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Abstract. Pseudo-multiplicative unitaries on C*-modules generalize the multiplicative uni-
taries of Baaj and Skandalis [1], and are analogues of the pseudo-multiplicative unitaries on
Hilbert spaces studied by Enock, Lesieur, Vallin [5], [10], [21]. We introduce Hopf C*-families
on C*-bimodules and associate to special classes of pseudo-multiplicative unitaries two Hopf
C*-families. Furthermore, we discuss dual pairings and counits on these Hopf C*-families,
étalé€ and proper pseudo-multiplicative unitaries, and two classes of examples. In a later arti-
cle, we will study regularity conditions on pseudo-multiplicative unitaries, coactions of Hopf
C*-families on C*-algebras, and duality.
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1. Introduction

Multiplicative unitaries, introduced by Baaj and Skandalis [1], play a central role in
operator-algebraic approaches to quantum groups and to generalizations of Pontrjagin
duality: To each locally compact quantum group — that is, a Hopf C*-algebra equipped
with a Haar weight — one can associate a manageable multiplicative unitary [7], [8],
[11], and to every manageable multiplicative unitary, one can associate a pair of Hopf
C*-algebras called the legs of the unitary [23]. One of these legs coincides with the
initial quantum group, and the other is its Pontrjagin dual. A remarkable feature of
the theory of quantum groups is the close interplay between the C*-algebraic (i.e.,
topological) and the von Neumann algebraic (i.e., measurable) level.

In the setting of von Neumann algebras, the theory of quantum groups was ex-
tended to a theory of measured quantum groupoids by Lesieur [10], building on work
of Vallin and Enock [5], [6], [21]. Central concepts in this theory are Hopf—von
Neumann bimodules and pseudo-multiplicative unitaries on Hilbert spaces, which
generalize Hopf C*-algebras and multiplicative unitaries, respectively. Each measur-
able quantum groupoid gives rise to a manageable pseudo-multiplicative unitary, and
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each such unitary gives rise to a pair of Hopf—von Neumann bimodules called the legs
of the unitary.

In the setting of C*-algebras, a theory of quantum groupoids is still elusive. The
proper analogue of a (pseudo-)multiplicative unitary on Hilbert spaces — a pseudo-
multiplicative unitary on C*-modules — is defined in this article; special examples
were already discussed by O’uchi [13], [14]. The proper analogue of the notion of
a Hopf C*-algebra and of a Hopf—von Neumann bimodule, however, is not known.
The problem is to define the target of the comultiplication, which should be some
fiber product of C*-algebras. In particular, it is not clear how to define the legs
of a general pseudo-multiplicative unitary on C*-modules [15]. In this article, we
propose a solution for this problem in a special case. We introduce C*-families which
generalize C*-algebras, and define an internal tensor product of C*-families that leads
to the notion of a Hopf C*-family. Given these notions, we can define the legs of
suitable pseudo-multiplicative unitaries in the form of Hopf C*-families.

This work was supported by the SFB 478 “Geometrische Strukturen in der Mathe-
matik”. The article is an extract from my PhD thesis, which was supervised by Joachim
Cuntz. In subsequent articles, we will discuss regularity conditions for pseudo-multi-
plicative unitaries, coactions on C*-algebras, and a duality theorem for such coactions.

Organization of the article. This article is organized as follows. First, we define
pseudo-multiplicative unitaries on C*-modules and present two examples related to
groupoids and to center-valued conditional expectations (Section 2). We explain the
problems that obstruct the definition of the legs of a pseudo-multiplicative unitary,
and outline our plan for a partial solution.

In Section 3, we introduce a general calculus of homogeneous operators on C*-
bimodules. These operators twist the left and right module multiplication by some
partial automorphisms of the underlying C*-algebras and have “twisted” adjoints.
Moreover, we define C*-families of such operators and study homogeneous elements
of C*-bimodules.

Using these concepts, we associate to each pseudo-multiplicative unitary two
families of homogeneous operators (Section 4). Under certain assumptions, these
families represent the legs of the unitary. We determine the legs of the unitaries
considered in Section 1, and show that they are C*-families.

Next, we introduce internal tensor products and morphisms of C*-families, which
enter the definition of a Hopf C*-family (Section 5). As a tool, we construct a
functorial embedding of C*-families into C*-algebras.

In Section 6, we return to pseudo-multiplicative unitaries on C*-modules and in-
troduce comultiplications on their legs. We study the examples introduced in Section 1
and show that these examples yield Hopf C*-families.

Finally, we discuss further properties of the legs like dual pairings, counits, fixed
and cofixed elements (Section 7), and study those concepts for the examples mentioned
before.
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Conventions and preliminaries. Given a subset ¥ of a normed space X, we denote
by [Y] C X the closed linear span of Y.

Recall that a partial automorphism of a C*-algebra B is a *-isomorphism
o: Dom(o) — Im(o), where Dom(c) and Im(o) are closed ideals of B. Since
the composition and the inverse of partial automorphisms are partial automorphisms
again, the set PAut(B) of all partial automorphisms of B forms an inverse semigroup
[16]. We denote the inverse of a partial automorphism o by o*. Let 0, 0’ € PAut(B).
We say that o’ extends o and write 6" > o iff Dom(0) € Dom(0”) and 0”/|pom(o) = 0.
Weputo Ao’ := max{c” € PAut(B) | 6” < 0, 6" < ¢'};thus,c0 A0’ = o|; = 0’|,
where I € Dom(o) N Dom(o”) is the largest ideal on which o and o’ coincide.

We consider (right) C*-modules, also known as Hilbert C*-modules or Hilbert
modules, see, e.g., [9].

All sesquilinear maps (as, e.g., the inner product of a Hilbert space or a C*-module)
are assumed to be conjugate-linear in the first component and linear in the second one.

Let A, B be C*-algebras. Given C*-modules E, F over B, we denote the set of all
adjointable operators £ — F by Lp(E, F), and the subset of all compact operators
by Xp(E, F).

A right C*-A-B-bimodule is a C*-module E over B with a fixed non-degenerate
s*-homomorphism 7 : A — Lp(E). If the representation 7 is understood, we loosely
call E aright C*-bimodule and write b¢ for 7 (b)€, where b € B, £ € E; otherwise,
we denote the right C*-bimodule by , E. Given right C*-A-B-bimodules E, F, we
put L4(E, F) :={T € Lp(E, F) |aT&é = Tak foralla € A, £ € E}.

Given a C*-A-module E and right C*-A-B-bimodule F, one can form an internal
tensor product £ ®4 F, which is a C*-module over B [9], Chapter 4. It is densely
spanned by elements n ®4 &, where n € E, § € F, such that (' ®4 §'|n ®4 &) =
(E'1{n"In)€) and (n ®4 )b = n ®4 £b. We denote the internal tensor product by
“S”; thus, for example, E S F = E ®4 F.

Given E and F as above, one can also form a flipped internal tensor product
F © E: we equip the algebraic tensor product F © E with the structure maps
(" on'lEon = E[n'nE), ¢ ©n)b = &b O n and by factoring out the
null-space of the semi-norm ¢ + |[(Z|¢)]|'/? and taking completion, we obtain a
C*-B-module F © E. Itis densely spanned by elements £ © n, where n € E, £ € F,
such that (§" © 1'[§ © n) = (§'|(n'|n)§) and (§ © mb = &b © .

The usual and the flipped internal tensor product are related by a unitary map
S:FOE S EoF,nofE£0n.

If we want to emphasize that the factor F' of a (flipped) internal tensor product
E S F (or F © E) is considered as a right C*-bimodule via a fixed representation ,
we denote the product by £ © F (or F; © E, respectively).

We shall frequently use the following result [3], Proposition 1.34:

Proposition 1.1. Let E{, E; be C*-A-modules, let Fy, > be C*-A-B-bimodules,
and let S € L (E1,E»), T € Lg (Fy, F»). Then there exists a unique operator
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SST € L(E1 © F1,E> © F) such that (S © T)(n© &) = Sn & TE for all
n e Ey, & € Fi. Moreover, (S T)* =S*oT* O

The (flipped) internal tensor product of C*-bimodules is a C*-bimodule in a natural
way, and the (flipped) internal tensor product is associative in a natural sense. More
generally, (flipped) internal tensor products can be iterated in a natural way, and the
C*-module obtained does not essentially depend on the order in which the tensor
products are formed.

2. Pseudo-multiplicative unitaries

Recall that a multiplicative unitary [1], Définition 1.1, on a Hilbert space H is
aunitary V: H ® H — H ® H that satisfies the so-called pentagon equation
V12 V13Vas = Va3 Vis. Here, Via, Vi3, Va3 are operators on H ® H ® H, defined by
Vo=V ®id, Vo3 =1d®V, Vi3 = (2 ®id)123(2 ®id) = (Id ®X) V12(id ®%),
where ¥ € B(H ® H) denotes the flip n ® £ — & ® n. We extend this concept,
replacing H by a C*-module E with representations ﬁ ,B.

Throughout this section, let B be a C*-algebra.

Definition 2.1. A C*-trimodule (E, B, B) over B is a full C*-B-module E with two
commuting non-degenerate faithful representations 8, 8 of B on E.

Let (E, B , B) be a C*-trimodule over B. Using Proposition 1.1, we define repre-
sentations f1, ,32, B2 of B on Eﬁ © E by B1(b) :=B(b) 1, ,ézA(b)Ai= 1 ﬁ(b),
B2(b) := 1€ B(b) forall b € B, and similarly representations 81, B1, B2 on E S gE.
From Proposition 1.1 we deduce:

Lemma 2.2. Let W € Lp (EB © E,E © gE), and assume that for all b € B,

W2 (b) = B1(D)W, WBi(b) = B1(D)W, W ha(b) = f2D)W. (1)

Then all operators in the following diagram are well defined:

E E;oF
wel ©pLp© 1oW
Eﬁ@Eﬁ@E E S gE © gE;
l@u\ /Vr(@l (2)
Eﬁ@(E@ﬁE) (EE@E)®3E

I@Ei T223

Eﬁ@Eﬂ@EW(E®ﬂE)51@E



Pseudo-multiplicative unitaries on C*-modules and Hopf C*-families I 501

where X3 is given by (§1 © §2) © &3> (51 ©83) G & forall§y, 62,63 € E. O

Extending the leg notation to the operators in diagram (2), we write Wi, for W S 1
and W1, Wz for 1 © W and 1 © W, and Wy;5 for Zo3(W © 1)(1 © X). Then
diagram (2) commutes iff Wi, W13 Wa3 = Was Wis,.

Definition 2.3. Suppose that (E, B B) is a C*-trimodule over B. We call a unitary
W e Lp(E 5 © E.E © gE) pseudo-multiplicative iff it satisfies the intertwining
conditions (1) and diagram (2) commutes.

For commutative B, Definition 2.3 subsumes the following special cases:

() If B = C, then B(L)E = Af = B(M)Eforall A € C, £ € E, and W is a

multiplicative unitary in the sense of Baaj and Skandalis [1].

(i) If B(b)¢ = &b = ﬁ(b)& forall £ € E, b € B, then W is a continuous field of
multiplicative unitaries as defined by Blanchard [2].

(i) If B (b)¢ =Ebforall £ € E, b € B, then W is a pseudo-multiplicative unitary
in the sense of O’uchi [13].

Clearly Definition 2.3 is a C*-algebraic analogue of the definition of pseudo-multi-
plicative unitaries on Hilbert spaces given by Vallin [21].

Remark 2.4. Let (E, ,B B)and W : E ©E — E S gE be asin Definition 2.3. Then

(E, B, ,8) is a C*-trimodule over B, and the unitary W = SW*X: Eg © E —
Eo E called the opposite of W, is pseudo-multiplicative.

Let us turn to the fundamental example discussed already in [13], the pseudo-
multiplicative unitary associated to a locally compact groupoid. For background on
groupoids and Haar systems see, e.g., [17] or [16].

Example 2.5. Let G be a locally compact, Hausdorff, second countable groupoid
with left Haar system A. We denote its unit space by G, its range map by rg, its
source map by sg, and put G¥ := ral({u}) foru € GO.

Let B := Co(G®). Denote by L?(G, L) the C*-module over B associated
to G and A; this is the completion of the pre-C*-module C.(G), where
('16) W) = [ou &' ()EMX) dA(x) and (§f)(x) = &(x) f(rg(x)) forallu € G°,
x € G,£E € CAG), f € B. Define representations r,s: B — Lp(L%(G, 1))
by (r(/)§)(x) 1= f(re(x))§(x) and (s(f)§)(x) = [f(s6(x))§(x) for x € G,
£ € C.(G), f € B. Then (E, B, B) := (L*(G, 1), s,r) is a C¥-trimodule over B.
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Fork = r,s, put G,ir ={(x,y) € GXG | kg(x) = rg(y)}. Consider CC(GSZJ)
and C, (Gr2, ) as pre-C*-modules over B via the structure maps

W= [ [ TEbw ) e mdan) o CelGl,)

o = [ [ Ty areda for Co(G2,),
G4 JGU
()5 ) = L) 6 () for both,

and denote by L2(Gs2,r) and Lz(Grz’ ,) the respective completions. Then it is easy to
seethat £; © E = L*(G},)and E G gE = L*(GZ,).

The map Wy: Cc(Gf’r) — Cc(Gir), (Wol)(x,y) := C(x,x7'y), extends to a
pseudo-multiplicative unitary Wg : E = E — E © gE [13]. Indeed, W) is a linear
bijection because it is the transpose of a homeomorphism Gir — Gsz,,, it extends
to a unitary Wg because A is left-invariant, and a routine calculation shows that Wg
satisfies the pentagon equation.

The pseudo-multiplicative unitary W is closely related to the pseudo-multi-
plicative unitary on Hilbert spaces associated to G in [21]; see [13].

The following example is a C*-algebraic analogue of a pseudo-multiplicative
unitary on Hilbert spaces considered by Lesieur [10], Section 7.6.

Example 2.6. Let B be a unital C*-algebra, C € Z(B) a C*-subalgebra contain-
ing 1, and 7: B — C a faithful conditional expectation, that is, a faithful positive
C-linear map such that t|¢c = id¢. We associate to T a pseudo-multiplicative unitary
W, as follows.

First, consider B as a pre-C*-module over C via the inner product
(a'la) := t(a’*a) and via right multiplication, and denote by B, the completion.
Next consider B as a right C*-B-B-bimodule in the natural way, and denote by
E := B; © B the internal tensor product over C. Thus E is generated by elements
aSb,wherea,b € B,and (@’ ©b'|a Sb) = b"*t(a’*a)b, (a Sb)b’ = a S bb’ for
alla,b,a’,b’ € B.

Routine arguments show that there exist representations ﬁ ,B: B — Lp(FE) such
that ,f}(b’)(a ©b):=bacband B(b')(aSb):=aSb'bforalla,b,b’ € B;here
we use t(B) C Z(B). Evidently (E, /é, B) is a C*-trimodule.

