X; S.mC 1// D 0 for j … ¹0; nº which implies 1.
If m � �1, we have mC 1 � 0, and so, we get by [19, Theorem 2.3]

H 0.X; S.mC 1// D 0;

which gives 2.

Proposition 5.25. Let i ¤ 2k � 1. Then, we have

Ext�Q.G.2k C 2/;G/ D 0:

Proof. Since G is a sheaf, we may assume that 0 � i � 2k � 2 for dimension reasons. By
definition of G and additivity of Ext, we have

ExtiQ.G.2k C 2/;G/ D ExtiQ..S.�2k C 1/

˚

2k�2M
lD0

OQ.�l/.2k C 2//; S.�2k C 1/˚

2k�2M
lD0

OQ.�l//

Š

2k�2M
h;lD0

ExtiQ.OQ.2k C 2 � l/;OQ.�h//

˚

2k�2M
lD0

ExtiQ.OQ.2k C 2 � l/; S.�2k C 1//

˚

2k�2M
lD0

ExtiQ.S.2k C 2 � 2k C 1/;OQ.�l//

˚ ExtiQ.S.�2k C 1C 2k C 2/; S.�2k C 1//:

In particular, we can compute these Ext-groups one by one.
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We start with ExtiQ.OQ.2k C 2 � l/;OQ.�h// for which we get

ExtiQ.OQ.2k C 2 � l/;OQ.�h//

Š ExtiQ.OQ;OQ.l � h � 2k � 2// twisting on both sides

Š Hi .Q;OQ.l � h � 2k � 2// ExtiQ.OQ; _ / Š Hi .Q; _ /

Š 0: l � h � 2k � 2 < 0

Since we have l � 4k � 1 � 0, we get

ExtiQ.OQ.2k C 2 � l/; S.�2k C 1//

Š ExtiQ.OQ; S.l � 4k � 1// twisting on both sides

Š Hi .Q; S.l � 4k � 1// ExtiQ.OQ; _ / Š Hi .Q; _ /

Š 0: [19, Theorem 2.3]

By [19, Theorem 2.8], we have S_ Š S.1/, which we may use to compute

ExtiQ.S.3/;OQ.�l// Š ExtiQ.S;OQ.�3 � l// twisting on both sides

Š ExtiQ.OQ; S
_.�3 � l// dualizing

Š ExtiQ.OQ; S.�2 � l// S_ Š S.1/

Š Hi .Q; S.�2 � l// ExtiQ.OQ; _ / Š Hi .Q; _ /

Š 0: [19, Theorem 2.3]

We may use i � 2k � 1 to get

ExtiQ.S.3/; S.�2k C 1// Š ExtiQ.S; S.�2k � 2// twisting on both sides

Š Ext1Q.S; S.�2k � 3C i// Lemma 5.24

Š Ext�1Q .S; S.�2k � 1C i// Lemma 5.24

Š 0: S is a sheaf

So, every direct summand vanishes, and in particular,

ExtiQ.G.2k C 2/;G/ D 0 for i ¤ n

as desired.

Proposition 5.26. Let i … ¹0; 2k � 1º. Then, we have

ExtiQ.G;G.�2k// Š 0:

Proof. Since Q has dimension 2k � 1 and G is a sheaf, we may assume that 0 < i <

2k � 1.
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By definition of G and additivity of ExtiQ. _; _ /, we have

ExtiQ.G;G.�2k// D ExtiQ.S.�2k C 1/

˚

2k�2M
lD0

OQ.�l/; S.�4k C 1/˚

2k�2M
hD0

OQ.�2k � h//

Š

2k�2M
l;hD0

ExtiQ.OQ.�l/;OQ.OQ.�2k � h///

˚

2k�2M
lD0

ExtiQ.OQ.�l/; S.�4k C 1//

˚

2k�2M
lD0

ExtiQ.S.�2k C 1/;OQ.�2k � l//

˚ ExtiQ.S.�2k C 1/; S.�4k C 1//:

As above, we can compute the cases separately.
We start with ExtiQ.OQ.�l/;OQ.�2k � h//. For this, we get

