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1. Introduction and motivation

Hopf algebras (see for example [Kas95] or [DNR01]) are today one of the most
studied structures in mathematics. In relation with quantum field theories (QFTs),
Hopf algebras were proven to be a natural framework for the description of the forest
structure of renormalization – the Connes–Kreimer algebras [CK00], [CK01]. Ever
since there has been an important amount of work with respect to this new class of
Hopf algebras (for a general review see for example [Kre05]).
However, this construction was realized so far only at the

Figure 1.A Moyal vertex.

level of commutative QFT. When uplifting to non-commu-
tative quantum field theory (NCQFT), the interaction is no
longer local. Thus, the vertices of the associated Feynman
diagrams can now be represented as in Figure 1.

Recently, NCQFT models were also proven to be renor-
malizable at any order in perturbation theories, despite the
ultraviolet-infrared mixing problem. The non-commutative analogous of the Bogo-
liubov–Parasiuk–Hepp–Zimmerman (BPHZ) theorem was proven for the Grosse–
Wulkenhaarˆ4 scalar model in [GW05a], [GW05b]. In [GMRVT06] a general proof
in x-space, using multiscale analysis, was given. The parametric representation was
implemented for this model in [GR07]. Furthermore, the Mellin representation of
the non-commutative Feynman amplitudes was achieved in [GMRT07]. Finally, the
dimensional regularization and renormalization were constructed in [GT07].

With respect to the form of the associated propagator, a second class of NCQFT
models exists. This second class contains the non-commutative Gross–Neveu and the
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Langmann–Szabo–Zarembo (LSZ) [LSZ04] models. The associate BPHZ theorem
was proven in [VT07] for the non-commutative Gross–Neveu model. Moreover, the
parametric representation [RT07] and the Mellin representation [GMRT07] were also
implemented for this class of models. For a recent review on different issues of
renormalizability of NCQFT the interested reader is referred to [Riv07].

Note that even though recent progress has been made in [DGWW07], [GW07],
[BGS07], physicists do not yet have a renormalizable non-commutative gauge theory.

In this article we construct the Hopf algebra structure associated to the renormal-
ization of these NCQFT models. The paper is organized as follows. In the next section
we give some insights on the renormalization of NCQFT with respect to renormaliza-
tion of commutative QFT. The third section is devoted to the Hopf algebra structure
of Feynman diagrams. In the last section we state and prove our main result.

2. Renormalization of non-commutative quantum field theory

In this section we briefly recall some features of both commutative and non-commu-
tative Euclidean renormalization. We will mainly focus on the Grosse–Wulkenhaar
model [GW05b], [GMRVT06] or non-commutative ˆ4

4 theory. It consists in a scalar
quantum field theory on the four-dimensional Moyal space. Its action is given by
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with Qx� D 2.‚�1x/� and ‚ a four-by-four skew-symmetric matrix which encodes
the non-commutative character of space time: Œx�; x� �? D {‚�� . It has been shown
renormalizable to all orders of perturbation.

Furthermore, as already stated in the previous section, the same renormalization
results also hold for the non-commutative Gross–Neveu model [VT07] and the gen-
eralized LSZ model [GMRVT06]:
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2.1. Topology and power counting. LetG be a graph with V vertices and I internal
lines. Interactions of quantum field theories on the Moyal space are only invariant
under cyclic permutation of the incoming/outcoming fields. This restricted invariance
replaces the permutation invariance which was present in the case of local interactions.
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A good way to keep track of such a reduced invariance is to draw Feynman graphs
as ribbon graphs. Moreover there exists a basis for the Schwartz class functions
where the Moyal product becomes an ordinary matrix product [GW03], [GBV88].
This further justifies the ribbon representation.