We claim that there exist unitaries

X:EB@E—>B,®B,®B, a@acb)o(ccd)—daccob,
Y:EGCRE - B;6B: 6B, (@Gb)c(ccd)—aScObd.
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Indeed, for x ;= (@ ©b) © (c &S d)and y := (¢ ©b) © (c ©d) as above,

IXx|* = [b*c(c*e(@*d*da)e)b| = [[b*t(a*d*t(c*c)da)b| = ||x|,
IYy|? = ld*b*e(c*t(a*a)e)bd || = ||d*t(c*c)b* t(a*a)bd || = || y|I*;

here we use 7(B) C Z(B) and t(et(f)) = t(e)r(f) for e, f € B. Now consider
the unitary W, := Y*X : E; © E — E O gE. Explicitly,

We((aob)(cod) =(dachb)c(ccl) forala,b,c,d e B, (3)

since Y((dacb)c(ccl))=daccob=X{(aSb)© (c5d)). The following
calculations show that W; is pseudo-multiplicative: fora,b,c,d, e, f,g € B,

@ b) o d) P OEDEO ooy (ges fd)

| [

(dacb)e(col)———— (fda S eb) S (gc S 1),
Bi1(€)B1(f)B2(g)

W)z Wz)23

(dach)yc(cecl)e(es f)
a@acshyeccd oo f) (dachb)s (fcol)c(ecl)

(Wr)231 j(Wr)lz

(a@b)@((fc®d)®(e®1))|W>((a@b)@(fc@d))@(e@l).

Asindicated in the introduction, multiplicative unitaries are closely related to Hopf
C*-algebras. Recall that a Hopf C*-algebra (more precisely, bisimplifiable C*-bial-
gebra, see also [1]) is a C*-algebra A with a x-homomorphism A: A — M(A ® A)
such that [A(A)(A®1)] = A® A = [A(A)(1® A)] and (id ®A) o A = (A®id)c A
asmaps A > M(A ® A ® A); note that id ® A and A ® id extend to M (A ® A) by
the first assumption. Here A ® A denotes the minimal tensor product. Now each well
behaved (e.g., regular [1] or manageable [23]) multiplicative unitary V' on a Hilbert
space H yields two Hopf C*-algebras (ff(V), A) and (A(V), A), called the legs of V,
as follows [1]. Denote by L(H )« the predual of L(H). Each w € L(H)4 yields
slice maps id ® w, w ® id: L(H ® H) — L(H). Then

A(V) = span{(id @) (V) | w € L(H)} C L(H), A@) =V*1®a)V,
A(V) =span{(w ®id)(V) |w € L(H)+} C L(H), A(a) =V(@® 1)V*.
Naturally, the following question arises: Given a pseudo-multiplicative unitary

W EB © E — E © gE, can we similarly associate to W two “legs” (/f(W), A) and
(A(W), A) in the form of generalized Hopf C*-algebras?
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Let us first focus on the left leg (ff V), A) and reformulate its definition. Note
that functionals of the form wgg: T +— (§'|T€), where £, € H, are linearly
dense in L(H ) [18], II Theorem 2.6, and that (id @wg/¢)(V) = [§')3V |€)2, where
€20 H > H®H,{ > (& for§” =§,§, and [§')5(C ® ¢') = ¢(§]¢). So,
A(V) is the closed linear span of all operators |§')5V |€),, where &', & € H.

Similarly, A(W) should be spanned by operators |&’ 15 W &), where

|§)2:E—>E/§@E,§r—>§@§, and |t E—>EOGRE, (—{C¢,

and §,§’ € E are suitably chosen. But |§], has no adjoint unless 8(b)&’ = &b for
all b € B, as we can see from the relations |£'],(¢h) = ¢h © €' = ¢ © B(b)E' and
(1€']120)b = ¢ © €'b, which are valid for all ¢ € E, b € B.

However, if there exists a partial automorphism 6’ of B such that £’ is 8’-homoge-
neous in the sense that £’ € E Dom(6’) and B8(0’(b))§’ = &'b for all b € Dom(6’),
then |£'], is adjointable up to a twist by 6’. If also & is #-homogeneous for some
6 € PAut(B), then |£']5 W), is homogeneous in the sense that it is adjointable
and commutes with ,é (B) up to a twist by 6’ or 0, respectively. To put these ideas
into the right perspective, we give a systematic account of homogeneous elements
and homogeneous operators in Section 3 before we return to pseudo-multiplicative
unitaries in Section 6.

3. C*-families of homogeneous operators

In this section we introduce a general calculus of homogeneous operators on C*-
bimodules and of homogeneous elements of C*-bimodules. Furthermore, we define
C*-families which can be thought of as generalized C*-algebras of homogeneous
operators on C*-bimodules.

Throughout this section, let A and B be C*-algebras.

Homogeneous operators on C*-bimodules. We consider maps of right C*-bimod-
ules which almost preserve the bimodule structure:

Definition 3.1. Let E, F be right C*-A-B-bimodules and let p € PAut(4),
o € PAut(B). Wecallamap T: E — F a (p,0)-homogeneous operator iff
(1) Im(T") € [Im(p) F), and Ta&é = p(a)Té& for alla € Dom(p), § € E, and

(ii) there exists a map S: F — FE such that (SF|E) < Dom(o) and
(nT&) =o((Snl€)) forall§ € E,n € F.

Let us collect some first properties of homogeneous operators.

Proposition 3.2. Let T, S be as in the definition above. Then:
(1) T and S are linear and bounded, and ||T| = ||S|-
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(ii) T(£b) = (TE)o(b) for all b € Dom(c) and £ € E.

(iii) There exists o9 € PAut(B) such that whenever T is (0, 0')-homogeneous for
o' € PAut(A), o’ € PAut(B), then og < o’

@iv) S is uniquely determined by T and condition ii) in Definition 3.1.

(v) If (uv)y and (v), are approximate units of Dom(p) and Dom(o), respec-
tively, then lim,, T (u,,§) = T§ = lim, T(§v,) forall § € E.

Proof. (i) This is similar to the case of ordinary adjointable operators.

(ii) This relation follows from the fact that for all ,§ € E and b € Dom(o),
(nlT(&b)) = a((Snlsb)) = o ({Sn|§)b) = a((Snl§))a(b) = (n[(T§)o(b)).

(iii) Put J := [(F|TE)]. Then J is contained in Im(c) and is an ideal in B
because BJ C [(FB|TE)] and JIm(c) C [(F|TEB)] by (ii). Denote by oy
the restriction of ¢ to ¢*(J). Assume that T is also (o', ¢’)-homogeneous for
o € PAut(A), o’ € PAut(B), and that S’ satisfies condition (ii) of Definition 3.1
for T and o’. Then o({(Sn|&)b) = (n|T(EL)) = o' ((S'n|E)b) for all n,& € E,
b € B, and hence o(c*(a)b) = o'(c’*(a)b) foralla € J, b € B. Let (uy),
be an approximate unit for J and let d € J. The last relation and the inclusion
J < Im(o’) imply that d = lim, o/(¢"*(d)o"*(uy)) = lim, o(c*(d)o’*(uy)),
and hence 0*(d) = lim,o*(d)o’*(uy) is in 6’*(J). Now 09 < o’ because
d =1lim, o(c*(uy)o*(d)) = lim, o’ (6"*(uy)o*(d)) = o’(c*(d)).

(iv) As in the case of ordinary adjointable operators, one finds that S is uniquely
determined by 7" and ¢. But by (ii), S is independent of o.

(v) This follows from standard arguments. Ll

Definition 3.3. If 7 and S are as in Definition 3.1, we call S the adjoint of T and
denote it by T*.

For later use, we note the following simple example.

Example 3.4. Consider Dom(p),Im(p) € B as right sub-C*-bimodules of B. Then
p € L5 (Dom(p),Im(p)). Indeed, condition (i) in Definition 3.1 is easily checked,
and for condition (ii) note that (c|p(b)) = c*p(b) = p(p*(c*)b) = p({p*(c)|b))
for all b € Dom(p), ¢ € Im(p).

Remark 3.5. Suppose that £, F are right C*-A- B-bimodules, and let p € PAut(A),
o € PAut(B). Consider E(,,) := [Dom(p)E Dom(c)] € E and Fo) =
[Im(p) F Im(0)] € F as right C*-Dom(p)-Dom(o)-bimodules, where the structure
maps of E(, ) are inherited from E and the structure maps of F (0:9) are twisted by p

and o in a straightforward way. Then every (p, 0 )-homogeneous operator T : £ — F
Dom(p)

Dom(o) (E(p,0) F(#9)) whose adjoint is a restriction

restricts to an operator 7(, o) € L
of T*.



506 T. Timmermann

The preceding remark shows that homogeneous operators generalize ordinary
operators on right C*-bimodules only slightly. The point is that we shall consider
entire families of homogeneous operators.

Definition 3.6. Let E, F be right C*-A-B-bimodules and p € PAut(4), 0 €
PAut(B). We denote the set of all (p, 0)-homogeneous operators from E to F by
£P(E,F) and put £5(E) := £9(E, E). The strict topology on LY (E, F) is the
topology given by the family of seminorms 7' +— ||T€|, & € E,and T +— || T*n|,
nerF.

The family of all homogeneous operators has the following properties:

Proposition 3.7. Let E, F, G be right C*- A- B-bimodules and let p, p’ € PAut(A),
0,0" € PAut(B). Then:

(i) £L(E,F) is a closed subspace of the space of all bounded linear maps from E
to F and complete with respect to the strict topology.

Gi) £2,(F.G)£5(E, F) € 22/ (E,G).

(iii) £5(E, F)* = £.(F. E), and AT)* = AT*, |T*| = |T|| = |T*T|">,
(ST)* = T*S* forall A € C, T € £&(E, F), S € &",(F,G).

(v) LY(E, F) = Lg(E, F), and for each pair of partial identities € € PAut(A),
€ € PAut(B) the space éﬁi/(E) is a C*-subalgebra of Lg (E).

(v) L5(E, F) is a right C* £, (F)-£2.° (E)-bimodule.
(Vi) £8(E,F) C £°,(E,F)ifp<p ando <o

Proof. Most of these assertions generalize facts about ordinary operators on right
C*-bimodules and can be proved in a similar way by the help of Proposition 3.2.

Therefore we only prove (ii). Let T € £5(E,F), T' ¢ éﬁg/,(F, G). By Defini-
tion 3.1 (i) and Proposition 3.2 (v),

[T'TE] C [T"Im(p) F] < [p'(Dom(p’) N Im(p))G] = [Im(p'p)G]

and T'Thé = p'(p(b))T'TE for all b € Dom(p’'p), § € E. Moreover, by Defini-
tion 3.1 (ii) and Proposition 3.2 (v), (T"*G |TE) € Dom(o’) N Im(c) and

(T*T"*G|E) = o*({T"*G|TE)) € 0*(Dom(c") N Im(0)) = Dom(c'0).

Finally, (n|T'T&) = o’ ({T"*n|TE)) = (6'o){(T*T'*n|&)) forall § € E, n € G.
Therefore, 7'T € &9/ (E,G) and (T'T)* = T*T". O
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C*-families of homogeneous operators. We adopt the following notation. Let E,
F be right C*-A-B-bimodules and let € = (€5),,, be a family of closed subspaces
€F C £5(E, F), where p € PAut(A), o € PAut(B).
e Given a family D = (DF),, of closed subspaces Dy C L5(E, F), we write
D c €iff DY < €L forall p € PAut(A), o € PAut(B).
» We define a family €* C £(F, E) by (€*)5 := (“Cé’:)* for all p, 0.
e Weput [EE] :=5pan{T¢ | T € €2, p € PAut(A), o € PAut(B),£ € E}.
e Let G be a right C*-A-B-bimodule and ® < £(F,G) a family of closed
subspaces. The product [D€] C L(E, G) is the family given by

[D€)’, :=span{T'T | T' € D’

o s T e-eg’ p/psp//’ OJO_ SO,//}

for all p” € PAut(A), o” € PAut(B). Clearly the product (D, €) > [DE€] is
associative.
Similarly, we define families [DT],[T'€] < &£(E,G) for operators
T € $L(E, F), T' € £°,(F,G), where p, p' € PAut(4), 0,0’ € PAut(B).

* By a slight abuse of notation, we define £Y4(E,F) < &£(E,F) by
(LYE, F)Y .= LYE,F), (£YE, F))5 := 0 for p # id. Similarly, we
define £4(E, F) C £(E, F).

The following generalization of C*-algebras will play an important rdle.

Definition 3.8. We call a family € € £(E) of closed subspaces a C*-family on E
iff [€€] C €,€* C € and ‘€£11 - ‘(?(’,’22 whenever p; < p; and 07 < 0,. We call a
C*-family € non-degenerate iff [CE] = E.

Remarks 3.9. Let € C £(F) be a C*-family.

(i) For each pair of partial identities ¢’ € PAut(A), € € PAut(B), the space
t’:/ C LYUE) = Lg(E) is a C*-algebra because (f’g/)* = ‘C’;:k = E’;/
and €€ Cee =€

(ii) For each p € PAut(A) and o € PAut(B), the space €5 is a C*-module over
the *C*-algebra €°.” because (€5)*€F = €. €f < €°.” and ‘6[,)‘6%5 -
€rr.b =68 Likewise, €5 is a left C*-module over the C*-algebra €27, and,
in fact, a C*-bimodule over f’(’;gi and f’gi g.

(iii) [€ifel] = €5 = [€5El] for each p € PAut(A4), 0 € PAut(B); this follows
from (ii) and a standard result on C*-modules [9], p. 5.

(iv) The C*-family € is non-degenerate iff the C*-algebra €l C Lg (E) is non-
degenerate. This follows easily from (iii).

To every C*-family, one can associate a multiplier C*-family:
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Definition 3.10. The multiplier family of a C*-family € € Z£(F) is the family
M(€) C £(E) given by

M(E)2 :={T € £2(E) | [T€].[ET] S €}. p € PAut(A), o € PAut(B).

Evidently, M (€) is a C*-family and by Remark 3.9 (iii), M (€)% = {T € £5(E) |
TE€ C €y, €T C €5} for each p € PAut(A), o € PAut(B).

Homogeneous elements of right C*-bimodules. We consider elements of right
C*-bimodules that almost intertwine left and right multiplication:

Definition 3.11. Let £ be a right C*-B-B-bimodule and 8 € PAut(B). An element
& € E is 0-homogeneous iff £ € [E Dom(0)] and £€b = 6(b)£ for all b € Dom(0).
We denote the set of all §-homogeneous elements of E by #Hy(E). Moreover, we call
E decomposable iff the family # (E) := (Hg(E))g is linearly dense in E.

Note that B can be regarded as a C*-module over B in a natural way, and left multi-
plication turns B into aright C*- B- B-bimodule. Thus we can speak of homogeneous
elements of B; these will be studied later.

Let E be a right C*-B-B-bimodule. For each ¢ € E, we define maps

|&): B > E, b &b, |€]: B — E, b+ bt.
Then [§) has an adjoint (§] = |£)*: n > (§[n) and |[[§) ]| = [[&] (9], p- 12-13).

