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Phase transition in the Connes–Marcolli GL2-system
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Abstract. We develop a general framework for analyzing KMS-states on C�-algebras arising
from actions of Hecke pairs. We then specialize to the system recently introduced by Connes
and Marcolli and classify its KMS-states for inverse temperatures ˇ ¤ 0; 1. In particular, we
show that for each ˇ 2 .1; 2� there exists a unique KMSˇ-state.
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Introduction

More than ten years ago Bost and Connes [3] constructed a C�-dynamical system with
the Galois group G.Qab=Q/ as symmetry group and with phase transition related
to properties of zeta and L-functions. Since then there have been numerous, and
only partially successful, attempts to generalize the Bost–Connes system to arbitrary
number fields, see [5, Section 1.4] for a survey. As was later emphasized by Connes,
the BC-system has yet another remarkable property: there exists a dense Q-subalgebra
such that the maximal abelian extension Qab of Q arises as the set of values of a ground
state of the system on it. If one puts this property as a requirement for an arbitrary
number field, one recognizes that the problem of finding the right analogue of the
BC-system is related to Hilbert’s 12th problem on explicit class field theory. Since
the only case (in addition to Q) for which Hilbert’s problem is completely solved
is that of imaginary quadratic fields, these fields should be the first to investigate.
This has been done in recent papers of Connes, Marcolli and Ramachandran [5],
[6], [7], [8]. Connes and Marcolli [5], [6] constructed a GL2-system, an analogue
of the BC-system with Q� replaced by GL2.Q/. Its specialization to a subsystem
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compatible with complex multiplication in a given imaginary quadratic field gives the
right analogue of the BC-system for such a field [7], [8]. Later Ha and Paugam [12],
inspired by constructions of Connes and Marcolli, proposed an analogue of the BC-
system for an arbitrary number field.

Connes and Marcolli classified KMS-states of the GL2-system for inverse tem-
peratures ˇ … .1; 2�. It is the primary goal of the present paper to elucidate what
happens in the critical region .1; 2�. Along the way we develop some general tools
for analyzing systems of the type introduced by Connes and Marcolli, which can be
thought of as crossed products of abelian algebras by Hecke algebras.

Our approach to the problem is along the lines of that of the first author in the case of
the BC-system [15]. Namely, in Proposition 3.2 we show that KMS-states correspond
to states on the diagonal subalgebra which are scaled by the action of GLC

2 .Q/, or
rather by the Hecke operators. As our first application we recover in Theorem 3.7
the results of Connes and Marcolli. We then prove our main result, Theorem 4.1, the
uniqueness of a KMSˇ -state for each ˇ 2 .1; 2�. The strategy is similar to that of the
third author in the BC-case [18]. Namely, we prove the uniqueness and ergodicity,
under the action of GLC

2 .Q/, of the measure defining a symmetric KMSˇ -state by
analyzing an explicit formula for the projection onto the space of MatC2 .Z/-invariant
functions, see Lemma 4.4 and Corollary 4.7, and then derive from this the main
uniqueness result. There are two main complications compared to the BC-case. The
first is that instead of semigroup actions we now have to deal with representations of
Hecke algebras. The second is the presence in the system of a continuous component
corresponding to the infinite place. As a result, the critical step now is to prove the
uniqueness of a symmetric, that is, GL2.yZ/-invariant, KMSˇ -state, while in the BC-
case the analogous statement is almost obvious. To show this uniqueness we use a
deep result of Clozel, Oh and Ullmo [4] on equidistribution of Hecke points. We
point out that, as opposed to the BC-case, there are many symmetric states for ˇ > 2,
which can be easily seen from Theorem 3.7 below.

1. Proper actions and groupoid C�-algebras

Let G be a countable group acting on a locally compact second countable space X . The
reduced crossed product C0.X/ Ìr G is the reduced C�-algebra of the transformation
groupoid G � X with unit space X , source and range maps .g; x/ 7! x and .g; x/ 7!
gx, respectively, and the product

.g; hx/.h; x/ D .gh; x/:

If the restriction of the action to a subgroup � of G is free and proper, we can introduce
a new groupoid �nG �� X by taking the quotient of G � X by the action of � � �

defined by
.�1; �2/.g; x/ D .�1g��1

2 ; �2x/: (1.1)
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Thus the unit space of �nG �� X is �nX , and the product is induced from that on
G � X . This groupoid is Morita equivalent in the sense of [17] to the transformation
groupoid G � X . Although we will not need this result, let us briefly recall the
argument. By definition of Morita equivalence first of all we have to find a space Z

with commuting actions of our groupoids. We take Z D G�� X , the quotient of G�X

by the action of � given by �.g; x/ D .g��1; �x/. The left and right actions of the
groupoid G �X on itself induce a left action of G �X and a right action of �nG �� X

on Z. The map Z ! �nX , �.g; x/ 7! �x, induces a homeomorphism between
the quotient of Z by the action of G � X and the unit space �nX of the groupoid
�nG �� X . Similarly, the map Z ! X , �.g; x/ 7! gx, induces a homeomorphism
between the quotient of Z by �nG �� X and X . Thus the groupoids are indeed
Morita equivariant. Recall then that by [17], Theorem 2.8, the corresponding reduced
C�-algebras are Morita equivalent.

If the action of � is proper but not free, the quotient space �nG �� X is no longer
a groupoid, since the composition of classes using representatives will in general
depend on the choice of representatives. As was observed in [9] and [5], nevertheless,
the same formula for convolution of two functions as in the groupoid case gives
us a well-defined algebra, and by completion we get a C�-algebra. In more detail,
consider the space Cc.�nG �� X/ of continuous compactly supported functions on
�nG �� X . We consider its elements as .� � �/-invariant functions on G � X , and
define a convolution of two such functions by

.f1 � f2/.g; x/ D
X

h2�nG

f1.gh�1; hx/f2.h; x/: (1.2)

To see that the convolution is well defined, assume the support of fi is contained in
.� � �/.fgig � Ui /, where gi 2 G and Ui is a compact subset of X . Let f�1; : : : ; �ng
be the set of all elements � 2 � such that �g2U2 \ U1 ¤ ;. Note that this set is finite
since the action of � is assumed to be proper. If f2.h; x/ ¤ 0 then there exists � 2 �

such that h��1 2 �g2 and �x 2 U2. Since the number of � ’s such that �x 2 U2 is
finite, we already see that the sum above is finite. If furthermore f1.gh�1; hx/ ¤ 0

then replacing h by another representative of the right coset �h we may assume that
gh�1 2 �g1 and hx 2 U1. Then if h��1 D Q�g2 with Q� 2 � , we get hx D Q�g2�x 2
Q�g2U2. Hence Q� D �i for some i , and therefore g 2 �g1h D �g1�ig2� . Thus the
support of f1 � f2 is contained in the union of the sets .� � �/.fg1�ig2g � U2/, so
f1 � f2 2 Cc.�nG �� X/ and the latter space becomes an algebra. It is not difficult
to check that the convolution is associative.

Define also an involution on Cc.�nG �� X/ by

f �.g; x/ D f ..g; x/�1/ D f .g�1; gx/: (1.3)

If the support of f is contained in .� � �/.fg0g � U / for g0 2 G and compact
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U � X , then the support of f � is contained in

..� � �/.fg0g � U //�1 D .� � �/.fg0g � U /�1 D .� � �/.fg�1
0 g � g0U /;

so indeed f � 2 Cc.�nG �� X/.
For each x 2 X we define a �-representation �x W Cc.�nG��X/ ! B.`2.�nG//

by
�x.f /ı�h D

X
g2�nG

f .gh�1; hx/ı�g ; (1.4)

where ı�g denotes the characteristic function of the coset �g. It is standard to
show that the operators �x.f / are bounded, but we include a proof for the reader’s
convenience.

Lemma 1.1. For each f 2 Cc.�nG �� X/ the operators �x.f /, x 2 X , are
uniformly bounded.

Proof. For �1; �2 2 `2.�nG/ we have

j.�x.f /�1; �2/j
�

X
g;h2�nG

jf .gh�1; hx/j j�1.h/j j�2.g/j

�
� X

g;h2�nG

jf .gh�1; hx/j j�1.h/j2
�1=2� X

g;h2�nG

jf .gh�1; hx/j j�2.g/j2
�1=2

:

Thus if we denote by kf kI the quantity

max
˚

sup
x2X; h2G

P
g2�nG

jf .gh�1; hx/j; sup
x2X; g2G

P
h2�nG

jf .gh�1; hx/j�;

we get k�x.f /k � kf kI for any x 2 X , so it suffices to show that kf kI is finite.
Replacing x by h�1x and g by gh in the first supremum above, we see that this
supremum equals

kf kI;s ´ sup
x2X

X
g2�nG

jf .g; x/j:

Observe next that f .gh�1; hx/ D f �.hg�1; gx/, so that the second supremum is
equal to kf �kI;s . Therefore kf kI D maxfkf kI;s; kf �kI;sg. It remains to show that
kf kI;s is finite for any f 2 Cc.�nG �� X/.

Assume the support of f is contained in .� � �/.fg0g � U / for some g0 2 G and
compact U � X . Since the action of � is proper, there exists n 2 N such that the sets
�iU , i D 1; : : : ; n C 1, have trivial intersection for any different �1; : : : ; �nC1 2 � .
Now if f .g; x/ ¤ 0 for some g and x, there exists � 2 � such that g��1 2 �g0 and
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�x 2 U . Since the number of � ’s such that �x 2 U is at most n, we see that for each
x 2 X the sum in the definition of kf kI;s has at most n nonzero summands. Hence
kf kI;s is finite, and the proof of the lemma is complete.

We denote by C*
r .�nG �� X/ the completion of Cc.�nG �� X/ in the norm

defined by the representation
L

x2X �x , that is,

kf k D sup
x2X

k�x.f /k:

Denoting by Ug the unitary operator on `2.�nG/ such that Ugı�h D ı�hg�1 , we get
Ug�x.f /U �

g D �gx.f /. Hence k�x.f /k D k�gx.f /k and so the supremum above
is actually over GnX .

Using the embedding X ,! G � X , x 7! .e; x/, we may consider �nX as
an open subset of �nG �� X , and then the algebra C0.�nX/ as a subalgebra of
C*

r .�nG �� X/. More generally, any bounded continuous function on �nX defines
a multiplier of C*

r .�nG �� X/.

