
J. Noncommut. Geom. 2 (2008), 1–51 Journal of Noncommutative Geometry
© European Mathematical Society

N -homogeneous superalgebras
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Abstract. We develop the theory of N -homogeneous algebras in a super-setting, with particular
emphasis on the Koszul property. To any Hecke operator R on a vector superspace, we associate
certain superalgebras SR;N and ΛR;N generalizing the ordinary symmetric and Grassmann
algebra, respectively. We prove that these algebras are N -Koszul. For the special case where
R is the ordinary supersymmetry, we derive an N -generalized super-version of MacMahon’s
classical “master theorem”.
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Introduction

1. The theory of N -homogeneous algebras owes its existence primarily to the con-
cerns of noncommutative geometry. In fact, as has been expounded by Manin in
his landmark publications [36], [37], quadratic algebras (the case N D 2) provide a
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convenient framework for the investigation of quantum group actions on noncommu-
tative spaces. Moreover, certain Artin–Schelter regular algebras [1], natural noncom-
mutative analogs of ordinary polynomial algebras, can be presented as associative
algebras defined by cubic relations (N D 3). The latter algebras, as well as many
of the quadratic algebras studied by Manin, enjoy the additional “Koszul property”
which will be of central importance in the present article; it will be reviewed in detail
in 6 below.

Motivated by these examples and others, Berger [5] initiated the systematic in-
vestigation of N -homogeneous algebras for all N � 2, introducing in particular a
natural extension of the notion of Koszul algebra from the familiar quadratic setting to
general N -homogeneous algebras. Article [5] gives examples of N -Koszul algebras
for all N � 2; these are the so-called N -symmetric algebras, the special case N D 2

being the ordinary symmetric (polynomial) algebra. Following the general outline of
Manin’s lecture notes [37] on the case of quadratic algebras, Berger, Dubois-Violette
and Wambst developed the categorical aspects of N -homogeneous algebras in [7].

2. Current interest in N -homogeneous algebras is fueled in part by the fact that they
do occur naturally in mathematical physics and in combinatorics. Indeed, Connes
and Dubois-Violette [10], [11] introduced a class of 3-homogeneous algebras, called
Yang–Mills algebras, which are in fact 3-Koszul. There are two versions of Yang–
Mills algebras: in the language of linear superalgebra, the first kind has even (parity
N0) algebra generators while the second kind is generated by odd (parity N1) elements.

Combinatorics enters the picture via MacMahon’s celebrated “master theorem”
[35], specifically the recent quantum generalization of the master theorem due to
Garoufalidis, Lê and Zeilberger [20]. As has been pointed out by two of the present
authors in [28], the yoga of (quadratic) Koszul algebras leads to a rather effortless
and conceptual proof of the quantum master theorem based on the fact that a certain
quadratic algebra, known as quantum affine space, is Koszul. Further quantum gen-
eralizations and super-versions of the master theorem have been obtained by several
authors using a variety of approaches; see Foata and Han [17], [18], [19], Konvalinka
and Pak [33], Etingof and Pak [16].

3. From an algebraic point of view, MacMahon’s master theorem (MT) in its various
incarnations finds its most natural explanation by the phenomenon of “Koszul duality”.
Indeed, all versions of MT can be expressed in the form that, for some algebra B,
an equation †1 � †2 D 1 holds for suitable power series †1; †2 2 B�t�. Here
is a brief outline how one can arrive at such an equation starting with a given N -
Koszul algebra A. Associated with A, there is a graded complex, K.A/, which is
exact in positive degrees, and a certain endomorphism bialgebra, end A, which coacts
on all components of K.A/. These components therefore define elements of the
representation ring Rend A of end A, and exactness of K.A/ in positive degrees yields
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an equation in the power series ring Rend A�t�. Due to the specific form of K.A/,
which is constructed from A together with its so-called dual algebra AŠ, the equation
in question does indeed state that �1 � �2 D 1 holds for suitable �1; �2 2 Rend A�t�.
The last step in deriving a MT for A consists in using (super-)characters to transport
the abstract duality equation �1 � �2 D 1 from Rend A�t� to the power series ring over
the algebra end A, where it takes a more explicit and useable form. Here then is the
flow chart of our approach:

N -Koszul algebra
A

�� exact Koszul complex
K.A/

�� duality equation
in Rend A�t�

�� MT
for A

The actual labor involved in this process consists in the explicit evaluation of
(super-)characters at the last arrow above. This step is often facilitated by specializing
the bialgebra end A, which is highly noncommutative, to a more familiar algebra B

via a homomorphism end A ! B. For example:

� MacMahon’s original MT [35] follows in the manner described above by starting
with A D O.kd / D kŒx1; : : : ; xd �, the ordinary polynomial algebra or “affine
space”, and restricting the resulting MT over end O.kd / to the coordinate ring
of d � d -matrices, O.Matd .k// D kŒxi

j j 1 � i; j � d�.

� As was explained in [28], taking “quantum affine space” Oq.kd / as the point of
departure one arrives at the quantum MT of Garoufalidis, Lê and Zeilberger [20]
(and Konvalinka and Pak [33] in the multi-parameter case). The endomorphism
bialgebra of Oq.kd / is exactly the algebra of right-quantum matrices as defined
in [20].

� Berger’s N -symmetric algebra [5] leads to the N -generalization of the MT
proved by Etingof and Pak [16] using the above approach, again after restricting
to O.Matd .k//.

4. The present article aims to set forth an extension of the existing theory of N -
homogeneous algebras to the category Vectsk of vector superspaces over some base
field k. While this does not give rise to principal obstacles given that [37] and [7] are at
hand as guiding references, the setting of superalgebra requires careful consideration
of the order of terms and the so-called “rule of signs” will be ubiquitous in our formulæ.
In view of the potential interdisciplinary interest of this material, we have opted to
keep our presentation reasonably self-contained and complete.

Therefore, in Sections 1 and 2, we deploy the requisite background material from
superalgebra in some detail before turning to N -homogeneous superalgebras in Sec-
tion 3. The latter section, while following the general outline of [37] and [7] rather
closely, also offers explicit discussions of a number of important examples. We in-
terpolate the pure even and pure odd Yang–Mills algebras defined by Connes and
Dubois-Violette [10], [11] by a family of superalgebras YMpjq and give a unified
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treatment of these algebras. (It turns out, however, that the mixed algebras YMpjq ,
with p and q both nonzero, are less well-behaved than the pure cases.) Moreover,
we discuss a superized version of the N -symmetric algebras of Berger [5]. Finally,
in Example 3.4, we introduce new N -homogeneous super-versions of the symmetric
algebra and the Grassmann algebra of a vector superspace V ; these are associated
with any Hecke operator R W V ˝2 ! V ˝2 and will be denoted by SR;N and ΛR;N ,
respectively.

Sections 4 and 5 contain our main results: Theorem 4.5 shows that the superal-
gebras SR;N and ΛR;N are in fact N -Koszul, and Theorem 5.4 is superized version
of the aforementioned N -generalized MT of Etingof and Pak [16], Theorem 2. The
special case N D 2 of Theorem 5.4 is a superization of the original master theo-
rem of MacMahon [35]. The present article was motivated in part by a comment in
Konvalinka and Pak [33], 13.4, asking for a “real” super-analog of the classical MT.

5. A considerable amount of research has been done by mathematical physicists on
various quantum matrix identities. Some of these investigations have been carried
out in a super-setting; see, e.g., Gurevich, Pyatov and Saponov [23], [24] and the
references therein. However, the techniques employed in these articles appear to be
quite different from ours.

After submitting this article, we also learned of recent work of Konvalinka [31],
[32] which not only concerns MacMahon’s MT but also other matrix identities such
as the determinantal identity of Sylvester. These identities are proved in [31], [32] by
combinatorial means in various noncommutative settings including the right-quantum
matrix algebra end Oq.kd /.

6. We conclude this Introduction by reviewing the precise definitions of N -homog-
eneous and N -Koszul algebras. Our basic reference is Berger [5]; see also [2], [7],
[21].

Let A be a connected Z�0-graded algebra over a field k; so A D L
n�0 An for

k-subspaces An with A0 D k and AnAm � AnCm. Choose a minimal generating
set for the algebra A consisting of homogeneous elements of positive degree; this
amounts to choosing a graded basis for a graded subspace V � AC D L

n>0 An

such that AC D A2C ˚ V . The grading of V imparts a grading to the tensor algebra
T.V / of the space V , and we have a graded presentation

T.V /=I ��!� A

for some graded ideal I of T.V /, the ideal of relations of A.
Recall that a graded vector space M D L

n2Z Mn is said to live in degrees � n0

if Mn D 0 for all n < n0. Note that the relation ideal I lives in degrees � 2, because
T.V /0 ˚ T.V /1 � k ˚ V and k ˚ V injects into A. Fix an integer N � 2 and define
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the jump function

�N .i/ D
(

i
2
N if i is even;

i�1
2

N C 1 if i is odd:
(?)

The following proposition is identical with [8], Proposition 2.1, except for the fact
that we do not a priori assume A to be generated in degree 1. A proof is given in the
Appendix.

Proposition. The ideal I of relations of A lives in degrees � N if and only if
TorA

i .k; k/ lives in degrees � �N .i/ for all i � 0.

Following Berger [5], the graded algebra A is said to be N -Koszul if TorA
i .k; k/

is concentrated in degree �N .i/ for all i � 0. This implies that the space of algebra
generators V is concentrated in degree �N .1/ D 1; so the algebra A is 1-generated.
Moreover, choosing a minimal set of homogeneous ideal generators for the relation
ideal I amounts to choosing a graded basis for a graded subspace R � I such that

I D R ˚ .V ˝ I C I ˝ V /: (??)

Then TorA
2 .k; k/ Š R and so R must be concentrated in degree �N .2/ D N when A

is N -Koszul. To summarize, all N -Koszul algebras are necessarily 1-generated and
they have defining relations in degree N ; so there is a graded isomorphism

A Š T.V /=.R/ with R � V ˝N :

Such algebras are called N -homogeneous.
We remark that Green et al. [21] have studied N -Koszul algebras in the more

general context where the grading A D L
n�0 An is not necessarily connected

(A0 D k). In [21], Theorem 4.1, it is shown that an N -homogeneous algebra A

with A0 split semisimple over k is N -Koszul if and only if the Yoneda Ext-algebra
E.A/ D L

n�0 Extn
A.A0; A0/ is generated in degrees � 2.

Any N -homogeneous algebra A whose generating space V carries a Z2-grading
and whose defining relations R are Z2-graded is naturally a k-superalgebra, that
is, A has a Z2-grading (“parity”) besides the basic Z�0-grading (“degree”). As
will be reviewed below, this extra structure provides us with additional functions
on Grothendieck rings, namely superdimension and supercharacters, which lead to
natural formulations of the MT in a superized context. Note, however, that the defining
property of N -Koszul algebras makes no reference to the Z2-grading of A. Thus,
an N -homogeneous superalgebra is Koszul precisely if it is Koszul as an ordinary
N -homogeneous algebra (forgetting the Z2-grading).

7. Throughout k is a commutative field and ˝ stands for ˝k. Scalar multiplication
in k-vector spaces will often, but not always, be written on the right while linear
maps will act from the left. We tacitly assume throughout that char k ¤ 2; further
restrictions on the characteristic of k will be stated when required.
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1. Review of linear superalgebra

1.1. Vector superspaces. A vector superspace over k is a k-vector space V equipped
with a grading by the group Z2 D Z=2Z D fN0; N1g. Thus, we have a decomposition
V D V N0 ˚ V N1 with k-subspaces V N0 and V N1 whose elements are called even and odd,
respectively. In general, the Z2-degree of a homogeneous element a 2 V is also called
its parity; it will be denoted by Oa 2 Z2. Vector superspaces over k form a category
Vectsk whose morphisms are given by the linear maps preserving the Z2-grading; such
maps are also called even linear maps.

The dimension of an object V of Vectsk is the usual k-linear dimension. We shall
use the notation

d D dimk V; p D dimk V N0 and q D dimk V N1:

So d D p C q. The superdimension of a vector superspace V with d < 1 is defined
by

sdim V D p � q 2 Z:

When working with a fixed basis fxig of a given V in Vectsk we shall assume that
each xi is homogeneous; the parity of xi will be denoted by Oi . The basis x1; x2; : : :

is called standard if Oi D N0 (i � p) and Oi D N1 (i > p).

1.2. Tensors. The tensor product U ˝ V of vector superspaces U and V in Vectsk
is the usual tensor product over k of the underlying vector spaces equipped with the
natural Z2-grading: if a, b are homogeneous elements then the parity of a ˝ b is
Oa C Ob 2 Z2. Instead of the usual symmetry isomorphism U ˝ V ��!� V ˝ U for
interchanging terms in a tensor product we shall use the rule of signs, that is, the
following functorial supersymmetry isomorphism in Vectsk:

cU;V W U ˝ V ��!� V ˝ U; u ˝ v 7! .�1/ Ou Ovv ˝ u (1.1)

for u, v homogeneous. (All formulas stated for homogeneous elements only are to be
extended to arbitrary elements by linearity.) The supersymmetry isomorphisms cU;V

satisfy cV;U B cU;V D IdU ˝V , and they are compatible with the usual associativity
isomorphims aU;V;W W .U ˝ V / ˝ W Š U ˝ .V ˝ W / in Vectsk, that is, they satisfy
the “HexagonAxiom”; see [29], Def. XIII.1.1. Therefore, Vectsk is a symmetric tensor
category; the unit object is the field k, with parity N0. See [29], Chap. XIII, or [12] for
background on tensor categories.

1.3. Homomorphisms. The space Homk.V; U / of all k-linear maps between vector
superspaces V and U is again an object of Vectsk, with grading

Homk.V; U / N0 D Homk.V N0; U N0/ ˚ Homk.V N1; U N1/
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and
Homk.V; U / N1 D Homk.V N0; U N1/ ˚ Homk.V N1; U N0/I

so
Homk.V; U / N0 D HomVectsk

.V; U /:

In particular, the linear dual V � D Homk.V; k/ belongs to Vectsk. Given homoge-
neous bases fxj g of V and fyig of U we can describe any f 2 Homk.V; U / by its
matrix F D .F i

j /:

f .xj / D
X

i

yiF
i

j : (1.2)

If f is an even map then F i
j D 0 unless Oi C Oj D N0.