Proposition 3.12. Let £ € E and 0 € PAut(B). Then the following conditions are
equivalent:
() § € Ho(E);
(ii) |§) € £5(B. E);
(iii) |§] € £, (B, E).
If )—(iii) hold, then |||€]]| = ||| and [§] := |§]" is given by n +— 6((&[n)).

Proof. (1) = (ii), (iii): Assume that (i) holds. To prove (ii), we only need to show that
|€) satisfies condition (i) of Definition 3.1. But by assumption, Im |§) C [Im(0) E]
and |£)(bD') = Ebb' = O(b)|E)D’ for all b € Dom(6), b’ € B. Let us prove (iii).
Evidently, |£] commutes with left multiplication. By assumption, (¢|n) € Dom(#)
for all n € E so that the map [£]: n — O({€|n)) is well defined. Let (u,), be an
approximate unit of Im(6). Then

(nl1€1p) = lim(nlu,b§) = lim(n|§)0 (wub) = 6*(O((§]n))"b) = 0*([§Inlb))
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forall n € E, b € B. Hence (iii) holds. Moreover, we may assume |u,| < 1 for
all v, and then ||&|| = lim,, |||E]u, || < |||€]]l. The reverse inequality is evident.

(i1) = (i): If (ii) holds, then & € [§B] = [Im |£)] C [Im(0)E], and &c = O(c)&
for each ¢ € Dom(0) because £cb = |E)chb = 0(c)(|€)b) = O(c)éb foreach b € B.

(iii) = (1): This follows from a similar argument as (ii) = (i). O

Let E be a C*-module over A and F a right C*-A-B-bimodule. For each n € E
and £ € F, we define maps

Imi: F>EOSF, {—»ncl | E—-ESF {(—C(0OE.

Then |n) has an adjoint (n|1 = [n)7: £ © ¢ — (n|£)¢', and [[[E})]] = [§] if the
representation A — Lp(F) is injective ([9], Lemma 4.6).

Proposition 3.13. Let E, F be right C*-B-B-bimodules and 60 € PAut(B).
(@) Ifn € Ho(E), then n)y € LY(F, E S F).
(1) Let &€ € Hg(F). Then |£], € Iiéj*(E,E S F) and [E|, = |E]2* is given by
§ O = COUEIL)). If E is full, then |||§]]] = N1&].

Proof. The proof is similar to that of Proposition 3.12; we only sketch the main steps
for (ii). Let § € #Hg(F). Forall{,{’ € Eand &' € F,

(Lo = EN0E) =07 OEIEN1E) = 0 (OEIEN L.

For ¢’ = ¢, & = £ this equation shows that |||£]2¢[|1% < |0((E|€)|I]1¢]|?, and hence
€Il < |€]l. If E is full, this inequality is an equality. Finally, the equation
above shows that the formula for [¢|, defines a bounded map E © F — E, and that

(' &15128) = 0 ({[§2(8 ©8)1¢)) forall £, ¢ € E and &’ € F. 0

Next we collect several useful formulas concerning homogeneous elements. Let E
and F beright C*- B- B-bimodules, and for 8, 6’ € PAut(B) put #g(E)S Hy:(F) :=
span{n G § | n € Ho(E), § € Hog(F)} SEGCF.

Proposition 3.14. Let 0,0’, 0, p € PAut(B). Then:

(i) Ho(E) = [Ho (E) Dom(8)] € Hor () if 6 < 6.

(i) (Ho(E)|Ho'(E)) S Hoxg/(B).

(iii) For each & € E, the set {0’ € PAut(B) | £ € Hy/(E)} either is empty or has a
minimal element.

(iv) £6(E, F)Ho(E) C Hpoor(F); Hp(A)Ho(E)Ho(B) S Hpoo (E).

(v) The space lg := [{(Ho(E)|Hg(E))] is an ideal in Z(B) and Hy(E) is a right
C*-Z(B)-1g-bimodule. In particular, #g(E)Ilg = Hg(E).
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(vi) If E is full and decomposable, then B is decomposable and the ideal of Z(B)
spanned by all Ig:, where 0’ € PAut(B), is non-degenerate in B.

(vii) He(E) N Hy/(E) = %(gAg/)(E).
(viii) Hy(E) & Ho/(F) C Hep (E S F).

Proof. We only prove assertions (iii), (iv), (vi), (vii); the others follow from straight-
forward calculations or can be deduced from Propositions 3.7, 3.12.

(iii) Given £ € E, apply Propositions 3.2 (iii) and 3.12 to |£].

(iv) Let T € £5(E,F), § € Ho(E). Choose approximate units (ux)e, (V)
(wy)y of Dom(p), Im(6), Dom(o), respectively. By Proposition 3.2,

T¢ = lim T(uevéwy) = lim T(EO™ (uevy)wy) = lim (T€)o (0™ (uievy)wy).
PR PR PNTRY

Since (0(0* (Ucvy)Wy))k, v i an approximate unit for Dom(pfc*), the equation
above implies that 7§ € [F Dom(pfc™*)]. Finally, for all » € Dom(pfc*) we
have (T&€)b = T(Ea*(b)) = TO(c*(b))E = ((p0a™)(b))TE. This proves the first
inclusion in (iv) and the second one follows similarly.

(vi) The assumptions imply that B is contained in the closure of

D (Ho(E)|Ho(E)) = To(Hor(E)|Ho(E)) S Y To:Horeg(B):

0,0’ 0,0’ 0,0’

here we used (ii) and (v). The claims follow.

(vii) By (i) we have that Hre)(E) S Ho(E) N He/(E). Conversely,
if &£ € Hg(E) N Hyg/(E) and 6” € PAut(B) is minimal with £ € Hyr(E) (see
(iii)), then 8” < 6 and 6" < 6’, whence 8” < 0 A 0" and & € H(gnp/)(E). O

The preceding proposition suggests the following notation. Let E be a right C*-
B-B-bimodule and let & = (€p)p and &’ = (&)y be families of closed subspaces
€9 C Ho(E), &) < Ho(E), where 6 € PAut(B).

e We write & C & iff Sé C &g for all 6 € PAut(B).

* We define a family [(€'|€)] < H(B) by [(€'|€)]er = span{(§'|§) | & €
€9, £ € €}, 0,0" € PAuL(B), 60 < 0"}

* Given a family € C £(FE, F), where F is aright C*-B-B-bimodule, we define
a family [€8] € H(F) by [€&]g = span{SE | S € €2, &£ € &y, p, 0,0 €
PAut(B), pf’'c* < 0}. Similarly, we define a family [S&] € H(F) for each
homogeneous operator S: £ — F.

* Given aright C*- B-B-bimodule F and a family ¥ C J# (F'), we define a family
[ECF|CH(ESF)by[ES Flgr :=3Span{nSE | ne &y, £ € Fy, 6,0 €
PAut(B), 66’ < 0"}.



Pseudo-multiplicative unitaries on C*-modules and Hopf C*-families I 511

Sometimes it is easy to determine a dense subspace E® C E spanned by homo-
geneous elements and desirable to know whether E® N H#4(E) is dense in Hy(E) for
each 6 € PAut(B).

Proposition 3.15. Let E be a decomposable right C*-B-B-bimodule and Eg c
Ho(E) a subspace for each 8 € PAut(B) such that ), Eg C E is dense and
EngU(B) c Egcr for all 8,0 € PAut(B). Then Eg is dense in Hy(E) for each
6 € PAut(B).

Proof. Put K := span{|n)(n’| | n € E%, n € EY, 00" < id} € Kp(E).
Proposition 3.14 (ii), (iv) implies that K is a C*-algebra. Moreover, considering
EJ as a C*-module over [(EJ|E])] € B for each § € PAut(B), we find that
E = [ZG Eg] = [29 Eg(Eg|Eg)] C [KE]. Hence K is non-degenerate.

Now let £ € Hy(E), 0 € PAut(B). We prove that § € Eg. Choose an approx-
imate unit (ky), of K of the form «, = 3, |1y,:)(m, ;|, where n,,; € ng, M. €

Eg, R 91},1’9\/,’1'* < id. Since K is non-degenerate, { = lim, k,& = lim, ), &,
where £,; = nv,i(n;,;|§). By Proposition 3.14 (ii), (iv) and assumption on (Eg)g,
we have £, € EJ - H(g =9)(B) € EJ. Thus, & € EY. O

Before collecting corollaries we prove another useful result by a similar technique.
Let E, F be right C*-B-B-bimodules. For §” € PAut(B), put X% (E,F) :=
spani{|EY(&| | € € Hy(F), &' € Hy (E), 66’ < 0”}. Then by Proposition 3.14 (v),

E = #6(E)] = [ D Ho(E)Ho ()| Ho(ED)] S IKHEVEL &)
0 0

Proposition 3.16. If E or F is decomposable, then for each 0 € PAut(B) we have
KY(E.F) = Xp(E.F) N LY(E. F).

Proof. Let € PAut(B). By Proposition3.12, X9 (E, F) € Xp(E, F)NEY(E, F).
We prove the reverse inclusion for the case that F is decomposable; the case
that £ is decomposable is similar. Choose a bounded approximate unit (x,), of
JCiig(E) of the form k, = ) ; |77v,i)<71;,,~|’ where 1, € Hy, . (E), 77:;,1' € Jr’€9‘/} i(E),
0v.i0,,* <id. Let T € Xp(E, F) N L4(E, F). Then (4) impliesT = lim, Tk, =
limy, »; |77y, ){m, ;| Using Proposition 3.14 (iv) and the relation 66, ;6] ;* < 6,
we find [T, ) (7, ;| € J{i%(E, F). Therefore, T € JCi(Z](E, F). O

Proposition 3.17. Let E, F be decomposable right C*- B-B-bimodules. Then ES F
is decomposable, and H(E S F) = [H(E) © H (F)].

Proof. By Proposition 3.14 (viii), [/ (E) © K (F)] € H(E S F). For the reverse
inclusion apply Proposition 3.15 to H([#(E) © #(F)]g)e. O
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Let E be a C*-A-module, F a right C*-B-B-bimodule and 7: A — Lg(F) a
*-homomorphism. Then E © . F is aright C*- B- B-bimodule via the representation
B — Lg(E © 1F), b — id © b (use Proposition 1.1). Given a family ¥ C JH (F),
we define a family [E © ¥ € H(E © ,F) by [E © ¥ := Span{n & £ |
nekE, §&eFy}

Proposition 3.18. If F is decomposable, then E S, F is decomposable and
H(E S F) = [E S zH(F)].

Proof. A short calculation shows that [E S z# (F)] C H(E S »F). For the reverse
inclusion apply Proposition 3.15 to ([E S rH#g(F)]g)e- O

Homogeneous elements of C*-algebras

Proposition 3.19. Let b € Hy(B), 0 € PAut(B) and denote by I, C B the ideal
generated by b*b. Then:

(1) b is normal and b*b is central.
(ii) There exists a unitary u € M(Ip) such that b = u(b*b)'/2.

(iii) With u as in (ii), the map Ad,, : Ip — Iy is the minimal partial automorphism
of B with respect to which b is homogeneous.

(iv) 8(b) = b; in particular, b € Dom(68*) and 0*(b) = b.

Proof. (i) The positive elements b*b and bb* are central by Proposition 3.14 (ii),
whence bb™* - bb* = b*bbb* = b*b - b*b. Consequently, bb™* = b*b.

(i1) Put D := spec(b) \ {0}. For n > 1, define f,, € Co(D) by fn(z) := z/|z]
if |z| > 1/n, and f,(z) := nz if |z| < 1/n. Then (f,), converges in M (D) strictly
to a unitary and functional calculus shows that the sequence ( f,, (b)), converges
in M(Ip) strictly to some unitary u. Denote by idp € Co(D) the identity map.
Then lim,, f,|idp| = idp in Co(D), and hence u(b*b)/? = lim,, f,(b)|idp (b)| =
idp(b) = b.

(iii) Evidently, b € I and bd = u(b*b)'/?d = udu*u(b*b)'/? = Ad,(d)b
forall d € Ip, s0b € Haq,(B). If b € Hg/(B) for some #' € PAut(B), then
I, € Dom(#’) because b € Dom(6’), and Ad,, < 6’ by Proposition 3.14 (iii).

(iv) 6(b) = Ady(b) = u(u(b*b)"/?)u* = u(b*b)"/? = b by (iii) and because
(b*b)1/2 is central. The relations b € Dom(8*) and b = 6*(b) follow. O

Proposition 3.20. Let 0, 0’, p € PAut(B). Then:

(i) be = O(cb) and cb = 6*(bc) for allb € #y(B), ¢ € B.
(ii) Ho(B) = Hp(B) N Dom(d A id).
(iii) p(Ho(B) N Dom(p)) S Hyg,+(B).
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(iv) Ho(B)Ho(B) S Horo(B) and Hg(B)™ = Hg=(B).

(V) B isdecomposable iff the inclusion Z(B) C B is non-degenerate. In particular,
every unital C*-algebra is decomposable.

Proof. (i) Letb € #Hy(B), c € B, and let (u,), be an approximate unit of Dom(6).
Then bc = lim, bu,c = lim, O(u,c)b = 6(c6*(b)) = 6O(chb) by Proposi-
tion 3.19 (iv), and similarly cb = 68*(bc).

(ii) This follows from Proposition 3.19 (iv).

(iii) Combine Example 3.4 with Proposition 3.14 (iv).

(iv) Straightforward.

(v) If B is decomposable, then [BZ(B)] = B by Proposition 3.14 (vi). Con-
versely, assume that [Z(B)B] = B. For each unitary u € M(B) and each b € Z(B),
the product bu is contained in Haq, (B) since buc = (ucu*)bu for all ¢ € B. By
[12], Remark 2.2.2, each element of B can be written as a sum of four unitaries in
M (B). Therefore B is decomposable. O

To every C*-bimodule E we associate a C*-family @ (FE) as follows:

Proposition 3.21. Let A, B be C*-algebras and E a right C*-A- B-bimodule.

(1) Let a € FH,(A), let p € PAut(A) and let b € Hy(B), 0 € PAut(B). Then
Oapb: E — E, E > akb, is (p,0™*)-homogeneous and (04p)* = 04* p*.

(ii) Put O5(E) := span{o,p | a € H,(A), b € Ho+(B)} for all p € PAut(A),
o € PAut(B). Then O(E) C L(E) is a C*-family.

Proof. (i) Leta, b as above. Then o, p satisfies condition (i) of Definition 3.1 because
Im(o,p) € aE C Im(p)E and o4 pa’é = aad’th = p(a’)akb = p(a’)og p§ for
all ¢’ € Dom(p), & € E. Moreover, by Proposition 3.20 (i), (iv) and 3.19 (iv),
a* € Hpy<(A), o(b*) = b* € Hyo+(B), (0g+p+E|E) € b(E|E) € Dom(c™),
and (n]akb) = (a*n|§)b = o*(b{a*n|§)) = o*({a*nb*|§)) forall n,& € E. The
claim follows.

