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1. Introduction

The spectral action introduced by Chamseddine—Connes plays an important role [3] in
noncommutative geometry. More precisely, given a spectral triple (A, H, D) where
A is an algebra acting on the Hilbert space H and D is a Dirac-like operator (see [7],
[23]), Chamseddine and Connes proposed a physical action depending only on the
spectrum of the covariant Dirac operator

Dy:=D+A+eJAJ ", (L.1)
*Partially supported by MNII Grant 115/E-343/SPB/6.PR UE/DIE 50/2005-2008.
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where A is a 1-form represented on JH, so has the decomposition

A=>"a[D.b], (1.2)

with a;, b; € A, J is a real structure on the triple corresponding to charge conju-
gation and € € {1, —1} depends on the dimension of this triple and comes from the
commutation relation

JD =¢€eDJ. (1.3)
This action is defined by

8(Da, @, A) := Tr(®(Da/A)), (1.4)

where ® is any even positive cut-off function which could be replaced by a step
function up to some mathematical difficulties investigated in [16]. This means that
8 counts the spectral values of |Dy4| that are less than the mass scale A (note that
the resolvent of D4 is compact since, by assumption, the same is true for D; see
Lemma 3.1 below).

In [18], the spectral action on NC-tori has been computed only for operators of
the form D + A and for D4 in [20]. It appears that the implementation of the real
structure via J does change the spectral action up to a coefficient when the torus
has dimension 4. Here we prove that this can be also directly obtained from the
Chamseddine—Connes analysis in [11] that we follow quite closely. Actually,

SDa @8 = Y @ehk f1Da 4 00,0 + 0T, (1)
0<kesdt

where Dy = Dy + Py, P4 is the projection on Ker Dy, ®; = %fooo O(1)k/2 14t
and Sd™ is the strictly positive part of the dimension spectrum of (A, 3{, D). As we
will see, Sd* = {1,2,...,n} and f |D4|™ = f|D|™". Moreover, the coefficient
{p,(0) related to the constant term in (1.5) can be computed from the unperturbed
spectral action since it has been proved in [11] (with an invertible Dirac operator and
a 1-form A such that D + A is also invertible) that

to4a @~ Eo(@ = 3 5 faniye (16)

q=1

using {x (s) = Tr(] X|™%). We will see how this formula can be extended to the case
of a noninvertible Dirac operator and noninvertible perturbation of the form D + A
with 4 1= A+ eJAJ .

All these results on spectral action are quite important in physics, especially in
quantum field theory and particle physics, where one adds to the effective action some
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counterterms explicitly given by (1.6); see for instance [2], [3], [4], [11], [17], [18],
[20], [22], [28], [34], [36], [37], [38].

Since the computation of zeta functions is crucial in the following, we investigate in
Section 2 residues of series and integrals. This section contains results of independent
interest on the holomorphy of series of holomorphic functions. In particular, the
necessity of a Diophantine constraint is naturally emphasized.

In Section 3 we revisit the notions of pseudodifferential operators and their associ-
ated zeta functions and of dimension spectrum. The reality operator J is incorporated,
and we pay a particular attention to kernels of operators that can play a role in the
constant term of (1.5). This section concerns general spectral triples with simple
dimension spectrum.

Section 4 is devoted to the example of the noncommutative torus. It is shown that
it has a vanishing tadpole.

In Section 5 all previous technical points are then widely used for the computation
of terms in (1.5) or (1.6).

Finally, the spectral action (1.6) is obtained in Section 6, and we conjecture that the
noncommutative spectral action of D4 has terms proportional to the spectral action
of D + A on the commutative torus.

2. Residues of series and integral, holomorphic continuation, etc.

Notations. In the following the prime in ' means that we omit terms with division
by zero in the summand. B”" (resp. S"~!) is the closed ball (resp. the sphere) of R”
with center 0 and radius 1. The Lebesgue measure on S”~! will be noted by dS.

For any x = (x1,...,X,) € R" we denote by |x| = /x? +--- + x2 the Eu-

clidean norm and |x|; := |xq1| 4+ -+ + |xn].

N = {1,2,...} is the set of positive integers and Ng = N U {0} the set of
non-negative integers.

By f(x,y) <, g(x) uniformly in x, we mean that, for some a(y) > 0,

|f(x. »)] = a(y)|g(x)] forall x and y.

2.1. Residues of series and integral. In order to be able to compute later the residues
of certain series, we now prove the following result.

Theorem 2.1. Let P(X) = Z?:o P;(X) € C[Xy,..., X,] beapolynomial function
where P; is the homogeneous part of P of degree j. The function

Fis)= Y Pl e

kez" |k|S ’

has a meromorphic continuation to the whole complex plane C.
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Also £P (s) isnotentire ifand only if Pp :={j | Jyesn—1 Pi(u)dS(u) # 0} # @.

In that case ¢® has only simple poles at the points j +n, j € Pp, with

Res ¢f(s) = / P;(u) dS(u).
uesSn—1

s=j+n
The proof of this theorem is based on the following lemmas.

Lemma 2.2. For any polynomial P € C[Xy,...,X,] of total degree 5(P) :=
> iy degy, P and any a € N§j, we have

0 (P()|x[7*) K (1 [l x| 7ol 0
uniformly in x € R", |x| > 1, where 0 = Re(s).
Proof. By linearity, we may assume without loss of generality that P(X) = X7 is a

monomial. It is easy to prove (for example by induction on |&|;) that for all « € Nj
and x € R" \ {0}:

- B
*(|x|™°) = a! Z( s/2 )(|/3|1+|M|1)! x

1Bl + |kl Blu!  |x|et2(Bhi+lulD”

ﬁgMENO
BH2u=a

It follows that for all o € INfj, we have uniformly in x € R”, [x| > 1,
0% (X[ ™) Kam (1 + |5 x[7070, @1

By the Leibniz formula and (2.1), we have uniformly in x € R”, |x| > 1,

P = 3 (“)a%cy) 9P (|x|~)

B=a p
Lyan Y X sl Il g moleli+IAL
B<a;B<y
Lyan (1 + |s|)‘a‘1|x|_0'—|a|1+|y|l. -

Lemma?2.3. Let P € C[Xy,..., X,]|beapolynomial of degree d. Then the difference

Ap(s) =Y Tk(f? —/[R PO 4

mpn |x[*

which is defined for Re(s) > d + n, extends holomorphically to the whole complex
plane C.



Spectral action on noncommutative torus 57

Proof. We fix in the sequel a function ¢ € C°°(R", R) such that for all x € R” we
have

0<y(x)<1, y(x)=1if|lx|>1 and ¥(x)=0if|x| <1/2.

The function f(x,s) := ¥ (x)P(x)|x|™, x € R® and s € C, is in C®°(R" x C) and
depends holomorphically on s.

Lemma 2.2 above shows that f is a “gauged symbol” in the terminology of [24],
p. 4. Thus [24], Theorem 2.1, implies that Ap(s) extends holomorphically to the
whole complex plane C. However, for completeness, we will give here a short proof
of Lemma 2.3:

It follows from the classical Euler—-Maclaurin formula that for any function
h: R — C of class €V T satisfying limj; 400 ¥ (1) = 0 and [ |h®(1)|dt <
4+ooforanyk =0,..., N + 1, we have

(N+1)
> ) = /h(t)+(N+l)'/ By () RV D (1) .

where By 4+ is the Bernoulli function of order N 4 1 (it is a bounded periodic
function).
Fix m’ € Z" ! and s € C. Applying this to the function

h(t) :=y(m' . t)P(m', t)|(m',1)|™*

(we use Lemma 2.2 to verify the hypothesis), we obtain that for any N € Ny,

Dy’ my) P(m',my)|(m, my)|
mneZ (2.2)
- / ' PG 00, [ dt + R (')
R

_1\NV ) , / )
where Ry (m'; s) := '((N_—ll—)_l)!' Jr BN+1(I)—3i:;L (W (m', t)P(m', t)|(m', 1)) dt.
By Lemma 2.2,
3N+1
/|BN+1(I) o, NH(w(m HPm', 1)|(m', I)I_s)|dt
Lpan (L4 [sPVFI(m!| + 1) "0~ N+H8P),

Thus ), czn—1 R (m'; s) converges absolutely and defines a holomorphic function
in the half plane {o = Re(s) > §(P) +n— N}.
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Since N is an arbitrary integer, by letting N — oo and using (2.2) above, we
conclude that

sy Y m) POn' my)|(m' m) [

(m’ ,my)eZ"—1x7Z
_ Z / Y(m', t)P(m', 1)|(m', 1) dt
m/ezn—1 R

has a holomorphic continuation to the whole complex plane C.
After n iterations, we obtain that

s X eV P~ = [y Pl ds

has a holomorphic continuation to the whole of C.
To finish the proof of Lemma 2.3, it is enough to notice that

* ¥(0) =0and Y (m) = 1forallm € Z" \ {0};

s [ V(X)) P(X)|x|dx = f{xe[R"|1/25|x|51} ¥ (x)P(x)|x|Sdx is a holo-
morphic function in C. O

Proof of Theorem 2.1. Using the polar decomposition of the volume form dx =
0" YdpdS in R", we obtain for Re(s) > d + n that

P; o0 ,j+n—1
/ |f(|f)dx:/ r_ / Pj(u) dS(u)
n\Bn X 1 P Sn—1

1

= /SH P;(u) dS(u).

Lemma 2.3 now gives the result. O

2.2. Holomorphy of certain series. Before stating the main result of this section,
we give first in the following some preliminaries from Diophantine approximation
theory.

Definition 2.4. (i) Let § > 0. A vector a € R” is said to be §-diophantine if there
exists ¢ > 0 such that | -a — m| > ¢|g|~ forall g € Z" \ {0} and for all m € Z.
We denote BV(5) the set of §-diophantine vectors and BY := |-, BV(S) the
set of diophantine vectors.
(i1) A matrix ® € M, (R) (real n x n matrices) is said to be diophantine if there
exists u € Z" such that *®(u) is a diophantine vector of R”.
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Remark 2.5. A classical result from Diophantine approximation asserts that for all
8 > n, the Lebesgue measure of R” \ BV(§) is zero (i.e., almost any element of R”
is §-diophantine).

Let ® € M,(R). If its row of index i is a diophantine vector of R” (i.e., if
L; € BV) then 'O(e;) € BV and thus O is a diophantine matrix. It follows that

n2

almost any matrix of M, (R) a~ R"*" is diophantine.

The goal of this section is to show the following result.

Theorem 2.6. Let P € C[Xy,..., Xy] be a homogeneous polynomial of degree d
and let b be in 8(Z" x --- x Z™) (q times, g € N). Then the following holds:

. o ! Pk) 2mik-
(1) Leta € R™. We define f,(s) := Z vegn TR € Tiea

1. Ifa € Z", then f, has a meromorphic continuation to the whole complex
plane C.

Moreover if S is the unit sphere and dS its Lebesgue measure, then f is

not entire if and only iffueS”—l Pu)dS(u) # 0. In that case, f, has only

a simple pole at the point d + n with R;:s Ja(s) = [,cgn—1 P(u)dS(u).
s=d+n

2. Ifa € R" \ Z", then f,(s) extends holomorphically to the whole complex
plane C.

(ii) Suppose that ® € M, (R) is diophantine. For any (g;); € {—1,0,1}4, the
function

86) =D PO fox 1, (5)
extends meromorphically to the whole complex plane C with only one possible
poleons =d + n.

Moreover, if we set Z := {l € (Z")1 | Y1_, eil; =0} and V := ;5 b(l),
then:

L IfV [gno1 P(u) dS(u) # 0, then s = d + n is a simple pole of g(s) and
Res g(s) / Pu)dS(u).
s=d uesSn—1
2. If V [gu1 P(u) dS(u) = O, then g(s) extends holomorphically to the
whole complex plane C.

(iii) Suppose that ® € M, (R) is diophantine. For any (g;); € {—1,0,1}4, the

Junction
go(s) := Zle(zn)q\z (D foxe_ e (5)

where Z, :={l € (Z")1 | Zl 1 €ili = O} extends holomorphically to the whole
complex plane C.
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Proof of Theorem 2.6. First we remark thatif @ € Z" then f,(s) = Y jczn 1|>k(|li), )
(i.1) follows from Theorem 2.1.

Further, g(s) = Y jezmanzb()fox, e, ) + (Liez b(1) Chezn 5.
so (ii) follows easily from (iii) and Theorem 2.1.

Therefore, to complete the proof it remains to show (i.2) and (iii).

The direct proof of (i.2) is easy, but it is not sufficient to deduce (iii), the proof
of which is more delicate and requires a more precise (i.e., more effective) version
of (1.2). The next lemma gives such crucial version, but before let us introduce some
notations. Let

T {(X%i(% | P(X) € C[X1,..., Xn]and r € INO},

and put g = deg(G) = deg(P) —r € Z, where G = %T% e F.

Moreover, we set deg(0) = —oc.

Lemma 2.7. Leta € R". We assume thatd (a -u,Z) := inf ez |a-u —m| > 0 for
someu € Z". For all G € F, we define formally

! G(k) eZnikﬂ

G(k) e2ﬂik~a
|k|* '

Fo(G;a;s) == Z KE+ )72

kezn

and F1(G;a;s) = Z

kez"

Then forall N € N, all G € F and all i € {0, 1}, there exist positive constants
C; := Ci(G,N,u), B; := Bi(G,N,u) and A; := A;(G,N,u) such that s +
F; (G;a;s) extends holomorphically to the half plane {Re(s) > —N } and satisfies

Fi(G:ia;s) < Ci(1 + |s|)Bi(d(a-u,Z))~ 4.

Remark 2.8. The important point here is that we obtain an explicit bound of
F;(G;a;s)in{Re(s) > —N } which depends on the vector a only through d(a-u, Z),
so depends on u and indirectly on a (in the sequel, @ will vary). In particular, the
constants C; := C;(G, N,u), B = B;(G,N)and A; := A;(G, N) donotdepend on
the vector a but only on u. This is crucial for the proof of (ii) and (iii) in Theorem 2.6.

2.2.1. Proof of Lemma 2.7 fori = 1. Let N € Ny be a fixed integer and set
go :=n + N + 1. We will prove Lemma 2.7 by induction on g = deg(G) € Z.
More precisely, in order to prove the case i = 1, it suffices to show that Lemma 2.7
is true for all G € F with deg(G) < —go.

Let g € Z with g > —go + 1. If Lemma 2.7 is true for all G € J such that
deg(G) < g — 1, then it is also true for all G € JF satisfying deg(G) = g.

Step 1: Checking Lemma 2.7 for deg(G) < —go :=—(n + N + 1).
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Let G(X) = — PX) __ c Fwith deg(G) < —go. Itis easy to see that we

(XZ+-+XZ+1)r/2
have uniformly ins = o + it € Candink € Z™:

|G(k)e?mika) [P (k)|
(|k|? + 1)0/2 - (k)% + 1)(r+o)/2
1
<6 (|k|2 + 1)(r+0—deg(P))/2
1

k)2 + 1)0—dee(@)/2

1
(k)2 + Dteor2”

<

<

It follows that Fy(G;a;s) = Y yczn (IklzGJ(r% e27ika converges absolutely and

defines a holomorphic function in the half plane {o > —N}. Therefore, for any
s € {Re(s) > —N} we have

|F1(G;a;s)| g Z
kezn

1
(|k|2 4 1)(n+1)/2

! 1
P D Tan <o > <q 1.

kez"
Thus, Lemma 2.7 is true when deg(G) < —go.

Step 2: Induction.

