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The first Hochschild cohomology group of quantum matrices
and the quantum special linear group
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Abstract. We calculate the first Hochschild cohomology group of quantum matrices, the
quantum general linear group and the quantum special linear group in the generic case when
the deformation parameter is not a root of unity. As a corollary, we obtain information about
twisted Hochschild homology of these algebras.
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Introduction

There has been interest recently in calculating Hochschild homology and cohomol-
ogy for certain quantum groups and quantum algebras, see, for example, papers by
Hadfield and Krähmer [6], [7], and Brown and Zhang [2]. In this paper, we begin to
study the Hochschild cohomology of the algebra of quantum matrices, Oq.Mn/, in the
generic case where q is not a root of unity. To be more specific, we calculate the first
Hochschild cohomology, HH1.Oq.Mn//, of Oq.Mn/: in other words, we calculate
the derivations of Oq.Mn/. Once this has been done, we are also able to calculate
HH1 for the quantum general linear group, Oq.GLn/, and the quantum special linear
group, Oq.SLn/.

Alev and Chamarie [1] have calculated HH1.Oq.M2// directly by using the com-
mutation relations for Oq.M2/. It seems impossible to follow this route in the general
case: the commutation relations one would have to deal with are far too involved.
Thus, we have taken another approach to the problem, by using Cauchon’s theory of
deleting derivations.

Even via this approach, the calculations are necessarily very technical. However,
the idea is relatively easy to follow. The starting point is a result of Osborn and Passman
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[12] that describes the derivations of a quantum torus. In particular, they show that the
first Hochschild cohomology group of the quantum torus with n2 generators is a free
module of rank n2 over the centre of the quantum torus. The key to transfering this
result to Oq.Mn/ is Cauchon’s theory of deleting derivations, introduced in [3], [4].
The algebra Oq.Mn/ is presented in a natural way as an iterated Ore extension in n2

steps. In .n�1/2 of these steps a nontrivial skew derivation is involved. The quantum
torus of rank n2 is a localisation of a quantum affine space of dimension n2. This
quantum affine space is an iterated Ore extension in n2 steps and no skew derivations
are involved in any of the steps. Cauchon shows that one can construct a chain
of algebras, starting from Oq.Mn/ and finishing with a quantum affine space of
dimension n2. At each stage in the construction of this chain of algebras, the two
adjacent algebras are equal up to the inversion of the powers of an element; and so
information can be passed along the chain. However, at .n � 1/2 of the stages, the
newly constructed algebra can be presented as an iterated Ore extension using one
fewer skew derivation. This process can be reversed, and then at .n � 1/2 stages a
skew derivation is re-introduced into the presentation of the algebra as an iterated
Ore extension. Informally, in reintroducing a skew derivation to the presentation, one
loses a derivation from the first Hochschild cohomology group. Thus, by the time one
has re-introduced all .n � 1/2 skew derivations and recovered Oq.Mn/, there remain
n2 � .n�1/2 D 2n�1 derivations in HH1.Oq.Mn//; in other words, HH1.Oq.Mn//

is free of rank 2n � 1 over the centre of Oq.Mn/. The technical problems arise due
to two main problems. First, the formulae involved in the deleting and re-introducing
skew derivations process are awkward to deal with. Secondly, the centres change
along the way.

In the last section, we apply our main result to compute the first Hochschild
cohomology group of the quantum groups Oq.GLn/ and Oq.SLn/.

Regarding the Hochschild homology of Oq.SLn/, Feng and Tsygan have shown
[5] that HHk.Oq.SLn/; Oq.SLn// D 0 for all k � n, whereas the global dimension
of Oq.SLn/ is n2 � 1. In other words, there is a “dimension drop” phenomenon
in the Hochschild homology of Oq.SLn/. To deal with this problem, Hadfield and
Krähmer [6], [7] have shown that one should use the twisted Hochschild homology
defined by Kustermans, Murphy and Tuset [9] rather than classical Hochschild ho-
mology. The twisted Hochschild homology of Oq.SLn/ depends on an automorphism
of Oq.SLn/. When � is the modular automorphism associated to the Haar functional
of Oq.SLn/ ([8], Section 11.3), Hadfield and Krähmer have shown that the twisted
Hochschild homology group of degree n2 � 1 is reduced to the base field K; that is,
HH�

n2�1
.Oq.SLn// D K, so that the “dimension drop” phenomenon disappears. This

result was recently generalised to any connected complex semisimple algebraic group
G by Brown and Zhang [2]. In the last section of this paper, thanks to a (twisted)
Poincaré duality between the twisted Hochschild homology associated to the modular
automorphism and the Hochschild cohomology of Oq.SLn/ [7], [14] we derive new
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information on the twisted Hochschild homology of Oq.SLn/: roughly speaking, we
show that, when G is a connected complex semisimple algebraic group of type A,
the rank of the algebraic group G appears as a twisted homological invariant of the
quantised coordinate ring of G.

In an earlier paper [10] we have calculated the automorphism group of Oq.Mm;n/

in the case that m ¤ n. Partial results were obtained for the square case Oq.Mn/,
but technicalities prevented a resolution of the problem in this case. In a subsequent
paper, we intend to use the results obtained in this paper to finish the calculation of
the automorphism group of Oq.Mn/.

1. The deleting derivations algorithm in the algebra of quantum matrices

In this section, we present briefly the deleting-derivations algorithm and use it to
construct a tower of algebras from the algebra of quantum matrices to a quantum
torus. This tower will be used in the next section to obtain the derivations of the
algebra of quantum matrices from the derivations of the quantum torus.

1.1. The algebra of quantum matrices. Throughout this paper, we use the follow-
ing conventions.

� The cardinality of a finite set I is denoted by jI j.
� ŒŒa; b�� ´ fi 2 N j a � i � bg.
� K denotes a field of characteristic 0 and K� ´ K n f0g.
� q 2 K� is not a root of unity.
� n denotes a positive integer with n > 1.
� R D Oq.Mn/ is the quantisation of the ring of regular functions on n�n matrices

with entries in K; it is the K-algebra generated by the n�n indeterminates Yi;˛ ,
for 1 � i , ˛ � n, subject to the following relations:

Yi;ˇ Yi;˛ D q�1Yi;˛Yi;ˇ .˛ < ˇ/;

Yj;˛Yi;˛ D q�1Yi;˛Yj;˛ .i < j /;

Yj;ˇ Yi;˛ D Yi;˛Yj;ˇ .i < j; ˛ > ˇ/;

Yj;ˇ Yi;˛ D Yi;˛Yj;ˇ � .q � q�1/Yi;ˇ Yj;˛ .i < j; ˛ < ˇ/:

It is well known that R can be presented as an iterated Ore extension over K, with
the generators Yi;˛ adjoined in lexicographic order. Thus the ring R is a Noetherian
domain; its skew-field of fractions is denoted by F .

1.2. The deleting derivations algorithm and some related algebras. First, recall,
see [4], that the theory of deleting derivations can be applied to the iterated Ore exten-
sion R D KŒY1;1�ŒY1;2I �1;2� : : : ŒYn;nI �n;n; ın;n� (where the indices are increasing
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for the lexicographic order �). The corresponding deleting derivations algorithm is
called the standard deleting derivations algorithm. Before recalling its construction,
we need to introduce some notation.

� The lexicographic ordering on N2 is denoted by �s . This order is often referred
to as the standard ordering on N2. Recall that .i; ˛/ �s .j; ˇ/ if and only if
Œ.i < j / or .i D j and ˛ � ˇ/�.

� Set E D �
ŒŒ1; n��2 [ f.n; n C 1/g� n f.1; 1/g.

� Let .j; ˇ/ 2 E with .j; ˇ/ ¤ .n; n C 1/. The least element (relative to �s) of
the set f.i; ˛/ 2 E j .j; ˇ/ <s .i; ˛/g is denoted by .j; ˇ/C.

As described in [4], the standard deleting derivations algorithm constructs, for
each r 2 E, a family fY .r/

i;˛ g, for .i; ˛/ 2 ŒŒ1; n��2, of elements of F ´ Frac.R/,
defined as follows:

(1) If r D .n; n C 1/, then Y
.n;nC1/

i;˛ D Yi;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

(2) Assume that r D .j; ˇ/ <s .n; n C 1/ and that the Y
.rC/

i;˛ for .i; ˛/ 2 ŒŒ1; n��2

are already constructed. Then it follows from [3], Théorème 3.2.1, that each

Y
.rC/

j;ˇ
¤ 0 and that, for all .i; ˛/ 2 ŒŒ1; n��2, we have

Y
.r/

i;˛ D
(

Y
.rC/

i;˛ � Y
.rC/

i;ˇ
.Y

.rC/

j;ˇ
/�1Y

.rC/
j;˛ if i < j and ˛ < ˇ,

Y
.rC/

i;˛ otherwise.

