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Any generating set of an arbitrary property T
von Neumann algebra has free entropy dimension < 1

Kenley Jung and Dimitri Shlyakhtenko*

Abstract. Suppose that N is a diffuse, property T von Neumann algebra and X is an arbitrary
finite generating set of selfadjoint elements for N. By using rigidity/deformation arguments
applied to representations of N in ultraproducts of full matrix algebras, we deduce that the
microstate spaces of X are asymptotically discrete up to unitary conjugacy. We use this de-
scription to show that the free entropy dimension of X, 8o(X) is less than or equal to 1. It
follows that when N embeds into the ultraproduct of the hyperfinite II; factor, then §o(X) = 1
and otherwise, §o(X) = —oo. This generalizes the earlier results of Voiculescu, and Ge,
Shen pertaining to SL;, (Z) as well as the results of Connes, Shlyakhtenko pertaining to group
generators of arbitrary property T algebras.
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Introduction

In [24] and [25], Voiculescu introduced the notion of free entropy dimension. For
X a finite set of self-adjoint elements of a tracial von Neumann algebra, §o(X) is a
kind of asymptotic Minkowski dimension of the set of matricial microstates for X.
These notions led to the solution of several old operator algebra problems (see [27]
for an overview). Closely tied to this is the invariance question for §o which asks the
following. If X and Y are two finite sets of selfadjoint elements generating the same
tracial von Neumann algebra, then is it true that §o(X) = 8(Y)?

For certain X one can compute (X ) and answer the invariance question in the
affirmative. Suppose that N = W*(X) is diffuse and embeds into the ultraproduct
of the hyperfinite II; factor. Then §o(X) = 1 when N has property I, or has a Cartan
subalgebra, or is nonprime, or can be decomposed as an amalgamated free product of
these algebras over a common diffuse subalgebra (see [11], [14], [16], [25]).

Another class of algebras to investigate in regard to possible values of 6o(X) and
the invariance question are those with Kazhdan’s property T ([7], [17], [20]). These
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first appeared in the von Neumann algebra context in Connes’ seminal work [6]. In
recent years, Popa introduced the technique of playing the rigidity properties of such
algebras against deformation results; this has led to a number of significant advances
in the theory of von Neumann algebras ([20], [21], [13]).

Voiculescu made the first computations of 6o for property T factors by showing that
if x1, ..., x, are diffuse, selfadjoint elements in a tracial von Neumann algebra such
thatforeach1 <i <n—1,x;X;+1 = Xj+1X;i, then §o(x1,...x,) < 1(see[26]). For
n > 3, there exists a finite set of generators X,, for the group algebra C SL,,(Z) with
this property (this was first used in the context of measurable equivalence relations
by Gaboriau [9] to prove that their cost is at most 1). Hence L(SL,(Z)) has a set of
generators X for which §o(X) < 1. This was generalized in [11] (see also [10] and
references therein) where Ge and Shen weakened the conditions on the generators Xx;
and in particular obtained the stronger statement that §o(Y) < 1 for any other set Y
of self-adjoint generators of the von Neumann algebra. However, all of these results
rely on the special algebraic properties of certain generators (e.g. in SL, (Z)) and thus
do not apply to the more general property T groups or von Neumann algebras.

In [8] a notion of L2-cohomology for von Neumann algebras was introduced, and
the values of the resulting L2-Betti numbers were connected with free probability
and the value of &y. Indeed, using cohomological ideas, it was proved in [8] that if
X C CT is an arbitrary set of generators, then

8o(X) < BP(T) — B (T) + 1.

Here ﬁj(z)(F) are the Atiyah—Cheeger—-Gromov £2-Betti numbers of I (see e.g. [18]).
This inequality is quite complicated to prove; indeed, one first proves the same in-
equality with &g replaced by its “non-microstates” analog §*, and then uses a highly
nontrivial result of Biane, Capitaine, Guionnet [2] that implies 5o < 6*.

In the case that T" has property T, the first £2-Betti number vanishes (see [12],
[1], [4]). So for I an infinite group, one has §o(X) < 1 for any finite generating
set X C CI'. However, even in this case, an “elementary” proof of this bound was
not available and, moreover, it was not known whether 6o(X) < 1 for any finite
generating set X C L(I").

Our result settles the question of the value of §o(X) for an arbitrary set of self-
adjoint generators of a property T factor in full generality:

Theorem. Suppose that N is a diffuse, property T von Neumann algebra with a
finite set of selfadjoint generators X, and let R® be an ultrapower of the hyperfinite
II; factor. Then §o(X) < 1. Moreover, if N has an embedding into R®, then
80(X) =1, and if N has no embedding into R®, then §o(X) = —oo.

