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The homotopy groups of the automorphism group
of Kirchberg algebras

Marius Dadarlat�

Abstract. We compute the homotopy groups of the automorphism group of Kirchberg algebras.
More generally, we calculate the homotopy classes ŒX;Aut.A/� for a Kirchberg algebra A and
a path connected metrizable compact space X satisfying a natural continuity property.
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1. Introduction

Kirchberg C*-algebras appear naturally in a variety of contexts [18]. They include
the simple Cuntz–Krieger algebras associated to Markov chains [8], [5] or more
generally the Ruelle algebras associated to hyperbolic homeomorphisms of compact
spaces [17] as well as C*-algebras associated to boundary actions of certain groups
and to a large class of groupoids [1], [14]. Remarkably, the action of any lattice of
a real connected semisimple Lie group G without compact factors and with trivial
center on the Furstenberg boundary of G gives rise to a Kirchberg algebra [1]. The
topological invariants of these algebras may reflect interesting geometric properties
of the underlying dynamical systems. For instance the K-theory groups of the Cuntz–
Krieger algebras OA turned out to be exactly the invariants of flow equivalence for
the matrix A discovered by R. Bowen and J. Franks [4].

The homotopy groups of the endomorphism space of the stable Cuntz–Krieger
algebras were computed by Cuntz in [7]. In the early 1980s, Cuntz asked for a com-
putation of the homotopy groups of the automorphism groups of OA. Here we answer
Cuntz’s question by computing the homotopy groups of the automorphism group of an
arbitrary Kirchberg algebra, see Corollary 5.10 and 5.11. The interest in this question
has been renewed in view of our recent paper [9] which gives a simple KK-theoretical
criterion for local triviality of a separable continuous field of Kirchberg algebras and
which proves automatic local triviality of separable unital continuous fields of Cuntz
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algebras over finite dimensional compact Hausdorff spaces. These results reduce the
study of many continuous fields to questions in homotopy theory. Indeed, if Aut.A/
denotes the automorphism group of a Kirchberg algebra A endowed with the point-
norm topology, the isomorphism classes of continuous fields over a compact Hausdorff
space which are locally isomorphic to C.X/˝A are parameterized by the homotopy
classes ŒX;B Aut.A/�of maps into the classifying space for principal Aut.A/-bundles.
In view of the bijection ŒSX;B Aut.A/� Š ŒX;Aut.A/�=�0.Aut.A// (where SX is
the unreduced suspension of X), the question of computing ŒX;Aut.A/� becomes
quite natural. Let us mention that this is a nontrivial question even when X is a
point. While �0.Aut.A// was computed in [16, Thm. 4.1.4] under the assumption
that K1.A/ D 0, the general case has remained open.

Naturally, our calculations rely on the fundamental work of Kirchberg [11], [12]
and Phillips [16] on the classification of Kirchberg algebras. We were inspired
by the work of Nistor on the homotopy theory of the automorphism group of AF-
algebras [15] which illustrates the key role of the mapping coneC�A of the unital map
� W C ! A. Related ideas have appeared earlier in unpublished work of Skandalis [20]
on the strong Ext-group.

Let us give an overview of the paper. With an eye on future applications we choose
to work in a setup which is more general that what would be strictly required for this pa-
per. Thus we consider homotopy classes of �-homomorphisms from a separable unital
exact C*-algebra A to a separable unital properly infinite C*-algebra B . Section 2
recasts the classification results of Kirchberg and Phillips using the notion of nuclear
absorbing �-homomorphisms. Section 3 investigates the natural action of K1.B/ on
ŒA; B�una, the homotopy classes of unital absorbing �-homomorphisms from A to B .
Inspired by [15] we establish a bijection � W ŒA; B�una ! KKnuc.C�A; SB/, where
C�A denotes the mapping cone of the unital map � W C ! A. The proof that the
map � is bijective in our setting does not rely on the universal coefficient theorem for
KK-theory, unlike [15]. Section 4 considers possible group structures on ŒA; B�una.
In particular it shows that ifX is a path connectedH 0-space with nondegenerate base
point x0, then the map � W ŒX;End.A/0� ! KK.C�A; SC.X; x0/˝A� is an isomor-
phism of abelian groups. Here End.A/0 stands for the path-component of idA of the
space of the unital endomorphisms End.A/ of a unital Kirchberg algebraA. Section 5
determines the image of the natural map ŒX;Aut.A/� ! ŒX;End.A/� and establishes
a bijection ŒX;Aut.A/0� Š ŒX;End.A/0� under a suitable continuity condition on the
pairX , A. This condition is automatically satisfied ifX is locally contractible or ifA
is KK-semiprojective and hence it leads to the computation of the homotopy groups
of Aut.A/. Section 6 gives a description up to an extension of the (not necessarily
abelian) group ŒX;Aut.A/�.

The author is indebted to Larry Brown for providing him with a copy of [20].
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2. KK-theory and �-homomorphisms

If a separable C*-algebra B has a full properly infinite projection, then K0.B/ D
KK.C; B/ has a simple realization due to Cuntz [6], see Proposition 2.1. In this
section we reformulate results of Kirchberg and Phillips giving a similar realization
for KKnuc.A;B/ when A is a separable unital exact C*-algebra, see Proposition 2.8
and Theorem 2.9.

Two projections p; q in a C*-algebra A are Murray–Von Neumann equivalent,
written p � q, if there is v 2 A such that v�v D p and vv� D q. A projection
p 2 A is called properly infinite if there are mutually orthogonal nonzero projections
p1; p2 2 A such that p1 C p2 � p and p � p1 � p2. A unital C*-algebra A
is called properly infinite if its unit 1A is a properly infinite projection. A simple
C*-algebra A is called purely infinite if A is not isomorphic to C and for any two
positive nonzero elements a; b 2 A, there is c 2 A such that a D cbc�. A simple
purely infinite nuclear separable C*-algebra is called a Kirchberg algebra [18]. Any
nonunital Kirchberg algebra is of the form A˝ K for some unital Kirchberg algebra
A, see [23]. An element in a C*-algebra B is full if it is not contained in any proper
two-sided closed ideal of B . A �-homomorphism ' W A ! B is full if '.a/ is full in
B for any nonzero element a 2 A. The following result is due to Cuntz [6].

Proposition 2.1. Let B be a C*-algebra which contains a full properly infinite pro-
jection. For any x 2 K0.B/ there is a full properly infinite projection p 2 B such
that x D Œp�. If p; q 2 B are two full properly infinite projections such that Œp� D Œq�

then p � q. Moreover, if we also assume that B is unital and that both 1B � p and
1B � q are full and properly infinite, then upu� D q for some unitary u 2 U.B/.

Two �-homomorphisms '; W A ! B are asymptotically unitarily equivalent,
written ' �uh  ; if there is a norm continuous unitary valued map t 7! ut 2 BC,
t 2 Œ0; 1/, such that limt!1 kut'.a/u�

t � .a/k D 0 for all a 2 A. By definition we
set BC D B if B is unital and BC D C1C B otherwise.

If '; W A ! B are two maps we denote by ' ˚  W A ! M2.B/ the map

a 7!
�
'.a/ 0
0  .a/

�
.

Definition 2.2. Let A and B be separable C*-algebras. A nuclear �-homomor-
phism ' W A ! B ˝ K is called absorbing if for any nuclear �-homomorphism
 W A ! B ˝ K there is a nuclear �-homomorphism  0 W A ! B ˝ K such that
' ˚ 0 �uh  ˚  0.

A �-homomorphism � W A ! B is called O2-factorable if there are �-homomor-
phisms ˛ W A ! O2 and ˇ W O2 ! B such that � D ˇ˛. Let us note that if A and
B are nonzero, then � is full if and only if ˛ is injective and ˇ.1/ is a full projection.
If A is exact and B has a full properly infinite projection, then there is always a
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full O2-factorable �-homomorphism from A to B . Indeed, any separable exact C*-
algebra embeds in O2 by a theorem of Kirchberg [18, Thm. 6.3.11] and O2 admits
a full embedding in B by [18, 4.1.4 and 4.2.3], since B has a full properly infinite
projection. We shall need the following results of Kirchberg and Phillips, (see [18,
Thm. 8.3.3] and [16, Thm. 4.1.1]). In order to ease notation, we will write KK.'/ for
the class of �-homomorphism ' W A ! B in the group KKnuc.A;B/ of [21].

Theorem 2.3 (Kirchberg’s Classification Theorem). LetA be a separable exact unital
C*-algebra and let B be a separable unital properly infinite C*-algebra. Fix a full
O2-factorable �-homomorphism � W A ! B .

(i) For every˛ 2 KKnuc.A;B/ there is a full nuclear �-homomorphism' W A ! B

such that KK.'/ D ˛.
(ii) Let '; W A ! B be two unital nuclear �-homomorphisms. Then ' ˚ � �uh

 ˚ � if and only if KK.'/ D KK. /.
(iii) Assume thatB is purely infinite and simple and let '; W A ! B be two unital

nuclear injective �-homomorphisms. Then ' �uh  if and only if KK.'/ D KK. /.