As in [3], for all .j; ˇ/ 2 E, the subalgebra of Frac.R/ generated by the inde-
terminates Y

.j;ˇ/
i;˛ , with .i; ˛/ 2 ŒŒ1; n��2, is denoted by R.j;ˇ/. Also, xR denotes the

subalgebra of Frac.R/ generated by the indeterminates obtained at the end of this
algorithm; that is, xR is the subalgebra of Frac.R/ generated by the Ti;˛ ´ Y

.1;2/
i;˛ for

each .i; ˛/ 2 ŒŒ1; n��2.
Recall [3], Theorem 3.2.1, that, for all .j; ˇ/ 2 E, the algebra R.j;ˇ/ can be

presented as an iterated Ore extension over K, with the generators Y
.j;ˇ/

i;˛ adjoined in

lexicographic order. Thus the algebra R.j;ˇ/ is a Noetherian domain.
For all .j; ˇ/ 2 E, the multiplicative system generated by the indeterminates Ti;˛ ,

for .i; ˛/ � .j; ˇ/ with i > 1 and ˛ > 1, is denoted by S.j;ˇ/. As Ti;˛ D Y
.j;ˇ/

i;˛ , for
all .i; ˛/ � .j; ˇ/ with i > 1 and ˛ > 1, the set S.j;ˇ/ is a multiplicative system of
regular elements of R.j;ˇ/. Moreover, the Ti;˛ such that .i; ˛/ � .j; ˇ/ with i > 1

and ˛ > 1 are normal in R.j;ˇ/. Hence, S.j;ˇ/ is an Ore set in R.j;ˇ/; so that one can
form the localisation

U.j;ˇ/ ´ R.j;ˇ/S�1
.j;ˇ/:

Clearly, the set of monomials of the form .Y
.j;ˇ/

1;1 /
�1;1

.Y
.j;ˇ/

1;2 /
�1;2

: : : .Y
.j;ˇ/

n;n /
�n;n ,

with �i;˛ 2 N if .i; ˛/ < .j; ˇ/ or i D 1 or ˛ D 1, and �i;˛ 2 Z otherwise, is a PBW
basis of U.j;ˇ/.



Hochschild cohomology of quantum matrices 285

Further, recall from [4], Theorem 2.2.1, that †.j;ˇ/ ´ f.Tj;ˇ /k j k 2 Ng is an

Ore set in both R.j;ˇ/ and R.j;ˇ/C

, and that

R.j;ˇ/†�1
.j;ˇ/ D R.j;ˇ/C

†�1
.j;ˇ/:

Hence, we obtain the following result.

Lemma 1.1. R.j;1/ D R.j;2/ and U.j;1/ D U.j;2/.

Let ˇ > 1. Then R.j;ˇ/†�1
.j;ˇ/

D R.j;ˇ/C

†�1
.j;ˇ/

and U.j;ˇ/ D U.j;ˇ/C†�1
.j;ˇ/

.

Let N 2 N� and let ƒ D .ƒi;j / be a multiplicatively antisymmetric N �N matrix
over K�; that is, ƒi;i D 1 and ƒj;i D ƒ�1

i;j for all i; j 2 ŒŒ1; N ��. The corresponding
quantum affine space is denoted by KƒŒT1; : : : ; TN �; that is, KƒŒT1; : : : ; TN � is the
K-algebra generated by the N indeterminates T1; : : : ; TN subject to the relations
TiTj D ƒi;j Tj Ti for all i; j 2 ŒŒ1; N ��. In [4, Section 2.2], Cauchon has shown that
xR can be viewed as the quantum affine space generated by the indeterminates Ti;˛ for
.i; ˛/ 2 ŒŒ1; n��2, subject to the following relations:

Ti;ˇ Ti;˛ D q�1Ti;˛Ti;ˇ .˛ < ˇ/;

Tj;˛Ti;˛ D q�1Ti;˛Tj;˛ .i < j /;

Tj;ˇ Ti;˛ D Ti;˛Tj;ˇ .i < j; ˛ > ˇ/;

Tj;ˇ Ti;˛ D Ti;˛Tj;ˇ .i < j; ˛ < ˇ/:

Hence, xR D KƒŒT1;1; T1;2; : : : ; Tn;n�, where ƒ denotes the n2�n2 matrix defined
as follows. Set

A ´

0
BBBBB@

0 1 1 : : : 1

�1 0 1 : : : 1
:::

: : :
: : :

: : :
:::

�1 : : : �1 0 1

�1 : : : : : : �1 0

1
CCCCCA 2 Mn.Z/

and

B ´

0
BBBBB@

A I I : : : I

�I A I : : : I
:::

: : :
: : :

: : :
:::

�I : : : �I A I

�I : : : : : : �I A

1
CCCCCA 2 Mn2.Z/;

where I denotes the identity matrix of Mn.Z/. Then ƒ is the n2 � n2 matrix whose
entries are defined by ƒk;l D qbk;l for all k; l 2 ŒŒ1; n2��.

Now observe that

U.2;2/ D KƒŒT1;1; T1;2; : : : ; T1;n; T2;1; T ˙1
2;2 ; : : : ; T ˙1

2;n ; : : : ; Tn;1; T ˙1
n;2 ; : : : ; T ˙1

n;n �:
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In other words,
U.2;2/ D xRS�1;

where S D S.2;2/ is the multiplicative system generated by the Ti;˛ with i > 1 and
˛ > 1.

In order to investigate the Lie algebra of derivations of R, we also need to introduce
the following algebras.

For all .j; ˇ/ 2 ŒŒ1; n��2 with j D 1 or ˇ D 1, the multiplicative system generated
by those Ti;˛ such that .i; ˛/ > .j; ˇ/ and either i D 1 or ˛ D 1 is denoted by S.j;ˇ/.
Clearly, S.j;ˇ/ is an Ore set in U.2;2/. Set

V.j;ˇ/ ´ U.2;2/S
�1
.j;ˇ/;

and observe that V.n;1/ D U.2;2/.
As the set of monomials T

�1;1

1;1 T
�1;2

1;2 : : : T
�n;n
n;n , with �i;˛ 2 N if i D 1 or ˛ D 1,

and �i;˛ 2 Z otherwise, is a PBW basis of U.2;2/, it is easy to check that the set of
monomials T

�1;1

1;1 T
�1;2

1;2 : : : T
�n;n
n;n , with �i;˛ 2 N if .i; ˛/ � .j; ˇ/ and either i D 1 or

˛ D 1, and �i;˛ 2 Z otherwise, is a PBW basis of V.j;ˇ/

Finally, set V.1;0/ ´ P.ƒ/, where P.ƒ/ denotes the quantum torus associated
to the quantum affine space xR; that is, the localisation of xR with respect of the
multiplicative system generated by all the Ti;˛ . Recall that the set of monomials
fT �1;1

1;1 T
�1;2

1;2 : : : T
�n;n
n;n g, with �i;˛ 2 Z, forms a PBW basis of P.ƒ/.

Our proof will use the tower of algebras

R D U.n;nC1/ � U.n;n/ � � � � � U.2;3/ � U.2;2/ D V.n;1/ � V.n�1;1/

� � � � � V.2;1/ � V.1;n/ � � � � � V.1;0/ D P.ƒ/:
(1)

1.3. Quantum minors and the centres of Oq.Mn/, P.ƒ/ and U.2;2/. The algebra
Oq.Mn/ has a special element, the quantum determinant, denoted by detq , and defined
by

detq ´
X

�

.�q/l.�/Y1;�.1/ : : : Yn;�.n/;

where the sum is taken over the permutations of f1; : : : ; ng and l.�/ is the usual
length function on such permutations. The quantum determinant is a central element
of Oq.Mn/, see, for example, [13], Theorem 4.6.1. If I and � are t -element subsets
of f1; : : : ; ng, then the quantum determinant of the subalgebra of Oq.Mn/ generated
by Yi;˛ , with i 2 I and ˛ 2 � , is denoted by ŒI j��. The elements ŒI j�� are the
quantum minors of Oq.Mn/.

In order to describe the centres of P.ƒ/ and U.2;2/, we introduce the following
quantum minors of R.

For 1 � i � 2n � 1, let bi be the quantum minor defined as follows:

bi ´
(

Œ1; : : : ; i j n � i C 1; : : : ; n� if 1 � i � n,

Œi � n C 1; : : : ; n j 1; : : : ; 2n � i � if n < i � 2n � 1.
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For convenience, we set b0 D b2n D 1. Note that these bi are a priori elements
of R. However, it turns out that they also belong to the quantum torus P.ƒ/, as the
following result shows.

Lemma 1.2. For 1 � i � 2n � 1, we have

bi D
(

T1;n�iC1T2;n�iC2 : : : Ti;n if 1 � i � n,

Ti�nC1;1Ti�nC2;2 : : : Tn;2n�i if n � i � 2n � 1.

Proof. This follows from [4], Proposition 5.2.1 (see also [10], Lemma 2.2).

The centre of an algebra A is denoted by Z.A/. Set �i ´ bib
�1
nCi for all i 2

f1; : : : ; ng. Notice that �n D detq .
It follows from Lemma 1.2 that the �i belong to the quantum torus P.ƒ/: in fact,

the �i are also central. The following result is established in [10], Theorem 2.4.

Proposition 1.3. Z.P.ƒ// D KŒ�˙1
1 ; : : : ; �˙1

n �.

It is useful to record for later use the expression for the �i in terms of the Ti;˛ .

Lemma 1.4. �i D T1;n�iC1T2;n�iC2 : : : Ti;nT �1
iC1;1T �1

iC2;2 : : : T �1
n;n�i , for 1 � i � n.

Proof. This follows easily from Lemma 1.2, noting the commutation relations be-
tween the Ti;˛ .

We finish this section by describing the centre of the algebra U.2;2/. First, observe
that Z.U.2;2// � Z.P.ƒ// D KŒ�˙1

1 ; : : : ; �˙1
n �, since P.ƒ/ is a localisation of

U.2;2/. Next, by using the PBW-basis of U.2;2/ together with the expressions for
the �i as products of certain Ti;˛ coming from Lemma 1.4, we obtain the following
result.