ExtiQ.OQ.�l/;OQ.�2k � h//

Š ExtiQ.OQ;OQ.l � 2k � h// twisting on both sides

Š Hi .Q;OQ.1 � 2k � h// ExtiQ.OQ; _ / Š Hi .Q; _ /

Š 0: i … ¹0; 2k � 1º

For ExtiQ.OQ.�l/; S.�4k C 1//, we get

ExtiQ.OQ.�l/; S.�4k C 1//

Š Exti .OQ; S.l � 4k C 1// twisting on both sides

Š Hi .Q; S.l � 4k C 1// ExtiQ.OQ; _ / Š Hi .Q; _ /

Š 0: i … ¹0; 2k � 1º [19, Theorem 2.3]

While for ExtiQ.S.�2k C 1/;OQ.�2k � l//, one can compute:

ExtiQ.S.�2k C 1/;OQ.�2k � l//

Š ExtiQ.S;OQ.�1 � l// twisting on both sides

Š ExtiQ.OQ; S
_.�1 � l// dualizing

Š ExtiQ.OQ; S.�l// [19, Theorem 2.8]

Š Hi .Q; S.�l// ExtiQ.OQ; _ / Š Hi .Q; _ /

D 0: i … ¹0; 2k � 1º [19, Theorem 2.3]
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Finally, for ExtiQ.S.�2k C 1/; S.�4k C 1//, we get

ExtiQ.S.�2k C 1/; S.�4k C 1// Š ExtiQ.S; S.�2k// twisting on both sides

Š Ext1Q.S; S.�2k C i � 1// Lemma 5.24 (1)

Š Ext0Q.S; S.�2k � i// Lemma 5.24 (2)

Š Ext�1Q .S; S.�2k C 1 � i// Lemma 5.24 (2)

D 0; S is a sheaf

where we used i < 2k � 1 and so �2k C i � �1, respectively, �2k C 1C i � �1 for the
last two lines.

So, all the direct summands of ExtiQ.G;G.�2k// vanish for i … ¹0;2k � 1º as claimed.

So altogether, we can now phrase the following Theorem 5.27 which also recovers the
result from [22] when specialized to the case k D 2.

Theorem 5.27. Let Q ,! P2k be the embedding of a smooth odd-dimensional quadric
for k � 2. Then, we have an exact functor:

‰� W D
b.Q/! Db.Pn/

that cannot be Fourier–Mukai.

Proof. We want to apply Theorem 5.9.
First of all, we have by Proposition 4.16 for k > 2 an

0 ¤ � 2 HH2kC2.Q;OQ.�2k � 2//

that is in the kernel of f� W HHnC3.Q;O.�2k � 2//! HHnC3.P
2k ;f�O.�2k�2//.

For k D 2, we get that the top Hochschild cohomology is HHnC3.Q;O.�2k � 2//,
and so by Theorem 4.15, we have

dim ker.f� W HHnC3.Q;O.�6//! HHnC3.P4; f�O.�6/// D h2;11 .Q/:

Using formula (1), we compute

h2;11 .Q/ D

5X
�D0

.�1/�
�
6

�

��
�1C 4 � .� � 1/.2 � 1/

4

�

D

5X
�D0

.�1/�
�
6

�

��
�1C 4 � .� � 1/

4

�

D

5X
�D0

.�1/�
�
6

�

��
4 � �

4

�
D .�1/0

�
6

0

��
4

4

�
D 1;
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where we used that
�
4��
4

�
only can be non-zero if � D 0. In particular, we get a one-

dimensional kernel from which we may pick an � ¤ 0.
We now collect the other assumptions which we verified above.
By Theorem 5.23, Q admits a tilting bundle G, and by Lemma 3.19, we know that

for � WD End.G/ the functor CQG;� is an equivalence. In particular, we get by Proposi-
tion 3.12 cG;�.�/ ¤ 0, which is assumption (I). Now, finally, we need to verify that the
corresponding Ext-groups are suitably concentrated, which is verified in Proposition 5.25
for assumption (II) and Proposition 5.26 for assumption (III).

