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Bost–Connes type systems for function fields

Benoît Jacob

Abstract. We describe a construction which associates to any function field k and any place
1 of k a C*-dynamical system .Ck;1; �t / that is analogous to the Bost–Connes system
associated to Q and its archimedean place. Our construction relies on Hayes’ explicit class
field theory in terms of sign-normalized rank one Drinfel’d modules. We show that Ck;1 has
a faithful continuous action of Gal.K=k/, whereK is a certain field constructed by Hayes such
that kab;1 � K � kab. Here kab;1 is the maximal abelian extension of k that is totally split
at1. We classify the extremal KMSˇ states of .Ck;1; �t / at any temperature 0 < 1=ˇ <1
and show that a phase transition with spontaneous symmetry breaking occurs at temperature
1=ˇ D 1. At high temperature 1=ˇ > 1, there is a unique KMSˇ state, of type IIIq�ˇ ,
where q is the cardinal of the constant subfield of k. At low temperature 1=ˇ < 1, the space of
extremal KMSˇ states is principal homogeneous under Gal.K=k/. Each such state is of type
I1 and the partition function is the Dedekind zeta function �k;1. Moreover, we construct a
�-subalgebra H , we give a presentation of H and of Ck;1, and we show that the values of the
low-temperature extremal KMSˇ states at certain elements of H are related to special values
of partial zeta functions.
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Introduction

Statement of the main results. Let k be any global function field. Let1 be any
place of k. In this paper, we shall associate to the pair .k;1/ a C*-dynamical system
.Ck;1; .�t //.

Our system aims to be an analog of the Bost–Connes (BC for short) system as-
sociated to Q, cf. Bost and Connes [3]. The partition function of the BC system is
the Riemann zeta function without the -factor at infinity. Similarly, we shall check
(Lemma 4.3.3) that the partition function of our system is the zeta function of the
field k without the factor corresponding to the place1 of k.

The BC system admits Gal.Qab=Q/ as symmetry group. Similarly, we shall check
(Proposition 3.4.2) that our system has Gal.K=k/ as symmetry group (meaning that
Gal.K=k/ acts continuously and faithfully on Ck;1, commuting with the flow �t ),
where K is a field having the following property:

kab;1 � K � kab;

where kab;1 is the maximal abelian extension of k that is totally split at1. The field
K is generated over k by coefficients and torsion points of certain rank one Drinfel’d
modules; this is part of David R. Hayes’ explicit class field theory for function fields,
cf. Hayes [18], [19] and [20], which we shall quickly review. If10 is any place of k
other than1, we have (cf. [18], Theorem 7.2)

kab;10 � kab;1 D kab:

We shall construct our C*-algebra Ck;1 as the maximal C*-algebra of a certain
groupoid G . We shall also give (Proposition 3.3.6) a presentation of Ck;1 as a
C*-algebra.

For any temperature 1=ˇ 2 R�C, letKˇ be space of KMSˇ states of
�
Ck;1; .�t /

�
,

endowed with the weak� topology. By Bratteli and Robinson [4], II, Theorem 5.3.30,
the spaceKˇ is a compact simplex (in particular, it is convex). Let E.Kˇ / denote the
subspace of extreme points of Kˇ . The elements of E.Kˇ / are called the extremal
KMSˇ states. By loc. cit., a KMSˇ state is extremal if, and only if it is a factor state.
Thus, E.Kˇ / is equal to the space of KMSˇ factor states.

We shall classify the KMSˇ states of our system for any temperature 1=ˇ 2 R�C:
At low temperature 1=ˇ < 1, we shall prove (Theorem 4.3.10) that E.Kˇ / is prin-
cipal homogeneous1 under Gal.K=k/. The states in E.Kˇ / are of type I1 (Propo-
sition 4.3.8). At high temperature 1=ˇ > 1, we shall prove (Theorem 4.4.15) that
there exists a unique KMSˇ state. It is of type IIIq�ˇ (Theorem 4.5.8), where q is the
cardinal of the constant subfield of k.

1LetG be topological group acting on a topological spaceX . One says thatX is principal homogeneous
underG if, for any x 2 X , the map g 7! gx is a homeomorphismG! X .
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We shall construct a dense �-subalgebra H which gives an arithmetic structure
to our dynamical system, as in [3]. For example, we shall show (Theorem 4.3.12)
that evaluating low-temperature extremal KMSˇ states on certain elements of the
subalgebra H gives rise to formulas involving special values of partial zeta functions.

Many of our proofs are adapted from [3], and we have also borrowed several ideas
from Harari and Leichtnam [17].

Outline. This paper is divided into four sections. In Section 1 we first review defi-
nitions and results in the arithmetic of function fields and in the analytic theory of
Drinfel’d modules. We review Hayes’ explicit class field theory for function fields,
in terms of sign-normalized rank one Drinfel’d modules. We choose once and for
all a sign-function sgn, and Hayes’ theory provides us with a finite set H.sgn/ of
Drinfel’d modules with special arithmetic properties. In particular, their coefficients
and torsion points generate the extension K=k which we mentioned above. In the
rest of this paper, the only Drinfel’d modules which we consider are the elements of
H.sgn/.

In Section 2 we do the actual construction of the C*-dynamical system
.Ck;1; .�t //. From the finite set H.sgn/ provided by Hayes’ theory, we construct
a compact topological space X in the following way: for any � 2 H.sgn/, let X�
denote the dual group of the discrete group of torsion points of the Drinfel’d mod-
ule �. LetX be the disjoint union of theX� , where � runs overH.sgn/. The compact
space X is endowed with a natural action of the semigroup IO of ideals. This gives
rise to a groupoid G , and the C*-algebra Ck;1 is obtained as the maximal groupoid
C*-algebra of G . The flow .�t / is then easy to define.

In Section 3 we prove a number of results about the algebraic structure of
.Ck;1; .�t //. We introduce a �-subalgebra H which plays the rôle of the algebra
H in the paper [3]. We prove that H is dense in Ck;1, and we give a presentation of
H as a �-algebra and of Ck;1 as a C*-algebra. We then study an action of Gal.K=k/
onCk;1 and compute the fixed-point subalgebraC1. The rest of this section is devoted
to miscellaneous arithmetical results which we use in the last section.

In Section 4 for any temperature 1=ˇ 2 R�C, we describe the space E.Kˇ / of
extremal KMSˇ states (endowed with the weak� topology), and we compute the type
of all such states. We first construct a KMSˇ state 'ˇ and show that it is the unique
Gal.K=k/-invariant KMSˇ state. We then show that the action of Gal.K=k/ on
E.Kˇ / is transitive and continuous. Thus, in order to describe E.Kˇ /, it is enough
to find an element of E.Kˇ / and to describe its orbit under Gal.K=k/. At low
temperature 1=ˇ < 1, we associate to any admissible character � a Gibbs state
'ˇ;� in the regular representation at �. We prove that the map � 7! 'ˇ;� is a
homeomorphism from the space X adm of admissible characters to E.Kˇ /. We also
prove that both spaces are principal homogeneous under Gal.K=k/. We check that
the states in E.Kˇ / are of type I1, that the partition function is the Dedekind zeta
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function �k;1, and we compute the values of the 'ˇ;� at some points of H in terms
of special values at ˇ of partial zeta functions of k. At high temperature 1=ˇ > 1, we
prove that E.Kˇ / D f'ˇ g and that the type of 'ˇ is IIIq�ˇ , where q is the cardinal of
the constant subfield of k.

Literature on Bost–Connes type constructions. The 1995 paper [3] has inspired
many mathematicians. Unfortunately, it would be impossible to mention all of them
here; we refer to Section 1.4 of Connes and Marcolli [11] for a more complete sum-
mary. M. Laca, N. Larsen, I. Raeburn and others have investigated in a number of
papers (see for instance [2], [25], [26], [27], [28]) the semigroup crossed product
and Hecke algebra aspects of the BC construction and generalizations of it. In 1997,
D. Harari and E. Leichtnam have obtained in [17] a system with spontaneous sym-
metry breaking for any global field. In 1999, P. Cohen has obtained in [6] a system
for number fields whose partition function is the Dedekind zeta function. In 2002,
S. Neshveyev has given in [29] a new proof of the uniqueness of the KMSˇ state at
high temperature. In 2004, A. Connes and M. Marcolli have introduced in [11] the
noncommutative space of Q-lattices up to scaling and commensurability, allowing
for a comprehensive reformulation of the BC construction, and have studied the case
of rank 2. In 2005, A. Connes, M. Marcolli and N. Ramachandran have obtained in
[12], [13] the “good” system for quadratic imaginary number fields and have studied
its relation to complex multiplication of elliptic curves. The same year, E. Ha and
F. Paugam have extended in [16] the Connes–Marcolli setting to arbitrary Shimura
varieties. Finally, in the paper [10], A. Connes, C. Consani and M. Marcolli have in-
troduced the notion of an endomotive, putting the BC construction into a much wider
perspective which also includes A. Connes’ spectral realization [9] of the zeroes of
the Riemann zeta function.

Acknowledgements. I thank Éric Leichtnam for giving me this research subject, for
many helpful comments on early versions of this paper, and for his explanations on
operator algebras. I thank Matilde Marcolli for encouraging me to give a talk on this
material at MPI, Bonn, in October 2005. During this research, I enjoyed the excellent
working environment of the “Projet Algèbres d’Opérateurs” at Jussieu, and I thank
Étienne Blanchard for letting me talk in its seminar. I am very grateful to Alain
Connes, David R. Hayes, Georges Skandalis and Stefaan Vaes who kindly answered
mathematical questions. I also thank Cécile Armana, Pierre Fima, Eugene Ha, Cyril
Houdayer and Frédéric Paugam for helpful discussions.

Here are two interesting remarks that people made at the end of my MPI talk.
1. As Alain Connes pointed out, our system lacks one feature of the BC system:

fabulous states. The reason for that is obvious: values of states are elements of C, so
the symmetry group Gal.K=k/ does not act naturally on them. Obtaining fabulous
states would require to have a theory of dynamical systems of positive characteristic,
where states would take values in some field of positive characteristic. Note that even
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though the low temperature extremal KMSˇ states of our system do not have the
fabulous property, they have interesting special values (Theorem 4.3.12).

2. Arkady Kholodenko mentioned that it might be possible to adapt his work
on 2C 1 gravity [23] in order to obtain zeta functions of function fields as partition
functions, and that Drinfel’d modules should play a rôle.

Notations. In this paper, N denotes the set of nonnegative integers, N� denotes the
set of positive integers, and R�C denotes the set of positive real numbers. Thus 0 2 N,
0 62 N�, and 0 62 R�C. For any Hilbert space H , we let B.H/ denote the algebra of
all bounded linear operators on H . For any set X , we write B`2.X/ for B.`2.X//.
For any x 2 R, we set

bxc D maxfn 2 Z j n 6 xg:
For any predicate P , we define 1P to be equal to 1 if P is true, and 0 if P is false.
Thus, we have for any two predicates P and Q:

1P andQ D 1P 1Q:

1. Function fields, Drinfel’d modules, and Hayes’ explicit class field theory

1.1. Function fields. Here are three equivalent definitions of a function field:

� A field which is a finite extension of Fp.T /, for some prime number p.

� A global field of positive characteristic.

� The field K.C/ of rational functions on a projective curve C over a finite field.
The curve C can always be chosen to be smooth.

Thus, global fields fall into two categories: those of characteristic 0 are the number
fields, and those of positive characteristic are the function fields.

Recall that at the beginning of this paper, we chose a function field k and a place1
of k.

Function fields have many similarities with number fields. An important part of
algebraic number theory works in the same way for all global fields.

The analog of the Dedekind ring of integers is defined as follows. According to
the third definition of a function field, view k as the field K.C/ of rational functions
on a smooth projective curveC over a finite field. View1 as a closed point ofC . Let
O be the subring of k of all functions having no pole away from1. In other words,
O is the ring of regular functions on the affine curve C � f1g. Note that k D K.C/
is the field of fractions of O.

Example. k D Fp.T / and1 is the place corresponding to an absolute value j � j such
that jT j > 1. The subring O is then the polynomial ring FpŒT �.
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Call finite the places of k other than1. We have a natural bijection

finite places of k  ! maximal ideals of O:

Let p denote the characteristic of k. The range of the unique unital ring morphism
Z! k is a finite field with p elements; we denote it by Fp . The algebraic closure of
Fp in k is called the constant subfield of k. Let q denote its cardinal. Of course, q is
a power of p. We let Fq denote the constant subfield of k. An element of k is said to
be constant if it belongs to Fq .

For any place p of k, we let Np denote the cardinal of the residue field of p. Thus,
Np D qnp for some positive integer np called the degree of p. Note that if p is finite,
then the residue field is the quotient O=p.

The rest of this subsection is a review of a few well-known theorems about func-
tion fields, which will be used in the proofs of our classification of KMSˇ states.
These theorems are: the strong approximation theorem, Weil’s “Riemann Hypothesis
for curves”, and the abelian case of the Čebotarev density theorem for the natural
density. The first one will be used in Subsection 3.6, which in turn will be used in the
classification of KMSˇ states at low temperature. The two other ones will be used in
the classification of KMSˇ states at high temperature.

Let Af denote the ring of finite adèles of k. This is the restricted product of the
kp with respect to the Op, where p runs over all finite places of k. Let �f W k ,! Af
be the diagonal embedding.

Theorem 1.1.1 (Strong approximation theorem). The field �f .k/ is dense in Af .

Proof. See Cassels and Fröhlich [5], Chapter II, §15, p. 67.

This is contrasted with the fact that if � W k ,! A is the diagonal embedding into
the full ring of adèles, then �.k/ is discrete in A. Note that

A D Af � k1;
where k1 is the completion of k at1.

Let us now recall Weil’s “Riemann hypothesis for curves” theorem. The genus of
a function field is the genus of any projective smooth curve of which it is the function
field. For the statement of the following theorem, we temporarily forget that we
already chose a function field k and defined q as the cardinal of its constant subfield.

Theorem 1.1.2 (A. Weil, the Riemann Hypothesis for curves). Let k be a function
field of genus g. Let q be the cardinal of its constant subfield. Let N be the number
of places of k with norm q .i.e. with degree 1/. Then

q � 2gpq C 1 6 N 6 q C 2gpq C 1:
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Proof. Weil’s original proof is published in [34].

Let us now come back to the function field k that we fixed at the beginning of this
paper. Let g denote the genus of k.

Given an integern > 1, one may ask how to obtain a result similar to Theorem 1.1.2
for places of k with norm qn (i.e. with degree n). Note that one cannot replace q by qn

in Theorem 1.1.2. Here one has to be wary of the distinction between closed points,
which correspond to places of k, and geometric points, which correspond to places
of suitable extensions of k. The following corollary will be used in Subsections 4.4
and 4.5.

Corollary 1.1.3. For any n > 1, let Q.k; qn/ denote the number of places of k with
norm qn, and let P.k; qn/ denote the number of places k with norm 6 qn. The
following estimates hold when n!1W

Q.k; qn/ D qn

n
CO�

qn=2
�
; (1)

P.k; qn/ � q

q � 1 �
qn

n
: (2)

Proof. For any n > 1, let kn D k ˝Fq Fqn . Note that the constant subfield of kn is
Fqn . Let Nn denote the number of places of kn with norm qn. By Theorem 1.1.2
applied to the function field kn, we have

qn � 2gqn=2 C 1 6 Nn 6 qn C 2gqn=2 C 1: (3)

Let n > 1. One easily checks that for any mjn there is a bijection

places of k with norm qm  ! Gal.kn=k/-orbits with cardinal m

of places of kn with norm qn:

Thus we have
Nn D

X
mjn

mQ.k; qm/: (4)

This gives
nQ.k; qn/ D Nn �

X
mjn;m6n=2

mQ.k; qm/:

By equation (4), we have mQ.k; qm/ 6 Nm, so we find

Nn > nQ.k; qn/ > Nn �
X

mjn;m6n=2
Nm:

> Nn � .n=2/Nbn=2c:
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Applying the inequality (3), we get

qn C 2gqn=2 C 1 > nQ.k; qn/ > qn � 2gqn=2 C 1 � .n=2/.qn=2 C 2gqn=4 C 1/;
and the estimate (1) follows. From the estimate (1), using the equality

P.k; qn/ D
nX

mD1
Q.k; qm/;

one can obtain the estimate (2) by an elementary computation.

For any s 2 C with Re s > 1, put

�k.s/ D
Y

p

1

1 � Np�s

where the product is taken over all places of k. One shows that �k can be continued
to a meromorphic function on C. Note that �k is periodic, with period 2	i= log q.
The inequality (3) for all n > 1 is then equivalent to the statement that all zeroes of
�k have real part 1=2. One defines the zeta function without the factor at1, denoted
by �k;1, to be the meromorphic continuation of the function defined when Re s > 1
by

�k;1.s/ D
Y

p¤1

1

1 � Np�s
D .1 � N1�s/�k.s/:

Note that when Re s > 1, we have

�k;1.s/ D
X

a2IO

1

Nas
:

Let us now recall a version of the Čebotarev density theorem.
Let S denote the set of all places of k. A set P of places of k is said to have a

Dirichlet density if the following limit exists in R:

d.P / D lim
s!1C

P
p2P Np�sP
p2S Np�s

:

Moreover, P is said to have a natural density if the following limit exists in R:

ı.P / D lim
N!C1

Cardfp 2 P j Np 6 N g
Cardfp 2 S j Np 6 N g :

If a set P has a natural density, then it also has a Dirichlet density, and d.P / D ı.P /.
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Theorem 1.1.4 (Čebotarev density theorem, abelian case, for the natural density).
Let L be a finite abelian extension of k. Let � 2 Gal.L=k/. Let P denote the set
of all places p of k unramified in L and such that �p D � , where �p D .p; L=k/ 2
Gal.L=k/ is the Artin automorphism ofL associated to p. ThenP has natural density
ı.P / D 1=ŒL W k�. Therefore, it also has Dirichlet density d.P / D 1=ŒL W k�.

Proof. Combine [5], Chapter VIII, Theorem 4 with the Artin reciprocity law.

We shall use the Čebotarev density theorem in Subsection 4.4, and we shall also
use the following corollary in Subsection 4.5.

