J. Noncommut. Geom. 1 (2007), 271–279

Any generating set of an arbitrary property T von Neumann algebra has free entropy dimension ≤ 1

Kenley Jung and Dimitri Shlyakhtenko*

Abstract. Suppose that *N* is a diffuse, property T von Neumann algebra and *X* is an arbitrary finite generating set of selfadjoint elements for *N*. By using rigidity/deformation arguments applied to representations of *N* in ultraproducts of full matrix algebras, we deduce that the microstate spaces of *X* are asymptotically discrete up to unitary conjugacy. We use this description to show that the free entropy dimension of *X*, $\delta_0(X)$ is less than or equal to 1. It follows that when *N* embeds into the ultraproduct of the hyperfinite II₁ factor, then $\delta_0(X) = 1$ and otherwise, $\delta_0(X) = -\infty$. This generalizes the earlier results of Voiculescu, and Ge, Shen pertaining to SL_n(\mathbb{Z}) as well as the results of Connes, Shlyakhtenko pertaining to group generators of arbitrary property T algebras.

Mathematics Subject Classification (2000). Primary 46L54; Secondary 52C17. *Keywords*. Free probability, free entropy dimension, property T, von Neumann algebras.

Introduction

In [24] and [25], Voiculescu introduced the notion of free entropy dimension. For X a finite set of self-adjoint elements of a tracial von Neumann algebra, $\delta_0(X)$ is a kind of asymptotic Minkowski dimension of the set of matricial microstates for X. These notions led to the solution of several old operator algebra problems (see [27] for an overview). Closely tied to this is the invariance question for δ_0 which asks the following. If X and Y are two finite sets of selfadjoint elements generating the same tracial von Neumann algebra, then is it true that $\delta_0(X) = \delta_0(Y)$?

For certain X one can compute $\delta_0(X)$ and answer the invariance question in the affirmative. Suppose that $N = W^*(X)$ is diffuse and embeds into the ultraproduct of the hyperfinite II₁ factor. Then $\delta_0(X) = 1$ when N has property Γ , or has a Cartan subalgebra, or is nonprime, or can be decomposed as an amalgamated free product of these algebras over a common diffuse subalgebra (see [11], [14], [16], [25]).

Another class of algebras to investigate in regard to possible values of $\delta_0(X)$ and the invariance question are those with Kazhdan's property T ([7], [17], [20]). These

^{*}Research of the authors supported by the National Science Foundation.

first appeared in the von Neumann algebra context in Connes' seminal work [6]. In recent years, Popa introduced the technique of playing the rigidity properties of such algebras against deformation results; this has led to a number of significant advances in the theory of von Neumann algebras ([20], [21], [13]).

Voiculescu made the first computations of δ_0 for property T factors by showing that if x_1, \ldots, x_n are diffuse, selfadjoint elements in a tracial von Neumann algebra such that for each $1 \le i \le n-1$, $x_i x_{i+1} = x_{i+1} x_i$, then $\delta_0(x_1, \ldots, x_n) \le 1$ (see [26]). For $n \ge 3$, there exists a finite set of generators X_n for the group algebra $\mathbb{C} \operatorname{SL}_n(\mathbb{Z})$ with this property (this was first used in the context of measurable equivalence relations by Gaboriau [9] to prove that their cost is at most 1). Hence $L(\operatorname{SL}_n(\mathbb{Z}))$ has a set of generators X for which $\delta_0(X) \le 1$. This was generalized in [11] (see also [10] and references therein) where Ge and Shen weakened the conditions on the generators x_i and in particular obtained the stronger statement that $\delta_0(Y) \le 1$ for any other set Y of self-adjoint generators of the von Neumann algebra. However, all of these results rely on the special algebraic properties of certain generators (e.g. in $\operatorname{SL}_n(\mathbb{Z})$) and thus do not apply to the more general property T groups or von Neumann algebras.

