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Dirac operators on all Podleś quantum spheres
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Abstract. We construct spectral triples on all Podleś quantum spheres S2
qt . These noncom-

mutative geometries are equivariant for a left action of Uq.su.2// and are regular, even and
of metric dimension 2. They are all isospectral to the undeformed round geometry of the
sphere S2. There is also an equivariant real structure for which both the commutant property
and the first order condition for the Dirac operators are valid up to infinitesimals of arbitrary
order.
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1. Introduction

We report on further explorations of the land where noncommutative geometry meets
quantum groups and describe even spectral triples .A.S2

qt /;H ;D; �/ on all the quan-
tum 2-spheres A.S2

qt / introduced by Podleś [12]. Here the real deformation parameter
is taken to be in the interval 0 < q < 1. The additional parameter t 2 Œ0; 1� labels,
among other things, the classical points, i.e., the 1 dimensional representations of the
algebra A.S2

qt /.
The spectral triples of the present paper generalize the 0-dimensional one of [7] for

the standard 2-sphere and the isospectral 2-dimensional one of [5] for the equatorial
2-sphere. In particular, we have spectral triples of metric dimension 2 on all Podleś
quantum 2-spheres with the eigenvalues of the Dirac operator depending linearly on an
angular momentum label (and with the ‘correct’ multiplicities). The Dirac operators
have the same spectrum as the Dirac operator of the ‘round’ metric on the usual 2-
sphere and we are constructing isospectral deformations. Moreover, all these triples
are regular with simple and discrete dimension spectrum † D f1; 2g, as expected
from the commutative case. On the standard sphere we have additional families of
spectral triples with eigenvalues of jDj growing not faster than q�l for large l .

There is a crucial equivariance of the representation of the algebra A.S2
qt / on the

Hilbert space of spinors H and of the Dirac operator D under a left action of the
quantum enveloping algebra Uq.su.2//. We have also an equivariant real structure
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of the kind ‘up to compact operators’ of [5], that is, such that both the ‘commutant
property’ and the ‘first order condition’ for a real spectral triple [3] are obeyed only up
to infinitesimals of arbitrary order. This phenomenon has also been observed in [6]
for the manifold of A.SUq.2//. Its occurrence for all Podleś quantum 2-spheres is
another indication that it may be a characteristic feature of noncommutative manifolds
of quantum groups and associated quantum (homogeneous) spaces, at least when
asking for some degree of equivariance. For the standard sphere, with the eigenvalues
of jDj behaving like jdl j � q�l , the conditions on the real structure need not be
modified [7].

It should be mentioned that we do not study the additional ‘discrete’ series of
quantum 2-spheres in [12] which have algebras of matrices as coordinate algebras.

2. Preliminary definitions

In this section, we set out the basic notions concerning equivariant spectral triples.
We start by recalling the notion of a finite summable spectral triple [2].

Definition 2.1. A spectral triple .A;H ;D/ is given by a complex unital �-algebra
A, a faithful �-representation � of A by bounded operators on a (separable) Hilbert
space H , and a self-adjoint operator D (the Dirac operator) such that

(i) .D C i/�1 is a compact operator,

(ii) ŒD; �.a/� is bounded for all a 2 A.

With 0 < � < 1, the spectral triple is said to be �C-summable if the operator
.D2 C 1/�1=2 is in the Dixmier ideal L�C.H /.

We shall also call � the metric dimension of the triple.
A spectral triple is called even if there exists a Z2-grading operator � on H ,

� D ��, �2 D 1, such that the Dirac operator is odd and the algebra is even, i.e.,

�D D �D�; �.a/� D ��.a/; a 2 A: (2.1)

Recall [3] that a real structure on a spectral triple .A;H ;D/ should be given by
an antiunitary operator J on H fulfilling the conditions J 2 D ˙1, JD D ˙DJ and

Œ�.a/; J�.b/J�1� D 0; ŒŒD; �.a/�; J�.b/J�1� D 0; a; b 2 A: (2.2)

It was suggested in [5] that one should modify these conditions in order to obtain a
nontrivial spin geometry on the coordinate algebra of quantum groups and of asso-
ciated quantum (homogeneous) spaces. Following the lines of [5], we impose the
weaker assumption that (2.2) holds only modulo infinitesimals of arbitrary high or-
der. Here, a compact operatorA is regarded as an infinitesimal of arbitrary high order
if its singular values sk.A/ satisfy limk!1 kpsk.A/ D 0 for all p > 0. Therefore,
throughout this paper, we shall use the following working definition of a real structure.
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Definition 2.2. A real structure J on a spectral triple .A;H ;D/ is given by an
antiunitary operator J on H such that

J 2 D ˙1; JD D ˙DJ;
Œ�.a/; J�.b/J�1� 2 I; ŒŒD; �.a/�; J�.b/J�1� 2 I; a; b 2 A;

(2.3)

where I is an operator ideal of infinitesimals of arbitrary high order. We shall name
the datum .A;H ;D; J / a real spectral triple .up to infinitesimals/.

If .A;H ;D; �/ is even and if in addition

J� D ˙�J; (2.4)

we call the datum .A;H ;D; �; J / a real even spectral triple .up to infinitesimals/.

The signs above depend on the (metric) dimension. We are only interested in the
case when the dimension is 2. Then J 2 D �1, JD D DJ and J� D ��J . For
brevity, we shall drop the annotation “up to infinitesimals” in the sequel.

We turn now to symmetries that will be implemented by an action of a Hopf �-
algebra. In the classical case of a G-homogeneous spinc structure on a manifold M ,
the symmetry Hopf �-algebra is given by the universal enveloping algebra U.g/ of the
Lie algebra g ofG. As we shall see, this approach will force us to consider unbounded
�-representations. For this, let V be a dense linear subspace of a Hilbert space H with
inner product h � ; � i, and let U be a �-algebra. An (unbounded) �-representation of
U on V is a homomorphism � W U ! End.V/ such that h�.h/v;wi D hv; �.h�/wi
for all v;w 2 V and all h 2 U.

Next let U D .U; �; S; "/ be a Hopf �-algebra and A be a left U-module �-
algebra, i.e., there is a left action F of a U on A satisfying

h F xy D .h.1/ F x/.h.2/ F y/; h F 1 D ".h/1; .h F x/� D S.h/� F x� (2.5)

for all h 2 U and x; y 2 A. As customary, we use the notation �.h/ D h.1/ ˝ h.2/.
A �-representation � of A on V is called U-equivariant if there exists a �-repre-

sentation � of U on V such that

�.h/ �.x/ � D �.h.1/ F x/ �.h.2// �;

for all h 2 U, x 2 A and � 2 V . Given U and A as above, the left crossed product
�-algebra A Ì U is defined as the �-algebra generated by the two �-subalgebras A

and U with crossed commutation relations

hx D .h.1/ F x/h.2/; h 2 U; x 2 A:

Thus U-equivariant representations of A correspond to �-representations of A Ì U.
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A linear operator D defined on V is said to be equivariant if it commutes with
�.h/, i.e.,

D�.h/ � D �.h/D �; (2.6)

for all h 2 U and � 2 V . On the other hand, an antiunitary operator J is said
to be equivariant if it leaves V invariant and if it is the antiunitary part in the polar
decomposition of an antilinear (closed) operator T that satisfies the condition

T �.h/ � D �.S.h/�/T � (2.7)

for all h 2 U and � 2 V , where S denotes the antipode of U.
We collect all these equivariance requirements by giving the following defini-

tion [14].

Definition 2.3. Let U be a Hopf �-algebra, A a left U-module �-algebra and � a
U-equivariant representation of A on (a dense linear subspace of) a Hilbert space H .
A (real even) spectral triple .A;H ;D; �; J / is called equivariant if the operators D,
� and J are equivariant in the above sense.

In the remainder of this section, we recall a few analytic properties of spectral
triples [4]. With the operator D of a spectral triple .A;H ;D/, one defines an un-
bounded derivation ı on B.H / by

ı.a/ D ŒjDj; a�; a 2 B.H /:

Definition 2.4. The spectral triple .A;H ;D/ is said to be regular if the algebra
generated by A and the commutators ŒD;A� belongs to

OP0 ´ T
j 2N0

dom ıj :

For a regular spectral triple, the algebra ‰0 generated by A, the commutators
ŒD;A� and iterated applications of ı is a subalgebra of OP0, ‰0 � OP0. If the
spectral triple is of dimension �, the “zeta-type” functions

	a.z/ ´ TrH

�
ajDj�z

�
; a 2 ‰0;

are defined and holomorphic for z 2 C with Re z > �. Here we are assuming, for
simplicity, thatD is invertible. Analogous formulae are easily defined for the general
case: one works with .1CD2/�z=2 instead of jDj�z for a not invertible D.