(i1) Obvious from (i) and Proposition 3.20 (iv). O

Definition 3.22. Let E be a right C*-A-B-bimodule, where A and B are decom-
posable. A family € C £(E) is called an O (E)-module iff [O(E)€] C €, and is
called a non-degenerate O (E)-module iff additionally €5 = [(92’231?= (E)€p] for all
p € PAut(A), o € PAut(B).

Remark 3.23. The C*-family O (F) defined above is interesting primarily if A and B
are decomposable. However, we can consider E as aright C*-M (A)-M (B)-bimodule
via the identification £ =~ A®Q4 E ®p M(B),and M(A) and M (B) are decomposable
by Proposition 3.20 (v).
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4. The legs of a decomposable pseudo-multiplicative unitary and C*-families

We return to the study of a pseudo-multiplicative unitary W: E 5 5 © E — E G gE,
where (E, ﬂ B) is a C*-trimodule over a C*-algebra B, and define the legs of W
in the form of families of homogeneous operators. Our definition of the left and of
the right leg will be useful only if the right C*-bimodule gE or ﬁE , respectively,
is decomposable. From Proposition 3.13, equation (1) and Proposition 3.7 (ii) we
deduce:

Lemma 4.1. Let p, o € PAut(B).
(i) Let& € Hp(E), §' € Hy(gE). Then we have homogeneous operators

1&)2 w |&'15
E— E;,©QF) —— ,(E F) ———— ;F,
B~ (p.id)-hmg. pal A ) (id,id)-hmg. /31( S pE) (id,0)-hmg. P

where [£)20 = ( © € and |20 = (S & forall ¢ € E. Put
[&']2 := |§']5. The composition dg gy := [E'|2W|§), belongs to éﬁg(BE) and
satisfies (§'|dg6)¢) = o((§' G W ©§))) forall §,§ € E.

(ii) Letn € Hpx (BE), n € Hgx (BE)' Then we have homogeneous operators

Inli w [n")¥
E—" , (E;0FE) —2 T E,
(id,0)-hmg. pol A ) (id,id)-hmg /31( S 4E) (p,id)-hmg B

where n1¢ = n© ¢ and ¢ = n ©¢ for all ¢ € E. Put
(' == |n). The composition agy.yy = (W1 W|nl1 belongs to £5(gE)
and satisfies (¢'lagynC) = (' S ' |W(n©)) forall §,{' € E. O
We define families o&(W) C <§€(I§E) and A(W) C £(gE) as follows: for each
p,o € PAut(B), we let A(W)g and 4 (W)~ be the closure of
Aa(W)h := spanfers) | € € Ho(pE), € € Ho(gE)} € LH(E)
and
Aa(W)g = Span{a(n’,n) | ne %U*(BE)’ 77/ € pr*(’f}E)} - ig(BE),

respectively. Applying the ket-bra notation to families of homogeneous elements, we
can rewrite the definition of 4(W) and A(W) as follows. Define |g&) © Lia(B, gE)
and |g€] € £9(B, gE) by (see Proposition 3.12)

66)0 =€) | € € Hp(gE)}, 1€y = {IE1| €' € Hox(gE)}.
Put (4&] := |g€)* and [g€| := |g€]*. Replacing gE by [;E we similarly define

| :8), ( 281, | 61, [ ﬂé’ |. To all of these families we apply the leg notation just like to
1nd1v1dual ket bra operators. Then

AW) = [[s812W|5E)2] and  AW) = [(z6]:W|4€]1].
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If we pass from W to WP, the legs of the unitary get switched as follows:
Proposition 4.2. A(W) = A(WP)* and AW) = A(WP)*.

Proof. For all homogeneous £,& € gE, n,n € 4E. we have [E'2W1E), =
(ELW*E)" = (ELW™IET)™ and (n' 1 W nly = (nl2W*P|n')2)*. O

For each 6 € PAut(B), b € H#y(B) we have an (id, 6*)-homogeneous operator
(see the proof of Proposition 3.21)

ab): E—>E, &+ §&b.

Lemmad4.3. Letb € B, £, & € sE. . n' € gE be homogeneous. Then

ae g B(b) = dgp). g geb) =depre, desBb) = PB)ae.s),
Bb)ag,n = awmB®), ad)aw,y = awnpy. BB)aw,n = awb*n)-

Proof. We only prove the equations concerning dg/gy = [§'[2W1£)o.
First, [f2WIE2A0) = ELWIED): = dges because [£)2p(b); =
Bb)tet=ct0tb=|tb)(forall € E.

Next [€'W[€)2a(b) = [€'la®)WE) = [ED*[W]E)2 = depng because
([E'l22(0))*C = a(b)*(( S §) = LS &' = ([§'b*|2)*¢ forall { € E.

Finally, [§'[aW|§), commutes with S(b) because [£),8(b) = B1(b)|E)2,
Wp1(b) = B1(b)W and [§']2B1(D) = B(B)[E'2. O

For brevity we denote the family J#¢(B) by 8. Define ,é(i)’) - iid(ﬁE) and
«(8) € L9(;E) by

B(B)s = 1{B(B) | b e Hy(B)), a(B):={a(b)|b e Ho(B)},

and similarly B(8) € Lia(gE), a(B) € L£Y9(4E). Given a right C*-bimodule F
and a family € C £(F), we denote by €' C £(F) the family of all homogeneous
operators that commute with all operators of €.

Proposition 4.4. (i) [A(W)a(B)] = [AW)B(B)] = AW) C B(B). If AW) is
a C*-family, then it is a non-degenerate O ( /§E )-module.
(i) [(B)AW)] = [B(B)AW)] = AW) S B(B). If AW) is a C*-family,

then it is a non-degenerate O (gE )-module.

Proof. We will only prove assertion (i). By Lemma 4.3, it is sufficient to show
that A(W)5 S [A(W)g - B(Dom(p*p))] and A(W)5 C [A(W)g - a(Dom(c*0))]
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for each p,o € PAut(B). Butif (u,), and (v,), are bounded approximate units
of Dom(p*p) and Dom(c*0), respectively, and if dg) is as in Lemma 4.1 (i),
then &(S/,E) = limv a(é",éup) = lim,, &(E’,S):B(MV) and &(5/’5) = limM &(E/vﬂ,f) =
lim,, a0 (v,,) by Lemma 4.3. O

The families A(W) and A(W) are non-degenerate in the following sense.

Proposition 4.5. (i) [A(W)*E | = E if gE is decomposable.

()[AW)E] = E ifﬁE is decomposable.

(iii) If gE and 3E are decomposable, then [J@(W)*e%(ﬁE)] = e7€(I§E) and
[AW)H (BE)] = H(BE).

Proof. We prove the first part of (iii); the other assertions follow similarly. By
Proposition 3.14 (iv), [A(W)*Jf(ﬁE)] - Jf(ﬁE). Let us now prove the reverse

inclusion. We have [A(W)*Jf(/gE)] = [(g8|2W*|38]23€(BE)] by definition.
Next [W*|ﬂ8]2¢7€(l§E)] = [W*Jf(ﬁl(E S ,3E))] = 36(,32(Eﬁ © E) =
[J((BE) © H(gE)] by Propositions 3.17, 3.14 and equation (1). Therefore,
[A(W)*%(BE)] = [(ﬂ8|2(J€(BE) © H(gE))]. For all homogeneous n € 3E
and £.8' € gE. we have (§'12(n;08) = A((E€)n. Therefore, [B(1)F(E)] €
[A(W)*J((ﬁE)] with I = [(#H (gE)|H# (gE))]ia. By Proposition 3.14 (ii), I € Z(B)

and by 3.14 (vi), I B is linearly dense in B. Hence [ﬁ(l)]f(léE)] = Jf(ﬁE), and the
claim follows. O

Next we show that eyg(W) and A (W) are closed under multiplication. The proof
involves the following observation. If gE is decomposable, then
[W[H(BE) © E]] = [WJ((ﬁl(E/; © E))] (by Proposition 3.18)

= H(p(E © gE)) (by equation (1)) )
= [H(gE) © #H(gE)] (by Proposition 3.17).

Proposition 4.6. (i) [A(W)J@(W)] = A(W) if gE is decomposable.
(ii) [AW)AW)] = AW) ifﬁE is decomposable.

Proof. We only prove (i). By definition, [A(W)A(W)] € £(;E) is the family of
closed subspaces spanned by all compositions of the form

A~ A W /7 W ,
aggaee: E % EB@E — EGgE ﬁ) E E) EB@E 2 EGgE [£]2 E.



Pseudo-multiplicative unitaries on C*-modules and Hopf C*-families I 517

where £,&',¢,{’ € gE are homogeneous. Moving [{'], to the left and |£), to the
right, we can write dg/£)d ¢/ ¢) in the form

EEE pioEem) P (o) TR EcyEo e BB E.

Using the pentagon equation (2) and Proposition 3.17, we find that the product
[A(W)A(W)] is equal to the family spanned by all compositions

|w)2 W35 Wiz
E—)Eﬁ@(E@ﬂE)—)Eﬁ@Eﬁ@E—)E@ﬂEE@E

W
"3 posEeE Y2 E,

where w, 0’ € g/(E © gE) are homogeneous. Now equation (5) implies that
[A(W)A(W)] is equal to the family spanned by all compositions

[9)2 idg ©[n)2
E—>E’3A@E—>E @E @E—>E®ﬁE e F
id D
E SN2 E@ﬂE[ 2 E.

where 0,0’ € gE are homogeneous and 7,7 € E are arbitrary. Because

(id &(n'|2) Wiz = W(id &(1'|2) and (id &(n'|2) (id S|n)2) = id SB(n’|n)) the com-
position above is equal to

19 3 ’ /
E [9)2 EB@E B2({n"In)W E@,gE[ 2 E.

that is, equal to @y/9 where " = ,B((n’| n))?Y. Note that " € gE is homogeneous

because B commutes with B. Using the fact that E is full and that ,3 is non-degenerate,
we find that [A(W)A(W)] is equal to the family spanned by all operators d g5y,

where ¥’, 9" € gE are homogeneous. This is AW). O

Example: the pseudo-multiplicative unitary Wg. Let us determine the legs of
the pseudo-multiplicative unitary W associated to a groupoid G (see Example 2.5).
We use the same notation as in Example 2.5 and write »L2(G, A) or (L2(G, 1) to
indicate whether we consider L?(G, A) as a right C*- -bimodule via the representa-
tion r or s. Given f.g € C.(G), we denote by fg, f, f* fxg e C.(G)

the functions given by (f2)(x) := f(x)g(x), f(x) i= f(x), f*(x) := f(x7D),
(f *8)x) = [growo f(g(y™'x)dA7¢ M (y) forall x € G (f » g € Cc(G) by
[17], Proposition 1.1).

The right C*-bimodule ,L?(G, 1) is always decomposable, and using Proposi-
tion 3.14 (i) we find:
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Lemma 4.7. #,4(,L?*(G, 1)) = L?(G, ) and for each 6 € PAut(Co(G®)) we have
Ho(rL*(G, L)) = L*>(G, 1) Dom(f A id). O

The essential information of A(W(;) is contained in the space A(WG)%S’ which
can be defined without the concepts introduced Section 3. However, for completeness
we shall determine the whole family A (Wg).

It is easy to see that for each f € Cy(G), there exists a multiplication operator
m(f) € LCO(GO)(LZ(G,)L)), m(f)¢ = f¢& forall £ € C.(G), and that the map
m: Co(G) — LCO(GO)(LZ(G, A)) is an injective x-homomorphism.

Proposition 4.8. (i) If&,& € Co(G), then 4grey = m(E'  £%).

(ii) A(Wc)ig = m(Co(G)) and forall p,o € PAut(Co(G°)) we have c;4:>(Wg)§ =
r(Dom(o A id))m(Co(G))s(Dom(p A id)) = m(Cy (Gg)), where the open subsets
U,V C G° are determined by Dom(p A id) = Co(U), Dom(o A id) = Co(V) and
Gl =rg'(V)Nsg-1(U).

(iii) ef{)(WG) is a C*-family.

Proof. (i) Let { € C.(G) and x € G. By definition we have (Wg|£)20)(x,y) =
W (C© &) (x,y) = (x)E(x"y) foreach y € G'6™) and hence

() x) = /G o EOLETy)dAe ™ (y)
- “’C)/ FME (0 dA e (y) = L) E * £ ().
GG X)

(i) Let p,o € PAut(Co(G®)). For each element ¢ € C.(G) we have that
IS LZ(Q, A)Dom(p Aid) iff £* € s(Dom(p Aid))L?(G, ). Hence, by Lemma 4.7
and (i), A(Wg)5 is the closed linear span of all operators of the form m (&' » £),
where £§” € s(Dom(p A id))C.(G), & € r(Dom(o A id))C.(G). But from [17],
Proposition 1.9, it follows that C.(G) x C.(G) < C.(G) is dense with respect to the
supremum norm, which implies the claim.

(iii) This follows from (ii) and from the relations Dom(6* Aid) = Dom(6 Aid) and
Dom (6 Aid) Dom (6’ Aid) € Dom(66’Aid), whichhold forall 8, 6’ € PAut(Co(G?)).

O

Let us turn to #4(Wg). The right C*-bimodule ;L2(G, A) is decomposable if the
groupoid G itself is decomposable in the following sense.

Definition 4.9. We call an open subset U C G homogeneous iff rg (x) = rg(y) <
sg(x) = sg(y) forall x,y € U. We call G decomposable iff it is the union of open
homogeneous subsets.
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Remarks 4.10. (i) Recall that an open subset U C G is called a G-set iff the
restrictions r|y: U — r(U) and s|y: U — s(U) are homeomorphisms and r(U),
s(U) € G are open. Moreover, recall that G is r-discrete iff it is the union of open
G-sets [17], Proposition 2.8. Evidently, every G-set is homogeneous and if G is
r-discrete, then it is decomposable.

(i) If U,V C G are homogeneous subsets, then also U~! and UV = {xy |
(x,y) e Gsz’r N (U x V)} are homogeneous.

Denote by PHom(G?) the set of all partial homeomorphisms of G°, that is, of
all homeomorphisms between open subsets of G°. Every open homogeneous subset
U C G defines a partial homeomorphism gy : sg(U) — rg(U) of G° by
sG(x) — rg(x), and partial automorphisms qy«: Co(sg(U)) — Co(rg(U)),
gy Co(rg(U)) — Co(sg(U)) of Co(G®). For each ¢ € PHom(G?) denote by
H#4(G) < G the union of all open homogeneous subsets U C G that satisty gy < q.
Note that #,;(G) is open and homogeneous again.

Proposition 4.11. Assume that G is decomposable. Then ;L*(G, 1) is decomposable
and Ky« (sL*(G, L)) = Co(H#4(G)) for each ¢ € PHom(G?).