Let us consider the example of Figure 2. Propagators in a ribbon graph are made
of double lines. Let us call F the number of faces (loops made of single lines) of a
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(a) x-space representation (b) Ribbon representation

Figure 2. A graph with two broken faces.

ribbon graph. The graph of Figure 2 (b) has V D 3, I D 3, F D 2. Each ribbon
graph can be drawn on a manifold of genus g. The genus is computed from the Euler
characteristic 
 D F � I CV D 2� 2g. If g D 0 one has a planar graph, otherwise
one has a non-planar graph. For example, the graph of Figure 2 (b) may be drawn
on a manifold of genus 0. Note that some of the F faces of a graph may be “broken”
by external legs. In our example, both faces are broken. We denote the number of
broken faces by B .

Furthermore letN be the number of external legs of the graph. For the commuta-
tive �4 model one has the following superficial degree of convergence: ! D N � 4.
Thus one has to deal only with the renormalization of the two- and four-point func-
tions. In the case of the Grosse–Wulkenhaar model the situation is different. In
[GW05a], [GW05b], [GR07] it was proven that

! D .N � 4/C 8g C 4.B � 1/: (2.5)

Note that, as shown in [RT07], one has the same power counting for the LSZ-like
model (2.4). The one of the Gross–Neveu model (2.2) is more involved but leads to
the same conclusion: one has to deal only with the renormalization of the B D 1,
planar two- and four-point graphs, hereafter qualified as planar regular.
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2.2. Locality vs. Moyality. A crucial aspect of the uplifting from commutative to
non-commutative renormalization is that the principle of locality of renormalized
interactions of commutative QFT is replaced with a new principle: renormalized in-
teractions have a non-local Moyal vertex form. This is nothing but the analog of the
locality phenomenon which occurs in commutative renormalization. One can thus
speak, in the case of non-commutative renormalization, of a new type of renormaliza-
tion group, where the locality is just replaced by “Moyality”. The divergent parts of
the planar regular two- and four-point graphs with one broken face (the only divergent
graphs) are proportional to the (1PI) tree level terms of the perturbative expansion.
Such a new definition of “locality” was suggested in [Kre05], see equation .62/.

Let us also argue here that, despite this uplifting, the combinatorial backbone of
renormalization theory is almost the same when dealing with commutative or non-
commutative QFT. Thus the combinatorics of non-commutative renormalization will
be shown to be encoded by a Hopf algebra.

2.3. Renormalization as a factorization issue. The basic operation for renormal-
ization is the disentanglement of a graph 	 into pieces � and cograph 	=� . It is
exactly this operation that was present at the level of commutative renormalization
and that gave rise to a Hopf algebra structure.

We now argue that this factorization process is also present at the level of non-
commutative renormalization. Indeed, consider the dimensional renormalization
scheme for the Grosse–Wulkenhaar model. The parametric representation constructed
in [GR07] writes the Feynman amplitude �.	/ as

�.	/ D K

Z 1

0

LY
`D1

Œdt`.1 � t2` /
D
2 �1�HUG; NV .t/

� D
2 e

� HVG
H UG ; (2.6)

where K is some constant,

t` D tanh
˛`

2
; ` D 1; : : : ; L; (2.7)

where ˛` are the parameters associated to any of the propagators of the graph. In
[GR07] it was furthermore proved that HU and HV are polynomials in the set of
variables t`.

Considering now a primitive divergent subgraph � of 	 and rescaling the param-
eters t of its internal edges, it was shown in [GT07] that

HU l
� D HU l

� HU�=� (2.8)

where by the index l we understand the leading terms under the rescaling. A similar
factorization theorem was also proven for the exponential part in (2.6) of the Feynman
amplitude �.	/.
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Moreover, in [GMRVT06] an analogous phenomenon of factorization was shown
for the Grosse–Wulkenhaar model in position space, namely the planar regular graphs
contribute to the renormalization of the mass, wave function, harmonic frequency �
and coupling constant; see equation (2.1).

3. Hopf algebra structure of Feynman diagrams

3.1. Hopf algebra reminder. In this subsection we recall the general definition of
a Hopf algebra (for further details one can refer for example to [Kas95], [DNR01]).