Lemma 1.2. There exists a conditional expectation E W C*
r .�nG�� X/ ! C0.�nX/

such that
E.f /.x/ D f .e; x/ for f 2 Cc.�nG �� X/:

Proof. For each x 2 X define a state !x on C*
r .�nG �� X/ by

!x.a/ D .�x.a/ı� ; ı�/:

Then the function E.a/ on X defined by E.a/.x/ D !x.a/ is bounded by kak. Since
E.f /.x/ D f .e; x/ for f 2 Cc.�nG �� X/, we conclude that E.a/ 2 C0.�nX/

for every a 2 C*
r .�nG �� X/. Thus E is the required conditional expectation.

Let Y � X be a �-invariant clopen subset. Then, as we already observed, the
characteristic function 1�nY of the set �nY is an element of the multiplier algebra of
C*

r .�nG �� X/. Denote by �nG �� Y the quotient of the space

f.g; x/ j g 2 G; x 2 Y; gx 2 Y g
by the action of � � � defined as in (1.1). Then

1�nY Cc.�nG �� X/1�nY D Cc.�nG �� Y /:

Thus the algebra 1�nY C*
r .�nG�� X/1�nY , which we shall denote by C*

r .�nG�� Y /,
is a completion of the algebra of compactly supported functions on �nG �� Y with
convolution product given by

.f1 � f2/.g; y/ D
X

h2�nG W hy2Y

f1.gh�1; hy/f2.h; y/;
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and involution
f �.g; y/ D f .g�1; gy/:

Note that �x.1�nY / is the projection onto the subspace `2.�nGx/ of `2.�nG/, where
the subset Gx of G is defined by

Gx D fg 2 G j gx 2 Y g;
and then

�x.f /ı�h D
X

g2�nGx

f .gh�1; hx/ı�g

for h 2 Gx and f 2 Cc.�nG �� Y /. In particular, �x.f / D 0 if x … GY . As
we already remarked, the representations �x and �gx are unitarily equivalent for any
g 2 G. Thus we may conclude that C*

r .�nG �� Y / is precisely the completion of
Cc.�nG �� Y / in the norm

kf k D sup
y2Y

k�y.f /k:

This is how the algebra C*
r .�nG �� Y / was defined (in a particular case) in [5],

Proposition 1.23.

Returning to the algebra C*
r .�nG �� X/, our next goal is to show that under an

extra assumption its multiplier algebra contains other interesting elements in addition
to the �-invariant functions on X .

Recall that .G; �/ is called a Hecke pair if � and g�g�1 are commensurable for
any g 2 G, that is, � \ g�g�1 is a subgroup of � of finite index. Equivalently, every
double coset of � contains finitely many right (and left) cosets of � , so that

R�.g/ ´ j�n�g�j < 1 for any g 2 G:

Then the space H .G; �/ of finitely supported functions on �nG=� is a �-algebra
with product

.f1 � f2/.g/ D
X

h2�nG

f1.gh�1/f2.h/

and involution f �.g/ D f .g�1/, see e.g. [13]. This algebra is represented on
`2.�nG/ by

f ı�h D
X

g2�nG

f .gh�1/ı�g ;

see [3]. The corresponding completion is called the reduced Hecke C�-algebra of
.G; �/ and denoted by C �

r .G; �/. We shall denote by Œg� the characteristic function
of the double coset �g� considered as an element of the Hecke algebra.
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We may consider elements of H .G; �/ as continuous functions on �nG �� X .
Although these functions are not compactly supported in general, the formulas defin-
ing the �-algebra structure and the regular representation of H .G; �/ coincide with
(1.2)–(1.4). Furthermore, the convolution of an element of H .G; �/ with a compactly
supported function on �nG �� X gives a compactly supported function. Indeed, if
f1 D Œg1� and the support of f2 2 Cc.�nG �� X/ is contained in .� � �/.fg2g � U /

for a compact U � X , then the support of f1 �f2 is contained in .� ��/.g1�g2 �U /.
Since �n�g1�g2 is finite, we see that f1 � f2 is compactly supported on �nG �� X .
We may therefore conclude the following.

Lemma 1.3. If .G; �/ is a Hecke pair, then the reduced Hecke C�-algebra C �
r .G; �/

is contained in the multiplier algebra of the C�-algebra C*
r .�nG �� X/.

It is then tempting to think of C*
r .�nG �� X/ as a crossed product of C0.�nX/

by an action of the Hecke pair .G; �/. This point of view has been formalized by
Tzanev [21] who introduced a notion of a crossed product of an algebra by an action
of a Hecke pair.

Remark 1.4. We defined C*
r .�nG �� X/ assuming that the action of � on X is

proper. It is however easy to see that the construction makes sense under the following
weaker assumptions: �nG �� X is Hausdorff, and if for a compact set K � X we
put �K D f� 2 � j �K \K ¤ ;g then the set �n�g�K is finite for any g 2 G. Note
that the second assumption is automatically satisfied when .G; �/ is a Hecke pair.

2. Dynamics and KMS-states

Assume as above that we have an action of G on X such that the action of � � G

is proper, and Y � X is a �-invariant clopen set. Assume now that we are given a
homomorphism

N W G ! R�C D .0; C1/

such that � is contained in the kernel of N . Then we define a one-parameter group
of automorphisms of C*

r .�nG �� X/ by

�t .f /.g; x/ D N.g/itf .g; x/ for f 2 Cc.�nG �� X/:

More precisely, if we denote by xN the selfadjoint operator on `2.�nG/ defined by

xN ı�g D N.g/ı�g ;

then the dynamics �t is spatially implemented by the unitary operator
L

x2X
xN it onL

x2X `2.�nG/. In other words,

�x.�t .a// D xN it�x.a/ xN �it for all x 2 X:
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Recall, see e.g. [14], that a semifinite � -invariant weight ' is called a � -KMSˇ -
weight if

'.aa�/ D '.�iˇ=2.a/��iˇ=2.a//

for any � -analytic element a. The following result will be the basis of our analysis
of KMS-weights.

Proposition 2.1. Assume the action of G on X is free, so that in particular �nG�� Y

is a genuine groupoid. Then for any ˇ 2 R there exists a one-to-one correspondence
between � -KMSˇ weights ' on C*

r .�nG �� Y / with domain of definition containing
Cc.�nY / and Radon measures � on Y such that

�.gZ/ D N.g/�ˇ �.Z/ (2.1)

for every g 2 G and every compact subset Z � Y such that gZ � Y . Namely, such
a measure � is �-invariant, so it determines a measure 	 on �nY such thatZ

Y

f .y/ d�.y/ D
Z

�nY

� X
y2p�1.ftg/

f .y/
�

d	.t/ for f 2 Cc.Y /; (2.2)

where p W Y ! �nY is the quotient map, and the associated weight ' is given by

'.a/ D
Z

�nY

E.a/.x/ d	.x/;

where E is the conditional expectation defined in Lemma 1.2.

Proof. For � D feg the result is well-known, see e.g. [19], Proposition II.5.4. For
arbitrary � the result can be deduced from the fact that the C�-algebra C*

r .�nG �� Y /

is Morita equivalent to the C�-algebra 1Y .C0.X/ Ìr G/1Y and general results on
KMS-weights on Morita equivalent algebras, see [16], Theorem 3.2. However, a
more elementary way is to argue as follows.

Since the action of � on Y is free, the quotient space �nG �� Y is an etale
groupoid. In fact it is an etale equivalence relation on �nY , or an r-discrete principal
groupoid in the terminology of [19]. To see this we have to check that the isotropy
group of every point in �nY is trivial, that is, if g 2 G is such that gy 2 Y and
p.gy/ D p.y/ for some y 2 Y then .g; y/ belongs to the .� � �/-orbit of .e; y/.
But if p.gy/ D p.y/, there exists � 2 � such that �gy D y. Then �g D e, since
the action of G is free, and therefore .g; y/ D .��1; e/.e; y/.

It is then standard to show using [19], Proposition II.5.4, that � -KMSˇ weights
(with domain of definition containing Cc.�nY /) on the C�-algebra C*

r .�nG �� Y /

of the etale equivalence relation are in one-to-one correspondence with measures 	

on �nY with Radon–Nikodym cocycle .p.y/; p.gy// 7! N.g/ˇ . The latter means
the following, see [19], Definition I.3.4. Assume Y0 is an open subset of Y such that
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the map p W Y ! �nY is injective on Y0, and g 2 G is such that gY0 � Y . Define
an injective map Qg W p.Y0/ ! p.gY0/ by Qgp.y/ D p.gy/ for y 2 Y0, and let Qg�	 be
the push-forward of the measure 	 under the map Qg, that is, Qg�	.Z/ D 	. Qg�1.Z//

for Z � p.gY0/. Then

d Qg�	

d	
D N.g/ˇ on p.gY0/:

If we denote by � the �-invariant measure on Y corresponding to 	 via (2.2), then to
say that the Radon–Nikodym cocycle of 	 is .p.y/; p.gy// 7! N.g/ˇ is the same as
saying that � satisfies the scaling condition (2.1).

It will be convenient to extend the measure � to the set GY .

Lemma 2.2. If � is a measure on Y as in Proposition 2.1, then it extends uniquely
to a Radon measure on GY � X satisfying (2.1) for Z � GY and g 2 G.