In [8] a notion of L^2 -cohomology for von Neumann algebras was introduced, and the values of the resulting L^2 -Betti numbers were connected with free probability and the value of δ_0 . Indeed, using cohomological ideas, it was proved in [8] that if $X \subset \mathbb{C}\Gamma$ is an arbitrary set of generators, then

$$\delta_0(X) \le \beta_1^{(2)}(\Gamma) - \beta_0^{(2)}(\Gamma) + 1.$$

Here $\beta_j^{(2)}(\Gamma)$ are the Atiyah–Cheeger–Gromov ℓ^2 -Betti numbers of Γ (see e.g. [18]). This inequality is quite complicated to prove; indeed, one first proves the same inequality with δ_0 replaced by its "non-microstates" analog δ^* , and then uses a highly nontrivial result of Biane, Capitaine, Guionnet [2] that implies $\delta_0 \leq \delta^*$.

In the case that Γ has property T, the first ℓ^2 -Betti number vanishes (see [12], [1], [4]). So for Γ an infinite group, one has $\delta_0(X) \leq 1$ for any finite generating set $X \subset \mathbb{C}\Gamma$. However, even in this case, an "elementary" proof of this bound was not available and, moreover, it was not known whether $\delta_0(X) \leq 1$ for any finite generating set $X \subset L(\Gamma)$.

Our result settles the question of the value of $\delta_0(X)$ for an arbitrary set of selfadjoint generators of a property T factor in full generality:

Theorem. Suppose that N is a diffuse, property T von Neumann algebra with a finite set of selfadjoint generators X, and let R^{ω} be an ultrapower of the hyperfinite II_1 factor. Then $\delta_0(X) \leq 1$. Moreover, if N has an embedding into R^{ω} , then $\delta_0(X) = 1$, and if N has no embedding into R^{ω} , then $\delta_0(X) = -\infty$.

Note that this result shows that the value of the free entropy dimension δ_0 is independent of the choice of generators of N. In particular, one gets as a corollary

that if Γ is any infinite discrete group with property T, and X is any set of self-adjoint generators of the group von Neumann algebra $L(\Gamma)$ (we do not make the assumption that $X \subset \mathbb{C}\Gamma$ here), then $\delta_0(X) = 1$ or $-\infty$, depending on whether Γ embeds into the unitary group of R^{ω} .

The proof of the main theorem relies on a deformation/rigidity argument in the style of Popa, which is used to prove that the set of unitary conjugacy classes of embeddings of a property T von Neumann algebra N into the ultrapower of the hyperfinite II₁ factor is discrete. This fact can then be employed to show that if $X \subset N$ is a set of self-adjoint generators, then any $k \times k$ matricial microstate for X essentially lies in the unitary orbit of a certain discrete set S, all of whose elements are at least a certain fixed distance apart. One then turns this into an estimate for the packing dimension of the microstate set is essentially the same as that of a small number of disjoint copies of the k-dimensional unitary group.

1. Property T, embeddings, and unitary orbits

Throughout this section and the next we fix a property T finite von Neumann algebra N and a finite p-tuple of selfadjoint generators $X \,\subset N$. $\|\cdot\|_2$ denotes the L^2 -norm induced by a specified trace on a von Neumann algebra. $M_k^{\rm sa}(\mathbb{C})$ denotes the set of selfadjoint $k \times k$ matrices, $M_k(\mathbb{C})$ denotes the set of $k \times k$ matrices, and tr_k is the trace on $M_k(\mathbb{C})$. If $\xi = \{y_1, \ldots, y_p\}$ and $\eta = \{z_1, \ldots, z_p\}$ are p-tuples in a von Neumann algebra and u, w are elements in a tracial von Neumann algebra, then $\xi - \eta = \{y_1 - z_1, \ldots, y_p - z_p\}$, $u\xi w = \{uy_1w, \ldots, uy_pw\}$, and $\|\xi\|_2 = (\sum_{i=1}^p \|y_i\|_2^2)^2$. R > 0 will be a fixed constant greater than any of the operator norms of the elements in X. $\Gamma_R(X; m, k, \gamma)$ will denote the standard microstate spaces introduced in [24].

The following theorem, stated for the reader's convenience, is by now among the standard results in the theory of rigid factors. Such deformation-conjugacy arguments have played a fundamental role in the recent startling results of Popa and others ([13], [19], [21], [22]).