Proof. Let ¢ € PHom(G®). Then C.(H#,;(G)) € Hy+(sL*(G, 1)) because each
£ € C.(#,4(G)) belongs to L?(G,1)Co(rg(#,(G))) < L?*(G,A)Dom(q*) and
satisfies (§/)(x) = §(x) f(re(x)) = §(x) f(q(sc(x))) = (s(g™(f))§)(x) for all
x € #Hy(G), f € Dom(g*). A partition of unity argument shows that the sum of
all Co(H,/(G)), where g’ € PHom(G"), is equal to C(G). In particular, ;L2(G, 1)
is decomposable. Proposition 3.15, applied to E = (L?(G,A) and Eq = C.(G),
shows that H,+ (sL2(G, 1)) = Cc(H,4(G)). O

If G is r-discrete and A is a Haar-system on G, then for each u € G?, the set G*
is discrete and the measure A* is the counting measure multiplied by A*({u}) [16],
Proposition 2.2.5. To simplify the discussion, we assume:

Assumption 4.12. If G is r-discrete, then A’6 ™ ({x}) = 1 forall x € G.

Lemma 4.13. (i) For every f in C.(G,A) there exists an operator L(f) in
L(L*(G, L)) such that L(f) = f x & forall € € C.(G). Moreover, L(f)L(g) =
L(f % g)forall f,g € C.(G).

(ii) Let G be r-discrete, U C G open and homogeneous, [ € C.(U) and put
q:=qu. Then L(f) € £&(,L*(G, 1)) and L(f)* = L(f*).

Proof. (i) The boundedness of L ( /') can be seen by a similar proof as in [17], Propo-
sition 1.8, or [16], Proposition 3.1.1. The last relation follows from associativity of
the convolution [16], Theorem 2.2.1.
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(i) It is easy to see that Im L(f) < r(Im(q+))L?*(G,A) and L(f)r(b) =
r(g«(b))L(f) for all b € Dom(gs). Let £&,n € C.(G). Then (n|L(f)E) and
(L(f*)n|€), considered as functions on G°, vanish outside rg(U) and sg(U), re-
spectively, and for u € sg(U), we find that (n|L(f)&)(g(u)) is equal to

Y@ fMEGTI = Y A THn@ER )

x,yeGIW) x,yeGW)
= > OO TIXER) = (L)€ w).
x’,y’eGH*
Therefore g« ((n|L(f)E)) = (L(f*)n|&), and the claims follow. O

Proposition 4.14. (i) Letn € C.(U), n’ € C.(U’), where U, U’ C G are open and
homogeneous. Then agy ) = L(n'n).
(ii) A(Wg)5 is the closure of {L(g) | g € Cc(H,(G) N Hy(G))} forall p,o.
(iii) If G is r-discrete, then A(Wg) is a C*-family.

Proof. () If ¢ € Cc(G), (x,y) € GZ,, then (Wg|nli{)(x,y) = n(x);(x~'y) and

@) (X)) = [graeo 1N y)dAT6 O (y) = ((1'n) * O (x).
(i1), (iii) Combine (i) with Proposition 4.11 and Lemma 4.13. O

In a subsequent article we will show that A(Wg) is a C*-family whenever G is
decomposable; here the difficulty is to prove that A(Wg)* = A(Wg).

Example: the pseudo-multiplicative unitary W,. Let us consider the pseudo-
multiplicative unitary W; associated to a center-valued conditional expectation
t: B - C C Z(B); see Example 2.6. Recall that the underlying C*-module
E = B; © B of W, is generated by elements a S b, where a,b € B, such that
(ae b)) = aocbb, B(b’)(a ©b) =bach, B()acb) =acbband
(a’ ©b'lacb) =b"*t(a’*a)bforalla,a’,b,b’ € B.

Recall that C (hence also B) was assumed to be unital. In particular, B is decom-
posable (Proposition 3.20 (v)). From Proposition 3.18 we deduce:

Lemma 4.15. gE is decomposable and # (gE) = B, © H(B). O

Lemma 4.16. Let d € Hy(B), d’ € Hs(B), p,o € PAut(B) and c,c’ € B.
Moreover, put§ :=c S d and & :==c' ©d'. Then & € H,(gE), £’ € Ho(gE) and
cAl(g/,g) =04,d” € (9(3E)g, where d” = d/*‘L’(C/*C) € Hy=(B).

Proof. By Proposition 3.20, d” € #5(B)*Z(B) C Hs+(B). Leta,b € B. Then
Wel€)a(@a ©b) = Wi((a ©b) © (c ©d)) = (da © b) © (¢ © 1) and hence
i@ ©b) = da S bo((c' & d'le 1)) = f(d)(a © b)o(d") = 0g.ar(a  b);
note that o(d”) = d” by Proposition 3.19 (iv). O]
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Proposition 4.17. J@(Wr) = 0( BE ); in particular, ,/%(Wr) is a C*-family.

Proof. By Lemma 4.15 and 4.16, AW,) C (Q(BE). Conversely, if d” € Hy+(B),
d € #H,(B),p,0 € PAut(B),then§ :=16d € H,(gE), & :=15d"* € Hs(gE)
and 0g, g7 = dgrg) € J&(Wr)g O

In general the C*-module EE will not be decomposable.

5. Hopf C*-families

In this section, we introduce the internal tensor product of C*-families, and the notion
of a morphism of C*-families. These concepts are needed for the definition of a
Hopf C*-family, which is given afterwards. Throughout this section, let A, B, C be
C*-algebras.

The internal tensor product. Let E be a right C*- A- B-bimodule and F a right C*-
B-C-bimodule. We define an internal tensor product of operators as a map £5(E) x
£0.(F) - £°,(E © F) for all p,o,p’,0’, where 0 and p’ are compatible in the
following sense:

Definition 5.1. Two partial automorphisms p, o0 € PAut(B) are called compatible,
denoted by p v 0, iff po* < id and p*o < id.

Lemma 5.2. Let p,0 € PAut(B) such that p ¥ 0. Then:
) ,0* Y o*;
(i) p(a) = o(a) forall a,b € Dom(p) N Dom(o);
(iii)) p(Dom(p) N Dom(c)) = Im(p) N Im(c) = o(Dom(p) N Dom(0));
@iv) p(ab) = p(a)o(b) = o(ab) for all a € Dom(p), b € Dom(o);
) if o’ Y o' for p',0’ € PAut(B), then pp’ ¥ oo’.

Proof. Assertions (i) and (ii) follow immediately from the definition.

(iii) By (ii), p(Dom(p) N Dom(o)) = o(Dom(p) N Dom(o)) is contained in
Im(p) N Im(c). To obtain the reverse inclusion, replace p, o by p*, o*.

(iv) Let a € Dom(p) and b € Dom(o). By (ii), p(ab)a(c) = p(ab)p(c) =
p(a)p(bc) = p(a)o(bc) = p(a)o(b)o(c) for each ¢ € Dom(p) NDom(o). If (1),
is an approximate unit for Dom(p) N"Dom (o), then by (iii), (o (1)), is an approximate
unit for Im(p) NIm(o). Therefore, p(ab) = lim,, p(a)p(bu,) = lim, p(a)o (bu,) =
lim,, p(a)o(b)o(uy) = p(a)o(b). Symmetrically, p(a)o(b) = o(ab) for all a €
Dom(p), b € Dom(o).

W) (pp)(o0")* = p(p'o’*)o* < po™* < id; similarly, (pp)*(c0’) < id. O]
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In general compatibility is not transitive: the automorphism of the ideal {0} is
compatible with every other partial automorphism of B.

Proposition 5.3. Let E{, E, be right C*-A-B-bimodules, Fy, F, right C*-B-C-
bimodules, and let S € £53(E1,E2), T € 57 (F1, F2), where ps € PAut(A),
os,pr € PAut(B), or € PAut(C). Ifos v pr, then there exists an operator S ST €
L55(E1 © F1,E2 © Fy) such that (S S T)(n © &) = Sn© TE forall n € Ey,
§eFLand |SCT| < SIITIL. (SST)*=S*cT"

Proof. To simplify notation, we put £ := E| @ E,, F := F; @ F, and consider S
and T as elements of £53 (E) and £57 (F), respectively, in the natural way. Let

n.n € Eand §,& € F. Then

(' S E1SneTE) = E1nISnNTE) = (§'los((S™n'In)TE).

Suppose that (u,), is an approximate unit for Dom(p7). Then Proposition 3.2 (v)
and Lemma 5.2 (iv) imply that o5 ((S*#'|n))TE = lim, pr(uy)os({(S*n' |n)TE =
lim, Tu, (S*n'|n)é = T(S*n'|n)é. Thus we have

(n ©&1SneTE) = ET(S™ ) |InE) = or (T*E'|(S*n'[n)§)) ©)

=or((S*n © T 'S §)).
Let us show that the map n © § — Sn © T¢ is well defined and bounded. By
equation (6), || 3=; Sn; ©T& 1> = | 32, ;(S*Sn; @ T*T&i[n; ©&;)| foralln; € E,
& e F.NowT*T ¢ Lg(F) and by Proposition 1.1 the operators S*SS 1, 16T*T,
S*SST*T in L (E © F) are well defined. Since S*S o T*T = (S*So1)(1 o
T*T) = (16 T*T)(S*S & 1), we obtain that |S & T||?> < ||S*S & T*T| <
Is*selllite T*T| < ISIITI>.

Obviously the image of S © T is contained in Im(ps)(E © F) and
(6 Tancé) = SancTs = ps(@)Sn S TE = ps(a)(S S T)(n S §) for
alln € E, £ € F,a € Dom(ps). Replacing S and T by their adjoints, we obtain a
bounded map S* S T*: ES F — E © F, and equation (6) shows that S & T is
(ps,or)-homogeneous with adjoint (S © T)* = S*© T*. O

Next we introduce the internal tensor product of C*-families.

Definition 5.4. Suppose that £, E, are right C*-A-B-bimodules and Fj, F; right
C*-B-C-bimodules. The internal tensor product of families of closed subspaces
€ C f(El, Ez) and D C ;C(Fl, Fz) is the famlly CoDC f(El S F,E,S Fz)
given by (€ © D)y :==span{S © T | S € €5, T € D5", o5, pr € PAut(B),
0S Y PT}.
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Remark 5.5. Let E be a right C*-A4-B-bimodule and F a right C*- B-C -bimodule,
and let 4, € C £(F) and 8B, D C L(F) be families of closed subspaces. Then
[(A S B)(E S D)] C [AC] © [BD]. This inclusion may be strict and fail to be
an equality. As a simple example assume that all spaces comprising the families €
and D are 0 except for €5} and Dy?, where o7 and p, are not compatible. Then
C*eD*=0=C D,but €*C€ & D*D need not be 0.

Lemma 5.2 and routine arguments show:

Proposition 5.6. Let E be a right C*-A-B-bimodule, F a right C*- B-C-bimodule,
and let € C £(E) and D C L(F) be C*-families. Then:

(1) If€ and D are (non-degenerate) C*-families, then so is € S D.

(ii) If € is a (non-degenerate) O(E)-module and D is a (non-degenerate)
O(F)-module, then € S D is a (non-degenerate) O(E & F)-module.

(iii)) M(€) © M(D) C M(€ S D). O
It is easy to see that the internal tensor product is associative:

Proposition 5.7. Let A, B, C, D be C*-algebras, let E be a right C*- A- B-bimodule,
F a right C*- B-C-bimodule and G a right C*-C-D-bimodule. Furthermore, let
B C L(E), € C L(F), D C L(G) be C*families. Then the natural isomorphism
(EGF)SG =~ ES(FSG) induces anisomorphism of C*-families (BS€)SD =~
B (e D). O

The constructions introduced above can easily be adapted to the flipped internal
tensor product of right C*-bimodules and give rise to a flipped internal tensor product
of homogeneous operators and of C*-families.

Embedding C*-families into C*-algebras. We construct an embedding of
C*-families into C*-algebras that will be used in the next section. This construc-
tion involves two right C*-bimodules 3 A, 3 B. Let us first define IA. Consider
A as a C*-A-module. Then for each 8 € PAut(A), the ideal Dom(f) C A is a
C*-submodule and routine calculations show:

Lemma 5.8. There exists a representation mg: A — L4(Dom(6)) such that
mg(a)x = 0*(ab(x)) foralla € A, x € Dom(0). O

Consider the direct sum of C*-modules IA4 := Pyeppu(a) Pom(0) as a right
C*-A-A-bimodule via the representations g defined above. For each 6 € PAut(A4),
denote by vg: Dom(f) — I A, x — vgx, the canonical map. Then sums of the
form ) 4 vgxg, where x4 € Dom(6) is zero for all but finitely many 6, form a dense
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subspace 394 C I A4 and (vgx)a = vg(xa), (verx'|vgx) = g9 x"*x, a(vex) =
vg0*(ab(x)) for all x € Dom(#), x’ € Dom(#’), 6,0’ € PAut(A). Replacing A by
B, we obtain a right C*-B- B-bimodule 3 B.

Lemma 5.9. For all o € PAut(A), p € PAut(B), the maps Vy: JpA — JpA and
Wy: 30B — 30B given by

Zv0x9'—> Y Vom0 (xp), Wy Zveer > vinyxo

0=0c*0 O=p*p0

extend to operators V, € £9(IA) and W, € £L(IB). For all 6,6’ € PAut(A),
p,p" € PAut(B), we have (Vo)* = Vo, (Wp)* = Wpx, VoV = Voo, WoWy =
Wopr, and [Vl = 1if o # idgoy, |1 W,ll = 1if p # idjoy

Proof. Given a logical expression e, put [e]] := 0 if e is false, and [e] := 1 if e is
true. Fix o € PAut(A4), o # idq.

The map V, extends to a bounded linear map on IA of norm 1 because
Vsvg Dom(#) is orthogonal to Vyvg: Dom(6’) whenever 6 # 6'. Indeed, if
fo*o # 0 or O'c*c # 0’, one of these spaces is zero; if fo*0 = 0, 8'c*c = 0’
and 0 # 6, then 60* # 6'c™, and again the spaces above are orthogonal.

We claim that Vya = aV, for each a € A. Indeed, if 8 € PAut(A), c*oc = 0,
and 0’ := 6¢*, then for all x € Dom(8),

aVsvgx = avg:o(x) = ve 0 *(a(0'0(x))) = vgro(0*(ab(x))) = Vyavex.
Moreover, for all 0,0’, 0, 6" € PAut(A4) and x € Dom(#), x" € Dom(6’),
(vg: x| Vovgx) = x"*o(x) - [0 c =0 A0 = 007
=o0(0*(x)*x)-[0'c0™ = 0" AO'c = 0] = 0 ((Voxvg x'|vgx)),
Vo VorvgX = Voo (0’ (x)) - [0 0" =0 Ao 0*0 = 0]
= v(g(ggr)*)G(O/(x)) . H@(UU/)*(O'U/) = 9]] = Vyorvgx.

The claims concerning V,; follow and the claims concerning W), are proved similarly.
O

TheoremS 10. Let E be aright C*-A-B-bimodule. For p € PAut(A), o € PAut(B),
define ly: £5(E) — LYRBASCEGC3IB) by T v V, 0 T © Wo. Then
le(MI = 1T, to(T)* = £.(T*) and G(T)E(T') = L2(TT') for all
T e £5(E), T' € éﬁp (E), p, p' € PAut(A), 0,0’ € PAut(B).

