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Pseudo-multiplicative unitaries on C*-modules
and Hopf C*-families I

Thomas Timmermann

Abstract. Pseudo-multiplicative unitaries on C*-modules generalize the multiplicative uni-
taries of Baaj and Skandalis [1], and are analogues of the pseudo-multiplicative unitaries on
Hilbert spaces studied by Enock, Lesieur, Vallin [5], [10], [21]. We introduce Hopf C*-families
on C*-bimodules and associate to special classes of pseudo-multiplicative unitaries two Hopf
C*-families. Furthermore, we discuss dual pairings and counits on these Hopf C*-families,
étalé and proper pseudo-multiplicative unitaries, and two classes of examples. In a later arti-
cle, we will study regularity conditions on pseudo-multiplicative unitaries, coactions of Hopf
C*-families on C*-algebras, and duality.
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1. Introduction

Multiplicative unitaries, introduced by Baaj and Skandalis [1], play a central rôle in
operator-algebraic approaches to quantum groups and to generalizations of Pontrjagin
duality: To each locally compact quantum group – that is, a Hopf C*-algebra equipped
with a Haar weight – one can associate a manageable multiplicative unitary [7], [8],
[11], and to every manageable multiplicative unitary, one can associate a pair of Hopf
C*-algebras called the legs of the unitary [23]. One of these legs coincides with the
initial quantum group, and the other is its Pontrjagin dual. A remarkable feature of
the theory of quantum groups is the close interplay between the C*-algebraic (i.e.,
topological) and the von Neumann algebraic (i.e., measurable) level.

In the setting of von Neumann algebras, the theory of quantum groups was ex-
tended to a theory of measured quantum groupoids by Lesieur [10], building on work
of Vallin and Enock [5], [6], [21]. Central concepts in this theory are Hopf–von
Neumann bimodules and pseudo-multiplicative unitaries on Hilbert spaces, which
generalize Hopf C*-algebras and multiplicative unitaries, respectively. Each measur-
able quantum groupoid gives rise to a manageable pseudo-multiplicative unitary, and
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each such unitary gives rise to a pair of Hopf–von Neumann bimodules called the legs
of the unitary.

In the setting of C*-algebras, a theory of quantum groupoids is still elusive. The
proper analogue of a (pseudo-)multiplicative unitary on Hilbert spaces – a pseudo-
multiplicative unitary on C*-modules – is defined in this article; special examples
were already discussed by O’uchi [13], [14]. The proper analogue of the notion of
a Hopf C*-algebra and of a Hopf–von Neumann bimodule, however, is not known.
The problem is to define the target of the comultiplication, which should be some
fiber product of C*-algebras. In particular, it is not clear how to define the legs
of a general pseudo-multiplicative unitary on C*-modules [15]. In this article, we
propose a solution for this problem in a special case. We introduce C*-families which
generalize C*-algebras, and define an internal tensor product of C*-families that leads
to the notion of a Hopf C*-family. Given these notions, we can define the legs of
suitable pseudo-multiplicative unitaries in the form of Hopf C*-families.

This work was supported by the SFB 478 “Geometrische Strukturen in der Mathe-
matik”. The article is an extract from my PhD thesis, which was supervised by Joachim
Cuntz. In subsequent articles, we will discuss regularity conditions for pseudo-multi-
plicative unitaries, coactions on C*-algebras, and a duality theorem for such coactions.

Organization of the article. This article is organized as follows. First, we define
pseudo-multiplicative unitaries on C*-modules and present two examples related to
groupoids and to center-valued conditional expectations (Section 2). We explain the
problems that obstruct the definition of the legs of a pseudo-multiplicative unitary,
and outline our plan for a partial solution.

In Section 3, we introduce a general calculus of homogeneous operators on C*-
bimodules. These operators twist the left and right module multiplication by some
partial automorphisms of the underlying C*-algebras and have “twisted” adjoints.
Moreover, we define C*-families of such operators and study homogeneous elements
of C*-bimodules.

Using these concepts, we associate to each pseudo-multiplicative unitary two
families of homogeneous operators (Section 4). Under certain assumptions, these
families represent the legs of the unitary. We determine the legs of the unitaries
considered in Section 1, and show that they are C*-families.

Next, we introduce internal tensor products and morphisms of C*-families, which
enter the definition of a Hopf C*-family (Section 5). As a tool, we construct a
functorial embedding of C*-families into C*-algebras.

In Section 6, we return to pseudo-multiplicative unitaries on C*-modules and in-
troduce comultiplications on their legs. We study the examples introduced in Section 1
and show that these examples yield Hopf C*-families.

Finally, we discuss further properties of the legs like dual pairings, counits, fixed
and cofixed elements (Section 7), and study those concepts for the examples mentioned
before.
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Conventions and preliminaries. Given a subset Y of a normed spaceX , we denote
by ŒY � � X the closed linear span of Y .

Recall that a partial automorphism of a C*-algebra B is a �-isomorphism
� W Dom.�/ ! Im.�/, where Dom.�/ and Im.�/ are closed ideals of B . Since
the composition and the inverse of partial automorphisms are partial automorphisms
again, the set PAut.B/ of all partial automorphisms of B forms an inverse semigroup
[16]. We denote the inverse of a partial automorphism � by ��. Let �; � 0 2 PAut.B/.
We say that� 0 extends� and write� 0 � � iff Dom.�/ � Dom.� 0/ and� 0jDom.�/ D � .
We put�^� 0 ´ maxf� 00 2 PAut.B/ j � 00 � �; � 00 � � 0g; thus, �^� 0 D � jI D � 0jI ,
where I � Dom.�/ \ Dom.� 0/ is the largest ideal on which � and � 0 coincide.

We consider (right) C*-modules, also known as Hilbert C*-modules or Hilbert
modules, see, e.g., [9].

All sesquilinear maps (as, e.g., the inner product of a Hilbert space or a C*-module)
are assumed to be conjugate-linear in the first component and linear in the second one.

LetA,B be C*-algebras. Given C*-modulesE, F overB , we denote the set of all
adjointable operators E ! F by LB.E; F /, and the subset of all compact operators
by KB.E; F /.

A right C*-A-B-bimodule is a C*-module E over B with a fixed non-degenerate
�-homomorphism � W A ! LB.E/. If the representation � is understood, we loosely
call E a right C*-bimodule and write b� for �.b/�, where b 2 B , � 2 E; otherwise,
we denote the right C*-bimodule by �E. Given right C*-A-B-bimodules E, F , we
put LA

B.E; F / ´ fT 2 LB.E; F / j aT � D Ta� for all a 2 A; � 2 Eg.
Given a C*-A-moduleE and right C*-A-B-bimodule F , one can form an internal

tensor product E ˝A F , which is a C*-module over B [9], Chapter 4. It is densely
spanned by elements �˝A �, where � 2 E, � 2 F , such that h�0 ˝A �

0 j�˝A �i D
h� 0 jh�0 j�i�i and .� ˝A �/b D � ˝A �b. We denote the internal tensor product by
“�”; thus, for example, E � F D E ˝A F .

Given E and F as above, one can also form a flipped internal tensor product
F � E: we equip the algebraic tensor product F ˇ E with the structure maps
h� 0 ˇ �0 j� ˇ �i ´ h� 0 jh�0 j�i�i, .� 0 ˇ �0/b ´ � 0b ˇ �0, and by factoring out the
null-space of the semi-norm � 7! kh� j�ik1=2 and taking completion, we obtain a
C*-B-module F �E. It is densely spanned by elements ���, where � 2 E, � 2 F ,
such that h� 0 � �0 j� � �i D h� 0 jh�0 j�i�i and .� � �/b D �b � �.

The usual and the flipped internal tensor product are related by a unitary map
† W F �E ��!Š E � F , �� � 7! � � �.

If we want to emphasize that the factor F of a (flipped) internal tensor product
E�F (or F �E) is considered as a right C*-bimodule via a fixed representation � ,
we denote the product by E � �F (or F� �E, respectively).

We shall frequently use the following result [3], Proposition 1.34:

Proposition 1.1. Let E1; E2 be C*-A-modules, let F1, F2 be C*-A-B-bimodules,
and let S 2 LA.E1; E2/, T 2 LA

B.F1; F2/. Then there exists a unique operator
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S � T 2 LB.E1 � F1; E2 � F2/ such that .S � T /.� � �/ D S� � T � for all
� 2 E1, � 2 F1. Moreover, .S � T /� D S� � T �.

The (flipped) internal tensor product of C*-bimodules is a C*-bimodule in a natural
way, and the (flipped) internal tensor product is associative in a natural sense. More
generally, (flipped) internal tensor products can be iterated in a natural way, and the
C*-module obtained does not essentially depend on the order in which the tensor
products are formed.

2. Pseudo-multiplicative unitaries

Recall that a multiplicative unitary [1], Définition 1.1, on a Hilbert space H is
a unitary V W H ˝ H ! H ˝ H that satisfies the so-called pentagon equation
V12V13V23 D V23V12. Here, V12; V13; V23 are operators onH ˝H ˝H , defined by
V12 D V ˝ id, V23 D id ˝V , V13 D .†˝ id/V23.†˝ id/ D .id ˝†/V12.id ˝†/,
where † 2 B.H ˝ H/ denotes the flip � ˝ � 7! � ˝ �. We extend this concept,
replacing H by a C*-module E with representations Ǒ; ˇ.

Throughout this section, let B be a C*-algebra.

Definition 2.1. A C*-trimodule .E; Ǒ; ˇ/ over B is a full C*-B-module E with two
commuting non-degenerate faithful representations Ǒ; ˇ of B on E.

Let .E; Ǒ; ˇ/ be a C*-trimodule over B . Using Proposition 1.1, we define repre-
sentations ˇ1, Ǒ

2, ˇ2 of B on E Ǒ �E by ˇ1.b/ ´ ˇ.b/ � 1, Ǒ
2.b/ ´ 1 � Ǒ.b/,

ˇ2.b/ ´ 1�ˇ.b/ for all b 2 B , and similarly representations ˇ1, Ǒ
1, Ǒ

2 onE�ˇE.
From Proposition 1.1 we deduce:

Lemma 2.2. Let W 2 LB.E Ǒ �E;E � ˇE/, and assume that for all b 2 B ,

Wˇ2.b/ D Ǒ
1.b/W; Wˇ1.b/ D ˇ1.b/W; W Ǒ

2.b/ D Ǒ
2.b/W: (1)

Then all operators in the following diagram are well defined:

E � ˇE Ǒ �E
1�W

����������������W �1
�����������

E Ǒ �E Ǒ �E

1�W ����
��

��
E � ˇE � ˇEI

E Ǒ � .E � ˇE/

1�†
��

.E Ǒ �E/� ˇE

W �1

���������

E Ǒ �Eˇ �E
W �1

�� .E � ˇE/ Ǒ
1
�E

†23

��

(2)



Pseudo-multiplicative unitaries on C*-modules and Hopf C*-families I 501

where †23 is given by .�1 � �2/� �3 7! .�1 � �3/� �2 for all �1, �2, �3 2 E.

Extending the leg notation to the operators in diagram (2), we writeW12 forW �1
and W � 1, W23 for 1 � W and 1 � W , and W13 for †23.W � 1/.1 � †/. Then
diagram (2) commutes iff W12W13W23 D W23W12.

Definition 2.3. Suppose that .E; Ǒ; ˇ/ is a C*-trimodule over B . We call a unitary
W 2 LB.E Ǒ � E;E � ˇE/ pseudo-multiplicative iff it satisfies the intertwining
conditions (1) and diagram (2) commutes.

For commutative B , Definition 2.3 subsumes the following special cases:

(i) If B D C, then ˇ.�/� D �� D Ǒ.�/� for all � 2 C, � 2 E, and W is a
multiplicative unitary in the sense of Baaj and Skandalis [1].

(ii) If ˇ.b/� D �b D Ǒ.b/� for all � 2 E, b 2 B , then W is a continuous field of
multiplicative unitaries as defined by Blanchard [2].

(iii) If Ǒ.b/� D �b for all � 2 E, b 2 B , then W is a pseudo-multiplicative unitary
in the sense of O’uchi [13].

Clearly Definition 2.3 is a C*-algebraic analogue of the definition of pseudo-multi-
plicative unitaries on Hilbert spaces given by Vallin [21].

Remark 2.4. Let .E; Ǒ; ˇ/ andW W E Ǒ �E ! E�ˇE be as in Definition 2.3. Then
.E; ˇ; Ǒ/ is a C*-trimodule over B , and the unitary W op ´ †W �† W Eˇ � E !
E � ǑE, called the opposite of W , is pseudo-multiplicative.

Let us turn to the fundamental example discussed already in [13], the pseudo-
multiplicative unitary associated to a locally compact groupoid. For background on
groupoids and Haar systems see, e.g., [17] or [16].

Example 2.5. Let G be a locally compact, Hausdorff, second countable groupoid
with left Haar system �. We denote its unit space by G0, its range map by rG , its
source map by sG , and put Gu ´ r�1

G .fug/ for u 2 G0.
Let B ´ C0.G

0/. Denote by L2.G; �/ the C*-module over B associated
to G and �; this is the completion of the pre-C*-module Cc.G/, where
h� 0 j�i.u/ D R

Gu � 0.x/�.x/ d�u.x/ and .�f /.x/ D �.x/f .rG.x// for all u 2 G0,
x 2 G, �; � 0 2 Cc.G/, f 2 B . Define representations r; s W B ! LB.L

2.G; �//

by .r.f /�/.x/ ´ f .rG.x//�.x/ and .s.f /�/.x/ ´ f .sG.x//�.x/ for x 2 G,
� 2 Cc.G/, f 2 B . Then .E; Ǒ; ˇ/ ´ .L2.G; �/; s; r/ is a C*-trimodule over B .
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For k D r; s, putG2
k;r

´ f.x; y/ 2 G�G j kG.x/ D rG.y/g. ConsiderCc.G
2
s;r/

and Cc.G
2
r;r/ as pre-C*-modules over B via the structure maps

h�0 j�i.u/ ´
Z

Gu

Z
GsG .x/

�0.x; y/�.x; y/ d�sG.x/.y/d�u.x/ for Cc.G
2
s;r/;

h�0 j�i.u/ ´
Z

Gu

Z
Gu

�0.x; y/�.x; y/ d�u.y/d�u.x/ for Cc.G
2
r;r/;

.�f /.x; y/ ´ �.x; y/f .rG.x// for both;

and denote by L2.G2
s;r/ and L2.G2

r;r/ the respective completions. Then it is easy to
see that E Ǒ �E Š L2.G2

s;r/ and E � ˇE Š L2.G2
r;r/.

The map W0 W Cc.G
2
s;r/ ! Cc.G

2
r;r/, .W0�/.x; y/ ´ �.x; x�1y/, extends to a

pseudo-multiplicative unitary WG W E Ǒ �E ! E � ˇE [13]. Indeed, W0 is a linear

bijection because it is the transpose of a homeomorphism G2
r;r ! G2

s;r , it extends
to a unitary WG because � is left-invariant, and a routine calculation shows that WG

satisfies the pentagon equation.
The pseudo-multiplicative unitary WG is closely related to the pseudo-multi-

plicative unitary on Hilbert spaces associated to G in [21]; see [13].

The following example is a C*-algebraic analogue of a pseudo-multiplicative
unitary on Hilbert spaces considered by Lesieur [10], Section 7.6.

Example 2.6. Let B be a unital C*-algebra, C � Z.B/ a C*-subalgebra contain-
ing 1B , and 	 W B ! C a faithful conditional expectation, that is, a faithful positive
C -linear map such that 	 jC D idC . We associate to 	 a pseudo-multiplicative unitary
W� as follows.

First, consider B as a pre-C*-module over C via the inner product
ha0jai ´ 	.a0�a/ and via right multiplication, and denote by B� the completion.
Next consider B as a right C*-B-B-bimodule in the natural way, and denote by
E ´ B� � B the internal tensor product over C . Thus E is generated by elements
a� b, where a; b 2 B , and ha0 � b0ja� bi D b0�	.a0�a/b, .a� b/b0 D a� bb0 for
all a; b; a0; b0 2 B .

Routine arguments show that there exist representations Ǒ; ˇ W B ! LB.E/ such
that Ǒ.b0/.a� b/ ´ b0a� b and ˇ.b0/.a� b/ ´ a� b0b for all a; b; b0 2 B; here
we use 	.B/ � Z.B/. Evidently .E; Ǒ; ˇ/ is a C*-trimodule.