Theorem 2.4 (Phillips’Classification Theorem). LetA be a separable nuclear simple
unital C*-algebra and let B be a separable unital C*-algebra that satisfies B Š
B ˝O1.

(i) For every ˛ 2 KK.A;B/ there is a full �-homomorphism ' W A ! B ˝ K

such that KK.'/ D ˛.
(ii) Let '; W A ! B ˝ K be two full �-homomorphisms. Then ' �uh  if and

only if KK.'/ D KK. /.

Lemma 2.5. Let A and B be as in Theorem 2.3.
(i) If �; � 0 W A ! B ˝ K are two full O2-factorable �-homomorphisms, then

� �uh �
0.

(ii) Let '; W A ! B˝K be two nuclear �-homomorphisms such that KK.'/ D
KK. /. Then ' ˚ � �uh  ˚ � for any �-homomorphism � W A ! B ˝ K that is
full and O2-factorable.

Proof. (i) Write � D ˇ˛ and � 0 D ˇ0˛0 where as in Definition 2.2 ˛; ˛0 W A ! O2 are
injective �-homomorphisms (which we may assume to be unital) and ˇ; ˇ0 W O2 !
B ˝ K are full �-homomorphisms. We have ˛ �uh ˛

0 by Theorem 2.3 (iii) and
ˇ �uh ˇ

0 by [3, Lemma 5.4]. It follows that � �uh �
0.

(ii) This is just a nonunital version of Theorem 2.3 (ii). Set ˆ D ' ˚ � and ‰ D
 ˚ � . By (i) it suffices to prove thatˆ˚ � 0 �uh ‰˚ � 0 for some full O2-factorable
�-homomorphism � 0 W A ! B˝K . Sinceˆ.1A/ and‰.1A/ are full properly infinite
projections in B ˝ K which have the same K0-class, by Proposition 2.1 there is a
unitaryw 2 .B˝ K/C such thatˆ.1A/ D w‰.1A/w

�. Set e D ˆ.1A/ and fix a full
O2-factorable �-homomorphism � 0 W A ! e.B ˝ K/e. By Theorem 2.3 (ii) applied
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to ˆ and w‰w� W A ! e.B ˝ K/e we have ˆ ˚ � 0 �uh w‰w
� ˚ � 0 and hence

ˆ˚ � 0 �uh ‰ ˚ � 0. �

Proposition 2.6. Let A and B be as in Theorem 2.3. A nuclear �-homomorphism
' W A ! B ˝ K is absorbing if and only if ' �uh ' ˚ � for some full O2-factorable
�-homomorphism � W A ! B ˝ K .

Proof. Assume that ' is absorbing and fix a full O2-factorable �-homomorphism
� W A ! B ˝ K . By definition of absorption there is a nuclear �-homomorphism
� 0 W A ! B ˝ K such that ' �uh �

0 ˚ � . In particular, by using Lemma 2.5 (i), we
have

' ˚ � �uh �
0 ˚ � ˚ � �uh �

0 ˚ � �uh ':

Conversely, assume that ' �uh ' ˚ � and let  W A ! B ˝ K . By Theorem 2.3 (i)
there is a nuclear �-homomorphism 0 W A ! B˝K such that KK. ˚ 0/ D 0. We
also have KK.�/ D 0 as� factors through O2. By Lemma 2.5 (ii) ˚ 0˚� �uh �˚�
and � ˚ � �uh � by Lemma 2.5 (i). Thus ' �uh ' ˚ � �uh ' ˚  ˚  0 ˚ � . This
shows that ' absorbs  . �

Corollary 2.7. Let A, A0 be separable exact unital C*-algebras and let B , B 0 be
separable unital properly infinite C*-algebras. If ' W A ! B ˝ K is a nuclear
absorbing �-homomorphism, then ˇ ' ˛ W A0 ! B 0 ˝ K is nuclear and absorbing
whenever ˛ W A0 ! A is an injective �-homomorphism and ˇ W B ˝ K ! B 0 ˝ K

is a �-homomorphism which maps full projections to full projections.

Proof. This is an immediate consequence of Proposition 2.6. �

Proposition 2.8. LetA be a separable exact unital C*-algebra and letB be a separa-
ble unital properly infinite C*-algebra. Let ' W A ! B be a unital �-homomorphism.
Then ' is automatically absorbing in each of the following casesW

(i) A is nuclear purely infinite and simple.
(ii) A is nuclear and simple and B Š B ˝ O1.
(iii) B is purely infinite and simple and ' W A ! B is nuclear and injective.

Proof. (i) If A is nuclear purely infinite and simple, then idA is absorbing by Theo-
rem 2.3 (iii) and so ' D ' B idA is absorbing by Corollary 2.7.

(ii) If A is nuclear and simple and B Š B ˝ O1, then we see that ' is absorbing
by applying Theorem 2.4 (ii) to ' ˚ � and '.

(iii) Similarly, if B is purely infinite and simple and if ' W A ! B is nuclear and
injective, then we verify that' is absorbing by applyingTheorem 2.3 (iii) tov.'˚�/v�
and ', where v is a unitary in .B ˝ K/C such that v

�
1B ˚ �.1A/

�
v� D 1B ˝ e11.

�
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Our interest in absorbing �-homomorphisms stems from the following conse-
quence of Theorem 2.3 which can be viewed as a far reaching generalization of
Proposition 2.1. (Note that a projection p in a unital C*-algebra B is full and prop-
erly infinite if and only if the �-homomorphism ' W C ! B , '.�/ D �p is absorbing.)

Theorem 2.9. LetA be a separable exact unital C*-algebra and letB be a separable
unital properly infinite C*-algebra.

(i) For any ˛ 2 KKnuc.A;B/ there is a nuclear absorbing �-homomorphism
' W A ! B such that KK.'/ D ˛. If K0.˛/Œ1A� D Œ1B � then we can arrange that
'.1A/ D 1B .

(ii) If '; W A ! B˝K are two nuclear absorbing �-homomorphisms such that
KK.'/ D KK. / then ' �uh  . If '.1A/ D  .1A/ D e, then we can arrange that
the asymptotic unitary equivalence is induced by a continuous family of unitaries in
U.e.B ˝ K/e/.

Proof. This follows from Proposition 2.1, Theorem 2.3, Lemma 2.5, Proposition 2.6
and from the observation that if '; W A ! B˝K are such that '.1A/ D  .1A/ D e

and ' �uh  , then there is a continuous map t 7! ut 2 U.e.B ˝ K/e/, t 2 Œ0; 1/,
with the property that limt!1 kut'.a/u�

t �  .a/k D 0 for all a 2 A (as explained
in the proof of [16, Thm. 4.1.4]). �

The set of nuclear absorbing �-homomorphisms from A ˝ K to B ˝ K is de-
noted Hom.A ˝ K; B ˝ K/na. It is nonempty whenever A is separable and exact
and B has a full properly infinite projection. The (possibly empty) set of nuclear
unital absorbing �-homomorphisms from A to B is denoted Hom.A;B/una. These
two spaces of homomorphisms are given the point-norm topology. The path compo-
nents of Hom.A;B/una, also called homotopy classes, are denoted by ŒA; B�una. The
homotopy class of ' 2 Hom.A;B/una is denoted by Œ'�. One defines similarly the
set homotopy classes of nuclear absorbing �-homomorphism from A˝ K to B˝ K

denoted by ŒA˝ K; B ˝ K�na. Since the unitary group of the multiplier algebra of
a stable C*-algebra is path-connected one has the following immediate consequence
of Theorem 2.9.

Proposition 2.10. Let A be a separable exact unital C*-algebra and let B be a
separable unital properly infinite C*-algebra. The map � W ŒA ˝ K; B ˝ K�na !
KKnuc.A;B/, �Œ'� D KK.'/ is an isomorphism of rings.

The question of calculating ŒA; B�una is addressed in the next section.
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3. The action of K1.B/ on ŒA; B�una

The main results of this section are Theorems 3.6 and 3.9. Throughout this sectionA
is a separable exact unital C*-algebra andB is a separable unital properly infinite C*-
algebra such that the natural mapU.B/=U.B/0 ! K1.B/ is bijective. This is always
the case if we assume thatB Š B˝ O1 by [16, Lemma 2.1.7]. Here U.B/0 denotes
the path component of 1B in the unitary groupU.B/. Since Hom.A;B/una can be the
empty set we will have to assume that Hom.A;B/una contains at least one element j
which we use as a base-point. Let us note that it suffices to assume that there is a unital
nuclear �-homomorphism j W A ! B . Indeed, by replacing j by vj.�/v� C� where
v 2 B is a nonunitary isometry such that the projection p D 1B � vv� is full and
properly infinite and � W A ! pBp is a full unital O2-factorable �-homomorphism,
we may arrange that j is nuclear unital and absorbing.

Let us recall from [2] and [21] that ifJ is a separable C*-algebra, then each element
of the Kasparov group KKnuc.A; J / can be represented by a strictly nuclear Cuntz
pair, i.e., by a pair of strictly nuclear �-homomorphisms ˆ;‰ W A ! M.J ˝ K/

such thatˆ.a/�‰.a/ 2 J ˝ K for all a 2 A. The set of strictly nuclear Cuntz pairs
is denoted by Enuc.A; J /. We reserve the notation hˆ;‰i for the KK-theory class of
the Cuntz pair .ˆ;‰/ in KKnuc.A; J /.