Lemma 1.5. Z.U.2;2// D KŒ�n� D KŒdetq�.

2. Derivations

Recall that R denotes the algebra of n � n generic quantum matrices. Our aim in this
section is to investigate Der.R/, the Lie algebra of derivations of R.

Let D be a derivation of R.
First, as there exists a multiplicative system † of R such that R†�1 D P.ƒ/ D

V.1;0/, see [3], Theorem 3.3.1, the derivation D extends (uniquely) to a derivation of
the quantum torus P.ƒ/. It follows from [12], Corollary 2.3, that D can be written
as

D D adx C �;
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where x 2 P.ƒ/ D V.1;0/ and � is a derivation of P.ƒ/ such that �.Ti;˛/ D zi;˛Ti;˛

with zi;˛ 2 Z.P.ƒ// for all .i; ˛/ 2 ŒŒ1; n��2.
For � 2 Zn2

, set

T � ´ T
�1;1

1;1 T
�1;2

1;2 : : : T
�n;n
n;n :

As the set of monomials fT �g
�2Zn2 forms a PBW basis of P.ƒ/, one can write

x D
X
�2E

c�T � ;

where E is a finite subset of Zn2
and c� 2 K. Moreover, as adx D adxCz for all

z 2 Z.P.ƒ//, one can assume that, for all � 2 E , the monomial T � does not belong
to Z.P.ƒ//.

Next recall that an element y D P
�2Zn2 y�T � 2 P.ƒ/ is central if and only

if T � 2 Z.P.ƒ// for each � 2 Zn2
such that y� ¤ 0. Denote by F the set of all

� 2 Zn2
such that T � 2 Z.P.ƒ//. Then, for all .i; ˛/ 2 ŒŒ1; n��2, we can write zi;˛

in the form
zi;˛ D

X
�2F

zi;˛;�T � ;

with zi;˛;� 2 K.

Lemma 2.1. Let 0 � ˇ � n. Then x 2 V.1;ˇ/.

Proof. The proof is by induction on ˇ. The case ˇ D 0 follows from the above
discussion, because V.1;0/ D P.ƒ/. Hence, assume that ˇ � 1.

It follows from the inductive hypothesis that

x D
X
�2E

c�T � ;

where E is a finite subset of the set f� 2 Zn2 j �1;1 � 0; : : : ; �1;ˇ�1 � 0 and T � …
Z.P.ƒ//g. We need to prove that �1;ˇ � 0.

Observe that, by construction, V.1;ˇ/ is obtained from R by a sequence of lo-
calisations. Thus, D extends to a derivation of V.1;ˇ/. Let .i; ˛/ ¤ .1; ˇ/. Then
D.Ti;˛/ 2 V.1;ˇ/, since Ti;˛ 2 V.1;ˇ/; that is,

xTi;˛ � Ti;˛x C zi;˛Ti;˛ 2 V.1;ˇ/: (2)

Set
xC ´

X
�2E

�1;ˇ�0

c�T � ; x� D
X
�2E

�1;ˇ<0

c�T � :
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We need to prove that x� D 0.
It follows from (2) that

u ´ x�Ti;˛ � Ti;˛x� C zi;˛Ti;˛ 2 V1;ˇ :

Now

u D
X
�2E

�1;ˇ<0

�
q� exp.i;˛;�;C/ � q� exp.i;˛;�;�/

�
c�T �C"i;˛

C
X
�2F

q� exp.i;˛;�;C/zi;˛;�T �C"i;˛ ;

(3)

where

exp.i; ˛; �; �/ ´
i�1X
kD1

�k;˛ C
˛�1X
kD1

�i;k; exp.i; ˛; �; C/ ´
nX

kDiC1

�k;˛ C
nX

kD˛C1

�i;k

and "i;˛ is the element of Zn2
that has 1 in the .i; ˛/ position and zero elsewhere. As

we have assumed that the monomial T � does not belong to Z.P.ƒ// for all � 2 E ,
we have

� C "i;˛ ¤ � 0 C "i;˛ for all � 2 E and for all � 0 2 F .

Hence (3) gives the expression of u in the PBW basis of P.ƒ/.
On the other hand, as u belongs to V.1;ˇ/, we obtain

u D
X
�2E0

x�T � ;

where E 0 is a finite subset of f� 2 Zn2 j �1;1 � 0; : : : ; �1; ˇ � 0g.
Comparing the two expressions of u in the PBW basis of P.ƒ/ leads to

q� exp.i;˛;�;C/ � q� exp.i;˛;�;�/ D 0 for all � 2 E such that �1;ˇ < 0 and c� ¤ 0.
Hence

x�Ti;˛ � Ti;˛x� D
X
�2E

�1;ˇ<0

.q�exp.i;˛;�;C/ � q�exp.i;˛;�;�//c�T �C"i;˛ D 0

for all .i; ˛/ ¤ .j; ˇ/. In other words, x� commutes with those Ti;˛ such that
.i; ˛/ ¤ .1; ˇ/.

Now recall from Lemma 1.4 that

�nC1�ˇ D T1;ˇ T2;ˇC1 : : : TnC1�ˇ;nT �1
nC2�ˇ;1T �1

nC3�ˇ;2 : : : T �1
n;ˇ�1
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is central in P.ƒ/. Hence, x� also commutes with T1;ˇ . This implies that x� 2
Z.P.ƒ//; so that x� can be written as

x� D
X
�2F

d�T � :

Hence x� D 0, because E \ F D ;; so that x D xC 2 V.1;ˇ/, as desired.

The following result is proved by using similar arguments.

Lemma 2.2. Let 2 � j � n. Then x 2 V.j;1/. In particular, x 2 V.n;1/ D U.2;2/.

The derivation D of R extends to a derivation of U.2;2/, since U.2;2/ is obtained
from R by a sequence of localisations; so D.Ti;˛/ 2 U.2;2/ for all .i; ˛/ 2 ŒŒ1; n��2.
Hence

xTi;˛ � Ti;˛x C zi;˛Ti;˛ D D.Ti;˛/ 2 U.2;2/:

As we have proved that x 2 U.2;2/, this implies that zi;˛Ti;˛ 2 U.2;2/ for all .i; ˛/ 2
ŒŒ1; n��2.

If i � 2 and ˛ � 2 then zi;˛ 2 U.2;2/ \ Z.P.ƒ// D Z.U.2;2// because Ti;˛ is
invertible in U.2;2/. However, Z.U.2;2// D KŒ�n� by Lemma 1.5; so zi;˛ 2 KŒ�n� �
R in this case.

In the other cases, at this stage in the proof we can only prove a weaker result.
Assume that i D 1 and ˛ > 1. Then z1;˛T1;˛ 2 U.2;2/. On the other hand, as z1;˛

belongs to the centre of the quantum torus P.ƒ/, one can write z1;˛ as follows:

z1;˛ D P.�1; : : : ; �n/ 2 KŒ�˙1
1 ; : : : ; �˙1

n �:

Now, using the expressions of the �i as products of T ˙1
j;ˇ

coming from Lemma 1.4,
we obtain

z1;˛ D
X
�2Z

z1;˛;�T � ; (4)

where Z denotes the set of those � D .�1;1; �1;2; : : : ; �n;n/ 2 Zn2
such that

1) �1;1 D �2;2 D � � � D �n;n,

2) �1;ˇ D �2;ˇC1 D � � � D �n�ˇC1;n D ��n�ˇC2;1 D � � � D ��n;ˇ�1 for all
ˇ 2 ŒŒ1; n��,

and z1;˛;� 2 K for all � 2 Z.
Hence

z1;˛T1;˛ D
X
�2Z

z0
i;˛;�T �C"1;˛ 2 U.2;2/;
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where z0
1;˛;� D q�z1;˛;� for all � 2 Z. As the monomials T

�1;1

1;1 T
�1;2

1;2 : : : T
�n;n
n;n , where

�j;ˇ 2 N when either j D 1 or ˇ D 1, and �j;ˇ 2 Z otherwise, form a PBW basis of
U.2;2/, we obtain z0

1;˛;� D 0 whenever

either �1;1 < 0, or �1;ˇ ¤ 0 for some ˇ ¤ 1; ˛, or �1;˛ … f�1; 0g.

Hence we easily deduce from (4) and Lemma 1.4 that there exist polynomials P1;˛ ,
Q1;˛ 2 KŒ�n� such that

z1;˛ D Q1;˛.�n/��1
nC1�˛ C P1;˛.�n/:

Similar computations for zi;1, for i > 1, and for z1;1 lead to the following result.

Proposition 2.3. 1) x 2 U.2;2/.
2) Let .i; ˛/ 2 ŒŒ1; n��2. Then there exist polynomials Pi;˛; Qi;˛ 2 KŒ�n� such

that

zi;˛ D

8̂<
:̂

Qi;˛.�n/��1
nC1�˛ C Pi;˛.�n/ if i D 1,

Qi;˛.�n/�i�1 C Pi;˛.�n/ if ˛ D 1,

Pi;˛.�n/ otherwise.

(Here we use the convention �0 D b0b�1
n D ��1

n .)

Next, we have to deal with a second kind of localisation that involves inverting an
element which is not normal. This is done in several steps.

Lemma 2.4. 1) x 2 U.2;3/.
2) z1;1 C z2;2 D z1;2 C z2;1.
3) z1;1; z1;2; z2;1 and z2;2 belong to Z.R/ D KŒ�n�.

4) D.Y
.2;3/

i;˛ / D adx.Y
.2;3/

i;˛ / C zi;˛Y
.2;3/

i;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

Proof. Step 1: we prove that x 2 U.2;3/.