For finite-dimensional vector superspaces, we have the following functorial iso-
morphisms in Vectsk (see, e.g., [43], I.8):

U ˝ V � Š Homk.V; U / (1.3)

via .u ˝ f /.v/ D uhf; vi, and

V �
1 ˝ � � � ˝ V �

m Š .Vm ˝ � � � ˝ V1/� (1.4)

via hf1 ˝ � � � ˝ fm; vm ˝ � � � ˝ v1i D Q
i hfi ; vi i. Here, we use the notation hf; vi D

f .v/ for the evaluation pairing

evV D h � ; � i W V � ˝ V ! k

in Vectsk. Similarly, we have a pairing

V ˝ V � cV;V �����! V � ˝ V
evV����! k

which yields an isomorphism
V ��!� V �� (1.5)

in Vectsk.
The isomorphism (1.3) (which is valid as long as one of U or V is finite-dimen-

sional) has the following explicit description. Fix homogeneous bases fxj g of V and
fyig of U and let F D .F i

j / be the matrix of a given f 2 Homk.V; U / with respect

to these bases, as in (1.2). Let fxj g be the dual basis of V �, defined by hxj ; x`i D ı
j

`

(Kronecker delta). Then the image of f in U ˝ V � is given by
P

i;j yi ˝ xj F i
j .

Note also that xi and xi have the same parity.
Finally, if U , V and W are vector superspaces, with U finite-dimensional, then

the isomorphism Id ˝ cW;U � W V ˝ W ˝ U � ��!� V ˝ U � ˝ W together with (1.3)
yields an isomorphism

Homk.U; V ˝ W / ��!� Homk.U; V / ˝ W (1.6)
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in Vectsk which is explicitly given by .f ˝ w/.u/ D .�1/ Ow Ouf .u/ ˝ w. Similarly,
for vector superspaces U , U 0, V , V 0 with U , U 0 finite-dimensional, there is an iso-
morphism

Homk.U ˝ U 0; V ˝ V 0/ ��!� Homk.U; V / ˝ Homk.U 0; V 0/ (1.7)

in Vectsk given by .f ˝ g/.u ˝ v/ D .�1/ Og Ouf .u/ ˝ g.v/.

1.4. Supertrace. Let V be a finite-dimensional object of Vectsk. The supertrace is
the map

str W Endk.V / ��!�
(1.3)

V ˝ V � ��!
(1.3)

k (1.8)

in Vectsk. In order to describe the supertrace in terms of matrices, fix a basis fxig of V

consisting of homogeneous elements and let F D .F i
j / be the matrix of f 2 Endk.V /

as in (1.2). Then
str.f / D

X
i

.�1/
OiF i

i

where Oi is the parity of xi (and of the dual basis vector xi 2 V �) as in §1.1. Thus,

str.IdV / D sdim V � 1k:

1.5. Action of the symmetric group. Given vector superspaces V1; : : : ; Vn, we can
consider the morphism

ci W V1 ˝ � � � ˝ Vi ˝ ViC1 ˝ � � � ˝ Vn ! V1 ˝ � � � ˝ ViC1 ˝ Vi ˝ � � � ˝ Vn

in Vectsk which interchanges the factors Vi and ViC1 via cVi ;ViC1
and is the identity

on all other factors. More generally, for any � 2 Sn, the symmetric group consisting
of all permutations of f1; 2; : : : ; ng, one can define a morphism

c� W V1 ˝ � � � ˝ Vn ! V��1.1/ ˝ � � � ˝ V��1.n/

in Vectsk as follows. Recall that Sn is generated by the transpositions �1; : : : ; �n�1

where �i interchanges i and i C 1 and leaves all other elements of f1; 2; : : : ; ng fixed.
The minimal length of a product in the �i ’s which expresses a given element � 2 Sn

is called the length of � and denoted `.�/; it is given by

`.�/ D # inv.�/ with inv.�/ D f.i; j / j i < j but �.i/ > �.j /g:
Writing � 2 Sn as a product of certain �i , the analogous product of the maps ci yields
a morphism c� as above. This morphism is independent of the way � is expressed
in terms of the transpositions �i ; see [43], I.4.13, or [29], Theorem XIII.1.3. If all
vi 2 Vi are homogeneous then

c� .v1 ˝ � � � ˝ vn/ D .�1/
P

.i;j /2inv.�/ yvi yvj v��1.1/ ˝ � � � ˝ v��1.n/: (1.9)
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For example, if all vi are even then the ˙-sign on the right is C, and if all vi are odd
then it is sgn.�/, the signature of � .

Taking all Vi D V we obtain a representation c W Sn ! AutVectsk
.V ˝n/ where

V ˝n D V ˝ � � � ˝ V (n factors). Letting kŒSn� denote the group algebra of the
symmetric group, this extends uniquely to an algebra map

c W kŒSn� ! EndVectsk
.V ˝n/ (1.10)

We will write ca ´ c.a/ for a 2 kŒSN �.
For the dual superspace V �, in addition to the above representation c W kŒSn� !

EndVectsk
.V �˝n/, we also have the contragredient representation

c� W kŒSn� ! EndVectsk
.V �˝n/

for the pairing h � ; � i W V �˝n ˝ V ˝n ! k in (1.4). Explicitly,

hc�
a .x/; yi D hx; ca�.y/i

for all a 2 kŒSn�, x 2 V �˝n and y 2 V ˝n. Here, � � W kŒSn� ! kŒSn� is the
involution sending � 2 Sn to ��1. These two representations are related by

c�
a D c�a� (1.11)

where � D .1; n/.2; n � 1/ : : : 2 Sn is the order reversal involution. One only needs
to check (1.11) for the transpositions a D �i , which is straightforward.

1.6. Hecke algebras. We recall some standard facts concerning Hecke algebras;
these are deformations of the group algebra kŒSn� considered above. For details, see
[13], [14].

Fix 0 ¤ q 2 k. The Hecke algebra Hn;q is generated as k-algebra by elements
T1; : : : ; Tn�1 subject to the relations

.Ti C 1/.Ti � q/ D 0;

TiTiC1Ti D TiC1TiTiC1;

TiTj D Tj Ti if ji � j j � 2:

(1.12)

When q D 1, one has an isomorphism Hn;1 ��!� kŒSn�, Ti 7! �i , where �i is the
transposition .i; i C 1/ as in §1.5. The algebra Hn;q has a k-basis fT� j � 2 Sng so
that

(i) TId D 1 and T�i
D Ti ;

(ii) T�T�i
D

(
T��i

if `.��i / D `.�/ C 1;

qT��i
C .q � 1/T� otherwise:
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By k-linear extension of the rule

T �
� ´ T��1 .� 2 Sn/

one obtains an involution � � W Hn;q ! Hn;q . The elements T 0
i ´ �qT �1

i D
q � 1 � Ti also satisfy relations (1.12). Therefore,

˛.Ti / ´ �qT �1
i (1.13)

defines an algebra automorphism ˛ W Hn;q ! Hn;q of order 2.
The Hecke algebra Hn;q is always a symmetric algebra, and Hn;q is a split

semisimple k-algebra iff the following condition is satisfied:

Œn�qŠ ´
nY

iD1

Œi �q ¤ 0 where Œi �q ´ 1 C q C � � � C qi�1: (1.14)

More precisely, if (1.14) holds then

Hn;q Š
M
�`n

Matd��d�
.k/ (1.15)

where � runs over all partitions of n and d� denotes the number of standard �-tableaux.
The only partitions � with d� D 1 are � D .n/ and � D .1n/. The central primitive
idempotents of Hn;q for these partitions are given by

Xn ´ 1

Œn�qŠ

X
�2Sn

T� (1.16)

and

Yn ´ 1

Œn�q�1 Š

X
�2Sn

.�q/�`.�/T� : (1.17)

These idempotents are usually called the q-symmetrizer and the q-antisymmetrizer,
respectively. One has

XnT� D T�Xn D q`.�/Xn and YnT� D T�Yn D .�1/`.�/Yn (1.18)

for � 2 Sn. Furthermore, ˛.Xn/ D Yn.
For later use, we note the following well-known consequence of (1.18). If M is

any Hn;q-module, with corresponding representation � W Hn;q ! Endk.M/, then

Im.�.Xn// D
n�1\
iD1

Im.�.Ti / C 1/: (1.19)

Indeed, (1.18) implies that Xn D Œ2��1
q .Ti C 1/Xn, which yields the inclusion �.

On the other hand, any m 2 Tn�1
iD1 Im.�.Ti / C 1/ satisfies .�.Ti / � q/.m/ D 0 for

all i , by (1.12). Therefore, �.T� /.m/ D q`.�/m holds for all � 2 Sn, and hence
�.Xn/.m/ D 1

Œn�qŠ

P
�2Sn

q`.�/m D m. This proves �.



N -homogeneous superalgebras 11

1.7. Hecke operators. Again, let 0 ¤ q 2 k. A Hecke operator (associated to q) on
a vector superspace V is a morphism R W V ˝2 ! V ˝2 in Vectsk satisfying the Hecke
equation

.R C 1/.R � q/ D 0

and the Yang–Baxter equation

R1R2R1 D R2R1R2

where R1 ´ R ˝ IdV W V ˝3 ! V ˝3 and similarly R2 ´ IdV ˝ R.
The Hecke equation implies that R is invertible. Moreover, if R is a Hecke

operator associated to q then so is �qR�1.
Defining �.Ti / ´ Id˝i�1

V ˝ R ˝ Id˝n�i�1
V , one obtains a representation

� D �n;R W Hn;q ! EndVectsk
.V ˝n/: (1.20)

The representations �n;R and �n;�qR�1 are related by �n;�qR�1 D �n;R B ˛, where
˛ is the automorphism of Hn;q defined in (1.13).

Example 1.1. The supersymmetry operator cV;V W V ˝2 ! V ˝2 in (1.1) is a Hecke
operator associated to q D 1, as is its negative, �cV;V . The representation �n;cV;V

of
Hn;1 D kŒSn� in (1.20) is identical with (1.10).

Example 1.2 (Superized Drinfel’d–Jimbo [38], [27]). Let x1; : : : ; xd be a standard
basis of V as in §1.1. The super-analog R D RDJ of the standard Drinfel’d–Jimbo
Hecke operator is defined as follows. Writing

R.xi ˝ xj / D
X
k;l

xk ˝ xlR
k;l
i;j

the matrix components R
k;l
i;j 2 k are given by

R
k;l
i;j D q2 � q2"i;j

1 C q2"i;j
ı

k;l
i;j C .�1/

Oi Oj q"i;j .q2 C 1/

1 C q2"i;j
ı

l;k
i;j

Here, "i;j D sgn.i � j /. Thus,

Ri i
i i D q2 if Oi D N0;

Ri i
i i D �1 if Oi D N1;

R
ij
ij D q2 � 1 if i < j ;

R
j i
ij D .�1/

Oi Oj q if i ¤ j ;

(1.21)

and R
k;l
i;j D 0 in all other cases. One checks that R is a Hecke operator that is

associated to q2.
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2. The supercharacter

2.1. Superalgebras, supercoalgebras etc. An algebra A in Vectsk is called a super-
algebra over k; this is just an ordinary k-algebra such that the unit map k ! A and
the multiplication

� W A ˝ A ! A

are morphisms in Vectsk. In other words, A is a Z2-graded k-algebra in the usual
sense: A D AN0 ˚ AN1 with k-subspaces AN0 and AN1 such that A NrANs � ArCs .
Homomorphisms of superalgebras, by definition, are algebra maps in Vectsk, that is,
they preserve the Z2-grading.

If V is a vector superspace in Vectsk then the tensor algebra T.V / D L
n�0 V ˝n

is a superalgebra via the Z2-grading of each V ˝n as in §1.2. In general, if A is any
superalgebra, then by selecting a Z2-graded subspace V � A which generates the
algebra A, we obtain a canonical isomorphism of superalgebras

T.V /=.R/ ��!� A (2.1)

where .R/ is the two-sided ideal of T.V / that is generated by a Z2-graded linear
subspace R � T.V /.

Given superalgebras A and B, the tensor product A ˝ B is the superalgebra with
the usual additive structure and grading and with multiplication �A˝B defined by
using the supersymmetry map (1.1): �A˝B D .�A ˝ �B/ B .IdA ˝ cB;A ˝ IdB/ or,
explicitly,

.a ˝ b/.a0 ˝ b0/ D .�1/
Oa0 Obaa0 ˝ bb0

for homogeneous a0 2 A and b 2 B. In other words, the canonical images of A and
B in A ˝ B supercommute, in the sense that the supercommutator

Œa; b� D ab � .�1/ Oa Obba (2.2)

vanishes for any pair of homogeneous elements a 2 A and b 2 B.
Supercoalgebras, superbialgebras etc. are defined similarly as suitable objects of

Vectsk such that all structure maps are maps in Vectsk. The compatibility between
the comultiplication 	 and the multiplication of a superbialgebra B amounts to the
following rule:

	.ab/ D
X

.a/;.b/

.�1/ Oa.2/
Ob.1/a.1/b.1/ ˝ a.2/b.2/

for homogeneous elements a; b 2 B. Here we use the Sweedler notation 	.a/ DP
.a/ a.1/ ˝ a.2/ and a.1/; a.2/ are chosen homogeneous with Oa.1/ C Oa.2/ D Oa.
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Example 2.1 (Symmetric superalgebra [40, 3.2.5]). The symmetric superalgebra of
a given V in Vectsk is defined by

S.V / D T.V /=.Œv; w�˝ j v; w 2 V /

where Œv; w�˝ is the supercommutator (2.2) in T.V /. Ignoring parity, S.V / is isomor-
phic to S.V N0/˝Λ.V N1/, where S. : / and Λ. : / denote the ordinary symmetric and exte-
rior (Grassmann) algebras, respectively. The symmetric superalgebra is a Hopf super-
algebra: comultiplication 	 W S.V / ! S.V /˝S.V / is given by 	.v/ D v˝1C1˝v

for v 2 V and extension to all of S.V / by multiplicativity. Similarly, the counit
" W S.V / ! k is given by ".v/ D 0 and the antipode S W S.V / ! S.V / by S.v/ D �v

for v 2 V .