Lemma 3.1. If '; 2 Hom.A;B/una, then KK.'/ D KK. / in KKnuc.A;B/ if and
only if Œv' v�� D Œ � in ŒA; B�una for some v 2 U.B/.

Proof. Suppose that Œv' v�� D Œ �. Then KK.'/ D KK. / since the KK-functor is
invariant under homotopy and unitary equivalence.

Conversely, suppose now that KK.'/ D KK. /. By Theorem 2.9 there is
a norm continuous unitary valued map t ! ut 2 U.B/, t 2 Œ0; 1/, such that
limt!1 kut'.d/u�

t �  .d/k D 0 for all d 2 A. This shows that Œv' v�� D Œ �

for v D u0. �

Proposition 3.2. Let A be a separable exact unital C*-algebra and let B be a
separable unital properly infinite C*-algebra. For any ' 2 Hom.A;B/una and
any x 2 KKnuc.A; SB/ there is a nuclear absorbing �-homomorphism ‰ W A !
M2.C Œ0; 1�˝ B/, ‰ D .‰t /t2Œ0;1�, such that ‰0 D ‰1, x D h‰;‰0i and ‰0 is of
the form ‰0 D �

'0 0
0 0

�
where '0 2 Hom.A;B/una and Œ'0� D Œ'� 2 ŒA; B�una.

Proof. Fix an element x 2 KKnuc.A; SB/. Using the split exact sequence

0 �� KKnuc.A; SB/ �� KKnuc.A; C.S
1/˝ B/ �� KKnuc.A;B/ �� 0

we can regard x as an element of KKnuc.A; C.S
1/ ˝ B/. We identify S1 with

Œ0; 1�=0 � 1. By Theorem 2.9 there is a nuclear absorbing �-homomorphism
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	 W A ! C.S1/˝ B , 	 D .	t /t2Œ0;1�, 	0 D 	1 such that KK.	/ D x. We may also
arrange that the projection 1B � 	0.1A/ is full and properly infinite. Since the image
of x in KKnuc.A;B/ vanishes, we deduce that KK.	0/ D 0. The �-homomorphisms

˛ D
�
' 0

0 	0

�
; ˇ D

�
' 0

0 0

�
W A ! M2.B/

are nuclear, absorbing and KK.˛/ D KK.ˇ/. By Proposition 2.1 there is a unitary
w 2 U2.B/ such that w˛.1A/w� D ˇ.1A/. By compressing both w˛w� and ˇ
by the projection e D �

1B 0
0 0

�
and setting  D ew˛.�/w�e, we deduce that  2

Hom.A;B/una and

KK. / D KK.w˛w�/ D KK.˛/ D KK.'/C KK.	0/ D KK.'/:

By Lemma 3.1 there is a unitary u0 2 U.B/ such that Œu0 u�
0� D Œ'�. Let us set

'0 D u0 u
�
0 and u D

�
u0 0
0 1B

�
2 U2.B/. We define ‰ W A ! M2.C Œ0; 1� ˝ B/,

‰ D .‰t /t2Œ0;1�, ‰1 D ‰0 by

‰t D uw

�
' 0

0 	t

�
w�u�:

Then .‰;‰0/ 2 Enuc.A; SB/ and

‰0 D uw

�
' 0

0 	0

�
w�u�

D
�
u0 0

0 1

��
 0

0 0

��
u�
0 0

0 1

�
D

�
u0 u

�
0 0

0 0

�
D

�
'0 0

0 0

�
:

We conclude the proof by observing that

h‰;‰0i D
��
' 0

0 	

�
;

�
' 0

0 	0

�	
D h	; 	0i D KK.	/ � KK.	0/ D x 2 KKnuc.A; SB/: �

Since K1.B/ is isomorphic to U.B/=U.B/0 we can define an action of K1.B/
on ŒA; B�una by setting Œv� � Œ'� D Œv' v�� for v 2 U.B/ and ' 2 Hom.A;B/una.

Having fixed a base point j 2 Hom.A;B/una we define a map I W K1.B/ !
ŒA; B�una by I Œv� D Œv� � Œj � D Œvjv��. Let � W C ! A be defined by �.�/ D �1A.
We consider the following sequence of pointed sets and maps

KKnuc.A; SB/
Q �� K1.B/

I �� ŒA; B�una
T �� KKnuc.A;B/

��

�� KK.C; B/

where T is defined by T Œ'� D KK.'/ � KK.j / and Q is the composition

KKnuc.A; SB/
��

�� KK.C; SB/ @�1
�� K1.B/ :
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Here @ stands for the index map @ W K1.B/ ! K0.SB/ Š KK.C; SB/. The index
map @ can be described as follows. Given v 2 U.B/ there is a continuous path
of unitaries ! W Œ0; 1� ! U2.B/, t 7! !t , with endpoints !0 D �

v 0
0 v0

�
and !1 D

12 where v0 2 U.B/ is some unitary and 12 denotes the unit of M2.B/. Then
p D !

�
1B 0
0 0

�
!� and p0 D �

1B 0
0 0

�
are projections in M2.C Œ0; 1� ˝ B/. If we let


; 
0 W C ! M2.B/ be defined by 
.�/ D �p and 
0.�/ D �p0, then .
; 
0/ 2
E.C; SB/. It is well known that (see [2])

@Œv� D h
; 
0i 2 KK.C; SB/: (1)

It will be useful for us to use the following description of @�1 W KK.C; SB/ !
K1.B/. By Proposition 3.2 any given element x 2 KK.C; SB/ is represented
by a Cuntz pair .
; 
0/ 2 E.C; SB/ where 
 W C ! M2.C Œ0; 1� ˝ B/ is a �-
homomorphism, 
 D .
t /t2Œ0;1�, such that 
1 D 
0 and 
0.1/ D p0 D �

1B 0
0 0

�
.

The equation pt D 
t .1/ defines a continuous loop of projections in M2.B/. Let
! W Œ0; 1� ! U2.B/ be a continuous path of unitaries with !1 D 12 and such that
pt D !t p0 !

�
t for all t 2 Œ0; 1�. Then !0 must commute with p0 and so !0 D �

v 0
0 v0

�
where v; v0 are unitaries in U.B/. By the previous discussion @Œv� D h
; 
0i and
hence

@�1h
; 
0i D Œv� 2 K1.B/: (2)

Lemma 3.3. With notation as above, Image.T / D Ker.��/.

Proof. If ' 2 Hom.A;B/una, then after identifying KK.C; B/ with K0.B/ we have

��T Œ'� D ��.KK.'/ � KK.j // D Œ'.1B/� � Œj.1B/� D 0:

Thus the image of T is contained in the kernel of ��.
To prove the reverse inclusion, let x 2 Ker.��/. The KK-element x C KK.j /

induces a map K0.A/ ! K0.B/ which takes Œ1A� to Œ1B �. By Theorem 2.9 there is
' 2 Hom.A;B/una such that KK.'/ D x C KK.j / and hence T Œ'� D x. �

Let us note that Lemma 3.1 shows that if'; 2 Hom.A;B/una, thenT Œ'� D T Œ �

if and only if Œv' v�� D Œ � for some v 2 U.B/. Together with Lemma 3.3 this
identifies the orbits of the action ofK1.B/ on ŒA; B�una with Ker.��/ � KKnuc.A;B/.
Next we describe the stabilizer groups of this action.

Proposition 3.4. Let v 2 U.B/ and ' 2 Hom.A;B/una. Then Œv' v�� D Œ'� in
ŒA; B�una if and only if Œv� 2 Image.Q/.

Proof. Assume first that Œv' v�� D Œ'�. This implies that there is a nuclear unital
�-homomorphism ˆ W A ! C Œ0; 1� ˝ B , ˆ D .ˆt /t2Œ0;1�, such that ˆ0 D ' and
ˆ1 D v' v�. Let ! and v0 be as in the description of the map @ given before (1).
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We define a �-homomorphism ‰ W A ! M2.C Œ0; 1� ˝ B/ � M.SB ˝ K/, ‰ D
.‰/t2Œ0;1�, by ‰t D !t

�
ˆt 0
0 0

�
!�
t . Let us verify that ‰1 D ‰0. Indeed,

‰0 D !0ˆ0 !
�
0 D

�
v 0

0 v0
� �

' 0

0 0

� �
v� 0

0 v0�
�

D
�
v' v� 0

0 0

�
D ‰1:

It follows that .‰;‰0/ 2 Enuc.A; SB/ and hence h‰;‰0i 2 KKnuc.A; SB/. We are
going to verify that ��h‰;‰0i D @Œv� and so Œv� 2 Image.Q/. Indeed by equation (1)

��h‰;‰0i D h‰�;‰0�i D h
; 
0i D @Œv�:

Assume now that v 2 U.B/ and Œv� D Q.x/ for some x 2 KKnuc.A; SB/. We
shall prove that Œ'� D Œv' v�� for all ' 2 Hom.A;B/una. Let‰ W A ! M2.C Œ0; 1�˝
B/ be a nuclear absorbing �-homomorphism given by Proposition 3.2 such that‰0 D
‰1, x D h‰;‰0i and ‰0 is of the form ‰0 D �

'0 0
0 0

�
where '0 2 Hom.A;B/una

and Œ'0� D Œ'� 2 ŒA; B�una. We note that ��h‰;‰0i D h� 7! �p; � 7! �p0i 2
KK.C; SB/ where pt D ‰t .1A/, t 2 Œ0; 1�, is a continuous loop of projections in
M2.B/ and p1 D p0 D �

1B 0
0 0

�
.