Ua’

Proof. Let T T', p, p/, 0, ¢’ be as above. By Lemma 5.9 and Proposition 5.3,
BT = L (T*) LU(T)LJ,(T) = L'Op (TT') and ||5(T)|| < ||IT||. Let us prove
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that ||t5(T)|| > |T|. Fix £ € E. Note that for all § € PAut(4), x € Dom() and
0’ € PAut(B), x’ € Dom(8’),

lvex © & S vgrx'|I = [lx" 0™ ({€|x*x£)0" (X)) | = [[(x§6"(x") |x§6"(x")) |

and hence ||lvgx © & S vg x| = ||xEO’(x")|. Choose approximate units (u,), and
(u},),, bounded in norm by 1, for the ideals Dom(p) and Im(o'), respectively, and put
vy 7= gty & £ © vgrall for all v, ', Then [[&.| = Jun€o™ ()] < €] and
1 (T)uw || = [06pmypty) & TE S vioomytil | = lpu) (TEN, || for all v,v'.
By Proposition 3.2, lim,,  [|t5(T )&y || = | T€]|, and hence, ||5(T)| > ||IT||. O

By Theorem 5.10 we can embed every C*-family into some C*-algebra. Never-
theless, we continue to work with C*-families, because it is not clear how to define
the internal tensor product, which is crucial for the concept of a Hopf C*-family,
intrinsically on the level of the ambient C*-algebras.

Morphisms of C*-families. Itseems difficult to find a notion of a morphism between
C*-families that makes the internal tensor product bifunctorial (with respect to these
morphisms). We adopt a pragmatic approach:

Definition 5.11. Let € and D be C*-families on right C*-A-B-bimodules. By a
family of linear maps ¢: € — D we mean a family ¢ = (¢5),,, of linear maps
@5 €L — DE defined for all p € PAut(A), o € PAut(B). We call a family of linear
maps ¢: € — D
e A’-B’-extendible, where A’ and B’ are C*-algebras, iff for each right
C*-A’-A-bimodule X and each right C*-B-B’-bimodule Y, there exists a lin-
ear map ¢3 : (£(X) ©€ & L(Y)4 — (L(X) © D © £(Y))Y such that
pX(RSSET)=Ro@E(S)ST forall R € £4(X), S € €2, T € £5(Y),
where ¢’, p € PAut(A), o, p’ € PAut(B), o’ ¥ p,a Y p';
o extendible iff ¢ is A’-B’-extendible for every C*-algebra A’ and B’;
* injective iff each component ¢? is injective;
* amorphism iff ¢ is extendible and ¢§f always is a *-homomorphism.
We call a morphism ¢: € — M (D) non-degenerate iff [¢p (€)D] = D.
Let B, €, D be C*-families on right C*- A- B-bimodules. The composition of two
families of linear maps ¢: 8 — € and ¥ : € — D is the family Yy o p: B — D

given by (¥ o )5 := & o ¢2 for all p, o.

Remark 5.12. (i) (£(X) € © £(Y))4 and (£(X) © D © £(Y))!4 are C*-sub-
algebras of L4/ (X S ES Y) and L4(X © F & Y), respectively.

(ii) Clearly, the composition of (extendible) families of linear maps/of morphisms
is a (extendible) family of linear maps/a morphism again, and the collection of
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all C*-families on right C*-A-B-bimodules and all (extendible) families of linear
maps/all morphisms forms a category.

Proposition 5.13. Let ¢: € — D be a morphism of C*-families, and let ¢ € €L,
¢ €€’ op, 'f/ € PAut(A), 0,0’ € PAut(B). Then /d)f;/(c’)d)g(c) = ¢2r(c'c),
¢5(0)* = ¢L.(c*), b6 < llcll, and 5(c) = ¢4.(c) if (p,0) < (p',0"). In

particular, $\: € — D is a x-homomorphism (of C*-algebras).

Proof. This follows from the existence of a x-homomorphism qb§ g which makes the
diagram below commute for all p € PAut(A4) and o € PAut(B):

24 SN [L(E)] € (£(34) ©€ & £(3B))jg

a Jo3s
0
o

L

DL (D)) S (L(34) & D & L(IB))S. 0

Remarks 5.14. (i) A morphism ¢: € — D of C*-families is injective iff the com-
ponent ¢ is injective because [5(c)|” = [6(c)*¢E@) = ¢t ()] =
|pid(c*c)| forall ¢ € €5 and all p, o.

(ii) A morphism ¢: € — M(D) of C*-families is non-degenerate iff the natural
map ¢i4: €l — M(D)4 — M(DY) is a non-degenerate *-homomorphism of
C#*-algebras. This follows from Remark 3.9 (iii).

Proposition 5.15. Let ¢: € — D be a family of linear maps between C*-families
that is C-C-extendible. Then ¢ is extendible.

Proof. Given C*-algebras A’, B’, we show that ¢ is A’-B’-extendible. Let X’ be
a right C*-A’-A-bimodule and Y’ a right C*-B-B’-bimodule. Denote by X the
C*-module X’ considered as a right C*-C-A-bimodule via multiplication by scalars.
Choose a faithful representation of B” on a Hilbert space H andputY := Y’ S p/H.
For G = E, F, the embedding L4, (X' © 4G G gY') = LE(X ©4G Y’ © pH),
T+ T G pidy, maps (£(X) © B0 L(Y')Y to (£(X) © B S £(Y))l4, where
B = €, D, respectively. Restricting the map qﬁ)}f (which exists by assumption), we
obtain the desired map q’)f,(,/. O

The internal tensor product of C*-families is bifunctorial:

Proposition 5.16. Let ¢: A — € and v : B — D be extendible families of lin-
ear maps/(non-degenerate) morphisms of C*-families on right C*-A-B-bimodules
and right C*-B-C-bimodules, respectively. Then there exists an extendible family
of linear maps/(non-degenerate) morphism ¢ S ¥: AS B — € S D such that
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(@ V) (a S b) = ¢ba) Syl (b) foralla € A, b € B, where p € PAut(A),
o, p € PAut(B), 0’ € PAut(C) and o v p'.

Proof. If we can prove the assertion for the case that 8 = D, ¥ = idg and for the
case that A = €, ¢ = id4, then we can simply put ¢ S ¥ = (¢ S id) o (id SV ).
We treat the first case, the second one is similar.

Let p € PAut(A), o’ € PAut(C). Denote by F the right C*-bimodule on which
B acts. If 0, p’ € PAut(B), o v 0/, then the diagram

’ lg/ .
AS S B, 1, (AC B))) S (LEFA) S ACLFSIC))
¢§®idi J{‘ﬁfffésc

Lp/ .
€L e B, = 1£,(€ 5 B))) S (2(R4) 5€ 5 L(F 6 30))Y

commutes. So we can insert a unique linear map (¢ @id)g/ 1 (AS B)g, — (€O O‘B)g,
that does not depend on ¢, p’ such that the diagram still commutes.

The family ((¢ © id)g,) p,o’ 18 extendible. For let X be a right C*-C-A-bimodule
and Y aright C*-C-C-bimodule. Then F & Y is a right C*- B-C-bimodule, so the
linearmap ¢y : (£(X)SASL(FEY)) — (£(X)SCOL(FSY))i] restricts
toalinear map (¢ Sid)¥ : (L(X)SASBOL(Y)Y - (L(X)oC€cBeL(Y))Y
that has the desired properties. If ¢ is amorphism, then ¢ fv( oy and hence also (¢ @id)‘;(
are always *-homomorphisms, so ¢ S id is a morphism. O

Remark 5.17. Let 4, € be C*-families on right C*- A- B-bimodules and let 8, D be
C*-families on right C*- B-C -bimodules. If¢: A — M(€)andy: B — M (D) are
non-degenerate morphisms, then the morphism¢p Sy : ASB — M(E)SM(D) —
M(€ S D) evidently is non-degenerate.

Non-degenerate morphisms of C*-families can be extended to multipliers:

Proposition 5.18. Let¢p: € — M (D) be anon-degenerate morphism of C*-families.
If the C*family D is non-degenerate, then ¢ extends uniquely to a morphism
M(E) — M(D).

Proof. Uniqueness follows once existence is proved by a standard argument. Denote
by F the underlying right C*-bimodule of £. Choose an approximate unit (1, ), for
the C*-algebra ‘Cii(‘ji such that 0 < u, <1 forall v.

We construct an extension ¢4 : M(€)5 — M(D)5 of p2 for each o € PAut(A4)
and p € PAut(B) as follows. Letc € M(€)%. Since ¢ and D are non-degenerate, the
net (¢£(cu,)), converges strictly to some ¢Z(c) € £ (F) (see Proposition 3.7 (i)).
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Since @5 (c)D = ¢5(c)[pd(E D] C [ph(cCi)DH] € D and likewise
Didps(c) < DE, it follows that ¢5 (c) € M(D)5.

We show that the family ¢: M(€) — M(D) is a morphism. Let X be a
right C*-C-A-bimodule and Y a right C*-B-C-bimodule. By assumption on ¢, the
*-homomorphism ¢§ is non-degenerate and extends to a x-homomorphism

Px: MI(ZL(X) e € e Y)Y - MULX) © MD) © L£(Y))4). For all
Re £9(X), S eM©E,, T e_:ﬁ{;(Y), where o/, p € PAut(A4), o, p’ € PAut(B),
and o’y p, 0y o, the operators q’)f,( (ReSeT)and RS¢E(S)ST are equal because
they coincide with the strict limit of the net (R & ¢g (Su,)oT),. Hence ¢§ restricts
to a x-homomorphism ¢I)f: (LX) € L(Y))d - (LX) M(D) S L(Y))4,
as desired. O

We are primarily concerned with the following examples of morphisms.

Examples 5.19. (i) An inclusion of C*-families is a morphism.

Let € be a C*-family on a right C*-A-B-bimodule E.

(ii) Let F be a right C*-A-B-bimodule and V' € Lé (E, F) an isometry. Then
Ady (€) := [VEV*] C £(F) is a C*-family and the formula ¢ — Ve V™ defines an
isomorphism Ady : € — Ady(€). If € is a (non-degenerate) @ (E)-module, then
Ady () is a (non-degenerate) (O (F)-module; if V' is unitary and € non-degenerate,
then Ady (€) is non-degenerate.

(iii) Let F be a C*-module over C and n: C — Lp(E) a x-homomorphism
such that 7 (C) commutes with each operator in €. Consider F © E as a right
C*-A-B-bimodule viaa(n © §) :=nSaé foralla € A,ne F,& € E. By aslight
abuse of notation, we denote by 1 © € C £(F G ,FE) the internal tensor product
of € with the C*-family generated by the identity operator on F. Then 1 © € is a
C*-family, and the map T +— 1 S T defines a non-degenerate morphism € — 1 S €.
If n({F|F)) € Lp(FE) is non-degenerate, then this morphism is injective. If the
C*-family € is non-degenerate, then 1 © € is non-degenerate.

Now we have gathered all concepts needed to define Hopf C*-families.

Definition 5.20. A ( flipped ) Hopf C*-family over B is a non-degenerate C*-family #4
on a right C*-B-B-bimodule equipped with a non-degenerate morphism
A: A —> M(ASA) (or A: A — M(AQ A), respectively) such that

@) [AA)1 S A)] =ACA=[AA)AS]D] (or [A(A)(1QA)] =AD A=
[A(A)(A © 1)], respectively), and

(i) (doA)o A =(AGid)o A (or id©A) o A = (A ©id) o A, respectively).

Note that condition (i) implies that A is non-degenerate; therefore we can extend
idSA, ASid(orid ©A, A ©id, respectively) to multipliers.
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6. Legs of a decomposable pseudo-multiplicative unitary and Hopf C*-families

We return to the study of a pseudo-multiplicative unitary W: E 5 © E — E G gE,

where (E, ,3, B) is a C*-trimodule over a C*-algebra B, and construct comultiplica-
tions on the legs A (W) and A (W) defined in Section 4. As before, our constructions
are interesting only if the right C*-bimodule gE or ﬁE, respectively, is decomposable.

Denote by B8 C L( ﬁE )and B C £(gE) the C*-families generated by c%i)(W) and

A(W), respectively. Since B and B commute with B(B) and ,3 (B), respectively,
see Lemma 4.1, we can define morphisms 8 — éﬁ(Bz(E S gE)), a —» 1 Ga,
and 8 — £(g, (EﬁA © E)),a — a & 1 (see Example 5.19 (iii)). Composing with
conjugation by W* or W, respectively, we obtain morphisms (see Example 5.19 (ii)
and equation (1))

A:B—2(; (Eg0E), amW*1caW,
A: B — £(p,(E G gE)). ar Wao HhW*.

On the operators dgg) and a(,,,) of Lemma 4.1, A and A act as follows:

Lemma 6.1. (i) Let £, &' € gE be homogeneous. Then A(&(S’,E)) equals
[€'1sWisWasl§)3: Eg©E — Eg @ Eg©E — (Eg © E) G gE — E; © E,

where [§)3(n© ) =n© 0§ [E'n©0) = 8) 6§ fornl € E.
(ii) Let n,n' € 5E be homogeneous. Then A(ay,y)) is equal to the map

(' Wi2Wizlnli: E © gE — E; ©(EGpE) > EGE G pE — E G 4E,
where N1 © &) =no (of) (NTCcé =nclcéforl§cE.

Proof. We only prove (i). By definition, A(&(ggg)) is equal to the composition

1d®\§) W23
E@E—)E@ﬁE E@ﬂE}é@E—)E@ﬂE@ﬁE

idol']2 E@,gELEﬁ@E,
and this is equal to the map [§'|3 W5 Was Wi2|€)3: E;0FE > E;©E; ©F —
(EE@E)@ﬁE—)EB@E BUtW1*2W23W12: WisWas. O
Proposition 6.2. (i) If gE is decomposable and [A(!@)(l <) o@)] = Bo8 =
[A(i?)(ﬁ © 1)), then (B, A) is a flipped Hopf C*-family.

(ii) IfﬁE is decomposable and [A(B)(1 © B)] = BS B = [A(B)(B S 1)],
then (B, A) is a Hopf C*-family.
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Proof. We only prove assertion (i); the proof of assertion (ii) is similar Let us make
the assumptions stated in (i). By Proposition 4.5, the C*-family i)’ is non-degenerate
and by the second assumptlon A is a non- degenerate morphism B> M (i)’ © i)’) It

remains to show that A is coassociative. Letd € B o» 0,0 € PAut(B). By definition,
A(a) = W*(1 & a)W, and hence

(A ©id)(A@) = W W51 616 a)WasWia,

where W3 Wi, Eﬁ Q E,é QF - E ®3E5 © FE — E S gE © gE. Now we can
squeeze in conjugation by Wj, and find

(A ©id)(A(@)) = W W Wia((1 © 1) © &)W, WasWis,

where W% (Wa3Wi2): EB S EB ©F - EGgECgE — (EB © E) G gE. From
the pentagon equation (2) it follows that W} W,3Wi, is equal to the composition
WisWas: Eﬁ Q EﬁA QF — Eﬁ ©(EGgE) — (EE © E) © gE. Therefore,

(A @id)(A(@)) = WhWh(1© 1) © a)WisWas = (idoA)(A@). O

Example: the pseudo-multiplicative unitary Wg. Let us consider the pseudo-
multiplicative unitary Wg associated to a groupoid G and determine the comultipli-
cations on its legs. We use the same notation as in Example 2.5 and Section 4.