2.2. Comodules. We refer to [29], Chap. III, for background on comodules, comod-
ule algebras etc.

Given a superbialgebra B, we let Comods
B denote the category of all right B-

comodules and B-comodule maps in Vectsk. Thus, for any object V in Comods
B, we

have a “coaction” morphism

ıV W V ! V ˝ B

in Vectsk. If x1; : : : ; xd is a fixed basis of V consisting of homogeneous elements,
with Oi denoting the parity of xi as before, then we will write

ıV .xj / D
X

i

xi ˝ bi
j with bi

j 2 BOiC Oj : (2.3)

The tensor product of vector superspaces makes Comods
B into a tensor category:

if U and V are in Comods
B then B coacts on U ˝ V by

ıU ˝V W U ˝V
ıU ˝ıV����! U ˝B˝V ˝B

cB;V��! U ˝V ˝B˝B
Id˝�B����! U ˝V ˝B: (2.4)

If B is supercommutative as a superalgebra then the supersymmetry cU;V is a B-
comodule morphism, i.e., ıV ˝U BcU;V D �

cU;V ˝ IdB

�BıU ˝V . Therefore Comods
B

is a symmetric tensor category in this case.

2.3. The supercharacter map. Let B denote a superbialgebra and let V be a finite
dimensional object in Comods

B. The coaction ıV is an even map in Homk.V; V ˝B/.
Consider the following morphism in Vectsk:


s W Endk.V /
ıV B. � /����! Homk.V; V ˝B/ ��!�

(1.6)
Endk.V /˝B

str˝Id����! k˝B D B (2.5)

where str is the supertrace as in (1.8). This map will be called the supercharacter
map of V . Forgetting parity and viewing all elements as even, the supertrace becomes
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the ordinary trace and the supercharacter becomes the usual character. These will be
denoted by tr and 
, respectively.

In particular, we have the element


s
V ´ 
s.IdV / 2 B N0:

To obtain explicit formulas, fix a basis x1; : : : ; xd of V consisting of homogeneous
elements and let .F i

j / and .bi
j / be the matrices of f 2 Endk.V / and of ıV with

respect to this basis as in (1.2), (2.3). Then


s.f / D
X
i;j

.�1/
Oi Oj bi

j F
j
i : (2.6)

Let " W B ! k denote the counit of B. Then xj D P
i xi".bi

j / holds in (2.3).

Hence ".bi
j / D ıi

j � 1k and (2.6) gives

".
s.f // D str.f /: (2.7)

When f is even formula (2.6) becomes 
s.f / D P
i;j .�1/

Oibi
j F

j
i since F

j
i D 0

unless Oi C Oj D N0. In particular,


s
V D

X
i

.�1/
Oibi

i : (2.8)

In the following, we let comods
B denote the full subcategory of Comods

B consisting
of all objects that are finite-dimensional over k. The supercharacter has the following
properties analogous to standard properties of the ordinary character.

Lemma 2.2. Let B denote a superbialgebra and let U , V and W be objects of
comods

B.

(a) If f W V ! U and g W U ! V are B-comodule maps (not necessarily even)
then


s.f B g/ D .�1/
Of Og
s.g B f /:

(b) For f 2 Endk.V /, g 2 Endk.U / view f ˝g 2 Endk.V ˝U / as in (1.7). Then


s.f ˝ g/ D 
s.f /
s.g/:

(c) Given an exact sequence 0 ! U
�! V ! W ! 0 in comods

B, let f 2 Endk.V /

be such that f .�.U // � �.U /, and let g 2 Endk.U /, h 2 Endk.W / be the
maps induced by f . Then


s.f / D 
s.g/ C 
s.h/:

In particular, 
s
V D 
s

U C 
s
W . Moreover, if f 2 Endcomods

B
.V / is a projection

(i.e., f 2 D f ) then 
s.f / D 
s
Im f

.
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Proof. (a) Let TV denote the map Homk.V; V ˝ B/ ! B in (2.5); so 
s.f / D
TV .ıV B f /. Since f and g are comodule maps, we have ıU B f D .f ˝ IdB/ B ıV

and similarly for g. Putting h D ıU B f 2 Homk.V; U ˝ B/ we obtain 
s.f B g/ D
TU .ıU B f B g/ D TU .h B g/ and 
s.g B f / D TV .ıV B g B f / D TV ..g ˝ IdB/ B h/.
Therefore, we must show that

TU .h B g/ D .�1/
Of OgTV ..g ˝ IdB/ B h/:

Using the identification Homk.V; U ˝ B/ Š Homk.V; U / ˝ B as in (1.6),
write h D P

i fi ˝ bi with fi 2 Homk.V; U /, bi 2 B, and Ofi C Obi D Oh D Of .
Then h B g 2 Homk.U; U ˝ B/ becomes the element .

P
i fi ˝ bi / B g DP

i .�1/
Obi Og.fi B g/ ˝ bi 2 Endk.U / ˝ B, and .g ˝ IdB/ B h Homk.V; V ˝ B/

becomes
P

i .g B fi / ˝ bi . The standard identity str.fi B g/ D .�1/
Ofi Og str.g B fi /

(cf., e.g., [40], §3 (b), p. 165), now yields

TU .h B g/ D
X

i

.�1/
Obi Og str.fi B g/ ˝ bi

D
X

i

.�1/
Obi OgC Ofi Og str.g B fi / ˝ bi

D .�1/
Of OgTV ..g ˝ IdB/ B h/

as desired.
(b) Fix homogeneous k-bases fxig and fy`g of V and U , respectively, and write

Oxi D Oi , Oy` D Ò as usual. Moreover, let .F i
j / and .G`

m/ be the matrices of f and g

for these bases, as in (1.2). Then fxi ˝ y`g is a basis of V ˝ U , with xi ˝ y` having
parity Oi C Ò. Moreover,

.f ˝ g/.xj ˝ ym/ D .�1/ Og Oj f .xj / ˝ g.ym/

D .�1/ Og Oj X
i

xiF
i

j ˝
X

`

y`G`
m

D
X
i;`

xi ˝ y`ˆ
i;`
j;m with ˆ

i;`
j;m D .�1/. ÒC Om/ Oj F i

j G`
m

because Gm
`

D 0 unless Ò C Om D Og. Similarly, writing ıV .xj / D P
i xi ˝ bi

j with

bi
j 2 BOiC Oj and ıU .ym/ D P

` y` ˝ c`
m with c`

m 2 B ÒC Om, one obtains using (2.4)

ıV ˝U .xj ˝ ym/ D
X
i;`

xi ˝ y` ˝ ‰
i;`
j;m with ‰

i;`
j;m D .�1/.OiC Oj / Ò

bi
j c`

m:
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Therefore, formula (2.6) becomes


s.f ˝ g/ D
X

i;`;j;m

.�1/.OiC Ò/. Oj C Om/‰
i;`
j;mˆ

j;m

i;`

D
X

i;`;j;m

.�1/
Oi Oj C Ò Ombi

j F
j
i c`

mGm
`

D 
s.f /
s.g/:

(c) Choose a basis fxig of V consisting of homogeneous elements so that xi D
�.yi / for i � dim U and let .F i

j / be the matrix of f for this basis. Then F i
j D 0

for i > dim U , j � dim U . Moreover, the yi form a basis of U and the zi D �.xi /

form a basis of W , and the matrices of g and h for these bases are .F i
j /i;j 	dim U and

.F i
j /i;j >dim U , respectively. Similarly, if .bi

j / is the matrix of ıV with respect to the

basis fxig as in (2.3) then bi
j D 0 for i > dim U , j � dim U , and the matrices

of ıU and ıW for the given bases are .bi
j /i;j 	dim U and .bi

j /i;j >dim U , respectively.
Therefore,


s.f / D
X
i;j

.�1/
Oi Oj bi

j F
j
i

D
X

i;j 	dim U

.�1/
Oi Oj bi

j F
j
i C

X
i;j >dim U

.�1/
Oi Oj bi

j F
j
i

D 
s.g/ C 
s.h/:

The remaining assertions are clear.

2.4. The Grothendieck ring. Let B be a superbialgebra and let

RB D K0.comods
B/

denote the Grothendieck group of the category comods
B. Thus, for each V in comods

B,
there is an element ŒV � 2 RB and each short exact sequence 0 ! U ! V ! W ! 0

in comods
B gives rise to an equation ŒV � D ŒU � C ŒW � in RB. The group RB is in

fact a ring with multiplication given by the tensor product of B-comodules. If B is
supercommutative as a superalgebra then the ring RB is commutative; see §2.2.

Both the ordinary dimension and the superdimension are additive on short exact
sequences and multiplicative on tensor products. Hence they yield ring homomor-
phisms

dim; sdim W RB ! Z:

Parts (b) and (c) of Lemma 2.2 and formula (2.7) have the following immediate
consequence:
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Corollary 2.3. The map ŒV � 7! 
s
V yields a well-defined ring homomorphism


s W RB ! B N0. Furthermore, the following diagram commutes:

RB
�s

��

sdim
��

B N0
"

��
Z can.

�� k .

Forgetting the Z2-grading, the corollary also gives the more familiar version with

 and dim in place of 
s and sdim, respectively.

2.5. General linear supergroup and Berezinian. Let V in Vectsk be finite-dimen-

sional and fix a standard basis x1; : : : ; xd with Oi D N0 .i � p/ and Oi D N1 (i > p).

2.5.1. For each supercommutative k-superalgebra R we denote by E.V /.R/ the set of
all R-linear maps V ˝R ! V ˝R in Vectsk. Using the identification EndR.V ˝R/ Š
Homk.V; V ˝ R/ Š Endk.V / ˝ R (see (1.6)), we may view E.V /.R/ as the even
subspace of Endk.V / ˝ R:

E.V /.R/ D .Endk.V / ˝ R/ N0 :

This defines a functor E.V / from the category of supercommutative k-superalgebras
to the category of semigroups.

2.5.2. Tensoring the supertrace str W Endk.V / ! k of (1.8) with IdR, we obtain an
R-linear supertrace map str W Endk.V / ˝ R ! R in Vectsk which restricts to a map
E.V /.R/ ! RN0. The given standard basis x1; : : : ; xd of V is an R-basis of V ˝ R.
In terms of this basis, an element � 2 E.V /.R/ is given by

�.xj / D
dX

iD1

xiˆ
i
j with ˆi

j 2 ROiC Oj : (2.9)

Thus � is described by a supermatrix ˆ D �
ˆi

j

�
in standard form over R:

ˆ D
�

A B

C D

�
(2.10)

where A D �
ˆi

j

�
i;j 	p

and D D �
ˆi

j

�
i;j >p

are square matrices with entries in RN0
while C; D are matrices over RN1. The supertrace of � is given by

str.�/ D
X

i

.�1/
Oiˆi

i D tr.A/ � tr.D/ μ str.ˆ/:
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2.5.3. The functor E.V / is represented by a supercommutative k-superbialgebra
which coacts on V ; this algebra will be denoted by

B D O.E.V //:

Thus, there is a natural isomorphism of E.V / with the functor Hom.B; ‹/ of parity
preserving algebra homomorphisms. In particular, the identity map on B corresponds
to an element  2 E.V /.B/. Let X D �

xi
j

�
d�d

be the matrix of  , as in (2.9). The

elements xi
j have parity Oi C Oj and they form a set of supercommuting algebraically

independent generators of B. In fact, B is isomorphic to the symmetric superalgebra
S.V � ˝ V /, with xi

j 7! xi ˝ xj , where fxig � V � is the dual basis for the given
basis of V .

We can think of X as the generic supermatrix with respect to the given basis of
V : any supermatrix ˆ D �

ˆi
j

�
as in (2.9) comes from an algebra map B ! R via

xi
j 7! ˆi

j . The canonical coaction ı W V ! V ˝ B, the comultiplication 	 and the
counit " of B are given by

ı.xj / D
X

i

xi ˝ xi
j ;

	.xi
j / D

X
k

xi
k ˝ xk

j ;

".xi
j / D ıi

j :

(2.11)

These formulas can also be written as ı.x1; : : : ; xd / D .x1; : : : ; xd / ˝ X , 	.X/ D
X ˝ X and ".X/ D 1.

2.5.4. Similarly, GL.V /.R/ is defined, for any supercommutative k-superalgebra R,
as the set of all invertible R-linear endomorphism of V ˝ R in Vectsk. The condition
for a supermatrix ˆ in standard form (as in (2.10)) to be invertible is that A and D

are invertible as ordinary matrices over R N0. In this case, the inverse of ˆ is given by

ˆ�1 D
�

.A � BD�1C /�1 �A�1B.D � CA�1B/�1

�D�1C.A � BD�1C /�1 .D � CA�1B/�1

�
:

See Berezin [3], Theorem 3.1 and Lemma 3.2. The element

ber.ˆ/ ´ det.A/ det.D � CA�1B/�1 D det.D/�1 det.A � BD�1C / (2.12)

is called the superdeterminant or Berezinian of ˆ; it is an invertible element of RN0.
The functor GL.V / is represented by a supercommutative Hopf superalgebra

O.GL.V // which is generated over B D O.E.V // by det.X11/�1 and det.X22/�1,
where X11 D �

xi
j

�
i;j 	p

and X22 D �
xi

j

�
i;j >p

are the even blocks of the generic

supermatrix X . By [3], Theorem 3.3, the Berezinian ber.X/ is a group-like element
in O.GL.V //.
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2.6. Supersymmetric functions and exterior powers. Throughout this section,
V will denote a finite-dimensional vector superspace over k. We assume that the
characteristic of k is zero.