In order to simplify the notation, set Zi;˛ ´ Y
.2;3/

i;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

Moreover, for all � 2 E ´ Nn � .N � Zn�1/ � � � � � .N � Zn�1/ � Zn2
, set

Z� ´ Z
�1;1

1;1 Z
�1;2

1;2 : : : Z
�n;n
n;n :

It follows from Proposition 2.3 that x belongs to U.2;2/. Using the notation of the
previous section, it follows from Lemma 1.1 that

U.2;2/ D U.2;3/†
�1
.2;2/;

so that x can be written as
x D

X
�2E

c�Z� ;
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with c� 2 K. Set

xC ´
X
�2E

�2;2�0

c�Z� ; x� ´
X
�2E

�2;2<0

c�Z� ;

with c� 2 K. Assume that x� ¤ 0.
Denote by B the subalgebra of U.2;2/ generated by the Zi;˛ with .i; ˛/ ¤ .2; 2/

and the Z�1
i;˛ with i � 2 and ˛ � 2 but .i; ˛/ ¤ .2; 2/. Hence U.2;2/ D U.2;3/†

�1
.2;2/

is a left B-module with basis fZl
2;2gl2Z, so that there are elements bl 2 B such that

x� D
�1X

lDl0

blZ
l
2;2

with l0 < 0 and bl0
¤ 0. (Observe that this makes sense because we have assumed

that x� ¤ 0.)
The derivation D of R extends to a derivation of U.2;3/, since U.2;3/ is obtained

from R by a sequence of localisations; so D.Z1;1/ 2 U.2;3/. Now Z1;1 D T1;1 C
T1;2T �1

2;2 T2;1 D T1;1 C Z1;2Z�1
2;2Z2;1, so that

x�Z1;1 �Z1;1x� Cz1;1Z1;1 C.z1;2 Cz2;1 �z1;1 �z2;2/Z1;2Z�1
2;2Z2;1 2 U.2;3/: (5)

Now

Z�k
2;2Z1;1 D Z1;1Z�k

2;2 C q.q2k � 1/Z1;2Z2;1Z�k�1
2;2

for each positive integer k. Hence

x�Z1;1 � Z1;1x� C z1;1Z1;1 C .z1;2 C z2;1 � z1;1 � z2;2/Z1;2Z�1
2;2Z2;1

D
�1X

lDl0

b0
lZ

l
2;2 C

�1X
lDl0

q.q�2l � 1/blZ1;2Z2;1Zl�1
2;2

� .z1;2 C z2;1 � z1;1 � z2;2/Z1;2Z�1
2;2Z2;1 C z1;1Z1;1 2 U.2;3/:

(6)

It follows from Proposition 2.3 that z1;1 detq , z1;2bn�1 and z2;1bnC1 belong
to R � U.2;3/. On the other hand, it follows from [4], Proposition 5.2.1, that
detq D .Z1;1Z2;2 � qZ1;2Z2;1/Z3;3 : : : Zn;n, while bn�1 D Z1;2Z2;3 : : : Zn�1;n

and bnC1 D Z2;1 : : : Zn;n�1. Hence each of z1;1.Z1;1Z2;2 � qZ1;2Z2;1/; z1;2Z1;2

and z2;1Z2;1 belong to U.2;3/. As z2;2 2 R, by Proposition 2.3, we obtain

.z1;2 C z2;1 � z1;1 � z2;2/Z1;2Z2;1.Z1;1Z2;2 � qZ1;2Z2;1/ 2 U.2;3/:
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Multiplying (6) on the right by .Z1;1Z2;2 � qZ1;2Z2;1/Z2;2 leads to

�1X
lDl0

b0
l.Z1;1Z2;2 � qZ1;2Z2;1/ZlC1

2;2

C
�1X

lDl0

q.q�2l � 1/blZ1;2Z2;1.Z1;1Z2;2 � qZ1;2Z2;1/Zl
2;2 2 U.2;3/:

In other words,

1X
lDl0C1

b00
l Zl

2;2 � q2.q�2l0 � 1/bl0
Z2

1;2Z2
2;1Z

l0

2;2 2 U.2;3/:

As U.2;3/ is a left B-module with basis fZl
2;2gl2N, this implies that bl0

D 0, a
contradiction. Hence x� D 0 and x D xC 2 U.2;3/, as desired.

Step 2: we prove that z1;1 C z2;2 D z1;2 C z2;1.

As x� D 0 and z1;1.Z1;1Z2;2 � qZ1;2Z2;1/ 2 U.2;3/, we deduce from (5) that

y ´ .z1;2 C z2;1 � z1;1 � z2;2/Z1;2Z2;1.Z1;1Z2;2 � qZ1;2Z2;1/ 2 U.2;3/Z2;2:

So y is an element of U.2;3/ which q-commutes with Z1;1 and which belongs to
U.2;3/Z2;2. We show next that this forces y D 0, so that z1;1 C z2;2 D z1;2 C z2;1,
as desired.

Since U.2;3/ is a left B-module with basis fZl
2;2gl2N, one can write

y D P
l2N ylZ

l
2;2 with yl 2 B equal to zero except for at most a finite number

of them. As y belongs to U.2;3/Z2;2, it is easy to show that y0 D 0, so that

y D
X

l2N;l¤0

ylZ
l
2;2:

On the other hand, as y q-commutes with Z1;1, there exists a 2 Z such that Z1;1y D
qayZ1;1. In other words,X

l2N;l¤0

Z1;1ylZ
l
2;2 D

X
l2N;l¤0

qaylZ
l
2;2Z1;1:

As Zl
2;2Z1;1 D Z1;1Zl

2;2 C q.q�2l � 1/Z1;2Z2;1Zl�1
2;2 for all positive integers l , we

get X
l2N;l¤0

Z1;1ylZ
l
2;2 D

X
l2N;l¤0

qaylZ1;1Zl
2;2

C
X

l2N;l¤0

qaC1.q�2l � 1/ylZ1;2Z2;1Zl�1
2;2 :
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Assume that y ¤ 0 and let l0 be minimal such that yl0
¤ 0. Observe that l0 � 1. As

U.2;3/ is a left B-module with basis fZl
2;2gl2N, we deduce from the previous equality

that we should have 0 D qaC1.q�2l0 � 1/yl0
Z1;2Z2;1, a contradiction since l0 � 1

and q is not a root of unity. So y D 0, as desired.

Step 3: we prove that z1;1; z1;2; z2;1 and z2;2 belong to Z.R/.

It follows from Proposition 2.3 that

z1;1 D Q1;1��1
n C P1;1.�n/; z1;2 D Q1;2.�n/��1

n�1 C P1;2.�n/;

z2;1 D Q2;1.�n/�1 C P2;1.�n/; z2;2 D P2;2.�n/;

where Q1;1 2 K and Qi;˛; Pi;˛ 2 KŒ�n� otherwise. As z1;1 C z2;2 D z1;2 C z2;1,
we obtain

Q1;1��1
n C P1;1.�n/ C P2;2.�n/

D Q1;2.�n/��1
n�1 C Q2;1.�n/�1 C P1;2.�n/ C P2;1.�n/:

Recalling that the monomials �
i1
1 : : : �

in
n , with ik 2 Z, are linearly independent, we

obtain
Q1;1 D Q1;2.�n/ D Q2;1.�n/ D 0;

so that z1;1 D P1;1.�n/, z1;2 D P1;2.�n/, z2;1 D P2;1.�n/. Hence z1;1, z1;2 and
z2;1 belong to KŒ�n� D Z.R/, and we have already observed that z2;2 D P2;2.�n/ 2
KŒ�n� D Z.R/.

Step 4: we prove that D.Zi;˛/ D adx.Zi;˛/ C zi;˛Zi;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

If .i; ˛/ ¤ .1; 1/, then Zi;˛ D Ti;˛ and so the result is obvious.
Next, consider the case .i; ˛/ D .1; 1/. Note that Z1;1 D T1;1 C T1;2T �1

2;2 T2;1.
Hence,

D.Z1;1/ D D.T1;1 C T1;2T �1
2;2 T2;1/

D adx.T1;1/ C z1;1T1;1

C adx.T1;2T �1
2;2 T2;1/ C .z1;2 � z2;2 C z2;1/T1;2T �1

2;2 T2;1

D adx.Z1;1/ C z1;1Z1;1 C .z1;2 � z2;2 C z2;1 � z1;1/T1;2T �1
2;2 T2;1:

Now it follows from the second step that z1;2 � z2;2 C z2;1 � z1;1 D 0. Hence,

D.Z1;1/ D adx.Z1;1/ C z1;1Z1;1;

as desired.

The next two lemmas continue the process of descending down the tower of
algebras (1). Although the proofs superficially look the same as the proof of the
previous lemma, there are subtle differences in each proof; so we find it necessary to
include the full proofs.
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Lemma 2.5. Let ˇ 2 ŒŒ2; n��.
1) x 2 U.2;ˇC1/. (Here we use the convention U.2;nC1/ ´ U.3;1/.)
2) For all ˛ < ˇ, we have z1;˛ C z2;ˇ D z1;ˇ C z2;˛ .
3) z1;ˇ 2 Z.R/.

4) D.Y
.2;ˇC1/

i;˛ / D adx.Y
.2;ˇC1/

i;˛ / C zi;˛Y
.2;ˇC1/

i;˛ for all .i; ˛/ 2 ŒŒ1; n��2. (Here

we use the convention Y
.2;nC1/

i;˛ ´ Y
.3;1/

i;˛ .)