Let .!t /t2Œ0;1� be a continuous path of unitaries in U2.B/ such that !1 D 12 and

pt D !tp0!
�
t for all t 2 Œ0; 1�. As p0 D !0p0!

�
0 , !0 D

�
v0 0

0 v0

0

�
for some unitaries

v0; v
0
0 2 U.B/. By equation (2), Q.x/ D @�1��h‰;‰0i D @�1hp; p0i D Œv0�.

Let us observe that if we setHt D !�
t ‰t!t , thenH D .Ht /t2Œ0;1� is a continuous

path of nuclear absorbing �-homomorphisms from A to M2.B/ such that Ht .1A/ D
p0 D �

1B 0
0 0

�
for all t 2 Œ0; 1�. Consequently ht D p0Htp0 is a continuous path in

Hom.A;B/una such that h0 D v�
0'0 v0 and h1 D '0. In conclusion Œ'� D Œ'0� D

Œv�
0'0 v0� D Œv�' v� and hence Œ'� D Œv' v��. �

Corollary 3.5. The natural map ŒA; B�una ! ŒA; B�un is injective.

Proof. Let '; 2 Hom.A;B/una be such that Œ'� D Œ � in ŒA; B�un. By Lemma 3.1
Œv'v�� D Œ � in ŒA; B�una for some unitary v 2 U.B/ and hence Œv'v�� D Œ'�

in ŒA; B�un. By the first part of the proof of Proposition 3.4, Œv� must be in the
image of Q (note that we worked there with a homotopy consisting of nuclear unital
�-homomorphisms which were not necessarily absorbing). By applying the other
implication of Proposition 3.4, we see that Œv'v�� D Œ'� in ŒA; B�una and hence
Œ'� D Œ � in ŒA; B�una. �

Proposition 3.4 shows that all the points of ŒA; B�una have the same stabilizer equal
to the image of the map Q. Let us set

K1.B/=� D K1.B/= Image.Q/ D K1.B/= Image.@�1��/:

In conjunction with Lemma 3.3 we obtain:
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Theorem 3.6. The group K1.B/=� acts freely on ŒA; B�una and the orbit space is
identified with Ker.�� W KKnuc.A;B/ ! KK.C; B// via the map Œ'� 7! KK.'/ �
KK.j /.

Remark 3.7. There is an equally natural way to formulate Theorem 3.6. Let us set

KKnuc.A;B/u D f˛ 2 KKnuc.A;B/ j K0.˛/Œ1A� D Œ1B �g:
Then the orbit space of the free action of K1.B/=� on ŒA; B�una is in bijection to
KKnuc.A;B/u. This bijection is induced by the map � W ŒA; B�una ! KKnuc.A;B/u,
�Œ'� D KK.'/. We describe the situation by the following diagram, where we use a
broken arrow to symbolize a group action.

K1.B/=� ����� ŒA; B�una
� �� KKnuc.A;B/u:

We shall apply Theorem 3.6 to identify ŒA; B�una with a more computable object.
To this purpose we use the following map introduced by Nistor in [15]. Let C�A be
the mapping cone of the unital map � W C ! A:

C�A D ff 2 C Œ0; 1�˝ A j f .0/ 2 C1A; f .1/ D 0g:
The mapping cone construction C� defines a functor from the category of unital C*-
algebras and unital �-homomorphisms to the category of C*-algebras. If' W A ! B is
a unital �-homomorphism, thenˆ D C�' W C�A ! C�B is obtained as the restriction
of idCŒ0;1� ˝' to C�A. If we set J D C�j , then it is readily seen that .ˆ; J / 2
Enuc.C�A; SB/. Therefore we have a map � W ŒA; B�una ! KKnuc.C�A; SB/ defined
by

�Œ'� D hC�'; C�j i D hˆ; J i:
By functoriality, the mapping cone construction preserves homotopies and so � is
well defined. The short exact sequence

0 �� SA
i �� C�A

� �� C �� 0

induces an exact sequence of abelian groups where KK stands for KKnuc (see
[2, Thm. 19.4.3]):

KK.A; SB/
��

�� KK.C; SB/
��

�� KK.C�A; SB/
i�

�� KK.SA; SB/
S��

�� KK.SC; SB/

In particular this shows that KK.C; SB/ acts by translations on KKnuc.C�A; SB/ and
identifies the orbit space with Ker.S��/ and the stabilizer groups of this action with
Coker.��/.

The next proposition shows that the map � is equivariant modulo the identification
of K1.B/ with KK.C; SB/.
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Proposition 3.8. If v 2 U.B/ and ' 2 Hom.A;B/una, then �Œv'v�� D �Œ'� C
��@Œv�.

Proof. We have

�Œv'v�� D hvˆv�; J i D hvˆv�; vJ v�i C hvJv�; J i
D hˆ; J i C hvJv�; J i D �Œ'�C hvJv�; J i:

Therefore it suffices to show that ��@Œv� D hvJv�; J i: It is convenient to denote
by J both the map idCŒ0;1� ˝j W C Œ0; 1� ˝ A ! C Œ0; 1� ˝ B and its restriction to
C�A which was the original definition of J D C�j . Let ! be as in the definition
of @ described just before equation (1). We define two homotopies of Cuntz pairs
.	s/s2Œ0;1� and .ıs/s2Œ0;1� in Enuc.C�A; SB/ as follows:

s 7! 	s.f / D
�
!

�
J.f .s �// 0

0 0

�
!�;

�
J.f .s �// 0

0 0

��
;

s 7! ıs.f / D
�
!.s �/

�
J.f / 0

0 0

�
!�
.s �/;

�
J.f / 0

0 0

��
:

One checks immediately that 	1 D ı1 and

	0.f / D
�
!

�
f .0/1B 0

0 0

�
!�;

�
f .0/1B 0

0 0

��
;

ı0.f / D
��
vJ.f / v� 0

0 0

�
;

�
J.f / 0

0 0

��
:

Consequently,
��@Œv� D h	0i D hı0i D hvJ v�; J i: �

One may find helpful to visualize the whole setup via the following commutative
diagram where we let KK stand for KKnuc.

KK.A; SB/
Q �� K1.B/

@

��

I �� ŒA; B�una

�

��

T �� KK.A;B/

S

��

��

�� KK.C; B/

S

��
KK.A; SB/

��

�� KK.C; SB/
��

�� KK.C�A; SB/
i�

�� KK.SA; SB/
S��

�� KK.SC; SB/

Here S stands for various suspension maps. The equality �I D ��@ follows from
Proposition 3.8 whereas the equality ST D i�� follows directly from the definitions
of � and T .

Theorem 3.9. LetA be a separable exact unital C*-algebra and letB be a separable
unital properly infinite C*-algebra such that the natural mapU.B/=U.B/0 ! K1.B/

is bijective. Suppose that there is a nuclear unital �-homomorphism j W A ! B . Then
the map � W ŒA; B�una ! KKnuc.C�A; SB/ is a K1.B/-equivariant bijection.
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Proof. We let K1.B/ act by translation on KKnuc.C�A; SB/ by identifying K1.B/
with KK.C; SB/. As explained in the beginning of the section we may assume
that j is also absorbing. The map � is K1.B/-equivariant by Proposition 3.8. The
stabilizer group of each element Œ'� is the image of Q by Proposition 3.4 and this
identifies with the stabilizer group of �Œ'� since @ maps one-to-one the image of Q
onto the image of �� and the bottom sequence of the above commutative diagram is
exact. We conclude the proof by noting that the suspension map S W KKnuc.A;B/ !
KKnuc.SA; SB/ induces a bijection Ker.��/ ! Ker.S��/ between the orbit spaces
of the two actions. �

Let ŒA; B�u denote the homotopy classes of unital �-homomorphisms fromA toB .

Corollary 3.10. Let A be a separable nuclear simple unital C*-algebra and let B
be a separable unital C*-algebra such that B Š B ˝ O1. If there exists a unital
�-homomorphism j W A ! B , then the map� W ŒA; B�u ! KK.C�A; SB/ is bijective.

Proof. The map U.B/=U.B/0 ! K1.B/ is bijective by [16, Lemma 2.1.7] and
ŒA; B�una coincides with ŒA; B�u by Proposition 2.8 (ii). The statement follows now
from Theorem 3.9. �

4. Group structure on homotopy classes

In general there is no natural algebraic structure on the homotopy classes ŒA; B�.
However one can introduce a multiplicative structure provided thatB is an ‘H -space’
in the category of C*-algebras. While we do not investigate this notion formally,
we consider three natural classes of examples: (i) B is unital properly infinite and
Œ1B � D 0 inK0.B/, (ii)B D C.X; x0/˝D where .X; x0/ is anH 0-space (also called
co-H -space) (iii) B Š B ˝ K .