Corollary 1.1.5. Let L be a finite abelian extension of k. Let � 2 Gal.L=k/. For
any n > 1, let P.L=k; qn; �/ denote the number of places of p of k unramified in
L such that Np 6 qn and �p D � , where �p D .p; L=k/ 2 Gal.L=k/ is the Artin
automorphism of L associated to p. LetQ.L=k; qn; �/ denote the number of places
of p of k unramified in L such that Np D qn and �p D � . The following estimates
hold when n!1W

P.L=k; qn; �/ � q

.q � 1/ ŒL W k� �
qn

n
; (5)

Q.L=k; qn; �/ � 1

ŒL W k� �
qn

n
: (6)

Proof. The estimate (5) follows from Theorem 1.1.4 and the estimate (2). We have

Q.L=k; qn; �/ D P.L=k; qn; �/ � P.L=k; qn�1; �/;
so

Q.L=k; qn; �/

P.k; qn/
D P.L=k; qn; �/

P.k; qn/
� P.L=k; q

n�1; �/
P.k; qn�1/

� P.k; q
n�1/

P.k; qn/
:

Hence
Q.L=k; qn; �/

P.k; qn/

n!1����! 1

ŒL W k� �
1

ŒL W k� �
1

q
D q � 1
qŒL W k� :

Applying the estimate (2) to that, we get the estimate (6).

1.2. Drinfel’d modules over C1. Our references in this subsection are [20] and
Chapter IV of Goss [15].

Recall that the maximal abelian extension of a quadratic imaginary number field is
generated by the j -invariant and the torsion points of a suitable elliptic curve over C.
One wishes to develop a similar theory for function fields. Thus, one looks for good
analogs of C and of the notion of an elliptic curve over C. The analog of the field C
has been well known for a long time and is what we shall denote C1. The analog of
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the notion of an elliptic curve over C is going to be the notion of a Drinfel’d module
over C1.

We begin with describing the analog of C. Let k1 be the completion of k at1.
The problem is that k1 is not algebraically closed. Take an algebraic closure kalg1 =k1.
One shows that1 extends uniquely to a place of kalg1 . Then the problem is that kalg1
is not complete. So let C1 denote the completion of kalg1 at1. The field C1 is both
complete and algebraically closed.

Let us choose once and for all an imbedding � W k ,! C1, and use it to view k as
a subfield of C1.

Lattices. We are now ready to introduce Drinfel’d modules. The most concrete way
to introduce elliptic curves over C is to first define lattices in C. Similarly, we are
going to first define lattices in C1.

Recall that O is the subring of integers of k, defined in the previous subsection.
A subgroup L � C1 is said to be discrete if there exists a neighborhood U of 0 in
C1 such that U \ L D f0g.

Definition 1.2.1. An O-lattice in C1 is a discrete, finitely generated O-submodule
of C1.

We shall say “lattice” instead of “O-lattice in C1”.
This is an abstract definition, but in this paper we shall only have to deal with a

special case of lattices, rank one lattices, for which there is a very concrete definition.
Let us first define the rank of a lattice.

Let L be a lattice. As C1 is a field containing O, it is obviously a torsion-free
O-module. Hence L is also torsion-free. As O is a Dedekind ring, the O-module L,
being finitely generated and torsion-free, is automatically projective, so there exist an
integer r > 1 and ideals a1; : : : ; ar 2 IO such that L is isomorphic as an O-module
to a1 ˚ � � � ˚ ar .

Definition 1.2.2. The integer r above is called the rank of L.

Let IO be the semigroup of all nonzero ideals of O, under the usual multiplication
law of ideals. For rank one lattices, we have the following result:

A subset of C1 is a rank one lattice if, and only if it is of the form �a with
� 2 C�1 and a 2 IO .

The Drinfel’d module associated to a lattice. Let L be a lattice (of any rank).
Remember the following product formula:

sin z D z
Y

t2�Z�f0g
.1 � z=t/ for all z 2 C:
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Similarly, let us define a function eL W C1 ! C1 by the following formula:

eL.x/ D x
Y

`2L�f0g
.1 � x=`/ for all x 2 C1:

One shows that this product converges for all x. The function eL should be called the
“sinus function associated to L”, but authors have decided to call it the “exponential
function associated to L”. We have

eL.x C y/ D eL.x/C eL.y/ for all x; y 2 C1; (7)

and
eL.ax/ D �La .eL.x// for all a 2 O; x 2 C1; (8)

where �La 2 C1ŒX� is the polynomial given by the following formula if a ¤ 0:

�La D aX
Y

0¤`2a�1L=L

.1 �X=eL.`//;

and �L0 D 0. Note that if a is a nonzero constant (that is, a 2 F �q ), then it is invertible
in O and hence a�1L D L. Thus, one has

�a D aX for all a 2 Fq: (9)

As we shall shortly see, this allows to check that for any a 2 O the polynomial �La is
Fq-linear, which means that it can have nonzero coefficients only in degrees that are
powers of q.

Equation (7) is an analog of the classical formula for sin.xCy/, not of the formula
for exp.xCy/. The fact that eL is additive, while sin is not, is a phenomenon typical
of characteristic p algebra, just like the additivity of the Frobenius map x 7! xp . The
polynomials �La can be viewed as analogs of the classical Chebycheff polynomials of
trigonometry.

One shows, by analytic means, that eL induces a bijection

eL W C1=L! C1:
So this is a group isomorphism. Use it to transport the O-module structure of C1=L
to a new O-module structure on C1, which we denote �L.C1/. Thus, �L.C1/ is
the O-module that is equal to C1 as an additive group and whose O-module structure
is given by

.a; x/ 7! �La .x/:

Thus, by definition, the map eL is an isomorphism of O-modules

eL W C1=L ! �L.C1/: (10)

The Drinfel’d module associated to L is the map

�L W O ! C1ŒX�;
a 7! �La :
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Definition of a Drinfel’d module over C1. The map �L that we have just defined
satisfies

�LaCb D �La C �Lb for all a; b 2 O; (11)

�Lab D �La B �Lb D �Lb B �La for all a; b 2 O: (12)

Let � D Xq and, for n > 0, �n D Xqn . In particular, �0 D X . Let C1f�g denote the
(noncommutative) C1-algebra whose underlying vector space is the C1-linear span
of the �n, for n > 0, and where the “multiplication” law is the composition law B.
Note that C1f�g consists exactly of those polynomials that are Fq-linear. Combining
equations (9) and (12), one obtains that the polynomial �La is Fq-linear,

�La 2 C1f�g for all a 2 O;

and that the map O ! C1f�g, a 7! �La , is Fq-linear as well. Thus, it is a morphism
of Fq-algebras

�L W O ! C1f�g;
a 7! �La :

Let

D W C1f�g ! C1

be the derivative-at-0 map. In other words, D is the C1-linear map defined by
D.�0/ D 1 and D.�n/ D 0 for any n > 1. We have

D.�La / D a for all a 2 O:

This leads to the general definition of a Drinfel’d module over C1:

Definition 1.2.3. Let � W O ! C1f�g, a 7! �a, be a morphism of Fq-algebras. Then
� is a Drinfel’d module over C1 if and only if

(1) for all a 2 O, D.�a/ D a,

(2) � is non-trivial, i.e. � is not the map a 7! a�0.

To any latticeL of any rank we have associated a Drinfel’d module over C1, which
we denoted by �L. The uniformization theorem states that any Drinfel’d module over
C1 comes from a unique lattice. Thus, the map L 7! �L is a bijection between
lattices and Drinfel’d modules over C1.

The rank of a Drinfel’d module over C1 is the rank of the associated lattice.
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Action of the ideals. For any Drinfel’d module � over C1 and any a 2 IO , we
define the polynomial �a 2 C1f�g as follows. Let Ia;� be the left ideal of C1f�g
generated by the �a, for a 2 a. One can show that every left ideal of C1f�g is
principal, so there exists a unique monic �a 2 C1f�g such that Ia;� D C1f�g�a.

For any Drinfel’d module � over C1 and any a 2 O, we define an element
��.a/ 2 C�1 by

��.a/ D leading (highest-degree) coefficient of the polynomial �a:

Note that if a is a principal ideal of O, for any a 2 O such that a D aO, we have

�a D ��.a/�1�a:
It is easy to see that for any b 2 O, we have Ia;��b � Ia;� . Thus, for any b 2 O we
have �a�b 2 Ia;� , so there is a unique �0

b
2 C1f�g such that

�a�b D �0b�a:

One shows that the map b 7! �0
b

is a Drinfel’d module over C1. We denote it by
a � �. For any two a;b 2 IO , we have

a � .b � �/ D .ab/ � �:
Thus, .a; �/ 7! a � � is an action of IO on the set of all Drinfel’d modules over C1.

Let FO be the enveloping (“Grothendieck”) group of the abelian semigroup IO .
The abelian group FO may be realized concretely as the group of fractional ideals of
k with respect to the Dedekind ring O. One shows that the action of IO on the set of
Drinfel’d modules over C1 extends to an action of FO . One also has the equality

�ab D .b � �/a�b: (13)

Torsion points. Let � W O ! C1f�g, a 7! �a, be a Drinfel’d module over C1.
Remember that �.C1/ is the O-module that is equal to C1 as an abelian group and
whose O-module structure is given by

.a; x/ 7! �a.x/:

Let �.C1/tor denote the O-torsion submodule of �.C1/. In other words, an element
x 2 �.C1/ is in �.C1/tor if and only if �a.x/ D 0 for some nonzero a 2 O.

For any a 2 O, let �Œa� D ker �a. For any a 2 IO , let �Œa� D ker �a. Under the
bijection given by equation (10) the sets �.C1/tor, �Œa� and �Œa� are identified with
the following subsets of C1=L:

e�1L .�.C1/tor/ D kL=L;
e�1L .�Œa�/ D a�1L=L for all a 2 O � f0g;
e�1L .�Œa�/ D a�1L=L for all a 2 IO :
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Here a�1 is the inverse of a as a fractional ideal with respect to O, i.e.

a�1 D fx 2 k j xa � Og:
The following equalities follow from the definitions:

�Œa� D �ŒaO� for all a 2 O;

�Œa� D T
a2a

�Œa� for all a 2 IO;

�.C1/tor D S
a2O

�Œa�;

�.C1/tor D S
a2IO

�Œa�;

and
ajb” �Œa� � �Œb� for all a;b 2 IO : (14)

One also checks that, for all a;b 2 IO ,

�Œa� \ �Œb� D �ŒaC b�; (15)

�Œa�C �Œb� D �Œa \ b�: (16)

We have
Card �Œa� D .Na/r for all a 2 IO; (17)

where r is the rank of � and Na is the absolute norm of a, i.e., Na is the cardinal of
O=a.

Let a 2 IO . By construction, �a is an O-module morphism

�a W �.C1/! .a � �/.C1/:
For any b 2 IO , let �aj�Œb� denote the restriction of �a to �Œb�.

Lemma 1.2.4. Let � be a Drinfel’d module over C1. Let a;b 2 IO . Let d D aC b
be the gcd of a and b. We have

Ker.�aj�Œb�/ D �Œd�;
Im.�aj�Œb�/ D .a � �/Œd�1b�:

Proof. First equality: we have Ker.�aj�Œb�/ D �Œa�
T
�Œb�, so the result follows

from equation (15).
Second equality: let r denote the rank of �. We have

Card.Im.�aj�Œb�// D Card.�Œb�/=Card.Ker.�aj�Œb�//
D Card.�Œb�/=Card.�Œd�/

D .Nb/r=.Nd/r
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and
Card..a � �/Œd�1b�/ D N.d�1b/r ;

so the two cardinals are equal, so it is enough to show one inclusion. Let x 2
Im.�aj�Œb�/. It is enough to show that .a � �/d�1b.x/ D 0. Let y 2 �Œb� such that
�a.y/ D x. Let c D a \ b be the lcm. We have d�1b D a�1c. But

.a � �/a�1c.x/ D .a � �/a�1c.�a.y//;

so,by equation (13), we get

.a � �/a�1c.x/ D �c.y/:

But bjc and y 2 �Œb�, so y 2 �Œc�, so

.a � �/a�1c.x/ D 0:

Corollary 1.2.5. Let � be a Drinfel’d module over C1. Let a;b 2 IO . For all
� 2 �Œb�, there exists � 2 .a�1 � �/Œab� such that

.a�1 � �/a.�/ D �:

Proof. Let  D a�1 � �. Let b2 D ab. Let d2 D a, so that d2 is the gcd of a and
b2. By Lemma 1.2.4, we have

Im. aj Œb2�/ D �Œd�12 b2�;

so
Im. aj Œab�/ D �Œb�:

Corollary 1.2.6. Let � be a Drinfel’d module over C1. For all a 2 IO , the map

.a�1 � �/a W .a�1 � �/.C1/tor ! �.C1/tor

is surjective.

1.3. Hayes’ explicit class field theory. In this subsection we review D. R. Hayes’
explicit class field theory for function fields, in terms of sign-normalized rank one
Drinfel’d modules. We follow [20], Part II, and [15], Chapter VII. Recall that k1 is
the completion of k at1. Let F1 denote the constant subfield of k1. The field F1
is a finite extension of Fq , and its degree is equal to the degree of the place1.

Definition 1.3.1. A sign function on k�1 is a group morphism sgn W k�1 ! F �1 which
induces the identity map on F �1.
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Let us choose once and for all a sign-function sgn (by [20], Corollary 12.2, the
number of possible choices is equal to the cardinal of F �1). We let sgn.0/ D 0 so that
sgn becomes a function k1 ! F1.

Definition 1.3.2. A Drinfel’d module � over C1 is said to be sgn-normalized if there
exists an element � 2 Gal.F1=Fq/ such that

��.a/ D �.sgn.a// for all a 2 O:

Let us now focus on the case of Drinfel’d modules of rank one.

Definition 1.3.3. Let H.sgn/ denote the set of sgn-normalized rank one Drinfel’d
modules over C1. The elements of H.sgn/ are also called Hayes modules (for the
triple .k;1; sgn/).

Proposition 1.3.4. H.sgn/ is a finite set, and its cardinal h.sgn/ is given by

h.sgn/ D Card F �1
Card F �q

� h.O/;

where h.O/ is the class number of the Dedekind ring O.

Proof. See [20], Corollary 13.4.

Proposition 1.3.5. For any � 2 H.sgn/ and any a 2 FO , we have a � � 2 H.sgn/.
Thus, FO acts on H.sgn/.

Proof. See [20], p. 22.

Definition 1.3.6. Let � 2 H.sgn/, and let y 2 O � Fq (recall that Fq denotes the
constant subfield of k). LetHC be the field generated over k by the coefficients of �y .

One shows (see [20], p. 23) that HC does not depend on the choice of � and y.

Proposition 1.3.7. The extension HC=k is finite, abelian, and unramified away
from1.

Proof. See [20], Propositions 14.1 and 14.4.

One shows (see [20], §15) thatHC contains a subfieldH which plays the rôle of
the Hilbert class field for the pair .k;1/.

Here is a concrete picture of the Galois group Gal.HC=k/. First, let PC
O

be the
following subgroup of FO:

PC
O
D fxO j x 2 k; sgn.x/ D 1g:

We then have the following proposition.
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Proposition 1.3.8. The Artin map . � ;HC=k/ induces an isomorphism from
FO=P

C
O

to Gal.HC=k/.

Proof. See [20], Theorem 14.7.

The Galois group Gal.HC=k/ acts on H.sgn/ by .�; �/ 7! ��, where �� is
defined by .��/a D �.�a/ for all a 2 O (one checks that � 2 H.sgn/).

Theorem 1.3.9. For any a 2 IO , if �a D .a;HC=k/ 2 Gal.HC=k/ denotes the
Artin automorphism of HC associated to a, then we have

�a� D a � � for all � 2 H.sgn/:

The set H.sgn/ is principal homogeneous under the action of Gal.HC=k/.

Proof. See [20], Theorems 13.8 and 14.7.

Definition 1.3.10. For any � 2 H.sgn/, let K denote the field generated over HC
by the elements of �.C1/tor. For any c 2 IO , let Kc denote the field generated over
HC by the elements of �Œc�.

One shows (see [20], p. 28) thatK andKc are independent of the choice of �. The
extension Kc=k is called the narrow ray class extension modulo c. By construction,
we have

K D S
c2IO

Kc:

Theorem 1.3.11. For any c 2 IO , the extension Kc=k is finite, abelian, and un-
ramified away from 1 and the prime divisors of c. Moreover, Kc contains the ray
class field of k of conductor c totally split at 1. For any a 2 IO prime to c, if
�a D .a; Kc=k/ 2 Gal.Kc=k/ denotes the Artin automorphism of Kc associated to
a, then we have

�a� D �a.�/ for all � 2 H.sgn/; � 2 �Œc�:
Proof. See [20], p. 28, or [19], Section 8.

In particular, this shows that

kab;1 � K � kab;

where kab;1 is the maximal abelian extension of k that is totally split at1.
Let us give a concrete picture of the Galois group Gal.Kc=k/, for c 2 IO . Let

FO.c/ denote the subgroup of FO of all fractional ideals that are prime to c, and let

PC
O
.c/ D fxO j x 2 k; sgn.x/ D 1; x � 1 mod cg:

We then have the following proposition.
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Proposition 1.3.12. The Artin map . � ; Kc=k/ induces an isomorphism from
FO.c/=P

C
O
.c/ to Gal.Kc=k/.

Proof. See [20], p. 28.

Moreover, the Galois group Gal.Kc=H
C/ has an even simpler description: one

can check (loc. cit.) that it is isomorphic to the group of invertible elements in O=c.

2. Construction of the C*-dynamical system .Ck;1; .�t//

2.1. The space X of characters. For any � 2 H.sgn/, let X� be the dual group of
the discrete abelian torsion group �.C1/tor. Thus, an element ofX� is a character of
�.C1/tor. The group X� is profinite,

X� D lim a
b�Œa�;

where a runs over IO ordered by divisibility. LetX be the (disjoint) union of theX� ,

X D S
�2H.sgn/

X� :

Note that the elements ofX are reminiscent of characters in [17] and of Q-lattices
(or k-lattices) in [11] and [12], [13].

Lemma 2.1.1. For any character � 2 X , we have

Im � � Up;

where Up is the group of p-th roots of unity in C.

Proof. Recall that for any � 2 H.sgn/, as a group, �.C1/ is equal to C1, which is
a field of characteristic p. Thus, for all � 2 �.C1/tor, we have �.�/p D �.p�/ D
�.0/ D 1.

Lemma 2.1.2. X is compact .and Hausdorff /.

Proof. For any � 2 H.sgn/, the groupX� is profinite, hence compact. AsH.sgn/ is
finite, X is compact.

We define an action of IO on X by

�a D � B .a�1 � �/a for all a 2 IO; � 2 H.sgn/; � 2 X� : (18)
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Recall that .a�1 � �/a is a map from .a�1 � �/.C1/ to �.C1/. Thus, if � 2 X�
then �a 2 Xa�1�� . Note that equation (13) guarantees that this is a semigroup action
of IO .

The exponent notation (�a) is inspired by what happens with characters of Q=Z.
These characters may be composed with the map �n W x 7! nx, for any n 2 N�. By
definition of a character, we have � B �n D �n. In our case N� is replaced by IO and
the maps �n are replaced by the �a.

We define an action of Gal.K=k/ on X by

�� D � B � for all � 2 Gal.K=k/; � 2 X: (19)

One checks that the actions of Gal.K=k/ and of IO on X commute with one
another.