Now let g € Z satisfy g > —go + 1 and suppose that Lemma 2.7 is valid for all
G € F with deg(G) < g — 1. Let G € ¥F with deg(G) = g. We will prove that G
also fulfills the conclusions of Lemma 2.7:

There exist P € C[X1,..., X,] of degree d > 0 and r € Ny such that G(X) =

(X2+I-|)—(+)+1)V/2 and g = deg(G) = d —r. Since G (k) < (|k|? + 1)8/? uniformly
—

ink € Z", we deduce that F;(G;a;s) converges absolutely in {o = Re(s) > n+ g}.
Since k + k + u is a bijection from Z" into Z", it follows that for Re(s) > n+ g
we also have

Fi(G;a;s)

_ Z P(k) eZnikﬂ
- (|k|2 + 1)(s+r)/2

kez"
_ Z P(k + u) e27ri(k+u)'a
(|k +u|2 + 1)(s+r)/2

—e P(k + M) 2rwik-a

2riv-a
= e
kEXZ:n (kI + 2k -u + [uf2 + 1)G+D/2

— p2mina Z ﬁ Z 9% P (k) eZm'kﬂ —
a! (k]2 4+ 2k - u + |u|? + 1)s+n/2

aeNt " kezn
laly =0y ++an=d

kezn
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—(s+r)/2
=62niu-a Z ﬂ Z 9% P (k) (1 + 2k -u + |u|2) ’ r/e27n'k~a
Az ol G WP e\ R

Let M :=sup(N +n + g,0) € Ng. We have uniformly in k € Z":

(1 L 2keut |u|2)‘(°"+’)/2 B (—(s + r)/2) 2k -u + [ul?)!
([k1?2+ 1) B J (|k|> + 1)/

M+1
+ Opguf —LELD ‘
(k)% + 1)(M+1)/2

M

Jj=0

Thus for 0 = Re(s) > n + d it follows that
Fi(G:a:s)

—(s+r)/2
— leziu-a u® 8“P(k) (1 + 2k - u + |u|2) o €2m'k~a
| 2 (s+r)/2 2
2l 2 T+ 107 (kP +1)

M N
= - § E: +7)/2 0*P(k)(2k - u + |u|*)’ o
N eznlua ; ( (s )Z - e271’lka (23)
/ 2 (s+r+2/)/2
al=d =0 & J w7 UkPP+1) N/

1
M+1
+ OG.M.u ((1 + [s]) Z (k|2 + 1)(U+M+1—g)/2>'
kezn

Set I := {(ar,j) € N x{0,..., M} | |a|; <d}and I* := 1\ {(0,0)}. Set also
1] . 2yJ .
Gajyu(X) =2 &fgﬁiﬁ,@}*g}}’ € Fforall (o, j) € I*.
Since M > N + n + g, it follows from (2.3) that

" " “@ (s +7)/2
1— 2wiu-a F C e — p2miua u (S
(I—e VF1(G;a;s) = e > _a'( ;

(@, )er="
+ Ry (G:a:u;s),

)Fl (G(a,j);u; o] S)
2.4)

where the map s — Ry (G;a;u;s) is a holomorphic function in the half plane
{o = Re(s) > —N} satisfying Ry (G;a;u;s) <g,nu .
Moreover it is easy to see that for any («, j) € I*,
deg(G(a,j);u) = deg(a"‘P) +Jj—(r+2j)
sd—|ah+j-r+2))=g—|aeh—j=g—1
Relation (2.4) and the induction hypothesis then imply that

(1 — ™% F|(G:a; s) verifies the conclusions of Lemma 2.7. (2.5)

Since |1 — e 4| = 2|sin(zwu - a)| > d(u - a,Z), (2.5) implies that F;(G;a;s)
satisfies the conclusions of Lemma 2.7. This completes the induction and the proof
fori = 1.
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2.2.2. Proof of Lemma 2.7 fori = 0. Let N € N be a fixed integer. Let G(X) =

% € Fand g = deg(G) = d — r where d > 0 is the degree of the
PN

polynomial P. Put M := sup(N + g + n,0) € Ny.

Since P(k) < |k|? for k € Z" \ {0}, it follows that Fo(G;a;s) and Fi(G:a;s)
converge absolutely in the half plane {o = Re(s) > n + g}. Moreover, we have for
s=o0+iteCwitho >n+ g:

G (k) "
Fo(G;a;s) = kEZXnE{O} Pt l)s/zekaa
_yY G (1 R )‘” ? mika
5 (k> + 1572 |k]? +1
_ Z Z( s/Z)(_ )i _ G(k(z - 2ezm'k-a
kezn j=0 (k> + D2/ (2.6)
+ Oum ((1 + [spMH! Z (k% + |1C);((2|2M+2)/2)

kezn
M

Z ( S/z)(—l)jFl(G:a:s +2/)

’ |G (k)|
+ Opm [(1 + |S|)M+1(1 + Z (|k|2 + 1)(0+2M+2)/2):|.

kez"

In addition we have uniformly ins = o + it € C witho > —N,

5 (6] Y k#

2 (c+2M+2)/2 2 (=N+2M+2)/2

= (kP + D@ = (kP +1D)
/

1
<<Z|k|T+1<+OO.

S0 (2.6) and Lemma 2.7 for i = 1 imply that Lemma 2.7 is also true for i = 0. This
completes the proof of Lemma 2.7.

2.2.3. Proof of item (i.2) of Theorem 2.6. Since a € R" \ Z”, there exists
ip € {1,...,n} such that a;, ¢ Z. In particular d(a - e;,,Z) = d(ai,.Z) > 0.
Therefore, a satisfies the assumption of Lemma 2.7 with u = e;,. Thus, for all
N € N, s = fa(s) = Fo(P;a;s) has a holomorphic continuation to the half plane
{Re(s) > —N}. It follows, by letting N — oo, that s — f,(s) has a holomorphic
continuation to the whole complex plane C.
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2.2.4. Proof of item (iii) of Theorem 2.6. Let ® € M,(R), (¢;); € {—1,0,1}¢
and b € S(Z" x Z"). We assume that ® is a diophantine matrix. Set Z :=
{l = (Ii,....ly) € (Z")9 | Y ;&l; = 0} and P € C[Xy,...,X,] of degree
d > 0.

It is easy to see that foro > n + d:

/ k . ’
> ol Y T < S OIS g

le(Z™)9\Z kezn le(Z™)4\Z kez"
<po Y, ()] < +o0.

le(ZM)a\2
So
' PK) prikoy, o1,
go() = Y bD)fox,en(s)= Y. b)Y, Wezﬂ’k@zfal’l
le(Zzm)a\z le(Zm)\z kez"

converges absolutely in the half plane {Re(s) > n + d}.
Moreover with the notations of Lemma 2.7, we have forall s = o + it € C with
o>n+d:

go) =Y b fox,en ()= Y, bOF(P;0OY, &lis). (27

le(@m)a\2 le(@m)a\2
But © is diophantine, so there exist u € Z" and §, ¢ > 0 such
lg-"Ou—m|>c(1+|g|)™® forallg € Z"\ {0} and for all m € Z.
We deduce that for all [ € (Z™)? \ Z,
(O eili) - u—m| = |(X; &ili)-"Ou—m| = c(1+ 3, &:li )70 = c(1+[1])7°.
It follows that there exist u € Z", 5 > 0 and ¢ > 0 such that
d(®) ;&li) - u;Z) > c(1+ [I)~% foralll e (Z")7\ Z. (2.8)

Therefore, for any | € (Z")? \ Z, the vector a = ® ) _; &;1; verifies the assumption
of Lemma 2.7 with the same u. Moreover § and c in (2.8) are also independent on .

We fix now N € N. Lemma 2.7 implies that there exist positive constants
Co := Co(P,N,u), By := B;(P,N,u) and Ay := Ao(P, N,u) such that for all
[ € (Z")1\Z,themaps — Fo(P;0® ), &;l;;s) extends holomorphically to the half
plane {Re(s) > —N} satisfying

Fo(P;OY; 6iliis) < Co(1 + |s)Bod(®Y; &ily) - u; Z)~4o.
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Together with (2.8) this implies that for any compact set K included in the half
plane {Re(s) > —N}, there exist two constants C := C(P, N,c,8,u, K) and D :=
D(P,N,c,8,u) (independent of [ € (Z™)4 \ Z) such that

Fo(P;©Y . &ili;s) < C(1+|I))P foralls € K and foralll € (Z™")7\ Z. (2.9)

It follows that s > ¢ (znya\g (1) Fo(P; ®);&;l;; 5) has a holomorphic continu-
ation to the half plane {Re(s) > —N}.

This and (2.7) imply that s = go(s) = D _jeznya\z b(1) fo y; ;1 (s) has a holo-
morphic continuation to {Re(s) > —N}. Since N is an arbitrary integer, by letting
N — o0, it follows that s — go(s) has a holomorphic continuation to the whole
complex plane C, which completes the proof of the theorem. O

Remark 2.9. From equation (2.5) we see that a Diophantine condition is sufficient
to get Lemma 2.7. Our Diophantine condition appears also (in equivalent form) in
Connes [6], Prop. 49 (see Remark 4.2). The following heuristic argument shows that
our condition seems to be necessary in order to get the result of Theorem 2.6:

For simplicity we assume n = 1 (but the argument extends easily to any n). Let
0 € R\ Q. We know (see this reflection formula in [15], p. 6) that for any / € Z \ {0},

, eZnile s—1/2

N T
)

gor(s) =) T'($)hor(1 - s)

keZ

where hg;(s) := Z;cez m. So, for any (a;) € 8(Z), the existence of a mero-

morphic continuation of go(s) := Z;el a; ge;(s) is equivalent to the existence of a
meromorphic continuation of

/ ’ ! 1
ho(s) = Z arhgi(s) = Z ap Z 16l + k[
keZ

leZ leZ

So, for at least one 09 € R, we must have % = O(1) uniformly in k,[ € Z*.

It follows that for any (a;) € $(Z), |61 + k| > |a;|"/°° uniformly in k,[ € Z*.
Therefore, our Diophantine condition seems to be necessary.

2.2.5. Commutation between sum and residue. Let p € N. Recall that $((Z")?)
is the set of the Schwartz sequences on (Z")?. In other words, b € 8((Z")?) if and
only if (1 + |I1]|* + ... |l,|*)"|b(l1,...,1,)|* is bounded on (Z")? for all r € No.
We note that if O € R[Xy,..., X,p] is a polynomial, (a;) € §(Z")?, b € 8(Z")
and ¢ is a real-valued function, then / := ([1,...,[,) El(l)b(—fp)Q(l)ei¢(l) is a
Schwartz sequence on (Z")?, where

A

d(l) = al(ll)...ap(lp), li = ll—|—+ll
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In the following, we will use several times the fact that for any (k,[/) € (Z")?
such that k # 0 and k # —I, we have

11 2kl |IP .10,
k+112 k12 |kPlk+ 12 '

Lemma 2.10. There exists a polynomial P € R[X1,..., Xp] of degree 4p and with
positive coefficients such that for any k € Z" and | := (I1,...,lp) € (Z")? such

thatk # 0 and k # —l:- forall 1 <i < p, the following holds:
1 1
= ~— =<
e+ 02 k+ 1,2~ |kPP?

P(lll. - D).

Proof. Letusfixi suchthatl <i < p. Using two times (2.10), the Cauchy—Schwarz
inequality and the fact that |k + ;|> > 1, we get

LU Ak G @K+ 1P

k+ 52~ IkI? K[+ k|4|k + I; 2

1 2 . 1 4\~

— i+ 5+ o I 1P+ 1.
) |+(|k|4+|k|2)| | +|k|3| 2+ |k|4| |

Since |k| = 1,and |/;|/ < |l;|*if 1 < j < 4, we find

IA

IA

4
1 5 ~ 5 5
—— <Y i <=0+ 4H < ——=(1+4 l;
|k+li|z_k§ _|k|(+||)_|k(+(z| )).
1 5P 2 4\ p
= — =< 1+ 4 TH .
k+ 02k + 0,2 Iklzl’( (; ’))
Taking P(Xq,...,Xp) :=57(1 + 4(2;’:1 X;)*)? now gives the result. O

Lemma2.11. Letb € 8((Z")?), p € N. Let P; € R[X1, ..., X,] be a homogeneous
polynomial function of degree j, andletk € Z",1 := (I1,...,1l,) € (Z")?, r € Ny.
Moreover, let ¢ be a real-valued function on Z"™ x (Z"™)P and put

b(1) P; (k)e'#®D
k|s*7 1k + 1112k + 1,2

with h(s,k,l) := 0 if, for k # 0, one of the denominators is zero.
Then for all s € C such that Re(s) > n + j —r — 2p, the series

HGS) =)0 campn M6 K1)

h(s,k,1) =
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is absolutely summable. In particular,

'S hskD= Y Y h(skD).

kez" le(zn)P le(Zn)P kezn

Proof. Lets = o0 4+ it € Csuchthato >n+ j —r —2p. By Lemma 2.10 we
obtain, for k # 0, that

|h(s. k. D] < 1b() P (k)| [k|7" =722 P(1),

where P(l) := P(|l1],....|lp|) and P is a polynomial of degree 4p with positive
coefficients. Thus, |h(s,k,[)| < F(I)G(k) where F(I) := |b(l)|P(l) and G (k) :=
|Pj(k)||k|~"=°=2P. That }_;czny» F(I) is summable follows from the fact that
b € 8((Z™)?). The summability of > ;.7 G(k) is a consequence of the fact that
0 >n+ j —r —2p. Finally, as a product of two summable series, » ; ; F(1)G (k)
is a summable series, which proves that } _; ;h(s, k, 1) is also absolutely summable.

O

Definition 2.12. Let f be a function on D x (Z")? where D is an open neighborhood
of 0 in C. We say that f satisfies (H1) if and only if there exists p > 0 such that

(i) for any /, s = f(s,[) extends as a holomorphic function in U,, where U, is
the open disk of center 0 and radius p;

(i) the series D ;cznyp |H(+,1)|o0,p is summable, where [|H(-,l)|cc,p =
supyey, | H(s. D).

We say that f satisfies (H2) if and only if there exists p > 0 such that

(i) for any /, s — f(s,/) extends as a holomorphic function to U, — {0};

(ii) for any § such that 0 < & < p, the series D ;e znyp |H(-,)]o0,5.0 i
summable, where | H(+,!)[l00,8,0 := SUPs<|s|<p [H (s, ])].

Remark 2.13. Note that (H1) implies (H2). Moreover, if f satisfies (H1) (resp. (H2))
for p > 0, then it is straightforward to check that f: s > ;¢ zn)» f(s,1) extends
as an holomorphic function to U, (resp. to U, \ {0}).

Corollary 2.14. With the same notations as in Lemma 2.11, suppose thatr +2p—j >
n. Then the function H(s,l) := Y jczn h(s, k, 1) satisfies (H1).

Proof. (i) Fix p > Osuchthatp <r +2p—j —n. Sincer +2p — j > n, Uy is
inside the half plane of absolute convergence of the series defined by H (s, /). Thus,
s +— H(s, ) is holomorphic in U,,.
(ii) Since ||k|_s| < |k|? forall s € U, and k € Z" \ {0}, we get as in the above
proof
|h(s, k, )| < [bA) P (k)| k|7 P22 P(IL], . L))
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Since p < r +2p — j —n, the series Y jczn | P; (k)||k|7"P727 is summable.
Thus, |H(+,1)|lco,p < KF(I) where K := Y| P;(k)||k|7"TP72P < co. We
have already seen that the series ) _; F (/) is summable, so the result follows. O

We note that if f and g both satisfy (H1) (or (H2)), then so does f + g. In the
following we will use the equivalence relation

f ~ g < [ — g satisfies (H1).

Lemma 2.15. Let f and g be two functions on D x (Z"™)P, where D is an open
neighborhood of 0, in C such that f ~ g and g satisfies (H2). Then

Res > f(s.)= D Resgls.).

le@nyr le@n)r

Proof. Since f ~ g, f satisfies (H2) for a certain p > 0. Fix n such that0 < n < p
and define C,, as the circle of center 0 and radius 5. Then

1
Resg(s,l):Resf(s,l):—_¢ f(s,l)ds:/u(t,l)dt,
s=0 s=0 27 Cy I

where I = [0, 2] and u(z,1) := 5=ne'’ f(ne'’, ). The fact that f satisfies (H2) en-
tails that the series ) ;¢ znyr [|.f(+,1)]loo,c,, is summable. Thus, since [[u(-,/)|loc =
%n”f( ;D loo,c,» the series Y ;¢ zmyp [u(+, 1) |00 is summable, and consequently
fI ZlE(Z")p u([, l)d[ = Zle(zn)p fl u(t, l)d[, Wthh giVCS the result. D

2.3. Computation of residues of zeta functions. Since we will have to compute
residues of series, let us introduce the following notation.

Definition 2.16.

Ls)= Y n7,
n=1

Za(s) = Y kI,

kez"

’ kPl . DPn
;Plsn-spn (S) = Z !

1 for p; € N,
kezn

|k|*
where (s) is the Riemann zeta function (see [25] or [14]).

By the symmetry k — —k, itis clear that the functions ¢, ... », all vanish for odd
values of p;.
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Let us now compute 50,...,0,1f,0...,0,1j,0...,0(S) in terms of Z,(s):

Since {o,....0,1;,0...,0,1; 0....,0(8) = A;i(s)d;;, exchanging the components k; and k;
we get

S
fo,...,o,l,-,o...,o,lj,0...,0(5) = %Zn(s -2).

Similarly,

1 k3k3 1
= Zn 4 ,
Z |k|S+8 _ 1) (S + ) Z |k|S+8

but it is difficult to write explicitly p,,. p,(s) in terms of Z,(s — 4) and other
Z,(s —m) when at least four indices p; are non-zero.

When all p; are even, {p,, .. p,(s) is a non-zero series of fractions 1|> k(|kv) where P
is a homogeneous polynomial of degree p; + -+ + p,. Theorem 2.1 now gives us
the following result.