2.6.1. Let
Yn D 1

nŠ

X
�2Sn

sgn.�/� 2 kŒSn�

be the antisymmetrizer idempotent of the group algebra kŒSn� and define

ΛnV WD Im cYn
� V ˝n (2.13)

where c W kŒSn� ! EndVectsk
.V ˝n/ is as in (1.10). Thus, ΛnV is the space of anti-

symmetric n-tensors,

ΛnV D fy 2 V ˝n j c� .y/ D sgn.�/y for all � 2 Sng:
For later use, we describe an explicit basis of ΛnV . To this end, fix a standard

basis x1; : : : ; xd of V , with Oi D N0 for i � p and Oi D N1 for i > p. Then the products
xi D xi1 ˝ xi2 ˝ � � � ˝ xin for sequences i D .i1; i2; : : : ; in/ 2 f1; 2; : : : ; dgn form
a graded basis of V ˝n that is permuted up to a ˙-sign by the action of Sn on V ˝n;
see formula (1.9):

c� .xi / D sgni .�/x�.i / (2.14)

with

sgni .�/ D .�1/
P

.p;q/2inv.�/
yip yiq and �.i / D .i��1.1/; i��1.2/; : : : ; i��1.n//:

Therefore, by elementary properties of monomial group representations, a k-basis
of ΛnV is given by the nonzero elements cYn

.xi / where i ranges over a transversal
for the Sn-action on f1; 2; : : : ; dgn. Such a transversal is provided by the weakly
increasing sequences i 2 f1; 2; : : : ; dgn. Moreover, for a weakly increasing i , it is
easily seen from (2.14) that cYn

.xi / D 0 holds precisely if i` D i`C1 � p for some `.
Therefore, a basis of ΛnV is given by the elements cYn

.xi / with i D .i1 < i2 <

� � � < im < imC1 � � � � � in/ 2 f1; 2; : : : ; dgn and im � p < imC1.
In particular,

dimk ΛnV D
X

mCm0Dn

�
p
m

��
qCm0�1

m0

�
(2.15)

where p D dimk V N0 and q D dimk V N1. Equivalently, the generating power series in
Z�t� for the sequence dimk ΛnV is given byX

n�0

dimk ΛnV tn D .1 C t /p

.1 � t /q
: (2.16)

When q > 0 then all ΛnV are nonzero. For additional details on exterior powers, see,
e.g., [43], Sections I.5 and I.7.
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2.6.2. Consider the superbialgebra B D O.E.V // as defined in §2.5.3 and recall that
V is in comods

B. The representation c W kŒSn� ! EndVectsk
.V ˝n/ of (1.10) actually

has image in Endcomods
B

.V ˝n/, since B is supercommutative. Therefore, ΛnV also
belongs to comods

B and we can define the nth elementary supersymmetric function by

en ´ 
s
ΛnV D 
s.cYn

/ 2 B N0:

Here, the equality 
s
ΛnV

D 
s.cYn
/ holds by Lemma 2.2 (c).

Similarly, one defines the nth super power sum by

pn ´ 
s.c.1;2;:::;n// 2 B N0

where .1; 2; : : : ; n/ 2 Sn the cyclic permutation mapping 1 7! 2 7! 3 7! : : : 7!
n 7! 1. In terms of the generic supermatrix X from §2.5.3, one has

pn D str.Xn/:

Modulo the space spanned by the Lie commutators fg � gf with f; g 2 kŒSn�,
the following relation is easily seen to hold in kŒSn�:

nYn 	
nX

iD1

.�1/i�1.1; 2; : : : ; i/Yn�i

(with Y0 D 1). Applying the function 
s B c W kŒSn� ! B N0 to this relation and using
Lemma 2.2 (a), (b), one obtains the Newton relations:

nen D
nX

iD1

.�1/i�1pien�i :

Let t be a formal parameter (of parity N0) and consider the generating functions P.t/ DP
n�1 pntn�1 and E.t/ D P

n�0 entn in B N0�t�. The Newton relations can be written

in the form P.�t / D d
dt

log E.t/; see, e.g., [34], p. 23. Combining this with the
identity

ber.exp.tX// D exp.str.tX//

due to Berezin ([3], Chapter 3, or [40], p. 167) one obtains the following expansion
for the characteristic function ber.1 C tX/ of the generic supermatrix X :

Proposition 2.4. ber.1 C tX/ D P
n�0 entn.

This proposition is known; see, e.g., Khudaverdian and Voronov [30], Prop. 1.
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3. Homogeneous superalgebras

3.1. N -homogeneous superalgebras. Let N be an integer with N � 2. A homo-
geneous superalgebra of degree N or N -homogeneous superalgebra is an algebra A

of the form (2.1) with V finite-dimensional and R � V ˝N :

A D A.V; R/ Š T.V /=.R/:

The assumption R � V ˝N implies that, besides the usual Z2-grading (“parity”), A

also has a connected ZC-grading (“degree”),

A D
M
n�0

An:

The algebra A is generated by A1 D V and all homogeneous components An are
finite-dimensional objects of Vectsk. In fact,

An Š V ˝n=Rn with Rn ´ .R/ \ V ˝n D
X

iCj CN Dn

V ˝i ˝ R ˝ V ˝j : (3.1)

Note that Rn D 0 for n < N ; so An Š V ˝n if n < N .
Morphisms of N -homogeneous superalgebras f W A D A.V; R/ ! A0 D

A.V 0; R0/ are morphism of superalgebras which also respect the ZC-grading. Equiv-
alently, by restricting to degree 1, we have a morphism f1 W A1 D V ! A0

1 D V 0
in Vectsk whose N th tensor power satisfies f ˝N

1 .R/ � R0. Thus, one has a category
HN Algs

k of N -homogeneous k-superalgebras. Finally, N -homogeneous superalge-
bras with N D 2 are called quadratic superalgebras; for N D 3, they are called
cubic, etc.

3.2. Some examples. In order to explicitly describe a certain N -homogeneous su-
peralgebra A D A.V; R/, we will usually fix a Z2-graded k-basis x1; : : : ; xd of
V D A1 and denote the parity of xi by Oi , as in §1.1. The xi form a set of algebra
generators for A. Following Manin [38],[39], the d -tuple f D .O1; : : : ; Od/ 2 Zd

2 is
called the format of the basis fxig.

Example 3.1 (Quantum superspace [39]). For a fixed family q of scalars 0 ¤ qij 2 k

(1 � i < j � d ) and a given format f D .O1; : : : ; Od/ 2 Zd
2 of the basis x1; : : : ; xd ,

the quadratic superalgebra A D Sf
q is defined as the factor of T.V / modulo the ideal

generated by the elements

ri ´ xi ˝ xi 2 .V ˝2/ N0 .Oi D N1/; (3.2)

rij ´ xj ˝ xi � qij .�1/
Oi Oj xi ˝ xj 2 .V ˝2/OiC Oj .i < j /: (3.3)
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Thus, the algebra Sf
q is generated by x1; : : : ; xd subject to the defining relations

xixi D 0 .Oi D N1/

and
xj xi D qij .�1/

Oi Oj xixj .i < j /:

In the special case where all qij D 1, the algebra Sf
q is the symmetric superalgebra

S.V / of V as in Example 2.1.
The ordered monomials of the form x

m1

1 x
m2

2 : : : x
md

d
, with

P
i mi D n, mi � 0

for all i and mi � 1 if Oi D N1, form a k-basis of the nth homogeneous component of
Sf

q . Therefore,

dimk.Sf
q /n D

X
rCsDn

�
rCp�1

p�1

��
q
s

�
(3.4)

where dim V N0 D p and dim V N1 D q as usual.Thus, the generating series of the
dimensions is X

n�0

dimk.Sf
q /ntn D .1 C t /q

.1 � t /p
:

Example 3.2 (Yang–Mills algebras [11], [10]). Fix a collection of elements x1; : : : ; xd

(d � 2), numbered so as to have parity Oi D N0 for i � p and Oi D N1 for i > p. Let
G D .gij / 2 GLd .k/ be an invertible symmetric d � d -matrix satisfying gij D 0 if
Oi ¤ Oj and consider the cubic superalgebra A that is generated by elements x1; : : : ; xd

subject to the relationsX
i;j

gij Œxi ; Œxj ; xk�� D 0 .k D 1; : : : ; d /: (3.5)

Here Œ � ; � � is the supercommutator (2.2). The algebra A will be denoted by YMpjq
.q D d � p/. In particular, the pure even algebra YMd j0 is the ordinary Yang–Mills
algebra introduced in [10] while YM0jd is the super Yang–Mills algebra as in [11].

As usual, put V D P
i kxi and let Œ � ; � �˝ denote the supercommutator in T.V /.

Furthermore, put rk D P
i;j gij Œxi ; Œxj ; xk�˝�˝ and R D P

k krk � V ˝3; so

YMpjq D T.V /=.R/. Using the symmetry of G, we may replace the rk by simpler
relations as follows. Choose an invertible d � d -matrix C D .cij / with cij D 0 if
Oi ¤ Oj and such that C trGC is diagonal, say

P
i;j cirgij cjs D gsır

s . Replace the

bases fxig of V and frkg of R by the new bases yi D P
j cij xj and sk D P

k ck`r`

where C �1 D .cij /. Note that yi has parity Oi and sk has parity Ok, the parity of rk .
A simple calculation shows that sk D P

i¤k gi Œyi ; Œyi ; yk�˝�˝. Thus we obtain the

following defining relations for the generators y1; : : : ; yd of YMpjq:X
i¤k

gi Œyi ; Œyi ; yk�� D 0 .k D 1; : : : ; d /: (3.6)
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The resulting algebras for d D 2 are as follows. Putting x D y1 and y D y2 we
have two defining relations: Œx; Œx; y�� D 0 and Œy; Œy; x�� D 0. In the pure even case
( Ox D Oy D N0), the supercommutators are the ordinary Lie commutators. So YM2j0 is
the enveloping algebra of the Heisenberg Lie algebra; see [1], (0.4). In the pure odd
case ( Ox D Oy D N1), the two relations can be written as x2y D yx2 and yx2 D x2y.
The resulting algebra YM0j2 is a cubic Artin–Schelter algebra of type S1 [1], (8.6).
Thus, both unmixed algebras are Artin–Schelter regular of global dimension 3. In
the mixed case, however ( Ox D N0, Oy D N1), the relations say that x commutes with the
Lie commutator Œx; y� while y anticommutes: yŒx; y� D �Œx; y�y. Thus, Œx; y� is a
normal element of YM1j1 and YM1j1=.Œx; y�/ is a polynomial algebra in two variables
over k. Moreover, the calculation

Œx; y�2 D Œx; Œx; y�y� D �Œx; yŒx; y�� D �Œx; y�2

shows that Œx; y�2 D 0. Thus, the algebra YM1j1 is noetherian with Gelfand–Kirillov
dimension 2 and infinite global dimension.

Returning to the case of general d � 2, we now concentrate on the unmixed
algebras introduced by Connes and Dubois-Violette. We will denote these algebras
by YMC D YMd j0 and YM� D YM0jd . In all formulas below, C applies to YMC and
� to YM�. The generators sk D P

i¤k gi Œyi ; Œyi ; yk�˝�˝ of the space of relations R

can be written as sk D P
` y` ˝ m`k D ˙ P

` mk` ˝ y` with

m`k D
(

g`.y` ˝ yk � .1 ˙ 1/yk ˝ y`/ for ` ¤ k;

˙ P
i¤k giyi ˝ yi for ` D k:

Thus, putting Y D .y1; : : : ; yd / and letting M denote the d � d -matrix over YM˙
whose .`; k/-entry is the image of m`k , the defining relations (3.6) can be written as

YM D 0 or M Y tr D 0: (3.7)

The defining relations (3.6) for A D YM� amount to the even element
P

i giy
2
i 2 A2

being central in A.

Example 3.3 (N -symmetric superalgebra; cf. [5]). Let N � 2 be given and let V be
a vector superspace V over a field k with char k D 0 or char k > N . Define

SN .V / D A.V; R/ with R D ΛN V D cYN

�
V ˝N

� � V ˝N

where YN is the antisymmetrizer idempotent of the group algebra kŒSN �; see (2.13).
This defines a functor SN . � / W Vectsk ! HN Algs

k. Since 2cY2
is the supercommu-

tator in T.V /, the algebra S2.V / is just the symmetric superalgebra S.V / of V ; see
Example 3.1. The algebra SN .V /, for a pure even space V D V N0 and general N � 2,
has been introduced in [5].
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If 2 � M � N then, viewing kŒSM � as a subalgebra of kŒSN � as usual, the
antisymmetrizers of kŒSN � and kŒSM � satisfy YN D YM a for some a 2 kŒSN �.
Therefore,

R D cYN
.V ˝N / � cYM

.V ˝N / D cYM
.V ˝M / ˝ V ˝.N �M/:

This shows that the identity map on V extends to an epimorphism of superalgebras
SN .V / � SM .V /.

Now assume that dimk V D d and fix a standard basis x1; : : : ; xd of V , with
Oi D N0 for i � p and Oi D N1 for i > p. From the basis for ΛN V exhibited in §2.6.1
we obtain that the algebra SN .V / is generated by x1; : : : ; xd subject to the relationsX

�2SN

.�1/
P

.p;q/2inv.�/ 1C yip yiq xi
��1.1/

xi
��1.2/

: : : xi
��1.N /

D 0

with 1 � i1 < i2 < � � � < im � p D dimk V N0 < imC1 � � � � � iN � d D dimk V ;
see formula (2.14).

Example 3.4. The following construction generalizes Example 3.3. Fix N � 2

and 0 ¤ q 2 k and assume that condition (1.14) is satisfied. Given a Hecke op-
erator R W V ˝2 ! V ˝2 on a vector superspace V we define the N -homogeneous
superalgebra

ΛR;N ´ A.V; R/ with R D Im �R.XN / � V ˝N (3.8)

where XN 2 HN;q is the q-symmetrizer (1.16) and �R is the representation (1.20)
of HN;q . We also put

SR;N ´ Λ�qR�1;N D A.V; R/ with R D Im �R.YN / � V ˝N (3.9)

where YN 2 HN;q is the antisymmetrizer (1.17). The algebra SN .V / in Example 3.3
is identical with ScV;V ;N (q D 1).

3.3. The dual of a homogeneous superalgebra. Let A D A.V; R/ be an N -homo-
geneous superalgebra. The dual AŠ of A is defined by

AŠ D A.V �; R?/;

where R? � V �˝N is the (homogeneous) subspace consisting of all elements that
vanish on R � V ˝N , using (1.4) in order to evaluate elements of V �˝N on V ˝N .
Thus, (3.1) takes the form

AŠ
n D V �˝n=R?

n with R?
n ´

X
iCj CN Dn

V �˝i ˝ R? ˝ V �˝j : (3.10)
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Identifying V �˝n with the linear dual of V ˝n via (1.4), we have V �˝i ˝R?˝V �˝j D�
V ˝j ˝ R ˝ V ˝i

�?
. Hence,

R?
n D

� \
iCj CN Dn

V ˝j ˝ R ˝ V ˝i
�?

: (3.11)

The canonical isomorphism V ��!� V �� in (1.5) leads to an isomorphism
V ˝N ��!� V �� ˝N which maps R onto R??. Hence,

AŠ Š Š A: (3.12)

Moreover, if f W A D A.V; R/ ! A0 D A.V 0; R0/ is any morphism in HN Algs
k then

the transpose of f1 W V ! V 0 induces a morphism f Š W .A0/Š ! AŠ in HN Algs
k. Thus,

we have a contravariant quasi-involutive dualization functor A 7! AŠ, f 7! f Š on
HN Algs

k.

