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1. Introduction

The theory of noncompact spin geometries in the sense of Connes [20], [21] or non-
compact spectral triples, broached in [43], was developed in references [67], [38],
[40]. The coordinate algebras treated in [67] have locality properties analogous to
those of the commutative case, whereas [38], [40] deal with truly noncommutative
contexts that are essentially flat, respectively the Moyal 2n-planes and some of their
generalizations.

As such, the theory remains underdeveloped. This is partly for want of suitable
noncommutative noncompact spectral triples. Among the myriads of deformations
or “star products”, twisted product algebras with the crucial traciality property dis-
tinguish themselves in that the classical integral yields a faithful tracial state. This
is what made the original (Groenewold—)Moyal product [47], [61], [9] so popular in
quantum field theory [32], [78], [72]. Not least, it ensures relevant properties in cyclic
cohomology [22].

Let X be a phase space, u a convenient measure on it (often the Liouville measure)
and J¢ the Hilbert space associated to (X, it).! Denote by 8, (x, x’) the reproducing
kernel for p. A Stratonovich—Weyl quantizer or tracial quantizer for (X, u, #) is an
operator-valued distribution €2 on X, with values in the space of selfadjoint operators
on J, spanning a weakly dense subset of B(H), and verifying

TrQ(x) =1, Tr[Qx)Q:x")] = 8u(x, x").

Quantizers in this sense, if they exist, are essentially unique. Ownership of a quantizer
solves in principle all quantization problems: guantization of a (sufficiently regular)
function or “symbol” a on X is effected by

ar> [ a9 dutn = 0,
and dequantization of an operator A € B(J) is achieved by
A Tr[Q(-)A] =: Wy(-). (1.1)

Indeed 2 can just as well be called a dequantizer. It follows that 1 +— 1 by
dequantization, and also

Tr Q(a) :/Xa(x)du(x).

Moreover, since the set 2(X) is total, it is clear that

Wo(a)(x) = Tr [(/Xa(x') Q(x") du(x’))Q(x)] = a(x),

I'This paragraph and the next are excerpted from the report by one of us (JMGB) to the Oberwolfach
conference on Dirac Operators and Noncommutative Geometry, in November 2006; see Oberwolfach
Rep. 3 (2006), pp. 3151-52.
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so Q and W are inverse to one another. In particular, Wo(1) = 1 says that 1 > 14
by quantization. Finally, the following relation holds:

THO(@) Qb)) = /X a(0)b(x) dpu(x). (1.2)

This is the tracial property.

Most of the interesting cases occur in the context of group actions; that is to say,
there is a Lie group G for which X is a symplectic homogeneous G-space, with
then being a G-relatively invariant measure on X, and G acts by a (multiplier) unitary
irreducible representation U on Jf. A quantizer for the data set (X, u, #,G,U)
satisfies the previous defining equations and is endowed with the covariance property:

Ug)Qx)U(g) = Q(g > x),

forallg € G, x € X. Orbits of the coadjoint action of G on its Lie algebra dual g* and
symplectic homogeneous manifolds are essentially the same thing [53], Section 1.4,
and in this paper we think of the action denoted by > above as an instance of the
coadjoint action of G.

A covariant collection as above, but satisfying only

/ Qx)du(x) =15 and TrQ(x) =1,
X

may be called a semitracial quantizer.

Once in possession of the quantizer, one can in principle immediately construct
a twisted product that will be normalized (its identity being the constant function 1),
hermitian (complex conjugation being the involution), covariant under an appropriate
group action, and tracial. We give the details in the body of the paper.

In summary, the “Stratonovich—Weyl” label here refers neither to general defor-
mations nor to star products obtained (roughly speaking) by reduction [43], exten-
sion [39] or induction from the original one; but to a restricted category, defined by
a precise set of postulates, designed to capture the main trait behind the success of
Moyal’s formalism for Quantum Mechanics; namely, that quantum and classical ex-
pected values should be computed by the same rule. The products thereby obtained
are non-formal and analytically controlled. The quest for quantizers in our sense is
richly rewarding. In this paper we show by example how the theory of covariant
tracial quantizers meshes with, and substantially complements, Kirillov’s method of
orbits in representation theory. Its main end products are the (scalar) Fourier—Moyal
kernels on g* x G:

E(x, ) :=TrQ(x) U]  E™(x,g) := Tr[Q(x) U(g)Vd],

with d the formal dimension operator for U. There is a good case, that we have made
before [31] and we make here again, for these to be the central objects in harmonic
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analysis. For, as soon as a tracial quantizer is available, the abstract Plancherel theorem
of group Fourier transform theory becomes a concrete one on the coadjoint orbits.
Also, quantizers have an important applied side, with their relations to wavelets in
signal processing and to quantum optics.