Proof. A more general result on extensions of KMS-weights is proved in [16], but
the present particular case has the following elementary proof. Choose Borel subsets
Yi � Y and elements gi 2 G such that GY is the disjoint union of the sets g�1

i Yi .
There is only one choice for a measure extending � and satisfying (2.1) on GY ,
namely, for a Borel subset Z � GY let

�.Z/ D
X

i

N.gi /
ˇ �.giZ \ Yi /:

To show that �.Z/ is independent of any choices and that the extension satisfies (2.1),
assume GY is a disjoint union of sets h�1

j Zj for some hj 2 G and Borel Zj � Y .
Let g 2 G. ThenX

i

N.gi /
ˇ �.gigZ \ Yi /

D
X

i

N.gi /
ˇ

X
j

�.gigZ \ Yi \ gigh�1
j Zj /

D
X

i

N.gi /
ˇ

X
j

N.gigh�1
j /�ˇ �.hj Z \ hj g�1g�1

i Yi \ Zj /

D N.g/�ˇ
X

j

N.hj /ˇ
X

i

�.hj Z \ hj g�1g�1
i Yi \ Zj /

D N.g/�ˇ
X

j

N.hj /ˇ �.hj Z \ Zj /:

Taking g D e we see that the extension of � to GY is well defined. But then for
arbitrary g the above identity reads as �.gZ/ D N.g/�ˇ �.Z/.
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Remark 2.3. In the notation of Proposition 2.1 choose a �-measurable subset U of Y

such that p W Y ! �nY is injective on U and p.U / D �nY . Then the map p induces
an isomorphism between the restriction RG;U of the G-orbit equivalence relation
on X to U and the principal groupoid �nG �� Y . Hence �'.C*

r .�nG �� Y //00
is isomorphic to the von Neumann algebra W �.RG;U ; �/ of .RG;U ; �/, see [11].
Extend the measure � to a G-quasi-invariant measure on GY , which we still denote
by �. Then W �.RG;U ; �/ is the reduction of the von Neumann algebra of the G-orbit
equivalence relation on .GY; �/ by the projection 1U . Therefore

�'.C*
r .�nG �� Y //00 Š 1U .L1.GY; �/ Ì G/1U :

In some cases an argument similar to the proof of Lemma 2.2 allows us to describe
all measures satisfying (2.1).

Lemma 2.4. Let Y0 be a �-invariant Borel subset of Y such that

(i) if gY0 \ Y0 ¤ ; for some g 2 G then g 2 �;

(ii) for any y 2 Y there exists g 2 G such that gy 2 Y0.

Then any �-invariant Borel measure on Y0 extends uniquely to a Borel measure on Y

satisfying (2.1).

Proof. Let �0 be a �-invariant measure on Y0. Since the assumptions imply that Y

is a disjoint union of translates of Y0 by representatives of the right cosets of � , that
is, Y D F

h2�nG.h�1Y0 \Y /, there is only one choice for a measure � extending �0

and satisfying (2.1), namely,

�.Z/ D
X

h2�nG

N.h/ˇ �0.hZ \ Y0/:

Since �0 is �-invariant, �.Z/ is independent of the choice of representatives, so all
we need to check is that (2.1) holds. Let g 2 G. Then

�.gZ/ D
X

h2�nG

N.h/ˇ �0.hgZ \ Y0/

D N.g/�ˇ
X

h2�nG

N.hg/ˇ �0.hgZ \ Y0/

D N.g/�ˇ �.Z/;

and the proof is complete.

Although the condition for a measure 	 on �nY to define a KMS-weight is easier
to formulate in terms of the corresponding �-invariant measure on Y , it will also be
important to work directly with 	. For this we introduce the following operators on
functions on �nX . We shall often consider functions on �nX as �-invariant functions
on X .



Phase transition in the Connes–Marcolli GL2-system 407

Definition 2.5. Let G act on a set X and suppose .G; �/ is a Hecke a pair. The
Hecke operator associated to g 2 G is the operator Tg on �-invariant functions on X

defined by

.Tgf /.x/ D 1

R�.g/

X
h2�n�g�

f .hx/:

Clearly Tgf is again �-invariant. It is not difficult to check that the map
Œg�1� ! R�.g/Tg is a representation of the Hecke algebra H .G; �/ on the space of
�-invariant functions (notice that for X D G this is exactly the way we defined the
regular representation of H .G; �/, so by decomposing an arbitrary X into G-orbits
one can obtain the general case without any computations).

The following three lemmas will be our main computational tools.

Lemma 2.6. Suppose � is as in Proposition 2.1 and 	 is the measure on �nY

determined by (2.2). Assume further that Y D X , the action of G on X is free
and that .G; �/ is a Hecke pair with modular function 
�.g/ ´ R�.g�1/=R�.g/.
Then for any positive measurable function f on �nX and g 2 G we have

Z
�nX

Tgf d	 D 
�.g/N.g/ˇ

Z
�nX

f d	:

Proof. Fix a point x 2 X . We claim that there exists a neighbourhood U of x such
that the sets hU are disjoint for different h in �g�1� . Indeed, choose representatives
h1; : : : ; hn of the right �-cosets contained in �g�1� . Since the action of � is proper,
there exists a neighbourhood U of x such that if hiU \ �hj U ¤ ; for some i , j

and � 2 � then hix D �hj x. But since the action of G is free, the latter equality is
possible only when hi D �hj , so that i D j and � D e. Thus hiU \ �hj U D ; if
i ¤ j or � ¤ e. Since �g�1� D Sn

kD1 �hk , this proves the claim.

The set �g�1�U is therefore a disjoint union of the sets hU , h 2 �g�1� . So we
can write X

h2�n�g�

1h�1�U D 1�g�1�U D
X

h2�n�g�1�

1�hU ;

Denoting by p W X 7! �nX the quotient map, we can rewrite the above in terms of
functions on �nX as

R�.g/Tg.1p.U // D 1p.�g�1�U / D
X

h2�n�g�1�

1p.hU /:
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It follows that

R�.g/

Z
�nX

Tg.1p.U // d	 D
X

h2�n�g�1�

	.p.hU //

D
X

h2�n�g�1�

�.hU /

D R�.g�1/N.g/ˇ 	.p.U //:

In other words, the identity in the lemma holds for f D 1p.U /. Since this is true for
any x and sufficiently small neighbourhood U of x, we get the result.

Notice that by applying the above lemma to the characteristic function of X we
get the following: if a group G acts freely on a space X with a G-invariant measure
�, and � is an almost normal subgroup of G (that is, .G; �/ is a Hecke pair) such
that the action of � on X is proper and 0 < �.�nX/ < 1, then 
�.g/ D 1 for
any g 2 G. The same is true if we assume that the action of G on .X; �/ is only
essentially free.

Lemma 2.7. Suppose � is as in Proposition 2.1 and 	 is the measure on �nY

determined by (2.2). Assume the action of G on X is free and that .G; �/ is a
Hecke pair. Assume further that Y0 is a �-invariant measurable subset of Y such that
if gY0 \Y0 ¤ ; for some g 2 G then g 2 � . Then for any g 2 G such that gY0 � Y ,
measurable Z � �nY0 and positive measurable function f on �nY we have

Z
�gZ

f d	 D N.g/�ˇ R�.g/

Z
Z

Tgf d	;

where �gZ D p.�gp�1.Z// and p W X ! �nX is the quotient map. In particular,
	.�gZ/ D N.g/�ˇ R�.g/	.Z/.

Proof. Suppose Z � �nY0 is measurable, and choose U � Y0 measurable such that
Z D p.U / and p is injective on U . For g 2 G let h1; : : : ; hn be representatives
of the right �-cosets contained in �g� . We claim that the map p is injective on
h1U; : : : ; hnU , and the images of these sets are disjoint. Indeed, assume p.hix/ D
p.hj y/ for some i; j and x; y 2 U , so that �hix D hj y for some � 2 � . Since
U � Y0, our assumption on Y0 implies h�1

j �hi 2 � . But then, since p is injective
on U , we get x D y, and since the action of � is free, we conclude that h�1

j �hi D e.
It follows that i D j and hix D hj y, which proves the claim.

Furthermore, the union of the disjoint sets p.h1U /; : : : ; p.hnU / is the set
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�gZ D p.�gp�1.Z//. Hence, since N.hi / D N.g/ for i D 1; : : : ; n,

Z
�gZ

f d	 D
nX

iD1

Z
hi U

f B p d�

D N.g/�ˇ

nX
iD1

Z
U

f .p.hi � // d�

D N.g/�ˇ R�.g/

Z
Z

Tgf d	:

The last assertion of the lemma follows by taking f D 1�gZ and observing that
then .Tgf /.z/ D 1 for z 2 Z.

To formulate the next lemma we introduce the following notation.

Definition 2.8. If ˇ 2 R and S is a subsemigroup of G containing � , then we define

�S;�.ˇ/ ´
X

s2�nS

N.s/�ˇ D
X

s2�nS=�

N.s/�ˇ R�.s/:

Lemma 2.9. Suppose � is as in Proposition 2.1 and 	 is the measure on �nY de-
termined by (2.2). Assume that the action of G on X is free and that .G; �/ is a
Hecke pair. Assume further that Y0 is a measurable �-invariant subset of Y , and S

a subsemigroup of G containing � such that

(i) if gY0 \ Y0 ¤ ; for some g 2 G then g 2 �;

(ii)
S

s2S sY0 is a subset of Y of full measure;

(iii) �S;�.ˇ/ < 1.

Let HS be the subspace of S -invariant functions in L2.�nY; 	/, that is, functions f

such that f .y/ D f .sy/ for all s 2 S and a.a. y 2 Y . Then

(1) if f 2 HS then kf k2
2 D �S;�.ˇ/

R
�nY0

jf .t/j2d 	.t/;

(2) the orthogonal projection P W L2.�nY; d	/ ! HS is given by

Pf jSy D �S;�.ˇ/�1
X

s2�nS=�

N.s/�ˇ R�.s/.Tsf /.y/ for y 2 Y0: (2.3)

Proof. By condition (i) the sets �sY0 are disjoint for s in different double cosets of � .
Since the union of such sets is the whole space Y (modulo a set of measure zero), by
Lemma 2.7 applied to Z D �nY0 for any f 2 L2.�nY; d	/ we get

kf k2
2 D

X
s2�nS=�

Z
�sZ

jf j2d	 D
X

s2�nS=�

N.s/�ˇ R�.s/

Z
�nY0

Ts.jf j2/ d	: (2.4)
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Since Ts.jf j2/ D jf j2 for f 2 HS , this gives (1).

Turning to (2), denote by T the operator on L2.�nY; d	/ defined by the asserted
formula for P . To see that it is well defined, notice first that the summation in the
right hand side of (2.3) is finite for f in the subspace of L2-functions supported on
a finite collection of sets of the form p.sY0/, s 2 S , which is a dense subspace of
L2.�nY; d	/. Thus the function Tf is well defined for f in this subspace and, putting
˛s D �S;�.ˇ/�1N.s/�ˇ R�.s/ and using (2.4) twice, we get

kTf k2
2 D �S;�.ˇ/

Z
�nY0

jTf j2 d	

� �S;�.ˇ/

Z
�nY0

� X
s2�nS=�

˛sTs.jf j2/
�

d	 D kf k2
2:

It follows that T extends to a well-defined contraction. Since Tf D f for f 2 HS ,
and the image of T is HS , we conclude that T D P .