Definition 2.5. A spectral triple has dimension spectrum† � C, with† a countable
set, if all 	a.z/, a 2 ‰0, extend to meromorphic functions on C with poles in † as
unique singularities.
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For later use, we also recall the definition of “smoothing operators” OP�1, i.e.,

OP�1 ´ fT 2 OP0 W jDjnT 2 OP0 for all n 2 N0g:
The class OP�1 is a two-sided �-ideal in the �-algebra OP0 and ı-invariant. When
computing the dimension spectrum, we can take the quotient by smoothing operators
since they merely contribute holomorphic terms.

If the metric dimension of D is finite, smoothing operators are infinitesimals of
arbitrary high order. But the converse is in general not true, since infinitesimals of
arbitrary high order are a two-sided �-ideal in B.H / while OP�1 is not.

Also, for a finite metric dimension, rapid decay matrices (in a basis of eigenvectors
for D with eigenvalues in increasing order) are smoothing operators.

3. The Podleś spheres and their symmetries

Recall that q 2 .0; 1/ and t 2 Œ0; 1�. Let

Œn� D Œn�q ´ qn � q�n

q � q�1
; n 2 R:

The coordinate �-algebra A.S2
qt / of the Podleś spheres [12] is generated by elements

x�1, x0 and x1 with relations

x�1.x0 � t / D q2.x0 � t /x�1; (3.1a)

x1.x0 � t / D q�2.x0 � t /x1; (3.1b)

�Œ2�x�1x1 C .q2x0 C t /.x0 � t / D Œ2�2.1 � t /; (3.1c)

�Œ2�x1x�1 C .q�2x0 C t /.x0 � t / D Œ2�2.1 � t /; (3.1d)

and with involution x��1 D �q�1x1 and x�
0 D x0.

The standard quantum sphere corresponds to the value t D 1, the equatorial one
to t D 0. For t D 1, the quantum sphere has one classical point. That is, there exists
exactly one 1-dimensional irreducible representation of the algebra, namely,

x0 D 1; x1 D x�1 D 0: (3.2)

For t ¤ 1, the classical points make up an S1 given by the following 1-dimensional
irreducible representations of the algebra,

x0 D t; x1 D
p
.1C q2/.1 � t / �; x�1 D �q�1

p
.1C q2/.1 � t / N�; (3.3)

where � is a complex number of modulus 1.
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The generators that we use are related to those of [12] as follows. For t ¤ 0, let
c D t�1 � t . Setting

A D .1C q2/�1.1 � t�1x0/; B D q.1C q2/�1=2t�1x�1;

we recover the generators from [12], equation (7a), satisfying the relations

AB D q�2BA; AB� D q2B�A; B�B D A�A2Cc; BB� D q2A�q4A2Cc:
For t D 0, we set

A D �.1C q2/�1x0; B D q.1C q2/�1=2x�1;

and obtain the generators from [12], equation (7b), with relations

AB D q�2BA; AB� D q2B�A; B�B D �A2 C 1; BB� D �q4A2 C 1:

The symmetry that we shall use in the following is given by the Hopf �-algebra
Uq.su.2//. This Hopf �-algebra is generated by elements f , e, k, k�1 with defining
relations (cf. [10])

kk�1 D k�1k D 1; k2 � k�2 D .q � q�1/.fe � ef /; kf D qf k; ke D q�1ek;

coproduct

�k D k ˝ k; �f D f ˝ k C k�1 ˝ f; �e D e ˝ k C k�1 ˝ e;

counit
".k � 1/ D ".f / D ".e/ D 0;

antipode
S.k/ D k�1; S.f / D �qf; S.e/ D �q�1e;

and involution
k� D k; f � D e:

The irreducible finite dimensional �-representations of Uq.su.2// are labeled by
non-negative half-integers l 2 1

2
N0 called spin. The spin l representation, say 
l ,

acts on a Hilbert space V l which is .2lC1/-dimensional; the action of the generators
on an orthonormal basis fvl

m W m D �l;�l C 1; : : : ; lg is given by the formulae,


l.k/ v
l
m D qm vl

m;


l.f / v
l
m D Œl �m�1=2 Œl CmC 1�1=2 vl

mC1;


l.e/ v
l
m D Œl �mC 1�1=2 Œl Cm�1=2 vl

m�1:

(3.4)
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Finally, there is a left Uq.su.2//-action on A.S2
qt / which turns the latter into a

Uq.su.2//-module �-algebra. On generators, it is given by

k F x�1 D q�1x�1; f F x�1 D Œ2�1=2x0; e F x�1 D 0;

k F x0 D x0; f F x0 D Œ2�1=2x1; e F x0 D Œ2�1=2x�1;

k F x1 D qx1; f F x1 D 0; e F x1 D Œ2�1=2x0:

Note that the generators xm, m D �1; 0;C1, of A.S2
qt / transform like the basis

vectors v1
m of the representation 
1.

4. Equivariant representations

As mentioned above, looking for Uq.su.2//-equivariant representation of the algebra
A.S2

qt /, we can equivalently look for representations of the crossed product algebra
A.S2

qt / Ì Uq.su.2//; these were constructed in [13].

4.1. Integrable representations of A.S2
qt/ Ì Uq.su.2//. A �-representation of

A.S2
qt /Ì Uq.su.2// is called integrable if its restriction to Uq.su.2// is a direct sum

of spin l representations 
l .
The integrable representations of A.S2

qt /Ì Uq.su.2// were completely classified
in [13]. It turned out that each such integrable representation is a direct sum of
irreducible ones. The following proposition restates Theorem 4.1 in [13] in the case
of irreducible representations. In doing so, we replace the parameter r there by t�1�t .

Proposition 4.1. Let N 2 1
2
Z. Any irreducible integrable representation of the

�-algebra A.S2
qt / Ì Uq.su.2// is unitarily equivalent to a representation �N de-

scribed as follows. The representation space is

MN ´
M

lDjN j;jN jC1;:::

V l ;

where V l is a spin l-representation space. The Hilbert space is the closure of MN .
The generators of Uq.su.2// act on each V l by 
l as in (3.4). The representation
of the generators x1, x0, x�1 of A.S2

qt / is determined on an orthonormal basis

fvl
m;N W l D jN j; jN j C 1; : : : ; m D �l;�l C 1; : : : ; lg of MN by

�N .xi /v
l
m;N

D ˛�
i .l;mIN/ vl�1

mCi;N C ˛0
i .l;mIN/ vl

mCi;N C ˛C
i .l;mIN/ vlC1

mCi;N ;
(4.1)
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where the coefficients are explicitly given by

˛C
1 .l;mIN/ D q�lCmŒl CmC 1�1=2Œl CmC 2�1=2

� Œ2l C 1��1=2Œ2l C 2��1=2˛N .l C 1/;

˛0
1.l;mIN/ D �qmC2Œl �m�1=2Œl CmC 1�1=2Œ2�1=2Œ2l��1ˇN .l/;

˛�
1 .l;mIN/ D �qlCmC1Œl �m � 1�1=2Œl �m�1=2

� Œ2l � 1��1=2Œ2l��1=2˛N .l/;

(4.2a)

˛C
0 .l;mIN/ D qmŒl �mC 1�1=2Œl CmC 1�1=2Œ2�1=2

� Œ2l C 1��1=2Œ2l C 2��1=2˛N .l C 1/;

˛0
0.l;mIN/ D Œ2l��1

�
Œl �mC 1�Œl Cm� � q2Œl �m�Œl CmC 1�

�
ˇN .l/;

˛�
0 .l;mIN/ D qmŒl �m�1=2Œl Cm�1=2Œ2�1=2Œ2l � 1��1=2Œ2l��1=2˛N .l/;

(4.2b)

˛C
�1.l;mIN/ D qlCmŒl �mC 1�1=2Œl �mC 2�1=2

� Œ2l C 1��1=2Œ2l C 2��1=2˛N .l C 1/;

˛0�1.l;mIN/ D qmŒl �mC 1�1=2Œl Cm�1=2Œ2�1=2Œ2l��1ˇN .l/;

˛��1.l;mIN/ D �q�lCm�1Œl Cm � 1�1=2Œl Cm�1=2

� Œ2l � 1��1=2Œ2l��1=2˛N .l/

(4.2c)

.with the convention that ˛0
i .0; 0I 0/; ˛�

i .0; 0I 0/; ˛�
i

�
1
2
;˙1

2
I ˙1

2

�
are zero/. The real

numbers ˇN .l/ and ˛N .l/ are given by

˛N .l/ D Œ2�1=2Œl CN�1=2Œl �N�1=2Œ2l�1=2

Œ2l C 1�1=2Œl �

�
�
1 � t C q�2N Œ2l��2Œl �2.t � 1C q2N /2

�1=2

;

(4.3a)

ˇN .l/ D �Œ2jN j�.q�1 C q � q�t /C t .q � q�1/ fŒjN j�ŒjN j C 1� � Œl �Œl C 1�g
qŒ2l C 2�

;

(4.3b)

with � D sgn.N /.