Theorem 1.1. Let X and N be as above. Then for any t > 0 there exists a corresponding $r_t > 0$ so that if (M, τ) is a tracial von Neumann algebra and $\pi, \sigma \colon N \to M$ are normal faithful trace-preserving *-homomorphisms such that for all $x \in X$, $\|\pi(x) - \sigma(x)\|_2 < r_t$, then there exist projections $e \in \pi(N)' \cap M$, $f \in \sigma(N)' \cap M$, a partial isometry $v \in M$ such that $v^*v = e$, $vv^* = f$, $\tau(e) > 1 - t$, and for all $x \in N$, $ve\pi(x)ev^* = f\sigma(x)f$.

Proof. Recall (see [7] for the factor case or [21], Proposition 4.1.3°, for the general case) that there exist $K, \varepsilon_0 > 0$, and a finite set $F \subset N$ such that if $0 < \delta \leq \varepsilon_0$ and H is a correspondence of N with a vector $\xi \in H$ satisfying $||z\xi - \xi z||_2 < \delta$,

 $\|\langle \cdot \xi, \xi \rangle - \tau_N \| < \delta$, $\|\langle \xi \cdot, \xi \rangle - \tau_N \| < \delta$, $z \in F$, then there exists a vector $\eta \in H$ which is central for N and $\|\eta - \xi\|_2 < K\delta$.

Choose r_t so small so that if $\rho_1, \rho_2 \colon N \to M$ are any two faithful, normal trace preserving *-homomorphisms such that $\|\rho_1(x) - \rho_2(x)\|_2 < r_t$ for all $x \in X$, then $\|\rho_1(z) - \rho_2(z)\|_2 < \min\{t, \varepsilon_0\} \cdot (4K)^{-1}$ for all $z \in F$. This can be done because X generates N.

Suppose that $\pi, \sigma: N \to M$ are two normal, faithful trace-preserving *-homomorphisms such that $\|\pi(x) - \sigma(x)\|_2 < r_t$ for all $x \in X$. Consider $L^2(M)$ as an N - N bimodule where for any $\xi \in L^2(M)$, $x, y \in N$, $x\xi y = \pi(x)J\sigma(y)^*J\xi$. Denote by 1_M the vector associated to the unit of M. The hypothesis on π and σ guarantee that for all $x \in F$, $\|x1_M - 1_M x\|_2 = \|\pi(x) - \sigma(x)\|_2 < \min\{t, \varepsilon_0\} \cdot (4K)^{-1}$ and moreover that $\langle x1_M, 1_M \rangle = \langle 1_M x, 1_M \rangle = \tau_N(x)$, which in turn implies the existence of a central vector $\eta_0 \in L^2(M)$ for N such that $\|\eta_0 - 1_M\|_2 < t/4$. Regard η_0 as an unbounded operator on $L^2(M)$ by its left action. If $\eta_0 = u|\eta_0|$ is the polar decomposition of η_0 , then $u \in M$ and $\|\eta_0 - 1_M\|_2 < t/4$ implies that $\|u - 1_M\|_2 < t/2$ and so $\|u^*u - 1_M\|_2 < t$. On the other hand, since for any $x \in N$, $x\eta_0 = \eta_0 x$, one concludes in the usual way that xu = ux. Consequently, $uu^* \in \pi(N)'$ and $u^*u \in \sigma(N)'$. Set $e = uu^* \in \pi(N)' \cap M$ and $f = u^*u \in \sigma(N)' \cap M$. It follows that $u^*e\pi(x)eu = f\sigma(x)f$ for all $x \in N$. Finally, $\tau(e) = \tau(f) > 1-t$. \Box

For each t > 0, we now choose a critical $r = r_t > 0$ dependent on t as in Theorem 1.1.

We now need some notation.