Assume first that Œ1B � D 0 in K0.B/. Since A is exact and B is properly infinite,
there is an absorbing unital �-homomorphism � W A ! B which factors as � D ˇ˛

where ˛ W A ! O2 and ˇ W O2 ! B are unital embeddings. Let v1; v2 2 B be the
images under ˇ of the canonical generators s1; s2 of O2. One defines an O2-sum on
ŒA; B�una by setting Œ'� Cˇ Œ � D Œ' ˚ˇ  � D Œv1'v

�
1 C v2 v

�
2 �. So far we only

know that Cˇ is a binary operation on ŒA; B�una. However we have the following
result which shows that ŒA; B�una is actually an abelian group whose isomorphism
class does not depend on the choice of � W A ! B . Let us note that by Theorem 3.9
ŒA;O2�una reduces to a point, and hence Œ� � depends only on Œˇ� and not on ˛.

Corollary 4.1. LetA andB be as in Theorem 3.9 and assume that Œ1B � D 0 inK0.B/.
Then � W ŒA; B�una ! KKnuc.C�A; SB/ is an isomorphism of groups. The addition
on ŒA; B�una is given by the O2-sum Cˇ and � is defined using � as a base-point.
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Proof. We first show that Œ� �Cˇ Œ� � D Œ� �. Let us note that

.�˚ˇ�/.a/ D v1�.a/v
�
1Cv2�.a/v�

2 D ˇ.s1˛.a/s
�
1Cs2˛.a/s�

2 / D ˇ.˛˚idO2
˛/.a/:

By Theorem 3.9 ŒA;O2�una reduces to a point. Therefore Œ˛ ˚idO2
˛� D Œ˛�, and

hence
Œ� �Cˇ Œ� � D Œ� ˚ˇ �� D Œˇ.˛ ˚idO2

˛/� D Œˇ˛� D Œ� �:

Next we show that �.Œ'� Cˇ Œ �/ D �Œ'� C �Œ �. Since � is a bijection and
Œ� � Cˇ Œ� � D Œ� �, this will imply that �Œ�� D 0 and that the binary operation Cˇ

defines a group structure on ŒA; B�una. In particular � is an isomorphism of groups.
We use the notation ˆ D C�', ‰ D C� , ‚ D C�� , with � playing the role of the
base-point so that �Œ'� D hˆ;‚i. Then

�.Œ'�Cˇ Œ �/ D �.' ˚ˇ  /

D hv1ˆv�
1 C v2‰v

�
2 ; ‚i

D hv1ˆv�
1 C v2‰v

�
2 ; v1‚v

�
1 C v2‚v

�
2 i

where the last equality follows since v1�v�
1 C v2�v

�
2 is homotopic to � and � is

homotopy invariant. Using basic properties of the KK-groups we have

hv1ˆv�
1 C v2‰v

�
2 ; v1‚v

�
1 C v2‚v

�
2 i D hv1ˆv�

1 ; v1‚v
�
1 i C hv2‰v�

2 ; v2‚v
�
2 i

D �Œ'�C �Œ �:

This completes the proof. �

Remark 4.2. Corollary 4.1 is nontrivial even for A D O2 when it recovers a known
isomorphism of groups: ŒO2; B�una D ŒO2; B�u Š K1.B/. In contrast ŒA;O2�una D
ŒA;O2�u D f�g.

For C*-algebras A and B we endow the space Hom.A;B/ of �-homomor-
phisms with the point-norm topology. If X is a compact Hausdorff space, then
Hom.A; C.X/ ˝ B/ is homeomorphic to the space of continuous maps from X to
Hom.A;B/. We shall identify a �-homomorphism ˛ 2 Hom.A; C.X/ ˝ B/ with
the corresponding continuous map X ! Hom.A;B/, x 7! ˛x , ˛x.a/ D ˛.a/.x/

for all x 2 X and a 2 A. If ˛ W A ! C.X/ ˝ B is a �-homomorphism, let us
denote by z̨ W C.X/˝A ! C.X/˝B its (unique) C.X/-linear extension and write
z̨ 2 HomC.X/.C.X/˝A;C.X/˝B/. We shall make without further comment the
following identifications

HomC.X/.C.X/˝ A;C.X/˝ B/ 	 Hom.A; C.X/˝ B/

	 C.X;Hom.A;B//:
(3)

Let us observe that if ˛; ˇ 2 Hom.A; C.X/˝B/ then z̨ �uh
ž if and only if ˛ �uh ˇ.
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Remark 4.3. Here we review some basic facts from topology that will be needed in the
sequel, see [22]. Let .X; x0/ and .Y; y0/ be pointed topological spaces. We denote by
ŒX; Y � the homotopy classes of continuous maps fromX toY and by Œ.X; x0/; .Y; y0/�
the homotopy classes of base-point preserving continuous maps. Suppose that the
point x0 is nondegenerate, i.e., the inclusion map of x0 in X is a cofibration. Then
there is a natural action of �1.Y; y0/ on the homotopy classes Œ.X; x0/; .Y; y0/�. If Y
is path connected, then the orbit space of this action is identified with the base-point
free homotopy classes ŒX; Y �.

Recall that a pointed space .Y; y0/ is an H -space if there is a continuous map
(multiplication)m W Y 
Y ! Y such that the maps y 7! m.y; y0/ and y 7! m.y0; y/

are homotopic to idY through base-point preserving maps .Y; y0/ ! .Y; y0/. In
particular m.y0; y0/ D y0. If .Y; y0/ is a an H -space, then the action of �1.Y; y0/
is trivial and so the natural map Œ.X; x0/; .Y; y0/� ! ŒX; Y � is bijective if Y is path
connected.

If the multiplicationm happens to be homotopy associative, then Œ.X; x0/; .Y; y0/�
becomes a monoid. In general this monoid need not to be a group. However ifX is a
CW complex and if Y is path connected, then Œ.X; x0/; .Y; y0/� Š ŒX; Y � is a group
(see [22, Thm. 2.4, p. 462]).

A pointed space .X; x0/ is an H 0-space if there is a continuous map (co-multi-
plication) � W X ! X _ X such that if c W X ! X is the constant map that shrinks
X to x0 and if p1 D idX _c; p2 D c _ idX W X _ X ! X , then p1 B � and p2 B �
are both homotopic to idX through base-point preserving maps .X; x0/ ! .X; x0/.
We do not require the multiplication m or the co-multiplication � to be homotopy
(co-)associative or have an homotopy inverse. However we require the point x0 to
be nondegenerate. We also need to consider the inclusion maps i1; i2 W X ! X _X ,
i1.x/ D x_x0 and i2.x/ D x0_x. They verify the equationsp1Bi1 D p2Bi2 D idX .

If .X; x0/ is anH 0-space and if .Y; y0/ is anH -space then we have two multipli-
cations on Œ.X; x0/; .Y; y0/�, one induced bym and the other induced by �. It is well
known that these two operations coincide and they are commutative and associative
(see [22, Thm. 5.21, p. 124]).

Fix a base-point j 2 Hom.A;B/una. There is a map �X defined analogously to �
such that the following diagram is commutative:

Œ.X; x0/; .Hom.A;B/una; j /�
�X ��

��

KKnuc.C�A;C.X; x0/˝ SB/

��
ŒA; C.X/˝ B�una

� �� KKnuc.C�A;C.X/˝ SB/

This is verified by observing that ifˆ D C�.'/ and J D C�.j /, thenˆ.f /�J.f / 2
C.X0; x0/˝ SB for all f 2 C�A provided that 'x0

D j . Thus �X Œ'� D hˆ; J i is
well defined.
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Let us note that unlike the right hand vertical map, the left hand vertical map
is not in general injective. This has to do with the distinction between the base-
point preserving homotopy classes and the free homotopy classes as discussed in
Remark 4.3.

If .X; x0/ is an H 0-space, let Œ'� ? Œ � D Œ.' _  / B �� denote the induced
multiplication on Œ.X; x0/; .Hom.A;B/una; j /�. The following two Propositions are
proved similarly to [15, Lemma 5.1].

Proposition 4.4. If .X; x0/ is an H 0-space, then �X .Œ'� ? Œ �/ D �X Œ'�C �X Œ �.