We claim that there exist unitaries

X W E Ǒ �E ! B� � B� � B; .a � b/� .c � d/ 7! da � c � b;

Y W E � ˇE ! B� � B� � B; .a � b/� .c � d/ 7! a � c � bd:
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Indeed, for x ´ .a � b/� .c � d/ and y ´ .a � b/� .c � d/ as above,

kXxk2 D kb�	.c�	.a�d�da/c/bk D kb�	.a�d�	.c�c/da/bk D kxk2;

kYyk2 D kd�b�	.c�	.a�a/c/bdk D kd�	.c�c/b�	.a�a/bdk D kyk2I
here we use 	.B/ � Z.B/ and 	.e	.f // D 	.e/	.f / for e; f 2 B . Now consider
the unitary W� ´ Y �X W E Ǒ �E ! E � ˇE. Explicitly,

W� ..a � b/� .c � d// D .da � b/� .c � 1/ for all a; b; c; d 2 B; (3)

since Y..da� b/� .c� 1// D da� c� b D X..a� b/� .c� d//. The following
calculations show that W� is pseudo-multiplicative: for a; b; c; d; e; f; g 2 B ,

.a � b/� .c � d/
� ˇ1.e/ˇ2.f / Ǒ

2.g/ ��
�

W�

��

.a � eb/� .gc � fd/
�

W�

��
.da � b/� .c � 1/

�

ˇ1.e/ Ǒ
1.f / Ǒ

2.g/

�� .fda � eb/� .gc � 1/;

.da � b/� .c � 1/� .e � f /
� .W� /23

��
.a � b/� .c � d/� .e � f /

�

.W� /12 ��

�
.W� /23

��

.da � b/� .fc � 1/� .e � 1/

.a � b/� ..fc � d/� .e � 1//
�

.W� /13

�� ..a � b/� .fc � d//� .e � 1/:
�

.W� /12

��

As indicated in the introduction, multiplicative unitaries are closely related to Hopf
C*-algebras. Recall that a Hopf C*-algebra (more precisely, bisimplifiable C*-bial-
gebra, see also [1]) is a C*-algebra A with a �-homomorphism 
 W A ! M.A˝A/

such that Œ
.A/.A˝1/� D A˝A D Œ
.A/.1˝A/� and .id ˝
/B
 D .
˝ id/B

as maps A ! M.A˝A˝A/; note that id ˝
 and 
˝ id extend to M.A˝A/ by
the first assumption. HereA˝A denotes the minimal tensor product. Now each well
behaved (e.g., regular [1] or manageable [23]) multiplicative unitary V on a Hilbert
spaceH yields two Hopf C*-algebras . OA.V /; O
/ and .A.V /;
/, called the legs of V ,
as follows [1]. Denote by L.H/� the predual of L.H/. Each ! 2 L.H/� yields
slice maps id N̋ !, ! N̋ id W L.H ˝H/ ! L.H/. Then

OA.V / D spanf.id N̋ !/.V / j ! 2 L.H/�g � L.H/; O
. Oa/ D V �.1˝ Oa/V;
A.V / D spanf.! N̋ id/.V / j ! 2 L.H/�g � L.H/; 
.a/ D V.a˝ 1/V �:

Naturally, the following question arises: Given a pseudo-multiplicative unitary
W W E Ǒ �E ! E� ˇE, can we similarly associate toW two “legs” . OA.W /; O
/ and
.A.W /;
/ in the form of generalized Hopf C*-algebras?
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Let us first focus on the left leg . OA.V /; O
/ and reformulate its definition. Note
that functionals of the form !�0;� W T 7! h� 0 jT �i, where � 0; � 2 H , are linearly
dense in L.H/� [18], II Theorem 2.6, and that .id N̋ !�0;�/.V / D j� 0i�

2V j�i2, where
j� 00i2 W H ! H ˝H , � 7! � ˝ � 00, for � 00 D �; � 0, and j� 0i�

2.� ˝ �0/ D �h� 0 j�0i. So,
OA.V / is the closed linear span of all operators j� 0i�

2V j�i2, where � 0; � 2 H .
Similarly, OA.W / should be spanned by operators j� 0��2W j�i2, where

j�i2 W E ! E Ǒ �E; � 7! � � �; and j� 0�2 W E ! E � ˇE; � 7! � � � 0;

and �; � 0 2 E are suitably chosen. But j� 0�2 has no adjoint unless ˇ.b/� 0 D � 0b for
all b 2 B , as we can see from the relations j� 0�2.�b/ D �b � � 0 D � � ˇ.b/� 0 and
.j� 0�2�/b D � � � 0b, which are valid for all � 2 E; b 2 B .

However, if there exists a partial automorphism � 0 ofB such that � 0 is � 0-homoge-
neous in the sense that � 0 2 E Dom.� 0/ and ˇ.� 0.b//� 0 D � 0b for all b 2 Dom.� 0/,
then j� 0�2 is adjointable up to a twist by � 0. If also � is � -homogeneous for some
� 2 PAut.B/, then j� 0��2W j�i2 is homogeneous in the sense that it is adjointable
and commutes with Ǒ.B/ up to a twist by � 0 or � , respectively. To put these ideas
into the right perspective, we give a systematic account of homogeneous elements
and homogeneous operators in Section 3 before we return to pseudo-multiplicative
unitaries in Section 6.

3. C*-families of homogeneous operators

In this section we introduce a general calculus of homogeneous operators on C*-
bimodules and of homogeneous elements of C*-bimodules. Furthermore, we define
C*-families which can be thought of as generalized C*-algebras of homogeneous
operators on C*-bimodules.

Throughout this section, let A and B be C*-algebras.

Homogeneous operators on C*-bimodules. We consider maps of right C*-bimod-
ules which almost preserve the bimodule structure:

Definition 3.1. Let E, F be right C*-A-B-bimodules and let � 2 PAut.A/,
� 2 PAut.B/. We call a map T W E ! F a .�; �/-homogeneous operator iff

(i) Im.T / � ŒIm.�/F �, and Ta� D �.a/T � for all a 2 Dom.�/, � 2 E, and

(ii) there exists a map S W F ! E such that hSF jEi � Dom.�/ and
h�jT �i D �.hS�j�i/ for all � 2 E, � 2 F .

Let us collect some first properties of homogeneous operators.

Proposition 3.2. Let T; S be as in the definition above. Then:

(i) T and S are linear and bounded, and kT k D kSk.



Pseudo-multiplicative unitaries on C*-modules and Hopf C*-families I 505

(ii) T .�b/ D .T �/�.b/ for all b 2 Dom.�/ and � 2 E.

(iii) There exists �0 2 PAut.B/ such that whenever T is .�0; � 0/-homogeneous for
�0 2 PAut.A/, � 0 2 PAut.B/, then �0 � � 0.

(iv) S is uniquely determined by T and condition ii) in Definition 3.1.

(v) If .u�/� and .v�/� are approximate units of Dom.�/ and Dom.�/, respec-
tively, then lim� T .u��/ D T � D lim� T .�v�/ for all � 2 E.

Proof. (i) This is similar to the case of ordinary adjointable operators.
(ii) This relation follows from the fact that for all �; � 2 E and b 2 Dom.�/,

h�jT .�b/i D �.hS�j�bi/ D �.hS�j�ib/ D �.hS�j�i/�.b/ D h�j.T �/�.b/i.
(iii) Put J ´ ŒhF jTEi�. Then J is contained in Im.�/ and is an ideal in B

because BJ � ŒhFB jTEi� and J Im.�/ � ŒhF jTEBi� by (ii). Denote by �0

the restriction of � to ��.J /. Assume that T is also .�0; � 0/-homogeneous for
�0 2 PAut.A/, � 0 2 PAut.B/, and that S 0 satisfies condition (ii) of Definition 3.1
for T and � 0. Then �.hS�j�ib/ D h�jT .�b/i D � 0.hS 0�j�ib/ for all �; � 2 E,
b 2 B , and hence �.��.a/b/ D � 0.� 0�.a/b/ for all a 2 J , b 2 B . Let .u�/�
be an approximate unit for J and let d 2 J . The last relation and the inclusion
J � Im.� 0/ imply that d D lim� �

0.� 0�.d/� 0�.u�// D lim� �.�
�.d/� 0�.u�//,

and hence ��.d/ D lim� �
�.d/� 0�.u�/ is in � 0�.J /. Now �0 � � 0 because

d D lim� �.�
�.u�/�

�.d// D lim� �
0.� 0�.u�/�

�.d// D � 0.��.d//.
(iv) As in the case of ordinary adjointable operators, one finds that S is uniquely

determined by T and � . But by (ii), S is independent of � .
(v) This follows from standard arguments.

Definition 3.3. If T and S are as in Definition 3.1, we call S the adjoint of T and
denote it by T �.

For later use, we note the following simple example.

Example 3.4. Consider Dom.�/; Im.�/ � B as right sub-C*-bimodules of B . Then
� 2 L

�
�.Dom.�/; Im.�//. Indeed, condition (i) in Definition 3.1 is easily checked,

and for condition (ii) note that hc j�.b/i D c��.b/ D �.��.c�/b/ D �.h��.c/jbi/
for all b 2 Dom.�/, c 2 Im.�/.

Remark 3.5. Suppose that E, F are right C*-A-B-bimodules, and let � 2 PAut.A/,
� 2 PAut.B/. Consider E.�;�/ ´ ŒDom.�/E Dom.�/� � E and F .�;�/ ´
ŒIm.�/F Im.�/� � F as right C*-Dom.�/-Dom.�/-bimodules, where the structure
maps ofE.�;�/ are inherited fromE and the structure maps of F .�;�/ are twisted by �
and � in a straightforward way. Then every .�; �/-homogeneous operatorT W E ! F

restricts to an operator T.�;�/ 2 L
Dom.�/

Dom.�/
.E.�;�/; F

.�;�//, whose adjoint is a restriction
of T �.
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The preceding remark shows that homogeneous operators generalize ordinary
operators on right C*-bimodules only slightly. The point is that we shall consider
entire families of homogeneous operators.

Definition 3.6. Let E, F be right C*-A-B-bimodules and � 2 PAut.A/, � 2
PAut.B/. We denote the set of all .�; �/-homogeneous operators from E to F by
L

�
� .E; F / and put L

�
� .E/ ´ L

�
� .E;E/. The strict topology on L

�
� .E; F / is the

topology given by the family of seminorms T 7! kT �k, � 2 E, and T 7! kT ��k,
� 2 F .

The family of all homogeneous operators has the following properties:

Proposition 3.7. Let E, F , G be right C*-A-B-bimodules and let �; �0 2 PAut.A/,
�; � 0 2 PAut.B/. Then:

(i) L
�
� .E; F / is a closed subspace of the space of all bounded linear maps from E

to F and complete with respect to the strict topology.

(ii) L
�0

� 0.F;G/L
�
� .E; F / � L

�0�
� 0� .E;G/.

(iii) L
�
� .E; F /

� D L
��

��.F;E/, and .�T /� D �T �, kT �k D kT k D kT �T k1=2,

.ST /� D T �S� for all � 2 C, T 2 L
�
� .E; F /, S 2 L

�0

� 0.F;G/.

(iv) Lid
id.E; F / D LA

B.E; F /, and for each pair of partial identities 0 2 PAut.A/,
 2 PAut.B/ the space L	0

	 .E/ is a C*-subalgebra of LA
B.E/.

(v) L
�
� .E; F / is a right C*- L

���

���.F /-L
���
��� .E/-bimodule.

(vi) L
�
� .E; F / � L

�0

� 0.E; F / if � � �0 and � � � 0.

Proof. Most of these assertions generalize facts about ordinary operators on right
C*-bimodules and can be proved in a similar way by the help of Proposition 3.2.
Therefore we only prove (ii). Let T 2 L

�
� .E; F /; T

0 2 L
�0

� 0.F;G/. By Defini-
tion 3.1 (i) and Proposition 3.2 (v),

ŒT 0TE� � ŒT 0 Im.�/F � � Œ�0.Dom.�0/ \ Im.�//G� D ŒIm.�0�/G�

and T 0T b� D �0.�.b//T 0T � for all b 2 Dom.�0�/; � 2 E. Moreover, by Defini-
tion 3.1 (ii) and Proposition 3.2 (v), hT 0�G jTEi � Dom.� 0/ \ Im.�/ and

hT �T 0�GjEi D ��.hT 0�GjTEi/ � ��.Dom.� 0/ \ Im.�// D Dom.� 0�/:

Finally, h�jT 0T �i D � 0.hT 0��jT �i/ D .� 0�/.hT �T 0��j�i/ for all � 2 E, � 2 G.
Therefore, T 0T 2 L

�0�
� 0� .E;G/ and .T 0T /� D T �T 0�.
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C*-families of homogeneous operators. We adopt the following notation. Let E,
F be right C*-A-B-bimodules and let C D .C

�
� /�;� be a family of closed subspaces

C
�
� � L

�
� .E; F /, where � 2 PAut.A/, � 2 PAut.B/.

� Given a family D D .D
�
� /�;� of closed subspaces D

�
� � L

�
� .E; F /, we write

D � C iff D
�
� � C

�
� for all � 2 PAut.A/, � 2 PAut.B/.

� We define a family C� � L.F;E/ by .C�/�� ´ .C
��

�� /
� for all �, � .

� We put ŒCE� ´ spanfT � j T 2 C
�
� ; � 2 PAut.A/; � 2 PAut.B/; � 2 Eg.

� Let G be a right C*-A-B-bimodule and D � L.F;G/ a family of closed
subspaces. The product ŒDC � � L.E;G/ is the family given by

ŒDC �
�00

� 00 ´ spanfT 0T j T 0 2 D
�0

� 0 ; T 2 C�
� ; �

0� � �00; � 0� � � 00g
for all �00 2 PAut.A/, � 00 2 PAut.B/. Clearly the product .D ;C/ 7! ŒDC � is
associative.
Similarly, we define families ŒDT �; ŒT 0C � � L.E;G/ for operators
T 2 L

�
� .E; F /, T 0 2 L

�0

� 0.F;G/, where �; �0 2 PAut.A/, �; � 0 2 PAut.B/.

� By a slight abuse of notation, we define Lid.E; F / � L.E; F / by
.Lid.E; F //id� ´ Lid

� .E; F /, .L
id.E; F //

�
� ´ 0 for � ¤ id. Similarly, we

define Lid.E; F / � L.E; F /.

The following generalization of C*-algebras will play an important rôle.

Definition 3.8. We call a family C � L.E/ of closed subspaces a C*-family on E
iff ŒCC � � C , C� � C and C

�1
�1

� C
�2
�2

whenever �1 � �2 and �1 � �2. We call a
C*-family C non-degenerate iff ŒCE� D E.

Remarks 3.9. Let C � L.E/ be a C*-family.

(i) For each pair of partial identities 0 2 PAut.A/,  2 PAut.B/, the space
C	0

	 � Lid
id.E/ D LA

B.E/ is a C*-algebra because .C	0

	 /
� D C	0�

	� D C	0

	

and C	0

	 C	0

	 � C	0	0

		 D C	0

	 .

(ii) For each � 2 PAut.A/ and � 2 PAut.B/, the space C
�
� is a C*-module over

the C*-algebra C
���
��� because .C�

� /
�C

�
� D C

��

�� C
�
� � C

���
��� and C

�
� C

���
��� �

C
����
���� D C

�
� . Likewise, C

�
� is a left C*-module over the C*-algebra C

���

��� and,

in fact, a C*-bimodule over C
���

��� and C
���
��� .

(iii) ŒC id
id C

�
� � D C

�
� D ŒC

�
� C id

id � for each � 2 PAut.A/, � 2 PAut.B/; this follows
from (ii) and a standard result on C*-modules [9], p. 5.

(iv) The C*-family C is non-degenerate iff the C*-algebra C id
id � LA

B.E/ is non-
degenerate. This follows easily from (iii).

To every C*-family, one can associate a multiplier C*-family:
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Definition 3.10. The multiplier family of a C*-family C � L.E/ is the family
M.C/ � L.E/ given by

M.C/�� ´ fT 2 L�
� .E/ j ŒTC �; ŒCT � � Cg; � 2 PAut.A/; � 2 PAut.B/:

Evidently, M.C/ is a C*-family and by Remark 3.9 (iii), M.C/
�
� D fT 2 L

�
� .E/ j

TC id
id � C

�
� ; C id

idT � C
�
� g for each � 2 PAut.A/, � 2 PAut.B/.

Homogeneous elements of right C*-bimodules. We consider elements of right
C*-bimodules that almost intertwine left and right multiplication:

Definition 3.11. Let E be a right C*-B-B-bimodule and � 2 PAut.B/. An element
� 2 E is � -homogeneous iff � 2 ŒE Dom.�/� and �b D �.b/� for all b 2 Dom.�/.
We denote the set of all � -homogeneous elements ofE by H
 .E/. Moreover, we call
E decomposable iff the family H .E/ ´ .H
 .E//
 is linearly dense in E.

Note thatB can be regarded as a C*-module overB in a natural way, and left multi-
plication turnsB into a right C*-B-B-bimodule. Thus we can speak of homogeneous
elements of B; these will be studied later.

Let E be a right C*-B-B-bimodule. For each � 2 E, we define maps

j�i W B ! E; b 7! �b; j�� W B ! E; b 7! b�:

Then j�i has an adjoint h�j D j�i� W � 7! h�j�i and kj�ik D k�k ([9], p. 12–13).

Proposition 3.12. Let � 2 E and � 2 PAut.B/. Then the following conditions are
equivalent:

(i) � 2 H
 .E/;

(ii) j�i 2 L

id.B;E/;

(iii) j�� 2 Lid

�
.B;E/.

If (i)–(iii) hold, then kj��k D k�k and Œ�j ´ j��� is given by � 7! �.h� j�i/.