Example 3.5. The dual of A.V; 0/ D T.V / is A.V �; V �˝N /; so

T.V /Š D T.V �/=.V �˝N /

In particular, letting V D k be the unit object of Vectsk, we have A.k; 0/ D kŒt �

(polynomial algebra) and A.k; 0/Š D kŒd �=.d N /, with t and d both having degree 1

and parity N0.

Example 3.6 (Dual of quantum superspace). We will describe the dual AŠ of quantum
superspace A D Sf

q ; see Example 3.1. Fix a homogeneous k-basis x1; : : : ; xd with
format f for V , and let x1; : : : ; xd denote the dual basis of V �; this basis also has
format f . Evaluating an arbitrary element f D P

`;m f`mx` ˝ xm 2 V �˝2 on
one of the generating relations ri ; rij 2 R in (3.2), (3.3) we obtain hf; ri i D fi i and

hf; rij i D fij �qij .�1/
Oi Oj fj i . Therefore, the space R? � V �˝2 has a basis consisting

of the elements s` ´ x` ˝ x` . Ò D N0/ and s`;k ´ x` ˝ xk C qk`.�1/
Ok Ò

xk ˝ x`

(k < `). In summary, AŠ is generated by x1; : : : ; xd subject to the defining relations

x`x` D 0 . Ò D N0/

and
x`xk D �qk`.�1/

Ok Ò
xkx` .k < `/:

Thus, AŠ is isomorphic to quantum superspace Sf 0

q0 with q0
ij D .�1/

OiC Oj qij and

f 0 D f C.N1; : : : ; N1/ the format obtained from f by parity reversal in all components.

Example 3.7 (Duals of the Yang–Mills algebras). Continuing with the notation of
Example 3.2, we now describe the algebra AŠ for A D YMpjq . We assume that
char k D 0 and work with generators y1; : : : ; yd of A satisfying (3.6).
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Let y1; : : : ; yd denote the basis of V � given by hyi ; yj i D ıi
j and put � D

1
d�1

P
i g�1

i yi ˝yi 2 V �˝2. Then, for the generators sk D P
i¤k gi Œyi ; Œyi ; yk�˝�˝

of R as in Example 3.2, one computes

hya ˝ yb ˝ yc ; ski D gcıc
bıa

k C .�1/
Obgbıb

aıc
k � .�1/ Oa Ok.1 C .�1/ Oa/gaıa

c ıb
k ;

hyi ˝ �; ski D ıi
k :

(3.13)
Therefore, the map ' 7! ' � P

kh'; skiyk ˝ � is an epimorphism V �˝3 � R? 

V �˝3. We obtain that the algebra AŠ is generated by y1; : : : ; yd subject to the relations

yaybyc D .gcıc
bya C .�1/

Obgbıb
ayc � .�1/ Oa Ob.1 C .�1/ Oa/gaıa

c yb/g (3.14)

where g D 1
d�1

P
i g�1

i yiyi is the image of � in A.
Since AŠ is 3-homogeneous, we clearly have AŠ

0 D k, AŠ
1 D L

i kyi D V �
and AŠ

2 D L
i;j kyiyj Š V �˝2. By (3.13), the elements yag form a k-basis of

AŠ
3 D V �˝3=R? Š R�. Using the defining relations (3.14) it is not hard to see that

AŠ
4 D kg2 and AŠ

n D 0 for n � 5. If A D YMpjq is of mixed type (i.e., p ¤ 0 and
q ¤ 0) then g2 D 0.

Example 3.8 (Dual of the N -symmetric superalgebra). Recall from Example 3.3 that
SN .V / D A.V; R/ with R D cYN

.V ˝N /. Since YN is central in kŒSN � and stable
under the inversion involution � of kŒSN �, it follows from (1.11) that

hx; cYN
.y/i D hcYN

.x/; yi
holds for all x 2 V �˝N and y 2 V ˝N . Therefore,

R? D KerV �˝N .cYN
/ D .1 � cYN

/.V �˝N /

and so
SN .V /Š D A.V �; .1 � cYN

/.V �˝N //:

Note that \
iCj CN Dn

V ˝i ˝ R ˝ V ˝j D cYn
.V ˝n/ (3.15)

holds for all n � N . This follows from (1.19). Alternatively, as has been noted in
Example 3.3, we have cYn

.V ˝n/ � R ˝ V ˝.n�N /. In the same way, one sees that
cYn

.V ˝n/ � V ˝i ˝ R ˝ V ˝j whenever i C j C N D n. For the reverse inclusion,
note that each x 2 V ˝i ˝ R ˝ V ˝j satisfies c�`

.x/ D �x for all transpositions
�` D .`; ` C 1/ 2 Sn with i < ` < i C N . Hence, the left-hand side of (3.15)
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is contained in the space of antisymmetric n-tensors, ΛnV D cYn
.V ˝n/, thereby

proving (3.15). We deduce from (3.10), (3.11) and (2.15) that

dimk SN .V /Š
n D

(
d n if n < N ;P

rCsDn

�
p
r

��
qCs�1

s

�
if n � N ;

(3.16)

where d D dimk V , p D dimk V N0 and q D dimk V N1.

3.4. The operations B and � on HN Algs
k

. Let A D A.V; R/ and A0 D A.V 0; R0/
be N -homogeneous superalgebras. Following [37] and [7] we define the white and
black products A B A0 and A � A0 by

A B A0 D A.V ˝ V 0; c�N
.R ˝ V 0˝N C V ˝N ˝ R0//;

A � A0 D A.V ˝ V 0; c�N
.R ˝ R0//

where �N 2 S2N is the inverse of the permutation

.1; 2; : : : ; 2N / 7! .1; N C 1; 2; N C 2; : : : ; k; N C k; : : : ; N; 2N /:

Explicitly, c�N
W V ˝N ˝ V 0˝N ! .V ˝ V 0/˝N is the morphism in Vectsk that is

given by

c�N
.v1 ˝ : : : vN ˝ v0

1 ˝ � � � ˝ v0
N / D .�1/

P
i

P
j >i

Ov0
i

Ovj .v1 ˝ v0
1/ ˝ � � � ˝ .vN ˝ v0

N /

(3.17)
Hence, c�N

.R ˝R0/ and c�N
.R ˝V 0˝N CV ˝N ˝R0/ are homogeneous subspaces

of .V ˝ V 0/˝N and so A B A0 and A � A0 belong to HN Algs
k.

Under the isomorphism .V 0� ˝ V �/˝N ��!� .V ˝ V 0/�˝N which comes
from (1.4), the relations c�N

.R0? ˝ R?/ of A0Š � AŠ map onto the relations
.c�N

.R˝V 0˝N CV ˝N ˝R0//? of .ABA0/Š. In fact, by (1.11) we have c�
�N

D c�N

because �N � D ��N , and consequently hx; yi D hc�N
.x/; c�N

.y/i holds for all
x 2 V 0�˝N ˝ V �˝N and y 2 V ˝N ˝ V 0˝N . Therefore, canonically,

.A B A0/Š Š A0Š � AŠ and .A � A0/Š Š A0Š B AŠ; (3.18)

the two identities being equivalent by (3.12).
By definition of B, the canonical isomorphisms k ˝ V Š V Š V ˝ k in Vectsk

give isomorphisms A.k; 0/ B A Š A Š A B A.k; 0/ in HN Algs
k, and (3.18) yields

similar isomorphisms for �, with A.k; 0/Š D kŒd �=.d N / replacing A.k; 0/ D kŒt �;
see Example 3.5.

The supersymmetry isomorphism cV;V 0 W V ˝ V 0 ��!� V 0 ˝ V in Vectsk (see (1.1))
yields isomorphisms

A B A0 Š A0 B A and A � A0 Š A0 � A (3.19)
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in HN Algs
k. To see this, note that the following diagram of isomorphisms in Vectsk

commutes:

V ˝N ˝ V 0˝N
c�N ��

c
V ˝N;V 0˝N

��

.V ˝ V 0/˝N

c
˝N

V;V 0

��
V 0˝N ˝ V ˝N

c�N

�� .V 0 ˝ V /
˝N

with v1 ˝ : : : vN ˝ v0
1 ˝ : : : v0

N 7! .�1/
P

i

P
j �i

Ov0
i

Ovj .v0
1 ˝ v1/ ˝ : : : .v0

N ˝ vN / in
both composites. Therefore, putting RABA0 D c�N

�
R ˝ V 0˝N C V ˝N ˝ R0� and

similarly for RA0BA etc., we have

c˝N
V;V 0.RABA0/ D .c�N

B cV ˝N;V 0˝N /.R ˝ V 0˝N C V ˝N ˝ R0/
D c�N

.R0 ˝ V ˝N C V 0˝N ˝ R/

D RA0BA:

Similarly, one sees that c˝N
V;V 0 .RA�A0/ D RA0�A. This proves (3.19).

In the same way, the associativity isomorphism aV;V 0;V 00 W .V ˝ V 0/ ˝ V 00 Š
V ˝ .V 0 ˝ V 00/ in Vectsk leads to isomorphisms

.A B A0/ B A00 Š A B .A0 B A00/ and .A � A0/ � A00 Š A � .A0 � A00/ (3.20)

in HN Algs
k. This is a consequence of the following commutative diagram of isomor-

phisms in Vectsk:

.V ˝N ˝V 0˝N /˝V 00˝N

c�N
I̋d
��

a
V ˝N;V 0˝N;V 00˝N

��

.V ˝V 0/˝N ˝V 00˝N
c�N

�� ..V ˝ V 0/ ˝ V 00/˝N

a
˝N

V;V 0;V 00

��
V ˝N ˝ .V 0˝N ˝V 00˝N /

Id˝c�N

�� V ˝N ˝ .V 0 ˝ V 00/˝N
c�N

�� .V ˝ .V 0 ˝V 00//˝N .

Finally, the compatibility between the isomorphisms cV;V 0 and aV;V 0;V 00 (see §1.2)
is inherited by the isomorphisms (3.19) and (3.20) in HN Algs

k. To summarize:

Proposition 3.9. The operations B and � both make the category HN Algs
k of N -

homogeneous k-superalgebras into a symmetric tensor category, with unit objects
A.k; 0/ D kŒt � for B and A.k; 0/Š D kŒd �=.d N / for �.

3.5. The superalgebra map i W A B A0 ! A ˝ A0. Let A D A.V; R/ and A0 D
A.V 0; R0/ be objects of HN Algs

k. The superalgebra A ˝ A0 is generated by V ˚ V 0
subject to the relations

R C R0 � .V ˚ V 0/˝N and ŒV; V 0�˝ � .V ˚ V 0/˝2
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where Œ � ; � �˝ is the supercommutator (2.2) in the tensor algebra, as usual. Thus,
A˝A0 is not N -homogeneous when N � 3. Nonetheless, there always is an injective
superalgebra homomorphism i W A B A0 ! A ˝ A0 which is defined as follows. The
linear embedding V ˝ V 0 ,! T.V / ˝ T.V 0/ extends uniquely to a superalgebra map

Q� W T.V ˝ V 0/ ! T.V / ˝ T.V 0/ (3.21)

which doubles degrees: the restriction of Q� to degree n is the embedding

T.V ˝ V 0/n D .V ˝ V 0/˝n
c�1

�n��! V ˝n ˝ V 0˝n � .T.V / ˝ T.V 0//2n

in Vectsk, where c�n
is as in (3.17). Thus, Q� identifies the superalgebra T.V ˝ V 0/

with the (super) Segre product
L

n�0 V ˝n ˝ V 0˝n of T.V / and T.V 0/.
The map Q� sends RABA0 D c�N

�
R ˝ V 0˝N C V ˝N ˝ R0� � .V ˝ V 0/˝N to

R ˝ V 0˝N C V ˝N ˝ R0, the kernel of the canonical epimorphism V ˝N ˝ V 0˝N �
AN ˝ A0

N . Thus:

Proposition 3.10. The algebra map Q� in (3.21) passes down to yield an injective
homomorphism k-superalgebras i W A B A0 � A ˝ A0 which doubles degree. The
image of i is the super Segre product

L
n�0 An ˝ A0

n of A and A0.

3.6. Internal Hom. The isomorphisms (1.3) and (1.4) together with associativity
lead to a functorial isomorphism

Homk.U ˝ V; W �/ Š Homk.U; .V ˝ W /�/

in Vectsk. Explicitly, if g 2 Homk.U ˝ V; W �/ and g0 2 Homk.U; .V ˝ W /�/

correspond to each other under the above isomorphism then

hg.u ˝ v/; wi D hg0.u/; v ˝ wi (3.22)

holds for all u 2 U , v 2 V and w 2 W .
In particular, by restricting to N0-components, we have a k-linear isomorphism

HomVectsk
.U ˝ V; W �/ Š HomVectsk

.U; .V ˝ W /�/: (3.23)

This isomorphism leads to

Proposition 3.11. There is a functorial isomorphism

HomHN Algs
k
.A � B; C/ Š HomHN Algs

k
.A; C B BŠ/:
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Proof. We follow Manin [37], 4.2. Let A D A.U; R/, B D A.V; S/ and C D
A.W; T / be N -homogeneous superalgebras. We will prove the proposition in the
following equivalent form; see (3.12) and (3.18):

HomHN Algs
k
.A � B; CŠ/ Š HomHN Algs

k
.A; .B � C/Š/:

Recall that CŠ D A.W �; T ?/ and .B � C/Š D A..V ˝ W /�; .c�N
.S ˝ T //?/.

Let g W U ˝ V ! W � be a morphism in Vectsk and let g0 W U ! .V ˝ W /� be
the morphism in Vectsk that corresponds to g under (3.23). We must show that, for
homogeneous subspaces R � U ˝N , S � V ˝N and T � W ˝N ,

g˝N .c�N
.R ˝ S// � T ? () g0˝N .R/.c�N

.S ˝ T //?:

Identifying T ?? with T as in §3.3, the first inclusion is equivalent to

hg˝N .c�N
.R ˝ S//; T i D 0; (3.24)

while the second inclusion states that

hg0˝N .R/; c�N
.S ˝ T /i D 0: (3.25)

But (3.22) shows that (3.24) and (3.25) are equivalent, which proves the proposition.