Proof. The proof is by induction on ˇ. The case ˇ D 2 has been dealt with in the
previous lemma. Now, assume that ˇ � 2 and that the lemma has been proved for
ˇ. In order to simplify the notation, set Zi;˛ ´ Y

.2;ˇC1/
i;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

Moreover, for all � 2 E ´ Nn �.Nˇ�1 �ZnC1�ˇ /�.N�Zn�1/�� � ��.N�Zn�1/,
set

Z� ´ Z
�1;1

1;1 Z
�1;2

1;2 : : : Z
�n;n
n;n :

We now proceed in five steps.

Step 1: we prove that x 2 U.2;ˇC1/.

It follows from the inductive hypothesis that x belongs to U.2;ˇ/. Using the
notation of previous sections, we have:

U.2;ˇ/ D U.2;ˇC1/†
�1
2;ˇ ;

so that x can be written as
x D

X
�2E

c�Z� ;

with c� 2 K. Set

xC ´
X
�2E

�2;ˇ�0

c�Z� ; x� ´
X
�2E

�2;ˇ<0

c�Z� :

Assume that x� ¤ 0.
Denote by B the subalgebra of U.2;ˇ/ generated by the Zi;˛ with .i; ˛/ ¤ .2; ˇ/

and the Z�1
i;˛ with i � 2 and ˛ � 2 but .i; ˛/ > .2; ˇ/. Then U.2;ˇ/ D U.2;ˇC1/†

�1
2;ˇ

is a left B-module with basis fZl
2;ˇ

gl2Z, so that there are elements bl 2 B such that

x� D
�1X

lDl0

blZ
l
2;ˇ

with l0 < 0 and bl0
¤ 0. (Observe that this makes sense because we have assumed

that x� ¤ 0.)
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The derivation D of R extends to a derivation of U.2;ˇC1/, since U.2;ˇC1/ is
obtained from R by a sequence of localisations; so D.Z1;ˇ�1/ 2 U.2;ˇC1/. This
implies that

x�Z1;ˇ�1 � Z1;ˇ�1x� C z1;ˇ�1Z1;ˇ�1

C .z1;ˇ C z2;ˇ�1 � z1;ˇ�1 � z2;ˇ /Z1;ˇ Z�1
2;ˇ Z2;ˇ�1 2 U.2;ˇC1/:

(7)

Now
Z�k

2;ˇ Z1;ˇ�1 D Z1;ˇ�1Z�k
2;ˇ C q.q2k � 1/Z1;ˇ Z2;ˇ�1Z�k�1

2;ˇ

for each positive integer k. Hence,

x�Z1;ˇ�1 � Z1;ˇ�1x� C z1;ˇ�1Z1;ˇ�1

C .z1;ˇ C z2;ˇ�1 � z1;ˇ�1 � z2;ˇ /Z1;ˇ Z�1
2;ˇ Z2;ˇ�1

D
�1X

lDl0

b0
lZ

l
2;ˇ C

�1X
lDl0

q.q�2l � 1/blZ1;ˇ Z2;ˇ�1Zl�1
2;ˇ

� .z1;ˇ C z2;ˇ�1 � z1;ˇ�1 � z2;ˇ /Z1;ˇ Z�1
2;ˇ Z2;ˇ�1

C z1;ˇ�1Z1;ˇ�1 2 U.2;ˇC1/:

It follows from the inductive hypothesis that z1;ˇ�1 2 R � U.2;ˇC1/. Thus we obtain

�1X
lDl0

b0
lZ

l
2;ˇ C

�1X
lDl0

q.q�2l � 1/blZ1;ˇ Z2;ˇ�1Zl�1
2;ˇ

� .z1;ˇ C z2;ˇ�1 � z1;ˇ�1 � z2;ˇ /Z1;ˇ Z�1
2;ˇ Z2;ˇ�1 2 U.2;ˇC1/:

(8)

It follows from the inductive hypothesis and Proposition 2.3 (and Lemma 2.4
when ˇ D 2) that z1;ˇ�1, z1;ˇ bn�ˇC1, z2;ˇ�1 and z2;ˇ belong to R � U.2;ˇC1/.
On the other hand, it follows from [4], Proposition 5.2.1, that bn�ˇC1 D
Z1;ˇ Z2;ˇC1 : : : Zn�ˇC1;n. Hence, z1;ˇ Z1;ˇ belongs to U.2;ˇC1/. Thus,

.z1;ˇ C z2;ˇ�1 � z1;ˇ�1 � z2;ˇ /Z1;ˇ Z2;ˇ�1 2 U.2;ˇC1/:

Multiplying (8) on the right by Z2;ˇ leads to

�1X
lDl0

b0
lZ

lC1
2;ˇ

C
�1X

lDl0

q.q�2l � 1/blZ1;ˇ Z2;ˇ�1Zl
2;ˇ 2 U.2;ˇC1/:

In other words,

0X
lDl0C1

b00
l Zl

2;ˇ C q.q�2l0 � 1/bl0
Z1;ˇ Z2;ˇ�1Z

l0

2;ˇ
2 U.2;ˇC1/:
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As U.2;ˇC1/ is a left B-module with basis fZl
2;ˇ

gl2N, this implies that bl0
D 0, a

contradiction. Hence x� D 0 and x D xC 2 U.2;ˇC1/, as desired.

Step 2: we prove that z1;ˇ�1 C z2;ˇ D z1;ˇ C z2;ˇ�1.

As x� D 0 and z1;ˇ�1Z1;ˇ�1 2 U.2;ˇC1/ by the inductive hypothesis, we deduce
from (7) that

y ´ .z1;ˇ C z2;ˇ�1 � z1;ˇ�1 � z2;ˇ /Z1;ˇ Z2;ˇ�1 2 U.2;ˇC1/Z2;ˇ :

Thus, y is an element of U.2;ˇC1/ which q-commutes with Z1;ˇ�1 and which belongs
to U.2;ˇC1/Z2;ˇ . As in the proof of Lemma 2.4 (Step 2), some easy calculations show
that this forces y D 0, so that

z1;ˇ�1 C z2;ˇ D z1;ˇ C z2;ˇ�1;

as desired.

Step 3: we prove that, for all ˛ < ˇ, we have z1;˛ C z2;ˇ D z1;ˇ C z2;˛ .

First, when ˛ D ˇ � 1, the result follows from Step 2. Next, for ˛ < ˇ � 1, it
follows from the inductive hypothesis that

z1;˛ C z2;ˇ�1 D z1;ˇ�1 C z2;˛:

Further, it follows from Step 2 that

z1;ˇ�1 C z2;ˇ D z1;ˇ C z2;ˇ�1:

Combining these two equalities leads to the desired result.

Step 4: we prove that z1;ˇ belongs to Z.R/.

It follows from Proposition 2.3 that z1;ˇ D Q1;ˇ .�n/��1
nC1�ˇ

C P1;ˇ .�n/,
for some polynomials Q1;ˇ .�n/; P1;ˇ .�n/ 2 KŒ�n�. Further, it follows from
the inductive hypothesis and Proposition 2.3 (and Lemma 2.4 when ˇ D 2) that
z1;ˇ�1 D P1;ˇ�1.�n/, z2;ˇ�1 D P2;ˇ�1.�n/ and z2;ˇ D P2;ˇ .�n/, where each
Pi;˛ 2 KŒ�n�. As z1;ˇ�1 C z2;ˇ D z1;ˇ C z2;ˇ�1, we obtain

P1;ˇ�1.�n/ C P2;ˇ .�n/ D Q1;ˇ .�n/��1
nC1�ˇ C P1;ˇ .�n/ C P2;ˇ�1.�n/:

Recalling that the monomials �
i1
1 : : : �

in
n with ik 2 Z are linearly independent, we

get that
Q1;ˇ .�n/ D 0;

so that z1;ˇ D P1;ˇ .�n/ belongs to KŒ�n� D Z.R/.

Step 5: we prove that D.Zi;˛/ D adx.Zi;˛/ C zi;˛Zi;˛ for all .i; ˛/ 2 ŒŒ1; n��2.
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First, if i � 2 or ˛ � ˇ, then Zi;˛ D Y
.2;ˇ/C

i;˛ D Y
.2;ˇ/

i;˛ , so that the result easily
follows from the inductive hypothesis.

Next, assume that i D 1 and ˛ < ˇ, so that Z1;˛ D Y
.2;ˇC1/

1;˛ D Y
.2;ˇ/

1;˛ C
Z1;ˇ Z�1

2;ˇ
Z2;˛ . Hence we deduce from the inductive hypothesis that

D.Z1;˛/ D D.Y
.2;ˇ/

1;˛ C Z1;ˇ Z�1
2;ˇ Z2;˛/

D adx.Y
.2;ˇ/

1;˛ / C z1;˛Y
.2;ˇ/

1;˛

C adx.Z1;ˇ Z�1
2;ˇ Z2;˛/ C .z1;ˇ � z2;ˇ C z2;˛/Z1;ˇ Z�1

2;ˇ Z2;˛

D adx.Z1;˛/ C z1;˛Z1;˛ C .z1;ˇ � z2;ˇ C z2;˛ � z1;˛/Z1;ˇ Z�1
2;ˇ Z2;˛:

Now it follows from the Step 3 that z1;˛ C z2;ˇ D z1;ˇ C z2;˛ . Hence

D.Z1;˛/ D adx.Z1;˛/ C z1;˛Z1;˛;

as desired.