Proof. (i) H) (ii), (iii): Assume that (i) holds. To prove (ii), we only need to show that
j�i satisfies condition (i) of Definition 3.1. But by assumption, Im j�i � ŒIm.�/E�
and j�i.bb0/ D �bb0 D �.b/j�ib0 for all b 2 Dom.�/, b0 2 B . Let us prove (iii).
Evidently, j�� commutes with left multiplication. By assumption, h� j�i 2 Dom.�/
for all � 2 E so that the map Œ�j W � 7! �.h� j�i/ is well defined. Let .u�/� be an
approximate unit of Im.�/. Then

h�jj��bi D lim
�

h�ju�b�i D lim
�

h�j�i��.u�b/ D ��.�.h�j�i/�b/ D ��.hŒ�j�jbi/
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for all � 2 E, b 2 B . Hence (iii) holds. Moreover, we may assume ku�k � 1 for
all �, and then k�k D lim� kj��u�k � kj��k. The reverse inequality is evident.

(ii) H) (i): If (ii) holds, then � 2 Œ�B� D ŒIm j�i� � ŒIm.�/E�, and �c D �.c/�

for each c 2 Dom.�/ because �cb D j�icb D �.c/.j�ib/ D �.c/�b for each b 2 B .

(iii) H) (i): This follows from a similar argument as (ii) H) (i).

Let E be a C*-module over A and F a right C*-A-B-bimodule. For each � 2 E
and � 2 F , we define maps

j�i1 W F ! E � F; � 7! �� �; j��2 W E ! E � F; � 7! � � �:

Then j�i1 has an adjoint h�j1 D j�i�
1 W � � �0 7! h�j�i�0, and kj�ik D k�k if the

representation A ! LB.F / is injective ([9], Lemma 4.6).

Proposition 3.13. Let E, F be right C*-B-B-bimodules and � 2 PAut.B/.

(i) If � 2 H
 .E/, then j�i1 2 L

id.F;E � F /.

(ii) Let � 2 H
 .F /. Then j��2 2 Lid

�
.E;E � F / and Œ�j2 ´ j��2� is given by

� � �0 7! ��.h�j�0i/. If E is full, then kj��k D k�k.

Proof. The proof is similar to that of Proposition 3.12; we only sketch the main steps
for (ii). Let � 2 H
 .F /. For all �; �0 2 E and � 0 2 F ,

h�0 � � 0j� � �i D h� 0jh�0j�i�i D ��.�.h� 0j�i/h�0j�i/ D ��.h�0�.h� j� 0i/j�i/:
For �0 D �, � 0 D � this equation shows that kj��2�k2 � k�.h� j�i/kk�k2, and hence
kj��2k � k�k. If E is full, this inequality is an equality. Finally, the equation
above shows that the formula for Œ�j2 defines a bounded map E � F ! E, and that
h�0 � � 0jj��2�i D ��.hŒ�j2.�0 � � 0/j�i/ for all �; �0 2 E and � 0 2 F .

Next we collect several useful formulas concerning homogeneous elements. LetE
andF be right C*-B-B-bimodules, and for �; � 0 2 PAut.B/ put H
 .E/�H
 0.F / ´
spanf�� � j � 2 H
 .E/; � 2 H
 0.F /g � E � F .

Proposition 3.14. Let �; � 0; �; � 2 PAut.B/. Then:

(i) H
 .E/ D ŒH
 0.E/Dom.�/� � H
 0.E/ if � � � 0.
(ii) hH
 .E/jH
 0.E/i � H
�
 0.B/.

(iii) For each � 2 E, the set f� 0 2 PAut.B/ j � 2 H
 0.E/g either is empty or has a
minimal element.

(iv) L
�
� .E; F /H
 .E/ � H�
��.F /; H�.A/H
 .E/H� .B/ � H�
� .E/.

(v) The space I
 ´ ŒhH
 .E/jH
 .E/i� is an ideal in Z.B/ and H
 .E/ is a right
C*-Z.B/-I
 -bimodule. In particular, H
 .E/I
 D H
 .E/.
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(vi) If E is full and decomposable, then B is decomposable and the ideal of Z.B/
spanned by all I
 0 , where � 0 2 PAut.B/, is non-degenerate in B .

(vii) H
 .E/ \ H
 0.E/ D H.
^
 0/.E/.

(viii) H
 .E/� H
 0.F / � H

 0.E � F /.

Proof. We only prove assertions (iii), (iv), (vi), (vii); the others follow from straight-
forward calculations or can be deduced from Propositions 3.7, 3.12.

(iii) Given � 2 E, apply Propositions 3.2 (iii) and 3.12 to j��.
(iv) Let T 2 L

�
� .E; F /, � 2 H
 .E/. Choose approximate units .u�/� , .v�/�,

.w�/� of Dom.�/, Im.�/, Dom.�/, respectively. By Proposition 3.2,

T � D lim
�;�;�

T .u�v��w�/ D lim
�;�;�

T .���.u�v�/w�/ D lim
�;�;�

.T �/�.��.u�v�/w�/:

Since .�.��.u�v�/w�//�;�;� is an approximate unit for Dom.����/, the equation
above implies that T � 2 ŒF Dom.����/�. Finally, for all b 2 Dom.����/ we
have .T �/b D T .���.b// D T �.��.b//� D ..����/.b//T �. This proves the first
inclusion in (iv) and the second one follows similarly.

(vi) The assumptions imply that B is contained in the closure of

X

;
 0

hH
 0.E/jH
 .E/i D
X

;
 0

I
 0hH
 0.E/jH
 .E/i �
X

;
 0

I
 0H
 0�
 .B/I

here we used (ii) and (v). The claims follow.
(vii) By (i) we have that H.
^
 0/.E/ � H
 .E/ \ H
 0.E/. Conversely,

if � 2 H
 .E/ \ H
 0.E/ and � 00 2 PAut.B/ is minimal with � 2 H
 00.E/ (see
(iii)), then � 00 � � and � 00 � � 0, whence � 00 � � ^ � 0 and � 2 H.
^
 0/.E/.

The preceding proposition suggests the following notation. Let E be a right C*-
B-B-bimodule and let E D .E
 /
 and E 0 D .E 0



/
 be families of closed subspaces

E
 � H
 .E/, E 0



� H
 .E/, where � 2 PAut.B/.

� We write E 0 � E iff E 0



� E
 for all � 2 PAut.B/.

� We define a family ŒhE 0jEi� � H .B/ by ŒhE 0jEi�
 00 D spanfh� 0j�i j � 2
E
 ; �

0 2 E 0

 0
; �; � 0 2 PAut.B/; � 0�� � � 00g.

� Given a family C � L.E; F /, where F is a right C*-B-B-bimodule, we define
a family ŒCE� � H .F / by ŒCE�
 D spanfS� j S 2 C

�
� ; � 2 E
 0 ; �; � 0; � 2

PAut.B/; �� 0�� � �g. Similarly, we define a family ŒSE� � H .F / for each
homogeneous operator S W E ! F .

� Given a right C*-B-B-bimoduleF and a family F � H .F /, we define a family
ŒE � F � � H .E�F / by ŒE � F �
 00 ´ spanf�� � j � 2 E
 ; � 2 F
 0 ; �; � 0 2
PAut.B/; �� 0 � � 00g.
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Sometimes it is easy to determine a dense subspace E0 � E spanned by homo-
geneous elements and desirable to know whetherE0 \ H
 .E/ is dense in H
 .E/ for
each � 2 PAut.B/.

Proposition 3.15. Let E be a decomposable right C*-B-B-bimodule and E0



�
H
 .E/ a subspace for each � 2 PAut.B/ such that

P

 E

0



� E is dense and
E0



H� .B/ � E0


�
for all �; � 2 PAut.B/. Then E0



is dense in H
 .E/ for each

� 2 PAut.B/.

Proof. Put K ´ spanfj�ih�0j j � 2 E0


; �0 2 E0


 0
; �� 0� � idg � KB.E/.

Proposition 3.14 (ii), (iv) implies that K is a C*-algebra. Moreover, considering
SE0



as a C*-module over ŒhE0



jE0



i� � B for each � 2 PAut.B/, we find that

E D �P

 E

0



� D �P

 E

0


hE0



jE0



i� � ŒKE�. Hence K is non-degenerate.

Now let � 2 H
 .E/, � 2 PAut.B/. We prove that � 2 SE0



. Choose an approx-
imate unit .��/� of K of the form �� D P

i j��;i ih�0
�;i j, where ��;i 2 E0


�;i
, �0

�;i 2
E0


 0

�;i

, ��;i�
0
�;i

� � id. Since K is non-degenerate, � D lim� ��� D lim�

P
i ��;i ,

where ��;i D ��;i h�0
�;i j�i. By Proposition 3.14 (ii), (iv) and assumption on .E0



/
 ,

we have ��;i 2 E0

�;i

� H.
 0

�;i
�
/.B/ � E0



. Thus, � 2 SE0



.

Before collecting corollaries we prove another useful result by a similar technique.
Let E, F be right C*-B-B-bimodules. For � 00 2 PAut.B/, put K
 00

id .E; F / ´
spanfj�ih� 0j j � 2 H
 .F /; �

0 2 H
 0.E/; �� 0� � � 00g. Then by Proposition 3.14 (v),

E D
h X




H
 .E/
i

D
h X




H
 .E/hH
 .E/jH
 .E/i
i

� ŒK id
id .E/E�: (4)

Proposition 3.16. If E or F is decomposable, then for each � 2 PAut.B/ we have
K


id.E; F / D KB.E; F / \ L

id.E; F / .

Proof. Let� 2 PAut.B/. By Proposition 3.12, K

id.E; F / � KB.E; F /\L


id.E; F /.
We prove the reverse inclusion for the case that F is decomposable; the case
that E is decomposable is similar. Choose a bounded approximate unit .��/� of
K id

id .E/ of the form �� D P
i j��;i ih�0

�;i j, where ��;i 2 H
�;i
.E/, �0

�;i 2 H
 0

�;i
.E/,

��;i�
0
�;i

� � id. Let T 2 KB.E; F / \ L

id.E; F /. Then (4) impliesT D lim� T �� D

lim�

P
i jT ��;i ih�0

�;i j. Using Proposition 3.14 (iv) and the relation ���;i�
0
�;i

� � � ,

we find jT ��;i ih�0
�;i j 2 K


id.E; F /. Therefore, T 2 K

id.E; F /.

Proposition 3.17. LetE, F be decomposable right C*-B-B-bimodules. ThenE�F
is decomposable, and H .E � F / D ŒH .E/� H .F /�.

Proof. By Proposition 3.14 (viii), ŒH .E/ � H .F /� � H .E � F /. For the reverse
inclusion apply Proposition 3.15 to H.ŒH .E/� H .F /�
 /
 .
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Let E be a C*-A-module, F a right C*-B-B-bimodule and � W A ! LB
B .F / a

�-homomorphism. Then E � �F is a right C*-B-B-bimodule via the representation
B ! LB.E � �F /, b 7! id � b (use Proposition 1.1). Given a family F � H .F /,
we define a family ŒE � �F � � H .E � �F / by ŒE � �F �
 ´ spanf� � � j
� 2 E; � 2 F
g.

Proposition 3.18. If F is decomposable, then E �� F is decomposable and
H .E � �F / D ŒE � �H .F /�.

Proof. A short calculation shows that ŒE � �H .F /� � H .E � �F /. For the reverse
inclusion apply Proposition 3.15 to .ŒE � �H
 .F /�
 /
 .

Homogeneous elements of C*-algebras

Proposition 3.19. Let b 2 H
 .B/, � 2 PAut.B/ and denote by Ib � B the ideal
generated by b�b. Then:

(i) b is normal and b�b is central.

(ii) There exists a unitary u 2 M.Ib/ such that b D u.b�b/1=2.

(iii) With u as in (ii), the map Adu W Ib ! Ib is the minimal partial automorphism
of B with respect to which b is homogeneous.

(iv) �.b/ D b; in particular, b 2 Dom.��/ and ��.b/ D b.

Proof. (i) The positive elements b�b and bb� are central by Proposition 3.14 (ii),
whence bb� � bb� D b�bbb� D b�b � b�b. Consequently, bb� D b�b.

(ii) Put D ´ spec.b/ n f0g. For n � 1, define fn 2 C0.D/ by fn.z/ ´ z=jzj
if jzj � 1=n, and fn.z/ ´ nz if jzj � 1=n. Then .fn/n converges in M.D/ strictly
to a unitary and functional calculus shows that the sequence .fn.b//n converges
in M.Ib/ strictly to some unitary u. Denote by idD 2 C0.D/ the identity map.
Then limn fnjidDj D idD in C0.D/, and hence u.b�b/1=2 D limn fn.b/jidD.b/j D
idD.b/ D b.

(iii) Evidently, b 2 Ib and bd D u.b�b/1=2d D udu�u.b�b/1=2 D Adu.d/b

for all d 2 Ib , so b 2 HAdu
.B/. If b 2 H
 0.B/ for some � 0 2 PAut.B/, then

Ib � Dom.� 0/ because b 2 Dom.� 0/, and Adu � � 0 by Proposition 3.14 (iii).
(iv) �.b/ D Adu.b/ D u.u.b�b/1=2/u� D u.b�b/1=2 D b by (iii) and because

.b�b/1=2 is central. The relations b 2 Dom.��/ and b D ��.b/ follow.

Proposition 3.20. Let �; � 0; � 2 PAut.B/. Then:

(i) bc D �.cb/ and cb D ��.bc/ for all b 2 H
 .B/, c 2 B .

(ii) H
 .B/ D H
 .B/ \ Dom.� ^ id/.

(iii) �.H
 .B/ \ Dom.�// � H�
��.B/.
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(iv) H
 0.B/H
 .B/ � H
 0
 .B/ and H
 .B/
� D H
�.B/.

(v) B is decomposable iff the inclusionZ.B/ � B is non-degenerate. In particular,
every unital C*-algebra is decomposable.

Proof. (i) Let b 2 H
 .B/, c 2 B , and let .u�/� be an approximate unit of Dom.�/.
Then bc D lim� bu�c D lim� �.u�c/b D �.c��.b// D �.cb/ by Proposi-
tion 3.19 (iv), and similarly cb D ��.bc/.

(ii) This follows from Proposition 3.19 (iv).
(iii) Combine Example 3.4 with Proposition 3.14 (iv).
(iv) Straightforward.
(v) If B is decomposable, then ŒBZ.B/� D B by Proposition 3.14 (vi). Con-

versely, assume that ŒZ.B/B� D B . For each unitary u 2 M.B/ and each b 2 Z.B/,
the product bu is contained in HAdu

.B/ since buc D .ucu�/bu for all c 2 B . By
[12], Remark 2.2.2, each element of B can be written as a sum of four unitaries in
M.B/. Therefore B is decomposable.

To every C*-bimodule E we associate a C*-family O.E/ as follows:

Proposition 3.21. Let A;B be C*-algebras and E a right C*-A-B-bimodule.

(i) Let a 2 H�.A/, let � 2 PAut.A/ and let b 2 H� .B/, � 2 PAut.B/. Then
oa;b W E ! E, � 7! a�b, is .�; ��/-homogeneous and .oa;b/

� D oa�;b� .

(ii) Put O
�
� .E/ ´ spanfoa;b j a 2 H�.A/; b 2 H��.B/g for all � 2 PAut.A/,

� 2 PAut.B/. Then O.E/ � L.E/ is a C*-family.

Proof. (i) Let a, b as above. Then oa;b satisfies condition (i) of Definition 3.1 because
Im.oa;b/ � aE � Im.�/E and oa;ba

0� D aa0�b D �.a0/a�b D �.a0/oa;b� for
all a0 2 Dom.�/, � 2 E. Moreover, by Proposition 3.20 (i), (iv) and 3.19 (iv),
a� 2 H��.A/, �.b�/ D b� 2 H��.B/, hoa�;b�EjEi � bhEjEi � Dom.��/,
and h�ja�bi D ha��j�ib D ��.bha��j�i/ D ��.ha��b�j�i/ for all �; � 2 E. The
claim follows.

(ii) Obvious from (i) and Proposition 3.20 (iv).

Definition 3.22. Let E be a right C*-A-B-bimodule, where A and B are decom-
posable. A family C � L.E/ is called an O.E/-module iff ŒO.E/C � � C , and is
called a non-degenerate O.E/-module iff additionally C

�
� D ŒO

���

���.E/C
�
� � for all

� 2 PAut.A/, � 2 PAut.B/.

Remark 3.23. The C*-family O.E/ defined above is interesting primarily ifA andB
are decomposable. However, we can considerE as a right C*-M.A/-M.B/-bimodule
via the identificationE Š A˝AE˝BM.B/, andM.A/ andM.B/ are decomposable
by Proposition 3.20 (v).
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4. The legs of a decomposable pseudo-multiplicative unitary and C*-families

We return to the study of a pseudo-multiplicative unitary W W E Ǒ � E ! E � ˇE,
where .E; Ǒ; ˇ/ is a C*-trimodule over a C*-algebra B , and define the legs of W
in the form of families of homogeneous operators. Our definition of the left and of
the right leg will be useful only if the right C*-bimodule ˇE or ǑE, respectively,
is decomposable. From Proposition 3.13, equation (1) and Proposition 3.7 (ii) we
deduce:

Lemma 4.1. Let �; � 2 PAut.B/.