Proposition 2.17. The function p, ... p, has a meromorphic extension to the whole
plane with a unique pole at n + py1 + -+ + pyn. This pole is simple and the residue
at this pole is

(2oL (et

R = 2.11
s=n+ple—§-“+l7n é‘Pl o (S) F(n+p1 42‘”‘+Pn ) ( )
when all p; are even or this residue is zero otherwise.
In particular, forn = 2,
! kikj
5_60 W = 8,‘j7’[, (212)
kez?
and for n = 4,
! kikj z2
Bfgk k|56 =8ij %
€
(2.13)
! kl‘kjklkm 2
Res Tk (8i81m + 8i18im + 8imbj1) 15 -
kez*

Proof. Equation (2.11) follows from Theorem 2.1,
R = kP kP dS(k),
S=n+ple'E“‘+pn é‘l’lym,Pn (S) /];esn—l 1 n ( )

and standard formulae (see for instance [32], VIII, 1; 22). Equation (2.12) is a
straightforward consequence of equation (2.11). Equation (2.13) can be checked for
thecasesi = j #Zl =mandi = j =1 =m. O
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Note that Z,(s) is an Epstein zeta function associated to the quadratic form
q(x) :=x? + --- + x2, 50 Z, satisfies the following functional equation

Zn(s) = 7572T ()2 = s/2)T(s/2) " Zu(n — 5).

Since 7572 (n/2 — s/2)T'(s/2)~! = 0 for any negative even integer n and Z,,(s)
is meromorphic on C with only one pole at s = n with residue 277/2T (n/2)~!

according to the previous proposition, it follows that Z,(0) = —1. We have proved
that
Res Z, (s +n) = 2720 (n/2)7, (2.14)
s=
Z,(0) = —1. (2.15)

2.4. Meromorphic continuation of a class of zeta functions. Letn,g € N,gq > 2,
and p = (p1,...,pg—1) € D\lg_l. Set I :={i | p; # 0} and assume that / # @ and

={a = ()ier | = (&i,1,...,0 p;) € N foralli € [} = 1_[ NG
iel
We will use in the sequel also the following notations.
For x = (x1,...,x;) € R? recall that |x|; = |x{| + --- + |x;| and |x| =
VAL
forall @ = (a;)ier €I = [;e; N we have

ey = Sl = 3 testont () =T1(L7) =TT (1))

iel iel j=1 iel iel j=1 7

2.4.1. A family of polynomials. In this paragraph we define a family of polynomials
which plays an important role later. Consider first the variables:

— for X1,..., X, weset X = (X1,...,Xpn);
— forany i = 1,...,2q, we regard the variables ¥; 1,...,Y;, and put ¥; :=
(Yin.....Yip)and Y 1= (Y1,...,Y2g);
— forY = (Y1,...,Y2q) wesetf/} =Y+ +Y; + Y41+ -+ Yyq  for
any l <j <gq.
We define for all @ = (;)ies € I = [];¢; N§' the polynomial
Di

Pa(X.Y) = [T[T@X.7) + 7). 2.16)

iel j=1

It is clear that Py (X,Y) € Z[X, Y], degy Py < ||1 and degy P, < 2|c|;.
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Let us fix a polynomial Q € R[X1,..., X,] and write d := deg Q. For @ € J we
want to expand Py (X, Y)Q(X) in homogeneous polynomials in X and Y. Define

L(a) :={B € NGV | |B; —dp < 2|a}y and dg < ||y + d}
where dg := )" Bi, and set

1/2)13 (X.Y)0(X) = Y capXPy?
ald, = o,B
( ¢ BeL(@)

where cq g € R, X2 := XP' xPrand 8 .= y[irtyfeetvn By definition,

X% is a homogeneous polynomial of degree in X equals to dg. Write

My p(Y):=capY?.

2.4.2. Residues of a class of zeta functions. In this section we prove the follow-
ing result that will be used in Proposition 5.4 for the computation of the spectrum
dimension of the noncommutative torus.

Theorem 2.18. (i) Let %@ be a diophantine matrix, and a € $((Z")?9). Then

q—1
s f)i= > @y [T+ = Qe kO X
le[(Zzn)q]? kez" i=1
has a meromorphic continuation to the whole complex plane C with at most simple
possible poles at the points s = n + d + | p|1 — m where m € Ny.
(i) Let m € No and set 1(m) := {(a, B) € Ix NP4V | B ¢ L(a) and m =
2la|y —dg + d}. Then I(m) is a finite set and s = n +d + |p|1 —m is a pole of f
if and only if

C(fmy:=>"a Y Ma,,;(z)/ uP dSu) # 0,
IeZ  (a.B)el(m) uesn—!

with Z = {l | Y11, = 0} and the convention ¥ 5 = 0. In that case s =

n+d + |pli —m is a simple pole of residue Res f(s) = C(f, m).
s=n+d+|pli—m

In order to prove the theorem above we need the following result.

Lemma 2.19. Forall N € N we have

qg—1
l_[|k+l~i|pf = Z (1/2)M—{—ON(M“”“_(NH)/Z)

2|ali—|ph
! \a/lk
i=1 a=(a;)ics €[lics{0,....N}7i k]

uniformly ink € Z" and | € (Z™)*? such that |k| > U(l) := 36(21.213#(] |li|)4.
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Proof. Fori = 1,...,q — 1, we have uniformly in k € Z" and | € (Z")?? with

k| > UQ), S
20k ) + L] _ JUD 1

. 2.17

KE S 2K 2 17

In that case,

~ ~ - 7 72y 1/2
ke + 5| = (k> + 20k, ) + 11 2) % = |k|(1 + M)

kP2
(2L
= 3 (7)) e ik

u=0

where . _ _
Pk, 1) := (2(k, 1) + |1:]*)"
foralli = 1,...,q_— 1 and for all u € N, and Pé(k,l) = 1. .
In particular P (k,l) € Z[k,l], deg, P, < u and deg; P} < 2u. Inequality
(2.17) implies that foralli = 1,...,¢g — 1 and forallu € N,

P |Pik.D)| < ]k

uniformly in k € Z" and [ € (Z™)?9 such that |k| > U(]).
Let N € N. We deduce from the previous that for any k € Z” and [ € (Z")*4
with |k| > U(l) and foralli = 1,...,q — 1, we have

k + 1| = i(l/z) Wlu Pl(k, 1)+O(Z |k||(1/2)|(2\/|?) )

u=0 u>N

N
1/2 1 1

It follows that for any N € N, we have uniformly in k € Z" and [ € (Z")?? with
|k| > U(l) and foralli € I,

_ 1/2 1 . 1
| Pi — [ — o -
|k+lz| = E ' (O{i)|k|2|°‘i1_pi Paf(k’l)+ON(|k|(N+1)/2—Pi)’

where Péi(k,l) = ;’;1 PO’;l_j(k,l) for all ; = (j1.....0p;) €{0,..., N}Pi

and
- 1/2 1
| Pi — N
l_[|k+ll| - Z (a )|k|2|a|l_P|lPa(k’l)

iel a=(0{l‘)€n,’€]{0 ,,,,, N}pi

0 1
+ N<|k|(N+1)/2—|p|1>
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with Py (k1) = [T;e; Po; (k. 1) = [Ties TT7Z; Pa;.

(k, D). O

J

Proof of Theorem 2.18. (i) All n, ¢, p = (p1....,pg—1) and a@ € 8 ((Z")*?) are
fixed as above and we define formally for any [ € (Z")?4

qg—1
Fs)= Y [Tk +E70uoe b= @is
kez" i=1
Thus, still formally,
&)= > aF(s). (2.19)
le(Zn)24

It is clear that F(I,s) converges absolutely in the half plane {0 = Re(s) >n +d +
|pl1} where d = deg Q.

Let N € N. Lemma 2.19 implies that for any / € (Z")?9 and for s € C such that
o>n+|ph+d,

/ q_l ~ .
Fosy= Y [lk+EI7 Qe OXils ||

lkI<UQ@) i=1

o : ik®Y9];
g (/) 2 mpa(k’l)Q(k)ek®lej

lk|>U()

where the map s +— Gy(l,s) is a holomorphic function in the half plane
Dy ={o>n+d+|ph— %} and verifies in it the bound Gy ([, 5) <y, 1
uniformly in /.

It follows that

F(l,s) = > Hy(l,s) + Ry(l, ), (2.20)
a=(a;)ics €[licr{0,....,N}?i
where

Holl.s):= Y (1/2);Pa(k,z)g(k)eik'®2i’ l,

s+2|a|;—
S\ |k |s+2leli=lph

i q_l ~ .
Ru():= 3 [Ik+0lP Que)e™ O%ih k|
lk|<U(@) i=1

/ Pa k’l ik- q7.
. Z Z (1/2)|k|s+2(T)|IHQ(k)elk®Z‘l’ +Gn(l,s).

k|<U(l) oa=(@jpjere o
[jer{0....N}Pi
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In particular there exists A(N) > 0 such that s — Ry (I, s) extends holomorphically
to the half plane Dy and satisfies Ry (I, 5) <n.o 1 + |[|4N) uniformly in /.
Write formally

ho(s) ==Y dHa(l.s).
l
Equation (2.20) and Ry (I, s) <n.o 1+ |[|AN) imply that

[(s) ~n > ha(s), (2.21)

a=(;)ies €[l;jc{0,....N}Pi

where ~y means modulo a holomorphic function in Dy .

Recall the decomposition (1‘{[2) Py(k,1)Q(k) =>_ peL(a) Map(l YkP . Similarly
we decompose hq(s) = ZﬂeL(a) he,p(s). Theorem 2.6 now implies that for all
o = ()ier € [ljes{0,....N}?i and B € L(a)

— the map s > hgy g(s) has a meromorphic continuation to the whole complex
plane C with only one simple possible pole at s = n + |p[; — 2|a|; + dg,

— the residue at this point is equal to

hap(s) =Y aMyp(l) uPdS(u) (2.22)

Res
s=n+|pl1—2|al1+dg ez, uesSn—1

where Z := {l € (Z)")?4 | Y.?1; = 0}. If the right hand side is zero, hq g(s) is
holomorphic in C.

By (2.21), we deduce therefore that f(s) has a meromorphic continuation to the
half plane D y, with only simple possible polesinthe set {n + |p|1 +k | —2N|p|1 <
k < d}. Taking now N — oo yields the result.

(ii) Let m € Ng and set I(m) = {(a,B) € I x IN(()qurl)" | B € L(@)andm =
2la|y —dp + d}. If (a, B) € I(m), then |a|; < mand |B|; < 3m +d, so I(m) is
finite. With N chosen such that 2N |p|; + d > m, we get by (2.21) and (2.22)

RS O =Ya Y Mup®) [ wbdse = C(fm)
s=ntd+pl—m ez (a.B)el(m) uesnl

with the convention ) ' = 0. Thus, n + d + |p|; —m is a pole of f if and only if
C(f,m) #0. O

3. Noncommutative integration on a simple spectral triple

In this section we revisit the notion of noncommutative integral pioneered by Alain
Connes, paying particular attention to the reality (Tomita—Takesaki) operator J and
to kernels of perturbed Dirac operators by symmetrized 1-forms.
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3.1. Kernel dimension. We will have to compare here the kernels of D and Dy
which are both finite dimensional:

Lemma 3.1. Let (A, H, D) be a spectral triple with a reality operator J and chirality
1. If A € QL is a 1-form, then the fluctuated Dirac operator

Dy:=D+ A+ eJAJ !

(where DJ = e€J D, € = %1)isanoperatorwith compact resolvent, and in particular
its kernel Ker D 4 is a finite dimensional space. This space is invariant by J and y.

Proof. Let T be a bounded operator and let z, z’ be in the resolvent of D + T and D,
respectively. Then

D+T -2y '=D-) I =T +2-2)(D+T-2)"1].

Since (D — z’)~! is compact by hypothesis and since the term in bracket is bounded,

D + T has a compact resolvent. Applying thisto 7 = A + eJAJ !, Dy has a finite
dimensional kernel (see for instance [27], Theorem 6.29).

Since according to the dimension, J 2 = 41, J commutes or anticommutes with

X, x commutes with the elements in the algebra A and Dy = —yD (see [9] or [23],

p. 405), we obtain that Dgy = —xDy and DgJ = £J D4, which gives the result.

O

3.2. Pseudodifferential operators. Let (A, D, ) be a given real regular spectral
triple of dimension n2. Let Py be the projection on Ker D and let P4 be the projection
on Ker Dy. Write D := D + Py, Dg := D4 + P4. The maps Py and P4 are thus
finite-rank selfadjoint bounded operators. We remark that D and D4 are selfadjoint
invertible operators with compact inverses.

Remark 3.2. Since we only need to compute the residues and the value at 0 of the
¢{p. {p, functions, it is not necessary to define the operators D! or D! and the
associated zeta functions. However, we note that all the work presented here could be
done using the process of Higson in [26] which proves that we can add any smoothing
operator to D or Dy such that the result is invertible without changing anything in
the computation of residues.

Define for any o € R,

OP° :={T | t — F;(T) € C®(R, B(H))},
OP* :={T | T|D|™® € OP%},
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where F,(T) := e!!I1PITe=itIPl = oitIDITe=itIDl gince | D| = |D| + Py. Define

§(T):=[ID|.T],
V(T) := [D?,T],
os(T) :== |D|*T|D|™%, seC.

It has been shown in [13] that OP° = ﬂp>0 Dom(87). In particular, OP? is a
subalgebra of B(H) (while elements of OP* are not necessarily bounded for & > 0)
and A € OP°, JAJ™! € OP° [D,A] € OP°. Note that P, € OP~* and
§(0P%) c OP°.

For any ¢ > 0, D! and |D|’ are in OP’, and for any « € R, D® and |D|% are in
OP%. By hypothesis, |D|™ € L1:%°)(K), so OP™® C LY(K) for any o > n.

Lemma 3.3 ([13]). (i) Forany T € OP° and s € C, o5(T) € OP°.
(ii) For any o, B € R, orP*oPP c op*tE,
(iii) If & < B, OP* < OPP.
(iv) For any o, §(OP*) C OP*“.
(v) For any a and T € OP*, V(T) € OP**!,

Proof. See the appendix. O

Remark 3.4. Any operator in OP%, o € R, extends as a continuous linear operator
from Dom | D|**! to Dom | D |, where the Dom | D |* spaces have their natural norms;
see [13], [26].

We now introduce a definition of pseudodifferential operators in a slightly different
way than in [13], [8], [26], which in particular pays attention to the reality operator
J and the kernel of D and allows D and |D|~! to be pseudodifferential operators. It
is more in the spirit of [11].

Definition 3.5. Let us define D(A) as the polynomial algebra generated by A,
JAJ™!, D and |D|. A pseudodifferential operator is an operator 7" so that there
is an element d € Z such that for any N € N, there exist p € Ng, P € D(A) and
R € OP7" (p, P and R may depend on N) with PD 27 ¢ OP? and

T =PD*? +R.
Define W(A) as the set of pseudodifferential operators and W(A)¥ := W(A) N OP*.

Note that if A is a 1-form, then A and JAJ ! are in D(A) and, moreover, it
follows that D(A) C UpelNo OP?. Since |D| € D(A) by construction and Py is a
pseudodifferential operator, |D|? is a pseudodifferential operator (in OP?) for any
p € Z. We also remark that D(A) € W(A) € ez OP*.
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Lemma 3.6 ([13], [8]). The set of all pseudodifferential operators V(A) is an algebra.
Moreover, if T € W(A) and T € W(A)Y, then TT' € W(A)4+4’,

Proof. See the appendix. O

Due to the little difference of behavior between scalar and nonscalar pseudodif-
ferential operators (i.e., when coefficients like [D, a], a € A, appear in P of Defini-
tion 3.5), it is convenient to introduce the following notation.

Definition 3.7. Let D;(A) be the algebra generated by A, JAJ ! and D, and let
W, (A) be the set of pseudodifferential operators constructed as before, with D (A)
instead of D(A). Note that ¥; (A) is subalgebra of W(A).

Observe that W, (A) does not necessarily contain operators such as |D|* where
k € Z is odd. This algebra is similar to the one defined in [11].

3.3. Zeta functions and dimension spectrum. For any operator B and if X is
either D or D4, we define

L (s) := Te(B|X|™),
tx(s) := Tr(|X|7).

The dimension spectrum Sd(A, H, D) of a spectral triple has been defined in [8],
[13]. It is extended here to pay attention to the operator J and to our definition of
pseudodifferential operator.

Definition 3.8. The spectrum dimension of the spectral triple is the subset Sd(A, 3, D)
of all poles of the functions ¢ 5 = s + Tr(P|D|™) where P is any pseudodiffer-
ential operator in OP°. The spectral triple (A, 7, D) is simple when these poles are
all simple.

Remark 3.9. If Sp(A, H, D) denotes the set of all poles of the functions s +
Tr(P|D|™*), where P is any pseudodifferential operator, then Sd(A,H,D) C
Sp(A, H, D).

If Sp(A,H,D) = Z, then SA(A, H,D) = {n —k | k € No}: indeed, if P is a
pseudodifferential operator in OP?, and ¢ € N is such that ¢ > n, then P|D|™* is in
OP~Re() 50 is trace-class for s in a neighborhood of ¢; hence ¢ cannot be a pole of
s +— Tr(P|D|~*).