Remark 4.2. In [13], Proposition 6.4, it was shown that the representation space
MN is isomorphic to a projective left A.S2

qt /-module of rank 1. These projective left
A.S2

qt /-modules can be considered as line bundles over the quantum sphere S2
qt with

winding numbers 2N [1], [9], [11]. In particular, M0 Š A.S2
qt / is the trivial line

bundle.
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Remark 4.3. The representations �˙ 1
2

for the standard quantum sphere A.S2
q1/ ap-

peared first in [7].

4.2. The spin representation. Classically, the spinor bundle on the 2-sphere is
given by the direct sum of two line bundles with winding numbers �1 and 1. In
correspondence with the classical picture, we take

W ´ M� 1
2

˚ M 1
2

as (polynomial sections) of the quantum spinor bundle. The Hilbert space completion
H of W will be the Hilbert space of spinors with the representation � ´ �� 1

2
˚ � 1

2

of the algebra A.S2
qt / as the spinor representation.

For simplicity of notation, we shall use the label C instead of N D 1
2

and �
instead of N D �1

2
. With these conventions, W ´ M� ˚ MC, and �˙ denotes

the representation �˙ 1
2

. Moreover we shall identify elements of Uq.su.2// with the
corresponding operators on W coming from Proposition 4.1. By that proposition we
have the decomposition

W D
M

lD 1
2 ; 3

2 ;:::

W l ; W l D
M

mD�l;:::;l

W l
m;

where W l
m D spanfvl

m;�; vl
m;Cg. Throughout this paper, we keep the basis

fvl
m;�; vl

m;Cg of W l
m fixed. Clearly, an orthonormal basis of H is provided by the

vectors ˚
vl

m;�; vl
m;C W l D 1

2
; 3

2
; : : : ; m D �l; : : : ; l�: (4.4)

For an arbitrary but fixed vector wl
m 2 W l

m, say wl
m D ˛l

m;�vl
m;� C ˛l

m;Cvl
m;C

with components ˛l
m;�; ˛l

m;C 2 C, and for any i; j 2 Z, the expression wlCj
mCi

denotes the vector wlCj
mCi D ˛l

m;�v
lCj
mCi;� C ˛l

m;Cv
lCj
mCi;C 2 W

lCj
mCi . It is understood

that wlCj
mCi D 0 whenever l C j < 0 or jmC i j > l C j .

A substantial part of our results will be based on the fact that the operators �.x�1/,
�.x0/, �.x1/ can be “approximated” by operators acting diagonally on M� ˚ MC.
This is the content of the next lemma. For this purpose, we define operators z�1, z0

and z1 on H by their action on wl
m 2 W l

m as follows:

ziw
l
m D ˛�

i .l;mI 0/wl�1
mCi C ˛0

i .l;mI 0/wl
mCi C ˛C

i .l;mI 0/wlC1
mCi ; (4.5)

i D �1; 0; 1. Here, the coefficients are the ones defined in equations (4.2) unless
jm C i j > l C �, � D 0;˙1; in this case, we set ˛�

i .l;mI 0/ D 0. Formally,
the operators zi ’s are given by the same formulae as the �0.xi /’s, but W and M0

decompose into different spin representation spaces. As a consequence, z�1, z0 and
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z1 do not satisfy the commutation relations of the generators of A.S2
qt /. Explicitly,

their commutation relations read

z�1.z0 � t / D q2.z0 � t /z�1;

z1.z0 � t / D q�2.z0 � t /z1;

�Œ2�z�1z1 C .q2z0 C t /.z0 � t / D Œ2�2.1 � t / � cP�;
�Œ2�z1z�1 C .q�2z0 C t /.z0 � t / D Œ2�2.1 � t / � cPC;

where P˙ denotes the projection onto the 2-dimensional subspace
spanfv1=2

˙1=2;�; v
1=2

˙1=2;Cg and c ´ qŒ2�˛0

�
1
2

�2 D qŒ2�
�
1 � t C Œ1

2
�2t2

�
.

Before stating the lemma, we need some more notation. For any bounded operator
L on the Hilbert space H , I.L/ denotes the two-sided ideal of B.H / generated by
L. Also, throughout this paper, Lq stands for the compact operator on H defined by

Lqw
l
m D qlwl

m; wl
m 2 W l

m: (4.6)

Lemma 4.4. There exist bounded operators Ai and Bi , i D �1; 0; 1, such that

�.xi / � zi D AiL
2
q D L2

qBi if t ¤ 1;

�.xi / � zi D AiLq D LqBi if t D 1:

In particular, �.xi / � zi 2 I.L2
q/ for t ¤ 1 and �.xi / � zi 2 I.Lq/ for t D 1

Proof. Our aim is to show that L�k
q .�.xi / � zi / and .�.xi / � zi /L

�k
q are bounded,

with k D 2 for t ¤ 1 and k D 1 for t D 1. Notice that �.xi / � zi is a sum of three
independent weighted shift operators with weights ˛�

i .l;mI ˙1
2
/�˛�

i .l;mI 0/, where
� 2 fC;�; 0g. Hence it suffices to prove that q�kl j˛�

i .l;mI ˙1
2
/�˛�

i .l;mI 0/j � C �
i

for some constants C �
i 2 RC. Using the inequalities

Œn� � .q�1 � q/�1q�n for all n � 0; Œn��1 � qn�1 for all n � 1; (4.7)

one verifies that the coefficients in front of˛N .l/ andˇN .l/ in equations (4.2a)–(4.2c)
are uniformly bounded. Thus, we only have to prove that the sequences
q�kl jˇN .l/ � ˇ0.l/j and q�kl j˛N .l/ � ˛0.l/j are bounded. We prove this for
N 2 1

2
Z, even though we need it only for N D ˙1=2. The boundedness of the

first sequence follows from the identity

jˇN .l/ � ˇ0.l/j D j�Œ2jN j�.q�1 C q � q�t /C t .q � q�1/ŒjN j�ŒjN j C 1�j
qŒ2l C 2�

;

using .qŒ2l C 2�/�1 � q2l . Concerning the second sequence, if t D 1 one verifies
directly that for anyN the sequence q�l j˛N .l/j is bounded; thus q�l j˛N .l/�˛0.l/j
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is bounded. If t 2 Œ0; 1/, set

ul WD Œl CN�Œl �N�Œ2l�
qŒ2l C 1�Œl�2

1 � t C q�2N Œ2l��2Œl �2.t � 1C q2N /2

1 � t � 1

for l � 1. From Œl CN�Œl �N�Œ2l� � qŒ2l C 1�Œl�2 we obtain

ul � q�2N Œ2l��2Œl �2.t � 1C q2N /2

1 � t D CN .1 � q2/2Œ2l��2Œl �2 � CN q
2l ;

with CN ´ fqN �q�N .1�t/g2

.1�q2/2.1�t/
. On the other hand from Œl CN�Œl �N� D Œl �2 � ŒN �2

and Œ2l� � qŒ2l C 1� D �q2lC1 we get

ul � Œ2l�Œl CN�Œl �N�
qŒ2l C 1�Œl�2

� 1 D �Œ2l�ŒN �2 � q2lC1Œl �2

qŒ2l C 1�Œl�2
� �q2l�2 ŒN �2

1 � q2
� q4l�1:

Hence there exists a constant C 0
N 2 RC such that jul j � C 0

N q
2l . Moreover from the

inequality jp1C u � 1j � juj which holds for any u � �1, it follows thatˇ̌̌
ˇ ˛N .l/p
.1C q2/.1 � t / � 1

ˇ̌̌
ˇ D j

p
1C ul � 1j � jul j � C 0

N q
2l :

Finally, using the triangle inequality we conclude that j˛N .l/�˛0.l/jp
.1Cq2/.1�t/

� .C0 C CN /q
2l .