Before giving the usual guide to the article, we briefly return to noncompact
spectral triples. It seems natural to look for noncommutative tracial algebras on the
surface of constant negative curvature, whether it be modelled by a hyperboloid in R3,
the unit disk, or the Poincaré upper half-plane IT; we shall focus on the half-plane.
Even so, the prescription that the noncommutative coordinate algebras on IT carry
the full SL(2, R) symmetry may be too much to ask, because then the first-order
condition of [20], [21] for the standard Dirac operator on IT cannot be satisfied. This
will be shown in Section 9. One can of course inherit the full symmetry and use the
alternative Dirac operator; or perhaps “deform” suitably the latter.’

Meanwhile we concentrate on the smaller ‘ax + b’-type group of symmetry of II.
As mentioned, there is another compelling motivation for revisiting the Stratonovich—
Weyl quantizers: the progress of photonics [57] allows nowadays a quasi-measurement
of the Wigner functions — see [71], [80], [7] as theoretical harbingers. This is calling
for investigation of systems with solvable group symmetry; and before tackling them,
it helps to visit the case of affine-group symmetry.

In the next section, we remind the reader of the Kirillov method for constructing
the unitary irreducible representations (unirreps) of the ‘ax + b’ group, in order to
make the exposition self-contained. We exhibit the corresponding characters and the
Duflo-Moore operator for the nontrivial representations. Section 3 is a modicum of
real analysis, eventually needed for establishing the properties of the affine-group
quantizers.

Sections 4 to 8 deal with the main issue. As it happens, the literature on wavelets
and time-frequency distributions already contains the information needed to extract
the quantizers on the half-plane [10], [11]: an impressive example that concrete
problem-oriented work can lead to far-reaching conceptual results. A suitable mod-
ification of the classical Weyl quantization rule holds. We give the quantizers ex-
plicitly and verify the key tracial property in Section 4. In the next section, we find
the (left-covariant) twisted product associated to the quantizer, required for spectral
triple theory, and investigate its symmetry properties. Section 6 deals with the right-
covariant counterparts for the quantizer and the twisted product. In Section 7, the
foregoing illuminates harmonic analysis: scalar Fourier—Moyal transformations are
found for the ‘ax 4+ b’ group, allowing us to recover the representation characters and
to improve on Kirillov’s Fourier transformation. The basic results of Fourier analysis,
up to and including the Plancherel formula, are shown to hold in our context, for this
nonunimodular case. Section 8 connects and compares our formulation with others,
including Fronsdal’s x-representation program [36] and the approach in a remarkable

2We thank Pierre Bieliavsky for illuminating discussions of these aspects.



Fourier analysis on the affine group, quantization and noncompact Connes geometries 219

series of recent papers [2], [3], [54] by Ali and coworkers, also inspired by the liter-
ature on wavelet transforms. We take the occasion to set the record straight on the
matter of Stratonovich—Weyl quantizers.

Section 9 revisits the noncompact spectral triples over the half-plane that have
motivated the present work; the first-order property for the Dirac operator can now
be established. Section 10 gives pointers for further rapprochement of Connes’,
Kirillov’s and Moyal’s paradigms inter alia.

It remains to add that the standards of formality in this paper are about the usual
ones in mathematical physics; this saves considerable spacetime. All our arguments
are in fact rigorous, as will be shown in [41].

2. The orbit method for the group of affine transformations

2.1. The coadjoint orbits. The group Aff of orientation-preserving linear transfor-
mations of the real line, or affine group for short, also known as the ‘ax + b’ group,
is a semidirect product R} x R, with the handy matrix realization

Aff ={(8%):a>0,beR}. 2.1
Its Lie algebra is realized by the matrices
aff = {X =(50): (u,v)e [Rz}, X =uX; +vXs,

with commutation relation [ X, X»] = X5. The group is solvable, since its Lie algebra
has the ideal RX, = [aff, aff] with aff /RX, abelian. Recall that a group G and its
tangent Lie algebra g are called exponential if the map exp: ¢ — G is a surjective
diffeomorphism. Note that

ad X = (g —uv) with eigenvalues 0, u.