Remark 3.10. The set Sp(A, H, D) is also the set of all poles of functions s
Tr(B|D|™*2P) where p € Ng and B € D(A).
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3.4. The noncommutative integral f. We already defined the one parameter group
o,(T) = |D|*T|D|7%,z € C.
Introducing the notation (recall that V(T') = [D?, T']) for an operator T,

e(T) := V(T)D 2,
we get from [11], (2.44), the following expansion for T € OP?:

N
0z(T) ~ Y g(z.r)e’(T) mod OP~N =114, (3.1)
r=0

where g(z,r) = l(i) . (% —(r—1)= (2/2) with the convention g(z,0) := 1.

rt\2 r
We define the noncommutative integral by

][ T :=Reslh(s) = ResTr(T|D|™).
s=0 s=0

Proposition 3.11 ([13]). If the spectral triple is simple, then § is a trace on W(A).

Proof. See the appendix. O

4. Residues of {p , for a spectral triple with simple dimension spectrum

We fix a regular spectral triple (A, H, D) of dimension n and a selfadjoint 1-form A.
Recall that

Dy:=D+ A,
Dy :=Dy + Py,

where A := A + ¢JAJ ! and Py is the projection on Ker Dy. Observe that A €
D(A) N OP® and Dy € D(A) N OP.
Write
Vhi==fh-—fﬁ.

As the following lemma shows, V4 is a smoothing operator:

Lemma 4.1. (i) (;; Dom(D)* € (M, Dom |D[*.
(ii) Ker D4 C (> Dom |DI|k.
(iii) For any a, B € R, |D|P P4|D|* is bounded.
(iv) P4 € OP~.
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Proof. (i) For any p € N let us define R, := (D4)? — D?, so R, € OPP~! and
R,(Dom [D|?) € Dom |D| (see Remark 3.4).
Fix k € N, k > 2. Since Dom D4 = Dom D = Dom |D|, we have

Dom(Dy)¥ = {¢ € Dom|D| | (D’ + R;j)¢ € Dom |D|forall1 < j <k —1}.

Let ¢ € Dom(D4)¥. We prove by recurrence that ¢ € Dom |D|/+! for any j €
{1,...,k —1}. We have ¢ € Dom |D| and (D + R;)¢ € Dom |D|. Thus, since
Ri¢ € Dom |D], it follows that D¢ € Dom | D|, which proves that ¢ € Dom |D|?.
Hence the case j = 1 is done.

Suppose now that ¢ € Dom |D|/*! fora j € {1,...,k —2}. Since (D/*! +
R;j4+1)¢ € Dom |D|, and R;+1¢ € Dom|D|, we get D/*1¢ € Dom|D|, which
proves that ¢ € Dom |D|/+2.

Finally, if we set j = k — 1, we get ¢ € Dom | D|¥, so Dom(Dy4)* € Dom |D|*.

(ii) follows from Ker Dy C (>4 Dom(D4)* and (i).

(iii) Let us first check that | D|* P4 is bounded. We define Dy as the operator with
domain Dom Dy = Im P4 NDom |D|* and such that Do¢p = |D|*¢. Since Dom D,
is finite dimensional, D extends to a bounded operator on J with finite rank. We
have

sup  [[[DI*Pagll = sup [IID|*@] = [ Dol < oo,

@€Dom | D | Py @€Dom Dy
lloll<1 llell<1

so | D|® P4 is bounded. Note that by (ii), Dom Dy = Im P4 and Dom |D|* P4 = H.
We now show that P4|D|% is bounded: Let ¢ € Dom P4|D|* = Dom |D|*. By (ii),
we have Im P4 € Dom |D|%, so we get

IPaIDI*¢ll = sup [(y.[D|*¢)| = sup [{|D|*V. )|

YeEIm Py YEIm Py
llwli=<1 i<l

=< sup [[IDI*¥ gl = [ DolllI#ll.
YEIm Py
lwil<1

(iv) For any k € Ng and ¢ € R, 8¥(P4)|D|" is a linear combination of terms of
the form | D | P4| D|%, so the result follows from (iii). O

Remark 4.2. We will see later in the noncommutative torus example how important
the difference between Dy and D + A4 is. In p~articu1ar, the inclusion Ker D C
Ker D + A is not satisfied since A, in contrast to A, does not preserve Ker D.

The coefficient of the nonconstant term A (k > 0) in the expansion (1.5) of the
spectral action S(Dy4, ®, A) is equal to the residue of {p , (s) at k. We will see in this
section how we can compute these residues in terms of the noncommutative integral
of certain operators.
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Define for any operator 7', p € N, s € C,

Kp(T.s) := (=s/2)? / 0—st, (T) ... 0—g1, (T) dt

0<t) <-<tp<l1

with dt 1= dt, ...dt,.
Note that if 7 € OP*, then 0,(T') € OP* for z € C and K, (T, s) € OP*?.
Let us define

X :=D3—D? = AD 4+ DA + A2,
Xy =X + Vy;
then X € D;(A) N OP! and by Lemma 4.1,

Xy ~ X mod OP~. .1

We will use
Y := log(D3) — log(D?),

which makes sense since D7 = D3 + Py is invertible for any A.
By definition of Xy, we see that

Y = log(D? + Xy) —log(D?).

Lemma 4.3 ([11]). (i) The map Y is a pseudodifferential operator in OP~! with the
following expansion for any N € N:
N N-p (_1)|k|1+p+1

VEr (X VEr=1 (. X VRI(X). . L)) D720k +P)
ki + p

mod OP~N1,
(ii) Forany N € N and s € C we have

N
DAl ~ D™ + Y Kp(Y.s)|D|™* mod OP~N~17R), 4.2)
p=1

Proof. (i) We follow [11], Lemma 2.2. By functional calculus, ¥ = fooo I(A)dA
where

N
10) ~ Y (=P (D2 + 1) Xy)?(D? + 1) mod 0PN 3,
p=1
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By (4.1), (D? + )71 Xy)? ~ ((D? + 1)"1X)? mod OP~* and we get

N
I ~ Y (=DPP (D2 + )7 X)7(D? + 1) mod 0PV 2,
p=1
We set Ap(X) := (D> +A)7'X)?(D*+ 1) "' and L := (D> 4 A)~' € OP™> for
a fixed A. Since [D? + A, X] ~ V(X) mod OP~%, a recurrence proves that if 7" is
an operator in OP”, then for ¢ € Ny,

q
Al(T) = LTL ~ Z(_l)kvk(T)Lk-i-Z mod OPr_q_S,

k=0
With 4,(X) = LXA,_1(X) another recurrence gives for any g € No,

q
AP(X)N Z (—1)‘kllvkp(Xvkp_l(...XVkI(X)_'_))lehJ"P"'l

mod OP~4P~3 which implies that

N N—p

I1(A) ~ Z(_I)P-H Z (_l)lkllvkp(Xvkp—]('..Xvk] (X)...))L‘kll“'l"*'l
p=1 k1yeens kp=0

mod OP~V 73 With [7°(D? + 2)~Uki+rtD g = oL p=20KI+r) we get the

result provided we control the remainders. Such a control is given in [11], (2.27).
(ii) We have |Dg|™* = eB~(/2Y e=B|D|=5 where B := (—s/2)log(D?). Fol-
lowing [11], Theorem 2.4, we obtain that

o0
DA™ =D + ) Kp(Y.5)|D|™* (4.3)
p=1

and each K,(Y,s) isin OP™?. O
Corollary 4.4. Forany p € Nandry,...,r, € Ng we have "' (Y)...e7(Y) €
Wy (A).

Proof. Ifforany g € Nand k = (kq,...,kg) € NE,

(_1)\k|1 +g+1

g — Ve (X VR (L XVRL(X) L),

rkx) =

then FZI‘(X) € OP*i+4 Forany N € N,

N N—q
Y ~> > Thx)p 2+t mod op~N 1, (4.4)
q=1ky,....kg=0
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Note that the Fé‘ (X) are in D1(A), which in view of (4.4) shows that Y and thus
e"(Y) = V" (Y)D™2" are also in ¥; (A). O

We remark, as in [10], that the fluctuations leave invariant the first term of the
spectral action (1.5). This is a generalization of the fact that in the commutative
case, the noncommutative integral depends only on the principal symbol of the Dirac
operator D and this symbol is stable by adding a gauge potential like in D + A. Note
however that the symmetrized gauge potential A + eJAJ ! is always zero in this
case for any selfadjoint 1-form A.

Lemma 4.5. [f the spectral triple is simple, then formula (1.6) can be extended as
n
(D¢ [ o
0,0~ 000 = > =5 f(dpe. 45)
q=1 9
Proof. Since the spectral triple is simple, equation (4.3) entails that
tp4(0) = &p(0) = Tr(K1 (Y, 5)|D]|™*)j5=0.

Thus, with (3.1), we get {p,(0) — {p(0) = —% fY. Replacing A by A, the same
proof as in [11] gives

Ly O [ i
2][1/_; p ][(AD )4, O

Lemma 4.6. For any k € Ng we have

Res é‘DA (s)
s=n—k

k k—p
= SEneEk ¢p(s) + Z Z sgffkh(s’ r,p)Tr(e"(Y)...e"7(Y)|D|™%),

p=1ry,..,rp=0

where

He.r.p) = (52" | g(=sti,r1)- - gl=sty,rp) dr.
0<t| <-=<tp<1

Proof. From Lemma 4.3 (ii) it follows that | D 4|~ ~ |D|™5 + leg:l K,(Y,s)|D|™*

mod OP~* +1)_Re(s), where the convention Z@ = 0 is used. Thus, we get for s in a

neighborhood of n — k,

k
DA™ = D] = Y Kp(Y.9)|D|™ € OP~*FTD7RE < pl(g),
p=1
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which gives

k
Res {p,(s) = Res {p(s) + I; Res Tr(K,(Y.9)|D|™).  (46)

Letusfix 1 < p <kand N € N. By (3.1) we get

N
Kp(Yos) ~ (-s/27 [ SO g(ostir) o g(=sty,ry)
0st<.tpsl, 4.7
e"(Y)...e”(Y)dt mod Op~ NP1,
If we now take N = k — p, we obtain that
k—p
Kp(Y.9)|D|™ = > h(s.r. p)e" (Y)...e” (Y)|D|™* € oP7F717ReW® < £1(3q)
T1yeees rp=0
for s in a neighborhood of n — k, so (4.6) gives the result. O

Our operators | D4|* are pseudodifferential operators:
Lemma 4.7. For any k € Z we have |D4|* € Wk (A).

Proof. Using (4.7), we see that K, (Y, s) is a pseudodifferential operator in OP™?, so
(4.2) shows that | D4|¥ is a pseudodifferential operator in OPF. O

The following result is quite important since it shows that one can use f for D
or Dy:

Proposition 4.8. If the spectral triple is simple, then Reg Tr(P|Dal™*) = § P for
s=
any pseudodifferential operator P. In particular, for any k € Ny,

14700 = Res 2,05
s=n—k
Proof. Suppose that P € OP¥ with k € Z and fix p > 1. With (4.7) we see that
PKp(Y,s)|DI™*

N
~ Z h(s,r, p)P(Y)...e7(Y)|D|™* mod Op~N—P~1+k—Re(s)

715..,7p=0
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for any N € N. Thus if we take N = n — p + k, we get

n—p+k
Res Tr(PK,(Y.5)| D[ ™) = > Res h(s.r. p) Te(Pe™ (Y) ... (V)| D[ ™).
§S= s=

Now s = 0 is a zero of the analytic function s +— h(s, r, p). Moreover, the map
s+ Tr Pe"(Y)...e”(Y)|D|* has only simple poles. So, by hypothesis, we see
that Regh(s, r,p) Te(Pe"(Y)...e7(Y)|D|™) = 0 and

s=

R_eg Tr(PK, (Y, s)|D|™¥) = 0. (4.8)

Using (4.2), P|D4|™5 ~ P|D|‘S+Zk+” PK,(Y.5)|D|™* mod OP™"~1~ —Re(s) and

thus
k+n

ResTr(P|Dy|™*) = ][ P+ ) ResTr(PK,(Y.s)|D|™). (4.9)
s=0 p=1s=0

The result now follows from (4.8) and (4.9). To obtain the last equality, one uses the
pseudodifferential operator | D 4|~ %), O

Proposition 4.9. If the spectral triple is simple, then

][|DA|‘” - ][ DI, 4.10)

Proof. This follows from Lemma 4.6 and the previous proposition for k = 0. O

Lemma 4.10. If the spectral triple is simple, then

@) f1DaI7" = f DI~ - (%) fxipi
(i) f DAl 2>—][|D| 2 M2 ( ][X|D|—" ][X2|D| -2 )

Proof. (i) By (4.2),
Res {p,(s) = ¢p(s) = Res (=s/2)Te(Y|D|™)
= —25 Res Tr(Y [D|7"7V|D|™)

where for the last equality we use the simple dimension spectrum hypothesis. Lem-
ma 4.3 (i) yields ¥ ~ XD~2 mod OP~2 and Y|D|_(”—1) ~ X|D|—”—1 mod
OP™"~1 C L1(3). Thus,

RegTr(Y|D|_(”_1)|D|_S) = RegTr(X|D|_”_1|D|_s) = ][X|D|_”_1.
sS= s=
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(i) Lemma 4.6 (ii) gives

1
(Res,04(5) = Res, Lo(s) + Res, ) b, DTVE (N)IDI™)
+ h(s,0,2) Tr(Y2|D|~*).

We have h(s,0,1) = =3, h(s,1,1) = %(%)2 and h(s,0,2) = %(%)2 Using again
Lemma 4.3 (i), we obtain that

Y ~ XD~ 3V(X)D™* - 1X?>D™* mod OP.
Thus,
1

Res Tr (Y |D|™) =][X|D|_” — —][(V(X) + X%)|D|7* ™.
s=n—2 2
Moreover, using £ V(X)|D|™* = 0 for any k > 0 since f is a trace,
Res Tr(e(Y)|D|™*) = Res_Tr(V(X)D~*|D|™) =][V(X)|D|—2—" = 0.
s=n—2 s=n—2
Similarly, since Y ~ XD ™2 mod OP~2 and Y2 ~ X2D~* mod OP~3, we get
Res Tr(Y?|D|™) = Res Tr(X’D~*|D|™*) = ][X2|D|_2_”.
s=n—2 s=n—2
Thus,

Res_ {p,(s) = Res_ {p(s)

n—2 —n 1 2 —2-n
+("52)(f x5 f o+ xoore)

1/n—2\> o, I(n=2 2][ L

— V(X)|D|™>™" + = X2|D|72 ™.

+2(2)][()|| +2(2) D]
Finally,

Res Ip,(s) = Res Ip(s) + (—” ;2)(][ X|D|™" — %][X2|D|—z_n)

1 _ 2
+_(n 2) fX2|D|—2—n’
2 2

and the result follows from Proposition 4.8. O
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Corollary 4.11. Ifthe spectral triple is simple and satisfies the identity § |D|~("2) =
f AD|D|™ = f DA|D|™ = 0, then

-2 - —2 [ -
][ |Dy|~ 2 = %(][Ammm—"—z + ”—][A2|D|—").
n

Proof. By the previous lemma, we have

) N
Res_ £, (s) = 2 (—][A2|D|—"
s=n—2 2

+ %f(z‘IDz‘I'D + DADA + AD?*A + D/IZ'D)|D|_”_2).

Since V(A) € OP!, the trace property of f yields the result. O

5. The noncommutative torus

5.1. Notations. Let C*°(Tg) be the smooth noncommutative n-torus associated to
a non-zero skew-symmetric deformation matrix ® € M, (R) (see [5], [30]). This
means that C°°(Tg) is the algebra generated by n unitaries u;,i = 1,...,n, subject
to the relations

UiUj =ei®f/uju,', (5.1)

and with Schwartz coefficients: an element a € C*°(Tg) can be written as a =
Y kezn Uk, where {ar} € S(Z") with the Weyl elements defined by Uy :=

e"ﬁk'xkulfl ...ukn ke 7", Relation (5.1) reads

UkUq = e—%k-@qu_i_q and UkUq = e_ik.QquUk (52)

where y is the matrix restriction of ® to its upper triangular part. Thus unitary
operators Uy satisfy U, = U_j and [Ug, U;] = —2i sin (%k . @l)Uk+l.

Let 7 be the trace on C*(Ta) defined by t( Y rczn akUk) := ao and H; be
the GNS Hilbert space obtained by completion of C*°(Tg) with respect to the norm
induced by the scalar product (a, b) := t(a*h). On Hy = {D jczn arUx | {ar}r €
[2(Z™)} we consider the left and right regular representations of C *°(Tg) by bounded
operators, which we denote by L(-) and R(-), respectively.

Letalso §,, u € {1,...,n}, be the n (pairwise commuting) canonical derivations
defined by

8, (Uk) =ik, Uy. (5.3)

We need to fix notations: let Ag := C*°(Tg) acting on H := H; ® C?" with
n=2morn =2m+1(ie,m = | 5] is the integer part of 7), the square integrable
sections of the trivial spin bundle over T”.
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Each element of Ag is represented on H as L(a) ® 1,m where L (resp. R) is
the left (resp. right) multiplication. The Tomita conjugation Jo(a) := a™* satisfies
[Jo.8,] = 0 and we define J := Jy ® Cop where Cy is an operator on C2?". The
Dirac operator is given by

D= —id, @ yH, (5.4)

where we use hermitian Dirac matrices y. It is defined and symmetric on the dense
subset of H given by C*(Tg) ® C?". We still denote D its selfadjoint extension.
This implies that

Coy®* = —ey“Cy, (5.5)

and
DUy ®e =k U @ yle;,

where (e;) is the canonical basis of C2”. Moreover, C¢ = +l1ym, depending on
the parity of m. Finally, one introduces the chirality (which in the even case is
y = id ®(—i)™y'...y™) and this yields that (Ag, (, D, J, y) satisfies all axioms
of a spectral triple; see [7], [23].