5. Equivariant Dirac operators

In this section, we provide a class of equivariant self-adjoint operatorsD on the Hilbert
space of spinors H such that .A.S2

qt /;H ;D/ fulfills all conditions of a spectral triple.
LetCq ´ qk2 Cq�1k�2 C.q�q�1/ef be the Casimir operator of Uq.su.2//. It

acts on the space of spinors W by Cqv
l
m;˙ D .q2lC1 C q�2l�1/vl

m;˙, and its closure
on H is self-adjoint. Suppose that D is a self-adjoint operator on H commuting
strongly with the closure of Cq . Then the finite-dimensional subspaces W l reduce
D, and W is invariant under D. Assume next that D is equivariant, i.e., XD D DX

for all X 2 Uq.su.2//.
From kD D Dk, it follows that D leaves the 2-dimensional subspaces W l

m

invariant. Let Dl
m be a self-adjoint operator on C2 such that the restriction of D to

W l
m, in our fixed basis for the latter, is given by Dl

m. Then Df D fD implies that
Dl

mC1 D Dl
m. Hence there exists a self-adjoint operator on C2, Dl say, such that

Dl
m D Dl for all m D �l; : : : ; l . Diagonalizing Dl , we can write

Dl D U �
l

 
d

"
l

0

0 d
#
l

!
Ul ; (5.1)
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whered"
l

andd#
l

are the eigenvalues ofDl andUl is a unitary operator on C2. Without

loss of generality, we may assume that d#
l

� d
"
l

. Definition 2.1 (i) is fulfilled if and
only if

lim
l!1

jd"
l

j D lim
l!1

jd#
l

j D 1: (5.2)

Next we give sufficient conditions for the boundedness of the commutators
ŒD; �.a/� with a 2 A.S2

qt /. By the Leibniz rule for the commutator, ŒD; xy� D
ŒD; x�y C xŒD; y�, it suffices to consider only commutators with the generators x�1,
x0, x1. As the action of the operators z�1, z0, z1 from Lemma 4.4 is comparatively
simple, we write ŒD; �.xi /� D ŒD; zi �C ŒD; �.xi /�zi � and start by analyzing ŒD; zi �.
Let wl

m 2 W l
m. Then

ŒD; zi �w
l
m D ˛�

i .l;mI 0/
�
U �

l�1

�
d

"

l�1
0

0 d
#

l�1

�
Ul�1 � U �

l

�
d

"

l
0

0 d
#

l

�
Ul

�
wl�1

mCi

C ˛C
i .l;mI 0/

�
U �

lC1

�
d

"

lC1
0

0 d
#

lC1

�
UlC1 � U �

l

�
d

"

l
0

0 d
#

l

�
Ul

�
wlC1

mCi :

(5.3)

We need to treat the cases t ¤ 1 and t D 1 separately.
Firstly, let t ¤ 1. Using (4.7) and observing that

lim
l!1

˛˙ 1
2
.l/ D .1C q2/1=2.1 � t /1=2

we deduce that the sequence f˛i̇ .l;mI 0/g is uniformly bounded and does not con-
verge to zero. Hence ŒD; zi � is bounded if and only if there exist C 2 R such that

				U �
lC1

�
d

"

lC1
0

0 d
#

lC1

�
UlC1 � U �

l

�
d

"

l
0

0 d
#

l

�
Ul

				 < C for all l D 1
2
; 2

3
; : : : ; (5.4)

or, equivalently,				UlU
�
lC1

�
d

"

lC1
0

0 d
#

lC1

�
UlC1U

�
l �

�
d

"

l
0

0 d
#

l

�				 < C for all l D 1
2
; 2

3
; : : : : (5.5)

Denoting by tl the absolute value of the .1; 1/ entry of the matrix UlU
�
lC1

the last
inequality implies that there is a fixed constant C 0 2 R satisfying

jd"
lC1

� d"
l

� t2l .d"
lC1

� d#
lC1
/j D jd#

lC1
� d"

l
C .1 � t2l /.d"

lC1
� d#

lC1
/j < C 0;

jd#
lC1

� d#
l

C t2l .d
"
lC1

� d#
lC1
/j D jd"

lC1
� d#

l
� .1 � t2l /.d"

lC1
� d#

lC1
/j < C 0;

tl

p
1 � t2l jd"

lC1
� d#

lC1
j < C 0;
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for all l D 1
2

, 2
3

, . . . . Using tl 2 Œ0; 1� and d"
lC1

� d
#
lC1

, one deduces that

supfjd#
lC1

� d#
l

j; jd"
lC1

� d"
l

j W l D 1
2
; 2

3
; : : : g < 1:

Consequently, there exist C 2 R such that

jd#
l

j < Cl; jd"
l

j < Cl: (5.6)

From these inequalities, it follows that both DL2
q and L2

qD are bounded and so is
ŒD; �.xi / � zi � by Lemma 4.4. Hence equation (5.4) implies that both commutators
ŒD; zi � and ŒD; �.xi / � zi � are bounded and so is their sum ŒD; �.xi /�.

If t D 1, a direct computation shows that the sequence fq�l˛i̇ .l;mI 0/g is uni-
formly bounded and does not converge to zero. As a consequence, ŒD; zi � is bounded
if and only if there are C 2 R such that				U �

lC1

�
d

"

lC1
0

0 d
#

lC1

�
UlC1 �U �

l

�
d

"

l
0

0 d
#

l

�
Ul

				< Cq�l for all l D 1
2
; 2

3
; : : : : (5.7)

On the other hand, a sufficient condition for the commutator ŒD; �.xi / � zi � to be
bounded is thatDLq D LqD is bounded (since by Lemma 4.4,�.xi /�zi D AiLq D
LqBi with bounded operatorsAi andBi ). Now the operatorDLq D LqD is bounded
if and only if there exist C 2 C such that

jd#
l

j < Cq�l ; jd"
l

j < Cq�l ; l D 1
2
; 2

3
; : : : : (5.8)

Since these inequalities imply (5.7), they are sufficient for the commutator
ŒD; �.xi /� D ŒD; zi �C ŒD; �.xi / � zi � to be bounded.

Summarizing, we have established the following proposition.

Proposition 5.1. LetD be an equivariant self-adjoint operator on H such thatD and
the closure of Cq strongly commute. Then W l

m D spanfvl
m;�; vl

m;Cg is an invariant

subspace and the restriction ofD to W l
m is given by (5.1). The triple .A.S2

qt /;H ;D/

defines an Uq.su.2// equivariant spectral triple if, for t ¤ 1, conditions (5.2) and
(5.4) are satisfied; and for t D 1, conditions (5.2) and (5.8) are satisfied.

6. The real structure

We require that the real structure J be equivariant. This means that J is the antiunitary
part of a closed antilinear operatorT satisfyingTX D S.X/�T for allX 2 Uq.su.2//
(cf. Section 2). Now, any antiunitary operator J which leaves W invariant and fulfills

JXJ�1 D kS.X/�k�1; X 2 Uq.su.2//; (6.1)
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is equivariant. To see this, one can take for T the closure of the operator Jk since
JkX D S.X/�Jk for all X 2 Uq.su.2//.

Next, consider the antiunitary operator J0 on H defined by

J0 v
l
m;˙ D .�1/mC1=2 vl�m;˙; l D 1

2
; 2

3
; : : : ; m D �l; : : : ; l: (6.2)

Clearly, J 2
0 D �1. The antiunitary operator J0 will play a crucial role in discussing

the general form of an equivariant real structure. We summarize some properties of
J0 in the following lemmata.

Lemma 6.1. The antiunitary operator J0 is equivariant.

Proof. First note that J0 leaves the spinor bundle W invariant. The lemma is proved
by showing that J0 satisfies (6.1). Since X 7! kS.X/�k�1 is an antilinear homo-
morphism, it suffices to verify (6.1) for the generators of Uq.su.2// which can easily
be done by straightforward calculations.