Definition 3.1 (Algebra). A unital associative algebra A over a field K is a K-linear
space endowed with two algebra homomorphisms:

� a product m W A ˝ A ! A satisfying the associativity condition

m B .m˝ id/.	/ D m B .id ˝m/.	/ for all 	 2 AI (3.1)

� a unit u W K ! A satisfying

m B .u˝ id/.	/ D 	 D m B .id ˝ u/.	/ for all 	 2 A: (3.2)

Definition 3.2 (Coalgebra). A coalgebra C over a field K is a K-linear space endowed
with two algebra homomorphisms:

� a coproduct � W C ! C ˝ C satisfying the coassociativity condition:

.�˝ id/ B�.	/ D .id ˝�/ B�.	/ for all 	 2 C I (3.3)

� a counit " W C ! K satisfying

."˝ id/ B�.	/ D 	 D .id ˝ "/ B�.	/ for all 	 2 C : (3.4)

Definition 3.3 (Bialgebra). A bialgebra B over a field K is a K-linear space endowed
with both an algebra and a coalgebra structure (see Definitions 3.1 and 3.2) such that
the coproduct and the counit are unital algebra homomorphisms (or, equivalently, the
product and unit are coalgebra homomorphisms):

� BmB D mB˝B B .�˝�/; �.1/ D 1 ˝ 1; (3.5a)

" BmB D mK B ."˝ "/; ".1/ D 1: (3.5b)

Definition 3.4 (Graded bialgebra). A graded bialgebra is a bialgebra graded as a linear
space,

B D
1M

nD0

B.n/; (3.6)
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such that the grading is compatible with the algebra and coalgebra structures:

B.n/B.m/ � B.nCm/ and �B.n/ �
nM

kD0

B.k/ ˝ B.n�k/: (3.7)

Definition 3.5 (Connectedness). A connected bialgebra is a graded bialgebra B for
which B.0/ D u.K/.

One can then define a Hopf algebra.

Definition 3.6 (Hopf algebra). A Hopf algebra H over a field K is a bialgebra over
K equipped with an antipode map S W H ! H satisfying

m B .S ˝ id/ B� D u B " D m B .id ˝ S/ B�: (3.8)

Finally we remind the reader of a useful lemma.

Lemma 3.1 ([Man03]). Any connected graded bialgebra is a Hopf algebra whose
antipode is given by S.1/ D 1 and recursively by any of the two following formulas
for 	 ¤ 1:

S.	/ D �	 �
X
.�/

S.	 0/	 00; (3.9a)

S.	/ D �	 �
X
.�/

	 0S.	 00/: (3.9b)

Here we used Sweedler’s notation.

3.2. Locality and the residue map. In quantum field theory, Feynman graphs are
built from a certain set of edges and vertices R D RE [ RV . This set is given
by the particle content of the model and by the type of interactions one wants to
consider. For example, in the commutative �4

4 theory (which will be our benchmark
until Section 4) RE contains only the scalar bosonic line, while RV contains the
local four-point vertex and the two-point vertices corresponding to the mass and wave
function renormalization:

RE D ˚ �
;

˚
;

0
;

1 �
:

In the following we will still write RV for the free algebra generated by the elements
of RV . Let us now consider the algebra H generated by a certain class of graphs
(connected, 1PI, etc.) made out of the set R.
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Definition 3.7 (Subgraph). Let 	 2 H , let 	 Œ1� be its set of internal lines and 	 Œ0�

its vertices. A subgraph � of 	 , written � � 	 , consists in a subset � Œ1� of 	 Œ1� and
the vertices of 	 Œ0� hooked to the lines in � Œ1�. Note that with such a definition, � is
truncated.

Definition 3.8 (Shrinkable subgraph). Let 	 2 H . A subgraph ;   �   	 is said
shrinkable if res.�/ 2 RV . The set of shrinkable subgraphs of 	 will be denoted
by 	 .

Note that so far we did not really define what the map res is. We now do it. First we
assume that it is an algebra homomorphism from H to H [RV . Then to compute the
graphical residue of a generator of H , we need the following remarks and definitions.