So, we may apply Theorem 5.9 to get a non-Fourier–Mukai functor ‰� .

A. Modules over k-linear categories and A1-modules over
A1-categories

In this Appendix, we will recall a few basic facts about modules over k-linear categories
and A1-modules over A1-categories, for a field k.

A.1. Modules over k-linear categories

We start by recalling the definition of modules over a k-linear category and the relation-
ship between those and the classical notion of modules.

The idea of generalizing the notion of modules over rings to categories first was intro-
duced by B. Mitchell [17]. All in all, the idea is that one can interpret a k-algebra as a
k-linear category with one object, and under that interpretation, a module corresponds to
a functor from the k-linear category to the category of k-vector-spaces.

Remark A.1. Recall that a k-linear category C is a category such that every morphism
space C.M;N / is a k-vector space and composition defines a k-linear map

_ ı _ W C.M 0;M/˝ C.M 00;M 0/! C.M 00;M/:

Definition A.2 ([17]). Let X be a small k-linear category. An X-module is a k-linear
functor

M W X ! Vect.k/:

A morphism of X-modules is a natural transformation between two X-modules N and M:

f W N !M:

We refer to the category of X-modules by X-mod.

Lemma A.3. Let X be a k-linear category. Then, we have that the category X-mod is a
k-linear abelian category.

Proof. By Definition A.2, we have X-mod D Funk.X;Vect.k//. In particular, we have
immediately a canonical k-action on the morphism spaces. As kernels and cokernels
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can be computed objectwise in the target category [27, Exercise A.4.33], we have that
Funk.X;Vect.k// is also abelian. In particular, we get that X-mod is abelian k-linear.

Remark A.4. Let � be a k-algebra. Then, we have that a classically defined �-module
M consists of a k-vector space V together with a k-algebra morphism  W � ! End.V /.

On the other hand, if we consider � to be a k-linear category with one object �, then
M consists by Definition A.2 also of a vector space V DM.�/ together with a morphism
of k-algebras (a map of morphism spaces):

� ! End.V / D Vect.k/.M.�/;M.�//:

In particular, in this case, the two notions of modules over � coincide.
Similarly, the notion of natural transformation captures in this case precisely the com-

muting with the � action.

Definition A.5 ([17]). Let X be a k-linear category. We define the derived category of X-
modules (respectively, bounded, bounded below, or bounded above) derived category to
be the derived category (respectively, bounded, bounded below, or bounded above derived
category) of the abelian category X-mod:

D\.X/ WD D\.X-mod/

for \ 2 ¹_; b;�;Cº.

As we will later define a k-linear category corresponding to a scheme and then model
morphisms of schemes also as functors between k-linear categories, we will denote the
restriction of scalar functors in the following way.

Definition A.6. Let f W X ! Y be a k-linear functor, and let M be a Y-module. Then,
we define the module f�M to be the X-module defined by

f�M WDM ı f:

Remark A.7. We choose the notation f� over f � as we will later model the category
of sheaves on a projective scheme by modules over a k-linear category, and under this
construction, the functor f� corresponds to the direct image, and so, the notation turns out
to be more consistent and less confusing throughout this work.

Lemma A.8. Let f W X ! Y be a k-linear functor. Then, the assignment

M 7! f�M

defines a left exact functor f� W Y-mod 7! X-mod.

Proof. As kernels and images are computed on the target category, we do not need to
worry about left exactness. It also defines a functor as it is just a precomposition with a
functor, and so, it has to be functorial.
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A.2. A1-Structures

Throughout this section, we follow [12,23]; in particular, we will use the sign conventions
from [12]. Although B. Keller only talks about A1-algebras, the sign conventions can
also be applied to A1-categories and are equivalent to the sign conventions in the book
by P. Seidel which is considering A1-categories throughout. Furthermore, K. Lefèvre–
Hasegawa [13] covers the case of A1-categories using the same signs as Keller; however
we primarily refer to [23] for the category case, as [13] is in French.