Lemma 6.2. With the operators z�1, z0, z1 defined in equation (4.5),

Œzi ; J0zjJ
�1
0 � D 0; i; j D �1; 0; 1: (6.3)

Proof. In the notation of equation (4.5), we have

J0ziJ
�1
0 wl

m

D .�1/i�˛�
i .l;�mI 0/wl�1

m�i C ˛0
i .l;�mI 0/wl

m�i C ˛C
i .l;�mI 0/wlC1

m�i

� (6.4)

for wl
m 2 W l

m. The lemma is proved by direct computations using equations (4.5)
and (6.4).

Lemma 6.3. Let I denotes the operator ideal I.Lq/ or I.L2
q/ for t D 1 and t ¤ 1,

respectively. Then, for all a; b 2 A.S2
qt /,

Œ�.a/; J0�.b/J
�1
0 � 2 I: (6.5)

Proof. Again from the Leibniz rule of commutators, it suffices to prove equation (6.5)
for the generators x�1, x0, x1. Since

Œ�.xi /; J0�.xj /J
�1
0 � D Œ�.xi / � zi ; J0�.xj /J

�1
0 �

C Œzi ; J0

�
�.xj / � zj

�
J�1

0 �C Œzi ; J0zjJ
�1
0 �;

the assertion follows from Lemmata 4.4 and 6.2.
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Lemma 6.4. Let .A.S2
qt /;H ;D; J / be an equivariant 2-dimensional real spectral

triple. Assume that J satisfies (6.1). Then there exist unitary operators Wl on C2

such that the restrictions of D and J to W l
m can be expressed as

DdW l
m

D Dl D W �
l

 
d

"
l

0

0 d
#
l

!
Wl ; (6.6)

J dW l
m

D W �
l

SWlJ0dW l
m

D W �
l J0dW l

m
Wl ; (6.7)

where the bar denotes complex conjugation.

Proof. Given an antiunitary operator J satisfying (6.1), the operator V D JJ�1
0 D

�JJ0 is unitary and fulfills for all X 2 Uq.su.2//

VXV � D JJ0XJ
�1
0 J�1 D S.S.X/�/� D X

since, for any Hopf �-algebra, � B S B � B S D id. In particular, V commutes with
k and with the Casimir operator Cq and does so with their closures. By an argument
similar to the one at the beginning of Section 5, one shows that there exist unitary
operators Vl on C2 such that the restriction of V to W l

m is given by Vl . Thus

J D VJ0; J dW l
m

D VlJ0dW l
m
:

Recall that, in our standard basis,Dl D DdW l
m

has the form (5.1). AsJ0 is antiunitary,
we get

J0dW l
m
Dl D xDlJ0dW l

m

(the bar is still complex conjugation). From the requirement JDJ�1 D D, it follows
that Dl D Vl

xDlV
�

l
or, equivalently, 
d

"
l

0

0 d
#
l

!
D UlVl

xU �
l

 
d

"
l

0

0 d
#
l

!
.UlVl

xU �
l /

�:

If d"
l

¤ d
#
l

, the last equation implies that UlVl
xU �

l
is a diagonal matrix. Thus there

are angle variables l ;  l 2 Œ0; 2�/ such that

Vl D U �
l

�
exp.il/ 0

0 exp.i l/

�
xUl : (6.8)

Inserting

Wl ´
�

exp.� i
2
l/ 0

0 exp.� i
2
 l/

�
Ul

into (5.1) and (6.8), we arrive at (6.6) and (6.7). Clearly, equation (6.6) remains
valid if d"

l
D d

#
l

and Wl is an arbitrary unitary matrix. Therefore we may assume
without loss of generality that D and J are given on W by equations (6.6) and (6.7),
respectively.
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Under the assumption that J satisfies (6.1), Lemma 6.4 provides necessary condi-
tions for equivariant real spectral triples. Next, we aim at finding sufficient conditions
for .A;H ;D; J / to yield an equivariant real spectral triple up to infinitesimals. The
ideal I from Definition 2.2 is generated by operators Lˇ

q , where ˇ is a positive real
constant. Again, the basic idea of the proof is to replace the generators �.xi / by the
simpler operators zi . By the last lemma, the operator D and J act diagonally with
respect to the basis formed by Qvl

m;˙ ´ W �
l
vl

m;˙, but the operators zi do not do so
(in general). Their action on this basis is found to be

zi Qvl
m;˙ D ˛�

i .l;mI 0/WlW
�

l�1 Qvl�1
mCi;˙

C ˛0
i .l;mI 0/ Qvl

mCi;˙ C ˛C
i .l;mI 0/WlW

�
lC1 QvlC1

mCi;˙:

In order to reduce the computations to diagonal operators, we require thus that

kWlW
�

lC1 � 1k < Cqˇl (6.9)

for some real constant C . Then (6.9) implies that, modulo the ideal I.L
ˇ
q /, the

operators zi act on the basis vectors Qvl
m;˙ as a sum of diagonal shift operators. Next,

with the operators zi acting on the basis vectors Qvl
m;˙ as diagonal shifts, we compute

jh QvlC2
mCi�j;C; ŒŒD; zi �; J zjJ

�1� Qvl
m;Cij

D ˛C
i .l C 1;m � j I 0/ ˛C

j .l;�mI 0/ j.d"
lC2

� d"
lC1
/ � .d"

lC1
� d"

l
/j;

where we used ˛C
i .lC1;m�j I 0/ ˛C

j .l;�mI 0/ D ˛C
j .lC1;�m�i I 0/ ˛C

i .l;mI 0/.
Let t ¤ 1. To ensure that jh QvlC2

mCi�j;C; ŒŒD; zi �; J zjJ
�1� Qvl

m;Cij < Cqˇl for some
real constant C , we must impose the condition

j.d"
lC2

� d"
lC1
/ � .d"

lC1
� d"

l
/j < Cqˇl ; (6.10)

since ˛C
i .l C 1;m � j I 0/ ˛C

j .l;�mI 0/ D O.1/. A similar argument leads also to

j.d#
lC2

� d#
lC1
/ � .d#

lC1
� d#

l
/j < Cqˇl : (6.11)

From equation (2.3), Lemma 6.4 and the foregoing, it is immediately clear that one
can always add toD a self-adjoint operator from I.L

ˇ
q / having the same eigenvectors.

A sufficient condition for equations (6.10) and (6.11) to be satisfied is to assume that
the eigenvalues d"

l
and d#

l
depend linearly on l . But this dependence is alike the one

in (5.6) to get bounded commutators of D with algebra elements.
On the other hand, for t D 1, the argument leading to equations (6.10) and (6.11)

fails since in this case ˛C
i .l;mI 0/ D O.ql/. However, a linear dependence on the

eigenvalues of D clearly satisfies the condition (5.8) for bounded commutators in
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this case, too. Thus, by Proposition 5.1, for all Podleś quantum spheres, we have
equivariant spectral triples .A.S2

qt /;H ;D/ when the eigenvalues d"
l

and d#
l

of D
depend linearly on l .

The next proposition shows that this linear dependence, together with the require-
ment (6.9), suffices to obtain equivariant real spectral triples (up to infinitesimals) for
all quantum spheres A.S2

qt /.

Proposition 6.5. Suppose that

d
"
l

D c
"
1 l C c

"
2 ; d

#
l

D c
#
1 l C c

#
2 ; (6.12)

where c"
1 , c"

2 , c#
1 , c#

2 are real numbers such that c"
1 ¤ 0 and c#

1 ¤ 0. Let D be the
self-adjoint operator on H determined by (6.6), and let the antiunitary operator J
be given by (6.7). Suppose that ˇ 2 .0; 2� for t ¤ 1 and ˇ 2 .0; 1� for t D 1, and
assume that (6.9) holds. Then .A.S2

qt /;H ;D; J / defines an equivariant real spectral
triple such that equation (2.3) is satisfied with I ´ I.L˛

q /, where ˛ 2 .0; ˇ/.

Proof. Clearly, equations (6.6) and (6.12) uniquely determine a self-adjoint operator
(denoted byD) on H since the collection fW �

l
vl

m;�; W �
l
vl

m;C W l D 1
2
; 2

3
; : : : ; m D

�l; : : : ; lg is a complete set of orthonormal eigenvectors. By Lemma 6.4, it is evident
that JD D DJ and that J 2 D �1. Lemma 6.1 and equation (6.7) imply that (6.1)
also applies, so J is equivariant. Thus it remains to verify equation (2.3).