Lemma 2.1.3. For all a 2 IO , the map X ! X , � 7! �a, is injective.

Proof. Let �1; �2 2 X such that �a
1 D �a

2. For i D 1; 2 let �i be such that �i 2 X�i .
By definition, we have �a

i 2 Xa�1��i , so a�1 � �1 D a�1 � �2, so �1 D �2. Let
� D �1 D �2. We have

�1 B .a�1 � �/a D �2 B .a�1 � �/a:
Corollary 1.2.6 then shows that �1 D �2.

Corollary 2.1.4. Let a1; a2;b1;b2 2 IO be such that a�11 a2 D b�11 b2.

(1) Let �1; �2 2 X . We have

�
a1
1 D �a2

2 ” �
b1
1 D �b2

2 :

(2) Let �1; �2; �3 2 X . We have

�
a1
1 D �a2

2 and �b1
3 D �b2

2 H) �1 D �3:

Proof. Let us first prove (1). Suppose that �a1
1 D �a2

2 . We have �a1b2
1 D �a2b2

2 . But

a2b1 D a1b2, so �a2b1
1 D �a2b2

2 , so

.�
b1
1 /

a2 D .�b2
2 /

a2 ;

so Lemma 2.1.3 gives �b1
1 D �

b2
2 , which proves one implication, and the other

implication follows by swapping ai with bi for i D 1; 2.
Let us now prove (2). We have

�
a1b1
1 D �a2b1

2 D �a1b2
2 D �a1b1

3 ;

so Lemma 2.1.3 gives �1 D �3.
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Corollary 2.1.4 allows to extend the action of IO onX to a partially defined action
of FO as follows.

Definition 2.1.5. For any � 2 X , let F� denote the set of all c 2 FO such that there
exists �1 2 X satisfying

�
a1
1 D �a2 (20)

for some a1; a2 2 IO with c D a�11 a2. By Corollary 2.1.4 (1), the existence of �1
only depends on � and c, and does not depend on the choice of a1; a2 2 IO such
that c D a�11 a2. By Corollary 2.1.4 (2), the character �1, when it exists, is uniquely
determined by � and c. When c 2 F�, we define a character �c by

�c D �1:
The partially defined map FO � X ! X , .c; �/ 7! �c, should be regarded as

a partially defined group action of FO on X . For any .c; �/, the character �c is
defined if and only if c 2 F�. For any c1; c2 in F�, if c1c2 2 F� one checks that
�c1c2 D .�c1/c2 . Of course, when c 2 IO the character �c is just the one that was
defined in equation (18).

For any �, we have IO � F�. Characters � 2 X for which this inclusion is an
equality (F� D IO) will be called admissible, and will play an important rôle later
(see Subsection 3.6).

Note that we obviously have

F�a D a�1F� for all � 2 X; a 2 IO : (21)

Lemma 2.1.6. Let � 2 X . Let � 2 H.sgn/ such that � 2 X� . For any a 2 IO , we
have

a�1 2 F�” �.�/ D 1 for all � 2 �Œa�:
When this is the case, the character �a�1

is given by

�a�1
.�/ D .Na/�1

X
�a.�/D�

�.�/ for all � 2 .a � �/.C1/tor:

Proof. If a�1 2 F�, then there exists �1 2 X such that � D �a
1. Thus, for all

� 2 �Œa�, we have �.�/ D �1.�a.�//, but �a.�/ D 0, so �.�/ D 1.
Now suppose that for all � 2 �Œa�, �.�/ D 1. For all � 2 .a � �/.C1/tor, set

�1.�/ D .Na/�1
X

�a.�/D�
�.�/:

Let us show that this defines a character�1 of .a��/.C1/tor. Let � 2 .a��/.C1/tor.
By Lemma 1.2.6, there exists �1 2 �.C1/tor such that �a.�1/ D �. We have

�1.�/ D .Na/�1
X

�02�Œa�
�.�0 C �1/ D .Na/�1

� X
�02�Œa�

�.�0/
�
�.�1/:
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But we have �.�0/ D 1 for all �0 2 �Œa�, and by equation (17) we have that
Card.�Œa�/ D Na. Thus, we get

�1.�/ D �.�1/ for all � 2 .a � �/.C1/tor and for all �1 with �a.�1/ D �:
Now let �0 2 .a � �/.C1/tor and �01 such that �a.�

0
1/ D �0. We have

�C �0 D �a.�1/C �a.�
0
1/ D �a.�1 C �01/;

hence

�1.�C �0/ D �1.�a.�1 C �01// D �.�1 C �01/ D �.�1/�.�01/;
so

�1.�C �0/ D �1.�/�1.�0/;
which implies �1.�/p D �1.p�/ D �1.0/ D 1, i.e.,

�1.�/ 2 Up for all � 2 .a � �/.C1/tor:

Hence �1 is a group morphism .a � �/.C1/tor ! Up , so �1 2 X , and we have by
construction �a

1 D �. Thus, we have a�1 2 F� and �a�1 D �1.

Lemma 2.1.7. For all � 2 X , for all a;b 2 IO relatively prime, we have

a�1b 2 F�” a�1 2 F�:

Proof. Let� be such that� 2 X� . We have a�1b 2 F� , a�1 2 F�b . Lemma 2.1.6
applied to �b thus gives

a�1b 2 F�” �..b�1 � �/b.�// D 1 for all � 2 .b�1 � �/Œa�:
But, as a and b are relatively prime, by Lemma 1.2.4, the map � 7! b� is a bijection
from .b�1 � �/Œa� onto �Œa�. Thus we get

a�1b 2 F�” �.�/ D 1 for all � 2 �Œa�;
and, by Lemma 2.1.6, this is equivalent to a�1 2 F�.

Lemma 2.1.8. For all � 2 X , for all a;b 2 IO relatively prime, we have

.ab/�1 2 F�” a�1 2 F� and b�1 2 F�:

Proof. Let � be such that � 2 X� . By Lemma 2.1.6, the statement that we want to
prove is equivalent to the following:

�.�/ D 1 for all � 2 �Œa�;
�.�/ D 1 for all � 2 �Œab� ”

�.�/ D 1 for all � 2 �Œb�: (22)
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By equations (15) and (16), as a and b are relatively prime, we have

�Œab� D �Œa�˚ �Œb�;
so, for any � 2 �Œab�, there exists a unique pair .�1; �2/ 2 �Œa� � �Œb� such that
� D �1 C �2. We have �.�/ D �.�1/�.�2/, so equation (22) follows.

2.2. Construction of the groupoid G and of the dynamical system .Ck;1; .�t//.
Let G be the following subset of X �FO:

G D f.�; c/ 2 X �FO j c 2 F�g:
We turn G into a groupoid by endowing it with the groupoid law

.�1; c1/ B .�2; c2/ D .�2; c1c2/ if �1 D �c2
2

and the inverse map
.�; c/�1 D .�c; c�1/:

One checks that, under the identification G .0/ D X � f1g ' X , the range and source
maps r and s are respectively given by r.�; c/ D �c and s.�; c/ D �.

The abelian group FO is endowed with the discrete topology. The groupoid G is
endowed with its topology as a subset of X �FO .

Lemma 2.2.1. G is a locally compact groupoid.

Proof. X � FO is locally compact by Lemma 2.1.2 and G is a closed subset of it,
so it is also locally compact. It is clear that the composition and inverse maps are
continuous, so this is a locally compact groupoid.

The C*-algebra Ck;1 that was advertised in the introduction of this paper is the
maximal2 C*-algebra of the groupoid G . Let us quickly explain what that means.

For � 2 X , let G� denote the fiber of s above �, that is,

G� D f�g �F�;

so G� is discrete and is in bijection with F�.
Let Cc.G / denote the convolution algebra of continuous maps G ! C with

compact support, where the convolution product is given by

.f1f2/.g/ D
X

g1Bg2Dg
f1.g1/f2.g2/: (23)

2Actually, it coincides with the reduced C*-algebra because FO is an abelian group, but we shall not
need that in this paper.
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Cc.G / is endowed with the involution f 7! f � defined by

f �.g/ D f .g�1/:
For any � 2 X , we define a �-representation of Cc.G / on the Hilbert space `2.G�/
by

.	�.f /�/.g/ D
X

g1Bg2Dg
f .g1/�.g2/ for all f 2 Cc.G /; � 2 `2.G�/: (24)

In other words,	� is the left regular representation on `2.G�/. Let us define a C*-norm
k � k on Cc.G / by

kf k D sup
�
k	.f /k;

where 	 runs over all �-representations of Cc.G /. The completion C �.G / of Cc.G /
under k � k is a C*-algebra, called the maximal C*-algebra of the groupoid G . For
more details about groupoid C*-algebras, see Renault [31], Khoshkam and Skandalis
[24], or Connes [8], Chapter II, §5.

Definition 2.2.2. We define the C*-algebra Ck;1 by letting

Ck;1 D C �.G /:

By definition, any �-representation 	 of Cc.G / extends uniquely to a representa-
tion of Ck;1, which we still denote 	 .

Lemma 2.2.3. For any �-automorphism � ofCc.G /, there exists an unique extension
of � to a �-automorphism of Ck;1.

Proof. For any �-automorphism � of Cc.G / and any �-representation 	 of Cc.G /,
note that 	 B� is a �-representation of Cc.G /. Thus, by definition of the norm k � k, �
is an isometry: for all f 2 Cc.G / we have k�.f /k D kf k. The result then follows
easily.

For any g D .�; c/ 2 G , put Ng D Nc, where Nc is the absolute norm of the
fractional ideal c, defined by Nc D .Na/�1Nb for any a;b 2 IO such that c D a�1b.

Let us define a one parameter �-automorphism group .�t /t2R of Cc.G / by

.�t .f //.g/ D .Ng/itf .g/ for all t 2 R; f 2 Cc.G /; g 2 G :

Definition 2.2.4. We still denote �t the unique extension (given by Lemma 2.2.3) of
�t to an automorphism of Ck;1.
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It remains to check that the pair .Ck;1; .�t // is a C*-dynamical system in the
sense of [4], i.e. that the flow .�t / is strongly continuous, which means that for any
f 2 Ck;1, the map t 7! �t .f / is continuous.

Lemma 2.2.5. The flow .�t / on Ck;1 is strongly continuous.

Proof. Let f 2 Ck;1. Let us show that the map t 7! �t .f / is continuous. Let
" > 0. It is enough to show that when jt j is small enough, we have kf ��t .f /k < ".
Let f 0 2 Cc.G / be such that kf � f 0k < "=3. Like any �-automorphism, �t is an
isometry, so we have k�t .f / � �t .f 0/k D k�t .f � f 0/k D kf � f 0k < "=3, so it
is enough to show that when jt j is small enough, we have kf 0 � �t .f 0/k < "=3. For
any d 2 FO , define a function f 0d 2 Cc.G / by

f 0d.�; c/ D
(
f 0.�; c/ if c D d;

0 if c ¤ d;
for all .�; c/ 2 G :

Note that, as f 0 has compact support, the set fd 2 FO j f 0d ¤ 0g is finite, and we
have f 0 DP

d f
0

d. For any d we have �t .f 0d/ D Nditf 0d, so

kf 0 � �t .f 0/k 6
X

d

kf 0d � �t .f 0d/k 6
X

d

j1 � Ndit jkf 0dk:

It is now obvious that when jt j is small enough, this is smaller than "=3.

The resulting C*-dynamical system .Ck;1; .�t // is the one that was announced
in the introduction of this paper.

3. Algebraic structure of .Ck;1; .�t//

3.1. The �-subalgebra H . In this subsection, we construct a�-subalgebra H which
will play the rôle of the algebra H in the Bost–Connes construction.

For any a 2 IO , let �a 2 Cc.G / be defined by

�a.�; c/ D 1cDa for all .�; c/ 2 G :

For any � 2 H.sgn/ and for any � 2 �.C1/tor, let us define a function e.�; �/ 2
Cc.G / by

e.�; �/.�; c/ D 1cD1 1�2X� �.�/ for all .�; c/ 2 G :

Definition 3.1.1. Let H denote the �-subalgebra of Cc.G / generated by the �a, for
all a 2 IO , and the e.�; �/, for all � 2 �.C1/tor and for all � 2 H.sgn/.
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We shall later show (Proposition 3.3.5) that H is dense in Ck;1. For now we
concentrate on checking several algebraic relations between the generators �a and
e.�; �/ (see Proposition 3.1.2). We shall later see (Proposition 3.2.3) that the relations
of Proposition 3.1.2 define a presentation of H .

Recall that the inverse map in G is given by

.�; c/�1 D .�c; c�1/: (25)

The product law in Cc.G /, defined by equation (23), can be rewritten as

.fg/.�; c/ D
X

c22F�

f .�c2 ; cc�12 / g.�; c2/ for all f; g 2 Cc.G /; .�; c/ 2 G : (26)

From equation (25), we check that for any a 2 IO , the adjoint ��a is given by

��a.�; c/ D 1cDa�1 for all .�; c/ 2 G :

Using formula (26), we then check that, for all f 2 Cc.G / and all .�; c/ 2 G , we
have

.�af /.�; c/ D 1ca�12F�f .�; ca�1/; (27)

.f�a/.�; c/ D f .�a; ca�1/; (28)

.��af /.�; c/ D f .�; ca/; (29)

.f��a/.�; c/ D 1a�12F�f .�
a�1
; ca/:

From that we deduce that Cc.G / is unital, with unit �1 (where, as usual, 1 denotes
the principal ideal .1/ D O)

�1 D 1;
and we also deduce the formulas

.�af�
�
b/.�; c/ D 1ca�12F�1b�12F�f .�

b�1
; ca�1b/; (30)

.��bf�a/.�; c/ D f .�a; ca�1b/;
.�a�

�
b/.�; c/ D 1b�12F�1cDab�1 ; (31)

.��b�a/.�; c/ D 1cDab�1 : (32)

In particular, for b D a, equation (31) gives

.�a�
�
a/.�; c/ D 1a�12F�1cD1: (33)

The next proposition establishes some relations between the generators �a and
e.�; �/. As we said above, it will later turn out that these relations really define a
presentation of H as a �-algebra (Proposition 3.2.3) and also a presentation of Ck;1
as a C*-algebra (Proposition 3.3.6).
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Proposition 3.1.2. The functions �a, for a 2 IO , and e.�; �/, for � 2 H.sgn/ and
� 2 �.C1/tor, satisfy the following relationsW
(a1) ��a�a D �1 for all a 2 IO .

(a2)
P
� e.�; 0/ D �1 where � runs over H.sgn/.

(b) �a�b D �ab for all a;b 2 IO .

(c) �a�
�
b D ��b�a for all a;b 2 IO relatively prime.

(d1) e.�; �/� D e.�;��/ for all � 2 H.sgn/, � 2 �.C1/tor.

(d2) e.�; �1/e.�; �2/ D e.�; �1 C �2/ for all � 2 H.sgn/, �1; �2 2 �.C1/tor.

(d3) e.�1; �1/e.�2; �2/ D 0 for all �1 ¤ �2 2 H.sgn/, �i 2 �i .C1/tor.

(e) e.�; �/�a D �ae.a � �; �a.�// for all a 2 IO , � 2 H.sgn/, � 2 �.C1/tor.

(f) �ae.�; �/�
�
a D 1

Na

P
.a�1��/a.�/D� e.a

�1��;�/ for all a 2 IO ,� 2 H.sgn/,
� 2 �.C1/tor.

Proof. (a1): Equation (32) applied with b D a gives

.��a�a/.�; c/ D 1cD1 D �1.�; c/:
(a2): One checks directly that

P
� e.�; 0/ D �1.

(b): Equation (27) applied with f D �b gives

.�a�b/.�; c/ D 1ca�12F�1bDca�1 D 1b2F�1bDca�1 :

As b is in IO , we always have b 2 F�, so we find

.�a�b/.�; c/ D 1bDca�1 D 1abDc:

Thus, �a�b D �ab.
(c): By equations (31), (32) it is enough to show that for all .�; c/ 2 G , we have

1b�12F�1cDab�1 D 1cDab�1 :

If c ¤ ab�1, then both sides are zero, so the equality holds. If c D ab�1, then we
have ab�1 2 F�. As a and b are relatively prime, Lemma 2.1.7 then shows that
b�1 2 F�, so the equality holds.

(d1): For all � 2 X , as � is a character we have

�.��/ D �.�/ for all � 2  .C1/tor:

Relation (d1) follows.
(d2) and (d3): From equation (26) and the formula �.�1 C �2/ D �.�1/�.�2/,

one checks directly that for all .�; c/ 2 G , letting  be such that � 2 X , we have

.e.�1; �1/e.�
2; �2//.�; c/ D 1cD11�1D�2D �.�1 C �2/;
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which proves (d2) and (d3).
(e): By equation (27) and the definition of e.�; �/, we have, for any � 2 H.sgn/,

� 2 �.C1/tor and .�; c/ 2 G ,

.�ae.a � �; �a.�///.�; c/ D 1ca�12F�1ca�1D11�2Xa���.�a.�//

D 1ca�1D11�2Xa���
a.�/:

By equation (28), this is equal to .e.�; �/�a/.�; c/.
(f): For any � 2 H.sgn/, � 2 �.C1/tor and .�; c/ 2 G , we have

.�ae.�; �/�
�
a/.�; c/ D 1ca�12F�1a�12F�e.�; �/.�

a�1
; c/ by equation (30)

D 1ca�12F�1a�12F�1cD11�2X
a�1��

�a�1
.�/

D 1a�12F�1cD11�2X
a�1��

�a�1
.�/

D 1a�12F�1cD11�2X
a�1��

.Na/�1
X

.a�1��/a.�/D�
�.�/;

where the last equality follows from Lemma 2.1.6. Let us first suppose that a�1 2 F�.
We then have

.�ae.�; �/�
�
a/.�; c/ D 1cD11�2X

a�1��
.Na/�1

X
.a�1��/a.�/D�

�.�/

D .Na/�1
X

.a�1��/a.�/D�
e.a�1 � �;�/.�; c/;

so we are done.
Let us now suppose that a�1 62 F�. We then have 1a�12F� D 0 and hence

.�ae.�; �/�
�
a/.�; c/ D 0. Thus, it is enough to show that

P
.a�1��/a.�/D� e.a

�1 �
�;�/.�; c/ D 0. We haveX

.a�1��/a.�/D�
e.a�1 � �;�/.�; c/ D 1cD11�2X

a�1��

X
.a�1��/a.�/D�

�.�/;

so it is enough to show that if � 2 Xa�1�� , then
P
 a.�/D� �.�/ D 0, where we have

set  D a�1 ��. Let �1 2  .C1/tor such that  a.�1/ D � (see Lemma 1.2.6). We
then have X

 a.�/D�
�.�/ D

X
 a.�0/D0

�.�0 C �1/;

so X
 a.�/D�

�.�/ D
� X
�02 Œa�

�.�0/
�
�.�1/:
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But by Lemma 2.1.6, since a�1 62 F�, the restriction of � to  Œa� is a non-trivial
character of  Œa�, so X

�02 Œa�
�.�0/ D 0;

so
P
 a.�/D� �.�/ D 0, which completes the proof.