Notation 1.2. (a) If $\eta \in (M_k^{sa}(\mathbb{C}))^p$ and r > 0, then

 $\Theta_r(\eta) = \{ \xi \in (M_k^{\operatorname{sa}}(\mathbb{C}))^p : \text{for some } u \in U_k, \|\xi - u^* \eta u\|_2 < r \}.$

(b) If $\eta \in (M_k^{sa}(\mathbb{C}))^p$ and $\kappa, s > 0$, then $\mathscr{G}_{\kappa,s}(\eta)$ consist of all *p*-tuples ξ such that there exists projections $e, f \in M_k^{sa}(\mathbb{C})$ and $w \in M_k(\mathbb{C})$ with $w^*w = e, ww^* = f$, $\operatorname{tr}_k(e) = \operatorname{tr}_k(f) > s$ and $\|we\xi ew^* - f\eta f\|_2 < \kappa$.

Lemma 1.3. For any $\kappa, t > 0$ there exists $m \in \mathbb{N}$ such that if $\xi, \eta \in \Gamma_R(X; m, k, m^{-1})$ and $\xi \in \Theta_{r_t}(\eta)$, then $\xi \in \mathcal{G}_{\kappa, 1-t}(\eta)$.

Proof. We proceed by contradiction. Assume that there exists some $\kappa_0, t_0 > 0$ such that for each $m \in \mathbb{N}$ there are $k_m \in \mathbb{N}$ and $\xi_m, \eta_m \in \Gamma_R(X; m, k_m, m^{-1})$ with

$$\xi_m \in \Theta_r(\eta_m)$$
 and $\xi_m \notin \mathscr{G}_{\kappa_0, 1-t_0}(\eta_m)$,

where $r = r_{t_0}$. Fix a free ultrafilter ω , and consider the ultraproduct

$$R^{\omega} = \prod_{m=1}^{\omega} M_{k_m}(\mathbb{C}) = \frac{\prod_{m=1}^{\infty} M_{k_m}(\mathbb{C})}{\{\langle x_m \rangle_{m=1}^{\infty} : \lim_{m \to \infty} \operatorname{tr}_{m_k}(x_m^* x_m) = 0\}}$$

Denote by $Q: \prod M_{k_m} \to R^{\omega}$ the quotient map. Set $\xi = \langle \xi_m \rangle_{m=1}^{\infty}$ and $\eta = \langle \eta_m \rangle_{m=1}^{\infty}$.

For each m we can find a $k_m \times k_m$ unitary u_m such that $||u_m^* \xi_m u_m - \eta||_2 < r$. Set $u = \langle u_m \rangle_{m=1}^{\infty}$. It follows that there exist two normal faithful trace-preserving *-homomorphisms $\pi, \sigma \colon N \to R^{\omega}$ such that $\pi(X) = Q(U)^* Q(\xi) Q(U)$ and $\sigma(X) = Q(\eta)$. Clearly $\|\pi(X) - \sigma(X)\|_2 < r$. By Theorem 1.1 there exist projections $e \in \pi(N)' \cap R^{\omega}$, $f \in \sigma(N)' \cap R^{\omega}$ and a partial isometry $v \in R^{\omega}$ with initial domain e and final range f such that for all $x \in N$, $ve\pi(x)ev^* = f\sigma(x)f$ and $\tau(e) = \tau(f) > 1 - t_0$. v is a partial isometry and $\tau(v^*v) = \tau(e) > 1 - t_0$. There exist sequences of projections $\langle e_m \rangle_{m=1}$ and $\langle f_m \rangle_{m=1}^{\infty}$ such that for each m, $e_m, f_m \in M_{k_m}(\mathbb{C})$ and $Q(\langle e_m \rangle_{m=1}^{\infty}) = e, Q(\langle f_m \rangle_{m=1}^{\infty}) = f$. Similarly there exists a sequence of partial isometries $\langle v_m \rangle_{m=1}^{\infty}$ such that for each $m, v_m \in M_{k_m}(\mathbb{C})$ and $Q((v_m)_{m=1}^{\infty}) = v$. We can also arrange that $v_m v_m^* = f_m$ and $v_m^* v_m = e_m$ for each *m*. Now, the equation $ve\pi(x)ev^* = f\sigma(x)f$, $x \in M$, implies in particular that $\|v_{m_{\lambda_0}}e_{m_{\lambda_0}}\xi_{m_{\lambda_0}}e_{m_{\lambda_0}}v_{m_{\lambda_0}}^* - f_{m_{\lambda_0}}\eta_{m_{\lambda}}f_{m_{\lambda_0}}\|_2 < \kappa_0$ for some $\lambda_0 \in \omega$, and that the normalized trace of both $f_{m_{\lambda_0}}$ and $e_{m_{\lambda_0}}$ is strictly greater than $1 - t_0$. But this means that $\xi_{m_{\lambda_0}} \in \mathscr{G}_{\kappa_0, 1-t_0}(\eta)$, which contradicts our initial assumption.