Lemma 2.6. Let .j; ˇ/ 2 E with .j; ˇ/ � .3; 1/. Then:
1) x 2 U.j;ˇ/.
2) For all .k; ı/ < .j; ˇ/, i < k and ˛ < ı, we have zi;˛ C zk;ı D zi;ı C zk;˛ .

3) D.Y
.j;ˇ/

i;˛ / D adx.Y
.j;ˇ/

i;˛ / C zi;˛Y
.j;ˇ/

i;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

Proof. We prove this result by induction on .j; ˇ/. The case .j; ˇ/ D .3; 1/ follows
from Lemma 2.5.

Assume that the result is established for .3; 1/ � .j; ˇ/ < .n; n C 1/, and let
.j; ˇ/C be the smallest element of E greater then .j; ˇ/.

In order to simplify the notation, we set Zi;˛ ´ Y
.j;ˇ/C

i;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

Moreover, for all � 2 E ´ N.j �1/n � .Nˇ�1 � ZnC1�ˇ / � .N � Zn�1/ � � � �
� .N � Zn�1/ � Zn2

, set

Z� ´ Z
�1;1

1;1 Z
�1;2

1;2 : : : Z
�n;n
n;n :

We now proceed in four steps.

Step 1: we prove that x 2 U.j;ˇ/C .

It follows from the inductive hypothesis that x belongs to U.j;ˇ/. We distinguish
between two cases.

If ˇ D 1, then U.j;ˇ/C D U.j;ˇ/, so that the induction step is obvious in this case.
Now, assume that ˇ > 1. In this case, using the notation of the previous section,

U.j;ˇ/ D U.j;ˇ/C†�1
j;ˇ ;
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so that x can be written as
x D

X
�2E

c�Z� ;

with c� 2 K. Set

xC ´
X
�2E

�j;ˇ�0

c�Z� ; x� ´
X
�2E

�j;ˇ<0

c�Z� :

Assume that x� ¤ 0.
Denote by B the subalgebra of U.j;ˇ/ D U.j;ˇ/C†�1

j;ˇ
generated by the Zi;˛ with

.i; ˛/ ¤ .j; ˇ/ and the Z�1
i;˛ such that i � 2 and ˛ � 2 but .i; ˛/ > .j; ˇ/. Then

U.j;ˇ/ D U.j;ˇ/C†�1
j;ˇ

is a left B-module with basis fZl
j;ˇ

gl2Z, so that there are
elements bl 2 B such that

x� D
�1X

lDl0

blZ
l
j;ˇ

with l0 < 0 and bl0
¤ 0. (Observe that this makes sense because we have assumed

that x� ¤ 0.)
The derivation D of R extends to a derivation of U.j;ˇ/C , since U.j;ˇ/C is obtained

from R by a sequence of localisations; so D.Zj �1;ˇ�1/ 2 U.j;ˇ/C . This implies that

x�Zj �1;ˇ�1 � Zj �1;ˇ�1x� C zj �1;ˇ�1Zj �1;ˇ�1

C .zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Z�1
j;ˇ Zj;ˇ�1 2 U.j;ˇ/C :

(9)

Now

Z�k
j;ˇ Zj �1;ˇ�1 D Zj �1;ˇ�1Z�k

j;ˇ C q.q2k � 1/Zj �1;ˇ Zj;ˇ�1Z�k�1
j;ˇ

for all positive integers k. Hence

x�Zj �1;ˇ�1 � Zj �1;ˇ�1x� C zj �1;ˇ�1Zj �1;ˇ�1

C .zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Z�1
j;ˇ Zj;ˇ�1

D
�1X

lDl0

b0
lZ

l
j;ˇ C

�1X
lDl0

q.q�2l � 1/blZj �1;ˇ Zj;ˇ�1Zl�1
j;ˇ

� .zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Z�1
j;ˇ Zj;ˇ�1

C zj �1;ˇ�1Zj �1;ˇ�1 2 U.j;ˇ/C :

Now observe that zj �1;ˇ�1 2 R � U.j;ˇ/C . Indeed, if ˇ > 2, then it follows from
Proposition 2.3 that zj �1;ˇ�1 also belongs to R � U.j;ˇ/C . On the other hand, if
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ˇ D 2, then it follows from the inductive hypothesis that zj �1;1 C z1;2 D z1;1 C
zj �1;2. As each of z1;1, z1;2 and zj �1;2 belong to R � U.j;ˇ/C by Lemma 2.4 and
Proposition 2.3, it follows that zj �1;1 2 R � U.j;ˇ/C .

As zj �1;ˇ�1 2 R � U.j;ˇ/C , we obtain

�1X
lDl0

b0
lZ

l
j;ˇ C

�1X
lDl0

q.q�2l � 1/blZj �1;ˇ Zj;ˇ�1Zl�1
j;ˇ

� .zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Z�1
j;ˇ Zj;ˇ�1 2 U.j;ˇ/C :

(10)

It follows from Proposition 2.3 that zj �1;ˇ and zj;ˇ belong to R � U.j;ˇ/C ; so
each of zj �1;ˇ�1, zj �1;ˇ and zj;ˇ also belong to U.j;ˇ/C .

We now distinguish between two cases to prove that

.zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Zj;ˇ�1 2 U.j;ˇ/C :

(Note that it only remains to show that zj;ˇ�1Zj �1;ˇ Zj;ˇ�1 2 U.j;ˇ/C .)
First, if ˇ D 2, then it follows from Proposition 2.3 that zj;ˇ�1bnCj �1 2 R �

U.j;ˇ/C . On the other hand, it follows from [4], Proposition 5.2.1, that bnCj �1 D
Zj;1Zj C1;2 : : : Zn;n�j C1. Hence zj;ˇ�1Zj;ˇ�1 belongs to U.j;ˇ/C since Zj C1;2, …,
Zn;n�j C1 are invertible in U.j;ˇ/C . Thus,

.zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Zj;ˇ�1 2 U.j;ˇ/C ;

as claimed.
If ˇ > 2, then ˇ � 1 � 2, and so it follows from Proposition 2.3 that zj;ˇ�1 2

R � U.j;ˇ/C . Thus,

.zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Zj;ˇ�1 2 U.j;ˇ/C ;

as claimed.
So, in each case, .zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Zj;ˇ�1 2 U.j;ˇ/C ,

and thus multiplying (10) on the right by Zj;ˇ leads to

�1X
lDl0

b0
lZ

lC1
j;ˇ

C
�1X

lDl0

q.q�2l � 1/blZj �1;ˇ Zj;ˇ�1Zl
j;ˇ 2 U.j;ˇ/C :

In other words, we have

0X
lDl0C1

b00
l Zl

j;ˇ C q.q�2l0 � 1/bl0
Zj �1;ˇ Zj;ˇ�1Z

l0

j;ˇ
2 U.j;ˇ/C :

As U.j;ˇ/C is a left B-module with basis fZl
j;ˇ

gl2N, this implies that bl0
D 0, a

contradiction. Hence x� D 0 and x D xC 2 U.j;ˇ/C , as desired.
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Step 2: we prove that zj �1;ˇ�1 C zj;ˇ D zj �1;ˇ C zj;ˇ�1.

As x� D 0 and zj �1;ˇ�1Zj �1;ˇ�1 2 U.j;ˇ/C by the above study, we deduce from
(9) that

y ´ .zj �1;ˇ C zj;ˇ�1 � zj �1;ˇ�1 � zj;ˇ /Zj �1;ˇ Zj;ˇ�1 2 U.j;ˇ/CZj;ˇ :

Thus, y is an element of U.j;ˇ/C which q-commutes with Zj �1;ˇ�1 and which belongs
to U.j;ˇ/CZj;ˇ . As in the proof of Lemma 2.4 (Step 2), some easy calculations show
that this forces y D 0, so that

zj �1;ˇ�1 C zj;ˇ D zj �1;ˇ C zj;ˇ�1;

as desired.

Step 3: we prove that zi;˛ C zk;ı D zi;ı C zk;˛ , for all .k; ı/ < .j; ˇ/C, with i < k

and ˛ < ı.

In order to do this, let .k; ı/ < .j; ˇ/C, with i < k and ˛ < ı. If .k; ı/ < .j; ˇ/,
it follows from the inductive hypothesis that zi;˛ C zk;ı D zi;ı C zk;˛ , as required.
Now we assume that .k; ı/ D .j; ˇ/.

First, if .i; ˛/ D .j �1; ˇ�1/, then we have just proved in Step 2 that zi;˛ Czj;ˇ D
zi;ˇ C zj;˛ , as required.

Next, assume that i < j � 1 and ˛ D ˇ � 1. Then it follows from the inductive
hypothesis that

zi;ˇ�1 C zj �1;ˇ D zi;ˇ C zj �1;ˇ�1:

Moreover, we have already shown that zj �1;ˇ C zj;ˇ�1 D zj �1;ˇ�1 C zj;ˇ . Hence,

zi;ˇ�1 C zj;ˇ D zi;ˇ C zj;ˇ�1;

as required. Similar arguments show that

zj �1;˛ C zj;ˇ D zj �1;ˇ C zj;˛;

for all ˛ < ˇ.
Assume now that i < j �1 and ˛ < ˇ�1. It follows from the inductive hypothesis

that
zi;˛ C zj �1;ˇ D zi;ˇ C zj �1;˛:

Moreover, we have already shown that

zj �1;˛ C zj;ˇ D zj �1;ˇ C zj;˛:

Combining these two equations leads to

zi;˛ C zj;ˇ D zi;ˇ C zj;˛;

as desired.
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Step 4: we prove that D.Zi;˛/ D adx.Zi;˛/ C zi;˛Zi;˛ for all .i; ˛/ 2 ŒŒ1; n��2.