Proposition 3.11 says that the tensor category .HN Algs
k; �/ has an internal Hom

which is given by
Hom.A; B/ D B B AŠ:

Explicitly, Hom.A; B/ is an object of HN Algs
k which represents the functor

.HN Algs
k/op ! Sets, X 7! HomHN Algs

k
.X � A; B/; so there is an isomorphism of

functors
HomHN Algs

k
.‹ � A; B/ Š HomHN Algs

k
.‹; Hom.A; B//:

By general properties of Hom (see [12], Def. 1.6), the morphism IdHom.A;B/ corre-
sponds to a morphism

� W Hom.A; B/ � A ! B (3.26)

in HN Algs
k satisfying the following universal property: for any morphism

f W X � A ! B in HN Algs
k there exists a unique morphism g W X ! Hom.A; B/

such that the following diagram commutes:

X � A

f

��������������

g�IdA

��
Hom.A; B/ � A

�
�� B.
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In degree 1, the map � is simply IdV ˝ evU W V ˝ U � ˝ U ! V ˝ k D V .

From Hom.B; C/ � Hom.A; B/ � A
Id����! Hom.B; C/ � B

�! C one obtains in this
way a composition morphism

m W Hom.B; C/ � Hom.A; B/ ! Hom.A; C/ (3.27)

in HN Algs
k. The morphisms � and m satisfy the obvious associativity properties.

3.7. The superbialgebra end A. Following Manin [37], 4.2, we define

hom.A; B/ D Hom.AŠ; BŠ/Š D AŠ � B

for A, B in HN Algs
k. Applying the dualization functor to (3.26), (3.27) and recalling

(3.18), we obtain morphisms

ıB W A ! B B hom.B; A/;

	B W hom.A; C/ ! hom.A; B/ B hom.B; C/

in HN Algs
k. The associativity properties of � and m translate into corresponding

coassociativity properties for ıB and 	B. Following ıB and 	B by the algebra map i

of Proposition 3.10, we obtain superalgebra maps

ı W A ! B ˝ hom.B; A/; (3.28)

	 W hom.A; C/ ! hom.A; B/ ˝ hom.B; C/: (3.29)

Now take A D B D C D A.V; R/ and put end A D hom.A; A/; so

end A D AŠ � A D A.V � ˝ V; c�N
.R? ˝ R//: (3.30)

Then (3.29) yields a coassociative superalgebra map

	 W end A ! end A ˝ end A:

Moreover, by Proposition 3.11, the morphism AŠ Id�! AŠ Š kŒt � BAŠ corresponds to a
morphism end A D AŠ � A ! kŒt � in HN Algs

k. Following this morphism by the map
t 7! 1 we obtain a superalgebra map

" W end A ! k

which in degree 1 is the usual evaluation pairing evV W V � ˝V ! k in Vectsk. Finally,
(3.28) provides us with a superalgebra map

ıA W A ! A ˝ end A: (3.31)
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Note that ıA maps the degree n-component of A according to

An

ıB! .A B end A/n
i! An ˝ .end A/n ,! An ˝ end A: (3.32)

Fixing a graded k-basis x1; : : : ; xd of V and denoting the dual basis of V � by
x1; : : : ; xd as before, end A has algebra generators

zi
j WD xi ˝ xj (3.33)

of degree 1 and parity Oi C Oj . In terms of these generators, the maps ", ıA and 	 are
given by

".z
j
i / D ı

j
i or ".Z/ D 1;

ıA.xj / D
X

i

xi ˝ zi
j or ıA.x1; : : : ; xd / D .x1; : : : ; xd / ˝ Z;

	.zi
j / D

X
k

zi
k ˝ zk

j or 	.Z/ D Z ˝ Z;

(3.34)

where Z D .zi
j /d�d .

Proposition 3.12. Let A D A.V; R/ be an N -homogeneous k-superalgebra.

(a) With 	 as comultiplication and " as counit, the superalgebra end A becomes
a superbialgebra. Moreover, ıA makes A into a graded right end A-comodule
superalgebra.

(b) Let B be any k-superalgebra and let ı W A ! A ˝ B be a morphism of su-
peralgebras satisfying ı.V / � V ˝ B. Then there is a unique morphism of
superalgebras ' W end A ! B such that the following diagram commutes:

A
ı ��

ıA ������������ A ˝ B

A ˝ end A .

IdA˝'

��

The proposition is proved as in [37], §5, or [7], Theorem 3.

Example 3.13. When A D A.V; 0/ D T.V /, we have end A D A.V � ˝ V; 0/ D
T.V � ˝ V /; so

end T.V / D T.V � ˝ V /;

the free superalgebra generated by the elements zi
j in (3.33).
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Example 3.14. By Examples 3.3 and 3.8, we have

end SN .V / D A.V � ˝ V; c�N
..1 � cYN

/.V �˝N / ˝ cYN
.V ˝N ///

For example, the algebra end S2.V / is generated by the elements zi
j with parity Oi C Oj

subject to the relations

Œz
i1
j1

; z
i2
j2

� C .�1/
yi1 Oi2C. yi1C yi2/ yj1 Œz

i2
j1

; z
i1
j2

� D 0

where Œ � ; � � is the supercommutator (2.2). This algebra is highly noncommutative,
even for a pure even space V .

Let O.E.V // D S.V � ˝V / be the supercommutative superbialgebra as in §2.5.3,
with generators xi

j . There is a map of superbialgebras

' W end SN .V / ! O.E.V //; zi
j 7! xi

j : (3.35)

Indeed, write B D O.E.V // for brevity and recall the coaction ı W V ! V ˝ B,
xj 7! P

i xi ˝xi
j , from (2.11). Since cYN

2 Endcomods
B

.V ˝N / (see §2.6.2), the map
ı extends to a map of superalgebras

ı W SN .V / ! SN .V / ˝ B:

Therefore, Proposition 3.12 (b) yields the desired '. Note that the coaction of
end SN .V / on V , when restricted along ', becomes the canonical coaction ofO.E.V //

on V ; see (2.11) and (3.34).

4. N -Koszul superalgebras

Throughout this section, we fix an N -homogeneous superalgebra A D A.V; R/.

4.1. The graded dual AŠ�. The graded dual

AŠ� D
M

n

AŠ�
n

of AŠ has a natural structure of a graded right end A-comodule. Indeed, the linear
dual AŠ�

n of the degree n-component of AŠ embeds into V ˝n as follows. Recall from
(3.11) that

AŠ�
n D

(
V ˝n if n < N ;T

iCj CN Dn V ˝i ˝ R ˝ V ˝j if n � N :
(4.1)

This identification makes the graded dual AŠ� into a graded right end A-comodule.
For, by (3.32) the coaction ıA restricts in degree 1 to a map V ! V ˝ end A which



34 P. H. Hai, B. Kriegk, and M. Lorenz

makes T.V / into a graded right end A-comodule superalgebra. The structure map
T.V / ! T.V / ˝ end A sends R ! R ˝ end A. Therefore, each V ˝i ˝ R ˝ V ˝j

is a end A-subcomodule of V ˝.iCj CN /, and hence AŠ�
n is a end A-subcomodule of

V ˝n. Finally, for all n � 0,

AŠ�
nC1 � V ˝ AŠ�

n and AŠ�
nCN � V ˝N ˝ AŠ�

n \ R ˝ V ˝n D R ˝ AŠ�
n : (4.2)

4.2. The Koszul complex. The map

A ˝ V ˝.iC1/ ! A ˝ V ˝i ;

a ˝ .v1 ˝ � � � ˝ viC1/ 7! av1 ˝ .v2 ˝ � � � ˝ viC1/;

is a morphism in the category Comods
end A of right end A-comodules, because the

end A-coaction ıA in (3.31) is a superalgebra map. Furthermore, this map is a left
A-module map which preserves total degree, and it restricts to a map of end A-sub-
comodules

d W A ˝ AŠ�
iC1 ! AV ˝ AŠ�

i ,! A ˝ AŠ�
i

which is the A-linear extension of the embedding (4.2). The map d N sends AŠ�
iCN to

AR ˝ AŠ�
i D 0; so d N D 0. In other words, we have an N -complex

K.A/ W � � � d! A ˝ AŠ�
iC1

d! A ˝ AŠ�
i

d! � � � d! A ! 0 (4.3)

in Comods
end A consisting of graded-free left A-modules and A-module maps which

preserve total degree. Therefore, K.A/ splits into a direct sum of N -complexes
K.A/n D L

iCj Dn Ai ˝ AŠ�
j in comods

end A.
Following [7], the Koszul complex K.A/ defined by Berger in [5] can be described

as the following contraction of K.A/:

K.A/ W � � � dN �1

����! A ˝ AŠ�
N C1

d! A ˝ AŠ�
N

dN �1

����! A ˝ AŠ�
1

d! A ! 0: (4.4)

This is an ordinary complex in Comods
end A which splits into a direct sum of complexes

K.A/n in comods
end A. The i th components of K.A/ and of K.A/n are given by

K.A/i D A ˝ AŠ�
	.i/ and K.A/n

i D An�	.i/ ˝ AŠ�
	.i/

with �.i/ D �N .i/ as in equation (?) in the Introduction. The differential on K.A/ is

ıi W K.A/i ! K.A/i�1 where ıi D
(

d N �1 for i even;

d for i odd:

Writing AC D L
n>0 An D AV as usual, we have

Ker ıi � ACK.A/i
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for all i . Indeed, this is clear for odd i , since ıi D d is injective on AŠ�
	.i/

. For even i ,

the restriction of ıi D d N �1 to AŠ�
	.i/

is given by d N �1 W AŠ�
	.i/

D AŠ�
	.i�1/CN �1

,!
V ˝.N �1/ ˝AŠ�

	.i�1/
��!� AN �1 ˝AŠ�

	.i�1/
,! A˝AŠ�

	.i�1/
where the first embedding

comes from (4.2).
Since AŠ�

	.1/
D AŠ�

1 D V and AŠ�
	.2/

D AŠ�
N D R by (4.1), the start of the Koszul

complex, augmented by the canonical map

A � k D A=AC

is as follows:

A ˝ R
ı2! A ˝ V

ı1Dmult�����! A ! k ! 0: (4.5)

This piece is easily seen to be exact: writing A D T.V /=I with I D .R/ D I ˝ V C
T.V / ˝ R as in equation (??) in the Introduction, the map T.V /C D T.V / ˝ V �
A ˝ V

ı1� AC has kernel I . Thus, Ker ı1 D I=I ˝ V D Im ı2. Hence (4.5) is the
start of the minimal graded-free resolution of the left A-module k.

4.3. N -homogeneous Koszul superalgebras. Recall from the Introduction that an
N -homogeneous superalgebra A is called N -Koszul if TorA

i .k; k/ is concentrated
in degree �N .i/ for all i � 0. By [5], Proposition 2.12, or [8], Theorem 2.4, this
happens exactly if the Koszul complex K.A/ is exact in degrees i > 0 and in view of
(4.5), this amounts to exactness of K.A/ in degrees i � 2. In this case,

K.A/ ! k ! 0

is the minimal graded-free resolution of the trivial left A-module k.
TheYoneda Ext-algebra E.A/ D L

i�0 Exti
A.k; k/ of an N -Koszul superalgebra

A has the following description in terms of the dual algebra AŠ:

Exti
A.k; k/ Š AŠ

	.i/ .i � 0/:

Moreover, identifying Exti
A.k; k/ and AŠ

	.i/
, the Yoneda product f � g and the AŠ-

product fg for f 2 Exti
A.k; k/ D AŠ

	.i/
and g 2 Extj

A.k; k/ D AŠ
	.j /

are related by

f � g D .�1/ij fg when N D 2, and

f � g D
(

fg if i or j is even;

0 if i and j are both odd

for N > 2; see [21], Theorem 9.1, [8], Proposition 3.1.

Example 4.1. Quadratic algebras having a PBW-basis are 2-Koszul; see, e.g., [41],
Chap. 4, Theorem 3.1. This applies in particular to quantum superspace A D A

f
q ;
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see Example 3.1. A PBW-basis in this case is given by the collection of ordered
monomials x

m1

1 x
m2

2 : : : x
md

d
with mi � 0 for all i and mi � 1 if Oi D N1, as in

Example 3.1. For a more general result, see [41], Chap. 4, Theorem 8.1.

Example 4.2. The unmixed Yang–Mills algebras A D YM˙ (see Example 3.2) were
shown to be 3-Koszul in [10], [11]. Indeed, letting AŒ`� denotes the shift of A that is
defined by AŒ`�n D A`Cn, the defining relations for A in the form (3.7) imply that
the following complex of graded-free left A-modules is exact:

0 ! AŒ�4�
�Y��! AŒ�3�d

�M��! AŒ�1�d
�Y tr

��! A ! k ! 0: (4.6)

The piece AŒ�3�d
�M��! AŒ�1�d

�Y tr

��! A ! k ! 0 is identical with (4.5). There-
fore, (4.6) is the minimal graded-free resolution of k. The resolution shows that each
TorA

i .k; k/ is concentrated in degree �3.i/, and hence A is 3-Koszul. It also follows
that (4.6) is isomorphic to K.A/ ! k ! 0. In particular, (4.6) confirms the dimen-
sions of the corresponding components AŠ

n in Example 3.7. As has been pointed out
in [10], [11], it follows from (4.6) that the Hilbert series HA.t/ D P

n�0 dimk An tn

of A D YM˙ has the form

HA.t/ D 1

1 � dt C dt3 � t4
D 1

.1 � t2/.1 � dt C t2/
:

If d > 2 then the series has a pole in the interval .0; 1/, and hence dimk An grows
exponentially with n. Therefore, A is not noetherian in this case; see Stephenson and
Zhang [42].

The mixed Yang–Mills algebras A D YMpjq with p ¤ 0 and q ¤ 0, on the
other hand, are never 3-Koszul. For YM1j1 this follows from the description given in
Example 3.2: this algebra has infinite global dimension. In general, one can check
that the so-called extra condition (see (4.10) below) fails for A, and so A cannot be
Koszul by [5], Prop. 2.7.

Example 4.3. It has been shown in [5], Theorem 3.13, that the N -symmetric algebra
SN .V / of a pure even space V over a field of characteristic 0 is N -Koszul. An
extension of this result will be offered in Theorem 4.5 below.

4.4. Confluence and Koszulity. For the convenience of the reader, we recall the
notions of reduction operators and confluence and their relation to the Koszul property.
Complete details can be found in Berger [4], [5].