(i) Let � 2 H�.ˇE/, � 0 2 H� .ˇE/. Then we have homogeneous operators

ǑE
j�i2������!

.�;id/-hmg.
ˇ2
.E Ǒ �E/

W�������!
.id;id/-hmg.

Ǒ
1
.E � ˇE/

j�0��
2�������!

.id;�/-hmg.
ǑE;

where j�i2� D � � � and j� 0�2� D � � � 0 for all � 2 E. Put
Œ� 0j2 ´ j� 0��2 . The composition Oa.�0;�/ ´ Œ� 0j2W j�i2 belongs to L

�
� . ǑE/ and

satisfies h�0j Oa.�0;�/�i D �.h�0 � � 0jW.� � �/i/ for all �; �0 2 E.

(ii) Let � 2 H��. ǑE/, �0 2 H��. ǑE/. Then we have homogeneous operators

ˇE
j�1�������!

.id;�/-hmg.
ˇ2
.E Ǒ �E/

W�������!
.id;id/-hmg.

Ǒ
1
.E � ˇE/

j0i�

1������!
.�;id/-hmg.

ˇE;

where j��1� D � � � and j�0i1� D �0 � � for all � 2 E. Put
h�0j1 ´ j�0i�

1 . The composition a.0;/ ´ h�0j1W j��1 belongs to L
�
� .ˇE/

and satisfies h�0ja.0;/�i D h�0 � �0jW.�� �/i for all �; �0 2 E.

We define families OA.W / � L. ǑE/ and A.W / � L.ˇE/ as follows: for each

�; � 2 PAut.B/, we let OA.W /
�
� and A.W /

�
� be the closure of

OAa.W /
�
� ´ spanf Oa.�0;�/ j � 2 H�.ˇE/; �

0 2 H� .ˇE/g � L�
� . ǑE/

and

Aa.W /
�
� ´ spanfa.0;/ j � 2 H��. ǑE/; �0 2 H��. ǑE/g � L�

� .ˇE/;

respectively. Applying the ket-bra notation to families of homogeneous elements, we
can rewrite the definition of OA.W / and A.W / as follows. Define jˇEi � Lid.B; ˇE/

and jˇE� � Lid.B; ˇE/ by (see Proposition 3.12)

jˇEi�
id ´ fj�i j � 2 H�.ˇE/g; jˇE�id� ´ fj� 0� j � 0 2 H��.ˇE/g:

Put hˇEj ´ jˇEi� and ŒˇEj ´ jˇE��. Replacing ˇE by ǑE we similarly define
j ǑEi, h ǑEj, j ǑE�, Œ ǑEj. To all of these families we apply the leg notation just like to
individual ket-bra operators. Then

OA.W / D ŒŒˇEj2W jˇEi2� and A.W / D Œh ǑEj1W j ǑE�1�:



Pseudo-multiplicative unitaries on C*-modules and Hopf C*-families I 515

If we pass from W to W op, the legs of the unitary get switched as follows:

Proposition 4.2. OA.W / D A.W op/� and A.W / D OA.W op/�.

Proof. For all homogeneous �; � 0 2 ˇE, �; �0 2 ǑE, we have Œ� 0j2W j�i2 D
.h�j2W �j� 0�2/� D .h�j1W opj� 0�1/� and h�0j1W j��1 D .Œ�j2W opj�0i2/

�.

For each � 2 PAut.B/, b 2 H
 .B/ we have an .id; ��/-homogeneous operator
(see the proof of Proposition 3.21)

˛.b/ W E ! E; � 7! �b:

Lemma 4.3. Let b 2 B , �; � 0 2 ǑE, �; �0 2 ˇE be homogeneous. Then

Oa.�0;�/
Ǒ.b/ D Oa.�0;�b/; Oa.�0;�/˛.b/ D Oa.�0b�;�/; Oa.�0;�/ˇ.b/ D ˇ.b/ Oa.�0;�/;

Ǒ.b/a.0;/ D a.0;/
Ǒ.b/; ˛.b/a.0;/ D a.0;b/; ˇ.b/a.0;/ D a.0b�;/:

Proof. We only prove the equations concerning Oa.�0;�/ D Œ� 0j2W j�i2.
First, Œ� 0j2W j�i2

Ǒ.b/ D Œ� 0j2W j�bi2 D Oa.�0;�b/ because j�i2
Ǒ.b/� D

Ǒ.b/� � � D � � �b D j�bi2� for all � 2 E.
Next Œ� 0j2W j�i2˛.b/ D Œ� 0j2˛.b/W j�i2 D Œ� 0b�j2W j�i2 D Oa.�0b�;�/ because

.Œ� 0j2˛.b//�� D ˛.b/�.� � � 0/ D � � � 0b� D .Œ� 0b�j2/�� for all � 2 E.
Finally, Œ� 0j2W j�i2 commutes with ˇ.b/ because j�i2ˇ.b/ D ˇ1.b/j�i2,

Wˇ1.b/ D ˇ1.b/W and Œ� 0j2ˇ1.b/ D ˇ.b/Œ� 0j2.

For brevity we denote the family H .B/ by B. Define Ǒ.B/ � Lid. ǑE/ and

˛.B/ � Lid. ǑE/ by

Ǒ.B/�id ´ f Ǒ.b/ j b 2 H�.B/g; ˛.B/id� ´ f˛.b/ j b 2 H��.B/g;
and similarly ˇ.B/ � Lid.ˇE/, ˛.B/ � Lid.ˇE/. Given a right C*-bimodule F
and a family C � L.F /, we denote by C 0 � L.F / the family of all homogeneous
operators that commute with all operators of C .

Proposition 4.4. (i) Œ OA.W /˛.B/� D Œ OA.W / Ǒ.B/� D OA.W / � ˇ.B/0. If OA.W / is
a C*-family, then it is a non-degenerate O. ǑE/-module.

(ii) Œ˛.B/A.W /� D Œˇ.B/A.W /� D A.W / � Ǒ.B/0. If A.W / is a C*-family,
then it is a non-degenerate O.ˇE/-module.

Proof. We will only prove assertion (i). By Lemma 4.3, it is sufficient to show
that OA.W /

�
� � Œ OA.W /

�
� � Ǒ.Dom.���//� and OA.W /

�
� � Œ OA.W /

�
� � ˛.Dom.���//�
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for each �; � 2 PAut.B/. But if .u�/� and .v�/� are bounded approximate units
of Dom.���/ and Dom.���/, respectively, and if Oa.�0;�/ is as in Lemma 4.1 (i),
then Oa.�0;�/ D lim� Oa.�0;�u�/ D lim� Oa.�0;�/

Ǒ.u�/ and Oa.�0;�/ D lim� Oa.�0v�

�;�/ D
lim� Oa.�0;�/˛.v�/ by Lemma 4.3.

The families OA.W / and A.W / are non-degenerate in the following sense.

Proposition 4.5. (i) Œ OA.W /�E� D E if ˇE is decomposable.
(ii)ŒA.W /E� D E if ǑE is decomposable.

(iii) If ˇE and ǑE are decomposable, then Œ OA.W /�H . ǑE/� D H . ǑE/ and
ŒA.W /H .ˇE/� D H .ˇE/.

Proof. We prove the first part of (iii); the other assertions follow similarly. By
Proposition 3.14 (iv), Œ OA.W /�H . ǑE/� � H . ǑE/. Let us now prove the reverse

inclusion. We have Œ OA.W /�H . ǑE/� D ŒhˇEj2W �jˇE�2H . ǑE/� by definition.
Next ŒW �jˇE�2H . ǑE/� D ŒW �H . Ǒ

1
.E � ˇE//� D H .ˇ2

.E Ǒ � E// D
ŒH . ǑE/ � H .ˇE/� by Propositions 3.17, 3.14 and equation (1). Therefore,

Œ OA.W /�H . ǑE/� D ŒhˇEj2.H . ǑE/ � H .ˇE//�. For all homogeneous � 2 ǑE
and �; � 0 2 ˇE, we have h� 0j2.� Ǒ��/ D Ǒ.h� 0j�i/�. Therefore, Œ Ǒ.I /H . ǑE/� �
Œ OA.W /�H . ǑE/�with I D ŒhH .ˇE/jH .ˇE/i�id. By Proposition 3.14 (ii), I � Z.B/

and by 3.14 (vi), IB is linearly dense in B . Hence Œ Ǒ.I /H . ǑE/� D H . ǑE/, and the
claim follows.

Next we show that OA.W / and A.W / are closed under multiplication. The proof
involves the following observation. If ˇE is decomposable, then

ŒW ŒH .ˇE/�E�� D ŒWH .ˇ1
.E Ǒ �E//� (by Proposition 3.18)

D H .ˇ1
.E � ˇE// (by equation (1))

D ŒH .ˇE/� H .ˇE/� (by Proposition 3.17).

(5)

Proposition 4.6. (i) Œ OA.W / OA.W /� D OA.W / if ˇE is decomposable.

(ii) ŒA.W /A.W /� D A.W / if ǑE is decomposable.

Proof. We only prove (i). By definition, Œ OA.W / OA.W /� � L. ǑE/ is the family of
closed subspaces spanned by all compositions of the form

Oa.�0;�/ Oa.� 0;�/ W E j�i2��! E Ǒ�E
W�! E�ˇE

Œ� 0j2���! E
j�i2��! E Ǒ�E

W�! E�ˇE
Œ�0j2���! E;
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where �; � 0; �; �0 2 ˇE are homogeneous. Moving Œ�0j2 to the left and j�i2 to the
right, we can write Oa.�0;�/ Oa.� 0;�/ in the form

E
j���i2����! E Ǒ � .E � ˇE/

W13��! .E Ǒ �E/� ˇE
W12��! E � ˇE � ˇE

Œ�0
�� 0j2�����! E:

Using the pentagon equation (2) and Proposition 3.17, we find that the product
Œ OA.W / OA.W /� is equal to the family spanned by all compositions

E
j!i2���! E Ǒ � .E � ˇE/

W �

23��! E Ǒ �E Ǒ �E
W12��! E �ˇ E Ǒ �E

W23��! E � ˇE � ˇE
Œ!0j2���! E;

where !;!0 2 ˇ1
.E � ˇE/ are homogeneous. Now equation (5) implies that

Œ OA.W / OA.W /� is equal to the family spanned by all compositions

E
j#i2��! E Ǒ �E

idE �ji2������! E Ǒ �E Ǒ �E
W12��! E �ˇ E Ǒ �E

idE �h0j2�������! E � ˇE
Œ# 0j2���! E;

where #; # 0 2 ˇE are homogeneous and �; �0 2 E are arbitrary. Because
.id �h�0j2/W12 D W.id �h�0j2/ and .id �h�0j2/.id �j�i2/ D id � Ǒ.h�0j�i/ the com-
position above is equal to

E
j#i2��! E Ǒ �E

Ǒ
2.h0ji/W��������! E � ˇE

Œ# 0j2���! E;

that is, equal to Oa.# 0;# 00/ where # 00 D Ǒ.h�0j�i/# . Note that # 00 2 ˇE is homogeneous
because Ǒ commutes withˇ. Using the fact thatE is full and that Ǒ is non-degenerate,
we find that Œ OA.W / OA.W /� is equal to the family spanned by all operators Oa.# 0;# 00/,
where # 0; # 00 2 ˇE are homogeneous. This is OA.W /.

Example: the pseudo-multiplicative unitary WG . Let us determine the legs of
the pseudo-multiplicative unitary WG associated to a groupoid G (see Example 2.5).
We use the same notation as in Example 2.5 and write rL

2.G; �/ or sL
2.G; �/ to

indicate whether we consider L2.G; �/ as a right C*-bimodule via the representa-
tion r or s. Given f; g 2 Cc.G/, we denote by fg, Nf , f �, f ? g 2 Cc.G/

the functions given by .fg/.x/ ´ f .x/g.x/, Nf .x/ ´ f .x/, f �.x/ ´ f .x�1/,
.f ? g/.x/ ´ R

GrG .x/ f .y/g.y�1x/ d�rG.x/.y/ for all x 2 G (f ? g 2 Cc.G/ by
[17], Proposition 1.1).

The right C*-bimodule rL
2.G; �/ is always decomposable, and using Proposi-

tion 3.14 (i) we find:
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Lemma 4.7. Hid.rL
2.G; �// D L2.G; �/ and for each � 2 PAut.C0.G

0// we have
H
 .rL

2.G; �// D L2.G; �/Dom.� ^ id/.

The essential information of OA.WG/ is contained in the space OA.WG/
id
id, which

can be defined without the concepts introduced Section 3. However, for completeness
we shall determine the whole family OA.WG/.

It is easy to see that for each f 2 C0.G/, there exists a multiplication operator
m.f / 2 LC0.G0/.L

2.G; �//, m.f /� D f � for all � 2 Cc.G/, and that the map
m W C0.G/ ! LC0.G0/.L

2.G; �// is an injective �-homomorphism.

Proposition 4.8. (i) If �; � 0 2 Cc.G/, then Oa.�0;�/ D m.x� 0 ? x��/.
(ii) OA.WG/

id
id D m.C0.G// and for all �; � 2 PAut.C0.G

0//we have OA.WG/
�
� D

r.Dom.� ^ id//m.C0.G//s.Dom.� ^ id// D m.C0.G
V
U //, where the open subsets

U; V � G0 are determined by Dom.� ^ id/ D C0.U /, Dom.� ^ id/ D C0.V / and
GV

U D r�1
G .V / \ sG�1.U /.

(iii) OA.WG/ is a C*-family.

Proof. (i) Let � 2 Cc.G/ and x 2 G. By definition we have .WG j�i2�/.x; y/ D
.WG.� � �//.x; y/ D �.x/�.x�1y/ for each y 2 GrG.x/, and hence

. Oa.�0;�/�/.x/ D
Z

GrG .x/

� 0.y/�.x/�.x�1y/ d�rG.x/.y/

D �.x/

Z
GrG .x/

x� 0.y/��.y�1x/ d�rG.x/.y/ D �.x/.x� 0 ? x��/.x/:

(ii) Let �; � 2 PAut.C0.G
0//. For each element � 2 Cc.G/ we have that

� 2 L2.G; �/Dom.�^ id/ iff �� 2 s.Dom.�^ id//L2.G; �/. Hence, by Lemma 4.7
and (i), OA.WG/

�
� is the closed linear span of all operators of the form m.� 0 ? � 00/,

where � 00 2 s.Dom.� ^ id//Cc.G/, � 0 2 r.Dom.� ^ id//Cc.G/. But from [17],
Proposition 1.9, it follows that Cc.G/ ? Cc.G/ � Cc.G/ is dense with respect to the
supremum norm, which implies the claim.

(iii) This follows from (ii) and from the relations Dom.��^id/ D Dom.�^id/ and
Dom.�^id/Dom.� 0^id/ � Dom.�� 0^id/, which hold for all�; � 0 2 PAut.C0.G

0//.

Let us turn to A.WG/. The right C*-bimodule sL
2.G; �/ is decomposable if the

groupoid G itself is decomposable in the following sense.

Definition 4.9. We call an open subset U � G homogeneous iff rG.x/ D rG.y/ ()
sG.x/ D sG.y/ for all x; y 2 U . We call G decomposable iff it is the union of open
homogeneous subsets.
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Remarks 4.10. (i) Recall that an open subset U � G is called a G-set iff the
restrictions r jU W U ! r.U / and sjU W U ! s.U / are homeomorphisms and r.U /;
s.U / � G0 are open. Moreover, recall that G is r-discrete iff it is the union of open
G-sets [17], Proposition 2.8. Evidently, every G-set is homogeneous and if G is
r-discrete, then it is decomposable.

(ii) If U; V � G are homogeneous subsets, then also U�1 and UV D fxy j
.x; y/ 2 G2

s;r \ .U � V /g are homogeneous.

Denote by PHom.G0/ the set of all partial homeomorphisms of G0, that is, of
all homeomorphisms between open subsets of G0. Every open homogeneous subset
U � G defines a partial homeomorphism qU W sG.U / ! rG.U / of G0 by
sG.x/ 7! rG.x/, and partial automorphisms qU � W C0.sG.U // ! C0.rG.U //,
q�

U W C0.rG.U // ! C0.sG.U // of C0.G
0/. For each q 2 PHom.G0/ denote by

Hq.G/ � G the union of all open homogeneous subsets U � G that satisfy qU � q.
Note that Hq.G/ is open and homogeneous again.

Proposition 4.11. Assume thatG is decomposable. Then sL
2.G; �/ is decomposable

and Hq�.sL
2.G; �// D Cc.Hq.G// for each q 2 PHom.G0/.

Proof. Let q 2 PHom.G0/. Then Cc.Hq.G// � Hq�.sL
2.G; �// because each

� 2 Cc.Hq.G// belongs to L2.G; �/C0.rG.Hq.G/// � L2.G; �/Dom.q�/ and
satisfies .�f /.x/ D �.x/f .rG.x// D �.x/f .q.sG.x/// D .s.q�.f //�/.x/ for all
x 2 Hq.G/, f 2 Dom.q�/. A partition of unity argument shows that the sum of
all Cc.Hq0.G//, where q0 2 PHom.G0/, is equal to Cc.G/. In particular, sL

2.G; �/

is decomposable. Proposition 3.15, applied to E D sL
2.G; �/ and E0 D Cc.G/,

shows that Hq�.sL
2.G; �// D Cc.Hq.G//.