Observe that I.L
˛1
q / � I.L

˛2
q / for ˛2 � ˛1 > 0. From

.J ziJ
�1 � J0ziJ

�1
0 /wl

m D .�1/i�˛�
i .l;�mI 0/.W �

l�1
SWl�1

SW �
l Wl � 1/wl�1

m�i

C ˛C
i .l;�mI 0/.W �

lC1
SWlC1

SW �
l Wl � 1/wlC1

m�i

�
and equation (6.9), it follows that J ziJ

�1 � J0ziJ
�1
0 2 I.L

ˇ
q /. As a consequence,

and using Lemma 6.2, one finds that

Œzi ; J zjJ
�1� D Œzi ; J0zjJ

�1
0 �C Œzi ; J ziJ

�1 � J0zjJ
�1
0 � 2 I.Lˇ

q /: (6.13)

Now the proof of the first equation of (2.3) is completely analogous to the proof of
Lemma 6.3 with J0 replaced by J .

By a repeated use of the Leibniz rule for the commutator and of the first relation
of (2.3), we need to prove the second relation of (2.3) only for the generators x�1, x0,
x1. Note that the operator DLˇ�˛

q D L
ˇ�˛
q D is bounded. Hence, by Lemma 4.4, it

follows that ŒD; �.xi / � zi � 2 I.L˛
q /. Now, writing

ŒŒD; �.xi /�; J�.xj /J
�1� D ŒŒD; �.xi / � zi �; J�.xj /J

�1�

C ŒŒD; zi �; J.�.xj / � zj /J�1�C ŒŒD; zi �; J zjJ
�1�
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and using again Lemma 4.4, we see that it suffices to establish that

ŒŒD; zi �; J zjJ
�1� 2 I.L˛

q /: (6.14)

LetW denote the unitary operator on H given byWwl
m D Wlw

l
m for all wl

m 2 W l
m.

Then J D W �J0W and D D W � zDW , where zD is the unique self-adjoint operator
on H such that

zDdW l
m

D zDl ´
 
d

"
l

0

0 d
#
l

!
: (6.15)

In these terms, the requirement (6.14) is equivalent to

ŒŒ zD;W ziW
��; J0WzjW

�J�1
0 � 2 I.L˛

q /: (6.16)

Evaluating WziW
� � zi on vectors wl

m 2 W l
m gives

.W ziW
��zi /w

l
m D ˛�

i .l;m/0.Wl�1W
�

l �1/wl�1
mCiC˛C

i .l;m/0.WlC1W
�

l �1/wlC1
mCi :

From this and (6.9), we conclude that WziW
� � zi 2 I.L

ˇ
q / � I.L˛

q /. Thus,
equation (6.16) is, in turn, equivalent to

ŒŒ zD; zi �; J0zjJ
�1
0 � 2 I.L˛

q /: (6.17)

Note now that ŒŒ zD; zi �; J0zjJ
�1
0 � can be written as a sum of five independent weighted

shift operators with weights S�
i;j .l;m/, � D �2; : : : ; 2, i.e.,

ŒŒ zD; zi �; J0zjJ
�1
0 �wl

m D
2X

�D�2

S�
i;j .l;m/w

lC�
mCi�j ; wl

m 2 W l
m: (6.18)

Moreover,

Œ zD; zi �v
l
m;˙ D c1̇

�
˛C

i .l;mI 0/vlC1
mCi;˙ � ˛�

i .l;mI 0/vl�1
mCi;˙

�
; (6.19)

where cC
1 D c

"
1 and c�

1 D c
#
1 . Using (6.19) and (6.4), a lengthy but straightforward

computations shows that jS�
i;j;˙.l;m/j < Cq2l for some C 2 R. From this, we

conclude that ŒŒ zD; zi �; J0zjJ
�1
0 � 2 I.L2

q/ which implies (6.17), and the proof is
complete.

Corollary 6.6. Up to adding elements from the ideal I.L˛
q /, the operators D and J

from Proposition 6.5 are given by

DdW l
m

D W �
0

 
d

"
l

0

0 d
#
l

!
W0; (6.20)

J dW l
m

D W �
0 J0dW l

m
W0; (6.21)

where W0 is a unitary operator on C2.
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Proof. Let D1 and J1 be given by equations (6.6) and (6.7), and suppose that the
unitary operators Wl satisfy (6.9). Then fWlglD 1

2 ; 2
3 ;::: is a Cauchy sequence and

W0 ´ liml!1Wl is a unitary operator. LetD andJ denote the operators determined
by (6.20) and (6.21). With zDl the diagonal matrix defined in (6.15), we have

.D1 �D/wl
m D .Wl

zDlWl �W0
zDlW0/w

l
m;

for wl
m 2 W l

m. By (6.9), there exist C 2 R such that kWl � W0k < Cqˇl .

Furthermore, since ˛ < ˇ, by (6.12) it follows that liml!1 q.ˇ�˛/l jd"
l

j D
liml!1 q.ˇ�˛/l jd#

l
j D 0 and the sequences fq.ˇ�˛/l jd"

l
jg and fq.ˇ�˛/l jd#

l
jg are

uniformly bounded. Thus,

kWl
zDlWl �W0

zDlW0k D k.Wl �W0/ zDlWl CW0
zDl.Wl �W0/k

< 2kWl �W0kkDlk < C 0q˛l ;

for some C 0 2 R, and D1 �D 2 I.L˛
q /. Similarly one shows that J1 � J 2 I.L˛

q /.

Remark 6.7. For the standard sphere, corresponding to t D 1, the conditions (5.8)
for bounded commutators of the Dirac operator with algebra elements allow more
than linear dependence for the eigenvalues of D. In [7], the eigenvalues of D were
taken to be q-analogues of the spectrum of the classical Dirac operator of the round
metric of the sphere S2; they behave like jdl j � q�l for large l . For this family, one
gets a spectral triple; this is also a particular case of our Proposition 5.1. Moreover,
one has a stronger result on the real structure: it is not up to infinitesimals but the
stronger relations (2.2) are satisfied.

7. Equivariant real even spectral triple

In this section an additional character enters the stage, the even structure. As shown
in the next proposition, the existence of a grading operator determines completely the
structure of the geometry .A.S2

qt /;H ;D; J; �/.

Proposition 7.1. Let .A.S2
qt /;H ;D; J; �/ be an equivariant real even spectral triple

with real structure J satisfying condition (6.1). Then the operators � , D, J act on
the spinor bundle W by

�vl
m;˙ D ˙�vl

m;˙;
Dvl

m;C D dlv
l
m;�;

J vl
m;˙ D 	l.�1/mC1=2vl�m;�;

Dvl
m;� D Ndlv

l
m;C;

(7.1)

where dl 2 C, � 2 f�1; 1g, and 	l 2 C such that j	l j D 1.
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Proof. Clearly, � ¤ 1 as otherwise the first condition in equation (2.1) is not satisfied.
From �� D � and �2 D 1, it follows that � has eigenvalues ˙1. Since � commutes
with all elements from the crossed product algebra A.S2

qt /ÌUq.su.2// and since the
integrable representation of A.S2

qt /ÌUq.su.2// on the spinor bundle W decomposes

into two inequivalent irreducible ones on M� and MC, we conclude that �vl
m;C D

�vl
m;C and �vl

m;� D ��vl
m;�, where � 2 f�1; 1g.

Recall from Lemma 6.4 that J dW l
m

D VlJ0dW l
m

with a unitary operator Vl on C2.
In addition, the condition J� D ��J implies that J maps M˙ into M�. Thus

J vl
m;˙ D 	l;˙ J0 v

l
m;�;

with complex numbers 	l;� and 	l;C such that j	l;�j D j	l;Cj D 1. From J 2 D �1,
we obtain 	l;� N	l;C D 1, so 	l;� D 	l;C μ 	l .

Similarly, the condition D� D ��D implies that D maps M˙ into M�. Hence,
by (5.1), D has the form described in (7.1).

We combine Propositions 6.5 and 7.1 to present equivariant real even spectral
triples.

Proposition 7.2. Let � and D be self-adjoint operators and J be an antiunitary
operator on H given by

�vl
m;˙ D ˙vl

m;˙; Dvl
m;˙ D .c1l C c2/v

l
m;�; J vl

m;˙ D .�1/mC1=2vl�m;�; (7.2)

where c1; c2 2 R with c1 ¤ 0. Then .A.S2
qt /;H ;D; J; �/ is an equivariant real even

spectral triple such that the conditions (2.3) are satisfied with I D I.L˛
q /, where

˛ 2 .0; 2/ for t ¤ 1 and ˛ 2 .0; 1/ for t D 1.