Let V be in Vectsk with a graded basis X D fx1; : : : xd g that is ordered by
x1 > x2 > � � � > xd . The tensors (“monomials”) xi D xi1 ˝ xi2 ˝ � � � ˝ xiN

for i D .i1; i2; : : : ; iN / 2 f1; 2; : : : ; dgN form a basis of V ˝N which will be
given the lexicographical ordering. An X -reduction operator on V ˝N is a projection
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S 2 EndVectsk
.V ˝N / such that either S.xi / D xi or S.xi / < xi holds for each i ,

where the latter inequality means that S.xi / is a linear combination (possibly 0)
of monomials < xi . The monomials xi satisfying S.xi / D xi are called S -re-
duced, all other monomials are S -nonreduced. We denote by Red.S/ and NRed.S/)
the (super) subspaces of V ˝N that are generated by the S -reduced monomials and
the S -nonreduced monomials, respectively; so V ˝N D Red.S/ ˚ NRed.S/ and
Im.S/ D Red.S/.

Let LX .V ˝N / denote the collection of all X -reduction operators on V ˝N . The
proof of [4], Theorem 2.3, shows that the application S 7! Ker.S/ is a bijection
between LX .V ˝N / and the set of all supersubspaces of V ˝N . Hence LX .V ˝N /

inherits a lattice structure: for S; S 0 2 LX .V ˝N / one has X -reduction operators
S ^ S 0 and S _ S 0 on V ˝N which are defined by

Ker.S ^ S 0/ D Ker.S/ C Ker.S 0/;
Ker.S _ S 0/ D Ker.S/ \ Ker.S 0/:

A pair .S; S 0/ of X -reduction operators is said to be confluent if

Red.S _ S 0/ D Red.S/ C Red.S 0/:

Since the inclusion � is always true, confluence of .S; S 0/ is equivalent to the in-
equality

dimk Im.S _ S 0/ � dimk.Im.S/ C Im.S 0//: (4.7)

Let n � N . Any X -reduction operator S on V ˝N gives rise to X -reduction
operators Sn;i on V ˝n which are defined by

Sn;i ´ IdV ˝i ˝ S ˝ IdV ˝j .i C j C N D n/:

A monomial xi D xi1 ˝ xi2 ˝ � � � ˝ xin of length n � N is said to be S -reduced if
xi is Sn;i -reduced for all i , that is, if every connected submonomial of xi of length
N is S -reduced.

Now let A D A.V; R/ be an N -homogeneous superalgebra, and let S be the
X -reduction operator on V ˝N such that Ker.S/ D R. The algebra A is said to be
X -confluent if the pairs .SN Ci;i ; SN Ci;0/ of X -reduction operators on V ˝N Ci are
confluent for i D 1; : : : ; N � 1. By (4.7) this amounts to the inequalities

dimk Im.SN Ci;i _ SN Ci;0/ � dimk.Im.SN Ci;i / C Im.SN Ci;0// (4.8)

being satisfied for i D 1; : : : ; N � 1.
Following Berger [5], we denote by Tn the lattice of supersubspaces of V ˝n that

is generated by the subspaces

Rn;i ´ V ˝i ˝ R ˝ V ˝j D Ker.Sn;i / .i C j C N D n/: (4.9)
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The superalgebra A is said to be distributive if the lattices Tn are distributive for all n,
that is, C \ .D C E/ D .C \ D/ C .C \ E/ holds for all C; D; E 2 Tn.

The following proposition states the operative facts concerning Koszulity for our
purposes. Part (a) is identical with [5], Thm. 3.11, while (b) is [5], Prop. 3.4.

Proposition 4.4. Let A D A.V; R/ be an N -homogeneous superalgebra.

(a) If A is X -confluent for some totally ordered graded basis X of V then A is
distributive. Moreover, let S be the X -reduction operator on V ˝N such that
Ker.S/ D R. Then, for all n � N , the classes in A of the S -reduced monomials
xi1 ˝ xi2 ˝ � � � ˝ xin with xij 2 X form a k-basis of An .

(b) Assume that A is distributive and the following “extra condition” is satisfied:

RnCN;0 \ RnCN;n � RnCN;n�1 .2 � n � N � 1/: (4.10)

Then A is N -Koszul.

After these preparations, we are now ready to prove the following result. The
quadratic case N D 2 is due to Gurevich [22]; see also Wambst [44].

Theorem 4.5. Let N � 2 and 0 ¤ q 2 k and assume that Œn�q ¤ 0 for all
n � 1. Then, for every Hecke operator R associated with q, the N -homogeneous
superalgebra ΛR;N defined in (3.8) is N -Koszul.

Proof. Put A D ΛR;N and recall that A D A.V; R/ with

R D Im �N;R.XN / � V ˝N :

The extra condition (4.10) is a consequence of equation (1.19). Indeed, (1.19) implies
that the spaces Rn;i in (4.9) have the form

Rn;i D
iCN �1\
sDiC1

Im.�n;R.Ts/ C 1/ � V ˝n: (4.11)

Applying (4.11) with � D �nCN;R we see that the left-hand side of (4.10) is identical
to

N �1\
iD1

Im.�.Ti / C 1/ \
nCN �1\
iDnC1

Im.�.Ti / C 1/ D
nCN �1\

iD1

Im.�.Ti / C 1/

where the equality holds because nC1 � N . The last expression is clearly contained
in

TnCN �2
iDn Im.�.Ti / C 1/, which is identical to the right-hand side of (4.10). This

establishes the extra condition (4.10).
In order to prove the distributivity of A, we follow the approach taken in [25].

We first prove the claim for the standard solution RDJ , i.e., the operator given in
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Example 1.2 with d D p and q D 0. As above, fix a basis X D fx1; : : : ; xd g of V ,
ordered by x1 > x2 > � � � > xd , and consider the basis of V ˝n consisting of the
monomials xi D xi1 ˝ xi2 ˝ � � � ˝ xin for i D .i1; i2; : : : ; in/ 2 f1; 2; : : : ; dgn with
the lexicographical ordering. By equation (1.21), the action of the generators Tj of
the Hecke algebra H D Hn;q2 on this basis is given by

Tj .xi / D

8̂<
:̂

q2xi if ij D ij C1;

.q2 � 1/xi C qx�j .i / if ij < ij C1;

qx�j .i / if ij > ij C1:

(4.12)

Here, �j D .j; j C 1/ 2 Sn and �.i / D .i��1.1/; i��1.2/; : : : ; i��1.n// for � 2 Sn,
as in Example 3.3.

We claim that the H -submodule of V ˝n that is generated by xi is given by

H .xi / D
M

i 02Sn.i /

kxi 0 (4.13)

where Sn.i / is the Sn-orbit of i . Indeed, (4.12) implies that each T� .xi / with
� 2 Sn is a linear combination of basis vectors xi 0 with i 0 2 Sn.i /. Hence, �
certainly holds in (4.13). For the reverse inclusion, let i � denote the unique non-
decreasing sequence in Sn.i /; so xi � D maxfxi 0 j i 0 2 Sn.i /g. The last formula in
(4.12) implies that

T .xi / D qr.i /xi � (4.14)

where T is a suitable finite product of length r.i / � 0 in the generators Tj . Since T

is a unit in H , the inclusion � holds in (4.13), thereby proving the asserted equality.
Furthermore, (4.14) and (1.18) (with q replaced by q2) give

qr.i /Xn.xi / D Xn.xi �/: (4.15)

These elements are nonzero. For, (4.15) implies that the elements Xn.xi �/ span the
image of Xn on V ˝n, and their number is

�
dCn�1

n

�
which is equal to the rank of

Xn (cf. [25], Eq. (5)). It follows that Xn.V ˝n/ D Im �n;RDJ .Xn/ has a k-basis
consisting of the elements

fXn.xi �/ j i � D .i1 � i2 � � � � � in/ 2 f1; 2; : : : ; dgng:
Next, writing

Xn.xi / D
X

i 02Sn.i /

�i 0xi 0 (4.16)

with �i 0 2 k, we claim that

��j .i 0/ D
(

�i 0 if i 0 D �j .i 0/;
q˙1�i 0 otherwise:
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To prove this, we may assume that i 0 ¤ �j .i 0/. We compute the coefficient of x�j .i 0/

in Tj Xn.xi / in two ways: by (1.18) this coefficient is equal to q2��j .i 0/ while (4.12)
yields the expression q�i 0 C.q2 �q1˙1/��j .i 0/. The claim follows from this. Writing
an arbitrary � 2 Sn as a product of the inversions �j , we see that the coefficients
�i 0 in (4.16) only differ by a nonzero scalar, and hence they are all nonzero since
Xn.xi / ¤ 0.

By Proposition 4.4, it suffices to check the X -confluence conditions (4.8) for
i D 1; : : : ; N � 1. So let S be the X -reduction operator on V ˝N with Ker.S/ D
R. It is easy to see from the discussion above (with n D N ) that S is given by
S.xi �/ D .1 � XN =�i �/.xi �/ and S.xi / D xi for i ¤ i �. According to (4.11)
and the discussion above, the dimension of .R ˝ V ˝i / \ .V ˝i ˝ R/ is

�
dCN Ci�1

N Ci

�
.

Thus, the dimension of the left-hand side of (4.8) is d N Ci ��
dCN Ci�1

N Ci

�
. On the other

hand the monomials in V ˝N Ci that belong to NRed.SN Ci;i / \ NRed.SN Ci;0/ are
exactly those of the form xi � with i � 2 f1; : : : ; dgN Ci non-decreasing. Their number
is precisely

�
dCN Ci�1

N Ci

�
. Therefore, the dimension of Im.SN Ci;i / C Im.SN Ci;0/ D

Red.SN Ci;i /CRed.SN Ci;0/ is at least d N Ci ��
dCN Ci�1

N Ci

�
. This proves the inequality

in (4.8), thereby finishing the proof of the theorem for the case R D RDJ .
In order to deal with an arbitrary Hecke operator R, recall that Hn;q is split

semisimple, having a representative set of simple modules M� indexed by the parti-
tions � ` n; see (1.15). We denote the representation of Hn;q on M� by ��; it does
not depend on the operator R but only on the partition �.

Let us fix a decomposition

V ˝n D
M
t2T

Mt

into simple Hn;q-submodules Mt . Since all Mt are invariant under the operators
�n;R.Tj /, formula (4.11) yields the decomposition

Rn;i D
M
t2T

iCN �1\
sDiC1

.�n;R.Ts/ C 1/.Mt / D
M
t2T

Rn;i \ Mt

for all i . Thus, by [25], Lemma 1.2, distributivity of the lattice Tn that is generated
by the subspaces Rn;i of V ˝n is equivalent to distributivity of the lattices Tn \ Mt

(t 2 T ) that are generated by the subspaces

Rn;i \ Mt D
iCN �1\
sDiC1

.�n;R.Ts/ C 1/.Mt /

of Mt . Now, each Mt is isomorphic to M� for some � ` n. Therefore, the lattice
Tn \ Mt is isomorphic to the lattice of subspaces of M� that is generated by the
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subspaces
iCN �1\
sDiC1

.��.Ts/ C 1/.M�/

with i C N � n. Finally, when d D dim V > n, then all simple Hn;q-modules
M� appear in V ˝n; see [15], Proposition 5.1. Thus, the distributivity of the lattice
associated to RDJ , which we have already verified, implies the distributivity of the
corresponding lattice for any Hecke operator R. This completes the proof.

5. Koszul duality and master theorem

In this section, A D A.V; R/ denotes an N -homogeneous superalgebra that is as-
sumed to be N -Koszul (N � 2).

5.1. By Koszulity, the complexes

K.A/n W � � � ! An�	N .i/ ˝ AŠ�
	N .i/ ! An�	N .i�1/ ˝ AŠ�

	N .i�1/ ! : : : !An ! 0

are exact for n > 0. This yields equations in the Grothendieck ring Rend A of the
category comods

end A:X
i�0

.�1/i ŒAn�	N .i/�ŒA
Š�
	N .i/� D 0 .n > 0/: (5.1)

In the power series ring Rend A�t� over the Grothendieck ring Rend A, define the
Poincaré series

PA.t/ D
X
n�0

ŒAn�tn and PAŠ�.t/ D
X
n�0

ŒAŠ�
n �tn:

For any power series P.t/ D P
n antn, we use the notation

PN .t/ ´
X

n
0;1 mod N

.�1/˛N .n/antn

where ˛N .n/ D n � .n mod N / denotes the largest multiple of N less than or equal
to n. Thus, P2.t/ D P.t/ and in general

PN .�t / D
X

n
0;1 mod N

.�1/n mod N antn D
X
i�0

.�1/ia	N .i/t
	N .i/: (5.2)

In particular,
PAŠ�;N .�t / D

X
i�0

.�1/i ŒAŠ�
	N .i/�t

	N .i/:

Equations (5.1) are equivalent to the following Koszul duality formula:
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Proposition 5.1. For any N -homogeneous Koszul superalgebra A, the identity

PA.t/PAŠ�;N .�t / D 1

holds in Rend A�t�.

Applying the ring homomorphism 
s�t� W Rend A�t� ! .end A/ N0�t�, where 
s is
the supercharacter map as in Corollary 2.3, the formula in Proposition 5.1 takes the
following form in .end A/ N0�t�:

Corollary 5.2.� X
`


s
A`

t`
�

�
� X

m
0;1 mod N

.�1/m mod N 
s

AŠ�
m

tm
�

D 1:

Analogous formulas hold with the supercharacter 
s replaced by the ordinary
character 
 or by one of the dimensions dim and sdim.

By (3.32) the coaction of end A on A sends An to An ˝ .end A/n. A similar
remark holds for the end A-coaction on AŠ�; see §4.1. Therefore, both factors in
Corollary 5.2 actually belong to the Rees subring

Q
n�0 Bntn of B�t�, where we have

put B D .end A/ N0.

Example 5.3. As an application of the Hilbert series version of Corollary 5.2, we see
that the duals AŠ of the Yang–Mills algebras A D YMpjq are never 3-Koszul. In fact,
by Example 3.7, we have HAŠ.t/ D 1Cdt Cd 2t2 Cdt3 C t4 if p D 0 or q D 0 and
HAŠ.t/ D 1 C dt C d 2t2 C dt3 otherwise. In either case, HAŠ.t/�1 has a nonzero
coefficient at t5, which rules out Koszulity.

5.2. A master theorem modeled on the N -symmetric superalgebra SN .V /. We
put A D SN .V / and use the notation of Examples 3.3 and 3.8. In particular, we
assume that char k D 0 and work with a fixed basis x1; : : : ; xd of V D A1 so that
Oi D N0 for i � p and Oi D N1 for i > p.