Note that this result shows that the value of the free entropy dimension & is
independent of the choice of generators of N. In particular, one gets as a corollary
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that if T is any infinite discrete group with property T, and X is any set of self-adjoint
generators of the group von Neumann algebra L(I") (we do not make the assumption
that X C CT here), then §o(X) = 1 or —oo, depending on whether I embeds into
the unitary group of R®.

The proof of the main theorem relies on a deformation/rigidity argument in the
style of Popa, which is used to prove that the set of unitary conjugacy classes of
embeddings of a property T von Neumann algebra N into the ultrapower of the
hyperfinite II; factor is discrete. This fact can then be employed to show that if
X C N is a set of self-adjoint generators, then any k x k matricial microstate for X
essentially lies in the unitary orbit of a certain discrete set .S, all of whose elements
are at least a certain fixed distance apart. One then turns this into an estimate for
the packing dimension of the microstate space for X. We prove, effectively, that
the packing dimension of the microstate set is essentially the same as that of a small
number of disjoint copies of the k-dimensional unitary group.

1. Property T, embeddings, and unitary orbits

Throughout this section and the next we fix a property T finite von Neumann algebra
N and a finite p-tuple of selfadjoint generators X C N. | - ||» denotes the L?-norm
induced by a specified trace on a von Neumann algebra. M;*(C) denotes the set of
selfadjoint k x k matrices, M} (C) denotes the set of k x k matrices, and tr is the trace
on My (C). Ifté = {y1,...,yp}andn = {z1, ..., z,} are p-tuples in a von Neumann
algebra and u, w are elements in a tracial von Neumann algebra, then § —n =
D1 = Z1eeee s Yp — Zph uEw = fuyrw, .. uypw), and €2 = (X2, 1y;12)°.
R > 0 will be a fixed constant greater than any of the operator norms of the elements
in X. Tr(X;m,k,y) will denote the standard microstate spaces introduced in [24].

The following theorem, stated for the reader’s convenience, is by now among the
standard results in the theory of rigid factors. Such deformation-conjugacy arguments
have played a fundamental role in the recent startling results of Popa and others ([13],
[19], [21], [22]).

Theorem 1.1. Let X and N be as above. Then foranyt > 0 there exists a correspond-
ing ry > 0 so that if (M, ) is a tracial von Neumann algebra and &, 0: N — M
are normal faithful trace-preserving *-homomorphisms such that for all x € X,
|7 (x) —0o(x)||2 < 1y, then there exist projectionse € t(NY "M, f e o(N) NM,
a partial isometry v € M such that v:v = e, vv* = f, t(e) > 1 — ¢, and for all
x € N, ver(x)ev* = fo(x)f.

Proof. Recall (see [7] for the factor case or [21], Proposition 4.1.3°, for the general
case) that there exist K,g9 > 0, and a finite set F C N such thatif 0 < § < g
and H is a correspondence of N with a vector § € H satisfying ||z§ — &z, < 6,
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I(-& &) —tnll <6, [(E-,&) — tall < 8, z € F, then there exists a vector n € H
which is central for N and ||n — £]|» < K.

Choose r; so small so that if p;, p: N — M are any two faithful, normal trace
preserving *-homomorphisms such that ||p;(x) — p2(x)|2 < r; for all x € X, then
llp1(2) — p2(2)|l2 < min{t, g0} - (4K)~! for all z € F. This can be done because X
generates N.

Suppose that 7, 0: N — M are two normal, faithful trace-preserving *-homo-
morphisms such that ||7(x) — o (x)||» < r; for all x € X. Consider L?(M) as an
N — N bimodule where for any § € L?2(M), x,y € N, xéy = n(x)Jo(y)*JE.
Denote by 137 the vector associated to the unit of M. The hypothesis on & and o
guarantee thatforall x € F, ||x1p—1prx|2 = ||w(x)—0(x)|l2 < min{z, go}-(4K)™?
and moreover that (x1as, 1p7) = (Ipx, 1p) = tn(x), which in turn implies the
existence of a central vector n9 € L?(M) for N such that |y — lyl|l2 < t/4.
Regard 1o as an unbounded operator on L?(M) by its left action. If no = u|no|
is the polar decomposition of 7g, then u € M and ||no — 1|2 < t/4 implies that
lu—1ar]l2 < t/2andso ||u*u — 1pr]|2 < t. On the other hand, since for any x € N,
XNo = Nox, one concludes in the usual way that xu = ux. Consequently, uu™ €
a(N) andu*u € o(N)'. Sete =uu* e a(NYNM and f =u*u € o(N)NM. It
follows thatu*em(x)eu = fo(x) f forallx € N. Finally, t(e) = t(f) > 1—¢t. O

For each t+ > 0, we now choose a critical r = r; > 0 dependent on ¢ as in
Theorem 1.1.
‘We now need some notation.