3.2. Presentation of H . The goal of this subsection is to show (Proposition 3.2.3)
that the relations (a)–(f) of Proposition 3.1.2 define a presentation of H as a �-algebra.

The proof of the next lemma follows that of Proposition 18 in [3].

Lemma 3.2.1. Let zH be a �-algebra with elements Q�a, for a 2 IO , and Qe.�; �/, for
� 2 H.sgn/ and � 2 �.C1/tor, satisfying the relations (a)–(f) of Proposition 3.1.2.
Let S be the following subset of zH W
S D f Q�a Qe.�; �/ Q��b j a;b 2 IO relatively prime; � 2 H.sgn/; � 2 �.C1/torg:

ThenW
(1) The elements Q�a, for a 2 IO , and Qe.�; �/, for � 2 H.sgn/ and � 2 �.C1/tor,

belong to the linear span of S . More specificallyW
Q�a D

X
�2H.sgn/

Q�a Qe.�; 0/ Q��1 and Qe.�; �/ D Q�1 Qe.�; �/ Q��1 :

(2) Let x1; x2 2 S . For i D 1; 2 write xi D �ai e.�
i ; �i /�

�
bi

. Let d D a2 C b1

be the gcd of a2 and b1. Let c be the gcd of d�1a1a2 and d�1b1b2. Set
 D c�1d�1a2 � �1 and �0 D �1

d�1a2
.�1/C �2d�1b1

.�2/. ThenW

x1x2 D 1a2��1Db1��2 Q�d�1a1a2
Qe.d�1a2 � �1; �0/ Q��d�1b1b2

(34)

D 1a2��1Db1��2
X

 c.�/D�0

Q�c�1d�1a1a2
Qe. ; �/ Q��

c�1d�1b1b2
: (35)

In particular, equation (35) shows that x1x2 belongs to the C-linear span of S .

(3) If the elements Q�a and Qe.�; �/ generate �H as a �-algebra, then the set S gen-
erates �H as a C-vector space.

Proof. (1) easily follows from relations (a1), (a2) of Proposition 3.1.2.
(2): We have

x1x2 D �a1e.�
1; �1/�

�
b1
�a2e.�

2; �2/�
�
b2
:

Using relations (a1), (b) and (c) of Proposition 3.1.2, we find

Q��b1 Q�a2 D Q��d�1b1
Q��d Q�d Q�d�1a2

D Q��
d�1b1

Q�d�1a2
:
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Hence we get

x1x2 D Q�a1 Qe.�1; �1/ Q�d�1a2
Q��

d�1b1
Qe.�2; �2/ Q��b2 :

Using relations (e) and (d1) of Proposition 3.1.2, we get

x1x2D Q�a1 Q�d�1a2
Qe.d�1a2��1; �1d�1a2

.�1// Qe.d�1b1��2; �2d�1b1
.�2// Q��d�1b1

Q��b2 :
Hence relation (b) of Proposition 3.1.2 gives

x1x2 D Q�d�1a1a2
Qe.d�1a2 � �1; �1d�1a2

.�1// Qe.d�1b1 � �2; �2d�1b1
.�2// Q��d�1b1b2

:

Thus, using relations (d2) and (d3) of Proposition 3.1.2, we get

x1x2 D 1a2��1Db1��2 Q�d�1a1a2
Qe.d�1a2 ��1; �1d�1a2

.�1/C�2d�1b1
.�2// Q��d�1b1b2

:

By definition of  , �0 and c, and using relation (b) of Proposition 3.1.2, we obtain

x1x2 D 1a2��1Db1��2 Q�c�1d�1a1a2
. Q�c Qe.c �  ; �0/ Q��c / Q��c�1d�1b1b2

:

Relation (f) of Proposition 3.1.2 then gives the result.
(3): The C-linear span of S contains the generators Q�a and Qe.�; �/ by (1) and

is stable under multiplication by (2). Moreover, it is obviously stable under the
involution. Hence it is equal to �H .

Lemma 3.2.2. The functions �ae.�; �/�
�
b, for a;b 2 IO relatively prime, � 2

H.sgn/ and � 2 �.C1/tor, form a basis of H as a C-vector space.

Proof. By Lemma 3.2.1 (3), they generate H as a C-vector space. Thus we only
have to prove that they are linearly independent. Let us suppose that there exist
˛1; : : : ; ˛n 2 C, a0; : : : ; an;b0; : : : ;bn 2 IO with ai relatively prime to bi for
each i , �1; : : : ; �n 2 H.sgn/ and, for each i , �i 2 �.C1/tor, such that

�a0e.�
0; �0/�

�
b0
D

nX
iD1

˛i�ai e.�
i ; �i /�

�
bi
:

By equation (30) and the definition of e.�i ; �i /, we have

.�ai e.�
i ; �i /�

�
bi
/.�; c/

D 1cai�12F�1bi
�12F�

1cai�1biD11�2Xb�1
i

��i
�bi
�1.�i / for all .�; c/ 2 G :

Thus, the support of �ai e.�
i ; �i /�

�
bi

is included in

fg D .�; c/ 2 G j � 2 Xb�1
i
��i and c D aibi

�1g:
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Let I denote the set of all i ¤ 0 such that aibi
�1 D a0b0

�1 and b�1i ��i D b�10 ��0.
We thus have

�a0e.�
0; �0/�

�
b0
D

X
i2I

˛i�ai e.�
i ; �i /�

�
bi
:

As ai is relatively prime to bi , we see that for all i 2 I , we have ai D a0 and bi D b0,
so �i D �0. Hence we get

�a0e.�
0; �0/�

�
b0
D

X
i2I

˛i�a0e.�
i ; �i /�

�
b0
:

Hence, multiplying by ��a0 on the left and by �b0 on the right, and using relation (a)
of Proposition 3.1.2, we get

e.�0; �0/ D
X
i2I

˛ie.�
0; �i /:

But the e.�0; �/, for � 2 �0.C1/tor, are linearly independent (use e.g. the isomor-
phism C.X�0 � f1g/ ' C �.�0.C1/tor/ as in Lemma 3.3.2), so this is absurd.

Proposition 3.2.3. The relations (a)–(f) of Proposition 3.1.2 define a presentation of
H as a �-algebra.

Proof. Let �H be another �-algebra having elements Q�a, for a 2 IO , and Qe.�; �/, for
� 2 H.sgn/ and � 2 �.C1/tor, satisfying the relations (a)–(f) of Proposition 3.1.2.
We want to show that there exists a unique morphism� W H ! �H such that��a D Q�a

and �e.�; �/ D Qe.�; �/.
The uniqueness is clear by definition of H . Let us now prove existence. By

Lemma 3.2.2, we may define a C-linear map � W H ! �H by letting

�.�ae.�; �/�
�
b/ D Q�a Qe.�; �/ Q��b

for all a;b 2 IO relatively prime, � 2 H.sgn/ and � 2 �.C1/tor. Clearly, �.f �/ D
�.f /�. Moreover, Lemma 3.2.1 shows that ��a D Q�a, �e.�; �/ D Qe.�; �/ and

�.f1f2/ D �.f1/�.f2/;
which completes the proof.

3.3. Presentation of Ck;1. The goal of this subsection is to show (Proposition 3.3.6)
that the relations (a)–(f) of Proposition 3.1.2 define a presentation of Ck;1 as a C*-
algebra.

Let� 2 H.sgn/. LetC� denote the subset ofCc.G / of all functions whose support
is a subset of X� � f1g.
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Lemma 3.3.1. Let f1; f2 2 C� . For all g 2 G , we have

.f1f2/.g/ D f1.g/f2.g/:

Proof. Let g D .�; c/ 2 G . By equation (26), we have

.f1f2/.�; c/ D
X

c22F�

f1.�
c2 ; cc�12 /f2.�; c2/:

Thus, since f1; f2 2 C� , we can only have a nonzero term when cc�12 D 1 and
c2 D 1. If c ¤ 1 then we get .f1f2/.�; c/ D 0, as expected. If c D 1 we obtain

.f1f2/.�; 1/ D f1.�; 1/f2.�; 1/;
as expected.

In particular, we see that for any f1; f2 2 C� , we have f1f2 2 C� . We also have
f �1 2 C� . Thus C� is a �-subalgebra of Cc.G /.

Let us define a norm k � k� on C� by:

kf k� D sup
g2G

jf .g/j for all f 2 C� :

Lemma 3.3.2. C� is a C*-algebra for the norm k � k� . We have isomorphisms of
C*-algebras

C� ' C.X�/ ' C �.�.C1/tor/:

Proof. The identification X� � f1g ' X� gives a bijection C� ' C.X�/. By
Lemma 3.3.1, this is a �-isomorphism. By definition of k � k� , this is an isometry, so
k � k� is a C*-norm on C� . The isomorphism C.X�/ ' C �.�.C1/tor/ is a classical
result, see Davidson [14], Proposition VII.1.1.

Corollary 3.3.3. C� is a C*-subalgebra of Ck;1.

Proof. It is a classical result that any injective�-morphism between two C*-algebras is
an isometry; see [14], Theorem 1.5.5. Apply this to the inclusion map � W C� ! Ck;1.

Lemma 3.3.4. The e.�; �/, for � 2 �.C1/tor, generate a norm-dense �-subalgebra
of C� .

Proof. By definition of the e.�; �/, the isomorphism C� ' C �.�.C1/tor/ given by
Lemma 3.3.2 identifies e.�; �/ with �. But, by definition of C �.�.C1/tor/, the �
generate a dense �-subalgebra of C �.�.C1/tor/, so the result follows.
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Proposition 3.3.5. H is dense in Ck;1 and any �-representation of H extends
uniquely to a representation of Ck;1.

Proof. Let us first prove density. Since Cc.G / is dense in Ck;1, it is enough to show
that any f 2 Cc.G / can be approached by elements of H . Let f 2 Cc.G /. As
f has compact support, there is a finite subset fc1; : : : ; cng � FO such that for all
.�; c/ 2 G , if c 62 fc1; : : : ; cng, then f .�; c/ D 0. Let fi be defined by

fi .�; c/ D 1cDci f .�; c/ for all .�; c/ 2 G :

We have
f D f1 C � � � C fn:

It is thus enough to show that each of the fi can be approached by elements of H .
Let i 2 N such that 1 6 i 6 n. Write ci D a�1i bi , with ai ;bi 2 IO relatively prime.
Let f 0i D �aifi�

�
bi

. We have fi D ��aif
0
i �bi , so it is enough to show that each

of the f 0i can be approached by elements of H . By equation (30), we have, for all
.�; c/ 2 G ,

f 0i .�; c/ D 1ca�1
i
2F�

1b�1
i
2F�

fi .�
b�1
i ; cci /:

Thus, the support of f 0i is a subset of X � f1g. For � 2 H.sgn/, let f 0i;� be defined
by

f 0i;�.�; c/ D 1�2X�f 0i .�; c/ for all .�; c/ 2 G :

We have
f 0i D

X
�2H.sgn/

f 0i;� ;

so it is enough to show that each of the f 0i;� can be approached by elements of H . We
have f 0i;� 2 C� , so the result follows from Lemma 3.3.4.

Now let us prove that any �-representation of H extends uniquely to a represen-
tation of Ck;1. Uniqueness follows from the density of H in Ck;1. Let us show
existence. Let 	 be a �-representation of H . By definition of Ck;1, it is enough to
show that 	 extends to a �-representation of Cc.G /. The construction we just made
with the fi , f 0i and f 0i;� shows that as a �-algebra, Cc.G / is generated by the C� , for
� 2 H.sgn/, and the �a, for a 2 IO . It is thus enough to show that the restriction
of 	 to the group algebra CŒ�.C1/tor� extends to a representation of C� . But this
follows from Lemma 3.3.2

Proposition 3.3.6. The relations (a)–(f) of Proposition 3.1.2 define a presentation of
Ck;1 as a C*-algebra.

Proof. Let zC be another C*-algebra having elements Q�a, for a 2 IO , and Qe.�; �/, for
� 2 H.sgn/ and � 2 �.C1/tor, satisfying the relations (a)–(f) of Proposition 3.1.2.



174 B. Jacob

We want to show that there exists a unique morphism � W Ck;1 ! zC such that
��a D Q�a and �e.�; �/ D Qe.�; �/.

Uniqueness follows from the density of H in Ck;1, see Proposition 3.3.5. Let us
prove existence.

Let �H denote the �-algebra generated by the Q�a and the Qe.�; �/. By the universal
property of H (Proposition 3.2.3), there exists a �-morphism � W H ! �H such that
��a D Q�a and �e.�; �/ D Qe.�; �/. Composing it with the inclusion �H ! zC
gives a �-representation of H . By Proposition 3.3.5, this representation extends to a
�-morphism from Ck;1 into zC , so we are done.

The flow .�t / has a simple expression for this presentation: one checks directly
that

�t .�a/ D Nait�a for all t 2 R; a 2 IO (36)

and
�te.�; �/ D e.�; �/ for all t 2 R; � 2 H.sgn/; � 2 �.C1/tor: (37)

3.4. Galois symmetry of .Ck;1; .�t//. Recall that an action of Gal.K=k/ on X
has been defined by equation (19).

Let Gal.K=k/ act by �-automorphisms on Cc.G / by

.�f /.�; c/ D f .��; c/ for all � 2 Gal.K=k/; f 2 Cc.G /; .�; c/ 2 G :

Definition 3.4.1. We still denote .�; f / 7! �f the unique extension (given by
Lemma 2.2.3) of this action to an action of Gal.K=k/ on Ck;1.

One checks directly that the action of Gal.K=k/ on the generators is given by

��a D �a for all � 2 Gal.K=k/; a 2 IO (38)

and

�.e.�; �// D e.��; ��/ for all � 2 Gal.K=k/; � 2 H.sgn/; � 2 �.C1/tor: (39)

Proposition 3.4.2. The group Gal.K=k/, endowed with its profinite topology, is a
topological symmetry group of .Ck;1; .�t //. In other words, the action of Gal.K=k/
on Ck;1 is faithful, continuous, and commutes with the flow .�t /, i.e.,

�.�t .f // D �t .�f / for all � 2 Gal.K=k/; t 2 R; f 2 Ck;1: (40)

Proof. By Lemma 2.2.3, it is enough to check equation (40) for f 2 Cc.G /, which
is easily done by going back to the definitions.

Let us check that the action of Gal.K=k/ on Ck;1 is faithful. Let � 2 Gal.K=k/
with � ¤ 1. Let � 2 H.sgn/. If �� ¤ � then it is clear that � acts non-trivially
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on Ck;1. If �� D � then, by definition of HC, we have � 2 Gal.K=HC/. By
definition of K, the action of Gal.K=HC/ on �.C1/tor is faithful. Thus there exists
� 2 �.C1/tor such that �� ¤ �, so e.�; ��/ ¤ e.�; �/. Thus, by equation (39),
�e.�; �/ ¤ e.�; �/, so the action of Gal.K=k/ on Ck;1 is faithful.

Let us check that the action of Gal.K=k/ on Ck;1 is continuous. Let f 2 Ck;1
and " > 0. By Proposition 3.3.5, the subalgebra H is dense in Ck;1, so there exists
f0 2 H with kf � f0k < "=3. Write f0 in the basis provided by Lemma 3.2.2,

f0 D
X
i2I

ci�ai e.�
i ; �i /�

�
bi
;

where I is a finite set and where, for all i 2 I , we have ci 2 C, ai ;bi 2 IO relatively
prime, �i 2 H.sgn/, and �i 2 �i .C1/tor. Let K0 be the extension of k generated
by the �i and all their conjugates under Gal.K=k/. Thus, K0=k is a finite Galois
subextension ofK=k. Let V D Gal.K=K0/. By definition of the profinite topology,
V is a neighborhood of 1 in Gal.K=k/. For all � 2 V , we have �f0 D f0. We have
k�f � f0k D k�.f � f0/k D kf � f0k < "=3, so we find k�f � f k < 2"=3.
Let W denote the open ball of radius "=3 centered at f . For all f 0 2 W , we have
k�f 0 � �f k D k�.f 0 � f /k D kf 0 � f k < "=3, whence k�f 0 � f k < ", which
completes the proof of the continuity.

3.5. The Galois-fixed subalgebra. In this subsection, we introduce two C*-sub-
algebras of Ck;1, and it will turn out (Lemma 3.5.2) that they are the same one.

The first one, denoted by C �.IO/, is the C*-subalgebra of Ck;1 generated by the

�a, for all a 2 IO . The second one, denoted by CGal.K=k/
k;1 , is the subset of Ck;1 of

all fixed points under the action of Gal.K=k/. This is a C*-subalgebra of Ck;1.
Let

ˆ W IO ! N

and
M W IO ! Z

denote the Euler totient and Möbius inversion functions respectively, i.e., ˆ and M
are the multiplicative functions defined, for all primes p and for all n > 0, by

ˆ.pn/ D Npn � 1n>1Npn�1

and
M.pn/ D 1nD0 � 1nD1:

Note that we have, for all a 2 IO ,

ˆ.a/ D
X
bja

M.b�1a/Nb:
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Lemma 3.5.1. For all � 2 H.sgn/, for all a 2 IO , the O-module �Œa� has exactly
ˆ.a/ generators.

Proof. Let a D Q
i p
ni
i be the factorization of a. Since the pi are relatively prime,

we have a DT
i p
ni
i , so by equations (15) and (16), we have

�Œa� D
M
i

�Œp
ni
i �;

so it is enough to do the proof when a is a prime power, which is then easy.

The proof of the next lemma has been inspired by that of Proposition 21 (b) in [3]
and of Proposition 4.1 (3) in [17].

Lemma 3.5.2. The two subalgebras C �.IO/ and CGal.K=k/
k;1 of Ck;1 are the sameW

C �.IO/ D CGal.K=k/
k;1 :

Definition 3.5.3. We let C1 denote this C*-algebra:

C1 D C �.IO/ D CGal.K=k/
k;1 :

This notation will be justified in Subsection 4.4, whereC1 will be viewed as a spectral
subspace of Ck;1 for the action of Gal.K=k/.