From Example 3.3 (see also Proposition 4.4 (a)), we know that a basis ofA` is given
by the monomials xi D xi1xi2 : : : xi` for sequences i D .i1; : : : ; i`/ 2 f1; : : : ; dg`

such that i has no connected subsequence j D .j1; : : : ; jN / of length N satisfying

1 � j1 < � � � < jm � p < jmC1 � � � � � jN � d D p C q

for some m. Adapting notation of Etingof and Pak [16] to our setting, we denote this
set of sequences i by

ƒ.pjq; N /`: (5.3)

For example, ƒ.pjq; 2/` consists of all weakly decreasing sequences i D .i1; : : : ; i`/

with entries from f1; : : : ; dg and such that no repetition occurs in the range
fp C 1; : : : ; dg.
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In order to evaluate the character 
s
A`

in Corollary 5.2, recall from (3.34) that the
coaction ıA W A ! A ˝ end A is given on the generators xi of A by

ıA.xi / D
X

j

xj ˝ z
j
i 2 A ˝ end A

where z
j
i D xj ˝ xi are the canonical generators of the algebra end A. For i D

.i1; : : : ; i`/ 2 ƒ.pjq; N /`, we have

ıA.xi / D ıA.xi1/ıA.xi2/ : : : ıA.xi`/ 2 A` ˝ end A:

Since A` ˝ end A D L
i2ƒ.pjq;N /`

xi ˝ end A, we can define Z.i / 2 .end A/ N0 by

ıA.xi / D xi ˝ Z.i / C .terms supported on ƒ.pjq; N /` n fi g/:
Then (2.8) becomes


s
A`

D
X

i2ƒ.pjq;N /`

.�1/
Oi Z.i / (5.4)

with Oi D yi1 C � � � C yi`.
Now consider the superbialgebra B D O.E.V // D kŒxi

j j 1 � i; j � d� defined

in §2.5.3 and recall that the xi
j are supercommuting variables of parity Oi C Oj over k.

Restricting the comodule A` to B along the map ' W end SN .V / ! B, zi
j 7! xi

j in
(3.35) we must replace Z.i / in (5.4) by X.i / ´ '.Z.i // 2 B N0. Thus, writing

yi D
X

j

xj ˝ x
j
i 2 A ˝ B

and yi D yi1 : : : yi` 2 A` ˝ B D L
j 2ƒ.pjq;N /`

xj ˝ B for i D .i1; : : : ; i`/, we
have

yi D xi ˝ X.i / C .terms supported on ƒ.pjq; N /` n fi g/: (5.5)

As for the supercharacter of AŠ�
m , recall from (4.1) and (3.15) that, for all n � N ,

AŠ�
n D

\
iCj CN Dn

V ˝i ˝ R ˝ V ˝j D ΛnV:

Viewing AŠ�
n D ΛnV as a comodule over B D O.E.V //, the supercharacter of AŠ�

n is
the nth elementary supersymmetric function en which we know, by Proposition 2.4,
to be identical to the coefficient at tn of the characteristic function ber.1 C tX/

of the generic supermatrix X D �
xi

j

�
1	i;j 	d

of type pjq; so the diagonal blocks

X11 D �
xi

j

�
1	i;j 	p

and X22 D �
xi

j

�
pC1	i;j 	pCq

consist of even entries while all
other entries are odd.

To summarize, we obtain the following super-version of [16], Theorem 2.
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Theorem 5.4. Let X D �
xi

j

�
d�d

be the generic supermatrix of type pjq. Then

� X
`

X
i 2ƒ.pjq;N /`

.�1/
Oi X.i / t`

�
�
� X

m
0;1 mod N

.�1/m mod N emtm
�

D 1

holds in the power series ring kŒxi
j j all i; j � N0�t�. Here ƒ.pjq; N /` and X.i / are

defined by (5.3) and (5.5), respectively, and the em are the coefficients of the charac-
teristic function ber.1 C tX/ D P

n�0 entn of X .

5.3. As an application of Theorem 5.4, we determine the superdimension Hilbert
series

H s
A.t/ D

X
`�0

sdimk A` t`

for the N -symmetric superalgebra A D SN .V /. For the pure even case, this was
already done by Etingof and Pak [16]. The notations of §5.2 remain in effect.

In view of Corollary 2.3, the superdimension Poincaré series follows by applying
the counit " W B ! k to the equation in Theorem 5.4. Indeed, by (2.11), the counit "

sends X 7! 1d�d , and hence the elements X.i / in (5.5) all map to 1. Therefore, the
first factor in Theorem 5.4 becomes

H s
A.t/ D

X
`�0

� X
i2ƒ.pjq;N /`

.�1/
Oi �

t`:

For the second factor, note that

ber.1 C t 1d�d / D .1 C t /p�q

by (2.12). Thus,

H s
A.t/ D

X
`�0

� X
i2ƒ.pjq;N /`

.�1/
Oi �

t`

D

8̂<
:̂

� P
m
0;1 mod N

.�1/m mod N
�

p�q
m

�
tm

��1
if p � q;� P

m
0;1 mod N

.�1/˛N .m/
�

mCq�p�1
q�p�1

�
tm

��1
if p < q;

(5.6)

where ˛N .m/ D m� .m mod N / denotes the largest multiple of N less than or equal
to m as in §5.1.

5.4. The ordinary Hilbert series HA.t/ D P
`�0 dimk A` t` of the N -symmetric

superalgebra A D SN .V / is as follows. Recall from §5.2 that

dimk A` D jƒ.pjq; N /`j
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and from (3.16) that

dimk AŠ
n D

(
d n if n < N ;P

rCsDn

�
p
r

��
qCs�1

s

�
if n � N :

Therefore, the Hilbert series is

HA.t/ D
X
`�0

jƒ.pjq; N /`j t`

D
� X

m
0;1 mod N

.�1/m mod N
� X

rCsDm

�
p
r

��
qCs�1

s

��
tm

��1

:
(5.7)

5.5. Less is known about the Hilbert series of the N -homogeneous superalgebras
A D ΛR;N associated to an arbitrary Hecke operator R W V ˝2 ! V ˝2 on a vector
superspace V ; see Example 3.4. Recall that A D A.V; R/ with R D Im �R.XN / �
V ˝N . For any N -homogeneous algebra A D A.V; R/, we have

dimk AŠ
n D dimk

\
iCj CN Dn

V ˝j ˝ R ˝ V ˝i

by (3.10) and (3.11). For R D Im �R.XN / in particular, (1.19) further implies that\
iCj CN Dn

V ˝j ˝ R ˝ V ˝i D �R.Xn/.V ˝n/

holds for n � N . Now [26], Theorem 3.5, implies that

HΛR;2
Š.t/ D

Qr
`D1.1 C a`t /Qs
mD1.1 � bmt /

;

where .r; s/ is the birank of R and a` and bm are positive real numbers. For example,
in the situation of 5.4, .r; s/ D .p; q/ and a` D bm D 1.

For any complex power series P.t/, the power series PN .�t / in (5.2) can be
written as

PN .�t / D 1

N

N �1X
iD1

.1 � ��i
N /P.�i

N t /

where �N D e2�i=N . In particular,

HAŠ�;N .�t / D 1

N

N �1X
iD1

.1 � ��i
N /

Qr
`D1.1 C a`�i

N t /Qs
mD1.1 � bm�i

N t /

D QN;a;b.t/Qs
mD1.1 C bmt C � � � C bN �1

m tN �1/
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for some real polynomial QN;a;b.t/ with coefficients being polynomial in a D .a`/

and b D .bm/. Therefore, the Hilbert series of A has the form

HA.t/ D
Qs

mD1.1 C bmt C � � � C bN �1
m tN �1/

QN;a;b.t/
: (5.8)

Notice that the fraction on the right-hand side is reduced.
In particular, (5.7) has the form

HA.t/ D .1 � tN /s

.1 � t /sQN;1;1.t/
: (5.9)

Appendix

For lack of a suitable reference, we include here a proof of the proposition that was
stated in the Introduction. Our proof is based on the proof of [8], Proposition 2.1, and
on additional details that were communicated to us by Roland Berger. For the basics
concerning graded algebras, we refer the reader to [9], Chap. II §11, or [6].

As in the Introduction, A D L
n�0 An denotes an arbitrary connected Z�0-graded

k-algebra and V is a graded subspace of AC D L
n>0 An satisfying AC D V ˚A2C.

Thus, T.V /=I ��!� A for some graded ideal I of T.V /. For convenience, we state the
proposition again:

Proposition. The relation ideal I of A lives in degrees � N if and only if TorA
i .k; k/

lives in degrees � �N .i/ D
(

i
2
N if i is even;

i�1
2

N C 1 if i is odd:

Proof. Let

P W � � � ! Pi

di��! Pi�1

di�1��! : : :
d1��! P0

d0��! k ! 0

be a minimal graded-free resolution of the trivial left A-module k. Thus, all Pi have
the form Pi D A ˝ Ei for some graded subspace Ei � Ker di�1 which is chosen so
that

Ker di�1 D Ei ˚ AC Ker di�1: (A.1)

In particular, we may take E0 D k and E1 D V . The differential di W Pi ! Pi�1 is
the graded A-module map that is defined by the inclusion Ei ,! Pi�1. By the graded
Nakayama Lemma (e.g., [9], Prop. 6, p. AII.171) our choice of Ei implies that

Im di D AEi D Ker di�1 and Ker di � AC ˝ Ei D ACPi (A.2)
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for all i . Consequently, the complex k ˝A P has zero differential, and hence

TorA
i .k; k/ Š k ˝A Pi Š Ei :

In particular,

TorA
0 .k; k/ Š k and TorA

1 .k; k/ Š V D AC=A2C

live in degrees 0 D �N .0/ and � 1 D �N .1/, respectively. Moreover, the kernel of
d1 W P1 D .T.V /=I / ˝ V ! P0 D A is exactly I=I ˝ V , and so

TorA
2 .k; k/ Š Ker d1=AC Ker d1 Š I=.V ˝ I C I ˝ V /:

Thus, I lives in degrees � N if and only if TorA
2 .k; k/ lives in degrees � N D �N .2/.

For the remainder of the proof, assume that I lives in degrees � N . We will
show by induction on i that TorA

i .k; k/ D Ei lives in degrees � �N .i/ for all i . The
cases i � 2 have been checked above. Assume that Ei lives in degrees � �N .i/

and similarly for Ei�1. By (A.2), we know that EiC1 � Ker di � AC ˝ Ei and
so EiC1 certainly lives in degrees � �N .i/ C 1. Since �N .i/ C 1 D �N .i C 1/

when i is even (or when i is arbitrary and N D 2), we are done in these cases.
From now on, we assume that i is odd. We must show that EiC1 lives in degrees
� �N .i C 1/ D iC1

2
N . Since EiC1 � Ker di , it suffices to show that di is injective

in degrees < iC1
2

N , and since Ei lives in degrees � �N .i/ D i�1
2

N C 1, our goal
is to show that di is injective on all homogeneous components Pi;n of Pi in degrees
n D i�1

2
N C j with j D 1; : : : ; N � 1. Put m D i�1

2
N for simplicity and note that

Pi;mCj D
jM

`D1

Aj �` ˝ Ei;mC` (A.3)

and

Pi�1;mCj D
jM

kD0

Aj �k ˝ Ei�1;mCk (A.4)

since Ei�1 lives in degrees � �N .i �1/ D m. The proposition will be a consequence
of the following claims:

(a) di is injective on all summands Aj �` ˝ Ei;mC` in (A.3), and

(b) the subspaces di .Aj �` ˝Ei;mC`/ D Aj �`Ei;mC` for ` D 1; : : : ; j form a direct
sum inside Pi�1;mCj .

In order to prove (a), recall that the restriction of di to Ei;mC` is the inclusion

Ei;mC` ,! Pi�1;mC` D
M̀
kD0

A`�k ˝ Ei�1;mCk :
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Hence, the effect of di on the `th summand in (A.3) is the embedding

Aj �` ˝ Ei;mC` ,!
M̀
kD0

Aj �` ˝ A`�k ˝ Ei�1;mCk;

followed by the map

M̀
kD0

Aj �` ˝ A`�k ˝ Ei�1;mCk !
M̀
kD0

Aj �k ˝ Ei�1;mCk � Pi�1;mCj

which is given by the multiplication map Aj �` ˝ A`�k ! Aj �k . Since j � k < N ,
our hypothesis on I implies that Aj �k Š T.V /j �k , and similarly Aj �` Š T.V /j �`

and A`�k Š T.V /`�k . Therefore, the above multiplication map is identical with the
injection T.V /j �` ˝ T.V /`�k ,! T.V /j �k in T.V /. This proves (a).

For (b), we proceed by induction on j . The case j D 1 being obvious, let 1 �
j � N �2 and assume that (ii) holds for 1; : : : ; j . We wish to show that the subspaces
Aj C1�`Ei;mC` (` D 1; : : : ; j C 1) of Pi�1;mCj C1 form a direct sum. First, by (A.1)
we have Ei;mCj C1 \AC Ker di�1 D 0 while

Pj

`D1
Aj C1�`Ei;mC` � AC Ker di�1.

Therefore, it suffices to show that the sum
Pj

`D1
Aj C1�`Ei;mC` is direct. To this

end, note that Aj C1�` D P
d�1 VdAj C1�d�` holds for all ` � j . Hence,

jX
`D1

Aj C1�`Ei;mC` D
X
d�1

Vd

jX
`D1

Aj C1�d�`Ei;mC`:

By induction,
Pj

`D1
Aj C1�d�`Ei;mC` is a direct sum inside Pi�1;mCj C1�d . Thus, it

suffices to show that the sum
P

d�1 Vd Pi�1;mCj C1�d � Pi�1;mCj C1 is direct. But
(A.4) gives

Pi�1;mCj C1 D
j C1M
kD0

Aj C1�k ˝ Ei�1;mCk D
j C1M
kD0

T.V /j C1�k ˝ Ei�1;mCk;

where the last equality holds since all j C 1 � k < N . Therefore,

X
d�1

Vd Pi�1;mCj C1�d D
M
d�1

Vd ˝
j C1�dM

kD0

T.V /j C1�d�k ˝ Ei�1;mCk

as desired. This proves (b), thereby completing the proof of the proposition.
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