Notation 1.2. (a) If n € (M*(C))? and r > 0, then
O,(n) = {& € (M*(C))? : for some u € Uy, ||§ — u*nully <rj.

(b)Ifn € (M;*(C))? and k, s > 0, then G, 5(n) consist of all p-tuples & such that
there exists projections e, f € M;*(C) and w € My (C) with w*w = e, ww* = f,
trg(e) = trp(f) > s and ||wefew™ — fnfl. < k.

Lemma1.3. Foranyk,t > Othereexistsm € Nsuchthatif €, n € Tr(X;m,k,m™1)
and § € Oy, (n), then § € G, 1—+(n).

Proof. We proceed by contradiction. Assume that there exists some kg, fp > 0 such
that for each m € N there are k,, € N and &,,, n, € Tr(X;m, k. m™1) with

§m € Or(nm) and  Em & Gig,1-10(m),
where r = ry,. Fix a free ultrafilter @, and consider the ultraproduct

[To=1 Mk, (T)

{(om)0_; < limg, trm, (X} Xm) = 0}

R® =My, (©) =
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Denote by Q: [[ Mk,, — R® the quotient map. Set § = (§,)5_, and n =
()55

For each m we can find a k,, x k,, unitary u,, such that ||u} &,um — 0|2 < .
Set u = (up)ye_;. It follows that there exist two normal faithful trace-preserving
x-homomorphisms 7,06: N — R® such that 7(X) = QU)*Q(&)Q(U) and
o(X) = Q(n). Clearly ||7(X) —o(X)|2 < r. By Theorem 1.1 there exist pro-
jections e € (N) N R?, f € 0(N) N R® and a partial isometry v € R® with
initial domain e and final range f such that for all x € N, ven(x)ev* = fo(x)f
and 7(¢) = ©(f) > 1 — 1. v is a partial isometry and t(v*v) = 1(e) > 1 — fo.
There exist sequences of projections (e, )m=1 and (fm)s—; such that for each m,
em, fm € Mg, (C)and Q({em)o—) =€, O fm)o=y) = f. Similarly there exists
a sequence of partial isometries (vy,)5r—, such that for each m, v, € My, (C) and
O((vm)ye—y) = v. We can also arrange that v,,v;;, = fm and v, v, = ey for
each m. Now, the equation verr(x)ev* = fo(x)f, x € M, implies in particular
that ||vaOemAO$mAOemlo v,’;AO — f"uo Nm, fmAO |l < ko for some Ay € w, and that
the normalized trace of both f, 20 and e, 0 is strictly greater than 1 — #y. But this
means that &, a0 € Yio,1—1o (1), which contradicts our initial assumption. O

Remark 1.4. Observe that in Lemma 1.3 the quantity r; is independent of «.

2. The main estimate

In this section we maintain the notation for K, introduced in [15] taken now with
respect to the microstate spaces with the operator norm cutoffs. Set K = || X|,. We
first state a technical lemma on the covering numbers for the spaces §; (7).

Lemma2.1. Ifn € (M,ia (C))? ande,k,s > Owithe > k, then there exists a 5K e-net
for 8 s(n) with cardinality no greater than

2_4212 — 252
(27_[)216 s<k (K+1)4(1 s)“k
& & .

Proof. Find the smallest m € N such that sk < m < k. Denote by V' the set of
partial isometries in My (C) whose range has dimension m. Denote by P, the set of
projections of trace mk . It follows from [23] that there exists an &-net for P,, (with
respect to the operator norm) with cardinality no greater than (27”)"2_”‘2_("_’”)2.
There exists again by [23] an &-net for the unitary group of M, (C) (with respect to

. . 2 .
the operator norm) with cardinality no greater than (ZT”)’" . These two facts imply
that there exists an e-net (v;x);es, for V with respect to the operator norm such that

2 4km—3m?
#Jk < (—) .
&
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Now fix j € Ji. Denote by G(n, j) the setof all§ € (M;*(C))” suchthat [|§]> < K
and ||vjk(ejk§ejk)v;.‘k — fixnfikll2 < 5Ke where ej; = vj’.“kvjk and fjx = vjkv;k.