Proof. One inclusion is clear: CGal.K=k/
k;1 contains C �.IO/. Let us check the other

inclusion. The Galois group Gal.K=k/ is endowed with its profinite topology, so it
is a compact abelian group. Let d� be the normalized Haar measure on it. Let us
consider the map E defined by

E W Ck;1 ! C
Gal.K=k/
k;1 ;

x 7!
Z

Gal.K=k/
�.x/d�:

(41)

By Proposition 3.3.5, H is dense in Ck;1, so E.H / is dense in CGal.K=k/
k;1 . But, by

Lemma 3.2.1, H is the linear span of the �ae.�; �/�
�
b, for a;b 2 IO , � 2 H.sgn/,

and � 2 �.C1/tor. Thus E.H / is the linear span of the �aE.e.�; �//��b. Hence,
it is enough to show that for all � 2 H.sgn/ and for all � 2 �.C1/tor, the element
E.e.�; �// belongs to C �.IO/.

So let � 2 H.sgn/ and � 2 �.C1/tor. Let us first assume that � D 0. The group
Gal.HC=k/ acts transitively on H.sgn/ (see Theorem 1.3.9). By Galois theory,
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the restriction map Gal.K=k/ ! Gal.HC=k/ is surjective. Hence Gal.K=k/ acts
transitively on H.sgn/. Thus, by relation (a2) in Proposition 3.1.2, we get

E.e.�; �// D 1=h.sgn/; (42)

where h.sgn/ is the cardinal of H.sgn/. So the proof is complete.
Let us now assume that � ¤ 0. Let

a D annO.�/ D fa 2 O j �a.�/ D 0g:
We have � 2 �Œa� and, for all b ¤ a such that b ja, � 62 �Œb�. So � is a generator of
the O-module �Œa�. LetKa denote the extension ofHC generated by the elements of
�Œa�. By [20], Theorem 16.2, Gal.Ka=k/ acts transitively on the set Xa defined by

Xa D f. ; �/ j  2 H.sgn/; � is a generator of  Œa�g:
By Galois theory, the map Gal.K=k/! Gal.Ka=k/ is surjective, so Gal.K=k/ also
acts transitively on Xa. Thus E.e.�; �// only depends on a. We therefore note

E.e.a�1// D E.e.�; �//:

Relation (f) of Proposition 3.1.2 gives, for all  2 H.sgn/ and b 2 IO ,

�be. ; 0/�
�
b D

1

Nb

X
�2.b�1� /Œb�

e.b�1 �  ;�/:

Thus equation (a2) of Proposition 3.1.2 gives

�b�
�
b D

1

Nb

X
 2H.sgn/

X
�2.b�1� /Œb�

e.b�1 �  ;�/:

Applying E to this equality and using Lemma 3.5.1, we get

Nb�b�
�
b D h.sgn/

X
cjb
ˆ.c/E.e.c�1//;

where h.sgn/ is the cardinal of H.sgn/. Doing a Möbius inversion, we then find

h.sgn/ˆ.b/E.e.b�1// D
X
cjb

M.c�1b/Nc�c�
�
c :

Thus, for all b 2 IO , we get the following explicit expression of E.e.b�1// as an
element of C �.IO/:

E.e.b�1// D
P

cjb M.c�1b/Nc�c�
�
c

h.sgn/ˆ.b/
D

P
cjb M.c�1b/Nc�c�

�
c

h.sgn/
P

cjb M.c�1b/Nc
: (43)
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Proposition 3.5.4. C1 is isomorphic to the universal C*-algebra generated by ele-
ments Q�a, for a 2 IO , subject to the relations (a1), (b) and (c) of Proposition 3.1.2.

Proof. This follows directly from Proposition 3.3.6 and Lemma 3.5.2.

3.6. Admissible characters. Some ideas in this subsection have been inspired by
[17], §5. Our main goal here is to prove Proposition 3.6.9, which will be useful for
the classification of extremal KMSˇ states at low temperature.

Lemma 3.6.1. Let � 2 X . Let � 2 H.sgn/ be such that � 2 X� . The following
conditions are equivalentW
(1) For any maximal ideal p 2 IO , the restriction of � to �Œp� is non-trivial.

(2) For any b 2 IO different from 1, the restriction of � to �Œb� is non-trivial.

(3) F� D IO .

Proof. (2) ) (1) is trivial. (1) ) (2): Since b ¤ 1 there exists a maximal ideal
p dividing b. By equation (14), we then have �Œp� � �Œb�, so the result follows.
.2/ ) .3/: Let c 2 F�. Write c D b�1a with a;b 2 IO relatively prime. By
Lemma 2.1.7, we have b�1 2 F�. Thus, by Lemma 2.1.6, the restriction of � to
�Œb� is trivial, so b D 1, so c 2 IO . (3)) (2): Let b 2 IO with b ¤ 1. We have
b�1 62 F�, so the result follows by Lemma 2.1.6.

Definition 3.6.2. A character � 2 X is said to be admissible if it satisfies the above
equivalent conditions. Let X adm denote the topological subspace of X of admissible
elements.

Recall that Af is the ring of finite adèles of k with respect to O. Thus, Af is the
restricted product of the kp with respect to the Op, where p runs over all finite places
of k.

The following lemma is well known.

Lemma 3.6.3. Let a 2 IO . The diagonal map � W k ,! Af induces an O-module
isomorphism

k=a ��!�
M

p

kp=ap;

where p runs over all finite places of k, kp is the completion of k at p, and ap is the
closure of a in kp.

Proof. Let R DQ
p ap � Af . This contains �.a/. Hence � induces a map

k=a! Af =R:
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This map is an O-module morphism. It is injective because ��1.R/ D a. By the
strong approximation theorem (Theorem 1.1.1), the range of � is dense in Af . But
by definition of the restricted product, R is an open subset of Af . Hence � induces a
surjection modulo R. Thus � induces an isomorphism of O-modules k=a ' Af =R.
But Af =R D

L
p kp=ap, so the result follows.

Lemma 3.6.4. For any ideal a 2 IO and for any finite place p of k, there exists a
character � of kp=ap whose restriction to p�1ap=ap is non-trivial.

Proof. Let Fp denote the residue field of Op. This is a finite extension of Fp . The
ring Op is principal (as is any local ring of a Dedekind ring), so its maximal ideal
pOp is equal to uOp for some u 2 Op. Now ap is also an ideal of Op, so it is equal
to uvOp for some v > 0. Hence we have p�1ap=ap D uv�1Op=u

vOp. But we have
kp D Fp..u// and Op D FpŒŒu��, so we can define a character � on kp=ap by letting

�
� X
k2Z

aku
k
�
D exp

�
2i	 TrFp

Fp
.av�1/=p

�
:

The restriction of� to p�1ap=ap is non-trivial since we have�.uv�1/ D exp.2i	=p/.

Lemma 3.6.5. For any ideal a 2 IO , there exists a character � of k=a whose
restriction to p�1ap=ap, for any finite place p of k, is non-trivial.

Proof. Use Lemma 3.6.3 to identify k=a with
L

p kp=ap. For all p, let �p be a
character of kp=ap as given by the preceding lemma. Let � D Q

p �p. Then � is a
character of k=a which has the required property.

Lemma 3.6.6. For any � 2 H.sgn/, there exists an admissible character � 2 X� .
In particular, X adm is non-empty.

Proof. Let L denote the lattice corresponding to �. Write L D �a with � 2 C�1 and
a 2 IO . Let �0 be a character of k=a as given by Lemma 3.6.5. Define a character
� of �.C1/tor by

�.�/ D �0.e�1L .�/=�/:

Then � is admissible.

Lemma 3.6.7. For any � 2 X adm, the map IO ! X , a 7! �a, is injective.

Proof. By definition of admissibility and equation (21), we have F�a D a�1IO , so
the result follows.

Lemma 3.6.8. For any � 2 X adm and for any � 2 Gal.K=k/, we have �� 2 X adm.
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Proof. The actions of Gal.K=k/ and of IO onX commute with one another. Hence,
F	� D F� D IO . Hence �� is admissible.

Proposition 3.6.9. For any � 2 X adm, the map Gal.K=k/ ! X adm, � 7! ��, is
injective.

Proof. Let � 2 H.sgn/ such that � 2 X� . Let 1 ¤ � 2 Gal.K=k/. Suppose that
�� D �. We have �� 2 X	�1� , so ��1� D �. Thus �� D �, so by definition of
HC, we see that � 2 Gal.K=HC/. Also � induces a map

� W �.C1/tor ! �.C1/tor:

For any � 2 �.C1/tor, for any a 2 O, we have �a.��/ D .��a/.��/ D �.�a.�//;

so � is an O-module automorphism of �.C1/tor. Let L denote the lattice corre-
sponding to �. Write L D �a with � 2 C�1 and a 2 IO . Thus, we have O-module
isomorphisms

k=a

�! kL=L

eL�! �.C1/tor; (44)

which we use to identify k=a with �.C1/tor as O-modules. Thus, � is seen as an
O-module automorphism of k=a. Use Lemma 3.6.3 to identify k=a with

L
p kp=ap.

For any finite place p of k, writing kp as a field of Laurent series as in the proof of
Lemma 3.6.4, one sees that kp=ap ' kp=Op as Op-modules, hence as O-modules.
Hence EndO.kp=ap/ D Op, acting by multiplication. Thus

EndO.k=a/ D
Y

p

Op:

View � as an element of EndO.k=a/ and write � DQ
p �p with �p 2 Op for all p.

By definition of K, the action of Gal.K=HC/ on �.C1/tor is faithful. Thus, as
an O-module automorphism of �.C1/tor, we have � ¤ 1. Thus, there exists a p such
that �p ¤ 1, so �p � 1 2 Op � f0g. Since � is admissible, there exists � 2 �Œp�
such that �.�/ ¤ 1. View � as an element of p�1ap=ap. Let Q� 2 p�1ap � kp be
a representative of �. Let Q� D .�p � 1/�1 Q� 2 kp. Let � denote the class of Q� in
kp=ap. We have .�p � 1/� D �, so .� � 1/� D �, so

�..� � 1/�/ ¤ 1

and so

�.��/ ¤ �.�/;
which is absurd since �� D �.
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3.7. Irreducibility of regular representations at admissible characters. The goal
of this subsection is to show that the regular representations of G associated to admis-
sible characters are irreducible. This will be used to classify extremal KMS states at
low temperature.

Recall that for any � 2 X we defined the regular representation 	� of Cc.G /
by equation (24). By definition of Ck;1, 	� extends uniquely to a representation
of Ck;1.

Recall that X adm is the subset of X of admissible elements.

Lemma 3.7.1. For all� 2 X adm, the regular representation	� of Ck;1 is irreducible.

Proof. Let � 2 X adm. Let � be such that � 2 X� . The representation 	� is a
map Ck;1 ! B`2.G�/. Identify F� with G� through the map c 7! .�; c/. As � is
admissible, we have F� D IO . Thus G� is identified with IO . Let A 2 B`2.IO/

such that
	�.f /A D A	�.f / for all f 2 Ck;1:

Let us show that A is a scalar multiple of the identity. For that let us first prove that
A is diagonal. Let ."c/c2IO

be the standard orthonormal basis of `2.IO/: in other
words, for all c; a 2 IO , "c.a/ D 1aDc. Let .ac;d/ be the matrix representing A in
this basis. Thus we have

A"d D
X

c

ac;d"c for all c 2 IO :

Using equation (24), we check that

	�.�a/"b D "ab for all a 2 IO; b 2 IO (45)

and

	�.e. ; �//"b D 1 Db�1���b.�/"b for all  2 H.sgn/; � 2  .C1/tor; b 2 IO :

Now let � D .� / 2H.sgn/ be a family with � 2  .C1/tor for all 2 H.sgn/. Let

e.�/ D
X

 2H.sgn/

e. ; � /:

We have
	�.e.�//"b D �b.�b�1��/"b for all b 2 IO :

Thus, for all b 2 IO , we get

A	�.e.�//"b D
X

a2IO

aa;b�
b.�b�1��/"a;

	�.e.�//A"b D
X

a2IO

aa;b�
a.�a�1��/"a:
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Thus, for all a;b 2 IO with aa;b ¤ 0 and for all �, we get

�b.�b�1��/ D �a.�a�1��/: (46)

If b�1 � � ¤ a�1 � �, since � is admissible, we can obviously choose � to make
equation (46) fail. Thus we have b�1 � � D a�1 � �. By letting � vary, we see that
�b and �a are the same character of .a�1 � �/.C1/tor. Thus �a D �b. Thus, as
� is admissible, by Lemma 3.6.7, we find a D b. Thus .ac;d/ is a diagonal matrix.
Finally, using the equality A	�.�a/ D 	�.�a/A for all a 2 IO , one sees that the
diagonal entries .ac;c/ are all equal, so that .ac;d/ is a scalar multiple of the identity
matrix. Thus 	� is an irreducible representation.

3.8. A lemma on the action of Gal.K=k/ on H . In this subsection we prove an
important lemma which we shall use in Subsections 4.4 and 4.5.

Definition 3.8.1. Let F be a set of finite places of k. An ideal c 2 IO is said to be
F -localized if all its prime divisors belong to F .

Definition 3.8.2. Let d 2 IO . LetFd be the set of all places ofk dividing d. We define
H Œd� to be the �-algebra generated by the �a, for all Fd-localized ideals a 2 IO , and
the e.�; �/, for all � 2 H.sgn/ and � 2 �Œd�.

Note that for any d 2 IO , Gal.K=Kd/ acts trivially on H Œd�. Thus the ac-
tion of Gal.K=k/ on H Œd� gives an action of the quotient group Gal.Kd=k/ D
Gal.K=k/=Gal.K=Kd/ on H Œd� (remember that the fieldKd was defined in Defini-
tion 1.3.10).

Lemma 3.8.3. Let d 2 IO . Let p be a maximal ideal of IO not dividing d. Let
�p D .p; Kd=k/ 2 Gal.Kd=k/ be the Artin automorphism of Kd associated to p.
For all x 2 H Œd�, we have

x�p D �p�p.x/: (47)

Proof. Let A denote the subset of H Œd� of all elements x such that equation (47)
holds. Obviously, A is a C-subalgebra of H Œd�. But H Œd� is generated as a C-
algebra by the �a, the ��a and the e.�; �/, for all Fd-localized ideals a 2 IO , all
� 2 H.sgn/ and all � 2 �Œd�. Indeed, by relation (d1) of Proposition 3.1.2, we
have e.�; �/� D e.�;��/. Hence in order to prove that A D H Œd�, it is enough to
check that �a 2 A, ��a 2 A and e.�; �/ 2 A for any Fd-localized ideal a 2 IO , any
� 2 H.sgn/ and any � 2 �Œd�.

Let a 2 IO be a Fd-localized ideal. By relation (b) of Proposition 3.1.2, we
have �a�p D �p�a D �p�p.�a/, so �a 2 A. As a is Fd-localized and p does
not divide d, relation (c) of Proposition 3.1.2 gives ��a�p D �p�

�
a D �p�p.�

�
a/, so

��a 2 A.
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Now let � 2 H.sgn/ and � 2 �Œd�. We have

e.�; �/�p D �pe.p � �; �p.�// by relation (e) of Proposition 3.1.2

D �pe.�p�; �p.�// by Theorem 1.3.9

D �pe.�p�; �p.�// by Theorem 1.3.11, as p−d

D �p �p.e.�; �//:

Thus e.�; �/ 2 A, which completes the proof.

4. KMSˇ equilibrium states of .Ck;1; .�t//

4.1. The Galois-invariant KMSˇ state at any temperature. The goal of this sub-
section is to construct (Proposition 4.1.2), for any ˇ 2 R�C, a Galois-invariant KMSˇ
state 'ˇ of .Ck;1; .�t //. We shall also show (Proposition 4.1.3) that 'ˇ is the only
Galois-invariant KMSˇ state of .Ck;1; .�t //.

Proposition 3.5.4 shows that C1 is isomorphic to the infinite tensor product

C1 D
O

p

�p;

where p runs over the finite places of k and where, for each p, �p is the (Toeplitz)
C*-algebra generated by �p. Note that the �p are nuclear.

Let ˇ 2 R�C. For each p, define a state 'ˇ;p on �p by

'ˇ;p.�
n
p�
�m
p / D 1nDmNp�nˇ for all n;m > 0:

Define a state 'ˇ on C1 by

'ˇ D
O

p

'ˇ;p:

Note that we have

'ˇ .�a�
�
b/ D 1aDbNa�ˇ for all a;b 2 IO : (48)

Recall that the map E W Ck;1 ! C1 was defined in equation (41).

Definition 4.1.1. We extend 'ˇ to a state on Ck;1 by letting

'ˇ .f / D 'ˇ .E.f // for all f 2 Ck;1:

Proposition 4.1.2. For any ˇ 2 R�C, the state 'ˇ on Ck;1 is a KMSˇ state of
.Ck;1; .�t //. In particular, the state 'ˇ on C1 is a KMSˇ state of .C1; .�t //.
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Proof. For any f1; f2 2 Ck;1, we look for a bounded holomorphic function Fˇ;f1;f2
on the strip 0 < Im z < ˇ realizing the KMSˇ property for the state 'ˇ and the pair
.f1; f2/.

Since H is a dense .�t /-invariant �-subalgebra of Ck;1, by [4], §5.3.1, it is
enough to do that for f1; f2 2 H . In Lemma 3.2.2, we found a basis of H as a
C-vector space. Obviously, it is enough to check the KMSˇ condition in the case
when f1 and f2 are elements of that basis. Thus, write f1 D �a1e. 

1; �1/�
�
b1

and

f2 D �a2e. 
2; �2/�

�
b2

with ai ;bi 2 IO relatively prime, with  i 2 H.sgn/ and

with �i 2  i .C1/tor. By Lemma 3.2.1 (2),

f1f2 D 1a2� 1Db1� 2 �d�1a1a2
e.d�1a2 �  1; �0/ ��d�1b1b2

where d is the gcd of a2 and b1 and �0 D  1
d�1a2

.�1/C  2d�1b1
.�2/. We thus have

E.f1f2/ D 1a2� 1Db1� 2 �d�1a1a2
E.e.d�1a2 �  1; �0// ��d�1b1b2

:

Let c D annO.�
0/. Using equation (43), we deduce

E.f1f2/ D 1a2� 1Db1� 2 �d�1a1a2

P
fjc M.f�1c/Nf �f�

�
f

h.sgn/ˆ.c/
��

d�1b1b2
;

where h.sgn/ is the cardinal of H.sgn/. Using the formula for 'ˇ .�a�
�
b/ given in

equation (48), we then get

'ˇ .f1f2/ D
1a2� 1Db1� 2
h.sgn/ˆ.c/

X
fjc

M.f�1c/Nf1d�1a1a2fDd�1b1b2fN.d�1a1a2f/�ˇ :

Now the condition d�1a1a2f D d�1b1b2f is equivalent to a1a2 D b1b2 and, as ai
is relatively prime to bi , this is equivalent to a1 D b2 and a2 D b1. We thus get

'ˇ .f1f2/ D
1a1Db21a2Db11 1D 2

h.sgn/ˆ.c/

X
fjc

M.f�1c/Nf N.d�1a1a2f/�ˇ :

Now if a2 D b1, then d D a2 D b1, and so c D annO.�1 C �2/. Summing this up,
we have

'ˇ .f1f2/ D
1a1Db2 1a2Db1 1 1D 2

h.sgn/ˆ.c/

X
fjc

M.f�1c/Nf N.a1f/�ˇ (49)

where c D annO.�1 C �2/. Swapping f1 with f2 amounts to swapping 1 with 2 in
the indices, so we get

'ˇ .f2f1/ D
1a1Db2 1a2Db1 1 1D 2

h.sgn/ˆ.c/

X
fjc

M.f�1c/Nf N.a2f/�ˇ
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where c D annO.�1 C �2/. Thus we find

'ˇ .f2f1/ D
�

Na2

Na1

��ˇ
'ˇ .f1f2/:

We already know that both sides vanish unless a1 D b2, so we get

'ˇ .f2f1/ D
�

Na2

Nb2

��ˇ
'ˇ .f1f2/:

Now we have for all t 2 R,

�t .f2/ D �t .�a2e. 
2; �2/�

�
b2
/ D Nait2 �a2e. 