Proof. For l D 1
2
; 2

3
, . . . , set d"

l
D c1l C c2 and d#

l
D �.c1l C c2/. Define

W0 ´ 1p
2

�
1 1

�i i

�
; Wl ´ W0: (7.3)

The restrictions of D and J to W l
m are then given as in (6.6) and (6.7), respectively.

With the choice (7.3), the inequality (6.9) holds trivially and we can suppose that
ˇ D 2 for t ¤ 1 and ˇ D 1 for t D 1. By Proposition 6.5, .A.S2

qt /;H ;D; J / yields
an equivariant real spectral triple such that the conditions (2.3) are satisfied with
I D I.L˛

q /. It is obvious that � fulfills all the requirements of a grading operator.

Remark 7.3. Recall from Subsection 4.2 that W can be considered as a deformation
of the classical spinor bundle. The classical spectral triple on the commutative 2-
sphere with its round metric is real and even, and the corresponding Dirac operator
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has eigenvalues ˙.l C 1
2
/, l D 1

2
; 2

3
, . . . , each with multiplicity 2l C 1. Therefore

we can regard the equivariant real even spectral triple .A.S2
qt /;H ;D; J; �/ from

Theorem 7.2 with c1 D 1 and c2 D 1
2

as an isospectral deformation of the classical
spin geometry.

Remark 7.4. By perturbing both D and J by infinitesimals belonging to the ideal
I.L˛

q /, one produces more examples of equivariant real even spectral triples. How-
ever, those from Theorem 7.2 are distinguished by being obtained from the isospectral
deformation via rescaling linearly the eigenvalues of D.

Finally, we prove the non-triviality of our noncommutative geometry.

Proposition 7.5. Let F 2 B.H / be the sign of the Dirac operator; it is given by

Fvl
m;˙ D vl

m;�:

The datum .A.S2
qt /;H ; F / is a 1C-summable non-trivial Fredholm module.

Proof. Since the chiral spin representations�˙ coincide modulo smoothing operators,
the commutator ŒF; x� is a smoothing operator for all x 2 A.S2

qt /, thus ŒF; x� 2
L1.H /. This shows that .A.S2

qt /;H ; F / is a 1C-summable Fredholm module.
As representative of the corresponding periodic cyclic cohomology class chF we

can take the cochain having only one component chF
0 in degree 0, given by,

chF
0 .a/ ´ 1

2
Tr.�F ŒF; a�/: (7.4)

The non-triviality of our Fredholm module is proved by pairing chF with the
K-theory class of the projection

p D 1

.2 � t /.1C q2/

�
1C q2 C x0 � tq2 �.1C q2/1=2x1

q.1C q2/1=2x�1 1C q2 � q2x0 � t
�
;

describing line bundles over the spheres S2
qt [1]. The pairing is

hchF ; Œp�i ´ 1
2

TrH˝C2.�F ŒF; p�/ D 1 � q2

2.2 � t /.1C q2/
TrH .�F ŒF; x0�/

D q�2.1 � q2/2
X
l;m

Œl �mC 1�Œl Cm�

Œ2l�Œ2l C 2�
:

(7.5)

For the last equality we have used the explicit formulae (4.2b) and (4.3b) for the
coefficients ˛0

0.l;mI ˙/ in the representation of x0. The last series in (7.5) was shown
in [8], Section 5.3, to be a continuous function in q for q 2 Œ0; 1/. Since it is integer
valued in the interior of this interval (being the index of a Fredholm operator), it is
constant by continuity and can be computed at q D 0. The result is hchF ; Œp�i D 1.
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8. Analytic properties

We describe now some further analytic properties of the spectral triple given in Propo-
sition 7.2 (forgetting its real even structure) and specify, for simplicity, the constants
c1 D 1 and c2 D 1=2. With this choice,D is invertible. For other allowed values, the
subsequent results remain valid with minor changes in the proofs and by working with
.1CD2/�z=2 instead of jDj�z for a not invertibleD. We use the polar decomposition
D D F jDj, with F the sign of D.

Recall that the spin representation � D �� ˚�C for each of the generators of the
algebra A.S2

qt / has three terms appearing on the right-hand side of (4.1). Accordingly,
we shall write �.xi / D xi μ x�

i C x0
i C xC

i , i D �1; 0; 1. The operators x�
i are

weighted shifts, mapping each W l
m into W lC�

mCi , � D �1; 0; 1, which are easily seen
to be bounded.

Proposition 8.1. The spectral triple .A.S2
qt /;H ;D/ is 2C-summable and regular.

Proof. The 2C-summability follows from the linear growth of the spectrum of D
(with the appropriate multiplicities). To show that the spectral triple is regular, it
is enough to prove that the elements x�

i and ŒD; x�
i �, � D 0;˙1, are in the smooth

domain of the derivation ı. � / ´ ŒjDj; . � /�. This is clear for x�
i since

ŒjDj; x�
i �v

l
m;˙ D �

.l C � C 1
2
/˛�

i .l;mI ˙/ � .l C 1
2
/˛�

i .l;mI ˙/�vlC�
mCi;˙;

hence ı.x�
i / D �x�

i . As for ŒD; x�
i �, we use the fact that ık.ŒD; x�

i �/ D ŒD; ık.x�
i /� D

�kŒD; x�
i �. The boundedness of the latter follows from the formulae in Proposition 4.1

giving, for instance,

ŒD; xC
i �v

l
m;˙ D �

.l C 1
2
/.˛C

i .l;mI ˙/ � ˛C
i .l;mI 	//C ˛C

i .l;mI ˙/� vlC1
mCi;�:

The last summand is clearly bounded while the boundedness of the other follows from
the fact that ˛C

i .l;mI ˙/� ˛C
i .l;mI 	/ is at least of order ql by equations (4.2) and

(4.3a). Similar arguments work for ŒD; x�
i �.

To compute the dimension spectrum, we introduce another representation of the
algebra A.S2

qt / which is obtained from simpler operators. Let yH be a Hilbert space
with orthonormal basis jl; mi˙, where l 2 1

2
Z and l C m 2 N0. Consider the

bounded operators ˛; ˇ 2 B. yH / defined by

˛jl; mi˙ D
p
1 � q2.lCmC1/ jl C 1

2
; mC 1

2
i˙;

ˇjl; mi˙ D qlCmjl C 1
2
; m � 1

2
i˙:

These operators satisfy the commutation relations of A.SUq.2//, i.e.,

ˇ˛ D q˛ˇ; ˇ�˛ D q˛ˇ�; Œˇ; ˇ�� D 0; ˛�˛ C q2ˇ�ˇ D 1; ˛˛� C ˇˇ� D 1:



Dirac operators on all Podleś quantum spheres 235

The embedding of the Podleś spheres into A.SUq.2// (see e.g. [12]) leads to a �-re-
presentation ' W A.S2

qt / ! B. yH / given by

'.x1/ D
p
1C q2

˚p
1 � t .˛2 � q.ˇ�/2/ � tˇ�˛

�
;

'.x0/ D .1C q2/
˚p
1 � t .˛ˇ C ˇ�˛�/ � tˇˇ��C t:

Later on, we shall need the explicit expression

.1C q2/�1'.x0 � t /jl; mi˙
D p

1 � t qlCm�1
p
1 � q2.lCm/ jl � 1;mi˙ � t q2.lCm/jl; mi˙

C p
1 � t qlCm

p
1 � q2.lCmC1/ jl C 1;mi˙:

(8.1)

Our Hilbert space of spinors H with the basis (4.4) is identified with a subspace of
yH , that is, we consider the inclusion

Q W H ! yH ; Qvl
m;˙ D jl; mi˙

for l 2 N0 C 1
2

and jmj � l . Let P W yH ! H be the adjoint map of Q, i.e.,

P jl; mi˙ D vl
m;˙ for l 2 N0 C 1

2
and jmj � l; P jl; mi˙ D 0 otherwise:

Our Dirac operator D on H is the “restriction” of the self-adjoint operator D0 on yH
determined by

D0jl; mi˙ D .l C 1
2
/jl; mi�;

in the sense that DP D PD0, QD D D0Q. The same holds for jD0j and for its
sign F 0 ´ D0jD0j�1. The subspace QH is not invariant for the representation '.
However, we can sandwich ' between Q and P thus obtaining a �-linear map

z' W A.S2
qt / ! B.H /; z'.a/ D P'.a/Q; (8.2)

that has the following approximation property.