The Dirac operator V,, DV, perturbed by the unitary

Vi = (L) ® lym)J(L(u) ® 1ym)J ',

defined by uu* = u™u = Uy for every unitary u € A, must satisfy condition (1.3)
(which is equivalent to JH being endowed with a structure of Ag-bimodule). This
implies the existence of a symmetrized covariant Dirac operator,

Dy:=D+ A+ eJAJ !,

since Vy DV} = D1)@1,m[D,Lw*)®1,m]: in fact, fora € Ag, using JoL(a)Jy! =
R(a*), we obtain that

eJ(L(a) ® y*)J ' = —R(a*) ® y°,

and the representation L and the anti-representation R are C-linear, commute and
satisfy
[6a, L(a)] = L(6qa), [ba,R(a)] = R(64a).

This induces some covariance property for the Dirac operator; one checks that
L(Uy) ® lom[D, L(Uy) ® 1om] = 1@ (—kuy"), (5.6)
for all k € Z". Thus, with (5.5), we get U [D, U] + €J Ux[D, U,;"]J_1 = 0 and

Vu DV, =D = DLw)@1,m[D.LW)®1m]- (5.7)
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Moreover, we obtain the gauge transformation
VuDaV, = Dy, 4, (5.8)
where the gauged transform 1-form of A is
Yu(A) ;= u[D,u*] + uAu™, (5.9)

with the shorthand L (1) ® 1,m — u.
As a consequence, the spectral action is gauge invariant:

8(Dyg, @, A) = 8(Dy,,4), D, A).
An arbitrary selfadjoint 1-form A can be written as
A= L(—iAy) @ y* with Ay = —A} € Aep, (5.10)
thus
Dy = —i (8 + L(Az) — R(40)) ® y°. (5.11)

Defining

A = L(Aq) — R(Aq)
we get D§ = —g*1%2(8,, + z‘ID,I)(Sa2 + /sz) ® lom — %Qalaz ® y*1*2 where

oa

y e = (MY — yy),
Qalaz = [80(1 + Aa178d2 + AO!Q] = L(Fotlaz) - R(Falocz)

with
Falfxz = 80!1(140!2) _5062(140:1) + [Aal»Aaz]- (5.12)

In summary,

Dfl = _50[1“2(80!1 + L(Aal) - R(Aal))((saz + L(A(xz) - R(A[xz))

1 o (5.13)
® lom — 2(L(Faja,) — R(Faya,)) ® 12,

5.2. Kernels and dimension spectrum. We now compute the kernel of the perturbed
Dirac operator.

Proposition 5.1. (i) Ker D = Uy ® C2”, so dim Ker D = 2.
(ii) For any selfadjoint 1-form A we have Ker D C Ker Dy.
(ii) For any unitary u € A we have Ker D,,, 4y = V,, Ker Dy.
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Proof. (i)Lety =Yy . cx, jUr®e; € Ker D. Then0 = D>y =3, ; ¢k j [k[PUr ®
ej, which implies that ¢k ;|k|> = 0 for any k € Z" and 1 < j < 2™. The result
follows.

(i) Let ¥ € Ker D. Then ¢ = Uy @ v with v € C2", and from (5.11) we get

Dy = DY + (A + eJAT Y = (A4 eJAT HY = —i[Aq, Ugl ® y*v =0

since Uy is the unit of the algebra, which proves that ¢ € Ker Dy4.
(ii1) This is a direct consequence of (5.8). Ll

Corollary 5.2. Let A be a selfadjoint 1-form. Then Ker Dy = Ker D in the following
cases:

(1) Ay = L(u) ® 1om[D, L(u™) ® 1om]| when u is a unitary in A.
i) 4] < 3.

(iii) The matrix %@ has only integral coefficients.

Proof. (i) This follows from previous result because V,,(Uy ® v) = Uy ® v for any
v eC?.

(ii) Let = > ; ek, Uk ® ej be in Ker Dy (50 Yy ; ek ;1> < 00) and ¢ :=
>.;¢o,jUo ®e;. Thus ¥’ := ¢y — ¢ € Ker Dy since ¢ € Ker D C Ker Dy and

2
| Y ceskale @ yoes| = 1Dy
0#keZ",j

= [|=(A +eJATTHY |12 < 4| AP 12 < Iy'I%

Let Xy := Y ,kaYa- Then X ,f = Y, lka|*12m is invertible and the vectors
Uk ® Xiej}oxkezn,; are orthogonal in JH, so

Y (TPl < X laP

0#kezn,j « 0#kez",j

3

which is possible only if cx,; = 0 for all k, j, thatis, ¥’ = 0and ¢ = ¢ € Ker D.
(iii) This is a consequence of the fact that the algebra is commutative, and hence
A+eJAJ L =0. O

Note that if Ay, := Ay + €JA,J ™!, then, by (5.6), Ay, = 0 forall k € Z" and
| Ay, || = |k|, but for an arbitrary unitary u € A, A, # 0 and hence Da, #D.

Naturally the above result is also a direct consequence of the fact that the eigen-
space of an isolated eigenvalue of an operator is not modified by small perturbations.
However, it is interesting to compute the last result directly to emphasize the difficulty
of the general case.
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2 <

Solety =3 jezn 1<j<om 1, ;Ui®ej € Ker Da. Then ) jezn 1 j<om lC1,;
oo. We have to show that ¥ € Ker D thatis ¢; ; = 0 when [ # 0.
Taking the scalar product of (U ® e;| with

0= 'DAw = Z Cl’j(laUl — i[Aa, U[]) X y“ej,
lLa,j
we obtain that
0= c1j(*8s —i(Uk.[Ae. Ull))(ei. v*e;).
lLa,j

If Ay = ) 401U ® v%, {aa}1 € S(Z"), then it follows that [Uj, Upn] =
—2i sin (%l . ®m)Ul+m and

(U, [Ae, Ull) = D agr(—2i sin (31" - ©1))(Ux, Ur 1)

Iezn
= —2iay j—; Sin (%k . @l).

Thus

n 2M
0= Z Z ch,j (I%8k,; — 2aq k—1 sin (%k -O1)){ei. %)) (5.14)

leZn a=1j=1

forall k € Z" and for all i with 1 <i < 2™,

We conjecture that Ker D = Ker Dy at least for generic ®’s: the constraints
(5.14) should imply ¢; ; = O for all j and all / # 0, which means that y € Ker D.
If % ® has only integer coefficients, then the sin part of these constraints disappears,
which gives the result.

Lemma 5.3. If %@ is diophantine, then Sp(C*(Tg), H,D) = Z, and all these
poles are simple.

Proof. Let B € D(A) and p € Ng. Suppose that B is of the form
B =a,b,DIr-! |D|p’*1ar_1br_1 ... D1 |D|p1a1b1

where r € N, a; € A, bj € JAJL, gi. pi € No. We denote a; =: ) ;a;;U;
and b; =: }_; b;;U;. With the shorthand ky, . = ky, ...ky,, and y"Hai =
yHL L yHai | we get

DU D|Pra1byUk @ e

=Y arn b Uy UeUp ke + 1+ 1P A+ DA 1)y g, © YRy,
.0
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which gives after r iterations

BU, ®ej = 25151(]1, ---UllUkUl{ Uy
LU
r—1

[Tl + 0+ 007+ 0+ 1,

r—1 ,r—1 11
. Hy Mg,y K>ty e;
19“51,‘ ® y '..V Jo
i=1

where d; :=ayy, ...a,;, and by = bl,li coubyg
Let us write Fy,(k,1,1') := [1/2) |k + i + /|71 (k + [; + if)w; i and y =

r

-1 ,r—1 1,1
ytr oHa—y o yPrtar - Thus, with the shortcut ~, meaning modulo a constant

function in the variable s, we have
Tr(B|D|7>77)

/ -~ F/L(kal’l,) y7
~e Y Y ahpt(Uo Uy, ... Uy, U Uy ...Ul;)|k|s—+2pTr(y ).
k

Ll
Since Uj, ... U, Uy = Ur U, . .. Ulle_i Y18k we get
‘L’(U_kUlr .. Ul] UkUli .. Ul;) = 82,{ l,'—I—ll{,()ei(b(l’l )e—i Zl li-@k’
where ¢ is a real valued function. Thus,

o ) o L~ Fuk,1,1)e i Xili®k
Tr(B|D[2P7%) ~e Y Y e85y Ly gdnby - K Tr(y")
kLl
~c fuls) Tr(y").

The function f,(s) can be decomposed into a linear combination of zeta functions of
the type described in Theorem 2.18 (resp. Theorem 2.6 if r = 1 or all the p; are zero).
Thus, s — Tr(B|D|~277%) has only poles in Z and each pole is simple. Finally, by
linearity, the result follows. O

The dimension spectrum of the noncommutative torus is simple:

Proposition 5.4. (i) If %@ is diophantine, then the dimension spectrum of the triple
(C*°(Tg).H, D) is equal to the set {n —k | k € No}, and all these poles are simple.

(i) £p (0) = 0.

Proof. (i) This follows from Lemma 5.3 and Remark 3.9.
(i) We have {p(s) = D pezn 2 1<j<om{Ux ® ¢€;,|D[°Ux ® ;) =
2 (Y fezn # + 1) = 2"™(Zu(s) + 1). The result follows from (2.15). O

We have computed {p (0) relatively easy, but the main difficulty of the present
work is essentially to calculate {p , (0).
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5.3. Noncommutative integral computations. We fix a selfadjoint 1-form A on
the noncommutative torus of dimension r.

Proposition 5.5. If % O is diophantine, then the first elements of the expansion (1.5)
are given by

][|DA|—n — ][ |D|—n — 2m+1”n/21—w(%)—1,

][lDA|”_k =0 forkodd, (5.15)

][ [D4|"2 = 0.

We need few technical lemmas.

Lemma 5.6. On the noncommutative torus, for any t € R,

][/I®|D|—f = ][DA|D|—f =0.

Proof. Using the notation of (5.10), we have

Tr(AD|D|™*) ~c Z, D Uk ® ¢j.—ikylk| ™ [Aq. U] ® y*ye))
k
~e —i Tr(y*y*) Z kulk |7 (U, [Aa Url) = 0
k

since (Ug, [Aq, Ur]) = 0. Similarly
Tr(DA|D|™)

li
~e DY Uk ® ey k[T Y ag2sin B2L(1 + k), Uppre ® v y%e;)
Jj k
/
~e 2T Y)Y ) dag sin SRL(1 4 K)ulk| T Uk Upr) = 0. O
k

Any element £ in the algebra generated by A and [D,.A] can be written as a
linear combination of terms of the form a;?! .. .a,?", where a; are elements of A or
[D, A]. Suchatermcanbe writtenas aseriesb := ) aj g1, ---Ag,a,.1,U1, --- U1, ®
y®l...y%, where a; o, are Schwartz sequences and when a; =: ) ; a;U; € A we
set a; o1 = a;; with y* = 1. We define

L) = T(Zlal,al,ll e lg a1, UL ...U;q)Tr()/"‘1 Lop%a).

By linearity, L is defined as a linear form on the whole algebra generated by A and
[D, A].
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Lemma 5.7. If h is an element of the algebra generated by A and [D, A), then
Tr(h|D[™*) ~c L(h)Zn(s).
In particular, Tr(h|D|™%) has at most one pole at s = n.
Proof. With b of the form Y ay 4,1, ... aq0,.1,U1, ... Uy, ® y*' ... y%, we get
Tr(b|D[™)

’
~c Z (Uk, Zl A1yl - - Agag.ly Ul1 .. Ulq Uk) Tr(y®t ... ]/a‘l)|k|_s

kezn
~e t(Zl A1l - - - Agaq.0, Ul ...Ulq)Tr()/"‘1 YY) 2y (s) = L(b)Z,(s).
The result now follows from linearity of the trace. O

Lemma 5.8. If %@ is diophantine, the function s — Tr(e JAJ 1 A|D|™5) extends
meromorphically on the whole plane with only one possible pole at s = n. Moreover,
this pole is simple and

Res Tr(eJAJ YA|D|™5) = aa,oameHn”/zF(n/Z)_l.
S=n

Proof. With A = L(—iAy) ® y%, we get eJAJ ™! = R(iAy) ® y*, and by multi-
plication e JAJ 1A = R(Ap)L(Ay) ® yPy?. Thus,

A
Tr(eJAJ AID[™) ~c Y (Uk. AaUs Ag) k|~ Tr(yP %)

kezn
/ N
~e Y aggag 1 O k|7 Te(yPy®)
kezn 1
/ .
~e 2™ Z Zaaglafle’k'®l|k|_s.
kezm 1

Theorem 2.6 (ii) entails that 3 c7n > dg1a% leik 1|k |=* extends meromorphically
to the whole plane C with only one possible pole at s = n. Moreover, this pole is
simple and we have

! ik©l ||~
Rep D 3wl Ok = o Rey Zats)
€

Equation (2.14) now gives the result. O

Lemma 5.9. If %@ is diophantine, then for any t € R,
F XIDI = 5,2 - 5y aga, + awoa) 262D /27

where X = AD + DA+ A% and A =: —i Y1aa1Ur ® y*.
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Proof. By Lemma 5.6, we get { X|D|™" = Ress o Tr(A2|D|~5*). Since A and
eJAJ ™1 commute, we have A2 = A2 + JA2J ! + 2¢JAJ 1 A. Thus,

Tr(A2|D|~7%) = Tr(A%| DS +Tr(JA2J YD~ 42 Tr(eJAJ LA|D|~57Y).
Since | D| and J commute, we have with Lemma 5.7,
Tr(A2| D7) ~¢ 2L(A®)Zy(s + 1) + 2 Tr(sJAJ L A|D|~570).

Thus Lemma 5.8 entails that Tr(A2|D|~*~") is holomorphic at 0 if 7 # n. When
t =n,

Res Tr(A?|D|57") = 2" (= Y aga®, + ag0ad)27"/?T(n/2)7,  (5.16)
s=
which gives the result. O

Lemma 5.10. If %@ is diophantine, then

][AD/I®|D|—2—" =" ;2][/IZ|D|_”.
Proof. With DJ = eJD, we get
][Amm)u)rz—" = 2][ ADAD|D|>™" + 2][5JAJ_12DA®|D|_2_”.
Let us first compute f ADAD|D|™>". We have, with A =: —iL(4q) ® y* =

—i) a0,U ® y¥,

Tr(ADAD|D|™5727")

! Ky (k+11)
~c — Z Z adz,lzaa] 1 T(U—k Ulz Ul] Uk)w Tr(Va’M)
k 11,0

where y%# = y%2yH29%y 11 Thus,
o ku k
][ADAD|D| 2-n — —Zaaz —10q;, lRes(Z}C |k“§br2‘fn)Tr(y""”).

We have also, with e JAJ ™! = iR(A4y) ® Y4,

Tr(eJAJ 'DAD|D|5727")

: ey, (k4 11)
~c Z Z aa2,12aa1,llf(U—kUll UkUlz)Misz_}_lnM Tr(ya’u)'

k 1,
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which gives
- —2— Ky, k
][SJAJ 'DAD|D[*T" = Aas,00ay,0 5:63 (Z;c Vcilsbr—zlfn) Tr(y*H).
Thus,
1 AT A —2—n
5 1 ADADID
1 kuyku,

= (aaz,ancl,O - Zl Aoy, —100y,1 ) =0 ( k |k‘s+2+n ) Tr(ya’u)'

With Y l’;ﬁfzﬁ = %2 7 (s4n) and C, 1= Ress—g Zn(s+n) = 27"/2T(n/2)"!
we obtain that

3 F ADADIDI = (a0 0~ X 160, S T2 1)
Since Tr(y*2yH*y*1y,) = 2"(2 — n)s*>*1, we get
%][/ID/IMDFZ_” = 2"(—aq0ay + Y_; dg,—1af C”(" 2,
Equation (5.16) now proves the lemma. O

Lemma 5.11. If ﬁ@ is diophantine, then for any P € WV (A) and g € N, q odd,
][P|D|_(”_q) =0.