2; �2/Nb�it2 ��b2 D
�

Na2

Nb2

�it
f2:

Thus, letting

Fˇ;f1;f2.z/ D
�

Na2

Nb2

�iz
'ˇ .f1f2/

defines a bounded holomorphic function Fˇ;f1;f2 on the strip, realizing the KMSˇ
property for the state 'ˇ and the pair .f1; f2/.

Proposition 4.1.3. Let ˇ 2 R�C.

(1) The state 'ˇ on C1 is the only KMSˇ state of .C1; .�t //.

(2) The state 'ˇ on Ck;1 is the only Galois-invariant KMSˇ state of .Ck;1; .�t //.

Proof. Clearly, the two statements are equivalent. Let us prove (1). Let ' be a KMSˇ
state of .C1; .�t //. Let us show that

' D 'ˇ :
Let a;b 2 IO . We have

'.�a�
�
b/ D '.��b�iˇ .�a// D Na�ˇ'.��b�a/: (50)

Let us first work in the case when a ¤ b. Let us prove that '.�a�
�
b/ D 0. Since

'.�a�
�
b/ D '.�b��a/, we may swap a and b, and therefore we may assume without

loss of generality that a−b. Let d D aC b denote the gcd of a and b. We have

��b�a D ��d�1b
��d�d�d�1a D ��d�1b

�d�1a: (51)

Since d�1a and d�1b are relatively prime, we have

��
d�1b

�d�1a D �d�1a�
�
d�1b

: (52)
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Thus, equation (50) applied to d�1a and d�1b gives

'.�d�1a�
�
d�1b

/ D N.d�1a/�ˇ'ˇ .�d�1a�
�
d�1b

/: (53)

As a−b, we have d�1a ¤ 1, so equation (53) gives

'.�d�1a�
�
d�1b

/ D 0:
Hence equation (52) gives'.��

d�1b
�d�1a/ D 0, so equation (51) gives'.��b�a/ D 0,

so equation (50) gives '.�a�
�
b/ D 0. Hence we have proven that

a ¤ b H) '.�a�
�
b/ D 0 D 'ˇ .�a�

�
b/:

In the case when a D b equation (50) gives

'.�a�
�
a/ D Na�ˇ'.��a�a/ D Na�ˇ D 'ˇ .�a�

�
a/:

Thus we have proven that

'.�a�
�
b/ D 'ˇ .�a�

�
b/ for all a;b 2 IO :

As the linear span of the �a�
�
b is the �-algebra generated by the �a, it is dense in C1

(by Definition 3.5.3), so we get ' D 'ˇ .

4.2. Action of Gal.K=k/ on extremal KMSˇ states. As usual Gal.K=k/ is en-
dowed with its profinite topology. It acts on the set of states by .�; '/ 7! ' B � .
Obviously the KMSˇ condition and factoriality are preserved by this action. Hence,
the sets Kˇ and E.Kˇ / are invariant under the action of Gal.K=k/.

The proof of the next proposition comes from that of Theorem 25 in [3].

Proposition 4.2.1. For any ˇ 2 R�C, the action of Gal.K=k/ on E.Kˇ / is transitive.

Proof. The main ingredient is that the Galois-fixed subalgebra has a unique KMSˇ
state (cf. Proposition 4.1.3). As in the proof of Lemma 3.5.2, let d� be the normalized
Haar measure on Gal.K=k/, and let E denote the map defined in equation (41).

Let '1; '2 2 E.Kˇ /. Then '1 BE and '2 BE are Galois-invariant elements ofKˇ .
Thus, by Proposition 4.1.3, they are equal:

'1 B E D '2 B E:

But we have, for i D 1; 2,

'i B E D
Z

Gal.K=k/
'i B � d�: (54)

Equation (54) gives two decompositions of the same state as a barycenter of extremal
KMSˇ states, but such a decomposition is unique (cf. [4], II, Theorem 5.3.30), so the
orbits of '1 and of '2 under Gal.K=k/ are the same one.
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Let S denote the space of all states of Ck;1, endowed with the weak� topology.
Recall that the weak� topology onS is the one for which a basis of open neighborhoods
of a state '0 is given by the

B.'0I x1; : : : ; xnI "/ D f' 2 S j j'.xi / � '0.xi /j < " for all ig (55)

for all n > 1, x1; : : : ; xn 2 Ck;1 and " > 0.

Lemma 4.2.2. The action of Gal.K=k/ on S , given by .�; '/ 7! ' B� , is continuous.

Proof. Let '0 2 S , n 6 1, let x1; : : : ; xn 2 Ck;1, and let " > 0. Let
U D B.'0I x1; : : : ; xnI "/, as defined in equation (55). Let us find an open set
V � Gal.K=k/ and an open set W � S such that

' B � 2 U for all � 2 V; ' 2 W: (56)

Let us take W D B.'0 2 S I x1; : : : ; xnI "=2/. By Proposition 3.4.2, for any i ,
1 6 i 6 n, the map

Gal.K=k/! Ck;1;
� 7! �.xi /

is continuous, so the finite intersection

V D
nT
iD1
f� 2 Gal.K=k/ j k�.xi / � xik < "=2g

is an open neighborhood of 1 in Gal.K=k/. Hence, all we have to do is to check
equation (56). Let � 2 V and ' 2 W . Let 1 6 i 6 n. We have k�.xi /� xik < "=2,
so, as ' is a state, j'.�.xi // � '.xi /j < "=2. On the other hand, as ' 2 W , we have
j'.xi / � '0.xi /j < "=2. Thus j'.�.xi // � '0.xi /j < ", so ' B � 2 U .

4.3. Extremal KMSˇ states at low temperature 1=ˇ < 1 and special values.
Recall thatX adm is the subspace ofX of admissible elements, that E.Kˇ / is endowed
with the weak� topology, and that Gal.K=k/ is endowed with its profinite topology. In
this subsection, for anyˇ > 1, we shall construct a homeomorphismX adm ! E.Kˇ /,
� 7! 'ˇ;�, commuting with the actions of Gal.K=k/, and we shall show that both
E.Kˇ / (for ˇ > 1) and X adm are principal homogeneous spaces under Gal.K=k/.
Moreover, we shall compute the values of 'ˇ;� at certain elements of H and relate
them to special values of partial zeta functions of k.

For any � 2 X adm, as at the beginning of the proof of Lemma 3.7.1, let us make
the identification G� D F� D IO so that 	� is seen as a representation in `2.IO/.
Let ."a/a2IO

be the standard orthonormal basis of `2.IO/.
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Definition 4.3.1. Let H be the unbounded operator on `2.IO/ defined by

H"a D .log Na/"a for all a 2 IO :

Lemma 4.3.2. For any � 2 X adm, for all t 2 R and for all f 2 Ck;1, we have

	�.�t .f // D eitH	�.f /e�itH :
Proof. By Lemma 2.2.3, it is enough to do the proof in the case when f 2 Cc.G /. It
is then a straightforward computation.

The function ˇ 7! Tr.e�ˇH / is trivially computed:

Lemma 4.3.3. For all ˇ > 1, we have Tr.e�ˇH / D �k;1.ˇ/.
Proof. Tr.e�ˇH / DP

a2IO
e�ˇ log Na DP

a2IO
Na�ˇ D �k;1.ˇ/.

Definition 4.3.4. For any � 2 X adm, for any ˇ > 1, we define a linear functional
'ˇ;� on Ck;1 by

'ˇ;�.f / D �k;1.ˇ/�1 Tr.	�.f /e
�ˇH /:

Let ."a/a2IO
denote the standard basis of `2.IO/.

Lemma 4.3.5. For any � 2 X adm and for any ˇ > 1, 'ˇ;� is a KMSˇ state of the
C*-dynamical system .Ck;1; .�t //.

Proof. By Lemma 4.3.3, we have 'ˇ;�.1/ D 1. We also have, for any f 2 Ck;1,

'ˇ;�.ff
�/ D �k;1.ˇ/�1 Tr.	�.f

�/e�ˇH	�.f // > 0;

so 'ˇ;� is a state on Ck;1. For any f; f 0 2 Ck;1, let us define a bounded continuous
function Fˇ;�;f;f 0 on the strip fz 2 C j 0 6 Im z 6 ˇg by

Fˇ;�;f;f 0.z/ D �k;1.ˇ/�1 Tr.e�ˇH	�.f /eizH	�.f 0/e�izH /:

One checks that the restriction ofFˇ;�;f;f 0 to fz 2 C j 0 < Im z < ˇg is holomorphic.
By Lemma 4.3.2, we have, for all t 2 R,

Fˇ;�;f;f 0.t/ D 'ˇ;�.f �t .f 0// and Fˇ;�;f;f 0.t C iˇ/ D 'ˇ;�.�t .f 0/f /:
So 'ˇ;� is a KMSˇ state of .Ck;1; .�t //.

Lemma 4.3.6. For any � 2 X adm, for any ˇ > 1, for any � 2 Gal.K=k/, we have

'ˇ;	� D 'ˇ;� B �:
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Proof. By definition of 'ˇ;	�, it is enough to check that 		�.f / D 	�.�f /. By
Proposition 3.3.5, it is enough to prove it when f is one of the e. ; �/ or one of the
�a. The result then follows from equations (38), (39).

Lemma 4.3.7. For any � 2 X adm and for any ˇ > 1, the GNS representation of 'ˇ;�
is .	ˇ;�; �ˇ;�/, where 	ˇ;� W Ck;1 ! B.`2.IO/˝ `2.IO// is given by

	ˇ;�.f /.� ˝ �/ D 	�.f /� ˝ �;
and the cyclic vector �ˇ;� 2 `2.IO/˝ `2.IO/ is given by

�ˇ;� D �k;1.ˇ/�1=2
X

a2IO

Na�ˇ=2"a ˝ "a:

Proof. We obviously have

'ˇ;�.f / D h	ˇ;�.f /�ˇ;�; �ˇ;�i:
Hence, we only have to show that �ˇ;� is a cyclic vector for 	ˇ;�. For any maximal
ideal p of O and any n > 0, using equation(45), we find

	�.�
�
pn/"a D 1pnja"p�na for all a 2 IO

and hence
	�.�pn�

�
pn/"a D 1pnja"a for all a 2 IO :

Thus, if we let �pn D �pn�
�
pn � �pnC1��

pnC1 we get

	�.�pn/"a D 1pnja and pnC1−a"a for all a 2 IO :

Now let b 2 IO . Let us show that "b ˝ "b is in the closure of 	ˇ;�.Ck;1/.�ˇ;�/.
Write b D Q

p pnp with np > 0. For T > 0, let PT denote the set of all maximal
ideals p with Np < T . The family .PT /T is a growing family of finite sets whose
union is the set of all maximal ideals of O. For all T , let �T 2 Ck;1 be defined by

�T D
Y

p2PT
�pnp :

We have
	ˇ;�.�T /.�ˇ;�/ D �k;1.ˇ/�1=2

X
a2QT

Na�ˇ=2"a ˝ "a;

where QT is the set of all a 2 IO such that for all p 2 PT , the p-adic valuations of
a and b are equal. Since the series

P
a Na�ˇ is convergent, we see that

	ˇ;�.�T /.�ˇ;�/
T!C1������! �k;1.ˇ/�1=2Nb�ˇ=2"b ˝ "b:

Thus, we have shown that "b ˝ "b is in the closure of 	ˇ;�.Ck;1/.�ˇ;�/. Applying
the 	ˇ;�.�a/ and the 	ˇ;�.��a/ to that shows that for all b1;b2 2 IO , the element
"b1 ˝ "b2 is in the closure of 	ˇ;�.Ck;1/.�ˇ;�/.
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Proposition 4.3.8. For any � 2 X adm and for any ˇ > 1, the state 'ˇ;� is factorial
.hence extremal/ of type I1.

Proof. Let A denote the weak closure of 	ˇ;�.Ck;1/ in B.`2.IO/ ˝ `2.IO//. By
Lemma 3.7.1, the representation 	� is irreducible. Thus inside B`2.IO/, we have
	�.Ck;1/0 D C. Using Takesaki [33], I, Chapter IV, Proposition 1.6 (i), we deduce
that inside B.`2.IO/˝ `2.IO//, we have

	ˇ;�.Ck;1/0 D C˝ B`2.IO/:

Thus, using [33], I, Chapter IV, Proposition 1.6 (ii), we deduce

A D 	ˇ;�.Ck;1/00 D B`2.IO/˝C:

In particular, we have A ' B`2.IO/, so A is a factor of type I1.

Lemma 4.3.9. For any ˇ > 1, the map X adm ! E.Kˇ /, � 7! 'ˇ;�, is injective.

Proof. We reuse the notations of the proof of the previous lemma. Let us extend 'ˇ;�
to a state z'ˇ;� on the von Neumann algebra A D B`2.IO/˝C by

z'ˇ;�.a˝ 1/ D ha.�ˇ;�/;�ˇ;�i for all a 2 B`2.IO/:

For any Ǒ > 0 , we have e� ǑH 2 B`2.IO/. We have, for all  2 H.sgn/ and for all
� 2  .C1/tor:

�k;1.ˇ/ lim
Ǒ!C1

z'ˇ;�.	�.e. ; �//e� ǑH˝1/ D h	�.e. ; �//."1/; "1i D 1�2X �.�/:

Thus, � is uniquely determined.

We can now prove the main result classifying extremal KMSˇ states at low tem-
perature. Recall that Gal.K=k/ is endowed with its profinite topology, and E.Kˇ / is
endowed with the weak� topology.

Theorem 4.3.10. For any ˇ > 1, the topological space E.Kˇ / is principal homoge-
neous under Gal.K=k/.

Proof. We must show that for any ' 2 E.Kˇ /, the map Gal.K=k/ ! E.Kˇ /,
� 7! ' B � , is a homeomorphism. We already know that it is surjective (Proposi-
tion 4.2.1) and continuous (Lemma 4.2.2). Thus, as Gal.K=k/ is compact, it only
remains to show that it is injective. Let ' 2 E.Kˇ / and � 2 Gal.K=k/ such that
' B � D '. We have to show that � D 1. Let � 2 X adm. By Proposition 4.3.8
we have 'ˇ;� 2 E.Kˇ /. By Proposition 4.2.1, there exists � 2 Gal.K=k/ such
that ' D 'ˇ;� B � . By Lemma 4.3.6 we have ' D 'ˇ;�� and ' B � D 'ˇ;	��, so
'ˇ;	�� D 'ˇ;��. By Lemma 4.3.9, we deduce ��� D ��. By Proposition 3.6.9 we
find �� D � , so � D 1.
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Theorem 4.3.11. For any ˇ > 1, the map X adm ! E.Kˇ /, � 7! 'ˇ;�, is a homeo-
morphism.

Proof. It is injective by Lemma 4.3.9. Let us check surjectivity. Let ' 2 E.Kˇ / and
let �0 2 X adm. By Proposition 4.2.1 and Lemma 4.3.6, there exists � 2 Gal.K=k/
such that ' D 'ˇ;	�0 . Thus, the map � 7! 'ˇ;� is bijective. One checks that it is
continuous. By definition of an admissible character, X adm is a closed subspace of
X . Thus X adm is compact, so the considered map is a homeomorphism.

Relations between certain special values of KMSˇ states and of partial zeta func-
tions. Let us now compute the values of the states 'ˇ;� on some of the generators
e.�; �/. Let AC denote the subset of IO of all ideals a such that �a D 1, where
�a D .a;HC=k/ 2 Gal.HC=k/ is the Artin automorphism of HC associated to a.
For any c 2 IO and any � 2 Gal.Kc=k/, letAc;	 denote the subset ofAC of all ideals
a prime to c and such that �a D � , where �a D .a; Kc=k/ 2 Gal.Kc=k/ is the Artin
automorphism ofKc associated to a. Note thatAC and theAc;	 are generalized ideal
classes of O.

Let �C
k;1 and �c;	

k;1 (for any c 2 IO and � 2 Gal.Kc=H
C/) be the partial zeta

functions associated to AC and Ac;	 , respectively:

�C
k;1.ˇ/ D

X
a2AC

Na�ˇ ;

�
c;	
k;1.ˇ/ D

X
a2Ac;�

Na�ˇ :

Theorem 4.3.12. Let ˇ > 1, � 2 H.sgn/, and � 2 X adm \X� .

(1) We have

'ˇ;�.e.�; 0// D
�C
k;1.ˇ/
�k;1.ˇ/

:

(2) For any maximal ideal p of O, for any � 2 �Œp�, we have

'ˇ;�.e.�; �// D �k;1.ˇ/�1.Np�ˇ �C
k;1.ˇ/C

P
	2Gal.Kp=HC/

�.��/�
p;	
k;1.ˇ//:

Proof. Let us first prove (1). By definition,AC is the subset of IO of all ideals a such
that �a D 1, where �a D .a;HC=k/ 2 Gal.HC=k/ is the Artin automorphism of
HC associated to a. Hence, by Theorem 1.3.9, we have

AC D fa 2 IO j a � � D �g D fa 2 IO j a�1 � � D �g D fa 2 IO j �a 2 X�g:
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Thus, by definition of 'ˇ;�, for any � 2 �.C1/tor, we have

'ˇ;�.e.�; �// D �k;1.ˇ/�1
X

a2IO

1�a2X� �a.�/Na�ˇ

D �k;1.ˇ/�1
X

a2AC

�.�a.�//Na�ˇ :
(57)

Applying this equality to � D 0 we get (1).
Let us now prove (2). Let a 2 AC. In the case when pja, we have �a.�/ D 0, so

�.�a.�// D 1:
In the case when p−a, by Theorem 1.3.11, we have �a.�/ D �a.�/. Hence, equa-
tion (57) gives

�k;1.ˇ/'ˇ;�.e.�; �// D
X

a2AC;pja
�.�a.�//Na�ˇ C

X
a2AC;pja

�.�a.�//Na�ˇ

D
X

a2AC;pja
Na�ˇ C

X
a2AC;pja

�.�a.�//Na�ˇ

D
X

a2AC

N.pa/�ˇ C
X

	2Gal.Kp=HC/

X
a2Ap;�

�.��/Na�ˇ

D Np�ˇ �C
k;1.ˇ/C

X
	2Gal.Kp=HC/

�.��/ �
p;	
k;1.ˇ/;

which proves (2).