If G is r-discrete and � is a Haar-system on G, then for each u 2 G0, the set Gu

is discrete and the measure �u is the counting measure multiplied by �u.fug/ [16],
Proposition 2.2.5. To simplify the discussion, we assume:

Assumption 4.12. If G is r-discrete, then �rG.x/.fxg/ D 1 for all x 2 G.

Lemma 4.13. (i) For every f in Cc.G; �/ there exists an operator L.f / in
L.L2.G; �// such that L.f /� D f � � for all � 2 Cc.G/. Moreover, L.f /L.g/ D
L.f ? g/ for all f; g 2 Cc.G/.

(ii) Let G be r-discrete, U � G open and homogeneous, f 2 Cc.U / and put
q ´ qU . Then L.f / 2 L

q�

q�
.rL

2.G; �// and L.f /� D L.f �/.

Proof. (i) The boundedness ofL.f / can be seen by a similar proof as in [17], Propo-
sition 1.8, or [16], Proposition 3.1.1. The last relation follows from associativity of
the convolution [16], Theorem 2.2.1.
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(ii) It is easy to see that ImL.f / � r.Im.q�//L2.G; �/ and L.f /r.b/ D
r.q�.b//L.f / for all b 2 Dom.q�/. Let �; � 2 Cc.G/. Then h�jL.f /�i and
hL.f �/�j�i, considered as functions on G0, vanish outside rG.U / and sG.U /, re-
spectively, and for u 2 sG.U /, we find that h�jL.f /�i.q.u// is equal toX
x;y2Gq.u/

�.x/f .y/�.y�1x/ D
X

x;y2Gq.u/

f �.y�1/�.x/�.y�1x/

D
X

x0;y02Gu

f �.y0/�.y0�1x0/�.x0/ D hL.f �/�j�i.u/:

Therefore q�.h�jL.f /�i/ D hL.f �/�j�i, and the claims follow.

Proposition 4.14. (i) Let � 2 Cc.U /, �0 2 Cc.U
0/, where U;U 0 � G are open and

homogeneous. Then a.0;/ D L.x�0�/.
(ii) A.WG/

�
� is the closure of fL.g/ j g 2 Cc.H�.G/ \ H� .G//g for all �; � .

(iii) If G is r-discrete, then A.WG/ is a C*-family.

Proof. (i) If � 2 Cc.G/, .x; y/ 2 G2
r;r , then .WG j��1�/.x; y/ D �.x/�.x�1y/ and

.a.0;/�/.x/ D R
GrG .x/ �0.x/�.x/�.x�1y/ d�rG.x/.y/ D ..x�0�/ ? �/.x/.

(ii), (iii) Combine (i) with Proposition 4.11 and Lemma 4.13.

In a subsequent article we will show that A.WG/ is a C*-family whenever G is
decomposable; here the difficulty is to prove that A.WG/

� D A.WG/.

Example: the pseudo-multiplicative unitary W� . Let us consider the pseudo-
multiplicative unitary W� associated to a center-valued conditional expectation
	 W B ! C � Z.B/; see Example 2.6. Recall that the underlying C*-module
E D B� � B of W� is generated by elements a � b, where a; b 2 B , such that
.a � b/b0 D a � bb0, Ǒ.b0/.a � b/ D b0a � b, ˇ.b0/.a � b/ D a � b0b and
ha0 � b0ja � bi D b0�	.a0�a/b for all a; a0; b; b0 2 B .

Recall that C (hence also B) was assumed to be unital. In particular, B is decom-
posable (Proposition 3.20 (v)). From Proposition 3.18 we deduce:

Lemma 4.15. ˇE is decomposable and H .ˇE/ D B� � H .B/.

Lemma 4.16. Let d 2 H�.B/, d 0 2 H� .B/, �; � 2 PAut.B/ and c; c0 2 B .
Moreover, put � ´ c � d and � 0 ´ c0 � d 0. Then � 2 H�.ˇE/, � 0 2 H� .ˇE/ and
Oa.�0;�/ D od;d 00 2 O. ǑE/�� , where d 00 D d 0�	.c0�c/ 2 H��.B/.

Proof. By Proposition 3.20, d 00 2 H� .B/
�Z.B/ � H��.B/. Let a; b 2 B . Then

W� j�i2.a � b/ D W� ..a � b/ � .c � d// D .da � b/ � .c � 1/ and hence
Oa.�0;�/.a � b/ D da � b�.hc0 � d 0jc � 1i/ D Ǒ.d/.a � b/�.d 00/ D od;d 00.a � b/;
note that �.d 00/ D d 00 by Proposition 3.19 (iv).
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Proposition 4.17. OA.W� / D O. ǑE/; in particular, OA.W� / is a C*-family.

Proof. By Lemma 4.15 and 4.16, OA.W� / � O. ǑE/. Conversely, if d 00 2 H��.B/,
d 2 H�.B/, �; � 2 PAut.B/, then � ´ 1�d 2 H�.ˇE/, � 0 ´ 1�d 00� 2 H� .ˇE/

and od;d 00 D Oa.�0;�/ 2 OA.W� /
�
� .

In general the C*-module ǑE will not be decomposable.

5. Hopf C*-families

In this section, we introduce the internal tensor product of C*-families, and the notion
of a morphism of C*-families. These concepts are needed for the definition of a
Hopf C*-family, which is given afterwards. Throughout this section, let A;B , C be
C*-algebras.

The internal tensor product. LetE be a right C*-A-B-bimodule and F a right C*-
B-C -bimodule. We define an internal tensor product of operators as a map L

�
� .E/�

L
�0

� 0.F / ! L
�
� 0.E � F / for all �; �; �0; � 0, where � and �0 are compatible in the

following sense:

Definition 5.1. Two partial automorphisms �; � 2 PAut.B/ are called compatible,
denoted by � � � , iff ��� � id and ��� � id.

Lemma 5.2. Let �; � 2 PAut.B/ such that � � � . Then:

(i) �� � ��;

(ii) �.a/ D �.a/ for all a; b 2 Dom.�/ \ Dom.�/;

(iii) �.Dom.�/ \ Dom.�// D Im.�/ \ Im.�/ D �.Dom.�/ \ Dom.�//;

(iv) �.ab/ D �.a/�.b/ D �.ab/ for all a 2 Dom.�/; b 2 Dom.�/;

(v) if �0 � � 0 for �0; � 0 2 PAut.B/, then ��0 � �� 0.

Proof. Assertions (i) and (ii) follow immediately from the definition.
(iii) By (ii), �.Dom.�/ \ Dom.�// D �.Dom.�/ \ Dom.�// is contained in

Im.�/ \ Im.�/. To obtain the reverse inclusion, replace �; � by ��; ��.
(iv) Let a 2 Dom.�/ and b 2 Dom.�/. By (ii), �.ab/�.c/ D �.ab/�.c/ D

�.a/�.bc/ D �.a/�.bc/ D �.a/�.b/�.c/ for each c 2 Dom.�/\ Dom.�/. If .u�/�
is an approximate unit for Dom.�/\Dom.�/, then by (iii), .�.u�//� is an approximate
unit for Im.�/\Im.�/. Therefore, �.ab/ D lim� �.a/�.bu�/ D lim� �.a/�.bu�/ D
lim� �.a/�.b/�.u�/ D �.a/�.b/. Symmetrically, �.a/�.b/ D �.ab/ for all a 2
Dom.�/; b 2 Dom.�/.

(v) .��0/.�� 0/� D �.�0� 0�/�� � ��� � id; similarly, .��0/�.�� 0/ � id.
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In general compatibility is not transitive: the automorphism of the ideal f0g is
compatible with every other partial automorphism of B .

Proposition 5.3. Let E1, E2 be right C*-A-B-bimodules, F1, F2 right C*-B-C -
bimodules, and let S 2 L

�S
�S
.E1; E2/, T 2 L

�T
�T
.F1; F2/, where �S 2 PAut.A/,

�S ; �T 2 PAut.B/, �T 2 PAut.C /. If �S ��T , then there exists an operator S�T 2
L

�S
�T
.E1 � F1; E2 � F2/ such that .S � T /.� � �/ D S� � T � for all � 2 E1,

� 2 F1, and kS � T k � kSkkT k, .S � T /� D S� � T �.

Proof. To simplify notation, we put E ´ E1 ˚ E2; F ´ F1 ˚ F2 and consider S
and T as elements of L

�S
�S
.E/ and L

�T
�T
.F /, respectively, in the natural way. Let

�; �0 2 E and �; � 0 2 F . Then

h�0 � � 0jS�� T �i D h� 0jh�0jS�iT �i D h� 0j�S .hS��0j�i/T �i:

Suppose that .u�/� is an approximate unit for Dom.�T /. Then Proposition 3.2 (v)
and Lemma 5.2 (iv) imply that �S .hS��0j�i/T � D lim� �T .u�/�S .hS��0j�i/T � D
lim� T u�hS��0j�i� D T hS��0j�i� . Thus we have

h�0 � � 0jS�� T �i D h� 0jT hS��0j�i�i D �T .hT �� 0jhS��0j�i�i/
D �T .hS��0 � T �� 0j�� �i/: (6)

Let us show that the map � � � 7! S� � T � is well defined and bounded. By
equation (6), k P

i S�i �T �ik2 D k P
i;j hS�S�i �T �T �i j�j � �j ik for all �i 2 E,

�i 2 F . Now T �T 2 LB
C .F / and by Proposition 1.1 the operators S�S�1, 1�T �T ,

S�S � T �T in LC .E �F / are well defined. Since S�S � T �T D .S�S � 1/.1�
T �T / D .1 � T �T /.S�S � 1/, we obtain that kS � T k2 � kS�S � T �T k �
kS�S � 1kk1� T �T k � kSk2kT k2.

Obviously the image of S � T is contained in Im.�S /.E � F / and
.S � T /a.� � �/ D Sa� � T � D �S .a/S� � T � D �S .a/.S � T /.� � �/ for
all � 2 E; � 2 F , a 2 Dom.�S /. Replacing S and T by their adjoints, we obtain a
bounded map S� � T � W E � F ! E � F , and equation (6) shows that S � T is
.�S ; �T /-homogeneous with adjoint .S � T /� D S� � T �.

Next we introduce the internal tensor product of C*-families.

Definition 5.4. Suppose that E1, E2 are right C*-A-B-bimodules and F1; F2 right
C*-B-C -bimodules. The internal tensor product of families of closed subspaces
C � L.E1; E2/ and D � L.F1; F2/ is the family C � D � L.E1 � F1; E2 � F2/

given by .C � D/
�
� ´ spanfS � T j S 2 C

�
�S
; T 2 D

�T
� ; �S ; �T 2 PAut.B/;

�S � �T g.
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Remark 5.5. Let E be a right C*-A-B-bimodule and F a right C*-B-C -bimodule,
and let A;C � L.E/ and B;D � L.F / be families of closed subspaces. Then
Œ.A � B/.C � D/� � ŒAC � � ŒBD �. This inclusion may be strict and fail to be
an equality. As a simple example assume that all spaces comprising the families C

and D are 0 except for C
�1
�1

and D
�2
�2

, where �1 and �2 are not compatible. Then
C� � D� D 0 D C � D , but C�C � D�D need not be 0.

Lemma 5.2 and routine arguments show:

Proposition 5.6. Let E be a right C*-A-B-bimodule, F a right C*-B-C -bimodule,
and let C � L.E/ and D � L.F / be C*-families. Then:

(i) If C and D are (non-degenerate) C*-families, then so is C � D .

(ii) If C is a (non-degenerate) O.E/-module and D is a (non-degenerate)
O.F /-module, then C � D is a (non-degenerate) O.E � F /-module.

(iii) M.C/� M.D/ � M.C � D/.

It is easy to see that the internal tensor product is associative:

Proposition 5.7. LetA,B ,C ,D be C*-algebras, letE be a right C*-A-B-bimodule,
F a right C*-B-C -bimodule and G a right C*-C -D-bimodule. Furthermore, let
B � L.E/, C � L.F /, D � L.G/ be C*-families. Then the natural isomorphism
.E�F /�G Š E�.F�G/ induces an isomorphism of C*-families .B�C/�D Š
B � .C � D/.

The constructions introduced above can easily be adapted to the flipped internal
tensor product of right C*-bimodules and give rise to a flipped internal tensor product
of homogeneous operators and of C*-families.

Embedding C*-families into C*-algebras. We construct an embedding of
C*-families into C*-algebras that will be used in the next section. This construc-
tion involves two right C*-bimodules IA, IB . Let us first define IA. Consider
A as a C*-A-module. Then for each � 2 PAut.A/, the ideal Dom.�/ � A is a
C*-submodule and routine calculations show:

Lemma 5.8. There exists a representation �
 W A ! LA.Dom.�// such that
�
 .a/x D ��.a�.x// for all a 2 A, x 2 Dom.�/.

Consider the direct sum of C*-modules IA ´ L

2PAut.A/ Dom.�/ as a right

C*-A-A-bimodule via the representations �
 defined above. For each � 2 PAut.A/,
denote by v
 W Dom.�/ ! IA, x 7! v
x, the canonical map. Then sums of the
form

P

 v
x
 , where x
 2 Dom.�/ is zero for all but finitely many � , form a dense
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subspace I0A � IA and .v
x/a D v
 .xa/, hv
 0x0jv
xi D ı
;
 0x0�x, a.v
x/ D
v
�

�.a�.x// for all x 2 Dom.�/; x0 2 Dom.� 0/, �; � 0 2 PAut.A/. Replacing A by
B , we obtain a right C*-B-B-bimodule IB .

Lemma 5.9. For all � 2 PAut.A/, � 2 PAut.B/, the maps V� W I0A ! I0A and
W� W I0B ! I0B given by

V� W
X




v
x
 7!
X


D
���

v.
��/�.x
 /; W� W
X




v
x
 7!
X


D���


v.�
/x


extend to operators V� 2 Lid
� .IA/ and W� 2 L

�
id.IB/. For all �; � 0 2 PAut.A/,

�; �0 2 PAut.B/, we have .V� /
� D V�� , .W�/

� D W�� , V�V� 0 D V�� 0 , W�W�0 D
W��0 , and kV�k D 1 if � ¤ idf0g, kW�k D 1 if � ¤ idf0g.

Proof. Given a logical expression e, put �e� ´ 0 if e is false, and �e� ´ 1 if e is
true. Fix � 2 PAut.A/, � ¤ idf0g.

The map V� extends to a bounded linear map on IA of norm 1 because
V�v
 Dom.�/ is orthogonal to V�v
 0 Dom.� 0/ whenever � ¤ � 0. Indeed, if
���� ¤ � or � 0��� ¤ � 0, one of these spaces is zero; if ���� D � , � 0��� D � 0
and � ¤ � 0, then ��� ¤ � 0��, and again the spaces above are orthogonal.

We claim that V�a D aV� for each a 2 A. Indeed, if � 2 PAut.A/, ���� D � ,
and � 0 ´ ���, then for all x 2 Dom.�/,

aV�v
x D av
 0�.x/ D v
 0� 0�.a.� 0�.x/// D v
 0�.��.a�.x/// D V�av
x:

Moreover, for all �; � 0; �; � 0 2 PAut.A/ and x 2 Dom.�/, x0 2 Dom.� 0/,

hv
 0x0jV�v
xi D x0��.x/ � ����� D � ^ � 0 D ����

D �.��.x0/�x/ � �� 0��� D � 0 ^ � 0� D �� D �.hV��v
 0x0jv
xi/;
V�V� 0v
x D v.
� 0���/�.�

0.x// � ��� 0�� 0 D � ^ �� 0���� D �� 0��

D v.
.�� 0/�/�.�
0.x// � ��.�� 0/�.�� 0/ D �� D V�� 0v
x:

The claims concerning V� follow and the claims concerningW� are proved similarly.

Theorem 5.10. LetE be a right C*-A-B-bimodule. For � 2 PAut.A/; � 2 PAut.B/,
define ��� W L

�
� .E/ ! LA

B.IA � E � IB/ by T 7! V� � T � W� . Then

k��� .T /k D kT k, ��� .T /� D �
��

��.T
�/ and �

�
� .T /�

�0

� 0.T
0/ D �

��0

�� 0.T T
0/ for all

T 2 L
�
� .E/, T 0 2 L

�0

� 0.E/, �; �0 2 PAut.A/, �; � 0 2 PAut.B/.

Proof. Let T , T 0, �, �0, � , � 0 be as above. By Lemma 5.9 and Proposition 5.3,
�
�
� .T /

� D �
��

��.T
�/, ��� .T /��

0

� 0.T
0/ D �

��0

�� 0.T T
0/ and k��� .T /k � kT k. Let us prove
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that k��� .T /k � kT k. Fix � 2 E. Note that for all � 2 PAut.A/, x 2 Dom.�/ and
� 0 2 PAut.B/, x0 2 Dom.� 0/,

kv
x � � � v
 0x0k2 D kx0�� 0�.h� jx�x�i� 0.x0//k D khx�� 0.x0/jx�� 0.x0/ik
and hence kv
x � � � v
 0x0k D kx�� 0.x0/k. Choose approximate units .u�/� and
.u0

�0/�0 , bounded in norm by 1, for the ideals Dom.�/ and Im.�/, respectively, and put
��;�0 ´ v�u� � � � v��u0

�0 for all �; �0. Then k��;�0k D ku���
�.u0

�0/k � k�k and
k��� .T /��;�0k D kv.���/�.u�/ � T � � v.���/u

0
�0k D k�.u�/.T �/u

0
�0k for all �; �0.