By an old result of Dixmier [25], since these eigenvalues are not (nonzero) purely
imaginary, the group is exponential. Of course, this can be seen already from (2.1),
since

1

Since tr(ad X') # 0 in general, the group is not unimodular. Indeed, the right and
left Haar measures d, g and d; g on Aff are respectively given by

glu,v) :=expuX; +vXs) = (eO” v(e* — 1)/u) . 2.2)

d,(exp X) = det X _ ] B du dv B dadb
riexp2) = ad X B E 2.3
1 — e X dudv dadb '
di(exp X) = det[ ——— ) dX = _ dadb
l(exp ) € ( ad X ) )L(u) a2
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where dX = du dv and

t t/2
te t e/ _ 12

At) = = = = 1+ %) (1-5%), 24
@) et —1 1—et sinch(t/2) ¢ (14 5) D1 = 57). @)
with sinch¢ := (sinht)/¢ (and sinchO := 1), a well-known nonvanishing even

function (so named, by analogy with the sinus cardinalis of sampling theory). Note
that the right Haar measure on Aff is the product of the Haar measures of R and R;
this is a general property for semidirect products. Neither the left nor right Haar
measure coincides with the measure induced on Aff by the Lebesgue measure on aff.
The last equalities on the right-hand sides of (2.3) follow from (2.2). Therefore the
modular function A(g) := d;g/d,g is given by 1/a. We also note for future use the
product of the densities (normalized at 0) of the Haar measures with respect to the
Lebesgue measure,

di(exp X) dr(exp X)
dX dX

The adjoint action of Aff on aff, and the contragredient coadjoint action on aff *,
are respectively given by

(X)) jr(X) = = sinch?(u/2). (2.5)

Adg(X) = gXg~! = (’5 av gb“); (g5 F.X) = (F.Ad g~ (X)),

for X € aff, F € aff*; we generally use the letter F for points in coalgebras g*.
Also, aff* can be realized by matrices

F=)=139): (xy) R

Thus (F, X) = tr(FX) = ux + vy, and the coadjoint action is given by

b
(x,y)—>gr(x,y) =Coad g (x,y) = (x+_y’_)'
a a

The orbits of this action are two open half-planes, plus an axis of fixed points. Indeed,
if we choose any point F = (x, 0), then the whole group leaves it invariant, whereas
all the other points of aff * are found in the orbits of F = (0, +1) and of F = (0, —1).
The isotropy group in the last two cases is trivial, and both orbits, which we denote by
04, are diffeomorphic to the group itself. We think of @4 as Poincaré half-planes,
respectively IT and —IT, adopting complex-variable notation when convenient.

We can describe these “solvmanifolds” by group parameters. If

z(g) ;= g> i = (&£b/a,£1/a), withinversez — g, = (£1/y,x/y), (2.6)

then of course g > z(g') = z(gg’), for g, g’ € Aff. One can employ this to transfer
the group operation onto the orbit by z(g) - z(g’) := z(gg’). Explicitly,

(x+iy) - X' +iy)y=x"£xy +iyy 2.7
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Reciprocally, z — g is an isomorphism, namely g, g,/ = gz.2.

The invariant symplectic forms w4+ on @4 are exact in the present case, being
clearly given by w+(z) = dx dy/|y|; note that w1+ (z(g)) = d;g. Darboux coordi-
natesareqg = x/y, p = |y|.

In general, we say that a subalgebra ) C g is subordinateto F € g* if F |[f),f)] =0
and the map X — (F, X) is a one-dimensional representation of §). The entire Lie
algebra aff is subordinate to each (x,0). Any one-dimensional subalgebra of aff is
subordinate to (0, 1) or to (0, —1), but only the ideal [aff, aff] is Pukdnszky, which
means that F+5H+ € O: indeed, (x, 0)+(0, 0) = (x,0)and (0, £1)+(x",0) € O.