Remark 1.4. Observe that in Lemma 1.3 the quantity r_t is independent of κ .

2. The main estimate

In this section we maintain the notation for \mathbb{K}_{ε} introduced in [15] taken now with respect to the microstate spaces with the operator norm cutoffs. Set $K = ||X||_2$. We first state a technical lemma on the covering numbers for the spaces $\mathcal{G}_{\kappa,s}(\eta)$.

Lemma 2.1. If $\eta \in (M_k^{sa}(\mathbb{C}))^p$ and $\varepsilon, \kappa, s > 0$ with $\varepsilon > \kappa$, then there exists a 5K ε -net for $\mathscr{G}_{\kappa,s}(\eta)$ with cardinality no greater than

$$\left(\frac{2\pi}{\varepsilon}\right)^{2k^2 - s^2k^2} \cdot \left(\frac{K+1}{\varepsilon}\right)^{4(1-s)^2k^2}$$

Proof. Find the smallest $m \in \mathbb{N}$ such that $sk \leq m \leq k$. Denote by V the set of partial isometries in $M_k(\mathbb{C})$ whose range has dimension m. Denote by P_m the set of projections of trace mk^{-1} . It follows from [23] that there exists an ε -net for P_m (with respect to the operator norm) with cardinality no greater than $(\frac{2\pi}{\varepsilon})^{k^2 - m^2 - (k-m)^2}$. There exists again by [23] an ε -net for the unitary group of $M_m(\mathbb{C})$ (with respect to the operator norm) with cardinality no greater than $(\frac{2\pi}{\varepsilon})^{m^2}$. These two facts imply that there exists an ε -net $\langle v_{jk} \rangle_{j \in J_k}$ for V with respect to the operator norm such that

$$\#J_k < \left(\frac{2\pi}{\varepsilon}\right)^{4km - 3m^2}$$

Now fix $j \in J_k$. Denote by $G(\eta, j)$ the set of all $\xi \in (M_k^{sa}(\mathbb{C}))^p$ such that $\|\xi\|_2 \leq K$ and $\|v_{jk}(e_{jk}\xi e_{jk})v_{jk}^* - f_{jk}\eta f_{jk}\|_2 < 5K\varepsilon$ where $e_{jk} = v_{jk}^*v_{jk}$ and $f_{jk} = v_{jk}v_{jk}^*$. There exists a 2ε -cover $\langle\xi_{ijk}\rangle_{i\in\theta(j)}$ for $G(\eta, j)$ such that $\#\theta(j) < \left(\frac{K+1}{\varepsilon}\right)^{4(1-s)^2k^2}$.

Consider the set $\{\xi_{ijk}\}_{i \in \theta(j), j \in J_k}$. It is clear that this set has cardinality no greater than

$$\left(\frac{2\pi}{\varepsilon}\right)^{4km-3m^2} \cdot \left(\frac{K+1}{\varepsilon}\right)^{4(1-s)^2k^2}$$