Proof. We begin by observing that �X is a natural transformation. Thus if
h W .X; x0/ ! .Y;y0/ is a map of pointed spaces, which induces mapsh� W C.Y;y0/ !
C.X; x0/, h� W KKnuc.C�A;C.Y;y0/ ˝ SB/ ! KKnuc.C�A;C.X; x0/ ˝ SB/ and
h� W Œ.X; x0/; .Hom.A;B/una; j /� ! Œ.Y;y0/; .Hom.A;B/una; j /�, then h� B �Y D
�X B h�. In particular the co-multiplication � W .X; x0/ ! .X _ X; x0/ induces a
commutative diagram

Œ.X _X; x0/; .Hom.A;B/una; j /�
��

��

�X_X

��

Œ.X; x0/; .Hom.A;B/una; j /�

�X

��
KKnuc.C�A;C.X _X; x0/˝ SB/

��

�� KKnuc.C�A;C.X; x0/˝ SB/:

We assert that �X_X Œ' _  � D p�
1�X Œ'�C p�

2�X Œ �. This is verified by projecting
both sides of the equation to KK.C�A;C.X; x0/˝SB/ via the maps i�1 and i�2 . Since
pk B ik D idX , k D 1; 2, and .' _  / B i1 D ', .' _  / B i2 D  , we see that
both sides are mapped to �X Œ'� by i�1 and to �X Œ � by i�2 , so that they must be equal.
Therefore

�X .Œ'� ? Œ �/ D �X Œ.' _  / B �� D �X�
�Œ' _  �

D ���X_X Œ' _  � D ��.p�
1�X Œ'�C p�

2�X Œ �/

D .p1 B �/��X Œ'�C .p2 B �/��X Œ � D �X Œ'�C �X Œ �;

since p1 B � and p2 B � are homotopic to idX by the definition of H 0-spaces. �

Similarly, if x�X W Œ.X; x0/; .Hom.A˝K; B˝K/; j /� ! KK.A; C.X; x0/˝B/

is defined by x�X Œ'� D h'; 'x0
i D h'; j i, then we have

Proposition 4.5. If .X; x0/ is an H 0-space, then x�X .Œ'� ? Œ �/ D x�X Œ'�C x�X Œ �.

For a C*-algebra A we denote by End.A/ the set of nonzero (and unital if A is
unital) �-endomorphisms ofA and by End.A/0 the path component of idA in End.A/.
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Theorem 4.6. LetA be a unital Kirchberg algebra and letX be a compact metrizable
space.

(a) There is a bijection

� W ŒX;End.A/� ��! KK.C�A; SC.X/˝ A/

and an isomorphism of rings

� W ŒX;End.A˝ K/� ��! KK.A; C.X/˝ A/:

(b) If X is path connected and x0 2 X , then there are bijections

� W ŒX;End.A/0� ��! KK.C�A; SC.X; x0/˝ A/;

x� W ŒX;End.A˝ K/0� ��! KK.A; C.X; x0/˝ A/:

If .X; x0/ is also an H 0-space, then the maps � and x� are isomorphisms of abelian
groups. The group structure induced by the co-multiplication of .X; x0/ coincides
with the structure induced by the composition of endomorphisms.

Proof. (a) By Proposition 2.8, if A is unital, then we have C.X;End.A// Š
Hom.A; C.X/ ˝ A/una. In other words, all unital �-homomorphisms ' W A !
C.X/ ˝ A are absorbing. A similar argument shows that C.X;End.A ˝ K// Š
Hom.A ˝ K; C.X/ ˝ A ˝ K/na. Indeed, as a consequence of Theorem 2.4, a �-
homomorphism ' W A˝ K ! C.X/˝ A˝ K is absorbing if and only if 'x ¤ 0

for all x 2 X . Therefore

ŒX;End.A/� Š ŒA; C.X/˝ A�una;

ŒX;End.A˝ K/� Š ŒA˝ K; C.X/˝ A˝ K�na;
(4)

so that part (a) follows from Corollary 3.10 (with j D jA W A ! C.X/˝A, jA.a/ D
1C.X/ ˝ a for all a 2 A) and Proposition 2.10.

(b) Since a continuous function maps a path component into a path component,
we obtain from (4):

ŒX;End.A/0� Š fŒ'� 2 ŒA; C.X/˝ A�una j Œ'x0
� D ŒidA� 2 ŒA;A�unag;

ŒX;End.A˝ K/0� Š fŒ'� 2 ŒA˝ K; C.X/˝ A˝ K�na j Œ'x0
�

D ŒidA˝K � 2 ŒA˝ K; A˝ K�nag:
For the first part of (b) we use part (a) and the commutative diagram of pointed

sets

ŒX;End.A/0�

�0

��

�� ŒA; C.X/˝ A�una

�

��

.�x0
/� �� ŒA;A�una

�

��
KK.C�A; SC.X; x0/˝ A/ �� KK.C�A; SC.X/˝ A/

.�x0
/� �� KK.C�A; SA/:
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It follows from Corollary 3.10 that the vertical maps � of this diagram are bijec-
tive. Therefore �0 maps bijectively .�x0

/�1� .ŒidA�/ Š ŒX;End.A/0� to .�x0
/�1� .0/ D

KK.C�A; SC.X; x0/˝ A/.
The proof for the second part (b) is similar but we use instead the diagram

ŒX;End.A˝ K/0�

�0

��

�� ŒA˝ K; C.X/˝ A˝ K�na

�

��

.�x0
/��� ŒA˝ K; A˝ K�na

�

��
�A C KK.A; C.X; x0/˝ A/ �� KK.A; C.X/˝ A/

.�x0
/� �� KK.A;A/

where the vertical maps � D KK.�/ are bijective by Proposition 2.10 and �A is the
KK-class of the �-homomorphism jA. In this case the map x� from the statement is
defined by x�Œ'� D �0Œ'� � �A.

Finally it remains to argue that the maps � and x� preserves the multiplicative
structure induced by the co-multiplication of X . This follows from Propositions 4.4
and 4.5 since the homotopy classes ŒX;End.A/0� and ŒX;End.A ˝ K/0� coin-
cide with the base-point preserving homotopy classes Œ.X; x0/; .End.A/0; idA/� and
Œ.X; x0/; .End.A ˝ K/0; idA˝K/� as explained in Remark 4.3 since End.A/0 and
End.A˝ K/0 are path connected H -spaces. �

5. From endomorphisms to automorphisms

In this section we relate the homotopy theory of the space of endomorphisms which
are KK-equivalences to the homotopy theory of the space of automorphisms (see
Proposition 5.8). This leads to two of our main results: Theorems 5.9 and 6.3.

If z̨ W C.X/˝ A ! C.X/˝ B is a C.X/-linear �-homomorphism, we say that
z̨ is full if its restriction to A, ˛ W A ! C.X/˝ B , ˛.a/ D z̨.1C.X/ ˝ a/, is full in
the usual sense.

Let A be a stable Kirchberg algebra and let X be a compact metrizable space.
Let t 7! ˆt 2 EndC.X/.C.X/˝ A/, t 2 Œ0; 1/, be a continuous path of full C.X/-
linear �-endomorphisms and let ‰ 2 EndC.X/.C.X/ ˝ A/ be a full C.X/-linear
�-endomorphism.

Lemma 5.1. Suppose that KK.ˆ0/ D KK.‰/. Then there is a continuous path
of unitaries t 7! ut 2 U..C.X/ ˝ A/C/0, t 2 Œ0; 1/, with the property that
limt!1 kˆt .a/ � ut‰.a/u�

t k D 0 for all a 2 C.X/˝ A. T

Proof. Two C.X/-linear �-homomorphisms C.X/ ˝ A ! C.X/ ˝ A are asymp-
totically unitarily equivalent if and only if their restrictions to A Š 1C.X/ ˝ A are
asymptotically unitarily equivalent. It is then clear that the conclusion of the lemma
follows by applying [16, Lemma 4.1.2] to the restrictions of ˆt and ‰ to A. �
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Proposition 5.2. LetA be a stable Kirchberg algebra and letX be a compact metriz-
able space. Let z'; z 2 EndC.X/.C.X/˝ A/ be full C.X/-linear �-endomorphisms
such that z' z �uh idC.X/˝A and z z' �uh idC.X/˝A. Then there is an automorphism
ˆ 2 AutC.X/.C.X/˝ A/ such that ˆ �uh z'.

Proof. As noted above, two C.X/-linear �-homomorphisms z̨; žW C.X/ ˝ A !
C.X/ ˝ A are asymptotically unitarily equivalent if and only if their restrictions to
A, ˛ D z̨jA and ˇ D žjA have this property. By Theorem 2.9, this happens precisely
when KK.˛/ D KK.ˇ/, provided that ˛ and ˇ are full. The proof of the proposition
is essentially identical to the proof of [16, Theorem 4.2.1] except that one works with
C.X/-linear �-homomorphisms and one replaces [16, Lemma 4.1.2] in the original
arguments of [16] by Lemma 5.1. �

Definition 5.3. Let A be a separable C*-algebra and let X be a metrizable
compact space. We say that the pair .A;X/ is KK-continuous if for any point
x 2 X there is a base of closed neighborhoods .Vn/ of x such that the natural
map lim�! KK.A; C.Vn/ ˝ A/ ! KK.A;A/ (induced by the evaluation map at x) is
injective (and hence bijective).

Examples 5.4. Let us give some examples of KK-continuous pairs. A separa-
ble C*-algebra A is KK-semiprojective if the functor KK.A;�/ is continuous, i.e.,
for any inductive system B1 ! B2 ! � � � of separable C*-algebras, the map
lim�! KK.A;Bn/ ! KK.A; lim�!Bn/ is bijective. The class of KK-semiprojective C*-
algebras includes the nuclear semiprojective C*-algebras (see [9]) and also the sep-
arable nuclear C*-algebras whose K-theory groups are finitely generated and which
satisfy the Universal Coefficient Theorem in KK-theory (abbreviated UCT [19]) . It is
clear from definition that ifA is a KK-semiprojective C*-algebra then the pair .A;X/
is KK-continuous for any compact metrizable space X . Also it is easy to check that
if X is locally contractible, then the pair .A;X/ is KK-continuous for any separable
C*-algebra A.