—_)2k2
There exists a 2e-cover (§;k)ieo(;) for G(n, j) such that #0(j) < (ﬁ)“(1 kS

&
Consider the set (§;k)ieo()), jeJ, - Itis clear that this set has cardinality no greater

than 5 s
(2n)4km—3m (K + 1)4(1-3‘) k
& & ’

It remains to show that this set is a 5K e-cover for G (). Towards this end suppose
that £ € G, 5(n). Then there exists a partial isometry v € My (C) such that v*v = e,
vu* = f, |lvefev* — fnflla < k, and trg(e) = trx(f) > s. By cutting the
domain and range of the projection, we can assume that e and f are projections
onto subspaces of dimension exactly m and that the inequality with tolerance « is
preserved. Obviously v € V', whence there exists jo € Ji such that [|[v;x —v| < e.
This condition immediately implies that ||v;,xejox — vell, || fjok — f || < 2& and thus

”vjokejokéejokvjok — fiokfjokll2 < 4eK + |lvebev™ — fnfll> < 5Ke.

By definition, £ € G(7, jo). Thus, there exists some iy such that iy € 0(jo) and
I&igjok — Ell2 < 5Ke. O

We can now prove the main result of the paper:

Theorem 2.2. Let N be a diffuse, property T von Neumann algebra with a finite set
of selfadjoint generators X, and let R® be an ultrapower of the hyperfinite 111 factor.
(a) If N has an embedding into R?, then 5o(X) = 1.
(b) If N has no embedding into R®, then §o(X) = —oo.

Proof. Fix1 > a > 0. For any ¢ > 0, setting k = ¢ and f = 1 — a in Lemmal.3
shows that there exists m € N, m > p?, such thatif £, n € Tr(X;m,k,m™') and
§ € Or,(n), then § € G,1_4(n). Consider the ball By of (M;*(C))? of || - ||-radius
K + 1. For each k find an rg-net (n;x)jes, of Tr(X;m,k,m™") with minimal
cardinality such that each element of the net lies in I'(X; m, k, m~1). The standard
volume comparison test of this set with By (remember that I'g(X; m, k, m_l) C

(M*(C))%) implies that
K +2\?*
#Jp < ( ) .

Ta

For each such j € Ji find a 5Ke-net (§;;);cq(;) for Ge1—a(njr) where 0(j) is an
indexing set satisfying

2k2—(1—a)%k? 4a2k2
. 2 K+2
#0 < | = . )
)= ( & ) ( )

&
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Consider now the set (&;;);cq(;),jeJ, - Itis clear that this set has cardinality no greater

than k2 (14+2a—a?)k? 4a?k?
(K+2)” (27[) (K+2)
Fq & & '

Moreover, if £ € Tgr(X;m,k,m™"), then there exists some jo € Jx such that
1€ = njokll2 < ra. Clearly & € ©,,(n),k), which implies that £ € &, 1o (1/k)-
Consequently there exists some ig € 6(jo) such that [|§ — & j,|l2 < 5Ke. Therefore,
(§ij)ico(j),jes, is a 5Ke-net for Tr(X;m, k,m™").

The preceding paragraph implies that for & > 0,

K + 2\ 7% (1+2a—a?)k? 122K2
Ksgxe(X) < limsupk™2 - log [( + ) (2_71) . (K + 2) :|

k—o00 Ta & &

= p|logrs| + (1 + 2a — a®)|loge| + log[(2m)* (K + 2)P14].

Keeping in mind that a and ¢ are independent it now follows from [15]

Ke(X
8o(X) = lim sup e(X)
=0 |10g€|
= lim sup Ksxe(X)
=0 |10g8|
Elimsupp-|0gr“|+1+2a_a2+Og((”)( +2)P™%)
e—>0 |0gs| |log5|
=1+ 2a—ad%

As 1 > a > 0 was arbitrary, §o(X) < 1. The rest of the assertions follow from [14].
O

Remark 2.3. For ¢ > 0 consider the set X + &S = {x; + &51,..., X, + &s,} where
{$1,...,8,} is a semicircular family free with respect to X. In [3] it is shown that
for sufficiently small ¢ > 0 the von Neumann algebras M ¢ generated by X + ¢S are
not isomorphic to the free group factors and yet, if X” embeds into the ultraproduct
of the hyperfinite II; factor, then y(X + &S) > —oo. Theorem 2.2 implies that if
X" embeds into the ultraproduct of the hyperfinite II; factor, then M* cannot have
property T. Also observe that the usual rigidity/deformation argument shows that for
sufficiently small ¢ > 0, there exists a II; property T subfactor N¢ of M?.

Remark 2.4. Unfortunately, we were not able to settle the question of whether N
must be strongly 1-bounded in the sense of [16].
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