It remains to show that this set is a $5K\varepsilon$ -cover for $\mathscr{G}_{\kappa,s}(\eta)$. Towards this end suppose that $\xi \in \mathscr{G}_{\kappa,s}(\eta)$. Then there exists a partial isometry $v \in M_k(\mathbb{C})$ such that $v^*v = e$, $vv^* = f$, $\|ve\xi ev^* - f\eta f\|_2 < \kappa$, and $\operatorname{tr}_k(e) = \operatorname{tr}_k(f) > s$. By cutting the domain and range of the projection, we can assume that e and f are projections onto subspaces of dimension exactly m and that the inequality with tolerance κ is preserved. Obviously $v \in V$, whence there exists $j_0 \in J_k$ such that $\|v_{j_0k} - v\| < \varepsilon$. This condition immediately implies that $\|v_{j_0k} - ve\|$, $\|f_{j_0k} - f\| < 2\varepsilon$ and thus

$$\|v_{j_0k}e_{j_0k}\xi e_{j_0k}v_{j_0k}^* - f_{j_0k}\eta f_{j_0k}\|_2 \le 4\varepsilon K + \|ve\xi ev^* - f\eta f\|_2 < 5K\varepsilon.$$

By definition, $\xi \in G(\eta, j_0)$. Thus, there exists some i_0 such that $i_0 \in \theta(j_0)$ and $\|\xi_{i_0j_0k} - \xi\|_2 < 5K\varepsilon$.

We can now prove the main result of the paper:

Theorem 2.2. Let N be a diffuse, property T von Neumann algebra with a finite set of selfadjoint generators X, and let R^{ω} be an ultrapower of the hyperfinite II₁ factor.

(a) If N has an embedding into R^{ω} , then $\delta_0(X) = 1$.

(b) If N has no embedding into R^{ω} , then $\delta_0(X) = -\infty$.

Proof. Fix 1 > a > 0. For any $\varepsilon > 0$, setting $\kappa = \varepsilon$ and t = 1 - a in Lemma1.3 shows that there exists $m \in \mathbb{N}$, $m > p^2$, such that if ξ , $\eta \in \Gamma_R(X; m, k, m^{-1})$ and $\xi \in \Theta_{r_a}(\eta)$, then $\xi \in \mathscr{G}_{\varepsilon,1-a}(\eta)$. Consider the ball B_k of $(M_k^{sa}(\mathbb{C}))^p$ of $\|\cdot\|_2$ -radius K + 1. For each k find an r_a -net $\langle \eta_{jk} \rangle_{j \in J_k}$ of $\Gamma_R(X; m, k, m^{-1})$ with minimal cardinality such that each element of the net lies in $\Gamma(X; m, k, m^{-1})$. The standard volume comparison test of this set with B_k (remember that $\Gamma_R(X; m, k, m^{-1}) \subset (M_k^{sa}(\mathbb{C}))_K^p$) implies that

$$\#J_k \le \left(\frac{K+2}{r_a}\right)^{pk^2}$$

For each such $j \in J_k$ find a 5*K* ε -net $\langle \xi_{ij} \rangle_{i \in \theta(j)}$ for $\mathscr{G}_{\varepsilon,1-a}(\eta_{jk})$ where $\theta(j)$ is an indexing set satisfying

$$#\theta(j) \le \left(\frac{2\pi}{\varepsilon}\right)^{2k^2 - (1-a)^2k^2} \cdot \left(\frac{K+2}{\varepsilon}\right)^{4a^2k^2}.$$

276

Consider now the set $\langle \xi_{ij} \rangle_{i \in \theta(j), j \in J_k}$. It is clear that this set has cardinality no greater than

$$\left(\frac{K+2}{r_a}\right)^{pk^2} \left(\frac{2\pi}{\varepsilon}\right)^{(1+2a-a^2)k^2} \cdot \left(\frac{K+2}{\varepsilon}\right)^{4a^2k^2}$$

Moreover, if $\xi \in \Gamma_R(X; m, k, m^{-1})$, then there exists some $j_0 \in J_k$ such that $\|\xi - \eta_{j_0k}\|_2 < r_a$. Clearly $\xi \in \Theta_{r_a}(\eta_{j_0k})$, which implies that $\xi \in \mathcal{G}_{\varepsilon,1-a}(\eta_{j_0k})$. Consequently there exists some $i_0 \in \theta(j_0)$ such that $\|\xi - \xi_{i_0j_0}\|_2 < 5K\varepsilon$. Therefore, $\langle \xi_{ij} \rangle_{i \in \theta(j), j \in J_k}$ is a $5K\varepsilon$ -net for $\Gamma_R(X; m, k, m^{-1})$.