4.4. Uniqueness of the KMSˇ state at high temperature 1=ˇ > 1. Recall that in
Proposition 4.1.2, for any ˇ 2 R�C, we found a Galois-invariant KMSˇ state 'ˇ of�
Ck;1; .�t /

�
.

In this subsection we shall prove (Theorem 4.4.15) that when ˇ 6 1, there is no
other KMSˇ state of .Ck;1; .�t //. In other words,

ˇ 6 1 H) Kˇ D f'ˇ g:
Most of the ideas here come from [3], §7.

Let ˇ 2 R�C be such that ˇ 6 1, and let  be a KMSˇ state of .Ck;1; .�t //. We
must show that  D 'ˇ .

Let 4Gal.K=k/ be the dual group of Gal.K=k/. Since Gal.K=k/ is profinite,
4Gal.K=k/ is discrete.

Let F be a non-empty finite set of finite places of k. Recall from Definition 3.8.1
that an ideal a 2 IO is F -localized if all its prime divisors belong to F . We also
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need to define what it means to be F -localized for an element of Gal.K=k/ and for
an element of C.X/.

Let us first define what it means to be F -localized for an element of Gal.K=k/.
We have

K D lim
c! Kc;

so
Gal.K=k/ D lim c

Gal.Kc=k/;

so
4Gal.K=k/ D lim

c!
4Gal.Kc=k/:

This means that for any character � of Gal.K=k/, there exists c 2 IO such that �
factors through the projection Gal.K=k/! Gal.Kc=k/.

Definition 4.4.1. A character � of Gal.K=k/ is said to be F -localized if there exists
an F -localized ideal c 2 IO such that � factors through the projection Gal.K=k/!
Gal.Kc=k/.

Thus any � 2 Gal.K=k/ is F -localized for some F .
Let KF denote the extension of HC generated by the elements of the �ŒF �, for

� 2 H.sgn/. In other words,
KF D lim

c! Kc;

where c runs over IO . Thus a character � of Gal.K=k/ is F -localized if and only if
it factors through the surjection

Gal.K=k/! Gal.KF =k/:

Let us now define what it means to be F -localized for an element of C.X/. For
any � 2 H.sgn/, let �ŒF � denote the following subgroup of �.C1/tor:

�ŒF � D S
c is F -loc.

�Œc�:

Here c runs over all the F -localized ideals in IO . Let X�;F denote the dual group of
�ŒF �. The restriction-to-�ŒF � map is a surjective morphism

X� ! X�;F :

Let XF denote the (disjoint) union of the X�;F , for all � 2 H.sgn/. The restriction
maps X� ! X�;F give a surjection

X ! XF :

This gives an injective morphism of C*-algebras

C.XF / ,! C.X/:

Thus, we regard C.XF / as a C*-subalgebra of C.X/.
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Definition 4.4.2. An element f 2 C.X/ is said to be F -localized if it belongs to
C.XF /. In other words, f is F -localized if, seen as a function f W X ! C, it factors
through the map X ! XF .

Lemma 4.4.3. The C*-algebraC.XF / is generated by the e.�; �/, for all� 2 H.sgn/
and all � 2 �ŒF �.

Proof. This can be checked like Lemma 3.3.4.

For any character � of Gal.K=k/, let C� be the following spectral subspace of
Ck;1:

C� D ff 2 Ck;1 j �f D �.�/f for all � 2 Gal.K=k/g:
Thus, when � D 1 is the trivial character, the corresponding subspace C1 is the
Galois-fixed subalgebra computed in 3.5.2.

Lemma 4.4.4. The following subspace is dense in Ck;1WM
�22Gal.K=k/

C� :

Proof. Since Gal.K=k/ is a compact abelian group of �-automorphisms of Ck;1,
this follows from a result found in Pedersen [30], §§8.1.4 and 8.1.10, p. 349.

Lemma 4.4.5. The states  and 'ˇ agree on C1.

Proof. We saw in Proposition 4.1.3 that .C1; �t / has only one KMSˇ state. Thus, as
 and 'ˇ are KMSˇ , they must agree on C1.

Lemma 4.4.6. Suppose that for any � 24Gal.K=k/ with � ¤ 1 the state  vanishes
on the spectral subspace C� . Then  D 'ˇ .

Proof. By Lemma 4.4.4, in order to show that  and 'ˇ are equal, it is enough to
show that they agree on C� for all �. We already know that and 'ˇ agree on C1. As
'ˇ is Gal.K=k/-invariant, it is easy to see that it vanishes onC� for any non-trivial �,
so we deduce that  D 'ˇ .

Thus, in order to prove that D 'ˇ , it is enough to prove that vanishes on each
of the spectral subspaces C� for � ¤ 1. The following lemma, which is inspired by
Lemma 27 (c) in [3], will be useful to show this.
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Lemma 4.4.7. Let � 2 4Gal.K=k/ with � ¤ 1. Let F be a non-empty finite set of
finite places of k such that � is F -localized. Suppose that for any F -localized partial
isometry V 2 C.X/ \ C� , we have

 .Vx/ D 0 for all x 2 C1:
Then  vanishes on the spectral subspace C� .

Proof. From Theorems 4.3.10 and 4.3.11 we know that X adm is principal homoge-
neous under Gal.K=k/. Thus, by choosing a base point �0 2 X adm, we can identify
Gal.K=k/ with X adm through the map � 7! ��0. Let f 2 IO be defined by

f D
Y
p2F

p:

For any n > 1, let Vn 2 C.X/ be defined as follows. Let � 2 X . If F� is of the
form a�1IO with a jfn, write � D ��a

0 with � 2 Gal.K=k/ and put Vn.�/ D �.�/.
Otherwise, put Vn.�/ D 0. Note that Vn is a partial isometry and belongs to C� .
Moreover, Vn is F -localized because � is.

For any � 2 X we have jVn.�/j D 1 if F� is of the form a�1IO for some ajfn and
jVn.�/j D 0 otherwise. As jVnj takes values in f0; 1g, we have jVnj D jVnj2 D VnV �n .
Thus, by Lemmas 2.1.7 and 2.1.8, for any � 2 X , we have

VnV
�
n .�/ D 1F��f�nIO

D
Y
p2F

1f�np�1 62F� :

Hence, by equation (33), we get

VnV
�
n D

Y
p2F

.1 � �fnp�
�
fnp/:

Since  and 'ˇ agree on C1 (Lemma 4.4.5) and F is finite, we obtain

 .VnV
�
n / D 'ˇ

� Y
p2F

.1 � �fnp�
�
fnp/

�
n!1����! 1: (58)

Now let x 2 C� . We want to prove that  .x/ D 0. For any n > 1, let Pn D
1 � VnV �n . The Schwarz inequality gives

j .Pnx/j2 6  .Pn/ .xx
�/: (59)

By equation (58), we have .Pn/
n!1����! 0, so equation (59) gives .Pnx/

n!1����! 0,
so

 .VnV
�
n x/

n!1����!  .x/: (60)
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For anyn > 1, asx 2 C� andV �n 2 C��1 , we haveV �n x 2 C1. Hence, by assumption,
we have

 .VnV
�
n x/ D 0:

Together with equation (60), this gives  .x/ D 0, which completes the proof of
Lemma 4.4.7.

Thus in order to prove that  D 'ˇ it is enough to prove the following lemma.

Lemma 4.4.8. Let � 2 4Gal.K=k/ with � ¤ 1. Let F be a non-empty finite set of
finite places of k such that � is F -localized. For any F -localized partial isometry
V 2 C.X/ \ C� , we have

 .Vx/ D 0 for all x 2 C1:

Proof. This proof is directly inspired by the proof of Lemma 27 (b) of [3]. It will
make use of Lemmas 4.4.9, 4.4.10, 4.4.11, 4.4.12, 4.4.13 and 4.4.14, and will only
be completed on p. 202.

Let V 2 C.X/ be an F -localized partial isometry such that V 2 C� .
Let E D V �V D V V � (the algebra C.X/ is commutative). Note that E is a

projection and belongs to C1. Let

C1;E D EC1E D ff 2 C1 j f D fE D Ef g
denote the reduced algebra. As V is fixed by the flow .�t / and  and 'ˇ are KMSˇ
states for the flow .�t /, we see that V belongs to the centralizer of  and of 'ˇ .

Let ˛ denote the following automorphism of C1;E :

˛.f / D Vf V � for all f 2 C1;E :
Let M be the weak closure of Ck;1 in the GNS representation of 'ˇ . Let us extend
the state 'ˇ to a normal state z'ˇ onM . LetM1 �M denote the weak closure of C1
in the GNS representation of 'ˇ .

Since V belongs to the centralizer of 'ˇ for all f 2 C1;E , we have 'ˇ .˛.f // D
'ˇ .f /. Thus ˛ preserves 'ˇ , so it extends to an automorphism of the reduced algebra
M1;E preserving z'ˇ .

Let c 2 IO be an F -localized ideal such that � factors through Gal.Kc=k/.

Lemma 4.4.9. Let p be a finite place of k with p 62 F . We have

E�p 2 C1;E and ˛.E�p/ D �.�p/E�p for all p 62 F; (61)

where �p D .p; KF =k/ 2 Gal.KF =k/ is the Artin automorphism of KF associated
to p.
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Proof. Let HF denote the �-algebra generated by the e.�; �/, for all � 2 H.sgn/ and
all � 2 �ŒF �. By Proposition 4.4.3, we know that HF is norm-dense in C.XF /. So
let .Vn/n2N be a sequence of elements of HF converging to V in the norm topology.
Obviously we have

HF � S
d2IO ;dF -loc.

H Œd�;

where d runs over the F -localized elements of IO . Thus, for any n 2 N, there exists
an F -localized dn 2 IO such that Vn 2 H Œdn�. Since p 62 F and dn is F -localized,
we have p − dn, so Lemma 3.8.3 gives Vn�p D �p�p.Vn/. Now view �p as an
automorphism of the C*-algebra C.XF /. In particular it is continuous. Hence we
obtain

V�p D �p�p.V / D �.�p/�pV for all p 62 F; (62)

and the result follows.

The ITPFI structure of M1. For any p, recall that �p is the (Toeplitz) C*-algebra
generated by �p, and that 'ˇ;p is the restriction of 'ˇ to �p. Let ."n/n>0 denote the
standard orthonormal basis of `2.N/. Let 	ˇ;p be the following representation of �p:

	ˇ;p W �p ! B.`2.N/˝ `2.N//;
�p 7! ."n ˝ "m 7! "nC1 ˝ "m/:

Let �ˇ;p 2 `2.N/˝ `2.N/ be the following vector:

�ˇ;p D
q
1 � Np�ˇ

X
n>0

Np�nˇ=2"n ˝ "n:

It is easy to check that the pair .	ˇ;p; �ˇ;p/ is the GNS representation of 'ˇ;p. Let
M1;p denote the weak closure of �p in the representation 	ˇ;p. One checks that

M1;p D B`2.N/˝C: (63)

In particular M1;p is a type I1 factor. Let z'ˇ;p be the unique extension of 'ˇ;p to a
normal linear functional onM1;p. Alternatively, z'ˇ;p is the restriction of z'ˇ toM1;p.
Note that the eigenvalue list of z'ˇ;p is the sequence

..1 � Np�ˇ /Np�nˇ /n>0:

We have
.M1; z'ˇ / D

O
p

.M1;p; z'ˇ;p/; (64)

where p runs over the finite places of k. Recall from [33], III, Chapter XIV, Corol-
lary 1.10, that any ITPFI is a factor. In particular,M1 is a factor. We shall check later
(Lemma 4.5.1) that it is of type IIIq�ˇ .
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For any � 2 C with j�j D 1, let 
p;� denote the �-automorphism of �p such that

p;�.�p/ D ��p. As 
p;� preserves 'ˇ;p, it extends to an automorphism of M1;p.
Let �F;� be the following automorphism of M1:

�F;� D .˝p2F idM1;p/˝ .˝p62F 
p;�.	p//:

Lemma 4.4.10. �F;� is an outer automorphism of M1.

Proof. Suppose that �F;� is inner. Lemma 1.3.8 (b) from Connes [7] states that there
exists a sequence .up/ where, for any finite place p of k, up is an unitary of M1;p

with
�F;�.x/ D upxu

�
p for all x 2M1;p (65)

and such that X
p

.1 � j'ˇ;p.up/j/ <1: (66)

Since M1;p is a factor, equation (65) determines up up to multiplication by a z 2 C
with jzj D 1. By definition of �F;� , when p 2 F one can take up D 1. When p 62 F
one can take up 2 M1;p D B`2.N/ to be the diagonal matrix with eigenvalue list
.�.�np //n2N. Using the expression of the GNS representation of 'ˇ;p that we saw
above, we get

'ˇ;p.up/ D .1 � Np�ˇ /
X
n2N

�.�p/
nNp�nˇ D 1 � Np�ˇ

1 � �.�p/Np�ˇ
:

This is equal to 1 whenever �.�p/ D 1; so, letting

Y D fp j p is a finite place of k; p 62 F; and �.�p/ ¤ 1g;
equation (66) gives X

p2Y

�
1 �

ˇ̌̌ 1 � Np�ˇ

1 � �.�p/Np�ˇ
ˇ̌̌ �
<1: (67)

Recall that we let c be an F -localized ideal such that � factors through Gal.Kc=k/.
This is a finite group, so the range of � is finite, so there exists a � with 0 < � < 1

such that for any � 2 Gal.K=k/ with �.�/ ¤ 1, we have Re �.�/ 6 � . Let p 2 Y .
We have j1 � �.�p/Np�ˇ j > 1 � �Np�ˇ . Thus we find

1 �
ˇ̌̌ 1 � Np�ˇ

1 � �.�p/Np�ˇ
ˇ̌̌

> 1 � 1 � Np�ˇ

1 � �Np�ˇ
D .1 � �/Np�ˇ

1 � �Np�ˇ
> .1 � �/Np�ˇ :

Since 1 � � > 0, together with equation (67) this givesX
p2Y

Np�ˇ <1: (68)
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Since ˇ 6 1, this implies that for all s > 1 we haveX
p2Y

Np�s 6
X
p2Y

Np�1 <1: (69)

The Čebotarev density theorem (Theorem 1.1.4) states that for any � 2 Gal.Kc=k/

the following set P	 of places of k,

P	 D fp j p does not ramify in Kc and �p D �g;
has a positive Dirichlet density

d.P	 / > 0:

Up to a finite set of places of k, we have

Y D S
�.	/¤1

P	 ;

where � runs over Gal.Kc=k/. Hence, as � ¤ 1, we have d.Y / > 0, so

lim
s!1C

X
p2Y

Np�s D1;

contradicting equation (69).

Define two subfactors MF˙
1 of M1,

MFC
1 D

O
p2F

M1;p;

MF�
1 D

O
p62F

.M1;p; z'ˇ;p/;

where p runs over the finite places of k. We thus have

M1 DMFC
1 ˝MF�

1 :

As the projection E is F -localized, we have E 2MFC
1 , so letting

N D
�
MFC
1

�
E

and using [33], I, Chapter IV, Proposition 1.9, we get

M1;E D N ˝MF�
1 : (70)

Lemma 4.4.11. ˛ is an outer automorphism of M1;E .
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Proof. Suppose that ˛ is an inner automorphism of M1;E . Let � D ˛�1 B �F;� 2
Aut

�
M1;E

�
. By construction, � induces the identity on CE ˝MF�

1 . As N ˝C is
of type I1, the restriction of � to N ˝C is inner. By equation (70), we get that � is
an inner automorphism of M1;E . Hence, �F;� restricts to an inner automorphism of
M1;E . As M1 is a factor, using Lemma 1.5.2 of [7], we deduce that �F;� is an inner
automorphism of M1, contradicting Lemma 4.4.10.

As we already noted, V belongs to the centralizer of  . Define a linear functional
L on C1;E by

L.x/ D  .Vx/ D  .xV / for all x 2 C1;E :
We want to prove by contradiction that L is zero. Thus suppose that L is nonzero.

The Schwarz inequality gives

jL.x/j2 6  .E/ .x�x/ for all x 2 C1;E :
By Lemma 4.4.5, the states and 'ˇ agree onC1;E , so .x�x/ D 'ˇ .x�x/. ThusL
extends to a normal linear functional on M1;E , which we still denote L.

Since 'ˇ is KMSˇ on Ck;1, by [4], II, Corollary 5.3.4 there exists a unique
extension of .�t / to an ultraweakly continuous flow .z�t / on M for which z'ˇ is
KMSˇ .

Lemma 4.4.12. The linear functional L satisfies the ˛-twisted KMSˇ condition for
the flow .z�t / on M1;E . In other words, for any x; y 2 M1;E , there exists a bounded
continuous function Fx;y on the strip 0 6 Im z 6 ˇ, holomorphic on the interior of
the strip, such that for any t 2 R we have

Fx;y.t/ D L.x�t .y// and Fx;y.t C iˇ/ D L.�t .y/˛.x//: (71)

Proof. In the case when x; y 2 C1;E , this can be easily checked by applying the
KMSˇ condition for  to the pair .Vx; y/. As both .z�t / and L are ultraweakly
continuous, the result follows.

Lemma 4.4.13. There exists a nonzero z�t -invariant w 2M1;E such that

L.x/ D z'ˇ .wx/ for all x 2M1;E :

Proof. Let L D jLju be the polar decomposition of L (see [33], I, Chapter III,
Theorem 4.2). In particular, u 2 M1;E is a partial isometry, jLj is a positive normal
linear functional on M1;E , and

L.x/ D jLj.ux/ for all x 2M1;E :

We want to apply Connes’ Radon–Nikodým theorem to jLj and z'ˇ , seen as finite
normal faithful weights on M1;E .
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SinceL is z�t -invariant, by uniqueness of the polar decomposition,u and jLj are z�t -
invariant. As z'ˇ is KMSˇ for the flow .z�t /, we deduce that jLj is � z'ˇt -invariant, where

.�
z'ˇ
t / is the modular automorphism group associated to the finite faithful normal

weight z'ˇ on M1;E . Connes’ Radon–Nikodým theorem ([7], Lemme 1.2.3 (b)) then
states that there exists a positive z�t -invariant h 2M1;E such that

jLj.x/ D z'ˇ .hx/ for all x 2M1;E :

Letting w D hu, we get

L.x/ D z'ˇ .wx/ for all x 2M1;E ;

andw is nonzero by our assumption thatL is nonzero. It is z�t -invariant because both
u and h are.