3. The Connes–Marcolli system

Consider the group G D GLC
2 .Q/ of invertible 2 by 2 matrices with rational coeffi-

cients and positive determinant, and its subgroup � D SL2.Z/. For a prime number p

consider the field Qp of p-adic numbers and its compact subring Zp of p-adic inte-
gers. We denote by Af the space of finite adeles of Q, that is, the restricted product
of the fields of Qp with respect to Zp , and by yZ D Q

p Zp its maximal compact

subring. The field Q is a subfield of Qp , so GLC
2 .Q/ can be considered as a subgroup

of GL2.Qp/. In particular, we have an action of GLC
2 .Q/ on Mat2.Qp/ by multi-

plication on the left. Moreover, by considering the diagonal embedding of Q into
Af we get an embedding of GLC

2 .Q/ into GL2.Af /, and thus an action of GLC
2 .Q/

on Mat2.Af /. In addition GLC
2 .Q/ acts by Möbius transformations on the upper

halfplane H. Therefore we have an action of GLC
2 .Q/ on H � Mat2.Af / such that

for g D �
a b
c d

�
, � 2 H and m D .mp/p 2 Mat2.Af /,

g.�; .mp/p/ D
�

a� C b

c� C d
; .gmp/p

�
:

Note that the action of SL2.Z/ is proper, since already the action of SL2.Z/ on H is
proper.

The GL2-system of Connes and Marcolli is now defined as follows, see [5], Sec-
tion 1.8.

Definition 3.1. The Connes–Marcolli algebra is the C�-algebra A D C*
r .�nG�� Y /,

where G D GLC
2 .Q/, � D SL2.Z/, G acts diagonally on X D H � Mat2.Af /,
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and Y D H � Mat2.yZ/. The dynamics � on A is defined by the homomorphism
N W GLC

2 .Q/ ! R�C, N.g/ D det.g/.

Notice that since �nH is not compact, the algebra A is nonunital.
By [5], Lemma 1.28, the action of GLC

2 .Q/ on X n.H�f0g/ is free. Recall briefly
the reason. If gm D m for some prime number p and nonzero m 2 Mat2.Qp/ then
the spectrum of the matrix g contains 1, and hence g is conjugate in GLC

2 .Q/ to
an upper-triangular matrix. But then g has no fixed points in H. Note that what
we have actually shown is that the action of GLC

2 .Q/ on H � Mat2.Qp/�, where
Mat2.Qp/� D Mat2.Qp/ n f0g, is free for any prime number p.

Although the action of GLC
2 .Q/ on H � f0g is not free, this set can be ignored in

the analysis of KMSˇ -states for ˇ ¤ 0, see the proof of [5, Proposition 1.30]. Again,
recall briefly what happens. Consider the action of G on QX D X n .H � f0g/, put
QY D Y n .H � f0g/ � QX , and then define I D C*

r .�nG ��
QY /. Then I can

be considered as an ideal in A, and the quotient algebra A=I is isomorphic to
C*

r .�nG �� H/. Now if ' is a � -KMSˇ state on A, the restriction 'jI canon-
ically extends to a KMS-functional on the multiplier algebra of I . Thus we get
a KMS-functional Q' � ' on A. If Q' ¤ ' then ' � Q' is a positive nonzero
KMS-functional on A which vanishes on I . Therefore we obtain a KMS-state on
A=I Š C*

r .�nG �� H/. By Lemma 1.3 the multiplier algebra of C*
r .�nG �� H/

contains the reduced Hecke C�-algebra C �
r .G; �/. The latter algebra contains in turn

the C�-algebra of Z.G/=.Z.G/ \ �/, where Z.G/ is the center of GLC
2 .Q/, that

is, the group of scalar matrices. But since the dynamics scales nontrivially some
unitaries in this algebra, the algebra can not have any KMSˇ -states for ˇ ¤ 0. This
contradiction shows that ' D Q', so that ' is completely determined by 'jI .

The action of G on QX D H � Mat2.Af /�, where Mat2.Af /� D Mat2.Af / n f0g,
is free, so we can apply Proposition 2.1 and conclude that there is a one-to-one
correspondence between KMSˇ -weights on I with domain of definition containing
Cc.�n QY / and measures � on QY D H�Mat2.yZ/� such that �.gZ/ D det.g/�ˇ �.Z/

if both Z and gZ are subsets of QY . By Lemma 2.2 we can uniquely extend
any such measure to a measure on QX D G QY D H � Mat2.Af /� such that
�.gZ/ D det.g/�ˇ �.Z/ for Z � QX . To get a state on I D C*

r .�nG ��
QY /

we need the normalization condition �.�n QY / D 1 (that is, the �-invariant measure
� on QY defines a probability measure on �n QY ). Note also that if ˇ ¤ 0 and we
have a measure on X D H � Mat2.Af / with the same properties as above, then
H � Mat2.Af /� is a subset of full measure, since scalar matrices act trivially on H
and so H cannot support a measure scaled nontrivially by them.

Summarizing the above discussion we get the following.

Proposition 3.2. For ˇ ¤ 0 there is a one-to-one correspondence between � -KMSˇ -
states on the Connes–Marcolli system and �-invariant measures � on H�Mat2.Af /
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such that

�.�n.H � Mat2.yZ/// D 1 and �.gZ/ D det.g/�ˇ �.Z/

for any g 2 GLC
2 .Q/ and compact Z � H � Mat2.Af /.

Denote by Mati
2.Af / the set of matrices m D .mp/p 2 Mat2.Af / such that

det.mp/ ¤ 0 for every prime p. Notice that Mati
2.Af / is the set of non zero-divisors

in Mat2.Af /. Our next goal is to show that if ˇ ¤ 0; 1 then H�Mati
2.Af / is a subset

of full measure for any measure � as in Proposition 3.2.
First let us recall the following simple properties of the Hecke pair .G; �/ D

.GLC
2 .Q/; SL2.Z//. Put MatC

2 .Z/ D GLC
2 .Q/ \ Mat2.Z/.

Lemma 3.3. Every double coset of � in MatC
2 .Z/ has a unique representative of the

form
�

a 0
0 d

�
with a; d 2 N and a jd . Furthermore,

R�

�
a 0

0 d

�
D d

a

Y
p prime W pajd

.1 C p�1/;

and as representatives of the right cosets of � contained in �
�

a 0
0 d

�
� we can take the

matrices �
ak am

0 al

�

with k; l 2 N and m 2 Z such that kl D d=a, 0 � m < l and gcd.k; l; m/ D 1.
In particular, R�.g/ D R�.g�1/ for every g 2 GLC

2 .Q/.

Proof. See e.g. [13], Chapter IV.

For a prime p put Gp D GLC
2 .ZŒp�1�/ � GLC

2 .Q/. Observe that if g 2 Gp then

det.g/ is a power of p, and if we multiply g by a sufficiently large power of
�

p 0
0 p

�
,

we get an element in MatC2 .Z/ with determinant a power of p. But by Lemma 3.3
the double coset of � containing such an element has a representative of the form�

pk 0

0 pl

�
, 0 � k � l . We may therefore conclude that Gp is the subgroup of GLC

2 .Q/

generated by � and
�

1 0
0 p

�
. Using that a positive rational number is a power of p if

and only if it belongs to the group of units Z�
q of the ring Zq for all primes q ¤ p,

we may also conclude that g 2 GLC
2 .Q/ belongs to Gp if and only if it belongs to

GL2.Zq/ for all q ¤ p.

Lemma 3.4. We have GL2.Qp/ D GpGL2.Zp/.
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Proof. Let r 2 GL2.Qp/. Then rZ2
p is a Zp-lattice in Q2

p , that is, an open compact
Zp-submodule. By [22], Theorem V.2, there exists a subgroup L Š Z2 of Q2 such
that the closure of L in Q2

p coincides with rZ2
p , and the closure of L in Q2

q is Z2
q

for q ¤ p. Choose g 2 GLC
2 .Q/ such that gZ2 D L. Since gZ2

p D rZ2
p , we have

g�1r 2 GL2.Zp/. Since gZ2
q D Z2

q for q ¤ p, we also have g 2 GL2.Zq/. Hence
g 2 Gp .

It is also possible to give an elementary proof of Lemma 3.4 using matrix factor-
ization and density of ZŒp�1� in Qp .

Lemma 3.5. Let p be a prime and �p a �-invariant measure on H � Mat2.Qp/

such that �p.H � f0g/ D 0, �p.�n.H � Mat2.Zp/// < 1 and �p.gZ/ D
det.g/�ˇ �p.Z/ for g 2 Gp and Z � H � Mat2.Qp/. If ˇ ¤ 1, then the set
H � GL2.Qp/ is a subset of full measure in H � Mat2.Qp/.

Proof. Denote by Q	 the measure on �n.H � Mat2.Qp// defined by the �-invariant
measure �p . For a �-invariant subset Z of Mat2.Qp/, the set H � Z is �-invariant.
We can thus define a measure 	 on the � -algebra of �-invariant Borel subsets of
Mat2.Qp/ by 	.Z/ D Q	.�n.H � Z//. Note that since the action of � on Mat2.Qp/

is not proper and, accordingly, the quotient space �n Mat2.Qp/ is quite bad, we do not
want to consider �-invariant subsets of Mat2.Qp/ as subsets of this quotient space,
and do not try to define a measure on all Borel subsets of Mat2.Qp/ out of 	.

If g 2 Gp and f is a positive Borel �-invariant function on Mat2.Qp/ then by
Lemma 2.6 applied to the function F W .�; m/ 7! f .m/ on �n.H � Mat2.Qp// we
conclude thatZ

Mat2.Qp/

Tgf d	 D
Z

�n.H�Mat2.Qp//

TgF d Q	

D det.g/ˇ

Z
�n.H�Mat2.Qp//

F d Q	 D det.g/ˇ

Z
Mat2.Qp/

f d	:

(3.1)

By assumption we also have 	.Mat2.Zp// < 1. We have to show that the measure
of the set of nonzero singular matrices is zero.