The coproduct of H (usually given by (3.15)) drives the combinatorial and alge-
braic aspects of renormalization if it corresponds to some analytical facts. Before we
explain this, let us recall the following definitions.

Definition 3.9. The (unrenormalized) Feynman rules are a homomorphism � from
H to A. The precise definition of A depends on the regularization scheme employed
(in dimensional regularization, A is the Laurent series).

Definition 3.10. The projection T is a map from A to A such that

.idA � T / B �.	/ < 1 (3.10)

for all 	 2 H and 	 primitive. This means that if �.	/ is superficially divergent (as
the cut-off is removed) then its overall divergence is totally included in T B �.	/.
External structures. The projection T extracts the divergent part of the amplitude
�.	/. In the case of a two-point graph this divergent part decomposes into two
pieces. The first one is a mass term whereas the second one contributes to the wave
function renormalization (recall that the propagator of the commutative �4 theory is
.��Cm2/�1). To distinguish between these two, one introduces external structures
[CK00], [Kre05]. It consists of the following endomorphisms of A (in x-space
representation):

h�0; �.	/i D �0.	/ıy.x/; (3.11a)

h�1; �.	/i D �1.	/�ıy.x/; (3.11b)

h�2; �.	/i D �2.	/ıx2
.x1/ıx3

.x1/ıx4
.x1/; (3.11c)

where the �i ’s are characters on A. If K� is the kernel of the amplitude �.	/, these
characters are given by

�0.	/ D
Z
d4z K�.x; z/; (3.12a)
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�1.	/ D 1

8

Z
d4z .z � x/2K�.x; z/; (3.12b)

�2.	/ D
Z
d4x2d

4x3d
4x4K�.x; x2; x3; x4/: (3.12c)

Recall that commutative field theories are usually translation invariant so that none of
the �i ’s depend on x. With these notations, T D �0 C �1 on a two-point graph and
T D �2 on a four-point graph.

There is now a way to relate the analytical operations �i ’s to the graphical map
res:

Definition 3.11 (Residue). The residue map res W H ! H [RV is defined by

h�i ; �.	/i D �i .	/h�i ; � B res.	/i; (3.13)

where i D 0 or 1 for a two-point graph and i D 2 on a four-point graph.

Following equations (3.11) and (3.12) one finds

� B res.	/ D ıy.x/C�ıy.x/ if 	 is a two-point graph, (3.14a)

� B res.	/ D ıx2
.x1/ıx3

.x1/ıx4
.x1/ if 	 is a four-point graph; (3.14b)

which leads to the following graphical definitions:

res. / D D � 0 C 1 ��1
; res. / D : (3.14c)

Equation (3.13) means that the divergent part of a graph 	 “looks like” another
graph called res.	/. For a renormalizable quantum field theory the residue of any
superficially divergent graph belongs to RV . This is the usual statement according
to which all the divergences of a renormalizable field theory can be “absorbed” in
a redefinition of the various coupling constants. If the theory is local then res.	/
corresponds to the graph obtained from 	 by shrinking all its internal lines to a point.
But this is a particular case and we have to define res as reflecting the appropriate
projection T . For example, we will see in the next section that the residue of a
non-commutative graph is not a local graph anymore.

The T operation is designed to extract the “main” part of graphs. For the conver-
gent ones there is no good distinction between T B�.	/ and .id�T /B�.	/: both are
convergent expressions. That is why T is mainly defined on (superficially) divergent
graphs. Nevertheless one can define T to be idA on convergent graphs. Condi-
tion (3.10) is then trivially fulfilled and equation (3.13) is satisfied with res D idH

and � the trivial character.
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3.3. Coassociative coproducts. Using the definitions of Section 3.2 we have the
following lemma.

Lemma 3.2 (Coassociativity). Let 	 2 H . Suppose that the following hold:

(1) res.�/ 2 RV , res.� 0/ 2 RV and res.�=� 0/ 2 RV for all � 2 	 and for all
� 0 2 � ;

(2) for all �1 2 H and for all �2 2 H such that res.�1/ 2 RV and res.�2/ 2 RV ,
there exists gluing data G such that res.�1 BG �2/ 2 RV .