By Proposition 3.2, lim�;�0 k��� .T /��;�0k D kT �k, and hence, k��� .T /k � kT k.

By Theorem 5.10 we can embed every C*-family into some C*-algebra. Never-
theless, we continue to work with C*-families, because it is not clear how to define
the internal tensor product, which is crucial for the concept of a Hopf C*-family,
intrinsically on the level of the ambient C*-algebras.

Morphisms of C*-families. It seems difficult to find a notion of a morphism between
C*-families that makes the internal tensor product bifunctorial (with respect to these
morphisms). We adopt a pragmatic approach:

Definition 5.11. Let C and D be C*-families on right C*-A-B-bimodules. By a
family of linear maps � W C ! D we mean a family � D .�

�
� /�;� of linear maps

�
�
� W C

�
� ! D

�
� defined for all � 2 PAut.A/, � 2 PAut.B/. We call a family of linear

maps � W C ! D

� A0-B 0-extendible, where A0 and B 0 are C*-algebras, iff for each right
C*-A0-A-bimodule X and each right C*-B-B 0-bimodule Y , there exists a lin-
ear map �X

Y W .L.X/ � C � L.Y //idid ! .L.X/ � D � L.Y //idid such that

�X
Y .R�S �T / D R��

�
� .S/�T for allR 2 Lid

� 0.X/, S 2 C
�
� , T 2 L

�0

id .Y /,
where � 0; � 2 PAut.A/, �; �0 2 PAut.B/, � 0 � �, � � �0;

� extendible iff � is A0-B 0-extendible for every C*-algebra A0 and B 0;
� injective iff each component ��

� is injective;

� a morphism iff � is extendible and �X
Y always is a �-homomorphism.

We call a morphism � W C ! M.D/ non-degenerate iff Œ�.C/D � D D .
Let B, C , D be C*-families on right C*-A-B-bimodules. The composition of two

families of linear maps � W B ! C and  W C ! D is the family  B � W B ! D

given by . B �/�� ´  
�
� B ��

� for all �, � .

Remark 5.12. (i) .L.X/ � C � L.Y //idid and .L.X/ � D � L.Y //idid are C*-sub-
algebras of LA0

B0.X �E � Y / and LA0

B0.X � F � Y /, respectively.
(ii) Clearly, the composition of (extendible) families of linear maps/of morphisms

is a (extendible) family of linear maps/a morphism again, and the collection of
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all C*-families on right C*-A-B-bimodules and all (extendible) families of linear
maps/all morphisms forms a category.

Proposition 5.13. Let � W C ! D be a morphism of C*-families, and let c 2 C
�
� ,

c0 2 C
�0

� 0 , �; �0 2 PAut.A/, �; � 0 2 PAut.B/. Then ��0

� 0.c
0/��

� .c/ D �
�0�
� 0� .c

0c/,
�

�
� .c/

� D �
��

��.c
�/, k��

� .c/k � kck, and ��
� .c/ D �

�0

� 0.c/ if .�; �/ � .�0; � 0/. In
particular, � id

id W C id
id ! D id

id is a �-homomorphism (of C*-algebras).

Proof. This follows from the existence of a �-homomorphism �IA
IB

which makes the
diagram below commute for all � 2 PAut.A/ and � 2 PAut.B/:

C
�
�

�
�
�

��

� � �
�
� �� Œ�.C/� � .L.IA/� C � L.IB//idid

�IA
IB

��
D

�
�

� � �
�
� �� Œ�.D/� � .L.IA/� D � L.IB//idid:

Remarks 5.14. (i) A morphism � W C ! D of C*-families is injective iff the com-
ponent � id

id is injective because k��
� .c/k2 D k��

� .c/
���

� .c/k D k����
��� .c

�c/k D
k� id

id .c
�c/k for all c 2 C

�
� and all �, � .

(ii) A morphism � W C ! M.D/ of C*-families is non-degenerate iff the natural
map � id

id W C id
id ! M.D/idid ! M.D id

id / is a non-degenerate �-homomorphism of
C*-algebras. This follows from Remark 3.9 (iii).

Proposition 5.15. Let � W C ! D be a family of linear maps between C*-families
that is C-C-extendible. Then � is extendible.

Proof. Given C*-algebras A0, B 0, we show that � is A0-B 0-extendible. Let X 0 be
a right C*-A0-A-bimodule and Y 0 a right C*-B-B 0-bimodule. Denote by X the
C*-module X 0 considered as a right C*-C-A-bimodule via multiplication by scalars.
Choose a faithful representation of B 0 on a Hilbert spaceH and put Y ´ Y 0 � B0H .
ForG D E;F , the embedding LA0

B0.X
0 �AG�BY

0/ ,! LC
C.X �AG�BY

0 �B0H/,
T 7! T � B0 idH , maps .L.X 0/� B � L.Y 0//idid to .L.X/� B � L.Y //idid, where
B D C ;D , respectively. Restricting the map �X

Y (which exists by assumption), we
obtain the desired map �X 0

Y 0 .

The internal tensor product of C*-families is bifunctorial:

Proposition 5.16. Let � W A ! C and  W B ! D be extendible families of lin-
ear maps/.non-degenerate/ morphisms of C*-families on right C*-A-B-bimodules
and right C*-B-C -bimodules, respectively. Then there exists an extendible family
of linear maps/.non-degenerate/ morphism � �  W A � B ! C � D such that
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.� �  /
�
� 0.a� b/ D �

�
� .a/�  

�0

� 0.b/ for all a 2 A
�
� , b 2 B

�0

� 0 , where � 2 PAut.A/,
�; �0 2 PAut.B/, � 0 2 PAut.C / and � � �0.

Proof. If we can prove the assertion for the case that B D D ;  D idB and for the
case that A D C ; � D idA, then we can simply put � �  ´ .� � id/ B .id � /.
We treat the first case, the second one is similar.

Let � 2 PAut.A/, � 0 2 PAut.C /. Denote by F the right C*-bimodule on which
B acts. If �; �0 2 PAut.B/, � � �0, then the diagram

A
�
� � B

�0

� 0

� �
�
�

�0 ��

�
�
� �id

��

�
�
� 0..A � B/

�
� 0/ � .L.IA/� A � L.F � IC//idid

�IA
F �IC

��
C

�
� � B

�0

� 0

� �
�
�

�0 �� ��� 0..C � B/
�
� 0/ � .L.IA/� C � L.F � IC//idid

commutes. So we can insert a unique linear map .��id/�� 0 W .A�B/
�
� 0 ! .C �B/

�
� 0

that does not depend on � , �0 such that the diagram still commutes.
The family ..� � id/�� 0/�;� 0 is extendible. For let X be a right C*-C-A-bimodule

and Y a right C*-C -C-bimodule. Then F � Y is a right C*-B-C-bimodule, so the
linear map �X

F �Y W .L.X/�A�L.F �Y //idid ! .L.X/�C �L.F �Y //idid restricts
to a linear map .�� id/XY W .L.X/�A�B �L.Y //idid ! .L.X/�C �B �L.Y //idid
that has the desired properties. If� is a morphism, then�X

F �Y and hence also .��id/XY
are always �-homomorphisms, so � � id is a morphism.

Remark 5.17. Let A, C be C*-families on right C*-A-B-bimodules and let B, D be
C*-families on right C*-B-C -bimodules. If� W A ! M.C/ and W B ! M.D/ are
non-degenerate morphisms, then the morphism �� W A�B ! M.C/�M.D/ !
M.C � D/ evidently is non-degenerate.

Non-degenerate morphisms of C*-families can be extended to multipliers:

Proposition 5.18. Let� W C ! M.D/ be a non-degenerate morphism of C*-families.
If the C*-family D is non-degenerate, then � extends uniquely to a morphism
M.C/ ! M.D/.

Proof. Uniqueness follows once existence is proved by a standard argument. Denote
by F the underlying right C*-bimodule of D . Choose an approximate unit .u�/� for
the C*-algebra C id

id such that 0 � u� � 1 for all �.
We construct an extension x��

� W M.C/
�
� ! M.D/

�
� of ��

� for each � 2 PAut.A/
and � 2 PAut.B/ as follows. Let c 2 M.C/

�
� . Since � and D are non-degenerate, the

net .��
� .cu�//� converges strictly to some x��

� .c/ 2 L
�
� .F / (see Proposition 3.7 (i)).



528 T. Timmermann

Since x��
� .c/D

id
id D x��

� .c/Œ�
id
id .C

id
id /D

id
id � � Œ�

�
� .cC

id
id /D

id
id � � D

�
� and likewise

D id
id

x��
� .c/ � D

�
� , it follows that x��

� .c/ 2 M.D/
�
� .

We show that the family x� W M.C/ ! M.D/ is a morphism. Let X be a
right C*-C-A-bimodule and Y a right C*-B-C-bimodule. By assumption on �, the
�-homomorphism �X

Y is non-degenerate and extends to a �-homomorphism
S�X
Y W M..L.X/ � C � L.Y //idid/ ! M..L.X/ � M.D/ � L.Y //idid/. For all

R 2 Lid
� 0.X/, S 2 M.C/

�
� , T 2 L

�0

id .Y /, where � 0; � 2 PAut.A/, �; �0 2 PAut.B/,

and � 0 ��, � ��0, the operators S�X
Y .R�S�T / andR� x��

� .S/�T are equal because

they coincide with the strict limit of the net .R���
� .Su�/�T /� . Hence S�X

Y restricts
to a �-homomorphism x�X

Y W .L.X/� C � L.Y //idid ! .L.X/�M.D/� L.Y //idid,
as desired.

We are primarily concerned with the following examples of morphisms.

Examples 5.19. (i) An inclusion of C*-families is a morphism.

Let C be a C*-family on a right C*-A-B-bimodule E.
(ii) Let F be a right C*-A-B-bimodule and V 2 LA

B.E; F / an isometry. Then
AdV .C/ ´ ŒV CV �� � L.F / is a C*-family and the formula c 7! VcV � defines an
isomorphism AdV W C ! AdV .C/. If C is a (non-degenerate) O.E/-module, then
AdV .C/ is a (non-degenerate) O.F /-module; if V is unitary and C non-degenerate,
then AdV .C/ is non-degenerate.

(iii) Let F be a C*-module over C and � W C ! LB.E/ a �-homomorphism
such that �.C / commutes with each operator in C . Consider F � �E as a right
C*-A-B-bimodule via a.�� �/ ´ �� a� for all a 2 A, � 2 F , � 2 E. By a slight
abuse of notation, we denote by 1 � C � L.F � �E/ the internal tensor product
of C with the C*-family generated by the identity operator on F . Then 1 � C is a
C*-family, and the map T 7! 1�T defines a non-degenerate morphism C ! 1�C .
If �.hF jF i/ � LB.E/ is non-degenerate, then this morphism is injective. If the
C*-family C is non-degenerate, then 1� C is non-degenerate.

Now we have gathered all concepts needed to define Hopf C*-families.

Definition 5.20. A ( flipped ) Hopf C*-family overB is a non-degenerate C*-family A

on a right C*-B-B-bimodule equipped with a non-degenerate morphism

 W A ! M.A � A/ (or 
 W A ! M.A � A/, respectively) such that

(i) Œ
.A/.1� A/� D A � A D Œ
.A/.A � 1/� (or Œ
.A/.1� A/� D A � A D
Œ
.A/.A � 1/�, respectively), and

(ii) .id �
/ B
 D .
� id/ B
 (or .id �
/ B
 D .
� id/ B
, respectively).

Note that condition (i) implies that 
 is non-degenerate; therefore we can extend
id �
; 
� id (or id �
; 
� id, respectively) to multipliers.
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6. Legs of a decomposable pseudo-multiplicative unitary and Hopf C*-families

We return to the study of a pseudo-multiplicative unitary W W E Ǒ � E ! E � ˇE,

where .E; Ǒ; ˇ/ is a C*-trimodule over a C*-algebra B , and construct comultiplica-
tions on the legs OA.W / and A.W / defined in Section 4. As before, our constructions
are interesting only if the right C*-bimodule ˇE or ǑE, respectively, is decomposable.

Denote by OB � L. ǑE/ and B � L.ˇE/ the C*-families generated by OA.W / and

A.W /, respectively. Since OB and B commute with ˇ.B/ and Ǒ.B/, respectively,
see Lemma 4.1, we can define morphisms OB ! L. Ǒ

2
.E � ˇE//, Oa 7! 1 � Oa,

and B ! L.ˇ1
.E Ǒ � E//, a 7! a � 1 (see Example 5.19 (iii)). Composing with

conjugation by W � or W , respectively, we obtain morphisms (see Example 5.19 (ii)
and equation (1))

O
 W OB ! L. Ǒ
2
.E Ǒ �E//; Oa 7! W �.1� Oa/W;


 W B ! L.ˇ1
.E � ˇE//; a 7! W.a � 1/W �:

On the operators Oa.�0;�/ and a.0;/ of Lemma 4.1, O
 and 
 act as follows:

Lemma 6.1. (i) Let �; � 0 2 ˇE be homogeneous. Then O
. Oa.�0;�// equals

Œ� 0j3W13W23j�i3 W E Ǒ �E ! E Ǒ �E Ǒ �E ! .E Ǒ �E/� ˇE ! E Ǒ �E;

where j�i3.�� �/ D �� � � �, Œ� 0j�3.�� �/ D .�� �/� � 0 for �; � 2 E.

(ii) Let �; �0 2 ǑE be homogeneous. Then 
.a.0;// is equal to the map

h�0j1W12W13j��1 W E � ˇE ! E Ǒ � .E � ˇE/ ! E � ˇE � ˇE ! E � ˇE;

where j��1.� � �/ D �� .� � �/, h�0j�1.� � �/ D �0 � � � � for �; � 2 E.

Proof. We only prove (i). By definition, O
. Oa.�0;�// is equal to the composition

E Ǒ �E
W�! E � ˇE

id �j�i2�����! E � ˇE Ǒ �E
W23��! E � ˇE � ˇE

id �Œ�0j2�����! E � ˇE
W �

��! E Ǒ �E;

and this is equal to the map Œ� 0j3W �
12W23W12j�i3 W E Ǒ � E ! E Ǒ � E Ǒ � E !

.E Ǒ �E/� ˇE ! E Ǒ �E. But W �
12W23W12 D W13W23.

Proposition 6.2. (i) If ˇE is decomposable and Œ O
. OB/.1 � OB/� D OB � OB D
Œ O
. OB/. OB � 1/�, then . OB; O
/ is a flipped Hopf C*-family.

(ii) If ǑE is decomposable and Œ
.B/.1 � B/� D B � B D Œ
.B/.B � 1/�,
then .B; 
/ is a Hopf C*-family.
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Proof. We only prove assertion (i); the proof of assertion (ii) is similar. Let us make
the assumptions stated in (i). By Proposition 4.5, the C*-family OB is non-degenerate
and by the second assumption, O
 is a non-degenerate morphism OB ! M. OB � OB/. It
remains to show that O
 is coassociative. Let Oa 2 OB�

� , �; � 2 PAut.B/. By definition,
O
. Oa/ D W �.1� Oa/W , and hence

. O
� id/. O
. Oa// D W �
12W

�
23.1� 1� Oa/W23W12;

where W23W12 W E Ǒ � E Ǒ � E ! E � ˇE Ǒ � E ! E � ˇE � ˇE. Now we can
squeeze in conjugation by W12 and find

. O
� id/. O
. Oa// D W �
12W

�
23W12..1� 1/� Oa/W �

12W23W12;

where W �
12.W23W12/ W E Ǒ � E Ǒ � E ! E � ˇE � ˇE ! .E Ǒ � E/� ˇE. From

the pentagon equation (2) it follows that W �
12W23W12 is equal to the composition

W13W23 W E Ǒ �E Ǒ �E ! E Ǒ � .E � ˇE/ ! .E Ǒ �E/� ˇE. Therefore,

. O
� id/. O
. Oa// D W �
23W

�
13..1� 1/� Oa/W13W23 D .id � O
/. O
. Oa//:

Example: the pseudo-multiplicative unitary WG . Let us consider the pseudo-
multiplicative unitary WG associated to a groupoid G and determine the comultipli-
cations on its legs. We use the same notation as in Example 2.5 and Section 4.

Recall that the left leg OA.WG/ � L.sL
2.G; �// corresponds to (a filtration of) the

C*-algebra C0.G/, and that the internal tensor product L2.G; �/s �L2.G; �/ can be
identified with L2.G2

s;r/.

Lemma 6.3. . O
id
id.m.f //�/.x; y/ D f .xy/�.x; y/ for allf 2 C0.G/, � 2 L2.G2

s;r/,
.x; y/ 2 G2

s;r .