First, if i � j or ˛ � ˇ, then Zi;˛ D Y
.j;ˇ/C

i;˛ D Y
.j;ˇ/

i;˛ ; so that the result easily
follows from the inductive hypothesis.

Now assume that i < j and ˛ < ˇ, so that Zi;˛ D Y
.j;ˇ/C

i;˛ D Y
.j;ˇ/

i;˛ C
Zi;ˇ Z�1

j;ˇ
Zj;˛ . Hence, we deduce from the inductive hypothesis (and the previous

case) that

D.Zi;˛/ D D.Y
.j;ˇ/

i;˛ C Zi;ˇ Z�1
j;ˇ Zj;˛/

D adx.Y
.j;ˇ/

i;˛ / C zi;˛Y
.j;ˇ/

i;˛

C adx.Zi;ˇ Z�1
j;ˇ Zj;˛/ C .zi;ˇ � zj;ˇ C zj;˛/Zi;ˇ Z�1

j;ˇ Zj;˛

D adx.Zi;˛/ C zi;˛Zi;˛ C .zi;ˇ � zj;ˇ C zj;˛ � zi;˛/Zi;ˇ Z�1
j;ˇ Zj;˛:

Now it follows from Step 3 that zi;ˇ � zj;ˇ C zj;˛ � zi;˛ D 0. Hence

D.Zi;˛/ D adx.Zi;˛/ C zi;˛Zi;˛;

as desired.

Corollary 2.7. The element zi;˛ belongs to Z.R/ D KŒ�n� for all .i; ˛/ 2 ŒŒ1; n��2.

Proof. We already know from Proposition 2.3 that zi;˛ 2 Z.R/ when i � 2 and
˛ � 2. Further, it follows from Lemma 2.5 that zi;˛ 2 Z.R/ when i D 1. Finally, let
i � 2. It follows from Lemma 2.6 that zi;1 D z1;1 C zi;2 � z1;2. Thus, zi;1 2 Z.R/,
since the three elements on the right side of this equation belong to Z.R/.

Corollary 2.8. Any derivation D of R D Oq.Mn/ D KŒYi;˛� can be written as
D D ad x C � , where x 2 R and � is a derivation of R such that �.Yi;˛/ D zi;˛Yi;˛

for some zi;˛ 2 KŒ�� satisfying zi;˛ C zk;ı D zi;ı C zk;˛ whenever i < k and ˛ < ı.

Proof. This is the case .n; n C 1/ of Lemma 2.6.

We now seek to describe the possibilities for the derivation � occurring in the
previous result.

It is easy to verify that there are 2n derivations of R given by Di;�, D�;˛ , for
1 � i , ˛ � n, where

Di;�.Yj;ˇ / D ıij Yi;ˇ and D�;˛.Yj;ˇ / D ı˛ˇ Yj;˛:

In other words, Di;� fixes row i and kills all the other rows, while D�;˛ fixes column
˛ and kills all other columns.

We show that � above can be described in terms of these row and column deriva-
tions. However, note that these derivations are not independent, since

P
Di;� D
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P
D�;˛; so we begin by defining 2n � 1 derivations which span the same space, but

which are independent.
Set

Dj D
(

D�;nC1�j for 1 � j � n � 1,

Dj �nC1;� for n C 1 � j � 2n � 1,

while

Dn D D1;� C D�;1 �
nX

iD1

Di;� .D D1;� C D�;1 �
nX

˛D1

D�;˛/:

It is easy to see that the K-span of fDj j 1 � j � 2n � 1g is the same as the
K-span of fDi;�; D�;˛ j 1 � i; ˛ � ng.

Note that:

� If j 2 ŒŒ1; n � 1��, then Dj .Yi;˛/ D Yi;˛ if ˛ D n C 1 � j , and Dj .Yi;˛/ D 0

otherwise.
� Dn.Y1;1/ D Y1;1, Dn.Yi;˛/ D �Yi;˛ if i � 2 and ˛ � 2, and Dn.Yi;˛/ D 0

otherwise.
� If j 2 ŒŒnC1; 2n�1��, then Dj .Yi;˛/ D Yi;˛ if i D j �nC1, and Dj .Yi;˛/ D 0

otherwise.

It follows from Corollary 2.8 that any derivation D of R can be written as follows:

D D adx C z1;nD1 C � � � C z1;2Dn�1 C z1;1Dn C z2;1DnC1 � � � C zn;1D2n�1;

with x 2 R and z1;1; : : : ; z1;n; z2;1; : : : ; zn;1 2 Z.R/.
Recall that the Hochschild cohomology group in degree 1 of R, denoted by

HH1.R/, is defined by

HH1.R/ ´ Der.R/=InnDer.R/;

where InnDer.R/ ´ fadx j x 2 Rg is the Lie algebra of inner derivations of R. Note
that HH1.R/ is sometimes denoted by HH1.R; R/ in the literature. It is well known
that HH1.R/ is a module over HH0.R/ ´ Z.R/. The following result makes this
latter structure precise.

Theorem 2.9. 1) Every derivation D of R can be uniquely written as

D D adx C �1D1 C � � � C �2n�1D2n�1;

with adx 2 InnDer.R/ and �1; : : : ; �2n�1 2 Z.R/ D KŒ�n�.
2) HH1.R/ is a free Z.R/-module of rank 2n � 1 with basis . SD1; : : : ; D2n�1/.
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Proof. It just remains to prove that if x 2 R and �1; : : : ; �2n�1 2 Z.R/ with
adx C �1D1 C � � � C �2n�1D2n�1 D 0, then �1 D � � � D �2n�1 D 0 and adx D 0.
Set � ´ �1D1 C � � � C �2n�1D2n�1, so that adx C � D 0. The derivation � of R

extends uniquely to a derivation Q� of the quantum torus P.ƒ/. Naturally, we still
have adx C Q� D 0. Further, straightforward computations show that

Q�.Ti;˛/ D

8̂̂̂
<
ˆ̂̂:

�nT1;1

�nC1�˛T1;˛ if ˛ � 2,

�nCi�1Ti;1 if i � 2,

.�nC1�˛ C �nCi�1 � �n/Ti;˛ otherwise.

Hence Q� is a central derivation of P.ƒ/, in the terminology of [12]. Thus we
deduce from [12], Corollary 2.3, that adx D 0 D � . Evaluating � on Y1;˛ with
˛ 2 ŒŒ1; n��, and on Yi;1 with i 2 ŒŒ1; n�� leads to �1 D � � � D �2n�1 D 0, as desired.

As a corollary of Theorem 2.9, we obtain some new information on the twisted
homology of quantum matrices. We refer to [7] and references therein for definition
and properties of the twisted homology. In [7], the authors have shown using results
of [14] that the “dimension drop” in Hochschild homology is overcome by passing
to twisted Hochschild homology. More precisely, they have shown that

HHn2.Oq.Mn/; Oq.Mn/� / ' KŒ�n�;

where � denotes the automorphism of Oq.Mn/ defined by

�.Yi;˛/ D q2.nC1�i�˛/Yi;˛;

for all .i; ˛/ 2 ŒŒ1; n��. In fact, it is a consequence of Theorem 2.9 and [7],
Proposition 2.1, that not only HHn2.Oq.Mn/; Oq.Mn/� / is nonzero, but also
HHn2�1.Oq.Mn/; Oq.Mn/� / is nonzero. More precisely, recall from [7], Proposi-
tion 2.1, that Oq.Mn/ has the (twisted) Poincaré duality property, so that
HHn2�1.Oq.Mn/; Oq.Mn/� / is isomorphic as a vector space to HH1.Oq.Mn//.
Hence we deduce from Theorem 2.9 the following result.

Corollary 2.10. HHn2�1.Oq.Mn/; Oq.Mn/� / ¤ 0.

3. On Hochschild cohomology and twisted Hochschild homology of Oq.GLn/

and Oq.SLn/

In this section, we describe the derivations of Oq.GLn/ and Oq.SLn/. As a conse-
quence, we show that the Hochschild cohomology group in degree 1 and the twisted
Hochschild homology group in degree n2 �2 of Oq.SLn/ are both finite-dimensional
vector spaces of dimension 2n � 2.
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3.1. Derivations of Oq.GLn/. The quantisation of the ring of regular functions on
GLn.K/ is denoted by Oq.GLn/; recall that it is the localisation of Oq.Mn/ at the
powers of the central element �n. It is well-known that Oq.GLn/ is a Noetherian
domain that is endowed with a Hopf algebra structure.

As Oq.GLn/ is a localisation of Oq.Mn/, the derivations D1; : : : ; D2n�1 of
Oq.Mn/ defined in the discussion before Theorem 2.9 extend uniquely to deriva-
tions of Oq.GLn/ that are still denoted by D1; : : : ; D2n�1.

Theorem 3.1. 1) Every derivation D of Oq.GLn/ can be uniquely written as

D D adx C �1D1 C � � � C �2n�1D2n�1;

with adx 2 InnDer.Oq.GLn// and �1; : : : ; �2n�1 2 Z.Oq.GLn// D KŒ�˙1
n �.

2) HH1.Oq.GLn// is a free Z.Oq.GLn//-module of rank 2n � 1 with basis
. SD1; : : : ; D2n�1/.