We claim that the set of nonzero singular matrices with coefficients in Qp is the
disjoint union of the sets

Zk D SL2.Zp/

�
0 0

0 pk

�
GL2.Zp/; k 2 Z:

This is proved in a standard way: given a nonzero singular matrix we use multiplication
by elements of GL2.Zp/ on the right to get a matrix with zero first column, and then
multiplication by elements of SL2.Zp/ on the left to get the required form. To show
that the sets do not intersect, observe that the maximum of the p-adic valuations of the
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coefficients of a matrix does not change under multiplication by elements of GL2.Zp/

on either side.
Consider the functions fk D 1Zk

, k 2 Z. For g D
�

1 0
0 p�1

�
we claim that

Tgf0 D 1

p C 1
f0 C p

p C 1
f1:

Indeed, since the action of Gp commutes with the right action of GL2.Zp/, the function
Tgf0 is GL2.Zp/-invariant. On the other hand, the sets Zk are clopen subsets of the
set of singular matrices, so that the function f0 is continuous on this set. But then
Tgf0 is also continuous. Since Tgf0 is �-invariant, and � is dense in SL2.Zp/ (see
e.g. [20], Lemma 1.38, for an elementary proof of a stronger result: � is dense in
SL2.yZ/), we conclude that Tgf0 is left SL2.Zp/-invariant. Hence Tgf0 is constant
on the sets Zk . So to prove the above identity it suffices to check it on the matrices�

0 0
0 pk

�
. Since g D

�
p�1 0

0 p�1

� �
p 0
0 1

�
, by Lemma 3.3 we can take the matrices

�
1 0

0 p�1

�
;

�
p�1 np�1

0 1

�
; 0 � n � p � 1;

as representatives of the right cosets of � contained in �g� . Then

.Tgf0/

�
0 0

0 p�k

�
D 1

p C 1
f0

�
0 0

0 pk�1

�
C 1

p C 1

p�1X
nD0

f0

�
0 npk�1

0 pk

�
:

Since the matrices
�

0 0
0 p�k

�
and

�
0 npk�1

0 pk

�
, 1 � n � p � 1, belong to Zk�1, we see

that

Tgf0jZ1
D p

p C 1
; Tgf0jZ0

D 1

p C 1
; Tgf0jZk

D 0 for k ¤ 0; 1;

and this is exactly what we claimed.
It follows from (3.1) that

p�ˇ 	.Z0/ D 1

p C 1
	.Z0/ C p

p C 1
	.Z1/:

On the other hand, for g D
�

p�1 0

0 p�1

�
we get Tgfk D fkC1, so that

p�2ˇ 	.Zk/ D 	.ZkC1/:

If 	.Z0/ ¤ 0 this implies that p�ˇ is a solution of the quadratic equation

.p C 1/x D 1 C p x2;
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Thus either p�ˇ D p�1 or p�ˇ D 1. Since ˇ ¤ 1 we get ˇ D 0. But then
	.Zk/ D 	.Z0/ for any k, and this contradicts 	.Mat2.Zp// < 1. The contradiction
shows that 	.Z0/ D 0. Hence 	.Zk/ D 0 for any k, and we conclude that the measure
of the set of singular matrices is zero.

We are now ready to show that for ˇ ¤ 0; 1 the set Mat2.Af / n Mati
2.Af / of

zero-divisors has measure zero.

Corollary 3.6. Assume ˇ ¤ 0; 1 and � is a measure with properties as in Proposi-
tion 3.2. Then H � Mati

2.Af / is a subset of full measure in H � Mat2.Af /.

Proof. Fix a prime p. First of all note that the set

f.�; m/ 2 H � Mat2.Af / j mp D 0g
has measure zero. Indeed, as we already remarked before Proposition 3.2, the set
H � f0g has measure zero. So if our claim is not true, the set

f.�; m/ 2 H � Mat2.yZ/� j mp D 0g
has positive measure. Since the action of � on this set is free, there is a subset U of

positive measure such that �U \ U D ; for � 2 � , � ¤ e. Then for g D
�

p 0
0 p

�
the set Uk D gkU , k 2 Z, still has the property that �Uk \ Uk D ; for � 2 � ,
� ¤ e, since g commutes with � . As Uk is contained in H � Mat2.yZ/, it follows that
�.Uk/ � 1. On the other hand, �.Uk/ D p�2ˇk�.U /. Letting k ! �1 if ˇ > 0

and k ! C1 if ˇ < 0, we get a contradiction.
Consider now the restriction of � to the set

H � Mat2.Qp/ �
Y
q¤p

Mat2.Zq/;

and use the projection onto the first two factors to get a measure �p on H�Mat2.Qp/.
By the first part of the proof the set H � f0g has �p-measure zero. Since the image
of Gp in GL2.Qq/ lies in GL2.Zq/ for q ¤ p, the scaling property of � implies that

�p.gZ/ D det.g/�ˇ �p.Z/ for Z � H � Mat2.Qp/; g 2 Gp:

Since the action of � on H � Mat2.Qp/� is free, the normalization condition on
� implies that �p.�n.H � Mat2.Zp// D 1. Thus �p satisfies the assumptions of
Lemma 3.5. Hence H�GL2.Qp/ is a set of full �p-measure. This means that the set
of points .�; m/ 2 H � Mat2.yZ/ with det.mp/ D 0 has �-measure zero. By taking
the union of such sets for all primes p and multiplying it by elements of GLC

2 .Q/ we
get a set of measure zero, which is the complement of the set H � Mati

2.Af /.
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To get further properties of a measure � as above, let us recall the following well-
known computation, see e.g. [20], Section 3.2, for more general results on formal
Dirichlet series. Denote by Sp the semigroup Gp \ MatC

2 .Z/. Alternatively, Sp is
the set of elements m 2 MatC

2 .Z/ with determinant a nonnegative power of p. Then
from Lemma 3.3 we know that as representatives of the right cosets of � in Sp we

can take the matrices
�

pk m

0 pl

�
, k; l � 0, 0 � m < pl . Therefore

�Sp ;�.ˇ/ D
X

s2�nSp

det.s/�ˇ D
1X

k;lD0

p�ˇ.kCl/pl

D
(

C1 if ˇ � 1;

.1 � p�ˇ /�1.1 � p�ˇC1/�1 if ˇ > 1:

(3.2)

Since � D Gp \ GL2.Zp/, we can apply Lemma 2.7 to the group Gp acting on
H � Mat2.Af /� and the set

Y0 D H � GL2.Zp/ �
Y
q¤p

Mat2.Zq/:

Then for any s 2 Sp we get

�.�n�sY0/ D det.s/�ˇ R�.s/�.�nY0/:

The sets �sY0 are disjoint for s in different double cosets of � , and their union is the
set

H � Mati
2.Zp/ �

Y
q¤p

Mat2.Zq/;

where Mati
2.Zp/ D Mat2.Zp/\GL2.Qp/. By Corollary 3.6 the above set is a subset

of H � Mat2.yZ/ of full measure for ˇ ¤ 0; 1. Therefore we obtain

1 D
X

s2�nSp=�

�.�n�sY0/ D
X

s2�nSp=�

det.s/�ˇ R�.s/�.�nY0/

D �Sp ;�.ˇ/�.�nY0/:

(3.3)

This gives a contradiction if ˇ < 1. Thus for ˇ < 1, ˇ ¤ 0, there are no KMSˇ -states.
On the other hand, for ˇ > 1 we get

�.�nY0/ D �Sp ;�.ˇ/�1 D .1 � p�ˇ /.1 � p�ˇC1/:

Assuming now that ˇ > 1 we can perform a similar computation for any finite set
of primes instead of just one prime. Given a finite set F of primes consider the group
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GF generated by Gp for all p 2 F . Put also SF D MatC
2 .Z/ \ GF . Then SF is the

set of matrices m 2 MatC
2 .Z/ such that all prime divisors of det.m/ belong to F . Let

YF D H �
� Y

p2F

GL2.Zp/
�

�
� Y

q…F

Mat2.Zq/
�
:

Then a computation similar to (3.2) and (3.3) yields

�SF ;�.ˇ/ D
Y

p2F

.1 � p�ˇ /�1.1 � p�ˇC1/�1 and

�.�nYF / D
Y

p2F

.1 � p�ˇ /.1 � p�ˇC1/:
(3.4)

The intersection of the sets YF over all finite subsets F of prime numbers is the set
H � GL2.yZ/. So for ˇ > 2 we get

�.�n.H � GL2.yZ/// D
Y
p

.1 � p�ˇ /.1 � p�ˇC1/ D �.ˇ/�1�.ˇ � 1/�1;

where � is the Riemann �-function. On the other hand, for ˇ 2 .1; 2� we obtain that
�.�n.H � GL2.yZ/// D 0.

Assume now that ˇ > 2. In this case similarly to (3.2) we have

�MatC
2

.Z/;�
.ˇ/ D �.ˇ/�.ˇ � 1/:

So analogously to (3.3) we get

�.�nMatC
2 .Z/.H � GL2.yZ/// D �MatC

2
.Z/;�

.ˇ/�.�n.H � GL2.yZ/// D 1:

We thus see that MatC
2 .Z/.H� GL2.yZ// is a subset of H� Mat2.yZ/ of full measure.

Hence GLC
2 .Q/.H � GL2.yZ// is a subset of H � Mat2.Af / of full measure. By

Lemma 3.4 the set GLC
2 .Q/.H � GL2.yZ// is nothing but H � GL2.Af /.

To summarize, we have shown that for ˇ > 2 the problem of finding all measures �

on H � Mat2.Af / satisfying the conditions in Proposition 3.2 reduces to finding all
measures on H � GL2.Af / such that

�.gZ/ D det.g/�ˇ �.Z/ and �.�n.H � GL2.yZ/// D �.ˇ/�1�.ˇ � 1/�1:

By Lemma 2.4 any �-invariant measure on H�GL2.yZ/ extends uniquely to a measure
on H � GL2.Af / satisfying the scaling condition. Thus we get a one-to-one corre-
spondence between measures � with properties as in Proposition 3.2 and measures
on �n.H � GL2.yZ// of total mass �.ˇ/�1�.ˇ � 1/�1. Clearly, extremal measures �

correspond to point masses.

We have thus recovered the following result of Connes and Marcolli [5], Theo-
rem 1.26 and Corollary 1.32.