Proof. If f , �, x, y are as above then O
.m.f // D W �
G .1�m.f //WG and

.W �
G .1�m.f //WG�/.x; y/ D ..1�m.f //WG�/.x; xy/

D f .xy/.WG�/.x; xy/ D f .xy/�.x; y/:

Define Oı W C0.G/ ! Cb.G
2
s;r/ by . Oı.f //.x; y/ D f .xy/ and denote by

m2
s;r W Cb.G

2
s;r/ ! L2.G2

s;r/

the representation given by pointwise multiplication. Then the lemma above says that
O
id

id Bm D m2
s;r B Oı.

Theorem 6.4. . OA.WG/; O
/ is a Hopf C*-family.
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Proof. Put OA ´ OA.WG/. By Proposition 4.8 (iii) and 6.2, it suffices to show that
Œ O
. OA/.1 � OA/� D Œ OA � OA� D Œ O
. OA/. OA � 1/�. We prove the first equality, and
the second one follows similarly. Denote by p�

2 W C0.G/ ! Cb.G
2
s;r/ the map given

by .p�
2f /.x; y/ ´ f .y/ for all .x; y/ 2 G2

s;r , f 2 C0.G/. Routine arguments

show that Œ Oı.C0.G//p
�
2 .C0.G//� D C0.G

2
s;r/. Let �; � 2 PAut.C0.G

0// and put
D� ´ Dom.�^ id/,D� ´ Dom.� ^ id/. Then by Proposition 4.8 (ii), Lemma 6.3,
and the preceding observation,

Œ OA � OA��� D Œr.D� /m.C0.G//� s.D�/m.C0.G//�

D Œ.r.D� /� s.D�//m
2
s;r.C0.G

2
s;r//�

D Œ.r.D� /� s.D�//m
2
s;r.

Oı.C0.G//p
�
2 .C0.G///�

D Œ O
. OA/.1� OA/��� :

Recall that the right leg A.WG/ corresponds to the left regular representation of
G, and that L2.G; �/ � rL

2.G; �/ can be identified with L2.G2
r;r/. As before, we

impose Assumption 4.12.

Lemma 6.5. Let f 2 Cc.U /, where U � G is open and homogeneous.

(i) .
.L.f //�/.x; y/ D R
GrG .x/ f .z/�.z�1x; z�1y/d�rG.x/.z/ for all .x; y/ 2

G2
r;r , � 2 L2.G2

r;r/.

(ii) Assume that G is r-discrete, U a G-set, g; h 2 Cc.U / and gh D f . Then

.L.f // D L.g/� L.h/.

Proof. Let f , �, x, y be as above. Then 
.L.f // D WG.L.f /� 1/W �
G and

.WG.L.f /� 1/W �
G�/.x; y/ D ..L.f /� 1/W �

G�/.x; x
�1y/

D
Z

GrG .x/

f .z/.W �
G�/.z

�1x; x�1y/ d�rG.x/.z/

D
Z

GrG .x/

f .z/�.z�1x; z�1xx�1y/ d�rG.x/.z/:

Assertion (i) follows. Let us prove (ii). If r.x/ 2 r.U /, there exists a unique element
z 2 U such that r.z/ D r.x/ and

.
.L.f //�/.x; y/ D f .z/�.z�1x; z�1y/

D g.z/h.z/�.z�1x; z�1y/ D ..L.g/� L.h//�/.x; y/:

Theorem 6.6. If G is r-discrete, then .A.WG/;
/ is a Hopf C*-family.

Proof. Put A D A.WG/. By Proposition 4.14 (iii) and Lemma 6.5 (ii), it suffices
to show that ŒA � A� � Œ
.A/.1 � A/� and ŒA � A� � Œ
.A/.A � 1/�. We
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prove the first inclusion, the second one follows similarly. Let �; � 2 PAut.B/.
By Proposition 4.14 (ii), ŒA � A�

�
� is the closed linear span of all operators of the

form L.f /� L.g/, where f 2 Cc.U /, g 2 Cc.V / for some open G-sets U , V and
� � qU � �qV � � � . Fix such an operator, choose � 2 Cc.U / such that �f D f , and
put ! ´ � ? ��. Then ! 2 Cc.G

0/, ! ? f D f and L.!/ D r.!/ D L.�/L.��/.
Using Lemma 6.5 (ii), we find

L.f /� L.g/ D r.!/L.f /� L.g/ D L.f /� r.!/L.g/

D L.f /� L.�/L.�� ? g/ D 
.L.f //.1� L.�� ? g//:

Here L.�� ? g/ D L.�/�L.g/ 2 Aid
��� by Proposition 4.14 and because qU � � qV �.

Therefore, L.f /� L.g/ 2 
.A�
�/.1� Aid

��� / � Œ
.A/.1� A/�
�
� .

In a subsequent article we will show that .A.WG/;
/ is a Hopf C*-family when-
ever G is decomposable.

Example: the pseudo-multiplicative unitary W� . Let us consider the pseudo-
multiplicative unitary W� associated to a center-valued conditional expectation
	 W B ! C � Z.B/, see Example 2.6 and Section 4, and determine the comulti-
plication on the leg OA.W� / D O. ǑE/.

Lemma 6.7. O
.oe;f / D o1;f � oe;1 for all e 2 H�.B/, f 2 H��.B/, �; � 2
PAut.B/.

Proof. By Proposition 3.21, o1;f 2 Lid
� . ǑE/ and oe;1 2 L

�
id. ǑE/, and by Propo-

sition 5.3, o1;f � oe;1 2 L
�
� . Ǒ

2
.E Ǒ � E// is well defined. The following diagram

shows that O
.oe;f / D W �
� .1� oe;f /W� D o1;f � oe;1: for all a; b; c; d 2 B ,

.a � b/� .c � d/
� o1;f �oe;1 ��

�

W�

��

.a � bf /� .ec � d/
�

W�

��
.da � b/� .c � 1/

�
1�oe;f

�� .da � b/� .ec � f / D .da � bf /� .ec � 1/:

In the next proposition we use the following equation: in E Ǒ �E we have

oa;b�� oc;de� D oa;b�� .oc;d �/e D Ǒ.e/oa;b�� oc;d � D oea;b�� oc;d � (7)

for all �; � 2 E and all homogeneous a; b; c; d; e 2 B .

Theorem 6.8. . OA.W� /; O
/ is a Hopf C*-family.
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Proof. Put O ´ O. ǑE/ D OA.W� /. By Proposition 6.2 and Lemma 6.7, we only

need to prove ŒO � O� � Œ O
.O/.1 � O/� and ŒO � O� � Œ O
.O/.O � 1/�. For
each �; � 2 PAut.B/, the space .O � O/

�
� is the closed linear span of all elements

of the form oa;b � oc;d , where a; b; c; d 2 B are �0-/��-/�-/� 0�-homogeneous, and
�0 � � 0. For such an element, da 2 H� 0��0.B/ � Hid.B/ by Proposition 3.20 (iv),
whence 1 � o1;da and oda;1 � 1 are well defined, and by Lemma 6.7 and equa-
tion (7), oa;b � oc;d D oda;b � oc;1 D O
.oc;b/.oda;1 � 1/ 2 Œ O
.O/.O � 1/�

�
� and

oa;b � oc;d D o1;b � oc;da D O
.oc;b/.1� o1;da/ 2 Œ O
.O/.1� O/�
�
� .

7. Additional structure on the legs

As before let B be a C*-algebra, let .E; Ǒ; ˇ/ be a C*-trimodule over B and let
W W E Ǒ �E ! E � ˇE be a pseudo-multiplicative unitary.

The dual pairing of the legs. Similar to the case of multiplicative unitaries [1], Défi-
nition 1.3, there is a pairing between the spaces OAa.W / ´ P

�;�
OAa.W /

�
� � L.E/

andAa.W / ´ P
�0;� 0 Aa.W /

�0

� 0 � L.E/. This pairing is interesting primarily if ˇE

and ǑE are decomposable.

Lemma 7.1. For all homogeneous �; � 0 2 ˇE and �; �0 2 ǑE, the compositions
Œ� 0ja.0;/j�i W B ! ˇE ! ˇE ! B and h�0j Oa.�0;�/j�� W B ! ǑE ! ǑE ! B are
equal.

Proof. Œ� 0ja.0;/j�i D Œ� 0jh�0j1W j��1j�i D h�0jŒ� 0j2W j�i2j�� D h�0j Oa.�0;�/j�� be-
cause j��1j�ib D � � �b D b� � � D j�i2j��b and j�0i1j� 0�b D �0 � b� 0 D
�0b � � 0 D j� 0�2j�0ib for all b 2 B .

The next proposition involves the weak topology on L.E/, which is the locally
convex topology generated by all seminorms of the form T 7! kh�0jT �ik where
�; �0 2 E. Denote by xXw the weak closure of a subset X � L.E/.

Proposition 7.2. There exists a bilinear map . � j � / W OAa.W /�Aa.W / ! L.B/ such
that Œ� 0ja.0;/j�i D . Oa.�0;�/ja.0;// D h�0j Oa.�0;�/j�� for all homogeneous �; � 0 2 ˇE

and �; �0 2 ǑE. This map has the following properties:

(i) It extends to a bilinear map . � j � /w W OAa.W /�Aa.W /
w ! L.B/ such that for

each Oa 2 OAa.W / the map a 7! . Oaja/w is continuous with respect to the weak
topology onAa.W /

w
and the norm topology on L.B/, and it extends to a bilinear

map w. � j � / W OAa.W /
w

� Aa.W / ! L.B/ such that for each a 2 Aa.W / the
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map Oa 7! w. Oaja/ is continuous with respect to the weak topology on OAa.W /
w

and the norm topology on L.B/.

(ii) . OAa.W /
�
� jAa.W /

�0

� 0/ � L
�0�
�� 0.B/ for all �; �; �0; � 0 2 PAut.B/.

(iii) If ǑE is decomposable, then . OajAa.W // ¤ 0 whenever Oa ¤ 0, and if ˇE is

decomposable, then . OAa.W /ja/ ¤ 0 whenever a ¤ 0.

(iv) . Oaj˛.b/a/ D . Oa˛.b/ja/ for all Oa 2 OAa.W /, a 2 Aa.W / and all homogeneous
b 2 B .

Proof. Existence follows from Lemma 7.1: If Oa D P
i Oa.�0

i
;�i /, a D P

j a.0

j
;j /,

where �i ; �
0
i 2 ˇE, �j ; �

0
j 2 ǑE are homogeneous, then we can define . Oaja/ to beP

i Œ�
0
i jaj�i i D P

i;j Œ�
0
i ja.0

j
;j /j�i i D P

i;j h�0
j j Oa.�0

i
;�i /j�j � D P

j h�0
j j Oaj�j �.

(i) We prove existence of . � j � /w ; for w. � j � / the proof is similar. Let
Oa.�0;�/ 2 OAa.W /

�
� be as in Lemma 4.1 (i) and let .a�/� be a net in Aa.W / with

weak limit a 2 L.E/. Then the net .. Oa.�0;�/ja�//� converges in norm to
Œ� 0jaj�i μ . Oa.�0;�/ja/w . Indeed, k. Oa.�0;�/ja�/ � Œ� 0jaj�ik D kŒ� 0j.a� � a/j�ik D
kh� 0j.a� �a/�ik ! 0 because Œ� 0j.a� �a/j�ib D �.h� 0j.a� �a/�ib/ for all b 2 B .
Using bilinearity of . � j � /, we can replace Oa.�0;�/ by an arbitrary Oa 2 OAa.W /.

(ii) Given Oa.�0;�/ 2 OAa.W /
�
� as in Lemma 4.1 (i) and a 2 Aa.W /

�0

� 0 , we have

. Oa.�0;�/ja/ D Œ� 0jaj�i 2 Lid
� .ˇE;B/L

�0

� 0.ˇE/L
�
id.B; ˇE/ � L

�0�
�� 0.B/ by Proposi-

tion 3.12. The claim follows.
(iii) If ǑE is decomposable and h�0j Oaj�� D . Oaja.0;// D 0 for some Oa 2 OAa.W /

and all homogeneous �; �0 2 ǑE, then hEj Oa Ǒ.B/Ei D 0 and hence Oa D 0. The
second assertion follows similarly.

(iv) Let �; � 0 2 ˇE, �; �0 2 ǑE, b 2 B be homogeneous. Using the proof
of Lemma 7.1 and the relation ˛.b/h�0j1W j�i2 D h�0j1W j�i2˛.b/, we find that
. Oa.�0;�/j˛.b/a.0;// D Œ� 0j˛.b/h�0j1W j�i2j�� D Œ� 0jh�0j1W j�i2˛.b/j�� D
. Oa.�0;�/˛.b/ja.0;//. The claim follows.

The L.B/-valued pairing . � j � / yields a B-valued pairing .. � j � // as follows:

Corollary 7.3. Assume thatB is decomposable and let .u�/� be an approximate unit
ofZ.B/. Then for all Oa 2 OAa.W /, a 2 Aa.W /, the limit .. Oaja// ´ lim�. Oaja/u� exists
and does not depend on the choice of .u�/� . The map .. � j � // W OAa.W / � Aa.W / !
B; . Oa; a/ 7! .. Oaja//, is bilinear and .. OAa.W /

�
� jAa.W /

�0

� 0// � H.�0���� 0�/.B/ for all
�; �; �0; � 0 2 PAut.B/.

Proof. Since Z.B/ � B is non-degenerate (Proposition 3.20 (v)), we have that
lim�. Oa.�0;�/ja/u� D lim� Œ�

0jaj�iu� D lim� Œ�
0ja�u� D Œ� 0ja� 2 B for all homo-

geneous �; � 0 2 ˇE and a 2 Aa.W /. The first claims follow. The last assertion
follows from Proposition 7.2 (ii) and 3.14 (iv).
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Example 7.4. Consider the pseudo-multiplicative unitary WG of a decomposable
groupoid G (see Example 2.5 and Sections 4, 6). By Proposition 4.8 and 4.14 (and a
partition of unity argument in the case of Aa.WG/),

m.Cc.G// � OAa.WG/ � m.Cc.G//
w
; L.Cc.G// � Aa.WG/ � L.Cc.G//

w
:

Let �; �0 2 Cc.G/ be homogeneous elements of sL
2.G; �/ and let �; � 0 2 Cc.G/.

Then Oa.�0;�/ D m.f / where f D x� 0 ? x��, and a.0;/ D L.g/ where g D x�0�
(Proposition 4.8 and 4.14). We compute T ´ .m.f /jL.g//. By definition we
have T D .m.f /ja.0;// D h�0jm.f /j��. Let h 2 C0.G

0/. Then m.f /j��h D
m.f /s.h/� 2 sL

2.G; �/ is given by x 7! f .x/h.sG.x//�.x/, and

.T h/.u/ D
Z

Gu

�0.x/f .x/h.sG.x//�.x/d�u.x/ D
Z

Gu

f .x/g.x/h.sG.x//d�
u.x/

for all u 2 G0. Thus we find: If f; g 2 Cc.G/ and T D .m.f /jL.g// 2 L.C0.G
0//,

then .T h/.u/ D R
Gu f .x/g.x/h.sG.x//d�

u.x/ for all h 2 C0.G
0/ and u 2 G0,

and ..m.f /jL.g/// 2 C0.G
0/ is given by u 7! R

Gu f .x/g.x/d�
u.x/.

Fixed and cofixed multipliers. For (pseudo-) multiplicative unitaries on Hilbert
spaces, fixed and cofixed elements were studied by Baaj and Skandalis [1], para-
graphe 1, and later by Enock [4], Section 5. We carry over the definition and some
of their results to the present situation. The discussion involves multipliers of C*-
modules, which we briefly review.

Recall thatE can be identified with KB.B;E/ � LB.B;E/ via � $ j�i, and that
elements of LB.B;E/ are called multipliers of E. We extend the ket-bra notation to
multipliers as follows. Let S 2 LB

B .B; ǑE/. Consider the maps S � id W B � ˇE !
E � ˇE and S � id W B �E ! E Ǒ �E (see Proposition 1.1). Identifying B � ˇE

and B � E with E, we obtain maps jSi1 W E ! E � ˇE and jS�1 W E ! E Ǒ � E.

Similarly, we define for T 2 LB
B .B; ˇE/ maps jT �2 W E Š E � B ! E � ˇE and

jT i2 W E Š E Ǒ � B ! E Ǒ � E. Put hS j1 ´ jSi�
1 , ŒS j1 ´ jS��1 , ŒT j2 ´ jT ��2 ,

hT j2 ´ jT i�
2 and S�� ´ jSi1� , S�� ´ jS�1� , ��T ´ jT �2�, ��T ´ jT i2�

for all �; � 2 E.
We extend ˇ, Ǒ to the multiplier algebraM.B/ and denote the extensions by ˇ, Ǒ

again. Using the fact thatEB D E [9], Lemma 4.4, it is easy to see that for each � 2 E
and T 2 M.B/, there exists a unique element �T 2 E such that .�T /b D �.T b/ for
all b 2 B .