Lemma 4.4.14. Let w be given by Lemma 4.4.13. Then

˛.x/w D wx for all x 2M1;E :

Proof. Let x; y 2 M1;E . Let FLx;y be the function given by Lemma 4.4.12 such that
for any t 2 R we have

FLx;y.t/ D L.xz�t .y// and FLx;y.t C iˇ/ D L.z�t .y/˛.x//:
By definition of w, we get

FLx;y.t/ D z'ˇ .wxz�t .y// and FLx;y.t C iˇ/ D z'ˇ .z�t .wy/˛.x//:

Now let F
z'ˇ
˛.x/;wy

be the function given by the KMSˇ property of z'ˇ applied to the
pair .˛.x/; wy/ so that

F
z'ˇ
˛.x/;wy

.t/ D z'ˇ .˛.x/z�t .wy// and F
z'ˇ
˛.x/;wy

.t C iˇ/ D z'ˇ .z�t .wy/˛.x//:

Let G D F
z'ˇ
˛.x/;wy

� FLx;y . Note that G vanishes on R C iˇ. Therefore, one can
extend G to a holomorphic function on the broader strip 0 < Im z < 2ˇ by letting

G.z/ D G. Nz C 2iˇ/ for all z 2 C with ˇ < Im z < 2ˇ:

As G vanishes on R C iˇ and is holomorphic on an open set containing R C iˇ, it

vanishes everywhere, so F
z'ˇ
˛.x/;wy

D FLx;y . In particular, evaluating that at 0, we get

z'ˇ .wxy/ D z'ˇ .˛.x/wy/:
Since this holds for all y 2M1;E and the state z'ˇ is faithful on M1;E , we get

wx D ˛.x/w:
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We already know by Lemma 4.4.11 that ˛ is outer. Thus, Proposition 4.1.16 of
Sunder [32] shows that

fy 2M1;E j ˛.x/y D yx for all x 2M1;E g D f0g:
Together with Lemma 4.4.14 this shows thatw D 0. Butw is nonzero by construction
(cf. Lemma 4.4.13), so we get a contradiction. Thus our assumption thatL is nonzero
was false. Thus L is zero, so

 .Vx/ D 0 for all x 2 C1;E :
Now let x 2 C1. We have ExE 2 C1;E , so it follows that  .VExE/ D 0.

As E D V �V D V V � is a projection and belongs to the centralizer of  , we get
 .VExE/ D  .EVEx/ D  .Vx/, so  .Vx/ D 0, which proves Lemma 4.4.8.

From this we can deduce the main result of this subsection. Recall that we have
assumed 0 < ˇ 6 1.

Theorem 4.4.15. The C*-system .Ck;1; �t / has exactly one KMSˇ state, 'ˇ .

Proof. This follows from Lemmas 4.4.6, 4.4.7 and 4.4.8.

Corollary 4.4.16. The state 'ˇ of Ck;1 is a factor state, i.e., the von Neumann
algebra M is a factor.

Proof. This follows from Theorem 4.4.15 and [4], II, Theorem 5.3.30 (3).

4.5. The type IIIq�ˇ of the KMSˇ state at high temperature 1=ˇ > 1. Let us
go on with the notations of the preceding subsection. In particular, we assume that
ˇ 6 1. The goal of this subsection is to prove (Theorem 4.5.8) that the state 'ˇ
on Ck;1 is of type IIIq�ˇ . In other words, we want to show that the factor M is of
type IIIq�ˇ . Before doing that we show that the subfactor M1 is of type IIIq�ˇ .

Recall from equation (64) that M1 is the following infinite tensor product, where
p runs over the finite places of k:

.M1; z'ˇ / D
O

p

.M1;p; z'ˇ;p/:

Here each of theM1;p is a type I1 factor, so the usual methods (cf. Araki and Woods
[1], [8]) allowing to compute asymptotic ratio sets cannot be applied directly to M1.
Instead we first find an integer � 2 N and, for each p, a projection ep 2 M1;p such
that the reduced factorM1;p;ep is of type I� and the infinite tensor product e D ˝pep

is a nonzero projection in M1.
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Let � 2 N be such that � > 1=ˇ. For any finite place p of k, let ep D 1���p���p 2
M1;p. Recall from equation (63) thatM1;p is naturally identified withB`2.N/. Under
this identification, the projection ep is the diagonal matrix whose � first diagonal
entries are 1 and whose other entries are 0. Thus, the reduced subfactorM1;p;ep is of
type I� . Note that

z'ˇ;p.ep/ D 1 � Np��ˇ : (72)

Any decreasing sequence of projections in a von Neumann algebra converges weakly
to a projection, so we can define a projection e 2M1 by

e D
Y

p

ep D
O

p

ep:

By definition of � we have �ˇ > 1, so

z'ˇ .e/ D
Y

p

z'ˇ;p.ep/ D
Y

p

.1 � Np��ˇ / D 1

�k;1.�ˇ/
¤ 0:

In particular, e ¤ 0. Let us define a state z'ˇ;e on M1;e by

z'ˇ;e.x/ D �k;1.�ˇ/ z'ˇ .x/ D z'ˇ .x/z'ˇ .e/ for all x 2M1;e:

For any p, let us define a state z'ˇ;p;ep
on M1;p;ep by

z'ˇ;p;ep
.x/ D .1 � Np��ˇ /�1 z'ˇ;p.x/ D z'ˇ;p.x/z'ˇ;p.ep/

for all x 2M1;p;ep :

Coming back to the definition of the infinite tensor product ([33], III, Chapter XIV, §1)
and using the expression (64) ofM1 as the infinite tensor product of the .M1;p; z'ˇ;p/,
one can check that

.M1;e; z'ˇ;e/ D
O

p

.M1;p;ep ; z'ˇ;p;ep
/: (73)

Let .�
z'ˇ
t / denote the modular flow of z'ˇ . Since z'ˇ is KMSˇ for the flow .z�t /,

we have
�
z'ˇ
t D z�ˇt for all t 2 R: (74)

Lemma 4.5.1. The factor M1 is of type IIIq�ˇ .

Proof. Let us first prove that q�ˇ belongs to the asymptotic ratio set r1.M1;e/. We
want to apply the criterion given on p. 465 of [8] to the ITPFI in equation (73). The
eigenvalue list of z'ˇ;p;ep

is .�p;a/aD0;:::;��1, where

�p;a D .1 � Np�ˇ /Np�aˇ

1 � Np��ˇ
:
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Let r be such that 0 < r < 1. For any n 2 N, let

r.n/ D brqn=nc:
By equation (1), there exists an n0 > 1 such that for any n > n0, there exist (at least)
r.n/ distinct finite places

p1n; : : : ; p
r.n/
n

of k such that
Npin D qn for all i 2 f1; : : : ; r.n/g:

For any n > n0, let In be the following set of places of k:

In D fp12n; : : : ; pr.2n/2n ;p12nC1; : : : ; p
r.2n/
2nC1g:

LetX.In/ D f0; : : : ; � �1gIn be the set of all maps from In to f0; : : : ; � �1g. Define
a measure � on X.In/ by

�.ff g/ D
r.2n/Y
iD1

�pi
2n
;f .pi

2n
/ �pi

2nC1;f .p
i
2nC1/

:

For any i 2 f1; : : : ; r.2n/g, define elements k1;in and k2;in of X.In/ by

k1;in .p/ D 1pDpi
2n

and k2;in .p/ D 1pDpi
2nC1

for all p 2 In:

Let K1n D fk1;1n ; : : : ; k
1;r.2n/
n g and let K2n D fk2;1n ; : : : ; k

2;r.2n/
n g. For any

i 2 f1; : : : ; r.2n/g, we have �.fk1;in g/ D �.fk1;1n g/, so

�.K1n/ D r.2n/ �.fk1;1n g/

D r �
�
1 � q�2nˇ
1 � q�2n�ˇ

�brq2n=.2n/c�
1 � q�.2nC1/ˇ
1 � q�.2nC1/�ˇ

�brq2n=.2n/c
.q1�ˇ /2n

.2n/
:

Since ˇ 6 1, one checks easily thatX
n>n0

�.K1n/ D1: (75)

Let �n W K1n ! K2n be the bijection defined by �n.k
1;i
n / D k

2;i
n . For any i 2

f1; : : : ; 2ng, we have

�.f�n.k1;in /g/
�.fk1;in g/

D
�pi
2n
;0�pi

2nC1;1

�pi
2n
;1�pi

2nC1;0

D q�.2nC1/ˇ

q�2nˇ
D q�ˇ :
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Together with equation (75), this allows to apply the criterion given on p. 465 of [8],
and we get

q�ˇ 2 r1.M1;e/:

Hence, by [7], Théorème 3.6.1, we have q�ˇ 2 S.M1;e/. Hence, by [7], Corol-
laire 3.2.8 (b), we have

q�ˇ 2 S.M1/:

In particular, this shows thatS.M1/ ¤ f0; 1g, so, by [7], Théorème 3.4.1, one gets that
S.M1/\R�C is the orthogonal of T .M1/ for the duality .s; t/ 7! sit . By construction,
z�2�= logq D 1, so equation (74) gives

�
z'ˇ
2�=.ˇ logq/ D 1: (76)

Thus

T .M1/ 	 2	

ˇ log q
Z:

Hence, by orthogonality, we get

S.M1/ \ R�C � qˇZ:

Since we already know that q�ˇ 2 S.M1/, we obtain

S.M1/ \ R�C D qˇZ:

Thus M1 is of type IIIq�ˇ .

We only use Lemma 4.5.1 for the proof the following corollary. LetM1;z'ˇ denote
the centralizer of z'ˇ in M1.

Corollary 4.5.2. The centralizer M1;z'ˇ is a factor, of type II1.

Proof. Lemma 4.5.1 and equation (76) allow to apply [7], Théorème 4.2.6, and we
obtain that M1;z'ˇ is a factor. Note that z'ˇ is a finite faithful normal trace on M1;z'ˇ .
Hence, the type of M1;z'ˇ can only be either II1 or In with n 2 N�. Let p be a finite
place of k. For any n > 1, set xn D �np�

�n
p . Note that the xn are fixed by the flow

.�t /, hence by equation (74) they belong to M1;z'ˇ . Equation (33) shows that the xn
are linearly independent over C. Thus, M1;z'ˇ is infinite-dimensional over C, so its
type cannot be In with n 2 N�. Hence, it must be II1.

Our next goal is to prove (Lemma 4.5.6) that the centralizer Mz'ˇ of z'ˇ in M is
also a factor.

Definition 4.5.3. For any d 2 IO , let MŒd� denote the weak closure of H Œd� in M .
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Lemma 4.5.4. Let d 2 IO . Let p be a maximal ideal of IO not dividing d. Let
�p D .p; Kd=k/ 2 Gal.Kd=k/ be the Artin automorphism of Kd associated to p.
ThenW
(1) The automorphism �p of H Œd� extends uniquely to an ultraweakly continuous

automorphism of MŒd�.

(2) For all x 2MŒd�, we have

x�p D �p�p.x/: (77)

Proof. Let us first prove (1). Uniqueness is clear because, by the von Neumann
density theorem, H Œd� is ultraweakly dense in MŒd�. Let � 2 Gal.K=k/ be such
that � jKd

D �p. As 'ˇ B� D 'ˇ on Ck;1, we know that � extends to an ultraweakly
continuous automorphism ofM , which we still note � . The required extension of �p

is then obtained by taking the restriction of � to MŒd�.
Let us now check (2). By density, it is enough to check equation (77) when

x 2 H Œd�. It then follows from Lemma 3.8.3.

Lemma 4.5.5. Let d 2 IO . Let MŒd�z'ˇ denote the centralizer of z'ˇ in MŒd�. Let
Z.MŒd�z'ˇ / denote the center of MŒd�z'ˇ . ThenW

Z.MŒd�z'ˇ / �M1:

Proof. Let x belong toZ.MŒd�z'ˇ /. As x belongs toMŒd�, it is fixed by Gal.K=Kd/.
Let � 2 Gal.Kd=k/ D Gal.K=k/=Gal.K=Kd/. By Corollary 1.1.5, there exist
finite places p;q of k not dividing d such that Np D Nq, �p D � and �q D 1. Since
Np D Nq, we have

�t .�p�
�
q/ D NpitNq�it�p�

�
q D �p�

�
q for all t 2 R:

Hence, by equation (74), �p�
�
q 2 MŒd�z'ˇ . Thus, as x belongs to the center of

MŒd�z'ˇ , we have
x�p�

�
q D �p�

�
qx: (78)

On the other hand, by Lemma 4.5.4 (2), we have

x�p�
�
q D �p�p.x/�

�
q; (79)

and we also compute

�p�
�
qx D �p.x

��q/
�

D �p.�q�q.x
�//� by Lemma 4.5.4 (2)

D �p�q.x/�
�
q: (80)
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Combining equations (78), (79), and (80), we get

�p�p.x/�
�
q D �p�q.x/�

�
q: (81)

Multiplying both sides of equation (81) by ��p on the left and by �q on the right, and
applying relation (a1) of Proposition 3.1.2, we get

�p.x/ D �q.x/:

Since �p D � and �q D 1, we get

�.x/ D x:
Thus, x 2M1.

Let Mz'ˇ denote the centralizer of z'ˇ in M .

Lemma 4.5.6. The centralizer Mz'ˇ is a factor of type II1.

Proof. Note that z'ˇ is a finite, faithful, normal, positive, normalized trace on Mz'ˇ .
Let tr be another such trace on Mz'ˇ . Let us prove that tr D z'ˇ . Let d 2 IO .
By Connes’ Radon–Nikodým theorem, [7], Lemme 1.2.3 (b), there exists a positive
element h of MŒd�z'ˇ such that

tr.x/ D z'ˇ .hx/ for all x 2MŒd�z'ˇ :

Since z'ˇ and tr are faithful traces, one easily checks that h belongs to the center
Z.MŒd�z'ˇ /. Thus, by Lemma 4.5.5, h 2M1. Hence, the restriction of tr to MŒd�z'ˇ
is Gal.K=k/-invariant, so

tr.x/ D tr.E.x// for all x 2MŒd�z'ˇ : (82)

As .�
z'ˇ
t / is .2	= log q/-periodic, we have a normal conditional expectation

Ez'ˇ W M !Mz'ˇ ;

x 7! log q

2	

Z 2�= logq

0

�
z'ˇ
t .x/ dt:

Since H is norm-dense in Ck;1 (see Proposition 3.3.5), it is ultraweakly dense inM ,
and it follows that Ez'ˇ .H / is ultraweakly dense in Ez'ˇ .M/. We have

Ez'ˇ .H / D Ez'ˇ
� S

d2IO

H Œd�
� � Ez'ˇ� S

d2IO

MŒd�
�

� S
d2IO

Ez'ˇ .MŒd�/ � S
d2IO

MŒd�z'ˇ :
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Thus,
S

d2IO
MŒd�z'ˇ is ultraweakly dense in Ez'ˇ .M/ D Mz'ˇ . Thus equation (82)

gives
tr.x/ D tr.E.x// for all x 2Mz'ˇ : (83)

We know by Corollary 4.5.2 that M1;z'ˇ is a type II1 factor. Hence, by Jones [22],
Corollary 7.1.19, we know that tr and z'ˇ agree on M1;z'ˇ . Thus, by equation (83),
we deduce that tr and z'ˇ agree onMz'ˇ . Hence, by [22], Corollary 7.1.20, we deduce
thatMz'ˇ is a factor, and the same argument that we made forM1;z'ˇ shows thatMz'ˇ
is also of type II1.

Corollary 4.5.7. We have S.M/ ¤ f0; 1g. In other words, the factor M is not of
type III0.

Proof. Suppose that S.M/ D f0; 1g. Then, by [7], Corollaire 3.2.7 (b), the center of
Mz'ˇ has no minimal nonzero projection. Hence, by Lemma 4.5.6, one deduces that
C has no minimal nonzero projection, which is absurd.

Finally we can prove the main result of this subsection. Recall that we have
assumed 0 < ˇ 6 1.

Theorem 4.5.8. The state 'ˇ on Ck;1 is of type IIIq�ˇ . In other words, the factor
M is of type IIIq�ˇ .

Proof. By Corollary 4.5.7 and [7], Théorème 3.4.1, the set S.M/\R�C is the orthog-
onal of T .M/ for the duality .s; t/ 7! sit . Hence, it is enough to prove that

T .M/ D 2	

ˇ log q
�Z:

Since z�2�= logq D 1, equation (74) gives

2	

ˇ log q
2 T .M/;

which proves one inclusion. Let us prove the other one. Let t0 2 R be such that
t0=ˇ 2 T .M/. Thus, by equation (74), z�t0 is an inner automorphism ofM . Let u be
an unitary of M such that

z�t0.x/ D uxu� for all x 2M:
For any t 2 R and x 2M , we have

z�t .u/z�t .x/z�t .u/� D z�t0Ct .uxu�/ D uz�t .x/u�;
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so the unitaries u and �t .u/ implement the same inner automorphism of the factor
M , so there exists some zt 2 C with jzt j D 1 and �t .u/ D ztu. The map t 7! zt is
a character of R, so there exists � 2 R such that

zt D ei t for all t 2 R:

The KMSˇ property of the state z'ˇ for the flow .z�t / applied to the pair .u�; u/ gives
a bounded continuous function F on the strip 0 6 Im z 6 ˇ, holomorphic on the
interior of the strip, such that

F.t/ D z'ˇ .u��t .u// and F.t C iˇ/ D z'ˇ .�t .u/u�/ for all t 2 R:

Thus,
F.t/ D ei t D F.t C iˇ/ for all t 2 R: (84)

Hence F is the holomorphic function z 7! eiz and, evaluating equation (84) at
t D 0, one gets

e�ˇ D 1:
Thus � D 0, so u is fixed by the flow .z�t /. Hence, by equation (74), the unitary u
belongs to the centralizer Mz'ˇ of z'ˇ . Moreover, by equation (74), any element of
Mz'ˇ is fixed by the flow .z�t / and so commutes with u, by definition of u. Hence u
belongs to the center ofMz'ˇ . Thus, by Lemma 4.5.6, one deduces that u 2 C, so, as
an automorphism of M ,

z�t0 D 1: (85)

By equation (1), for any sufficiently large n, there exist finite places p and q of k such
that Np D qn and Nq D qnC1. We then have �t0.�q�

�
p/ D q.nC1/it0�nit0�q�

�
p D

qit0�q�
�
p. On the other hand, equation (85) gives �t0.�q�

�
p/ D �q�

�
p. Thus, we

get 1 D qit0 , so t0 2 2	=.log q/Z, which completes the proof.
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