418 M. Laca, N. S. Larsen, and S. Neshveyev

Theorem 3.7. For the Connes–Marcolli GL2-system we have:

(i) for ˇ 2 .�1; 0/ [ .0; 1/ there are no KMSˇ -states;

(ii) for ˇ > 2 there is a one-to-one affine correspondence between KMSˇ -states and
probability measures on �n.H�GL2.yZ//; in particular, extremal KMSˇ -states
are in bijection with �-orbits in H � GL2.yZ/.

Remark 3.8. This is not exactly what is stated in [5]. First of all, the cases ˇ D 0; 1

require considerations with singular matrices, and in these cases we do have KMS-
states, see Remark 4.8 below. Secondly, the classification of extremal KMSˇ -states
for ˇ > 2 in [5], Theorem 1.26, is in terms of invertible Q-lattices up to scaling.
To see that our Theorem 3.7(ii) says the same, recall that the isomorphism from [5],
equation (1.87), identifies �n.H � GL2.yZ// with the set of invertible Q-lattices
in C up to scaling, and observe that the state 'ˇ;l defined in [5], Theorem 1.26 (ii),
associated with l D .�; / 2 H � GL2.yZ/ is exactly the KMSˇ -state corresponding
to the orbit �.�; /. Since the Q-lattice picture will not be used in the remaining part
of the paper, we omit the details.

4. Uniqueness of the KMSˇ-state in the critical region 1 < ˇ � 2

In this section we analyze the Connes–Marcolli system in the region ˇ 2 .1; 2�.

For each such ˇ let us first construct a KMSˇ -state, or equivalently, a measure �ˇ

on H � Mat2.Af / satisfying the conditions in Proposition 3.2.
For each prime number p consider the Haar measure on GL2.Zp/ normalized

such that the total mass is .1 � p�ˇ /.1 � p�ˇC1/. By the same argument as in the
proof of Lemma 2.4, this measure extends to a unique measure �ˇ;p on GL2.Qp/

such that

�ˇ;p.Z/ D
X

g2GL2.Zp/nGL2.Qp/

j det.g/j�ˇ
p �ˇ;p.gZ \ GL2.Zp//

for compact Z � GL2.Qp/, where jajp denotes the p-adic valuation of a. The
measure �ˇ;p satisfies

�ˇ;p.gZ/ D jdet.g/jˇp �ˇ;p.Z/ for g 2 GL2.Qp/:

Since jdet.g/jp D 1 for g 2 GL2.Zp/, it is clear that �ˇ;p is left GL2.Zp/-invariant.
But since the Haar measure on GL2.Zp/ is biinvariant, we conclude that �ˇ;p is
also right GL2.Zp/-invariant. By setting �ˇ;p.Z/ D �ˇ;p.Z \ GL2.Qp// for Borel
Z � Mat2.Qp/ we extend �ˇ;p to a measure on Mat2.Qp/. Using that Mati

2.Zp/ D
SpGL2.Zp/, similarly to (3.3) we find

�ˇ;p.Mat2.Zp// D �Sp ;�.ˇ/�ˇ;p.GL2.Zp// D 1:
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Hence we can define a measure on Mat2.Af / by �ˇ;f D Q
p �ˇ;p . By construction

and Lemma 3.5 this is the unique product-measure such that �ˇ;f .Mat2.yZ// D 1

and

�ˇ;f .gZr/ D
� Y

p

j det.gp/jp
�ˇ

�ˇ;f .Z/ (4.1)

for Z � Mat2.Af /, g D .gp/p 2 GL2.Af / and r 2 GL2.yZ/. Note that since a Haar
measure on the additive group Mat2.Af / is a product-measure satisfying (4.1) with
ˇ D 2, we see that �2;f is a Haar measure on Mat2.Af /.

We denote by �1 the unique GLC
2 .Q/-invariant measure on H such that

�1.�nH/ D 1.
Now put �ˇ D 2�1 � �ˇ;f . Then �ˇ satisfies the conditions in Proposition 3.2,

so it corresponds to a KMSˇ -state on the Connes–Marcolli C�-algebra. Indeed, the
scaling condition is satisfied since

Q
p jqjp D q�1 for q 2 Q�C. The factor 2 is needed

for the normalization condition, since the element �1 2 � acts trivially on H, while
�ˇ;f .f˙1gn Mat2.yZ// D 1=2.

Note that the construction of �ˇ makes sense for all ˇ > 1.
We can now formulate our main result.

Theorem 4.1. For each ˇ 2 .1; 2� the state corresponding to the measure �ˇ is the
unique KMSˇ -state on the Connes–Marcolli system.

We shall prove a slightly stronger result which may look more natural if one
leaves aside the motivation for the Connes–Marcolli system. Namely, we replace
H by PGLC

2 .R/ D GLC
2 .R/=R�. Recall that PGLC

2 .R/ acts transitively on H, and
SO2.R/=f˙1g is the stabilizer of the point i 2 H so that H D PGLC

2 .R/=PSO2.R/.
Denote by N�1 the Haar measure on PGLC

2 .R/ normalized such that
N�1.�nPGLC

2 .R// D 1. Define then a measure on PGLC
2 .R/ � Mat2.Af / by

N�ˇ D 2 N�1 � �ˇ;f .

Theorem 4.2. For ˇ 2 .1; 2� the measure N�ˇ is the unique �-invariant measure on
the space PGLC

2 .R/ � Mat2.Af / such that

N�ˇ .�n.PGLC
2 .R/ � Mat2.yZ/// D 1 and N�ˇ .gZ/ D det.g/�ˇ N�ˇ .Z/

for compact Z � PGLC
2 .R/ � Mat2.Af / and g 2 GLC

2 .Q/.

Theorem 4.1 follows from the above theorem since every measure � on
H � Mat2.Af / satisfying the conditions in Proposition 3.2 gives rise to a measure N�
on PGLC

2 .R/ � Mat2.Af / satisfying the conditions in Theorem 4.2 by the formulaZ
PGLC

2
.R/�Mat2.Af /

fd N� D
Z

H�Mat2.Af /

� Z
PSO2.R/

f .� g/dg
�

d�;
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where for x D .h; m/ 2 PGLC
2 .R/ � Mat2.Af / and g 2 PSO2.R/ we put xg D

.hg; m/, and different measures � give rise to different N�’s.

Turning to the proof of Theorem 4.2 our first goal is to show uniqueness of N�ˇ

under the additional assumption of invariance under the right action of GL2.yZ/ on
Mat2.Af /.

Let F be a finite set of prime numbers. Recall that we denote by SF the semigroup
of matrices m 2 MatC

2 .Z/ such that all prime divisors of det.m/ belong to F . We
then introduce an operator TF on the space of bounded functions on �nPGLC

2 .R/ by

.TF f /.�/ D �SF ;�.ˇ/�1
X

s2�nSF =�

det.s/�ˇ R�.s/.Tsf /.�/: (4.2)

Denote by N	1 the measure on �nPGLC
2 .R/ defined by N�1. The following result is

a key point in our argument for uniqueness of the GL2.yZ/-invariant measure.

Lemma 4.3. For any finite set J of prime numbers, f 2 Cc.�nPGLC
2 .R//, " > 0

and compact subset � � �nPGLC
2 .R/, there exists a finite set F of prime numbers

that is disjoint from J and satisfies

ˇ̌̌
.TF f /.�/ �

Z
�nPGLC

2
.R/

f d N	1
ˇ̌̌

< " for all � 2 �:

Proof. By [4, Theorem 1.7] and Remark (3) following it, see also [10] for an alter-
native proof of a slightly weaker result, there exists a constant M such that

ˇ̌̌
.Tgf /.�/ �

Z
�nPGLC

2
.R/

f d N	1
ˇ̌̌

<
"

2

for � 2 � and any g 2 GLC
2 .Q/ with R�.g/ > M . We may assume that M is

such that p < M for any p 2 J . Let F be a finite set of prime numbers greater
than M . Then from Lemma 3.3 we see that R�.s/ > M for any s 2 SF such that
�s� contains a nonscalar diagonal matrix. On the other hand,

X
s2�nSF =�W

s scalar

det.s/�ˇ D
Y

p2F

� 1X
kD0

p�2ˇk
�

D
Y

p2F

.1 � p�2ˇ /�1 � �.2ˇ/:

Since the operators Tg are contractions in the supremum-norm, we can find C > 0

such thatˇ̌̌
.Tgf /.�/ �

Z
�nPGLC

2
.R/

fd N	1
ˇ̌̌

� C for � 2 � and g 2 GLC
2 .Q/:
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Therefore by considering separately the summation over double cosets with nonscalar
and scalar representatives we getˇ̌̌

.TF f /.�/ �
Z

�nPGLC
2

.R/

fd N	1
ˇ̌̌

� "

2
C �.2ˇ/

�SF ;�.ˇ/
C for any � 2 �:

Recall that by (3.4)

�SF ;�.ˇ/ D
Y

p2F

.1 � p�ˇ /�1.1 � p�ˇC1/�1:

Since for ˇ � 2 this product diverges as F increases, we see that by choosing
sufficiently large F we can make the second summand in the estimate above arbitrarily
small, and hence we are done.

We can now analyze the case of measures on PGLC
2 .R/ � Mat2.Af / that are

invariant under the right action of GL2.yZ/ on the second factor.

Lemma 4.4. The measure N�ˇ is the unique right GL2.yZ/-invariant measure on
PGLC

2 .R/ � Mat2.Af / that satisfies the conditions in Theorem 4.2. Furthermore, the
action of GLC

2 .Q/ on the space .PGLC
2 .R/ � .Mat2.Af /=GL2.yZ//; N�ˇ / is ergodic.

Proof. The measure N�ˇ is right GL2.yZ/-invariant and satisfies the conditions in
Theorem 4.2 by construction. Suppose Q� is another such measure. Let Q	 and
N	ˇ be the measures on the quotient space �n.PGLC

2 .R/ � Mat2.Af // defined by
Q� and N�ˇ , respectively. Let H be the subspace of MatC

2 .Z/-invariant functions
in L2.�n.PGLC

2 .R/ � Mat2.yZ//; d Q	/, and denote by P the orthogonal projection
onto H . Our first goal is to compute how P acts on GL2.yZ/-invariant functions.