Definition 7.5. Let us say that a multiplier �0 2 LB
B .B; ǑE/ is fixed by W iff

W.�0 � �/ D �0 � � for all � 2 E, and that a multiplier �0 2 LB
B .B; ˇE/ is cofixed

by W iff W.� � �0/ D � � �0 for all � 2 E. We denote the set of all fixed/cofixed
multipliers by Fix.W //Cofix.W /.
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Remarks 7.6. (i) We speak of fixed and cofixed elements of E, identifying � with
j�i for each � 2 E. Note that by Proposition 3.12, KB

B .B; ǑE/ D jHid. ǑE/i and

KB
B .B; ˇE/ D jHid.ˇE/i.

(ii) If �0 2 E satisfies W.�0 � �/ D �0 � � for all � 2 E, then automatically
�0 2 Hid. ǑE/. For then �0b� � D .�0 � �/b D .W �.�0 � �//b D W �.�0 � �b/ D
�0 � �b D Ǒ.b/�0 � � for all � 2 E, b 2 B , and since E is full, �0 2 Hid. ǑE/.
Likewise, if �0 2 E satisfies W.�� �0/ D �� �0 for all � 2 E, then automatically
�0 2 Hid.ˇE/.

(iii) Clearly Fix.W / D Cofix.W op/ and Cofix.W / D Fix.W op/.

Lemma 7.7. (i) h�0
0j1W j�0�1� D ˇ.h�0

0j�0i/� D �h�0
0j�0i for all �0; �

0
0 2 Fix.W /,

� 2 E.
(ii) Œ� 0

0j2W j�0i2� D Ǒ.h� 0
0j�0i/� D �h� 0

0j�0i for all �0; �
0
0 2 Cofix.W /, � 2 E.

Proof. We only prove assertion (i). Let �0; �
0
0 2 Fix.W / and � 2 E. Then

we have h�0
0j1W j�0�1� D h�0

0j1W.�0 � �/ D h�0
0j1.�0 � �/ D ˇ.h�0

0j�0i/� and
.h�0

0j1W j�0�1/
�� D Œ�0j1W �j�0

0i1� D Œ�0j1.�0
0 � �/ D �h�0j�0

0i.
For � D ˇ; Ǒ put Z.�E/ ´ fT 2 M.B/ j �.T /� D �T for all � 2 Eg.

Note that Z.�E/ � Z.M.B// because h� 0j�iTR D h� 0j�T iR D h� 0j�.T /�iR D
h� 0j�.T /�Ri D h� 0j�RiT D h� 0j�iRT for all � 0; � 2 E, R 2 M.B/, T 2 Z.�E/,
and because E is full.

Proposition 7.8. (i) ˇ.M.B//Fix.W / D Fix.W /; furthermore, the space
ŒFix.W /� Fix.W /� � M.B/ is a C*-subalgebra of Z.ˇE/.

(ii) Ǒ.M.B//Cofix.W / D Cofix.W /, and ŒCofix.W /� Cofix.W /� � M.B/ is a
C*-subalgebra of Z. ǑE/.

Proof. We only prove (i). For all R 2 M.B/, �0 2 Fix.W /, � 2 E we have
ˇ.R/�0 2 LB

B .B; ǑE/ and, by equation (1), W.ˇ.R/�0 � �/ D Wˇ1.R/.�0 � �/ D
ˇ1.R/W.�0 � �/ D ˇ1.R/.�0 � �/ D ˇ.R/�0 � � . These relations show that
ˇ.M.B//Fix.W / � Fix.W /. By Lemma 7.7, Fix.W /� Fix.W / � Z.ˇE/. Finally,
ŒFix.W /� Fix.W /� is a C*-algebra because Fix.W /Fix.W /� Fix.W / is contained in
Fix.W /Z.ˇE/ � ˇ.M.B//Fix.W / D Fix.W /.

Definition 7.9. We say that W is étalé iff h�0j�0i D idB for some �0 2 Fix.W /,
proper iff h�0j�0i D idB for some �0 2 Cofix.W /, and compact iff it is proper and if
B is unital.

Note that by Remark 7.6 (iii), W is proper/étalé iff W op is étalé/proper.

Proposition 7.10. (i) If W is proper, then O. ǑE/ � OA.W /.
(ii) If W is étalé, then O.ˇE/ � A.W /.
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Proof. We only prove (i). Assume that �0 2 Cofix.W / satisfies h�0j�0i D idB ;
then Œ�0j2W j�0i2 D Ǒ.h�0j�0i/ D idE (Lemma 7.7). Let b 2 H�.B/ and let
c 2 H��.B/, �; � 2 PAut.B/. Then �0c

� 2 H� . ǑE/ and �0b 2 H�. ǑE/ by
Proposition 3.14 (iv), and a similar calculation as in Lemma 4.3 shows that
ob;c D Ǒ.b/˛.c/ D Œ�0c

�j2W j�0bi2 2 OA.W /
�
� .

If W is a multiplicative unitary, then the converse of the implications in Proposi-
tion 7.10 holds; see [1], Proposition 1.10.

Example: the pseudo-multiplicative unitary WG . Let us consider the pseudo-
multiplicative unitary WG of a groupoid G (see Example 2.5 and Sections 4, 6) and
determine the fixed and cofixed elements. We identify M.L2.G; �// in the natural
way with the completion of the space

ff 2 C.G/ j r W suppf ! G is proper; supu2G0

R
Gu jf .x/j2d�u.x/ is finiteg

with respect to the norm k � k1;2 W f 7! supu2G0.
R

Gu jf .x/j2d�u.x//1=2. Standard
arguments and the relations �.x/�.y/ D .� � �/.x; y/ and .W.� � �//.x; y/ D
�.x/�.x�1y/, valid for all .x; y/ 2 G2

r;r and �; � 2 L2.G; �/, show:

Lemma 7.11. (i) A multiplier �0 2 M.L2.G; �// is fixed iff for each u 2 G0,
�0jGunfug D 0 almost everywhere with respect to �u.

(ii) A multiplier �0 2 M.L2.G; �// is cofixed iff for each u 2 G0, �0jGu D
�0 B sG jGu almost everywhere with respect to �u.

Theorem 7.12. WG is étalé/proper/compact iff G is r-discrete/proper/compact.

Proof. Assume that WG is étalé, and that �0 2 Fix.WG/ satisfies h�0j�0i D idB .
Define f W G ! R by y 7! R

GrG .y/ �0.x/�0.x
�1y/ d�rG.y/.x/. Then f is contin-

uous, f jG0 	 ��� 	 1 and f jGnG0 D 0 by Lemma 7.11. Therefore, G0 � G is
open. Conversely, assume thatG is r-discrete. Define �0 W G ! Œ0; 1� by �0jG0 D 1,
�0jGnG0 D 0. Then �0 2 M.L2.G; �// since �0 is continuous, h�0j�0i D idB , and
�0 2 Fix.W / by Lemma 7.11. Hence WG is étalé.

Assume that WG is proper and �0 2 Cofix.WG/ satisfies h�0j�0i D idB . Define
c W G0 ! Œ0;1/ by u 7! �0.u/�0.u/. Then

Z
Gu

c.sG.x//d�
u.x/ D

Z
Gu

�0.x/�0.x/ d�
u.x/ D 1

for all u 2 G0 (see Lemma 7.11). By [19], Proposition 6.10, G is proper. Con-
versely, assume that G is proper. By [20], Proposition 6.11, there exists a contin-
uous function c W G0 ! Œ0;1/ such that the map r W supp.c B s/ ! G0 is proper
and

R
Gu c.sG.x// d�

u.x/ D 1 for all u 2 G0. Define �0 2 M.L2.G; �// by
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x 7! c.sG.x//
1=2. By construction and by Lemma 7.11, �0 2 Cofix.WG/ and

h�0j�0i D idB . Hence WG is proper.

Finally, we conclude: G is compact () G is proper and G0 is compact () WG

is proper and C0.G
0/ is unital () WG is compact.

Example: the pseudo-multiplicative unitary W� . Let us now consider the pseudo-
multiplicative unitary W� associated to a center-valued conditional expectation
	 W B ! C � Z.B/, see Example 2.6 and Sections 4, 6.

Proposition 7.13. Cofix.W� / D ŒB� � 1�, and W� is compact.

Proof. Clearly ŒB� �1� � Cofix.W� /, andW� is compact because 1�1 2 Cofix.W� /,
h1 � 1j1 � 1i D 1. Assume that �0 2 Cofix.W� /. We consider the map
Y W E � ˇE ! B� � B� � B of Example 2.6. In B� � B� � B , we have that
1� �0 D Y..1� 1/� �0/ D YW� ..1� 1/� �0/ and YW� ..1� 1/� .c � d// D
Y..d � 1/� .c� 1// D .d � c� 1/ 2 B� �B� � 1 for all c; d 2 B . An application
of the map h1j � id � id W B� � B� � B ! B� � B shows that �0 2 ŒB� � 1�.

Recall that a quasi-basis for 	 is a finite set of elements .ui /i of B satisfyingP
i 	.bui /u

�
i D b for all b 2 B , and that 	 is said to be of index-finite type iff there

exists a quasi-basis for 	 . Moreover, if 	 is of index-finite type with a quasi-basis .ui /i ,
then the element Index.	/ ´ P

uiu
�
i 2 B is central, invertible and independent of

the choice of .ui /i . For details, see, e.g., [22].

Lemma 7.14. If .ui /i is a quasi-basis for 	 , then
P

i ui � u�
i 2 Hid. ǑE/.

Proof.
P

i ui �u�
i 2 Hid. ǑE/ since hc�d j P

i ui �u�
i bi D P

i d
�	.c�ui /u

�
i b D

d�c�b D P
i d

�	.c�bui /u
�
i D hc � d j P

i bui � u�
i i for all b; c; d 2 B .

Proposition 7.15. Fix.W� / D Hid. ǑE/, and if 	 is of index-finite type, then W� is
étalé.

Proof. If �0 2 Hid. ǑE/, then W� .�0 � .c � d// D Ǒ.d/�0 � .c � 1/ D
�0d � .c � 1/ D �0 � ˇ.d/.c � 1/ D �0 � .c � d/ for all c; d 2 B , whence
�0 2 Fix.W� /. If 	 has a quasi-basis .ui /i , then �0 ´ P

i ui � u�
i Index.	/�1=2

satisfies �0 2 Hid. ǑE/ D Fix.W / because Index.	/ is central and by Lemma 7.14,

and h�0j�0i D P
i;j ui	.u

�
i uj /u

�
j Index.	/�1 D P

i uiu
�
i Index.	/�1 D 1.

The counits on the legs. Let us return to the legs of a pseudo-multiplicative unitary
W W E Ǒ �E ! E�ˇE. As before, we denote by OB and B the C*-families generated

by OA.W / and A.W /, respectively.
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If idE belongs toAa.W /
w

, then we can define a linear map Oa W OAa.W / ! L.B/,
Oa 7! . OajidE /

w , which should be considered as the counit on the left leg ofW . In this
case, Oa. OAa.W /

�
� / � L

�
� .B/ and Oa. Oa.�0;�// D Œ� 0jj�i for all �; � 2 PAut.B/ and all

homogeneous �; � 0 2 ˇE; see Proposition 7.2. Similarly, if idE belongs to OAa.W /
w

,
then we can define a “counit” a W Aa.W / ! L.B/, a 7! w.idE ja/, on the right leg
of W .

Theorem 7.16. (i) Assume that W is étalé. Then there exists a morphism
O W OB ! L.B/ such that O�

� . Oa/ D Oa. Oa/ for all Oa 2 OAa.W /
�
� , �; � 2 PAut.B/. If

ˇE is decomposable, then O is non-degenerate. If additionally O
. OB/ � M. OB � OB/
and if we identify B �E Š E Š E Ǒ � B , then .O � id/ B O
 D id D .id �O/ B O
.

(ii) Assume that W is proper. Then there exists a morphism  W B ! L.B/ such
that �

� .a/ D a.a/ for all a 2 Aa.W /
�
� , �; � 2 PAut.B/. If ǑE is decomposable,

then  is non-degenerate. If additionally 
.B/ � M.B � B/ and if we identify
B � ˇE Š E Š E � B , then . � id/ B
 D id D .id � / B
.

Proof. We only prove (i). Choose �0 2 Fix.W / such that h�0j�0i D idB , and define
O W OB ! L.B/ by O�

� . Oa/ D h�0j Oaj�0i for all Oa 2 OB�

� , �; � 2 PAut.B/. Let �; � 0 2 ˇE

be homogeneous. Then O. Oa.�0;�// D h�0jŒ� 0j2W j�i2j�0i D h�0jŒ� 0j2j�0 � �i D
Œ� 0jj�i D Oa. Oa.�0;�// and evidently O. Oa.�0;�//

� D O. Oa�
.�0;�/

/. To prove that O is a mor-
phism of C*-families, it is enough to show that O. Oa.�0;�/ Oa.� 0;�// D O. Oa.�0;�//O. Oa.� 0;�//

for all homogeneous �; �0 2 ˇE. By the proof of Proposition 4.6, O. Oa.�0;�/ Oa.� 0;�// D
h�0j Oa.�0;�/ Oa.� 0;�/j�i0 is equal to

B
j0i��! E

j���i2����! E Ǒ � .E � ˇE/
W23W12W �

23��������! E � ˇE � ˇE
Œ�0

�� 0j2�����! E
h0j��! B:

Hence, O. Oa.�0;�/ Oa.� 0;�//
� and O. Oa.� 0;�//

� O. Oa.�0;�//
� act on each b 2 B by

b
j�0

�� 0�2j0i7��������! �0b � � 0 � �0 D �0 � b� 0 � �0

W23W �

12
W �

237��������! �0 � .b� 0 � �0/
h0jh��� j27�������! h� � �jb� 0 � �0i

and by

b
h�jj�0�����! h�jb� 0i h� jj� 0�����! h�jh�jb� 0i�0i D h� � �jb� 0 � �0i;

respectively (use the assumptions on �0); so O. Oa.�0;�/ Oa.� 0;�//
� D O. Oa.� 0;�//

� O. Oa.�0;�//
�.

Assume that ˇE is decomposable. Since O. Oa.�0;�//
�b D h�jb� 0i for all homoge-

neous �; � 0 2 ˇE and all b 2 B , and since E is full and ˇ non-degenerate, we have
ŒO. OB/B� D B .
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Let us prove the last assertion in (i). Since O
. Oa.�0;�// D Œ� 0j3W13W23j�i3 (Lem-
ma 6.1), .id �O/. O
. Oa.�0;�/// and .O � id/. O
. Oa.�0;�//

�/ act as follows:

�
j0i27��! � � �0

j�i37�! ���0 � �
W237��! ��.�0��/

Œ�0j3W137����! Oa.�0;�/���0

h0j27��! Oa.�0;�/�

and

�
j0�17��! �0��

j��37�! .�0��/��
W �

137��! �0�.���/
h�j3W �

237����! �0� Oa�
.�0;�/�

Œ0j17��! Oa�
.�0;�/�

for all � 2 E, respectively.

Example 7.17. Let us consider the pseudo-multiplicative unitary WG of a decom-
posable groupoid G (see Example 2.5 and Sections 4, 6), and determine the counits
on its legs.

Let �; � 0 2 Cc.G/. Then Oa.�0;�/ D m.x� 0 ? x��/ by Proposition 4.8, and

.Oa. Oa.�0;�//h/.u/ D
Z

Gu

� 0.x/h.rG.x//�.x/ d�u.x/ D .x� 0 ? x��/.u/h.u/

for all h 2 C0.G
0/, u 2 G0. If G is r-discrete, Theorem 7.16 applies and Oa extends

to a morphism of C*-families (see Theorem 7.12).
Let �; �0 2 Cc.G/ � sL

2.G; �/ be homogeneous. Then a.0;/ D L.x�0�/ by
Proposition 4.14, and

.a.a.0;//h/.u/ D
Z

Gu

.x�0�/.x/h.sG.x//d�u.x/

for all h 2 C0.G
0/, u 2 G0. IfG is proper, then Theorem 7.16 applies and a extends

to a morphism of C*-families; see Theorem 7.12.

Example 7.18. Let us consider the pseudo-multiplicative unitary W� of a center-
valued conditional expectation 	 , see Example 2.6 and Section 4, and determine the
counit on its left leg. Recall from (the proof of) Proposition 4.17 that OAa.W� /

�
� D

O
�
� . ǑE/ for all �; � 2 PAut.B/.

We shall need to distinguish the operators od;d 00 2 O
�
� .ˇE/ and od;d 00 2 O

�
� .B/,

where �; � 2 PAut.B/, d 2 H�.B/, d 00 2 H��.B/, and therefore adorn them by
upper indices E or B , respectively.

We claim that Oa.o
E
d;d 00

/ D oB
d;d 00

for all homogeneous d; d 00 2 B . Indeed,

by Lemma 4.16, oE
d;d 00

D Oa.�0;�/ for � ´ 1 � d , � 0 ´ 1 � d 00�, and by defini-

tion, Oa.o
E
d;d 00

/�c D Oa. Oa.�0;�//
�c D h�jj� 0�c D h�jc� 0i D h1 � d j1 � cd 00�i D

d�	.1/cd 00� D .oB
d;d 00

/�c for all c 2 B .
If 	 is of index-finite type, then Theorem 7.16 applies and Oa extends to a morphism

O W O.ˇE/ ! O.B/; see Proposition 7.15.
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