A.3. A1-Categories and their functors

Since we will repeatedly use dg-categories as examples for A1-categories, we recall the
definition of a dg-category

Definition A.9. A dg category C is a category such that we have for allM;N 2 C a chain
complex C�.M;N / such that the Leibnitz rule holds:

d.x ı y/ D dx ı y C x ı dy:

Definition A.10 ([12, Section 3.1]). Let n 2 N [ ¹1º. An An-category X over a field k
consists of a class of objects obj.X/ and Z-graded k-vector-spaces as morphism spaces

X.a; b/;

for a; b 2 obj.X/, together with compositions

mi W X.ai ; ai�1/˝k X.ai�1; ai�2/˝ � � � ˝X.a1; a0/„ ƒ‚ …
i

! X.ai ; a0/

of degree 2 � i for 1 � i � n and a0; : : : ; ai 2 obj.X/ such thatX
rCsCtDk

.�1/rCstmu ı .Id˝r ˝ms ˝ Id˝t / D 0 (�k)

holds for all k � n, where u D r C 1C t .
We will sometimes denote a 2 obj.X/ by a 2 X to avoid clumsy notation.

Definition A.11 ([23, (2a)]). An An-category X is called unital if every object a 2
obj.X/ admits a unit Id 2 X.a; a/0 such that

m1.Id/ D 0

m2.x; Id/ D x D m2.Id; x/

mi .xi ; : : : ; Id; : : : ; x1/ D 0 i ¤ 2:

Remark A.12. Observe that the first few incarnations of (�k) give the following.

k D 1. In this case, .�1/ gives
m1 ım1 D 0:

This means that m1 defines a differential on X.a; b/.
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k D 2. Here, .�2/ boils down to

m1 ım2 D m2.m1 ı IdC Id ım1/;

which is the Leibnitz rule d.x ı y/ D dx ı y C x ı dy.

k D 3. And .�3/ gives

m2 ı .Id˝m2 �m2 ˝ Id/

D m1 ım3 Cm3 ˝ .m1 ˝ Id˝ IdC Id˝m1 ˝ IdC Id˝ Id˝m1/;

which means that m2 is associative up to a homotopy given by m3. More generally, one
can think of an An-category as a category that is homotopy-associative up to degree n.

By Definition A.10, every An category defines an Am-category for all m � n just by
forgetting the higher actions.

Definition A.13 ([23, (1a)]). Let X be an An-category for n � 3. Then, the category
H�.X/ is the graded k-linear category consisting of the same objects as X and morphism
spaces

H�.X/.a; b/ WD H�.X.a; b//;

where we use Remark A.12 to consider X.a; b/ as a chain complex with differential m1.
The k-linear category H0.X/ is the category with the same objects as X and mor-

phism spaces
H0.X/.a; b/ WD H0.X.a; b//:

We have by Remark A.12 that H�.X/ defines a graded k-linear category and H0.X/
defines an ordinary k-linear category.

Definition A.14 ([23, (2a)]). An An-category is called homologically unital if H0.X/
admits a unit morphism Id 2 H0.X/.a; a/ for all a 2 obj.X/.

Definition A.15. An An-category is called small if its objects form a set. It is called
essentially small if the isomorphism classes of objects form a set.

Definition A.16 ([12, Section 3.1]). An An-category is an An-algebra if obj.X/ consists
of only one object for n 2 N [ ¹1º.

Example A.17. There are a few obvious examples of A1-categories:

• Let X be a k-linear category; then, it is an A1 category via

mi D

´
. _ / ı . _ / i D 2;

0 i ¤ 2:

• More generally, let X be a dg-category; then, X is an A1-category with

mi D

8̂̂<̂
:̂
d i D 1;

. _ / ı . _ / i D 2;

0 i … ¹1; 2º:
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Definition A.18 ([12, Section 3.4]). An An-functor between two An-categories f WX!
Y is given by a map on objects

f W obj.X/! obj.Y/

and a set of morphisms

¹fi W X.ai ; ai�1/˝X.ai�1; ai�2/˝ � � � ˝X.a1; a2/! Y.f .ai /; f .a0//º

of degree 1 � i for every i � n and ai ; : : : ; a0 2 obj.X/ such thatX
rCsCtDk

.�1/rCstfu.Id˝r ˝ms ˝ Id˝t /

D

X
1�l�n

kDi1C���Cil

.�1/mmr .fi1 ˝ fi2 ˝ � � � ˝ fil / (��k)

holds, where u D r C 1C t and

m D .l � 1/.i1 � 1/C .l � 2/.i2 � 1/C � � � C 2.il�2 � 1/C .il�1 � 1/:

Remark A.19. Again, we compute the first few incarnations of (��k) as follows.

k D 1. In this case, we have
f1 ım1 D m1 ı f1I

in particular, f1 defines a morphism of chain complexes.

k D 2. Here, we get

f1 ım2 D m2 ı .f1 ˝ f1/Cm1 ı f2 C f2.m1 ˝ IdC Id˝m1/;

so f1 commutes with m2 up to a homotopy given by f2.
More generally, one can think of an An-functor as a functor which commutes with

the An-structures of the source and target up to homotopies. These higher homotopies are
encoded in the higher fi , for i > 1. In particular, on H� only the f1 remains.

Definition A.20 ([12, Section 3.1]). An An-functor between two unital An-algebras is
called an An-morphism for n 2 N [ ¹1º.

Definition A.21 ([12, Section 3.1]). An A1-functor f WA! B is a quasi-equivalence if

f W obj.A/=Š ! obj.B/=Š

is surjective and all f1 induce isomorphisms on cohomology

H�.f1/ W H�.A.a; a0//
�
�! H�.B.fa; fa0//:

Proposition A.22 ([13, Proposition 3.2.1]). Every homologically unital A1-category is
quasi-equivalent to a unital one.
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Definition A.23 ([12, Section 3.4]). A quasi-equivalence between two A1-algebras is
called a quasi-isomorphism.

Theorem A.24 ([11]). Let X be an A1-category. Then, the cohomology H�.X/ has an
A1-category structure such that

• m1 D 0,

• there is a quasi-equivalence H�X �
�! X lifting the identity on H�X.

Moreover, this structure is unique up to (non-unique) isomorphism of A1-categories.

Remark A.25. From now on, we will assume that the cohomology H�.X/ of an A1-
category is equipped with the A1-structure arising by Theorem A.24 instead of just
regarding it as a graded category interpreted as an A1-category. The A1-category con-
structed in Theorem A.24 is also referred to as the minimal A1-model of X.

A.4. A1-Modules and their functors

Definition A.26 ([12, Section 4.2]). Let X be a small An-category for n 2 N [ ¹1º. An
An-module over X consists of a Z-graded space

M.a; b/

for every pair of objects a; b 2 obj X and higher composition morphisms

mi WM.ai ; ai�1/˝X.ai�1; ai�2/˝ � � � ˝X.a1; a0/„ ƒ‚ …
i

!M.ai ; a0/

of degree 2 � i such that the following equation holds:X
rCsCtDk

.�1/rCstmu ı .Id˝r ˝ms ˝ Id˝t / D 0; (��k)

where depending on the input mi needs to be considered as the i th higher composition
morphism of X or M.

Remark A.27. We again compute a few incarnations of (��k) to give some intuition on
the modeled structure.

k D 1. In this case, we get
mM
1 ımM

1 D 0:

So, m1 defines a differential.

k D 2. Here, we get

mM
1 ımM

2 D mM
2 ı .m

M
1 ˝ IdMC IdM˝mA

1 /;

which means that m2 suffices the Leibnitz rule.
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k D 3. For this, we get similar to the A1-algebra case that the action of M induced by
m2 is associative up to a homotopy, which is given by m3.

So, one can think about an A1-module as a homotopy coherent module over X.

Example A.28. We collect once more the standard examples.