Proof. There exist B € Di(A) and p € Ng such that P = BD™2? + R where
R is in OP™7!. Consequently, f P|D|~»=9 = { B|D|™"=2P+4. Assume that
B =a,b,DYa,_1b,_y...D4a by, wherer € N,a; € A,b; € JAJ!,q; € N.
If we prove that { B|D|™2P*4 = 0, then the general case will follow by linearity.
Write a; =: };a;;U; and bj =: 37, b; Uy, With kpyy iy 2= kyy ... ky,, and
y“l’uqi = VM] . J/Mqi , we get

DN a1b1U; ® e = Zal,llbl,li Ul1 UkUli k+0L+ l{)m,uql ® J/MI’M‘“ ej,
I

which gives after iteration

BU, ®e; = ZdlblUlr LU UkUli Uy
InK
rl Ao 1 1 1,1
TT 4T+ 0, @™ oy,
i=1
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where a; := ayy, ...a,;, and by = bl,l; ...b,yr. We denote Q(k,1,1") :=
_ PO =1, r—1 1,1
21tk +1; + ll-/)uli i, and yH = ytr oHa—r o yPrtar Then
Haj

—n—2p+q _ "N SR
fB|D| = 13:32]6: ;albl’T(U—kUlr LU UkUli ...Ul;)

Qu(k,1.1')
e areag T

Since Uy, ... Up, U = UpUy, ... Up e Z11-Ok e get
t(UUs, ... Uy UgUy ... Up) = Ssp g 4yp g @47 K110k
where ¢ is a real valued function. Thus,
f oo
Qu«(k’ I, l/)e—i Y1168k

= ' i(.l) S 7 “
= 5= ; ;e 85 141704101 |k|s+2p+n—a Tr(y")

=t Res () Tr(y").

We decompose Q,,(k, I, 1"y asasum Y j_o My, (1.1")Qp, (k) where Qp ,, is a
homogeneous polynomial in (ky,...,k,) and My, (I,I') is a polynomial in
(U TN (S PR (A TR (A ™}

Similarly, we decompose f,,(s) as Y ;_o fh..(s). Theorem 2.6 (ii) implies that
Jh,..(s) extends meromorphically to the whole complex plane C with only one pos-
sible pole for s +2p +n —q = n + d, where d := deg Qj . In other words,
ifd +q—2p # 0, then f, ,(s) is holomorphic at s = 0. Suppose now that
d + g —2p = 0 (note that this implies that d is odd since ¢ is odd by hypothesis).
Then it follows from Theorem 2.6 (ii) that

Res fnu(s) = V/

uesS”

. On,pu(u)dS(u),

withV := 3" ez My u(1.1)e 85y gagbpand Z := {11 | Y[ I; = 0}.

Since d is odd, Qp p(—u) = —Qp,(u) and [, gn—1 Qpn(u) dS(u) = 0. Thus,
Reg Jh,..(s) = 01in any case, which gives the result. O
S=

As we have seen, the crucial point of the preceding lemma is the decomposition
of the numerator of the series f,(s) as polynomials in k. This is possible because we
restrict our pseudodifferential operators to Wy (A).
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Proof of Proposition 5.5. The first equality follows from Proposition 4.9 and accord-
ing to (2.14) we have

2m+17[n/2

D|™ = ResTr(|D]|™5™") = 2" Res Z = —.
][' ™ =RegTr (D7) = 2" Res Zu(s +m) =~ s

For the second equality, we get from Lemmas 5.7 and 4.6

k

k—p
SE,?Ek gDA(S) = Z Z h(n —k,r, p)][grl(y)..‘grp(Y)|D|_(n_k)'

p=1r1,..,rp=0

Corollary 4.4 and Lemma 5.11 imply that £ &/ (Y) ... &"»(Y)|D|~®=% = 0, which
gives the result.
The last equality follows from Lemma 5.10 and Corollary 4.11. O

6. The spectral action
Here is the main result of this section.

Theorem 6.1. Consider the n-NC-torus (C*°(Tg), 3, D), where n € N and %@
is a real n x n skew-symmetric diophantine matrix, and a selfadjoint 1-form A =
L(—iAg) ® y*. Then the full spectral action of Dy =D + A + eJAJ " Lis

(i) 8(Dyg, @, A) = dnDyA% + O(A™2) forn =2,
(i) 8(Dg, D, A) = 872Dy A* — %@(O)r(FWF‘”) + O(A™?) forn = 4.

(iii) More generally, in 8(D4, D, A) = Y j_, @i Cni (AA"F + O(A™) we
have c,—2(A) = 0 and cy— (A) = 0 for k odd. In particular, co(A) = 0 when
n is odd.

This result (forn = 4) has also been obtained in [20] using the heat kernel method.
It is however of interest to obtain it via direct computations of (1.5) since it shows how
efficient this formula is. As we will see, the computation of all the noncommutative
integrals requires a lot of technical steps. One of the main points, namely to isolate
where the Diophantine condition on ® comes into play, is outlined here.

Remark 6.2. Note that all terms must be gauge invariants, that is, according to (5.9),
they are invariant under Ay — y,(Ay) = uAqu™ + udy(u™). A special case is
u = Uy where U8y (Uy) = —ikqUp.

In the same way, note that there is no contradiction to the commutative case where,
for any selfadjoint 1-form A, D4 = D (so A is equivalent to 0!), since we assume in
Theorem 6.1 that ® is diophantine, so A cannot be commutative.
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Conjecture 6.3. The constant term of the spectral action of D4 on the noncommu-
tative n-torus is proportional to the constant term of the spectral action of D 4+ A on
the commutative n-torus.

Remark 6.4. The appearance of a Diophantine condition for ® has been characterized
in dimension 2 by Connes [6], Prop. 49, where in this case, ©® = 6 ( % }) with 6 € R.
In fact, the Hochschild cohomology H(Ag, Ag™) satisfies dim H/ (Ag, Ag™) = 2
(or 1)for j = 1(or j = 2)ifand only if the irrational number 6 satisfies a Diophantine
condition like |1 — e/27"?|~1 = 9(n*) for some k.

Recall that when the matrix ® is quite irrational (see [23], Cor. 2.12), then the
C*-algebra generated by Ag is simple.

Remark 6.5. One can generalize the above theorem to the case D = —igh 8, ® y"
instead of (5.4) when g is a positive definite constant matrix. The formulae in Theo-
rem 6.1 are still valid, up to obvious modifications due to volume variation.

6.1. Computations of f . In order to get this theorem, let us prove a few technical
lemmas.
We suppose from now on that © is a skew-symmetric matrix in M, (R). No other
hypothesis is assumed for ®, except when it is explicitly stated.
When A4 is a selfadjoint 1-form, we define forn € N, g € N,2 < g < n and
oe{—, +}*
AT := ADD™?,
AT :=eJAJT'DD?,
A% 1= A% AL,

Lemma 6.6. For any g € N we have
][(AD—I)q = ][(ADD—Z)q = > ][A".
oe{+,—}4

Proof. Since Po belongs to OP~_ it follows that D™! = DD~2 mod OP~*° and
f(AD_l)q = f(ADD_z)q. O

Lemma 6.7. Let A be a selfadjoint 1-form, n € N, g € N with2 < q < n, and
o e€{—,+}9. Then
farmfam

Proof. Letus first check that JPy = PyJ. Since DJ = ¢JD, we get DJPy = 0 and
so JPy = PyJPy. Since J is an antiunitary operator, it follows that PyJ = PyJ Py
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and PyJ = JP,. Consequently, JD? = D2J,JDD 2 =e¢DD2J, JATJ ! =

A~ and JA~J ! = At. In summary, JA% J 1 = A7,
The trace property of { now gives

][A":][Mq.../vl =][JA°qJ—1...JA“lJ—l][A—“q...A—“l =][A“’.

O

Definition 6.8. In [11] the vanishing tadpole hypothesis was introduced:
][AD—1 =0 forall A € Q) (A). 6.1)

By the following lemma, this condition is satisfied for the noncommutative torus,
a fact more or less already known within the noncommutative community [35].

Lemma 6.9. Letn € N andlet A = L(—iAg) @ Y* = —i ) jezn 4a, U1 ® y* bea
hermitian 1-form with Ay € Ae, {ana1}1 € S(Z™). Then

) ][APD_q = {(eJAJ YD = 0for p > 0and 1 < q < n (the case
p = q = 1 is the tadpole hypothesis);

(i) if%@ is diophantine, then ][ BD™ = 0for1 < g < n and any B in the
algebra generated by A, [D,A], JAJ ! and J[D, A]J_l.

Proof. (i) Let us compute
][ AP(eJAJ Y D4,

With A = L(—idy) ® y* and e JAJ ™! = R(iAy) ® y%, we get
AP = L(—iAy,) ... L(—iAg,) ® y*' ... y%

and
(€JAT™)?" = R(iAg) ... R(iAy ) @ y*1 ...y".
p

Write g ; 1= dq, 1 - - - Aay,1,- Since
L(=iAg,) ... L(—iAap)R(iAa;) ... R(iAa;,)Uk

. . / ~ ~
= (—i)?i? Zaa,laa/,l’Uh L0, UkUl;/ ... Uli,
LU
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and |
Uy ... U, U = UrUy, ... Ulpe—l(zi 1i)Ok

we get
AP(eJAJ™Y?' D™ D|™ Uy ® e;
~e (=27 Y g (5. kL) UrUpy @ v e,
NG
where we use the abbreviations U; ;- := Uy, ... U, Ullr)/ .. Uli Suaw (8. k.11 =

k ky / ‘
et O%ly /i G, 1der 17 and U = Oy Ly Ty oy

Thus, f AP (eJAJ )P’ D~1 = Reg f(s) where
s=

f(s): = Tr(AP(eJAJ"YH)P' D~4|D|™)

’ / ’
~e (PP (U ® €, Y 1 Buaar (5., L INUR ULy © y** ;)
kezn

e (PP Y 1 G (5. 11Uy ) Te(r )

kez" Ll

~e (PPN T g (5. kL) T(U ) Tr(yH),

kezn 1,1’

It is straightforward to check that the series Yy ; 1/ a0’ (5. k. 1.1)T(Up1r) is abso-
lutely summable if Re(s) > R for a R > 0. Thus, we can exchange the summation
over k and [, !’, which gives

’ / ’
F($) ~e (CDPIP YY" g (s k11T (Urp) Te(p o).
1l kezn
If we suppose now that p’ = 0, we see that
1k, .. .
f6) ~e P33 ‘;;clm;“’ GaiBsr 10 Tr"4),
I kezn

which is, by Proposition 2.17, analytic at 0. In particular, for p = g = 1, we see
that f AD™! =0, i.e., the vanishing tadpole hypothesis is satisfied. Similarly, if we
suppose that p = 0, we get

rky, .. .
f(S) ¢ ( l) Z Z 'U|“]1€|S+2q/‘q al/SZ,,/ ' Tr(yﬂaa)

" kez”

which is holomorphic at 0.
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(i1) Adapting the proof of Lemma 5.11 to our setting (taking ¢; = 0 and adding
gamma matrices components), we see that

][ BD™1
—i Y1 1;-0k

/ . ’ .~ ky, ...k, e
—Res X P by P T ),
kLU

where y(“"’“ﬁ) is a complicated product of gamma matrices. By Theorem 2.6 (ii),
since we suppose here that %@ is diophantine, this residue is 0. O

6.1.1. Even dimensional case
Corollary 6.10. Let the same hypotheses be satisfied as in Lemma 6.9. Then:
(1) casen = 2: ][A’ID_’f7 = —8424mT(Ag AY);

(i1) casen = 4:

2

_ T
][AqD 7 = &MEI(AM ...AM) Tr(y® ...y*4y™ L yE s

where 811, ... iy *= S0y 1o Ousps + Sy s Ounps + Sy g Suuopes-

Proof. (1), (ii) The same computation as in Lemma 6.9 (i) (with p’ =0, p = g = n)
gives

nn-—n __ BN/ /kMI"‘len
][A D™ =Res(~i) (Z WT)
kez"
-r( Z a1 U, ...Uln)Tr(y“‘ L e
le(zm)n
and the result follows from Proposition 2.17. O
We will need some notations:

Letn € N, g > 2. Letl := (I1,....1l4—1) € Z™4 ', a = (@1,....04) €
{1,....,n}9, k e Z" \ {0}, 0 € {—, +}9, (ai)1<i<n € (8(Z"))", and let

lq = Z lj, )&g = (—i)q 1_[ oj, da,l = Aop,ly - - Qag,ly»
1<j=<q—-1 j=l..q
po(k. )= > (0j—0k-OlLi+ > oj(ly+---+1-1)- 0L,
1<j=q—-1 2<j=q-1

Koy k + 1)y - (k4o g1y
KSF2lk + L2 Jk+ 1+t g

gu(s. k1) :=
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Here we use the convention Z2§j§q—1 = 0 when ¢ = 2, and g, (s.k.,/) = 0
wheneverfi =—kforal <i<g-—1.
Lemma 6.11. Let A = L(—iAq) ® y* = —i ) jezn da, Ui ® y* be a hermitian
1-form, where Ay, = —A}, € Ag and{ay}; € S(Z")withn € N, andlet2 < g <n,
o€ {—, +}4.
Then ][ A% = Reg f(s) where
S=

/ i
f@ = Y Y Aee®®Dg (5K, 1) dgy Tr(y®ayta .y iy").
le(znya—1 kezn

Proof. By definition, f A% = Reg f(s) where
s=

Tr(A% . AT DI ™) ~e S (Up @ €, [k A% . A UL @ ) = f(s).
kezn

Letr € Z" andv € C¥". Since A = L(—iAq) @ y* and e JAJ ™! = R(idy) ® y2,
we get
ATU, ® v=ADD?U, ®v
—U ® y*v
EEETTRAA
i

BT

AU, ®@v=eJAJ'DD2U, @ v

= AT e Uy @
|I‘| rO
"

—i—* U4
Pt 5,0 Aa ® VY 0.
With U;U, = 570U, ; and U, U; = e~ 27"®1U, ,; we obtain that

. . oiklr r
A% U @ v = Z (_O—j)lea‘/ ar ®I—Maoc 1Urp1 ® Vayuv-
lezn |r|2 + 8",0 ,

forany 1 < j < ¢g. We now apply ¢ times this formula to get
|k|°A% . AU ® e;

Z ef‘p"(k’l)gu(s, k, l) éa,l Uk+Zj I ® yaq VMCI ... yal ylvbl e;
le(Zm)4
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with
do(k,l):=01k-Oly + o2k +11)- Ol + -+ o4k + 11 + -+ 14—1) - Ol,.
Thus
f(s) _ Z/ ‘[()Lg Z e%""’(k’l)gﬂ(s,k, l)&a,lUZj ljg%k-@ > lj)
kez" le(zm)4
Tr(y®ayte..ySty"h)
_ Z/ A Z e%¢o(k,l)gM(S’ k, l)da,IS( le) Tr(y% yta . p21yht)
kezn le(z™)4 J

/ i
= Z p Z ef%(k’l)gu(s,k,l)da,l Tr(y®yha . y1yht),
kezn le(zm)a—1

where in the last sum /g is fixed to — >, ;,_; /;. Hence

pok.)="> (0j—0)k-OlL + > oj(ly+--+11)-Ol.

1<j=q-1 2<j=q-1

By Lemma 2.11 there exists R > 0 such that for any s € C with Re(s) > R the
family '
(2% %D g (5. k. Dg,1) @ .ne@m opx@nyi-1

is absolutely summable as a linear combination of families of the type considered in
that lemma. As a consequence, we can exchange the summations over k and /, which
gives the result. 0

In the following we will use the abbreviation

_4712
=5

C .

Lemma 6.12. Suppose that n = 4 and let the same hypotheses be satisfied as in
Lemma 6.11. Then:

1 1
0 5 {8 =3 A =¢ 3 st 01917 =571 ),

lez4

Lo 1 1 _ .
(i) —3 ][(A+)3 - _gf(A P =dc Y dayiy-1,a]) g, g, sin LRI

15624
1 +4_1][ .
i) 5 faht =4 fad)

Q) oo

= 2c Z Ay 1y ~lr—130ar 1347, Ap, sin
l; ez

sin

11-O(lr+13) 1,-Ol3
2 2 "
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(iv) Suppose that %@ is diophantine. Then the crossed terms in §(A* + A7)4
vanish: if C is the set of all 0 € {—, +}4 with 2 < q < 4 such that there exist
i, ] satisfying o; # o, then we have Y . § A7 = 0.

Proof. (i) Lemma 6.11 implies that f AT = Reg Y 1ezn —f(s,1) where
s=

rky, (k+ 1), - .
fs.0) = Z |kT;+2|k +l;|22 o Tr(y®2y"2y®tyHt) and  dg. = g, 100,,-1-
kez"

We will now reduce the computation of the residue of an expression involving terms
like |k + /|? in the denominator to the computation of residues of zeta functions. To
proceed, we use (2.10) in an expression like the one appearing in f(s, /). We see that
the last term on the right-hand side yields a Z,, (s), while the first one is less divergent
by one power of k. If this is not enough, we repeat this operation for the new factor
of |k +1|? in the denominator. For f(s, ), which is quadratically divergent at s = 0,
we have to repeat this operation three times before ending with a convergent result.
All the remaining terms are expressible in terms of Z,, functions. We get, using three
times (2.10),

L1 2kl kLR kIR
lk+112  |k[? k|4 |k|® |k|®lk + |2

(6.2)

Put ke (k4 1)
+
Japu(s.1) == Z Msl+2 Mzz a1
o Tkl £ ]
sothat f(s./) = fau(s.!) Tr(y*2y#2y*1yH1). Equation (6.2) gives
Jauls 1) = fi(s.l) = fals. 1) + f3(s. 1) —r (s, D),

with the obvious identifications. Note that the function

1y, (k4 D)y QKL+ 1112)3
rs,l) = Z l |k|S+STk P Qa,l

kez"

is a linear combination of functions of the type H (s, /) satisfying the hypothesis of
Corollary 2.14. Thus r(s, ) satisfies (H1), and with the previously seen equivalence
relation modulo functions satisfying this hypothesis we get fo ,(s.]) ~ fi(s,]) —

fa(s.1) + f3(s.1).