Then the coproduct

�	 D 	 ˝ 1 C 1 ˝ 	 C�0	; (3.15a)

�0	 D
X
�2�

� ˝ 	=�: (3.15b)

is coassociative.

Observe that	=� is the graph obtained from	 by replacing � � 	 with its residue.
Then res.�/ 2 RV implies that 	=� 2 H . We prove this lemma by following closely
[CK00].

Proof. First note that .� ˝ id/� D .id ˝ �/� () .�0 ˝ id/�0 D .id ˝ �0/�0,
which means that all the following subgraphs can be considered as neither full nor
empty. Let 	 be a generator of H ,

.�0 ˝ id/�0	 D .�0 ˝ id/
X
�2�

� ˝ 	=� (3.16)

D
X
�2�

X
� 02�

� 0 ˝ �=� 0 ˝ 	=�; (3.17)

.id ˝�0/�0	 D
X
� 02�

X
� 002�=� 0

� 0 ˝ � 00 ˝ .	=� 0/=� 00: (3.18)

By the Definitions 3.7, 3.8 and 3.11 it is clear that � 0 2 � and � 2 	 implies
� 0 2 	 . This implicitly uses the fact that the residue of a graph is independent of the
surrounding of this graph and really only depends on the graph itself: res.�/ is the
same wether � is a subgraph of another graph or not. Equation (3.17) can then be
rewritten as

.�0 ˝ id/�0	 D
X
� 02�

X
�2� with �¡� 0

� 0 ˝ �=� 0 ˝ 	=�: (3.19)

It is now enough to prove equality of (3.18) and (3.19) at fixed � 0 2 	 . Let us first
fix a subgraph � 2 	 such that � ¡ � 0 and prove that there exists a graph � 00 2 	=� 0



134 A. Tanasă and F. Vignes-Tourneret

such that �=� 0 ˝	=� D � 00 ˝ .	=� 0/=� 00. Of course the logical choice for � 00 is �=� 0
because then .	=� 0/=.�=� 0/ D 	=� .

We only have to prove that � 00 D �=� 0 2 	=� 0. It is clear that �=� 0 is a subset of
internal lines of 	=� 0. Then �=� 0 2 	=� 0 if res.�/ 2 RV and res.� 0/ 2 RV implies
that res.�=� 0/ 2 RV , which we assumed.

Conversely let us fix � 00 2 	=� 0 and prove that there exists � 2 	 containing � 0
such that �=� 0˝	=� D � 00˝.	=� 0/=� 00. Let us write � 0 D S

i2I �
0
i for the connected

components of � 0. Some of these components led to vertices of � 00, the others to
vertices of .	=� 0/ n � 00. We can then define � as .� 00 BGI1

S
i2I1

� 0
i /

S
j 2I2

� 0
j with

I1 [ I2 D I . It is clearly a subgraph of 	 and belongs to 	 if for all �1; �2 2 H with
res.�1/ 2 RV , res.�2/ 2 RV , there exists gluing dataG such that res.�1 BG �2/ 2 RV .
This is our assumption, so the lemma is proved.

Let us now work out how Lemma 3.2 fits the commutative �4 model. In this local
field theory the divergent graphs have two or four external legs. The residue of a given
graph is the one obtained by shrinking all its internal lines to a point (see Section 3.2)
and then only depends on the number of external lines of the graph. Let us check
condition 2 of Lemma 3.2 for commutative �4. We consider two graphs �1 and �2

with two or four external legs. We consider �0 D �1 BG �2 for any gluing data G.
Let Vi , Ii and Ei the respective numbers of vertices, internal and external lines of �i ,
i 2 f0; 1; 2g. For all i 2 f0; 1; 2g, we have

4Vi D2Ii CEi ; (3.20a)

V0 D
(
V1 C V2 if E2 D 2;

V1 C V2 � 1 if E2 D 4;
(3.20b)

I0 D
(
I1 C I2 C 1 if E2 D 2;

I1 C I2 if E2 D 4;
(3.20c)

which proves that E D E1. Then as soon as res.�1/ 2 RV so does res.�0/. Con-

cerning condition 1 note that � 00 D �=� 0 () there exists G such that � D � 00 BG �
0,

which allows to prove, in the case of a local theory, that condition 1 also holds and
that the coproduct (3.15) is coassociative.