Let us recall that the zero Čech-cohomology group with coefficients in a ring R,
denoted by {H 0.X;R/, consists of locally constant functions from X to R.

In the sequel we are going to use the notation KA.X/ D KK.A; C.X/ ˝ A/

and KA.X; Y / D KK.A; C.X; Y / ˝ A/ for Y a closed subspace of X . It is clear
that KA.X; Y / extends to a generalized cohomology theory. The composition of the
Kasparov product

KA.X/ 
KA.X/ ! KA.X 
X/
with the restriction to the diagonal map

KA.X 
X/ ! KA.X/
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defines a cup product onKA.X/ which makesKA.X/ into a ring. The multiplicative
unit �A ofKA.X/ is given the KK-class of the �-homomorphism jA W A ! C.X/˝A,
jA.a/ D 1C.X/ ˝ a for all a 2 A. Similarly one has a cup product

KA.X; Y / 
KA.X; Y 0/ ! KA.X; Y [ Y 0/;

which is compatible with the cup product on KA.X/.

Remark 5.5. One can identify Kasparov’s RKK-theory group RKK.X;A;B/ intro-
duced in [10] with KK.A; C.X/˝ B/ via the natural restriction map. This gives an
isomorphism of rings RKK.X;A;A/ ! KA.X/.

Proposition 5.6. If the pair .A;X/ is KK-continuous, then an element  is invertible
in the ring KA.X/ if and only if x 2 KK.A;A/�1 for all x 2 X .

Proof. For each x 2 X , the evaluation map at x gives a split exact sequence 0 !
C.X; x/˝A ! C.X/˝A ! A ! 0. The splitting map is obtained by regarding the
elements of A as constant functions on X . Therefore we have a split exact sequence

0 ! KA.X; x/ ! KA.X/ ! KA.x/ D KK.A;A/ ! 0:

For  2 KA.X/, let y W X ! KK.A;A/ be the map y.x/ D x . Since by assumption
the map lim�!KA.Vn/ ! KK.A;A/ is injective, we see immediately that the map y is
locally constant. Therefore we have a split exact sequence of rings

0 �� K 0
A.X/

�� KA.X/
� �� {H 0.X;KK.A;A// �� 0; (5)

where by definition �./ D y and K 0
A.X/ D Ker.�/. We are going to prove that

K 0
A.X/ is a nil ideal, i.e., if  2 K 0

A.X/ then m D 0 for some m � 1. For this
purpose fix  2 K 0

A.X/ D T
x2X KA.X; x/ � KA.X/. For every x 2 X , let

.Vn/ be a base of closed neighborhoods of x as in Definition 5.3. Since the map
lim�!KA.Vn/ ! KA.x/ is injective, by diagram chasing (or by Steenrod’s five lemma)

lim�!KA.X; Vn/ ��

��

KA.X/ �� lim�!KA.Vn/

��
0 �� KA.X; x/ �� KA.X/ �� KA.x/ �� 0

we obtain that the natural map lim�!KA.X; Vn/ ! KA.X; x/ is surjective for every x
inX . Using the compactness ofX we find a cover ofX by finitely many closed subsets
Y1; : : : ; Ym and elements k 2 KA.X; Yk/ k D 1; : : : ; m such that each k maps
to  under the map KA.X; Yk/ ! KA.X/. It follows that m is equal to the image
of the cup product 1 : : : m 2 KA.X; Y1 [ � � � [ Ym/ D KA.X;X/ D 0, and hence
m D 0. Since K 0

A.X/ is a nil ideal, and since � admits a multiplicative splitting, an
element  2 KA.X/ is invertible if and only if �./ D y is invertible. �



The homotopy groups of the automorphism group of Kirchberg algebras 133

Next we describe the range of the map AutC.X/.C.X/˝A/ ! KK.A; C.X/˝A/.
Proposition 5.7. Let A be a Kirchberg algebra and let X be a compact metrizable
space. Suppose that the pair .A;X/ is KK-continuous. Let  2 KK.A; C.X/˝ A/

be such that x 2 KK.A;A/�1 for all x 2 X and K0./Œ1A� D Œ1A� if A is unital.
Then there is an automorphism ˛ 2 AutC.X/.C.X/˝ A/ such that KK.˛jA/ D  .

Proof. Let  0 2 KK.A; C.X/ ˝ A/ be the multiplicative inverse of  given by
Proposition 5.6. By Theorem 2.9 we can lift  and  0 to full (and unital ifA is unital)
�-homomorphisms '; W A ! C.X/˝ A. Therefore

KK.z'  / D KK. z '/ D KK.jA/;

where z' and z denote the C.X/-linear extensions of ' and  . By Theorem 2.9
we have z'  �uh jA and z ' �uh jA and hence z' z �uh idC.X/˝A and z z' �uh

idC.X/˝A. If A is stable we apply Proposition 5.2 to find an automorphism ˆ 2
AutC.X/.C.X/˝A/ such thatˆ �uh z'. In particular it follows that KK.ˆjA/ D  . If
A is unital we apply Proposition 5.2 for z'˝idK and z ˝idK to find an automorphism
ˆ 2 AutC.X/.C.X/˝A˝ K/ such that ˆ �uh z' ˝ idK . By Theorem 2.9 we may
arrange that ˆ.1C.X/˝A ˝ e11/ D z'.1C.X/˝A ˝ e11/ D 1C.X/˝A ˝ e11 and hence
the compression of ˆ to the .1; 1/-corner C.X/˝A˝ e11 of C.X/˝A˝ K gives
an automorphism ˛ 2 AutC.X/.C.X/˝A/ such that KK.˛jA/ D KK.'/ D  . �

Let us set End.A/� D f	 2 End.A/ j KK.	/ 2 KK.A;A/�1g.

Proposition 5.8. Let A be a Kirchberg algebra and let X be a compact metriz-
able space. Suppose that the pair .A;X/ is KK-continuous. Then the natural map
ŒX;Aut.A/� ! ŒX;End.A/�� is bijective.

Proof. We assert that for any given continuous map x 7! 'x 2 End.A/� defined
on X there is a continuous maps .x; t/ 7! ˆ.x;t/ 2 End.A/� defined on X 
 Œ0; 1�
such that ˆ.x;0/ D 'x and ˆ.x;t/ 2 Aut.A/ for all x 2 X and t 2 .0; 1�. The
proposition is an immediate consequence of our assertion. Let us prove now the
assertion. By Proposition 5.2 there is an automorphism ˛ 2 AutC.X/.C.X/ ˝ A/

such that KK.˛jA/ D KK.'/. By Theorem 2.9 there is continuous map .0; 1� !
U..C.X/˝ A/C/, t 7! ut , with the property that

lim
t!0

kut˛.a/u�
t � '.a/k D 0 for all a 2 A:

The equation

ˆ.x;t/ D
(
'x; if t D 0,

ut .x/˛xut .x/
�; if t 2 .0; 1�;

defines a continuous map ˆ W X 
 Œ0; 1� ! End.A/� which extends ' and such that
ˆ.X 
 .0; 1�/ � Aut.A/. �
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If A is a C*-algebra let us denote by Aut.A/0 the path component of idA in the
automorphism group Aut.A/ of A. If the point x0 is nondegenerate, then the set
of basepoint-free homotopy classes ŒX;Aut.A/0� coincide with the set of base-point
preserving homotopy classes Œ.X; x0/; .Aut.A/0; idA/�. The group multiplication of
Aut.A/0 induces a group structure on the set of homotopy classes ŒX;Aut.A/0�which
coincides with the alternate group structure induced in the case when .X; x0/ is an
H 0-space (see Remark 4.3).

Theorem 5.9. LetA be a unital Kirchberg algebra, letX be a path connected compact
metrizable space and let x0 2 X . Suppose that the pair .A;X/ is KK-continuous.
Then there are bijections

� W ŒX;Aut.A/0� ��! KK.C�A; SC.X; x0/˝ A/;

x� W ŒX;Aut.A˝ K/0� ��! KK.A; C.X; x0/˝ A/:

If .X; x0/ is an H 0-space, then � and x� are isomorphisms of abelian groups.

Proof. The result follows from Theorem 4.6 and Proposition 5.8. �

Recall that the map Q D @�1�� is given by the composition

KK.A; SA/ ��

�� KK.C; SA/ @�1
�� K1.A/ :

Let us set
K1.A/=� D K1.A/= ImageQ:

From Theorem 5.9 and Remark 3.7 we deduce the following:

Corollary 5.10. LetA be a unital Kirchberg algebra. There are group isomorphisms
� W �n Aut.A/ ! KK.C�A; SnC1A/ for n � 1 and there is an exact sequence of
groups 1 ! K1.A/=� ! �0 Aut.A/ ! KK.A;A/�1u ! 1 for n D 0.