• Let M be a graded module over a k-linear category X; then, it is an A1-module over
X via

mi D

´
. _ / ı . _ / i D 2;

0 i ¤ 2:

• Let M be a dg-module over a dg-algebra X. Then, it defines an A1-module over X

via

mi D

8̂̂<̂
:̂
dM i D 1;

. _ / ı . _ / i D 2;

0 i … ¹1; 2º:

Definition A.29 ([12, Section 4.2]). Let M, N be An-modules over an An-category X

for n 2 N [ ¹1º. A morphism of An-modules consists of a set of morphisms:

fi WM.ai ; ai�1/˝X.ai�1; ai�2/˝ � � � ˝X.a1; a0/„ ƒ‚ …
i

! N .ai ; a0/

of degree 1 � i for i � n such that we have for every k < nX
rCsCt

.�1/rCstfu ı .Id˝r ˝ms ˝ Id˝t / D
X
nDrCs

.�1/.r�1/smu0.fr ˝ Ids/; (��k)

where u D r C s C t and u0 D 1C s.

Example A.30. We compute again (��k) for small k as follows.

k D 1. Similar to the cases above, .��1/ boils down to

f1 ım1 D m1 ı f1;

which means that f1 defines a morphism of chain complexes.

k D 2. Here, we get

f1 ım2 � f2 ı .m1 ˝ IdC Id˝m1/ D m2 ı .f1 ˝ IdX/Cm1 ı f2:

This means that similar to the case of an An-functor between An-categories the equation
.��2/ encodes that f1 is compatible with the action induced by m2 up to a homotopy
given by f2.

These examples are another reason one can think about A1-structure as a notion for
inductive homotopy coherent algebraic structures.
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Definition A.31 ([12, Section 4.2]). An An-morphism f W M ! N is a quasi-isomor-
phism if it induces an isomorphism on cohomology

H�.f / W H�M �
�! H�N :

Definition A.32 ([12, Section 4.2]). Let f WM!M0 and g WM0!M00 be morphisms of
A1-modules over a homologically unital A1-algebra X. Then, the composition f ı g W
M!M00 is given by

.f ı g/n D
X
nDrCs

.�1/.r�1/sfu.gr ˝ Id˝s/;

where we put u D 1 � s.

Definition A.33 ([12, Section 4.2]). Let X be a homologically unital A1-algebra; then,
we define the category of A1-modules C1.X/ to be the category consisting of A1-
modules and morphisms given by A1-morphisms.

Remark A.34. The identity of an object in C1.X/ is given by

Id D .Id; 0; : : :/:

Definition A.35 ([23, Section 1k]). Let f W X ! Y be an Ai -functor. Then, the functor

f� W C1.Y/! C1.X/

is given on modules by
f�M.a/ WDM.f .a//

for objects a 2 obj.X/. Higher compositions are given by

mk.m; xk�1; : : : ; x1/ D
X
l<k

X
s1;:::;sl

ml .m; fsl .xk�1; : : : ; xk�sl /; : : : ; fs1.as1 ; : : : ; a1//:

On morphisms, f � is given by

f�'k.m; xk�1; : : : ; x1/ D
X
l<k

X
s1;:::;sl

'l .m; fsl .xk�1; : : : ; xk�sl /; : : : ; fs1.as1 ; : : : ; a1//:

Remark A.36. We again choose the notation f� over f � as we will later model the
category of sheaves on a projective scheme by modules over a k-linear category, and under
this construction, the functor f� corresponds to the direct image, and so, the notation turns
out to be more consistent and less confusing throughout this work.

Definition A.37 ([12, Section 4.2]). Let X be a homologically unital small A1-category.
Then, we define the category

D1.X/ WD C1.X/Œ¹A1 � quasi-isomorphismº�1�:
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Remark A.38 ([12, Section 4.2]). More generally, one could consider A1-categories
over commutative rings instead of a field k. In this case, we would have to distinguish
between the derived category of A1-modules, as we defined it, and the category of A1-
modules up to homotopy. However, over a field, one can prove that actually every quasi-
isomorphism of A1-modules is a homotopy equivalence and vice versa. In particular, in
this case, the naively derived category arising by formally inverting quasi-isomorphisms
and the category of A1-modules up to homotopy coincide.

The interpretation of D1.X/ as arising via A1-modules up to homotopy immedi-
ately gives that D1.X/ is well defined and there are no set-theoretic issues arising.

Acknowledgments. I would like to thank my supervisor A. Rizzardo for giving me this
awesome topic and supporting me throughout my work on this project.
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