The preceding paragraph implies that for $\varepsilon > 0$,

$$\mathbb{K}_{5K\varepsilon}(X) \leq \limsup_{k \to \infty} k^{-2} \cdot \log\left[\left(\frac{K+2}{r_a}\right)^{pk^2} \left(\frac{2\pi}{\varepsilon}\right)^{(1+2a-a^2)k^2} \cdot \left(\frac{K+2}{\varepsilon}\right)^{4a^2k^2}\right]$$
$$= p|\log r_a| + (1+2a-a^2)|\log \varepsilon| + \log[(2\pi)^2(K+2)^{p+4}].$$

Keeping in mind that a and ε are independent it now follows from [15]

$$\begin{split} \delta_0(X) &= \limsup_{\varepsilon \to 0} \frac{\mathbb{K}_{\varepsilon}(X)}{|\log \varepsilon|} \\ &= \limsup_{\varepsilon \to 0} \frac{\mathbb{K}_{5K\varepsilon}(X)}{|\log \varepsilon|} \\ &\leq \limsup_{\varepsilon \to 0} p \cdot \frac{|\log r_a|}{|\log \varepsilon|} + 1 + 2a - a^2 + \frac{\log((2\pi)^2 (K+2)^{p+4})}{|\log \varepsilon|} \\ &= 1 + 2a - a^2. \end{split}$$

As 1 > a > 0 was arbitrary, $\delta_0(X) \le 1$. The rest of the assertions follow from [14].

Remark 2.3. For $\varepsilon > 0$ consider the set $X + \varepsilon S = \{x_1 + \varepsilon s_1, \dots, x_n + \varepsilon s_n\}$ where $\{s_1, \dots, s_n\}$ is a semicircular family free with respect to X. In [3] it is shown that for sufficiently small $\varepsilon > 0$ the von Neumann algebras M^{ε} generated by $X + \varepsilon S$ are not isomorphic to the free group factors and yet, if X'' embeds into the ultraproduct of the hyperfinite II₁ factor, then $\chi(X + \varepsilon S) > -\infty$. Theorem 2.2 implies that if X'' embeds into the ultraproduct of the hyperfinite II₁ factor, then ultraproduct of the hyperfinite II₁ factor, then M^{ε} cannot have property T. Also observe that the usual rigidity/deformation argument shows that for sufficiently small $\varepsilon > 0$, there exists a II₁ property T subfactor N^{ε} of M^{ε} .

Remark 2.4. Unfortunately, we were not able to settle the question of whether N must be strongly 1-bounded in the sense of [16].

Acknowledgment. The authors would like to thank Adrian Ioana, Jesse Peterson, and Sorin Popa for useful conversations.