Lemma 3.3. Let Hc be the linear space of graphs whose residue is RV -valued:

Hc D f	 2 H j res.	/ 2 RV g : (3.21)

Hc is a Hopf subalgebra of H .

Proof. Due to Definition (3.15),�Hc � Hc ˝Hc . By induction on the augmentation
degree, one also proves that S.Hc/ � Hc .
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4. Hopf algebra for non-commutative Feynman graphs

The definition of the Hopf algebra of non-commutative Feynman graphs which drives
the combinatorics of perturbative renormalization is formally the same as in the com-
mutative case [CK00]. But before giving the definitions let us define the residue of a
non-commutative graph. As already mentioned, it has been proven (first in [GW05b])
that the Grosse–Wulkenhaar model (2.1) is renormalizable to all orders of perturba-
tion. It means that the divergent parts of the divergent graphs are proportional to
mass, wave function, x2 and Moyal vertex terms. Following the procedure exposed
in Section 3.2, particularly equations (3.13) and (3.14), we find that

� B res.	/ D ıy.x/C�ıy.x/C Qx2ıy.x/ if 	 is a two-point planar regular graph,
(4.1a)

� B res.	/ D �
ıx2

? ıx3
? ıx4

�
.x1/ if 	 is a four-point planar regular graph;

(4.1b)

which leads to the following graphical definitions:

res. / D ; res. / D : (4.1c)

Once more the (graphical) residue of a convergent graph is defined as idH .
Consider now the unital associative algebra H freely generated by 1PI non-

commutative Feynman graphs (including the empty set, which we denote by 1). The
product m is bilinear, commutative and given by the operation of disjoint union. Let
the coproduct � W H ! H ˝ H defined as

�	 D 	 ˝ 1 C 1 ˝ 	 C
X
�2�

� ˝ 	=� for all 	 2 H : (4.2)

Furthermore let us define the counit " W H ! K:

".1/ D 1; ".	/ D 0 for all 	 ¤ 1: (4.3)

Finally the antipode is given recursively by

S W H ! H ; 	 7! �	 �
X
�2�

S.�/	=�: (4.4)

We can now state our main result.

Theorem 4.1. The quadruple .H ; �; "; S/ is a Hopf algebra.

Proof. We need only prove the coassociativity of the coproduct (4.2). Then definition
(4.4) for the antipode follows from the fact that H is graded (by the loop number),
connected, and from Lemma 3.1.

We will use Lemma 3.2 and the fact that for all 	 2 H , res.	/ 2 RV is equivalent
to 	 is planar regular. Then conditions 1 and 2 of Lemma 3.2 are equivalent to:
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(1) for all � and � 0 � � planar regular, �=� 0 is planar regular;

(2) for all � and � 0 � � both planar regular, there exits gluing data G such that
� BG �

0 is planar regular.

In the following all the graphs we are going to insert will be four-point graphs. The
case of two-point graphs is easier and left to the reader. Before proving conditions 1
and 2, let us consider the insertion of a regular four-point graph �2 into a vertex
of another graph �1. Let �0 D �1 B �2 and for all i 2 f0; 1; 2g let Fi , Ii , Vi , Bi

1

2

3

4

(a) A vertex of �1

1

13

3

44

1

1

2 2

3

3

44

2

4

2

0

0
0 0

0

0
00

(b) Insertion of �2

Figure 3. Insertion procedure.