2.2. The Kirillov map and the unirreps. The Kirillov theory asserts the existence of
amap K : aff* /Aff — AfT, where Aff acts via Coad, the space aff * / Aff is endowed
with the (non-Hausdorff, not even 77) quotient topology and the unitary dual Aff
with its standard Fell topology, determined by the hull-kernel topology on the set of
primitive ideals of C*(G) — this matter is well explained in [26], Chapter 3, or [29],
Chapter 7. For exponential groups, K has been proved by Leptin and Ludwig [55] to
be bijective and bicontinuous. (For the similar correspondence between g* /G and the
set of primitive ideals of the enveloping algebra U(g), we refer to [58].) It is known
that all unirreps for exponential groups are monomial, that is, induced by an abelian
character of some closed subgroup H. If H is the closed subgroup generated by
subordinate to F, the Pukanszky condition guarantees that the induced representations

K[OF](exp X) := Ind}" U, (exp X) = IndjyT > F-X)

are indeed irreducible. In the present case,

2wixu +27ib

Ux,0),a:(exp X) = e and Uy exp(rx,) (eXpbX3) = e

So we obtain in the first place the unitary one-dimensional representations (a, b) —
a®mi* of Aff; observe that K[O(g )] is the trivial representation.

Now denote Uy := K[@+]. The Kirillov scheme “predicts” (this is only of
heuristic value) that the “functional dimension” of U is % dim O+ = 1; thatis, U+
can be realized on spaces of functions of one variable, in such a way that the smooth
vectors are smooth functions and the enveloping algebra U(aff) acts by differential
operators. The actual induction process leads us to consider the space of functions f
on Aff such that

f(a,b) = X2y (a),

and then, necessarily,
Us(a,b) f(d', b)) = flad'.ba’ +b') or Ux(a,b)y(a) = eT2" %y (aa)).
That is, we may settle on

Us(a.byy(r) = ¥ Py (ar) = Us(1,b)Us(a. 0)y (r).
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with r > 0 for Us and r < O for U_. The U preserve the space of smooth functions
on the semiaxis, vanishing in some neighbourhood of r = 0, and are unitary on the
Hilbert spaces K+ := L2((0, +00), 7~ dr). Observe that U, and U_ are mutually
dual; this is a general property for K[(] and K[—0]. (Needless to say, the process
of going from O to a putative K[(@] is not always so smooth; experience points to the
importance of @ being spin and of its twisted Dirac operator to construct K [9] — see
[23] in this respect.)
The selfadjoint infinitesimal generators for the unirreps are given by

d
U(X)y () = —i— ) _ Us(expu,0)y(r) = —ir y/'(r);
U lu=0

Ur(X2)y(r) = — Uz (exp(0. )Y (r) = 2mr ¢ ().

ol

We denote the generators Ui (X1), UL(X3) by 27rﬁi, 27 fi respectively. Note
27i Bz, fil = f.

Interestlng (improper) denizens of K are the “plane waves” or eigenfunctions
of ﬂ +. They are given by ¥g(r) 1= r*2® iB_for f real, and constitute a (generalized)
orthonormal and complete set. Complete orthonormal sets within J4 are also known,
but here we shall not use them.

2.3. Characters of the unirreps and Kirillov’s Fourier transform. Any operator A
on K4 determines an integral kernel, with suitable genuflections to rigour:

d
AV (r) =:/[R A(r, )W (s) TS
+

so that the operator kernel of U4 (a, b) is
Us(a,b;r,s) = 2™ 75 §(s —ar).

Let f € D(Aff) = CX(Aff). Following Kirillov [53], Section 4.1, we define
the associated operators Uy (f) on K4 by

dadb

Us (v (r) = / / £ ) Ty (ar)
dsdb

+o0
=[] st
with kernels o
Us(fir.s) = / F(s/r.b)e>™ b dp,

where r > 0,5 > Oorr < 0, s < 0, respectively. One would naively expect that
U+ (f) be nuclear, for f a test function. This is not the case unless f is of zero
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mean with respect to the second variable; otherwise U (/) is not even compact [52]:
C*(Aff) is not liminaire. Assume, however, that this requirement holds; then the
traces are given by
o0 3. dbd
TrUs(f) = / / £, bye2mibr 257
—00 [Ri r

for r > 0 or r < 0, respectively. By definition, the (generalized) characters yi of
U4 are the functionals such that

xx=(f) =TrUx(f).