References

- M. E. B. Bekka and A. Valette, Group cohomology, harmonic functions and the first L²-Betti number. *Potential Anal.* 6 (1997), 313–326. Zbl 0882.22013 MR 1452785
- [2] P. Biane, M. Capitaine, and A. Guionnet, Large deviation bounds for matrix Brownian motion. *Invent. Math.* 152 (2003), 433–459. Zbl 1017.60026 MR 1975007
- [3] N. P. Brown, Finite free entropy and free group factors. *Internat. Math. Res. Notices* 2005 (2005), 1709–1715. Zbl 1091.46041 MR 2172338
- [4] J. Cheeger and M. Gromov, L₂-cohomology and group cohomology. *Topology* 25 (1986), 189–215. Zbl 0597.57020 MR 837621
- [5] E. Christensen, Subalgebras of a finite algebra. Math. Ann. 243 (1979), 17–29.
 Zbl 393.46049 MR 543091
- [6] A. Connes, A factor of type II₁ with countable fundamental group. J. Operator Theory 4 (1980), 151–153. Zbl 0455.46056 MR 587372
- [7] A. Connes and V. Jones, Property T for von Neumann algebras. *Bull. London Math. Soc.* 17 (1985), 57–62. MR 766450
- [8] A. Connes and D. Shlyakhtenko, L²-homology for von Neumann algebras. J. Reine Angew. Math. 586 (2005), 125–168. Zbl 1083.46034 MR 2180603
- [9] D. Gaboriau, Coût des relations d'équivalence et des groupes. *Invent. Math.* 139 (2000), 41–98. Zbl 0939.28012 MR 1728876
- [10] L. Ge, Free probability, free entropy and applications to von Neumann algebras. In *Proc. Internat. Congr. Math.* (Beijing, 2002), Vol. II, Higher Education Press, Beijing 2002, 787–794. Zbl 1029.46104 MR 1957085
- [11] L. Ge and J. Shen, On free entropy dimension of finite von Neumann algebras. *Geom. Funct. Anal.* **12** (2002), 546–566. Zbl 1040.46043 MR 1924371
- [12] M. Gromov, *Geometric group theory* (Sussex, 1991), vol. 2: Asymptotic invariants of infinite groups. London Math. Soc. Lecture Note Ser. 182, Cambridge University Press, Cambridge 1993. Zbl 0841.20039 MR 1253544
- [13] A. Ioana, J. Peterson, and S. Popa, Amalgamated free products of *w*-rigid factors and calculation of their symmetry groups. Preprint 2005.
- K. Jung, The free entropy dimension of hyperfinite von Neumann algebras. *Trans. Amer. Math. Soc.* 355 (2003), 5053–5089. Zbl 1028.46096 MR 1997595
- [15] K. Jung, A free entropy dimension lemma. *Pacific J. Math.* 211 (2003), 265–271.
 Zbl 1058.46044 MR 2015736
- [16] K. Jung, Strongly 1-bounded von Neumann algebras. Geom. Funct. Anal., to appear.
- [17] D. A. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups. *Funktsional. Anal. i Prilozhen.* 1 (1967), 71–74; English transl. *Functional Anal. Appl.* 1 (1967), 63–65. Zbl 0168.27602 MR 0209390
- [18] W. Lück, L²-invariants: theory and applications to geometry and K-theory. Ergeb. Math. Grenzgeb. (3) 44, Springer-Verlag, Berlin 2002. Zbl 1009.55001 MR 1926649

- [19] N. Ozawa, There is no separable universal II₁-factor. *Proc. Amer. Math. Soc.* **132** (2004), 487–490. Zbl 1041.46045 MR 2022373
- [20] S. Popa, A short proof of "injectivity implies hyperfiniteness" for finite von Neumann algebras. J. Operator Theory 16 (1986), 261–272. Zbl 0638.46043 MR 860346
- [21] S. Popa, On a class of type II₁ factors with Betti numbers invariants. Ann. of Math. (2) 163 (2006), 809–899. Zbl 05051316 MR 2215135
- [22] S. Popa, A. M. Sinclair, and R. R. Smith, Perturbations of subalgebras of type II₁ factors.
 J. Funct. Anal. 213 (2004), 346–379. Zbl 1063.46047 MR 2078630
- [23] S. J. Szarek, Metric entropy of homogeneous spaces. In *Quantum probability* (Gdańsk, 1997), Banach Center Publ. 43, Polish Acad. Sci., Warsaw 1998, 395–410. Zbl 0927.46047 MR 1649741
- [24] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory, II. *Invent. Math.* **118** (1994), 411–440. Zbl 0820.60001 MR 1296352
- [25] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory III: The absence of Cartan subalgebras. *Geom. Funct. Anal.* 6 (1996), 172–199. Zbl 0856.60012 MR 1371236
- [26] D. Voiculescu, Free entropy dimension ≤ 1 for some generators of property T factors of type II₁. J. Reine Angew. Math. **514** (1999), 113–118. Zbl 0959.46047 MR 1711283
- [27] D. Voiculescu, Free entropy. Bull. London Math. Soc. 34 (2002), 257–278. Zbl 1036.46051 MR 1887698

Received October 19, 2006

Department of Mathematics, University of California, Los Angeles, CA 90095-1555, U.S.A.

E-mail: kjung@math.ucla.edu, shlyakht@math.ucla.edu