We now compute fi(s,/):

Ky (k + Dy, - ! kulkuz
fils,D) = E:—Ikl”“ wl = Fat ) AT
kezn kezn
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Proposition 2.1 gives that s +— Zkeznlﬁzpﬁi is holomorphic at 0. Thus fi(s,/)
satisfies (H1) and fo (s, 1) ~ —f2(s,1) + f3(s,1).

Let us now compute f>(s, /) modulo (H1). Invoking several times Proposition 2.1
we obtain that

faispy = Y ® D@k 1P,

o
+6 s
kezn [kI*
_ kDkyykyy + Dk Ly + 1Pk Ky, + luz|l|2km ~
- Z |5 +6 ol
kez"
QkDkyy Ly, n ~ |l| 1k ks -
Z Tkpte dal Z T k|s+e el +0.
kezn kezn
Recall that Z'kezn i = Y Z, (s + 4). Thus,

; - 8; -
Fa(.1) ~ 20 Lyl 1 221 Z,, (s + 8) + [Pl 2122 Z, (s + 4).

We compute f3(s, ) modulo (H1) following the same principles:

Aoy = 3 K+ D KT 1»?

G W
_ Z/ (2kl)2k,“le2 + (2kl)2k,“lM2 + |l|4kmku2 + |l|4k,ulluz
kezn |k|s+8
(4kl)|l|2k,“ku2 + (4kl)|l|2ku1 o ~
+ k|5 +8 Aol
i1 ! kik.ikmkuz ~
~ ) G da +0.
kezn
Finally we have
fa,u(ss 1)
1 - - v kikik, k
- _1(2[“‘11”“2 + |l|25u«1u2)a%lzn(s +4) + 41" dg Z l |;€|;L—|{8 =
kezn
=: ga,u(s, ).

... . . kikik, k
Proposition 2.1 implies that Z,, (s +4) and s = Y} c7n W extend holomor-

phically in a punctured open disk centered at 0. Thus, g4, (s./) satisfies (H2) and
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we can apply Lemma 2.15 to get

~f At =R 3 s

lez"

= E Res g, (s, 1) Tr(y®2yH2y%tyhty =: E Res g(s,1).
s=0 s=0
lezn lezn

In this way the problem is now reduced to the computation of Reg g(s, ). Recall that
S=

Reos Z4(s +4) = 272 by (2.14) or (2.11) and
s=

rkikikik 2
§=eos W = (Sijfglm + Sil‘gjm + 5im5jl)711_2~
kezn
Thus,
n? 1712
lsiggga,u(s,l) = —?aa,l(lmluz + §|l| 5#1#2)-
We will use

Tr(y* oy ) =Te() Y S(P)ypymySupyuny -+ Spups, iy, (63)
all pairings of {1...2}

where s (P) is the signature of the permutation P when Py,,—1 < Py, forl <m < n.
This gives

Tr()/aZVMZyaly,ul) — 2m (8“2”«28“1”«1 _ 5“1“28“2#1 + 8“2”18“2“1)‘ (64)
Hence
Res g(s, /)
s=0
= —Clig (L, Ly + L1280, 1) (B02H284141 — g2 102101 4 geoihs gioay
= —20dq (1% — §*192|[?).
Finally,
1 1
3 ][(AJ“)2 =3 ][(A_)2 =c Z Ay 1Ay —1 (191172 — §2192|]|2),
lez”

(ii) By Lemma 6.11 we have f At++ = Res >y 1o)e@my2 S (s,1) where

Fs,1) = Z’ie%h@lzkm(k 1)y (k4 12) 05
kezn |k|S+2|k +ll|2|k +12|2

= fau(s, 1) Tr(y@yH3yozylizyoyhit)

g, Tr(y®3ylsy®2ylizy®yit)
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and Gy 1= aq, 1,00, 1,4, by with I := 11 + .
We use the same techmque as in (i):
1 1 2k + WP QI+ |4]P)?
k+ 02 |k |k|* [k|#k + 12
11 2kh+|bP | @b+ ]RP)?
k + L2 |k |k |k |4k + ]2
and thus
1 1 2kl 2k-l,

— = — - — "2 4 R(k.]), (6.5)
lk + 12|k + > kI* |k|® k|6

where the remain R(k,[) is a term of order at most —6 in k. Equation (6.5) gives

Jau(s.1) = fi(s.]) +r(s.])

where r (s, [) corresponds to R(k, [). Note that the function

i ke, (k4 1), (k + I2) s R(K, T
r(s,l) = Z/,‘ezh@b (K + )MT]EP:; 2)us R(K D) G

kezn

is a linear combination of functions of the type H (s, /) satisfying the hypothesis of
Corollary 2.14. Thus, r(s,/) satisfies (H1) and fo ,(s,1) ~ fi(s.]).
Let us compute fi(s, /) modulo (HI):

_ I, —l o, kuy (k +11), (k +12)M3 -
fis.1) —kezzjnz e MBS G
L inen Ky (k4 1), (K + Do)y 2k - 1y + 2k - 12)~
- Z |k|s+8 Aa,l

kez"

- Z’ie%h@lz Ky kyolaps + ki kuslip, i
iz kJro "

Y ebnon bukakio @k 2k )
|k |s+8 o,

kez"

= 165119125%1((11#25“1“3 + 12u35u1u2)%z4(5 +4)

2+ )Y %)
kezn

=: ga,u(s.1).
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Since gq,. (s, 1) satisfies (H2), we can apply Lemma 2.15 to get

+\3 _
fani—re > s
(1.12)e(@")?
= 2 Res gau (s, ) Tr(y 2y Ry Sy 2y Syttt = > X
(1.12)e(Z")? I

Recall that /3 := —I; — I, = —l. By (2.11) and (2.13),

L - ; )
B:es Za,u(s, 1)13211@2‘106,1 (2(_li + lé)%((su«nglni + 81 1038u0i + 81011 0uop15)
2
+ (11M25M1u3 - l3M35M1Mz)nT)'

We decompose X; in five terms: X; = 2™ %Zie%llglzdagl(Tl + T+ T3+ T4+ Ts)
where

To = S(=15 + 15) (800801 + 81p6vi + 8uiSup) + L1080 — 1358 10
T, := (5a3p5azv5a1u _ §¥3p g0 UV 8‘13080‘2[‘80‘1”)7“0’

T2 = (—5“2“38'0”8“‘“ + §O203 §O1P UV 8“2“35'0“8“‘”)T0,

Ts = (5a3v5angdlu — §¥3VFYIP§R2I 4 5a3v5;0M5t¥1(¥2)T0’

Ty := (_5w1a35anguv + §X103 5PV gL _ 3061013517#50!21))%7

Ts := (5a3u5azp5a1v B L T0 T L L 8“3"“8"‘”’8“2")T0.

Let p := -1y —2l3,q :=2ly + 3,7 == —p —q = —I; + 3. We compute each T;
and find that

37, = §x1e2 (2 — 2m)p0t3 + 503061(]&2 _ (gazalq% + 8a3a2qa1 4§32 01
— §%2%1 93 + §%3%1 rdz,

3T2 — (2m _ 2)50(2053]7(1] _ 2m(§0£20t3q0t1 _ 2m8(x2a3r(x] i

3T3 — 80[10{3p(x2 _ 8a2a3pa1 + 8(){10!2])0[3 + 2m8d2a1q0t3 + 80{30(2’,0[1
— §¥3%1 02 + 80610!2,.013’

3T4 — _8“10632mp0l2 _ 8061“32mq0l2 + 5a1a3(2m . 2),.0(2,

3T5 — 8(110!3]70!2 _ Salazpas + 8“3a2p0¢1 + 3063112‘10!1 _ Sﬂllazq% + 8a3a1qo¢2
+ (2 —2m)§arezye3,

Thus,

L

Xl — om %iezll{*)lzda l(qa35a1a2 4 ope2gees pa18a2a3) (6.6)
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and
][(A\.+)3 =1i2¢(S1 + S2 + S3),

where S1, S> and S5 correspond to g¥3§*1%2, r®2§*1%3 and p%1§*2*3 respectively.
In S; we permute the /; variables the following way: [ +— [3, [, — [1, I3 — [>.
Therefore, I3 - ®l1 + I3 - ®l; and ¢ — r. With a similar permutation of the «;,
we see that §7 = S,. We apply the same principles to prove that S; = S3 (using
permutation /1 +> [, I, +— [3, I3 — [1). Thus,

1 i
3 O =126 3 e Oy — s = 5, 55
l.

where S4 correspond to /1 and S5 to /,. We permute the /; variables in S5 as follows:
Iy = 1, I = [1, I3 — I3, with a similar permutation on the «;. Since ] - O/, —
—1; - ©l,, we finally get

+33 1 @l o
][(A )’ = 4c2aal 1y ay 1o Qas —1, —1, SIN 252 17354192,

(iii) Lemma 6.11 gives that f ATT1+ = Bzeg Yy bodz)e@my? Jua (s, D) TryH®
where
0 .= 11.612 + 11 . ®l3 + 12 . ®l3,
Tryl® = Te(y®ytey aylay ayl2y yi),

Frals.1) = Z i6 l’«l(k"‘ll)uz(k+12)M3(k+l3)u4d
’ K21k + 1 Plk + B2k + B2

Dl,la

kez"

Aol *= Aoyl Qo %3,1300,— 1 —1—13 -

Using (2.10) and Corollary 2.14 successively, we find

- IR
] N 9 M1 ™MV 3TY g
fu,a(S, ) Z e2 |k|s+2|k+ll| |k + 1 +[2| lk + 4 +12+l3|2 Ol,l

kez"
~ Z —Okulkuzkmkuzx ~a ;.
=, |k|s+8 ;
Since the function Y} <7 €2 50 %da,l satisfies (H2), Lemma 2.15 im-

plies that

1k Kk k
][(A+)4= Z e aalResZ |k|s+8 —HTR2 TR TR Ty g e :ZXI.
1

(I1,12,13)e(Z")3 kezn
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Therefore, with (2.13), we get X; = ’f—;&a,le%G(A + B + C), where

A= Tr(y%yleyBy, y2yh2yy, ),
B = Tr(y®y 4y y 2y 2y, v* yu,).
C = Tr(ya4yu4y0t3 )///,27/0[2)/“2)/0[] VM4)‘

Using successively {y*, y¥} = 26*" and y*y,, = 2™ 1,m, we find that

A=C =4Tr(y™ySy®y™),
B = —4(Tr(y™y®y*1y*2) + Tr(y“y®2y*3y*)).

Thus, A + B 4 C = 8- 27 (540350201 | §@4c1 §0302 _ D§aam §301) g

2 .
X, = 2%2’” e20d, (824038020 4§41 gaser _ p§aaer gasar) (6.7)

By (6.7) we get
][ (A*)* = 20(-2T, + Ty + Ty).

where
N Lo o400 QU3
T = Z ay,lydas 130y by 1 €2 80,y 1,672 6%,
11,504
. Lo o403 QO
I = Z Aoy l49a3,13%0 1%, 1, €* 50,21‘ ; 05436525,
Loy
N Lo 40 QU3
T3 := Z Aay,l3903,13%05 1%, 1, €2 80,2;’ ;05451852
1 ,.005lg

We now proceed to the following permutations of the /; variables in the 77 term:
Iy = b, o — Iy, I3 — l4, l4 — [3. While ), /; is invariant, 6 is modified:
0 1,-Ol1 +1,-Oly + 11 -Oly. With 80’21. 1, in factor, we can let /4 be —[1 — > —13
so that 8 > —0. We also permute the ¢; in the same way. Thus,

—_ig A cOA
h= Z Aoz l30aq,l4) 0 Gas 1€ 2 50,2,‘ l,~5 301 §Ya02
l],...,l4
Therefore,
o Qa0 a3
2Ty =2 Z Aoy, 1405,1305,1, 1] COS 580,21‘ li8 402 g3 (6.8)
Ioels

The same principles are applied to 75> and 75. Namely, the permutation /; +— [y,
Iy = I3, 13 = [5, [4 — 4 in T, and the permutation L=l 3,13 =1,
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l4 + 14 in T3 (the ; variables are permuted the same way) give
i
I = Z Aaglyasz, 38,y ,] 62¢50,Zi I guaez gt
11 ,...,14

_L
I3 = Z Aay,l4Qas, I35, %11 € 2¢8072i li8a4a28a3a1’
Lils

where ¢ :=1[1-© [, +[1 - Ol3 — [, - © [3. Finally we get
][(A’L)4 4e Y aq, 14Gas 1347, 4y >80 5,1, (€08 § $ —cos?)

P

(6.9)

o 11-O(2+1 . 1,01
= 8¢ Z Aoy —1,—lp— 13aa2,13al‘alzsm 1 (22 3) sin 253,
I1,.03

(iv) Suppose that ¢ = 2. By Lemma 6.11 we get

0 — 2, 2,0
][A §§gzlofa,u(s,l)Tr(y yHzytyht)

lezn

where

ky (k+1) .
. ,l 13! K2 ink-©l o
Joou(s,1) keXZ:" k[ +2 [k +l|2e Aol

and n := %(01 —03) € {—1,1}. Asinthe proof of (i), since the presence of the phase
does not change the fact that r (s, /) satisfies (H1), we get

Jau(s.1) ~ fi(s. 1) = fa(s.1) + f3(s.1)

where

1 ky, (k41 :
fl(syl) — Z Ml( + )Mz elnk~®la~

(Z,l?
kezn |k|S+4
sk (kD) sk -1+ |1P) i
1) = E M1 Mn2 znk@l
fZ(S, ) =, |k|s+6 ,l?
sk, (k4 1)y k- 1+ |1]2)2 i
) = 123! m2 lnk@l ]
S3(s.1) kézn: |k|s+8 Qa,l

Suppose that / = 0. Then f>(s,0) = f3(s,0) = 0 and Proposition 2.1 implies that

1k k
fl(s’()) — Z wi Mfla,o

Pl |k|s+4
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is holomorphic at 0 and so is fy, (s, 0).
Since %@ is diophantine, Theorem 2.6 3 gives us the result.
Suppose that ¢ = 3. Then Lemma 6.11 implies that

][A" =Res ) fuals.DTr(y Ry yty®),

le(Zn)?

where

f Ol(s l) = Z/ A elk O(e1l1+e202) 20’211 ®l, kﬂ] (k + ZI)MZ(k + ll + 12)M3 &o{l
. k[S¥2 1k + 112k + 11 + L]

kez"

and g; := %(ai —o03) € {—1,0,1}. By hypothesis (1, &2) # (0,0). There are six

possibilities for the values of (&1, ¢2) corresponding to the six possibilities for the

Values 0f0: (_a ) +)$ (_’ +1 +)$ (+a ) +), (+a +5 _)$ (_’ +1 _), and (+’ T _)

As in (ii), we see that

Jua (s, 1)
N /eik.®(8lll+82l2)kul(k+11)M2(k+i2)u3
o |k|s+6

zk®(8111+8212)k (k+ll)uz(k+12)u3(2k 1 +2k - 12) Loy11-0L
_Z Ik [s+8 1€ )

kez"

With Z = {(l1,12) | eil1 + &2l = 0}, it follows from Theorem 2.6 (iii) that
> 1e@m2\z Ju.e (s, 1) is holomorphic at 0. To conclude we need to prove that

Zg(a) =D fuals, DTr(y 3y yHy™)

o |eZ

is holomorphic at 0. By definition, A, = {070,073 and as a consequence, we check
that

g(_v ) +) = _g(+’ +, _)a
g(+’_7 +) = _g(+7_7_)7
g(_’ +. +) = _g(_’ =+, _)9

which implies that ) g(0') = 0. The result follows.
Suppose finally that ¢ = 4. Again Lemma 6.11 implies that

][A" =Res Y fuals.DTr(y ey yty®),

le(zn)3
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where
Fual(s, 1) = Z/ Aaeik'@)Z?zl Eilie%((’zll'@lz-f-(m(ll+12)'®l3)
kez"
kpy(k + 1),k + 1+ D) sk + 1+ 1 + 13)”4&
K[*21k + 2k + I+ LTk + L+ b+ B

and ¢; 1= %(ai —04) € {—1,0, 1}. By hypothesis, (g1, €2, €3) # (0,0, 0). There are
fourteen possibilities for the values of (g1, €3, €3) corresponding to the fourteen pos-

sibilities for the values of o: (—, —, —, +), (—, —, +., +), (—, +,—, +), (+,—, —, +),
(=44 ) (= ) (= ), (), (== ) (= =),
(+,——,—), (= +,+,-), (+,—, +,—) and (+, +,—, —). As in (i), we see that,

with 90 = 0yl; - Ol + 0'3(11 + 12) . ®l3,

! k03 el 10y K Kpuokuskpy -
Jua(s.1) ~ Z laelk®zl=1£’l’620(’%aa,l = guals, ).
kezn