Let F be a nonempty finite set of prime numbers. Apply Lemma 2.9 (2) to the
group GF , the semigroup SF , the set Y D PGLC

2 .R/ � Mat2.yZ/ and the subset

YF D PGLC
2 .R/ �

Y
p2F

GL2.Zp/ �
Y
q…F

Mat2.Zq/

in place of Y0. Note that we can do this because SF YF coincides with

PGLC
2 .R/ �

Y
p2F

Mati
2.Zp/ �

Y
q…F

Mat2.Zq/;

which by Corollary 3.6 (or rather its analogue with H replaced by PGLC
2 .R/) is a

subset of Y of full measure. Thus, denoting by PF the projection onto the subspace
of SF -invariant functions, for f0 2 L2.�n.PGLC

2 .R/ � Mat2.yZ//; d Q	/ we have

PF f0jSF x D �SF ;�.ˇ/�1
X

s2�nSF =�

det.s/�ˇ R�.s/.Tsf0/.x/ for each x 2 YF : (4.3)
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Given a finite set J of prime numbers which is disjoint from F , and a bounded Borel
function f on �nPGLC

2 .R/, apply (4.3) to the function f0 D fJ , where fJ is defined
by

fJ .x/ D
(

f .�/ if x D .�; m/ 2 YJ ;

0 otherwise.

Then using the operator TF defined in (4.2), we can write

PF fJ D .TF f /J :

Assume now that f is continuous and compactly supported. By Lemma 4.3 we can
find a sequence fFngn of finite sets disjoint from J such that fTFn

f gn converges
to

R
f d N	1 uniformly on compact sets. Hence the sequence fPFn

fJ gn converges
weakly in L2 to

R
f d N	1 .1

�nPGLC
2

.R/
/J D R

f d N	1 1�nYJ
. Since PPF D P for

every F , we get

PfJ D
Z

f d N	1 P 1�nYJ
:

Using formula (4.3) for the set J instead of F , we also see that PJ 1�nYJ
is the

constant function �SJ ;�.ˇ/�1. Using again that PPJ D P , we therefore obtain

PfJ D �SJ ;�.ˇ/�1

Z
�nPGLC

2
.R/

f d N	1: (4.4)

Since the space H contains nonzero constant functions, this in particular implies thatZ
fJ d Q	 D �SJ ;�.ˇ/�1

Z
�nPGLC

2
.R/

f d N	1;

so that
R

fJ d Q	 is the same for every Q�.

To extend the result to all GL2.yZ/-invariant functions, fix a finite nonempty set J

of prime numbers, and consider a right
Q

p2J GL2.Zp/-invariant bounded Borel
function f on

�n
�

PGLC
2 .R/ �

Y
p2J

Mat2.Zp/
�
:

We may consider f as a function on �n.PGLC
2 .R/ � Mat2.yZ//. Then f is right

GL2.yZ/-invariant, and the space spanned by such functions for all J ’s is dense in the
space of square integrable GL2.yZ/-invariant functions. Applying again formula (4.3)
for the projection PJ (for J in place of F ), we see that PJ f is again a function
whose value at .�; m/ 2 PGLC

2 .R/�Mat2.yZ/ depends only on � and mp with p 2 J .
The formula also shows that PJ commutes with the action of GL2.yZ/, so PJ f is
GL2.yZ/-invariant. Since GL2.Zp/ acts transitively on itself, this shows that the value
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of PJ f at .�; m/ with mp 2 GL2.Zp/ for p 2 J depends only on � . In other words,
on the space �nYJ introduced above, the function PJ f is a bounded Borel function
of the form QfJ for some function Qf on �nPGLC

2 .R/. An important point is that Qf

depends on f but not on Q�. By Lemma 2.9(1) and the polarization identity we haveZ
PJ f d Q	 D �SJ ;�.ˇ/

Z
�nYJ

PJ f d Q	

D �SJ ;�.ˇ/

Z
�nYJ

QfJ d Q	

D
Z

�nPGLC
2

.R/

Qf d N	1:

Since
R

f d Q	 D R
PJ f d Q	, we see again that

R
f d Q	 is the same for any Q�. It

therefore follows that
R

f d Q	 D R
f d N	ˇ for any bounded Borel GL2.yZ/-invariant

function on �n.PGLC
2 .R/ � Mat2.yZ//. Since Q	 is GL2.yZ/-invariant by assumption,

we have Q	 D N	ˇ and hence Q� D N�ˇ .

To prove ergodicity assume that Z0 is a left GLC
2 .Q/-invariant and right

GL2.yZ/-invariant N�ˇ -measurable subset of PGLC
2 .R/ � Mat2.Af / of positive mea-

sure. Since GLC
2 .Q/.PGLC

2 .R/ � Mat2.yZ// D PGLC
2 .R/ � Mat2.Af /, it fol-

lows that the set Z0 \ .PGLC
2 .R/ � Mat2.yZ// has positive measure. Therefore

� D N�ˇ .�n.Z0 \ .PGLC
2 .R/ � Mat2.yZ//// > 0. It follows that the measure Q�

defined by
Q�.Z/ D ��1 N�ˇ .Z0 \ Z/

is right GL2.yZ/-invariant and satisfies the conditions in Theorem 4.2. Hence Q� D N�ˇ ,
and consequently the complement of Z0 has N�ˇ -measure zero.

We aim to prove that the action of GLC
2 .Q/ on .PGLC

2 .R/ � Mat2.Af /; N�ˇ / is
ergodic. The next step is to consider the action on Mat2.Af / alone.

Lemma 4.5. The action of GLC
2 .Q/ on .Mat2.Af /; �ˇ;f / is ergodic.

Proof. The proof is similar to that of the previous lemma, but requires a much simpler
result than Lemma 4.3.

Consider the space L2.Mat2.yZ/; d�ˇ;f / and the subspace H of MatC
2 .Z/-invari-

ant functions. It suffices to show that H consists of constant functions. Denote by P

the orthogonal projection onto H .
For a finite set F of prime numbers denote by PF the projection onto the space

of SF -invariant functions. Put also

YF D
Y

p2F

GL2.Zp/ �
Y
q…F

Mat2.Zq/:
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Then similarly to (4.3) for any �-invariant function f 2 L2.Mat2.yZ/; d�ˇ;f / we
have

PF f jSF m D �SF ;�.ˇ/�1
X

s2�nSF =�

det.s/�ˇ R�.s/.Tsf /.m/ for m 2 YF : (4.5)

This can be either proved similarly to Lemma 2.9 (2) or deduced from that lemma
by identifying the space of �-invariant functions with the subspace of
L2.�n.PGLC

2 .R/ � Mat2.yZ//; d N	ˇ / of functions depending only on the second co-
ordinate.

For a finite set J of primes disjoint from F , and a left �-invariant function f onQ
p2J GL2.Zp/ define a function fJ by

fJ .m/ D
(

f ..mp/p2J / if mp 2 GL2.Zp/ for p 2 J;

0 otherwise.

Since f is �-invariant and � is dense in
Q

p2J SL2.Zp/, f is invariant with re-
spect to multiplication on the left by elements of the latter group. In other words,
the value of f at m depends only on det.m/ 2 Q

p2J Z�
p . Therefore functions of

the form f .m/ D �.det.m//, where � is a character of the compact abelian groupQ
p2J Z�

p , span a dense subspace of �-invariant functions on
Q

p2J GL2.Zp/. But if
f D � B det, we have

.Tsf /.m/ D �.det.m//�.det.s//

for s 2 SF and m 2 Q
p2J GL2.Zp/. Applying now (4.5) to the function fJ and

using a calculation similar to (3.2) and (3.4), we get

PF fJ jSF m D �.det..mp/p2J //�SF ;�.ˇ/�1
X

s2�nSF =�

det.s/�ˇ R�.s/�.det.s//

D �.det..mp/p2J //
Y

p2F

.1 � p�ˇ /.1 � p�ˇC1/

.1 � �.p/p�ˇ /.1 � �.p/p�ˇC1/
:

If the character � is nontrivial, by choosing F large enough the product above can
be made arbitrarily small by elementary properties of Dirichlet series (this was used
already for the classification of KMS-states of the Bost–Connes system in [3], see
also [18]). Since PPF D P , we conclude that PfJ D 0. On the other hand,
if � is trivial then fJ D 1YJ

. Then applying (4.5) with J in place of F we get
PJ fJ D �SJ ;�.ˇ/�1. In either case we see that PfJ is constant.

Let now f be a function on
Q

p2J GL2.Zp/ which is no longer left �-invariant.

Since � is dense in SL2.yZ/, any function in H is SL2.yZ/-invariant. Hence to compute
PfJ we can first apply to fJ the projection Q onto the subspace of SL2.yZ/-invariant



Phase transition in the Connes–Marcolli GL2-system 425

functions. But Q is given by averaging over SL2.yZ/-orbits. We then observe that
QfJ D QfJ , where

Qf .m/ D
Z

Q
p2J SL2.Zp/

f .gm/ dg:

Hence PfJ D PQfJ D P QfJ is again a constant function.
To extend the result to all functions on Mat2.yZ/, for each s 2 MatC

2 .Z/ we
introduce an operator Vs on the space L2.Mat2.yZ/; d�ˇ;f / by letting .Vsh/.m/ D
h.sm/. Then VsP D P . Using the scaling condition we see that det.s/�ˇ=2Vs is
a coisometry with initial space L2.s Mat2.yZ/; d�ˇ;f /. It follows that the adjoint
operator is given by

.V �
s h/.y/ D

(
det.s/ˇ h.s�1y/ if y 2 s Mat2.yZ/;

0 otherwise:

In particular, we see that if s 2 SJ for some finite set J then both operators Vs and V �
s

preserve the space of functions f such that f .m/ depends only on mp with p 2 J .
But then if f is such a function with support on YJ , the function V �

s f has support on
sYJ . Since VsP D P , we have P V �

s D P and thus P V �
s f D Pf is a constant. We

thus see that the image of a dense space of functions consists of constant functions.

The following simple trick will allow us to combine the two previous lemmas. It
expounds a remark in [18].

Proposition 4.6. Assume we have mutually commuting actions of locally compact
second countable groups G1, G2 and G3 on a Lebesgue space .X; �/. Suppose that

(i) the actions of G1 on .X=G2; �/ and .X=G3; �/ are ergodic;

(ii) G2 is connected and G3 is compact totally disconnected.

Then the action of G1 on .X; �/ is ergodic.