Proof. Let D be a derivation of Oq.GLn/. Then there exists k 2 N such that, for all
.i; ˛/ 2 ŒŒ1; n��2,

�k
nD.Yi;˛/ D D.Yi;˛/�k

n 2 Oq.Mn/:

It is easy to check that �k
n:D restricts to a derivation of Oq.Mn/. Hence it follows

from Theorem 2.9 that there exist �1; : : : ; �2n�1 2 KŒ�n� and x 2 Oq.Mn/ such
that

�k
n:D D adx C �1D1 C � � � C �2n�1D2n�1:

As �n is central, we obtain

D D ad��k
n x C �1��k

n D1 C � � � C �2n�1��k
n D2n�1;

as desired.
It just remains to prove that if x 2 Oq.GLn/ and �1; : : : ; �2n�1 2 Z.Oq.GLn//

with adx C �1D1 C � � � C �2n�1D2n�1 D 0, then �1 D � � � D �2n�1 D 0 and
adx D 0. Set D ´ adx C �1D1 C � � � C �2n�1D2n�1. Let k 2 N such that
x�k

n 2 Oq.Mn/ and �i�
k
n 2 Oq.Mn/ for all i 2 ŒŒ1; 2n � 1��. Then �k

nD in-
duces a derivation of Oq.Mn/ such that 0 D �k

nD D adx�k
n

C �1�k
nD1 C � � �

C �2n�1�k
nD2n�1. As all the �i�

k
n belong to KŒ�n� D Z.Oq.Mn//, we deduce

from Theorem 2.9 that �k
n:adx D ad�k

nx D 0 and �i�
k
n D 0 for all i 2 ŒŒ1; 2n � 1��.

Naturally, this forces adx D 0 and �i D 0 for all i 2 ŒŒ1; 2n � 1��, as required.

Following the same reasoning as in the discussion before Corollary 2.10, we obtain
the following result regarding the twisted Hochschild homology of Oq.GLn/.

Corollary 3.2. HHn2�1.Oq.GLn/; Oq.GLn/� / ¤ 0.
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3.2. Derivations of Oq.SLn/. In this section, we first consider the case where n � 3.
(The case n D 2 needs a slightly different treatment for technical reasons.)

The quantisation of the ring of regular functions on SLn.K/ is denoted by Oq.SLn/;
recall that

Oq.SLn/ ´ Oq.Mn/=h�n � 1i:
We set Xi;˛ ´ Yi;˛ Ch�n � 1i for all .i; ˛/ 2 ŒŒ1; n��2. It is well-known that Oq.SLn/

is a Noetherian domain whose centre is reduced to scalars.
Observe that, for all i 2 ŒŒ1; n � 1�� [ ŒŒn C 1; 2n � 1��, the derivation Di C 1

n�2
Dn

of Oq.Mn/ satisfies
�
Di C 1

n�2
Dn

�
.�n/ D 0. Hence it induces a derivation of

Oq.SLn/ that we denote by D0
i .

Theorem 3.3. 1) Every derivation D0 of Oq.SLn/ can be uniquely written as follows:

D0 D ady C �0
1D0

1 C � � � C �0
n�1D0

n�1 C �0
nC1D0

nC1 C � � � C �0
2n�1D0

2n�1;

ady 2 InnDer.Oq.SLn// and �0
1; : : : ; �0

n�1; �0
nC1; : : : ; �0

2n�1 2 Z.Oq.SLn// D K.
2) HH1.Oq.SLn// is a finite-dimensional vector space of dimension 2n � 2 with

basis . SD0
1; : : : ; D0

n�1; D0
nC1; : : : ; D0

2n�1/.

Proof. Let D0 be a derivation of Oq.SLn/. Naturally, one can extend D0 to a derivation
of Oq.SLn/Œt˙1� by setting D0.t/ D 0. Now, recall from [11, Proposition] that there
exists a unique isomorphism ' W Oq.SLn/Œt˙1� ! Oq.GLn/ such that '.Xi;˛/ D Yi;˛

if i > 1, '.X1;˛/ D Y1;˛��1
n , and '.t/ D �n. As D0 is a derivation of Oq.SLn/Œt˙1�,

one can transfer it via ' in order to obtain a derivation of Oq.GLn/. More precisely,
it is easy to check that D ´ ' B D0 B '�1 is a derivation of Oq.GLn/ such that
D.�n/ D 0. Hence, it follows from the proof of Theorem 3.1 that there exist
k 2 N, �1; : : : ; �2n�1 2 KŒ�n� and x 2 Oq.Mn/ such that D D ��k

n adx C
��k

n �1D1 C � � � C ��k
n �2n�1D2n�1. Moreover, since D.�n/ D 0, we must have

�1 C � � � C �n�1 C �nC1 C � � � C �2n�1 � .n � 2/�n D 0. Hence D D ��k
n adx C

��k
n �1D00

1 C � � � C ��k
n �n�1D00

n�1 C ��k
n �nC1D00

nC1 C � � � C ��k
n �2n�1D00

2n�1,
where D00

i D Di C 1
n�2

Dn for all i 2 ŒŒ1; n � 1�� [ ŒŒn C 1; 2n � 1��.
Hence

D.Y1;1/ D ��k
n adx.Y1;1/ C ��k

n
1

n�2
.�1 C � � � C �n�1

C �nC1 C � � � C �2n�1/Y1;1;

D.Y1;˛/ D ��k
n adx.Y1;˛/ C ��k

n �nC1�˛Y1;˛ for ˛ � 2;

D.Yi;1/ D ��k
n adx.Yi;1/ C ��k

n �nCi�1Yi;1 for i � 2;

and

D.Yi;˛/ D ��k
n adx.Yi;˛/ C ��k

n .�nC1�˛ C �nCi�1

� 1
n�2

.�1 C � � � C �n�1 C �nC1 C � � � C �2n�1//Yi;˛
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when i � 2 and ˛ � 2.
Set y ´ '�1.x/, and write y D P

l2Z yl t
l with yl 2 Oq.SLn/ equal to 0 except

for a finite number of values of l . Also, for all i 2 ŒŒ1; n�1��[ ŒŒnC1; 2n�1��, we set
'�1.�i / D P

l2Z �i;l t
l with �i;l 2 Oq.SLn/ equal to 0 except for a finite number of

values of l . Now '�1.�i / is central in Oq.SLn/Œt˙1�, since �i is central in Oq.Mn/;
and so '�1.�i / 2 KŒt˙1�. Hence �i;l 2 K, for all i; l . Then, straightforward
computations show that

D0 D adyk
C �1;kD0

1 C � � � C �n�1;kD0
n�1 C �nC1;kD0

nC1 C �2n�1;kD0
2n�1:

We show this when .i; ˛/ D .1; 1/, the other cases are proved in a similar manner.
In this case, D0.X1;1/ D '�1 B D.Y1;1��1

n /, that is,

D0.X1;1/ D '�1.��k�1
n adx.Y1;1/ C ��k�1

n
1

n�2
.�1 C � � �

� � � C �n�1 C �nC1 C � � � C �2n�1/Y1;1/

D
X
l2Z

Œadyl
.X1;1/ C 1

n�2
.�1;l C � � �

� � � C �n�1;l C �nC1;l C � � � C �2n�1;l/X1;1� t l�k :

Now, as Oq.SLn/Œt˙1� D ˚l2ZOq.SLn/t l and D0.X1;1/ 2 Oq.SLn/, we deduce
from the previous equality that

D0.X1;1/ D adyk
.X1;1/ C 1

n�2
.�1;k C : : :

� � � C �n�1;k C �nC1;k C � � � C �2n�1;k/X1;1

D adyk
.X1;1/ C �1;kD0

1.X1;1/ C � � � C �n�1;kD0
n�1.X1;1/

C �nC1;kD0
nC1.X1;1/ C � � � C �2n�1;kD0

2n�1.X1;1/;

as desired.
To finish, let us mention that the decomposition of D0 is unique because of the

uniqueness of the decomposition of D in Oq.GLn/.

Note that the automorphism � of Oq.Mn/ defined in the discussion before Corol-
lary 2.10 induces an automorphism of Oq.SLn/, still denoted by � , since �.�n/ D
�n. Following the same reasoning as in the discussion before Corollary 2.10, we
obtain the following result regarding the twisted Hochschild homology of Oq.SLn/.

Corollary 3.4. HHn2�2.Oq.SLn/; Oq.SLn/� / is a finite dimensional vector space of
dimension 2n � 2.

When nD2, the derivations D1�D3 and D2 of Oq.Mn/ satisfy .D1 � D3/ .�n/D
0 D D2.�n/. Hence, they induce two derivations of Oq.SL2/ that are denoted by
D0

1 and D0
2. Then, by using arguments similar to those in the proof of Theorem 3.3,

one can prove the following result.
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Proposition 3.5. 1) Every derivation D0 of Oq.SL2/ can be uniquely written as
follows

D0 D ady C �0
1D0

1 C �0
2D0

2;

with ady 2 InnDer.Oq.SL2// and �0
1; �0

2 2 Z.Oq.SL2// D K.
2) HH1.Oq.SL2// is a two-dimensional vector space with basis . SD0

1; SD0
2/.

3) HH2.Oq.SL2/; Oq.SL2/� / is a two-dimensional vector space.

Notice that Hadfield and Krähmer have computed the twisted Hochschild homol-
ogy of Oq.SL2/ in [6]. However, there is a misprint in [6, Theorem 1.1] in the
dimension of HH2.Oq.SL2/; ��1Oq.SL2// ' HH2.Oq.SL2/; Oq.SL2/� /, as the
authors have confirmed.
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