the respective numbers of faces, internal lines, vertices and broken faces of �i . The
number of faces of a ribbon graph is the number of closed1 single lines. A ribbon
vertex is drawn in Figure 3 (a). One sees that the number of faces to which the lines of
that vertex belong is at most four. Some of them may indeed belong to the same face.
The gluing data necessary for the insertion of �2 correspond to a bijection between the
half-lines of the vertex in �1 and the external lines of �2. This last one is regular (only
one broken face) and the typical situation is represented in Figure 3 (b). It should be
clear thatF D F2 �1CF1 �n for some n > 0. F2 �1 is the number of internal faces
of �2, i.e., the number of faces of the blob. The number n depends on the gluing data.
It vanishes if the insertion respects the cyclic ordering of the vertex. For example, the
following bijection � does:

�..10; 20// D .2; 3/; �..30; 40// D .4; 1/;

�..20; 30// D .3; 4/; �..40; 10// D .1; 2/:
(4.5)

As in equations (3.20), I0 D I1 C I2 and V0 D V1 CV2 � 1. It follows that the genus

1In the case of external faces, one notices that the corresponding lines are closed.
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of �0 satisfies
g.�0/ D g.�1/C g.�2/C n: (4.6)

Moreover by exhausting the 4Š=4 possible insertions, one checks that B0 > B1. For
example, in Figure 4 (a), lines1 and3belong to two different broken faces. Figure 4 (b)
shows an insertion of a regular four-point graph which increases the number of broken
faces by one: now trajectories .1; 4/; .1; 2/ and 3 are external faces (line .2; 4/ is still
an internal one).

1

13

3

44

2 2

44

(a) External situation

1

13

3

44

2 2

44

(b) Insertion of a regular graph

Figure 4. Increasing number of external faces.

Let us now turn to proving that the algebra of non-commutative Feynman graphs
described above fulfills conditions 1 and 2.

(1) � , � 0 planar implies �=� 0 planar due to equation (4.6). Furthermore B.�/ D 1

implies that B.�=� 0/ D 1 by the preceding remark.

(2) For condition 2 one chooses gluing data G respecting the cyclic ordering of the
vertex. Then one has g.� BG �

0/ D g.�/C g.� 0/ D 0. The cyclic ordering of
the insertion ensures B.� BG �

0/ D B.�/ D 1.

Let f; g 2 Hom.H ;A/ where A is the range algebra of the projection T (see
Section 3.2). The convolution product � in Hom.H ;A/ is defined by

f � g D mA B .f ˝ g/ B�H : (4.7)

Let � be the unrenormalized Feynman rules and �� 2 Hom.H ;A/ the twisted anti-
pode: for all 	 2 H ,

��.	/ D �T
�
�.	/C

X
�2�

��.�/ �.	=�/
�
: (4.8)
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As in the commutative field theories, the renormalized amplitude�C of a graph	 2 H

is given by
�C.	/ D �� � �.	/: (4.9)

Acknowledgment. We would like to warmly thank Dirk Kreimer for fruitful discus-
sions.
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[GT07] R. Gurau andA. Tanasă, Dimensional regularization and renormalization of non-
commutative QFT. Preprint 2007. arXiv:0706.1147

[Kas95] C. Kassel, Quantum groups. Grad. Texts in Math. 155, Springer-Verlag, New
York 1995. Zbl 0808.17003 MR 1321145

[Kre05] D. Kreimer, Structures in Feynman graphs: Hopf algebras and symmetries. In
Graphs and patterns in mathematics and theoretical physics, Proc. Sympos.
Pure Math. 73, Amer. Math. Soc., Providence, RI, 2005, 43–78. Zbl 1088.81077
MR 2131011

[LSZ04] E. Langmann, R. J. Szabo, and K. Zarembo, Exact solution of quantum field
theory on noncommutative phase spaces. J. High Energy Phys. 01 (2004), 017.
MR 2045889

[Man03] D. Manchon, Hopf algebras, from basics to applications to renormalization.
In Comptes rendus des Rencontres mathématiques de Glanon, Edition 2003.
arXiv:math.QA/0408405

[Riv07] V. Rivasseau, Non-commutative renormalization. In Quantum Spaces, Poincaré
Seminar 2007, Progr. Math. Phys. 53, Birkhäuser, Basel 2007, 19–107.
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