Recall that the left leg A(Wg) € £(sL2(G, L)) corresponds to (a filtration of) the
C*-algebra Co(G), and that the internal tensor product L?(G, 1); © L?(G, 1) can be
identified with L2(GS2J).

Lemma 6.3. (Al4(m(f)0)(x.y) = f(xy)t(x.y) forall f € Co(G), ¢ € L*(G2,),
(x,y) € GZ,

Proof. If f, ¢, x, y are as above then A(m(f)) = Wil em(f))Ws and

WA em(fNWeh)(x,y) = (1S m(f)Ws{)(x.xy)
= fy) W) (x,xy) = f(xy)l(x,y). O

Define §: Co(G) — Cb(Gsz’r) by (S(f))(x, ¥) = f(xy) and denote by
m:,: Cp(GZ,) — L*(G},)

the representatlon given by pointwise multiplication. Then the lemma above says that
Aig om=m2, o0 3.

Theorem 6.4. (o‘{)(Wg), A) is a Hopf C*-family.
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Proof. Put ,A = eA»(WG) By Proposition 4.8 (iii) and 6.2, it suffices to show that
[A(a‘\))(l © A)] [A © A] [A(A)(A © 1)] We prove the first equality, and
the second one follows similarly. Denote by p3: Co(G) — Cp (Gsz,r) the map given
by (p3 f)(x,y) := f(y) forall (x,y) € Gs . f € Co(G). Routine arguments

show that [S(C()(G))p2 (Co(G))] = CO(GSJ). Let p,o € PAut(Co(G?)) and put
D, := Dom(p Aid), Dy := Dom(o Aid). Then by Proposition 4.8 (ii), Lemma 6.3,
and the preceding observation,

[4 © Al = [r(Do)m(Co(G)) © 5(D,)m(Co(G))]
=[(r(Do) © s(Dp))ms., (Co(G5,,))]
= [(r(Do) © s(D,p))m3, (3(Co(G)) p3(Co(G)))]
=[AA 1 © A O

Recall that the right leg 4 (Wg) corresponds to the left regular representation of
G, and that L*(G, 1) © ,L*(G, 1) can be identified with L>(G},). As before, we
impose Assumption 4.12.

Lemma 6.5. Let f € C.(U), where U C G is open and homogeneous.

(@) (A(L(f))é)(x Y) = Jgrow f@5ETx 27 y)dA6 M (2) for all (x,y) €
rr’ g. € Lz(Gr r)

(ii) Assume that G is r-discrete, U a G-set, g,.h € C.(U) and gh = f. Then
A(L(f)) = L(g) S L(h).

Proof. Let f, ¢, x, y be as above. Then A(L(f)) = We(L(f)© 1)W; and
We (L(f) © DWED(x,y) = (L) © DWED(x, x7'y)
= [ FOWEDE v ) a2 )

B /Grcm f()e(Ex, 27 xxTy) dATe @ (z),

Assertion (i) follows. Let us prove (ii). If 7 (x) € r(U), there exists a unique element
z € U such that r(z) = r(x) and

(ALN(x, p) = f(2)E(z %27 1y)
= g@h(2)5(z" x. 27l y) = (L) S L)Y (x,y). O

Theorem 6.6. If G is r-discrete, then (A(Wg), A) is a Hopf C*-family.

Proof. Put A = A(Wg). By Proposition 4.14 (iii) and Lemma 6.5 (ii), it suffices
to show that [A © A] C [A(A)(1 © A)] and [A S A] C [A(A)(A S 1)]. We
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prove the first inclusion, the second one follows similarly. Let p,0 € PAut(B).
By Proposition 4.14 (ii), [ © +]5 is the closed linear span of all operators of the
form L(f) S L(g), where f € C.(U), g € C.(V) for some open G-sets U, V and
P > quxYqvs« < 0. Fix such an operator, choose y € C.(U) suchthat y f = f,and
putw := y x x*. Thenw € C.(G®), w » f = f and L(w) = r(w) = L(})L(x").
Using Lemma 6.5 (ii), we find

L(f) G L(g) = r(@)L(f) & L(g) = L(f) S r(w)L(g)
= L(f)S LOOL(* *8) = AL(fNA S L(X" * g)).

Here L(x* xg) = L(x)*L(g) € Ajo‘l*a by Proposition 4.14 and because gy« Y gy «.
Therefore, L(f) © L(g) € A(Ap)(1 G AL ) S [A(A)(1 S A)6. O

In a subsequent article we will show that (A(Wg), A) is a Hopf C*-family when-
ever G is decomposable.

Example: the pseudo-multiplicative unitary W;. Let us consider the pseudo-
multiplicative unitary W, associated to a center-valued conditional expectation
t:B—>CCZ (B), see Example 2.6 and Section 4, and determine the comulti-
plication on the leg A(W;) = (9(BE).

Lemma 6.7. A(oe,f) = 01,7 © 0,1 forall e € H,(B), f € Hs«(B), p,o €
PAut(B).

Proof. By Proposition 3.21, 0y 5 € étfi(f(BE) and 0., € :ﬁﬁi(ﬁE), and by Propo-
sition 5.3, 01, f © 0e,1 € £5( Bz(E 5 © E)) is well defined. The following diagram
shows that A(oe,f) =WF(1Go0e,s)Wr = 01,7 ©0e,1: foralla,b,c,d € B,

01,7 80e¢,1

(@acb)o(cod) (@acbf)e(eccd)

w| I

(da@b)@(c@l)nm (dacb)c(ecS f)=(dacbf)S (ec ©1). 0
In the next proposition we use the following equation: in £ 5O E we have

0a4pN O Oc,des = 0q,p1 S (Oc,dS)e = B(e)oa,bn &) Oc,ds = Oca,pN © Oc,ds @)

for all n, & € E and all homogeneous a,b,c,d,e € B.

Theorem 6.8. (A(W;), A) is a Hopf C*-family.
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Proof. Put O = (9(l§E) = ,/%(Wr). By Proposition 6.2 and Lemma 6.7, we only

need to prove [0 © O] € [A(O)(1 © 9)] and [0 © O] < [A(9)(O © 1)]. For
each p, o € PAut(B), the space (O © O) is the closed linear span of all elements
of the form 0,4 © 0. 4, where a,b,c,d € B are p'-/o*-/p-/o’*-homogeneous, and
p’ v o’. For such an element, da € Hq/+,(B) S Hiqa(B) by Proposition 3.20 (iv),
whence 1 © 01,44 and 04,1 © 1 are well defined, and by Lemma 6.7 and equa-
tion (7), 04,5 © 0c.a = Odap © 0c,1 = A0ep)(0aa1 © 1) € [A(O)(O © D] and
0ap © 0c.d = 0159 0cda = Mocp)(1©01.4a) € [AO)(1 O O

7. Additional structure on the legs

As before let B be a C*-algebra, let (E, ,5 ,B) be a C*-trimodule over B and let
W:E F; © E — E G gE be a pseudo-multiplicative unitary.

The dual pairing of the legs. Similar to the caserf multiplicative unitaries [1], Défi-
nition 1.3, there is a pairing between the spaces A,(W) 1=}, ; A (W)h € L(E)
and Aq(W) 1=} 5 Aa (W)g/, C L(E). This pairing is interesting primarily if gEf
and 3E are decomposable.

Lemma 7.1. For all homogeneous £,& € gE and n,n' € 4E. the compositions
[E/la(l,,/,,,)lé): B — gE — gE — B and (n'|a¢ g ln]l: B — 4E — 4E — B are
equal.

Proof. [E'lagy,pl&) = [E'Hn' 1iWInlil§) = (M'I[E'2W1E)aln] = (n'ldegln] be-
cause [n]11§)b = n© &b = bn© & = |E)2|n]b and [W')11E']b = 1’ © bE =
n'b S & = &0 )b forallb € B. O

The next proposition involves the weak fopology on L(E), which is the locally
convex topology generated by all seminorms of the form 7+ ||(¢|T°¢)| where
£, ¢’ € E. Denote by X% the weak closure of a subset X C L(E).

Proposition 7.2. There exists a bilinear map (- |-): Ag(W) x Ag(W) — L(B) such

that [S’la(n/’n)lé) = (&(g/,g)|a(,,/,,,)) = (7’)/|LAZ(§/,§-)|77] for all homogeneous S,E/ € BE
andn,n € BE . This map has the following properties:

(i) It extends to a bilinear map (-[-)": /fa(W) X Aa(W)w — L(B) such that for
each a € Ag(W) the map a — (ala)™ is continuous with respect to the weak

topology on Ay ( W)w and the norm topology on L(B), and it extends to a bilinear
= w
map Y (-|-): Ag(W) x Ag(W) — L(B) such that for each a € A;(W) the
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B SE—)
map a +— Y (a|a) is continuous with respect to the weak topology on A,(W)
and the norm topology on L(B).

(i) (Aa(W)E|ALW)E,) € £22.(B) forall p, o, p', o’ € PAut(B).

oo’

(iii) If 4E is decomposable, then (a|Aq(W)) # O whenever a # 0, and if gE is
decomposable, then (/fa(W)la) # 0 whenever a # 0.

(iv) (ala(b)a) = (aa(b)|a) foralla € Ag(W), a € Ag(W) and all homogeneous
b € B.

Proof. Existence follows from Lemma 7.1: If a = ), &(S{,Ei)’ a = Zj agy) ny)»

where & ,§/ € gE, 1;. n} € gE are homogeneous, then we can define (a|a) to be

>ilEllal&) =3 ; [${|a(n},nj)|5i) =2 Ml enlnil = 22; (njlaln;].

(i) We prove existence of (-|-)¥; for ¥(-|-) the proof is similar. Let
d@g) € Aa(W)s be as in Lemma 4.1 (i) and let (ay), be a net in Ag(W) with
weak limit a € L(E). Then the net ((dg)lau)), converges in norm to
[§'1al§) =: (a@gla)”. Indeed, [[(Ag.plan) — [E'lalé)] = IIE"|(an — a)IE) =
1&"1(a — a)§) |l — O because [§'[(ay, —a)|§)b = o ((§'(a —a)§)b) forall b € B.
Using bilinearity of (-|-), we can replace d /g by an arbitrary a € A, (W).

(ii) Given dg) € d@a(W)g as in Lemma 4.1 (i) and a € eA)a(W)g/,, we have
(@ggla) = ['lalg) € LJ(E. B)Lg (3E)L(B. gE) S £¢7(B) by Proposi-
tion 3.12. The claim follows. .

(iii) If ,§E is decomposable and (1’| |n] = (@lag,y,y) = 0 for some a € Az(W)
and all homogeneous 71,71’ € 4E. then (E|&,3(B)E) = 0 and hence ¢ = 0. The
second assertion follows similarly.

(iv) Let £, € gE, n,n € 5E. b € B be homogeneous. Using the proof
of Lemma 7.1 and the relation a(b){(n' |1 W1E)2 = (/|1 WE)2a(b), we find that
@agpla®lagy) = [Ela@@ W = ElnLWIEa®d)n] =
(ae gy (b)|agy,y). The claim follows. O

The L£(B)-valued pairing (- |-) yields a B-valued pairing (( - | -)) as follows:

Corollary 7.3. Assume that B is decomposable and let (u,), be an approximate unit
of Z(B). Thenforalla € Ay(W),a € Ag(W), the limit (@|a)) := lim, (d|a)u, exists
and does not depend on the choice of (uy)y. The map (+|-)): Ag(W) x Ag(W) —
B, (a,a) — (a|a)), is bilinear and ((AG(W)5|AQ(W)§/,)) C H(p po+or+)(B) for all
p,0, 0,0’ € PAut(B).

Proof. Since Z(B) < B is non-degenerate (Proposition 3.20(v)), we have that
lim, (¢ gla)uy, = lim,[£'|a|é)u, = lim,[£'|aéu, = [§'|aE € B for all homo-
geneous £,£ € gE and a € A4,(W). The first claims follow. The last assertion
follows from Proposition 7.2 (ii) and 3.14 (iv). O
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Example 7.4. Consider the pseudo-multiplicative unitary Wg of a decomposable
groupoid G (see Example 2.5 and Sections 4, 6). By Proposition 4.8 and 4.14 (and a
partition of unity argument in the case of A,(Wg)),

m(Ce(G)) € Ag(Wg) Sm(Co(G))',  L(C.(G)) € Au(Wg) € L(C(G))" .

Letn, ' € C.(G) be homogeneous elements of ;L2(G, 1) and let £, & € C.(G).
Then aggy = m(f) where f = € x £*, and ag,y = L(g) where g = n'n
(Proposition 4.8 and 4.14). We compute 7 := (m(f)|L(g)). By definition we
have T = (m(f)lag,y) = (0'lm(f)|n). Let h € Co(G°). Then m(f)nh =
m(f)s(h)n € sL?(G, A) is given by x — f(x)h(sg(x))n(x), and

(Th)(u) = /Guﬁ(x)f(x)h(s(;(x))n(x)dk"(x) = /Guf(X)g(X)h(SG(X))dl”(X)

forallu € G°. Thuswe find: If £, g € C.(G)and T = (m(f)|L(g)) € L(Cy(G?)),
then (Th)(u) = [gu f(x)g(xX)h(sc(x))dA*(x) forall h € Co(G®) and u € G°,
and (m(f)|L(g)) € Co(G®)is given by u > [Gu f(x)g(x)dA¥ (x).

Fixed and cofixed multipliers. For (pseudo-) multiplicative unitaries on Hilbert
spaces, fixed and cofixed elements were studied by Baaj and Skandalis [1], para-
graphe 1, and later by Enock [4], Section 5. We carry over the definition and some
of their results to the present situation. The discussion involves multipliers of C*-
modules, which we briefly review.

Recall that £ can be identified with Xp(B, E) C Lg(B, E) via¢ < |£), and that
elements of Lp (B, E) are called multipliers of E. We extend the ket-bra notation to
multipliers as follows. Let S € Lg (B, /§E ). Consider the maps S Sid: B G gE —
ESpgEand S ©id: BOE — Eﬁ © E (see Proposition 1.1). Identifying B © gE
and B © E with E, we obtain maps |S);: E — E G gE and |S];: E — EﬁA QE.

Similarly, we define for T € Lg(B,ﬁE) maps |T],: E =~ EG B — E G gE and
|T),: E =~ EB ©B — E/§ © E. Put (S|; :=|8)], [S|h = |S]], [T := |T]3,
(T2 :==1T); and SG§ := [S)1§, S & :=[S11§,nOT := |Tlan,nOT :=[T)2n
forallé,n e E.