Lemma 8.2. The operator a� z'.a/ is a smoothing operator on H for all a 2 A.S2
qt /.

Proof. Observe that if T W yH ! H is a matrix of rapid decay (in our fixed bases),
then so are aT '.b/, where a; b 2 A.S2

qt /, and TQ W H 7! H . Using arguments
similar to the ones in the proof of Lemma 4.4, for the generators xi , i D �1; 0; 1, one
verifies by direct computations that xiP �P'.xi / yields a rapid decay matrix. Then
the lemma follows from the identity

abP � P'.ab/ D a.bP � P'.b//C .aP � P'.a//'.b/
by applying PQ D idH and by the above observations.
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The next proposition is the main result of this section.

Proposition 8.3. The dimension spectrum is † D f1; 2g.

Proof. Let ‰0 be the algebra generated by A.S2
qt /, by ŒD; a� for all a 2 A.S2

qt / and
by iterated applications of the derivation ı (cf. Section 2). Let C be the �-algebra
(of bounded operators on yH ) generated by ˛, ˇ, ˛�, ˇ� and F . By Lemma 8.2,
A.S2

qt / � P CQC OP�1. Note that

ŒF 0; ˛� D 0; ŒD0; ˛� D 1
2
˛F 0; ŒjD0j; ˛� D 1

2
˛;

ŒF 0; ˇ� D 0; ŒD0; ˇ� D 1
2
ˇF 0; ŒjD0j; ˛� D 1

2
ˇ:

Thus P CQ is invariant under application of ı and ŒD; . � /� and it follows that
‰0 � P CQC OP�1.

We shall compute the singularities of zeta functions associated to the monomials
S ´ P˛nˇj .ˇ�/kQF and T ´ P˛nˇj .ˇ�/kQ, where n 2 Z and j; k 2 N0 and
we employ the notation ˛n ´ .˛�/jnj for n < 0. From the commutation relations of
˛ and ˇ, it is clear that these monomials span PCQ.

Firstly, note that the 	 function associated with a bounded off-diagonal operator
is identically zero in the half-plane Re z > 2 and so is its holomorphic extension to
the entire complex plane. This is the case for the monomials S due to the presence
of F . The other monomials T shift the index l by .n C j � k/=2 and the index m
by .n � j C k/=2 and therefore are also off-diagonal operators unless these shifts
are zero, which happens when n D 0 and j D k. Hence only monomials T D
Pˇk.ˇ�/kQ D P.ˇˇ�/kQ contribute to the dimension spectrum.

For k D 0, T D id, and the corresponding zeta function is

	id.z/ D
X

lC 1
2 2N

2lX
lCmD0

X
rD˙

.l C 1
2
/�z D 4	.z � 1/;

where 	.z/ is the Riemann zeta function, meromorphic in C with a simple pole at 1
and with residue 1. Since id 2 ‰0, this shows that 2 2 †.

When k > 0, T D P.ˇˇ�/kQ. So T vl
m;˙ D q2k.lCm/vl

m;˙ and the associated
zeta function is

	T .z/ D
X

lC 1
2 2N

2.l C 1
2
/�z

2lX
lCmD0

.q2k/lCm D
X

lC 1
2 2N

2.l C 1
2
/�z 1�q2k.2lC1/

1�q2k

D 2

1�q2k 	.z/C holomorphic function:

Therefore † may contain, besides 2, at most the additional point 1. We still have to
check that 1 2 † since the algebra PCQ is strictly larger than ‰0. For this, we take
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a 2 A.S2
qt /, where .1 C q2/2a D .x0 � t /2 D z'..x0 � t /2/C smoothing terms.

Then, using (8.1), we get (modulo holomorphic functions)

	a.z/ � 2
X

lC 1
2 2N

.l C 1
2
/�z

2lX
kD0

˚
t2q4k C .1 � t /bf.1C q�2/q2k � .q2C q�2/q4kbg�

� 21C.1�t/2

1�q4 	.z/;

and ReszD1 	a.z/ D 21C.1�t/2

1�q4 ¤ 0 for all t 2 Œ0; 1�. This shows that † D f1; 2g.

Let A.S1/ denote the polynomial �-algebra in one variable �, with � N� D 1. For
t ¤ 1, we have �-algebra morphisms 
t W A.S2

qt / ! A.S1/ given by the ‘classical
points’ (3.3),


t .x0/ D t; 
t .x1/ D
p
.1C q2/.1 � t /�:

For t D 1, let 
1 W A.S2
q1/ ! C be the �-algebra morphism given by the ‘classical

point’ (3.2),

1.x0/ D 1; 
1.x1/ D 0:

Proposition 8.4. The top residue of the zeta-type function 	a.z/ ´ TrH .ajDj�z/,
with a 2 A.S2

qt /, is given by

ReszD2 	a.z/ D �2i

�

Z
S1


t .a/
d�

�
; 0 � t � 1: (8.3)

For t D 1, 
1.a/ 2 C and equation (8.3) simplifies to 4
1.a/.

Proof. It is sufficient to prove (8.3) for the basis elements .x0 � t /jxk
1 , j 2 N0

and k 2 Z, and then extend it to A.S2
qt / by linearity. We use again the notation

xk
1 ´ .x�

1 /
jkj if k < 0.

Since 
t ..x0 � t /jxk
1 / / ıj 0.1 � t /k=2�k , the right-hand side of equation (8.3)

is zero unless j D k D 0. We next show that the left hand side of (8.3) also vanishes
unless j D k D 0. When j D k D 0, the relation 	id.z/ D 4	.z � 1/ fixes the
normalization constant.

Now .x0 � t /jxk
1 is off-diagonal if k ¤ 0 since it shifts the index m by k. It

remains to prove that 	.x0�t/j .z/ D 	z'..x0�t/j /.z/C holomorphic function has no
singularity in z D 2. For j ¤ 0, z'�.x0 � t /j � satisfies the inequality

j.vl
m;˙; z'..x0 � t /j /vl

m;˙/j � cj q
lCm;

for some positive constants cj ’s. From this inequality, we deduce that 	z'..x0�t/j /.z/

is a convergent series for all z with Re z > 1. In particular, it is finite for z D 2.
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A natural application of the analysis in this section concerns the construction of a
local representative of the cocycle chF , which appeared in the proof of Proposition 7.5.
For our case, Theorem II.3 of Connes–Moscovici [4] states that chF is cohomologous
to the periodic cyclic cocycle with two components .0; 2/, given by

0.a0/ D ReszD0 z
�1 Tr.�a0jDj�2z/;

2.a0; a1; a2/ D ReszD0 Tr.�a0ŒD; a1�ŒD; a2�jDj�2.zC1//:

Smoothing operators do not contribute to 2. Since ŒD; a� D ı z'.a/F C OP�1, with
the map z' given in (8.2), we can rewrite 2 as,

2.a0; a1; a2/ D ReszD0 Tr.� z'.a0/ ı z'.a1/ ı z'.a2/jDj�2.zC1//:

Now � is traceless and the remaining operators are diagonal in the spin index “˙”; thus
2 is identically zero. Moreover, Tr.�a0jDj�2z/ is holomorphic for Re z > 1 where
it coincides with the function .z/ ´ 1

2
Tr.�F ŒF; a0�jDj�2z/, which is holomorphic

on all C, being ŒF; a0� 2 OP�1. Hence,

0.a0/ D ReszD0 z
�1 .z/ D  .0/ D chF

0 .a0/;

with chF
0 given by equation (7.4).

This shows that, due to the low summability of the Fredholm module, only the
lowest (non-local) component of the periodic cyclic cochain of Theorem II.3 of [4]
is different from zero, and equals chF

0 . This fact was already shown in [8] for the
equatorial Podleś sphere.

9. Final remarks

A crucial ingredient of our analysis was the approximation of�.xi / D .�� 1
2
˚� 1

2
/.xi /

by the operators zi defined in (4.5). The proof of Lemma 4.4 shows that a similar
approximation holds true for the representation ��N ˚ �N on M�N ˚ MN , for
any N 2 1

2
N. A careful inspection of the subsequent proofs shows that all results

are still valid and yield corresponding spectral triples with real structure J satisfying
J 2 D .�1/N , and the pairing of the associated Fredholm module with the same
projection as in Corollary 7.5 giving the value 2N . In the classical case q D 1, these
generalized examples correspond to the quasi-spectral triples studied in [15].
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