Corollary 5.11. Let A be a Kirchberg algebra. There are group isomorphisms
� W �0 Aut.A ˝ K/ ! KK.A;A/�1 and x� W �n Aut.A ˝ K/ ! KK.A; SnA/ for
n � 1.

From Theorem 5.9 and Corollary 5.10 we obtain a bijection

ŒX;Aut.A/� Š KK.C�A; SC.X; x0/˝ A/ 
 KK.A;A/�1u 
K1.A/=�:
The K-theory groups of C�A can be often computed using the exact sequence:

0 �� K1.A/
i�@ �� K0.C�A/ �� Z

�� �� K0.A/ �� K1.C�A/ �� 0:
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Therefore if K1.A/ D 0 then K1.C�A/ Š K0.A/=ZŒ1A� and K0.C�A/ Š
fk 2 Z j kŒ1A� D 0g so that K0.C�A/ is either isomorphic to Z or otherwise it van-
ishes. Assuming that A satisfies the UCT, one can then compute KK.C�A; SnC1A/
explicitly in many interesting examples. If A is a Kirchberg algebra, it is well known
that �0U.A/ Š �2U.A/ Š K1.A/. In contrast, the group �0 Aut.A/ needs not to be
abelian and even if it is abelian, it needs not to be isomorphic to�2 Aut.A/. Indeed, ifA
satisfies the UCT andK1.A/ D 0, then we obtain from Corollary 5.10 that �0 Aut.A/
is isomorphic to the multiplicative group KK.A;A/�1u Š Aut.K0.A/; Œ1A�/ whereas
�2 Aut.A/ is isomorphic to the abelian group Hom.K0.A/=ZŒ1A�; K0.A// and hence
in bijection with End.K0.A/; Œ1A�/. For instance if K0.A/ Š Z ˚ Z and Œ1A� D 0,
then �0 Aut.A/ Š GL.2;Z/ and �2 Aut.A/ Š Z4. If instead K0.A/ Š Z and
Œ1A� D 0, then �0 Aut.A/ Š Z=2 and �2 Aut.A/ Š Z.

6. The group ŒX; Aut.A/�

In the previous section we computed ŒX;Aut.A/0� and showed that it is an abelian
group whenever X is an H 0-space. On the other hand, the set of homotopy classes
ŒX;Aut.A/� has a natural (not necessarily abelian) group structure whether or not X
is an H 0-space. In the sequel we determine this group up to an extension.

Let A and B be separable C*-algebras and let X be a path connected metrizable
compact space. Let us set

KK.A;B/u D f˛ 2 KK.A;B/ j K0.˛/Œ1A� D Œ1B �g;
KK.A;B/0 D f˛ 2 KK.A;B/ j K0.˛/Œ1A� D Œ0�g;
KK.A; C.X/˝ A/�u

D f˛ 2 KK.A; C.X/˝ A/u j ˛x 2 KK.A;A/�1 for all x 2 Xg:
Let us consider the diagram with injective vertical maps where the broken arrows

indicate group actions:

K1.C.X/˝ A/=� ������ ŒX;End.A/� � �� KK.A; C.X/˝ A/u

K1.C.X/˝ A/=� ������ ŒX;End.A/��

��

� �� KK.A; C.X/˝ A/�u

��

K1.C.X; x0/˝ A/=�

��

����� ŒX;End.A/0�
� ��

��

�A C KK.A; C.X; x0/˝ A/0.

��

Proposition 6.1. The diagram above is well defined. The groups appearing on the left
column act freely on the corresponding homotopy classes appearing on the second
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column. The maps � are equivariant and surjective and their fibers coincide with the
orbits of the corresponding group actions.

Proof. The stated properties hold for the first row of the diagram by Theorem 3.6
and Remark 3.7. By the homotopy invariance of the KK-functor we see that the map
�0.End.A/�/ ! �0.End.A// is injective and so the vertical maps in the middle of the
diagram are injective. Using the exact sequence 0 ! C.X; x0/ ! C.X/ ! C ! 0

one verifies that all the other vertical maps are also injective and that one has a short
exact sequence

0 ! K1.C.X; x0/˝ A/=� ! K1.C.X/˝ A/=� ! K1.A/=� ! 0: (6)

In particular this establishes the claimed properties of the middle row of the diagram
as a consequence of the corresponding properties of the top row. It remains to deal
with the bottom row. The assumption thatX is path connected is needed only for this
part of the statement. Let us verify first that the map � is well defined. Let ' W X !
End.A/0 be a continuous map. Then .KK.'/� �A/x0

D KK.idA/�KK.idA/ D 0 and
'.1A/ � jA.1A/ D 0 and hence �.'/ 2 �A C KK.A; C.X; x0/˝ A/0. To verify that
� is surjective, let  2 �A C KK.A; C.X; x0/˝ A/0. By the surjectivity of the map
� in the top row, there is a continuous map ' W X ! End.A/ such that KK.'/ D  .
In particular KK.'x0

/ D KK.idA/. By Theorem 3.6 and Remark 3.7 applied for
B D A, there is a unitary v 2 U.A/ such that v'x0

v� is homotopic to idA. Since
X is path connected this implies that .v'v�/x 2 End.A/0 for all x 2 X and hence
v'v� is a lifting of  . Next we show K1.C.X; x0/ ˝ A/ acts transitively on the
fibers of �. Let '; W X ! End.A/0 be continuous maps such that �Œ'� D �Œ �. By
Theorem 3.6 applied for B D C.X/˝ A, there is a unitary v 2 U.C.X/˝ B/ such
that  is homotopic to v'v�. In particular  x0

is homotopic to v.x0/'x0
v.x0/

�
and hence idA is homotopic to v.x0/ idA v.x0/�. It follows by Theorem 3.6 that
Œv.x0/� D 0 in K1.A/=�. The exact sequence (6) shows now that the class of Œv�
in K1.C.X/˝ A/=� belongs to the image of K1.C.X; x0/˝ A/=� and hence  is
homotopic tow'w� for somew 2 U.C.X/˝A/withwx0

2 U.A/0. In the last part
of the proof we show thatK1.C.X; x0/˝A/=� acts freely on ŒX;End.A/0�. Indeed,
suppose that w'w� is homotopic to ' as maps X ! End.A/0 where w is as above.
Therefore Œw ' w�� D Œ'� in ŒA; C.X/˝A�u and hence Œw� D 0 inK1.C.X/˝A/=�
by Theorem 3.6. Using the exact sequence (6) again we conclude that Œw� D 0 in
K1.C.X; x0/˝ A/=�. �

The exact sequence of rings (5) gives rise to a split exact sequence of multiplicative
groups

1 �� �A CK 0
A.X/

�� KK.A; C.X/˝ A/� � �� {H 0.X;KK.A;A/�1/ �� 1
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where {H 0.X;KK.A;A/�1/denotes the locally constant maps fromX to KK.A;A/�1.
IfX is path connected, thenK 0

A.X/ Š KA.X; x0/ D KK.A; C.X; x0/˝A/ for every
x0 2 X and {H 0.X;KK.A;A/�1/ D KK.A;A/�1.

Theorem 6.2. LetA be a Kirchberg algebra and letX be a compact metrizable space
such that the pair .A;X/ is KK-continuous. Then there are isomorphisms of groups

� W ŒX;Aut.A˝ K/� ��! KK.A; C.X/˝ A/�;
� W ŒX;Aut.A˝ K/0� ��! �A CK 0

A.X/:

Proof. The result follows from Propositions 2.10 and 5.8. �

Theorem 6.3. LetA be a Kirchberg algebra and letX be a compact metrizable space
such that the pair .A;X/ is KK-continuous. Then there is an exact sequence of groups

1 �� K1.C.X/˝ A/=� �� ŒX;Aut.A/�
� �� KK.A; C.X/˝ A/�u

�� 1:

If X is path connected and x0 2 X , then there is another exact sequence of groups:

1 �� K1.C.X; x0/˝ A/=� �� ŒX;Aut.A/0�
� �� �A C KK.A; C.X; x0/˝ A/0 �� 1:

Proof. The result follows from Propositions 5.8 and 6.1, since the inner automor-
phisms of C.X/˝ A form a normal subgroup of AutC.X/.C.X/˝ A/. �

Remark 6.4. If .X; x0/ is a path connected H 0-space and if the pair .A;X/ is
KK-continuous, then � D 0 for all ; � 2 KK.A; C.X; x0/ ˝ A/. Indeed, by
Theorems 5.9 and 6.2, �.˛ C ˇ/ D �.˛/ C �.ˇ/ and �.˛ C ˇ/ D �.˛/�.ˇ/.
Since � D �A C � we must have �.˛/�.ˇ/ D 0 and hence � D 0 for all ; � 2
KK.A; C.X; x0/˝ A/ since � is bijective.

Remark 6.5. As a consequence of [9, Thm. 9.2] (whose proof relies on unpublished
work of Kirchberg, see [13]), for any separable nuclear C*-algebra and any finite
dimensional metric spaceX , an element  is invertible in the ringKA.X/ if and only
if x 2 KK.A;A/�1 for all x 2 X . Therefore, in the statements of our main results,
one can replace the assumption that the pair .X;A/ is continuous by the assumption
that X is finite dimensional.
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