We extend S, ,3 to the multiplier algebra M (B) and denote the extensions by S, ,3
again. Using the factthat EB = E [9], Lemma4.4, itis easy to see that foreach{ € E
and T € M(B), there exists a unique element {T € E such that ((T)b = ¢(Tb) for
allb € B.

Definition 7.5. Let us say that a multiplier ng € Lg (B, gE) is fixed by W iff
W(ne &) = no S & for all £ € E, and that a multiplier & € Lg(B, gE) is cofixed
by Wit W(n © &) = n S & forall n € E. We denote the set of all fixed/cofixed
multipliers by Fix(W)/Cofix(W).
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Remarks 7.6. (i) We speak of fixed and cofixed elements of E, identifying & with
|€) for each & € E. Note that by Proposition 3.12, ng (B, BE) = |=7€id(BE)) and
K3 (B, gE) = |Hia(gE)).

(ii) If no € E satisfies W(no © §&) = no © & for all £ € E, then automatically
no € Hia(4E). Forthen nob ©§ = (no ©§)b = (W* (10 ©€))b = W* (110 S §b) =
no © £b = P(b)no © £ forall§ € E, b € B, and since E is full, no € Hia(4E).
Likewise, if & € E satisfies W(n © &) = n © & for all n € E, then automatically
o € Hia(gE).

(iii) Clearly Fix(W) = Cofix(W°P) and Cofix(W') = Fix(W °P).

Lemma 7.7. (i) (ng|1 W1nol1§ = B((nglno))é = &(nglno) for all no, ny € Fix(W),
EeE.

(if) [&5 ]2 W [£0)2n = B((E)|&0))n = n(&j|€o) for all &0, & € Cofix(W), n € E.

Proof. We only prove assertion (i). Let n9,n, € Fix(W) and §¢ € E. Then
we have (npl1Wlnoli€ = (npl1W(no © §) = (ngli(no © &) = B((mylno))§ and
(mol1Wnol1)*& = [nol1 W*Ino)1€ = [nol1(np © &) = &(nolng)- [

For y = ,B,,é put Z(,E) ;= {T € M(B) | y(T)§ = &T forall§ € E}.
Note that Z(, E) € Z(M(B)) because (§'|E)TR = (§'|ET)R = (£'|y(T)E)R =
('ly(T)6R) = (§'|ER)T = (§'|E)RT forall ¢, € E, R € M(B), T € Z(,E),
and because FE is full.

Proposition 7.8. (i) S(M(B))Fix(W) = Fix(W); furthermore, the space
[Fix(W)* Fix(W)] € M(B) is a C*-subalgebra of Z(gE).

(ii) 3(M(B)) Cofix(W) = Cofix(W), and [Cofix(W)* Cofix(W)] € M(B) is a
C*-subalgebra of Z( 3E ).

Proof. We only prove (i). For all R € M(B), no € Fix(W), § € E we have
B(R)no € L (B. 4E) and, by equation (1), W(B(R)no © §) = WB1(R)(no © §) =
B1(RYW(no © &) = B1(R)(no © &) = B(R)no © &. These relations show that
B(M(B)) Fix(W) C Fix(W). By Lemma 7.7, Fix(W)* Fix(W) € Z(gE). Finally,
[Fix(W)* Fix(W)] is a C*-algebra because Fix(W) Fix(W)* Fix(W) is contained in
Fix(W)Z(gE) € B(M(B)) Fix(W) = Fix(W). O

Definition 7.9. We say that W is éralé iff (ng|no) = idp for some 1y € Fix(W),
proper iff (§y]&9) = idp for some &y € Cofix(W), and compact iff it is proper and if
B is unital.

Note that by Remark 7.6 (iii), W is proper/étalé iff WP is étalé/proper.

Proposition 7.10. () If W is proper; then O (43E) < AW).
(i) If W is étalé, then O (gE) € A(W).
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Proof. We only prove (i). Assume that & € Cofix(W) satisfies (§9|&o) = idp;
then [£o|2 W |é0)2 = /§((Eo|§0)) = idg (Lemma 7.7). Let b € H,(B) and let
¢ € Hox(B), p,o € PAut(B). Then &yc* € Jfg(ﬁE) and &b € Jr’{’p(ﬁE) by
Proposition 3.14 (iv), and a similar calculation as in Lemma 4.3 shows that

ope = B(b)a(c) = [Eoc*|2aW|Eob)2 € AW)S. O

If W is a multiplicative unitary, then the converse of the implications in Proposi-
tion 7.10 holds; see [1], Proposition 1.10.

Example: the pseudo-multiplicative unitary Wg. Let us consider the pseudo-
multiplicative unitary W of a groupoid G (see Example 2.5 and Sections 4, 6) and
determine the fixed and cofixed elements. We identify M(L?(G, 1)) in the natural
way with the completion of the space

{f € C(G) | r: supp / — G is proper, sup,cgo [gu | f(x)|*dA*(x) is finite}

with respect to the norm || - [[oo,2: f +> sup,ego([gu | f(x)|2dA¥(x))!/2. Standard

arguments and the relations n(x)é(y) = (n © €)(x,y) and (W(n © &))(x,y) =
n(x)&(x~"y), valid for all (x, y) € GZ, and 1, £ € L*(G, 1), show:

Lemma 7.11. (i) A multiplier no € M(L?*(G,})) is fixed iff for each u € G°,
NolGu\quy = 0 almost everywhere with respect to A*.

(ii) A multiplier & € M(L?*(G, L)) is cofixed iff for each u € G°, &|gu =
&0 o sGg|gu almost everywhere with respect to A¥.

Theorem 7.12. Wy is étalé/proper/compact iff G is r-discrete/proper/compact.

Proof. Assume that Wg is étalé, and that o € Fix(Wg) satisfies (no|no) = idp.
Define f: G — Rby y = [orgm no(x)no(x~'y) dA"6 ) (x). Then f is contin-
uous, flgo = n*n = 1and f|g go = 0 by Lemma 7.11. Therefore, G’ C Gis
open. Conversely, assume that G is r-discrete. Define no: G — [0, 1] by no|go = 1,
nolg\go = 0. Then no € M(L?(G, 1)) since ng is continuous, (no|no) = idg, and
no € Fix(W) by Lemma 7.11. Hence W is étalé.

Assume that Wg is proper and &y € Cofix(Wg) satisfies (§9|&p) = idp. Define
¢: G% — [0, 00) by u > &(u)Eo(u). Then

/ ¢(56 (0))dA" (x) = / Bk dA (x) = 1
Gu Gu

for all u € G° (see Lemma 7.11). By [19], Proposition 6.10, G is proper. Con-
versely, assume that G is proper. By [20], Proposition 6.11, there exists a contin-
uous function ¢: G® — [0, 00) such that the map r: supp(c o s) — G? is proper
and [gu c(sG(x))dA¥(x) = 1 for all u € G°. Define & € M(L?*(G, 1)) by
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X c(sG(x))l/z. By construction and by Lemma 7.11, & € Cofix(Wg) and
(&0|&0) = idp. Hence W is proper.

Finally, we conclude: G is compact < G is proper and G is compact < Wg
is proper and Co(G?) is unital < W is compact. O

Example: the pseudo-multiplicative unitary W;. Letus now consider the pseudo-
multiplicative unitary W, associated to a center-valued conditional expectation
7: B — C C Z(B), see Example 2.6 and Sections 4, 6.

Proposition 7.13. Cofix(W;) = [B; © 1], and Wy is compact.

Proof. Clearly [B; 1] € Cofix(W;), and W, is compact because 1S 1 € Cofix(W;),
(leo1]1 1) = 1. Assume that & € Cofix(W;). We consider the map
Y. EGSgE — B; © B; © B of Example 2.6. In B; © B; © B, we have that
l1eé =Yoo he&,) =YW (1o and YW (1) (cd)) =
Y(dol)o(col))=(dcccl) e Bpo B, o lforallc,d € B. An application
of the map (1| ©idSid: B, & B, B — B; © Bshowsthat§, € [B, & 1]. O

Recall that a quasi-basis for T is a finite set of elements (u;); of B satisfying
> i t(buj)uf = b forall b € B, and that 7 is said to be of index-finite type iff there
exists a quasi-basis for 7. Moreover, if  is of index-finite type with a quasi-basis (u;);,
then the element Index(7) := ) u,;u’ € B is central, invertible and independent of
the choice of (u;);. For details, see, e.g., [22].

Lemma 7.14. If (u;); is a quasi-basis for t, then ) ; u; S uj € J(’id(ﬁE).

Proof. Y ,u;Sul € Hia(4E) since (c S d| YiuiGurb) =3 d*t(c*u;)ulb =
d*c*b =), d*t(c*buj)uf = (c©d|)_;bu; Su})forallb,c,d € B. O]

Proposition 7.15. Fix(W;) = Jq( ﬁE ), and if T is of index-finite type, then Wy is
étalé.

Proof. If 1o € Hia(43E), then Wr(no © (¢ © d)) = B(d)no © (c © 1) =
nod (1) =nSBd)(cc1) =nS(cSd)forall c,d € B, whence
no € Fix(Wr). If t has a quasi-basis (1;);, then no := Y ; u; S u’ Index(7)~1/2
satisfies g € ](id(EE) = Fix(W) because Index() is central and by Lemma 7.14,

and (1ono) = >, ; uit(ufu;)u} Index(v)™ = 3°; w;uf Index(v)™! = 1. O

The counits on the legs. Let us return to the legs of a pseudo-multiplicative unitary
W:E 59 E — EGgE. Asbefore, we denote by B and B the C*-families generated

by A (W) and A(W), respectively.
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Ifidg belongsto A, (W)w then we can define a linear map €, : Aq (W) - L(B),
ar (a |1d £ )Y, which should be considered as the counit on the left leg of . In this
case, €, (A (W)5) € £5(B) and é,(derg)) = [£']|€) forall p,o € PAut(B) and all

homogeneous £, £’ € gE; see Proposition 7.2. Similarly, if id g belongs to Aa(W) ,
then we can define a “counit” €, : A;(W) — L(B), a — Y (idg|a), on the right leg
of W.

Theorem 7.16. (i) Assume that W is étalé. Then there exists a morphism
¢ B — £(B) such that €5(a) = €4(a) for all a € Aq (W)G, p,o € PAut(B). If
gE is decomposable, then € is non-degenerate. If addmonally A(SB) CM (ii’ © J)’)
and if we identify BQ E =~ F ~ E,g © B, then (€ ©id) o A=id= (id ©é€) o A.

(i) Assume that W is proper. Then there exists a morphism € : 8 — £(B) such
that €8(a) = €,(a) forall a € A,(W)5, p,o € PAut(B). IfﬁE is decomposable,
then € is non-degenerate. If additionally A(B) C M(B S B) and if we identify
BGgE 2 E=~EGB,then (e ©id)o A =id = (id S €) o A.

Proof. We only prove (i). Choose 1 € Fix(W) such that (n¢|no) = idp, and define
é: B — £(B)byél(a) = (nold|no) foralla € BY, p.o € PAut(B). Let£, £ € 4E
be homogencous. Then é(dg,e)) = (noll&'LWIE)2ln0) = (nol[E'lalno © &) =
[E']1€) = €a(aeg)) and evidently €(aeg)* = @(&E’%/ S)) To prove that € is a mor-
phism of C*-families, it is enough to show that €(d/g)d¢)) = e(a(g/g))e(a(;/;))
for all homogeneous £, ¢’ € gE. By the proof of Proposition 4.6, € (4 £)d¢)) =
(nola & d,cyln)o is equal to

W- W ’ ’
B [m0) PORIEN [§58)2 E @(E@ﬂE) W23 W12 W33 E@ﬂE@ﬁE [Ee8|> E (nol B.

Hence, €(d ¢/ £)d(e,r))™ and €(Aze))*€(d(e£))™ act on each b € B by

b |$ @;]2'"0) Ob®s/®é_/:no®b§/®§/

Was W5 W35 (nol(¢s¢l2 ' ’
100 (b§' 6 ) ———=> (( 0 ¢bE' 5 {)

and by
EllE ZIIZ']
—— (E[bE) —— (CI(EIbE")E) = (E o LIbE o ).
respectively (use the assumptions on 79); s0 €(de’,g)d )™ = €(de,e)) €@ )™
Assume that gE is decomposable. Since €(d¢))*b = (£|bE’) for all homoge-
neous £, £ € gE and all b € B, and since E is full and 8 non-degenerate, we have
[€(B)B] =
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Let us prove the last assertion in (i). Since A(&(S’,E)) = [£'|3W13Was|€)3 (Lem-
ma 6.1), (id @é)(&(&(g/,g))) and (¢ © id)(A(&(EQE))*) act as follows:
|770 3Wi3 nol2
£ £ oo B tome 0 8 13 £0(n08) F20S et omo P23 Gt
and
|770]1 3W55 [Mol1 A

§ > o< i (n0©0)cé MAE n0©((S¢§) e N0©a (e 6§ = Az )¢

for all { € E, respectively. O

Example 7.17. Let us consider the pseudo-multiplicative unitary Wg of a decom-
posable groupoid G (see Example 2.5 and Sections 4, 6), and determine the counits
on its legs.

Let£,& € Co.(G). Thendgg) = m(&’ » £*) by Proposition 4.8, and

(€alagee))h)(u) = - E(0)h(rG (x))E(x) dA" (x) = (€' * ) w)h(u)

forall i € Co(G?), u € G°. If G is r-discrete, Theorem 7.16 applies and €, extends
to a morphism of C*-families (see Theorem 7.12).

Let 7,7 € Cc(G) € sL*(G, L) be homogeneous. Then agy,;) = L(n'n) by
Proposition 4.14, and

ol = [ GFneonGee)ar e

forallh € Co(G®),u € G°. If G is proper, then Theorem 7.16 applies and €, extends
to a morphism of C*-families; see Theorem 7.12.

Example 7.18. Let us consider the pseudo-multiplicative unitary W, of a center-
valued conditional expectation t, see Example 2.6 and Section 4, and determine the
counit on its left leg. Recall from (the proof of) Proposition 4.17 that Aa(Wr)'g =

(ﬂE) for all p, o € PAut(B).

We shall need to distinguish the operators 04 47 € o©?f (gE) and 04,47 € 05 (B),
where p,o € PAut(B), d € H,(B), d” € Hq+(B), and therefore adorn them by
upper indices E or B, respectively.

We claim that @a(of’ ) = og’ 4 for all homogeneous d,d” € B. Indeed,

by Lemma 4.16, ogd,, = agg for £ :=1064d, & := 16 d"*, and by defini-
tion, &, (0 )¢ = &lagp)*c = (EllEc = (ElcE) = (12 d|1 G cd"™) =
d*t(1)cd"™* = (og’d,,)*c forall ¢ € B.

If 7 is of index-finite type, then Theorem 7.16 applies and €, extends to a morphism
€: O(gE) — O(B); see Proposition 7.15.
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