Here by quotient spaces we mean quotients in measure theoretic sense. So by
definition

L1.X=Gi ; �/ D L1.X; �/Gi :

Proof of Proposition 4.6. By assumption the action of G1 � G3 on X is ergodic. In
other words, the action of G3 on X=G1 is ergodic. Since G3 is compact, we can
then identify X=G1 with a homogeneous space of G3, say G3=H , where H is a
closed subgroup of G3, see e.g. [23], Section 2.1. Since G1 � G2 acts ergodically
on X , we have an ergodic action of G2 on X=G1 D G3=H . Since this action
commutes with the action of G3 on G3=H by left translations, it is given by right
translations, that is, by a measurable homomorphism G2 ! N.H/=H , where N.H/
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is the normalizer of H in G3. Such a homomorphism is automatically continuous
(see e.g. [23], Theorem B.3), and since G2 is connected and N.H/=H is totally
disconnected, the homomorphism must be trivial. But since the action of G2 is
ergodic this means that H D G3, so that X=G1 is a single point. Thus the action
of G1 is ergodic.

Corollary 4.7. The left action of GLC
2 .Q/ on .PGLC

2 .R/�Mat2.Af /; N�ˇ / is ergodic.

Proof. The proof is a straightforward application of Proposition 4.6 with
G1 D GLC

2 .Q/, G2 D PGLC
2 .R/ and G3 D GL2.yZ/, so that G1 acts on

PGLC
2 .R/ � Mat2.Af / by multiplication on the left and G2 and G3 act by multi-

plication on the right on the corresponding factor. That the actions of G1 on the
quotient spaces are ergodic is given by Lemma 4.4 and Lemma 4.5.

Proof of Theorem 4.2. We follow an argument similar to that of [3], Theorem 25.
Note first that N�ˇ is right GL2.yZ/-invariant and satisfies the conditions in Theorem 4.2
by construction. Denote by Kˇ the affine set of measures on PGLC

2 .R/ � Mat2.Af /

satisfying the conditions in Theorem 4.2. Let Cˇ be a cone with base Kˇ . Denote
by v0 its vertex. The cone Cˇ has the structure of a Choquet simplex. Namely,
similarly to Proposition 3.2 it can be identified with the set of KMSˇ -states on B�,
where

B D C*
r .�nGLC

2 .Q/ �� .PGLC
2 .R/ � Mat2.yZ///;

B� is obtained from B by adjoining a unit, and v0 corresponds to the state on B� with
kernel B . Denote by N' the state corresponding to N�ˇ . Then by Remark 2.3 the algebra
� N'.B�/00 is a reduction of the von Neumann algebra of the orbit equivalence relation
defined by the action of GLC

2 .Q/ on .PGLC
2 .R/ � Mat2.Af /; N�ˇ /. By Corollary 4.7

this von Neumann algebra is a factor. Hence � N'.B�/00 is also a factor, and therefore
N�ˇ is an extremal point of Cˇ . The group GL2.yZ/ acts on Cˇ , and by virtue of
Lemma 4.4 the segment Œ N�ˇ ; v0� is the set of GL2.yZ/-invariant points. Suppose now
v 2 Cˇ is an extremal point. Then w D R

GL2. yZ/
gv dg 2 Cˇ where each gv is also

an extremal point of Cˇ . But because of its GL2.yZ/ invariance, w lies on Œ N�ˇ ; v0�

and hence is also a convex combination of the extremal points N�ˇ and v0. Since w

is the barycenter of a unique probability measure on the set of extremal points, we
conclude that either v D N�ˇ or v D v0. Thus Cˇ D Œ N�ˇ ; v0� and Kˇ D f N�ˇ g. This
completes the proof of Theorem 4.2.

Remark 4.8. We have classified KMSˇ -states of the Connes–Marcolli system for
ˇ ¤ 0; 1. Let us now briefly discuss the cases ˇ D 0; 1.

(i) If ˇ D 0 then by Lemma 3.5 and the considerations following Corollary 3.6 one
can conclude that there are no nonzero finite traces on I D C*

r .�nGLC
2 .Q/ ��

.H � Mat2.yZ/�//. Therefore the only KMS0-states, that is, � -invariant traces,
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are those coming from A=I D C*
r .�nGLC

2 .Q/ �� H/. There is a canonical
trace defined by the GLC

2 .Q/-invariant measure �1 on H. Notice that though
the action of GLC

2 .Q/ on H is not free and so Proposition 2.1 is not immediately
applicable, the action of GLC

2 .Q/=Q� is free in the measure theoretic sense,
and this is enough to check the trace property. This is probably the unique such
trace.

(ii) If ˇ D 1 then, as we know, KMS1-states still correspond to measures satisfying
the scaling condition. By the first part of the proof of Corollary 3.6 and our
considerations following that corollary, the set of points .�; m/ 2 H�Mat2.Af /

with mp ¤ 0, det.mp/ D 0 for every p, is a subset of full measure. Such
measures indeed exist. Let �0

f
be the Haar measure on the locally compact

group A2
f

normalized such that �0
f

.yZ2/ D 1. We may consider �0
f

as a measure

on Mat2.Af / by identifying A2
f

with the set of matrices with zero first column.
Then �0 D 2�1 � �0

f
is a measure with the required properties. Using the

action of GL2.yZ/ by multiplication on the right we can then construct infinitely
many such measures (notice that the stabilizer of �0 in GL2.yZ/ is the group of
upper triangular matrices). We conjecture that this way one gets all extremal
KMS1-states.

Remark 4.9. Let 1 < ˇ � 2, and denote by 'ˇ the unique KMSˇ -state on the
Connes–Marcolli C�-algebra A. It is easy to describe the flow of weights of the fac-
tor �'ˇ

.A/00. Let us first consider B D C*
r .�nGLC

2 .Q/ �� .PGLC
2 .R/ � Mat2.yZ///

and the state N'ˇ on B corresponding to N�ˇ , and describe the flow of weights of
� N'ˇ

.B/00. By Remark 2.3, equivalently we want to describe the flow of weights
of the orbit equivalence relation defined by the ergodic action of GLC

2 .Q/ on
.PGLC

2 .R/ � Mat2.Af /; N�ˇ /.
R�C acts on the measure space .R�C � PGLC

2 .R/ � Mat2.Af /; � � N�1 � �ˇ;f /,
where � is a measure in the Lebesgue measure class, by

t .s; h; / D .t�1=ˇ s; h; /:

The flow of weights is induced by this action on the quotient of the space by the action
of GLC

2 .Q/ defined by

g.s; h; / D .det.g/s; gh; g/:

We have an isomorphism GLC
2 .R/=f˙1g ! R�C�PGLC

2 .R/, g 7! .det.g/; Ng/, where
Ng denotes the class of g in PGLC

2 .R/. So instead of the space R�C � PGLC
2 .R/ �

Mat2.Af / we may consider .GLC
2 .R/=f˙1g/ � Mat2.Af /. We may further replace

GLC
2 .R/ by GL2.R/, but instead of the action of GLC

2 .Q/ we then have to con-
sider the action of GL2.Q/. Finally, replace GL2.R/ by Mat2.R/, and so instead of
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GL2.R/�Mat2.Af / consider Mat2.A/, where A D R�Af is the full adele space. To
summarize, R�C acts on Mat2.A/ D Mat2.R/�Mat2.Af / by t .m; / D .t�1=2ˇ m; /,
and the flow of weights of the factor � N'ˇ

.B/00 is induced by this action on the quotient
of the measure space .Mat2.R/ � Mat2.Af /; �1 � �ˇ;f /, where �1 is the usual
Lebesgue measure on Mat2.R/ Š R4, by the action of GL2.Q/ � f˙1g defined by
.g; s/.m; / D .gms; g/.

Denote the measure �1��ˇ;f on Mat2.A/ by �ˇ . Note that �2 is a Haar measure
on the additive group Mat2.A/.

Similarly, by identifying R�C � H with GLC
2 .R/=SO2.R/ we conclude that the

flow of weights of the factor �'ˇ
.A/00 is defined on the quotient of the

measure space .Mat2.A/; �ˇ / by the action of GL2.Q/ � SO2.R/ defined by
.g; s/.m; / D .gms; g/ for .g; s/ 2 GL2.Q/ � SO2.R/ and .m; / 2 Mat2.A/ D
Mat2.R/ � Mat2.Af /.

It seems natural to conjecture that the action of GL2.Q/ on .Mat2.A/; �ˇ / is
ergodic, so the flows of weights of the factors �'ˇ

.A/00 and � N'ˇ
.B/00 are trivial, and

thus the factors are of type III1. The analogous property in the one-dimensional
case indeed holds [3], [18]. Note that so far we have only shown that the action of
GL2.Q/ � R� is ergodic, which is equivalent to ergodicity of the action of GLC

2 .Q/

on .PGLC
2 .R/ � Mat2.Af /; N�ˇ /. Note also that similarly to the one-dimensional

case [18], by virtue of Lemma 4.5 and Proposition 4.6, to prove the conjecture it would
be enough to show that the action of GLC

2 .Q/ on GLC
2 .R/ � .Mat2.Af /=GL2.yZ// is

ergodic, or equivalently, the action of GL2.Q/ on .Mat2.A/=GL2.yZ/; �ˇ / is ergodic.
Recall that in the one-dimensional case the corresponding ergodicity result for the
action of Q� on A=yZ� was established in [1] and [2].

Remark 4.10. We believe that the results of Sections 3 and 4 are valid for GLn for any
n � 2. Consider the algebra C*

r .SLn.Z/nGLC
n .Q/�SLn.Z/ .PGLC

n .R/�Matn.yZ///.
Define a dynamics by the homomorphism GLC

n .Q/ 3 g 7! det.g/. Then

(i) for ˇ 2 .�1; 0/ [ .0; 1/ [ � � � [ .n � 2; n � 1/ there are no KMSˇ -states;

(ii) for ˇ 2 .n � 1; n� there exists a unique KMSˇ -state;

(iii) for ˇ > n there is a one-to-one correspondence between KMSˇ -states and
probability measures on SLn.Z/n.PGLC

n .R/ � GLn.yZ//;

(iv) for ˇ D 0; 1; : : : ; n � 1 there is a KMSˇ -state defined by the Haar measure on

Aˇn

f
, when we identify the latter group with the set of matrices in Matn.Af /

with zero first n � ˇ columns.

The key step for this generalization would be an analogue of Lemma 3.5.
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