With Z; := {(l1,12,13) | Z?zl eil; = 0}, it follows from Theorem 2.6 (iii) that the
series ) ;¢ zny3\z, Jfu.a(s,1) is holomorphic at 0. To conclude, we need to prove

that
> glo) = 2523 D guals. D) Tr(yrey™ yly*) = 0.
o o leZs

Let C be the set of the fourteen values of o and C; be the set of the seven first values
of o given above. Lemma 6.7 implies

D ge)=2>" g(o).
oeC oeCy
: : . / kuykupkuskiy
Thus, in the following, we restrict to these seven values. Denote D i c7n KT
by F,(s) so that

g(o) = 52’3 Fu(s)As Z eljedda,l Tr(yHay®s . yH1yo),
leZs
Recall from (6.7) that

Res F, (s) Tr(yH4y®4 | pH1y®l) = 2 (§¥4*35%2%1 4 §Ua%1§93%2 _ 9 §oad2 §03r)y
Res Fiu(s) Tr(y™y Yy ( )
As a consequence, we get, With dg ; i= dg, 1, - - Gay 1y

g(0) = 2chy Z "79”‘7%152;;1z,-,052?=ls,-z,-,o
le(Zzm)4

(8043 e Q40] QU3OD A QOI40D QOI3CL]
(soae3go2en 4 gusng 25402 gasar)
= ZCAJ(TI + T2 — 2T3)



114 D. Essouabri, B. Tochum, C. Levy, and A. Sitarz

We proceed to the following change of variables in Ty: [} + [, L — I3, I3 — I3,
l4 > 14. Thus, we get O, — Vg := 0211 - Olz 4+ 03(l; + [3) - Ol and Z?Zl gil; —
e1l1 + e3ly + 213 =: uy(l). With a similar permutation of the «;, we obtain that

L ~ [0 7104 Q30
Tl = Z ezwaa"‘JSZ?zl15,088111+8312+62l3’08 402 gasoy
le(zn)4

Next we proceed to the following change of variables in T5: I} +— [, I — I3,
I3 — [l1, 4 — [4. Thus, we get Oy — ¢ = 032l - ®Ol3 + 0'3(12 + [3) - ®l; and
21'3=1 gili v e3l1 + €102 + €213 =: vy (1). After a similar permutation of the «;, we
have

L~
T, = Z ez¢aaa,152;‘=l li’086311+6112+8213,08a4a25a3a1-
le(zm)4

Finally, we proceed to the following change of variables in T3: [; +— [, [, — [1,
I3 > I4, I4 + [3. Therefore we obtain 6, — —6, and 21'3=1 gili > (g2 —&3)l1 +
(e1 — &3)l — e3l3 =1 wy(I). With a similar permutation of the ¢;, we have

_ —L65 = 400 g0z
T = g€ 2 0uiSys_ |1, oSerenli+e1—eslests 0672521

As a consequence, we get

80)=2¢y o Kol b 13)awibya_ ;o848

13

where

KU(ZI7 127 13)

= Ao (€27 8u,@ 0+ €% 800 = €2 8a 10— € Bugw0)-
The computation of K (I, [»,[3) for the seven values of o yields

K——++(llv 127 13) = 811 +13,0 + 812-{-13,0 - 511+12,0 - 811 +15,0>
K—+—+(117 12’ l3) = 8[1 +15,0 + 811+12,0 - 811+l3,0 - 811 +13,0
K (1, 12,13) = 81,415,0 + 81, +13,0 — O1y413,0 — S1,413,0

Kems (.o ly) = —(e21®05

i:ll[’

L1,-00
ez )
ot Y3110

L1,-01 L£1,-@1
_p2t2 1 _p2tl 2
€ 82?:1 1,0 € 815,0):

il i
K_yii(lilal3) = —(e23028; o + e2130015, 4

_ e%lz@ls(gll 0— 3513'911 51,.0):
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L1,-01 L1,-01
Ky vy (1,12, 13) = —(e217726, 0 + 27277715, o
L1,-01 L1501
—e2 ! 38[2,0_62 3 2811,0)1
L1,-0l1 L1,-01
Kyt (l1,02,03) = —(e2717738,,,0 +€227368), 0
ig.
_e3h ®12513 ezlz®115 3 111,0)'
Thus,
Kol 12, 13) = 2i (8 Lo
o(l1,12,13) = 2i(815,0 — 8 Y 0)sm 2
U€C7
and

Z g(o) =idc Z (813,0—52? )sm @ aa18 =lli’05a4a25w3a1.

oeCy le(zm)4

The following change of variables I > [, [1 > [, I3 > 14, 14 — I3 gives

2 Briiyosin HP Ry, (518
le(Zzm)4

- 11-00 ~ Q40 eA3A]
Z 815,0 Sin = anSZ?li’OS s,

le(Zzm)4

and hence

— 7 3 ll'®12“’ o400 QO3]
Z glo) =1i8¢ Z 815,0 8in =5 a“’lgz‘l‘li,og §*3*,

oeCy le(zm)*

Finally, the change of variables [, — I4, 14 > [5 gives

Z 815,0 sin L-eh aaISZ 11’08“4“28“3“‘

le@)*
Z 81%0 s1n aa 152 . 08a4a25a3a1 ,
le(@n)*
which implies that 3 ;.. g(0) = 0. O

Lemma 6.13. Suppose that n = 4 and %@ is diophantine. For any selfadjoint
1-form A we have

{p,(0) = p(0) = —cT(Fyy 0, F¥1?).
Proof. By (4.5) and Lemma 6.6 we get

;DA<0)—zD<0)=Z( Loy fae

g=1 oe{+,—}4
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By Lemma 6.12 (iv), we see that the crossed terms all vanish. Thus, with Lemma 6.7,
we get

n
(=1)7
(p4(0)—¢p(0) =2 ~—— ][(M)q. (6.10)
=1 1
By definition,
F‘xl"‘Z =1 Z(aaz,kkoq - aal,kkaz)Uk + Zaal,kaaz,l[Uk» Ul]
k k,l
=1 Z [(aaz,kkal - aal,kkaz) -2 Zaal,k_laaz,[ sin (k—ze)l)]Uk
k /
Thus
‘C(FalazFalaz)
2m
= Z Z [(aaz,kkal — ag, kkay) — 2 Z Aoy k—1"a, 1’ SIN (%)]
ap,2=1kez4 l'ez#
I:(atxz,—kkotl - aal,—kkaz) -2 Z Aoy, —k—1"Aay 1" sin (@)]
1"ezZ4

One checks that the term in a4 of t(Fy,q, F¥1*2) corresponds to the term f(A™)?
given by Lemma 6.12. For ¢ = 2, this is

2
-2 Z aa],la(xz,—l(lallaz _8a1a2|l| )
IEZ4,a1 Ne’%)

For g = 3, we compute the crossed terms

. o o

i) (day kkay — gy kkar)ay) af? UklUp, 1] + [Up, UilUs),

k,k’,l
which gives the following a>-term in 7 (Fy, o, F*1%2):
o - 11:0l
-8 Z aa3,_11_12al21aa1511 sin 152173
li

For g = 4, this is

11-0(>+13) 1,-Ol3
2 2

sin

o] _op .
_4Zaalg—ll—lz—haaz,halz a; -~ sm
li

which corresponds to the term f(A1)*. We finally obtain that

3 % ][(M)q _ _gf(Fal,azF“M). 6.11)

q=1
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Equations (6.10) and (6.11) yield the result. ]

Lemma 6.14. Suppose thatn = 2. Then, with the same hypothesis as in Lemma 6.11,
the following holds:

{7 = a2 =
(1) Suppose that %@ is diophantine. Then

][A+A‘ = ][ ATAT = 0.

Proof. (i) Lemma 6.11 implies that f AT = Reg Y 1ez2 —f(s.1), where
s=
s (k4 D)y
f(s.0) = Z | k*(;ﬂl O ‘;lg at Tr(y®2yt2y@ytn)
=: fu,a(sal)Tr(Van 2yeiyih

anddyj ‘= dg, 10q,,—1. This time, since n = 2, itis enough to apply just once (2.10)
to obtain an absolutely convergent series. Indeed, with (2.10) we get

LR EP S S R I VEIC S 7).
o

fraloD = 3 s Kk e et

kez?2 kez?

2
The function r(s,/) = Y \z2 Ky (Ilc;fl‘fﬁlliklll;l” )a
functions of the type H (s, ) satisfying the hypothesis of Corollary 2.14. As a conse-
quence, r (s, /) satisfies (H1) and

rky, (k+ 1)y, - 1k ks, -
Suals, 1) ~ Z W%,l ~ Z |kis+42aa’l'
kez?2 kez?2

dg, 1s a linear combination of

Note that the function (s,/) +— hya(s.l) = ZkeZZ |k|s+4 2aq, satisfies (H2).
Thus, Lemma 2.15 yields that

R )= 3" Reshyo(s, 1) Tr(y@2yh2y@iyht).
Res /(s.1) ;ijszeg (8. 1) Tr(y®2yH2y@iykn)
€

By Proposition 2.17, we get Reg hua(s, 1) = 8,4, maqg,;. Therefore,
5=

][A++ =7 Y Gay Tr(r*2y"y* yu) = 0
lez?
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according to (6.4).
(i1) By Lemma 6.11, we obtain that

][A_+ = Res E Ao fau(s, 1) Tr(y®2yt2y@tyht),
s=0
lez?
where Ay = —(—i)? =1,

3 () P
Sap(s.l) = Z |k‘|‘;+2|k +/;|22€ kel |

kezZ?

and n := %(01 — 03) = —1. As in the proof of (i), since the presence of the phase
does not change the fact that r (s, /) satisfies (H1), we get

vk, (k41 ;
Sop(s. 1) ~ Z MIT*“)Me hOlG 1= gy (s.1).
kez?

Since %@ is diophantine, the functions s = ;72\ (g} &a,u (S, ) are holomorphic
ats = 0 by Theorem 2.6 3. As a consequence,

][ AT = Reg 8o, (8, 0) Tr(y*2yH2y%tyht)
s=

lek o S
=§=egk e e g0 Tr(y®2y 2y iy i),
ez

Recall from Proposition 2.1 that Resg—g Zkez2 |I]c€| !c {7 = 6;;m. Thus, again with

(6.4),
][A_+ = dg,om Tr(y*?y*y*y,) = 0. O

Lemma 6.15. Suppose thatn = 2 and %@ is diophantine. Then for any selfadjoint
1-form A,
{p,(0) = ¢p(0) = 0.

Proof. As in Lemma 6.13, we use (4.5) and Lemma 6.6 so the result follows from
Lemma 6.14. O

6.1.2. Odd dimensional case

Lemma 6.16. Suppose that n is odd and % O is diophantine. Then for any selfadjoint
I-form Aand o € {—, +}¥ with2 < q <n,

][A0=0.
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Proof. Since A° € W;(A), Lemma 5.11 with k = n gives the result. O

Corollary 6.17. Let the same hypothesis be satisfied as in Lemma 6.16. Then for any
selfadjoint 1-form A we have {p ,(0) — {p(0) = 0.

Proof. As in Lemma 6.13, we use (4.5) and Lemma 6.6, so the result follows from
Lemma 6.16. 0

6.2. Proof of the main result
Proof of Theorem 6.1. (i) From (1.5) and Proposition 5.5 we get
8(Da, @, A) = 4Dy A% + ®(0)¢p,(0) + O(AT?),

where ®, = %fooo ®(z)dt. By Lemma 6.15, {p, (0) — ¢{p(0) = 0 and from Propo-
sition 5.4, {p(0) = 0, so the result follows.

(i) Similarly, (D4, ®, A) = 872P4A* + ®(0)¢p,(0) + O(A™2) with &4 =
2 /57 ®(r)tdr. Lemma 6.13 implies that {p,, (0) — ¢{p(0) = —ct(F,y F*”), and by
Proposition 5.4 we obtain that {p , (0) = —ct(Fy, F*”) and hence the result.

(ii1) This is a direct consequence of (1.5), Propositions 5.4 and 5.5, and Corol-
lary 6.17. O

A. Appendix

A.l. Proof of Lemma 3.3. (i) We have |D|T|D|™! = T + 8(T)|D|™! and
|D|~'T|D| = T—|D|~'8(T). Byrecurrence, |D|’<T|D|—k=z’;:0 (1)s4(T)|D| ™
for any k € N and so |D|_kT|D|k :Z];:O(—l)q (Z)|D|_q5q(T).

As aconsequence, since T', | D|~9 and §9(T') arein OP° forany g € N, forany k €
Z,|DIFT|D|™% € OP°. Let us fix p € No and define F,(s) := §?(|D|*T|D|*)
for s € C. Since for k € Z, F,(k) is bounded, a complex interpolation proves that
F,(s) is bounded, which gives | D|*T|D|™* € OP°.

(i) Let T € OP* and T’ € OPB. Thus, T|D|™®, T'|D|™# are in OP°. By
(i) we get |[DIBT|D|=*|D|™# € OP°, so T'|D|"B|DIBT|D|~2~* € OP°. Thus,
T'T|D|~@*B) ¢ op°.

(iii) For T € OP%, |D|*# and contained in T'|D|™® are in OP° and therefore
T|D|™# = T|D|~*|D|*# € OP°.

(iv) follows from §(OP°) < OP°.

(v) Since V(T') = §(T)|D| + |D|8(T) — [Py, T], the result follows from (ii), (iv)
and the fact that Py is in OP~°°.
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A.2. Proof of Lemma 3.6. The non-trivial part of the proof is the stability under
the product of operators. Let T, T’ € W(A). There are d,d’ € Z such that for any
N € N, N > |d| + |d’|, there exist P, P in D(A), p,p' € No, R € OP™N=2,
R € OP™N=d suchthat T = PD™2? + R, T' = P'D2?' + R, PD72? ¢ OP?
and P'D27" € OP?'.

Thus, TT' = PD™>PP'D~2' + RP'D2? 4 PD™?PR’' + RR'.

We also have RP'D 27" ¢ op~N=4'+d" — op=N and, similarly, PD™2? R’ €
OP~N . Since RR’ € OP™2V it follows that

TT ~ PD 2P P'D72P" mod OP~N.

If p =0, then TT' ~ QD2 mod OP~V, where 0 = PP’ € D(A) and
QD_ZI’/ € Opi+td’, Suppose that p # 0. By recurrence one shows that

q
D72P'~ Y (=) VE(P) D724 (1) D2V (P)) D247 mod OP™.
k=0
for any g € Ny. By Lemma 3.3 (v), the remainder is in op4'+2P'=4=3 gince P’ €
OP?'+2P" Another recurrence gives

q
D22 p o Z (_l)lkhvlkll(p/)D—2|k|1—2P mod op¢’+2p'—a—1-2p
ki,...kp=0

for any ¢ € Ng. Thus, withgy = N +d +d’ —1,

an
TT ~ Y (=D pykli(p)p=2ki=20+r) mod 0P~V
K1k p=0
The last sum can be written Qny D2V where ry := pgy + (p + p’). Since

On € D(A) and Qny D=2’V € OP4+4' the result follows.

A.3. Proof of Proposition 3.11. Let P € OPK! and Q € OP*> ¢ W(A). With
[0.1D]7*] = (@ —0-5(Q))| D[ and Q@ —0-5(Q) ~ — 3L, g(—s, r)e" (Q) mod

OP_N_1+k2, we get
N
P[Q.ID|*]~ =) g(=s,r) P& (Q)|D|™* mod Op~ N1 HhitkTRe(),
r=1
which gives, if we choose N = n + k1 + k>,

n+ky+ko
ResTr(P[Q, [D|™]) = — ; Res g(—s,7) Tr(Pe’ (Q)|D[™).



Spectral action on noncommutative torus 121

By hypothesis s +— Tr(Pe"(Q)|D|™) has only simple poles. Thus, because
s = 0is a zero of the analytic function s + g(—s, r) for any r > 1, it follows that
Regg(—s, r)Tr(Pe" (Q)|D|~*) = 0, which implies that RegTr(P[Q, |D|_S]) =0
S= S=

and hence
][ PQ = RegTr(P|D|_SQ).
S=

When s € C with Re(s) > 2max(k; + n + 1, k»), the operator P|D|~*/2 is trace-
class, while |D|™/2Q is bounded, so Tr(P|D|™* Q) = Tr(|D|™*/2QP|D|™/?) =
Tr(o—s/2(QP)|D|™*). Thus, using (3.1) again, we obtain that

n+ki+ko

ResTi(P|D|~0) = f 0P + D Repe(s/2.0) T (QP)DI)

As before, for any r > 1, Regg(—s/2,r) Tr (8’(QP)|D|_S) = O since g(0,r) =0
S=
and the spectral triple is simple. Finally,

ResTr(P|DI0) = § 0P,
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