Let f := f oexp. We see that y+(f) only depends on the values of f on [aff, aff];
this is a particular instance of a property established by Duflo [27]. We can say that

d
ye@,b) =8a—1) [ e¥itr Tr 2.8)
R

or Foys(a,r) = @ 6(a — 1), where 6 is the Heaviside function, with the obvious
caveats for good definition in these “ultraviolet divergent” expressions.

For simply connected nilpotent groups, which are unimodular and whose Haar
measure is the Lebesgue measure in exponential coordinates, Kirillov postulated and
showed the existence of a unitary transformation matching L2(G) with L?(q*), here
denoted [k, of the form

Felf1(F) 1= [ FO0eF ax,
g
and he established the formula
xkio1(exp X) = / i X)to 2.9)
[¢]

where o is the invariant symplectic form on @, so that
T KI01(f) = [ flexo Vmonexp X)X = [ RlfIF)duo(P). 210
g

Here p,, is the Liouville measure on the orbit, given by w2 dimO / (% dim O9)!; also,
(2.10) clearly means that Fx [y k(o] — a tempered distribution defined on g by trans-
position, transported to G by the exponential map — coincides precisely with that
measure. This was one of the earliest triumphs of the method of orbits. The similarity
of (2.9) with the relation between the classical and quantum partition functions has
been pointed out and exploited before: see [70].
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For general solvable groups, this will not do. Part of the problem is that the orbit
is open and the invariant symplectic structure is singular at the boundary. Also, it is
unclear which measure to use on g, in the nonunimodular case. Kirillov suggests that
the recipe (2.9) be replaced by a weighted version:

1 .
XK[O (epr) = _/ eZm(F,X)+w
. a0 Jo

and for ¢ he chooses (j; j,)'/4. In view of (2.5), for Aff this leads to
Fx[f1(z)
= // exp{2mi (ux + vy)}f(e", 5ian) —mele 2.11)
R2 w7 /sinch 4

= // exp{2mwi(xloga + ybA(— 10ga))}f(a,b))Ll/4(loga))LS/4(— loga)d“aﬂ,
Aff

for z € aff*. It is necessary and sufficient that Fx[f] go to zero on the boundary
of the orbits for K[O1](f) to be nuclear. Then (2.10) is still valid. This is scarcely
surprising since, as pointed out earlier, only the value of A at O enters the calculation.
However, the last formula is certainly not pretty.

Yet another a priori Fourier map is defined in [3] by a formula of the type

Farc 1) = VE(F) [ explomi (F. X)) flexp X)ym(X)dX. (.12
g*

We explain their notation: j is an index parametrizing the orbits; §; = dF/dw;; and
m(X) = dj(exp X)/dX. Here, for y # 0, we take j € {£}; £+(z) = |y|; and
m(u,v) = 1/A(u). Hence

Fark /1) = VI //[R expl2mi e )} (€, 0/A () s dudv. 213)

By construction, this is an isometry between L2 (Aff, d;g) and L?(aff*, dwy Udw_).
However, it does not give the character.

In this paper we introduce two (left and right) powerful alternative transforms to
Kirillov’s Fourier map, that likewise recover the character, and are closely related
to Fapk.

2.4. The Duflo-Moore operators. The decomposition of the regular representation
of Aff, defined as usual by

Ag) f(g) = f(g7'g).
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is well known for the affine group: A decomposes into a continuous direct sum of
representations equivalent to Uy @ U_. More concretely, the Plancherel measure is
in our case just the counting measure on the two-element set {U+}, and there is a
unitary map P, the Plancherel transform:

P: L*(G) — HS(K,) ® HS(X_),

with HS(JK 1) denoting the Hilbert algebras of Hilbert—Schmidt operators on K4,
and P given by

Pf = U (f)d}? ®U_(f)d/?, (2.14)

where the d4 are positive operators on K 4 with densely defined inverses, determined
(up to a positive constant) by the semi-invariance relation:

Us(g)d+ Ul(g) = AV (g)d. (2.15)

For a general proof of this uniqueness for G not unimodular, see [28] and also [4].
Because the U4 are induced from the subgroup {1, b} belonging to the kernel of A,
it is easily seen that
dey(r) = |r[ ¥ (r),

where we have chosen a convenient normalization. These d4 are the formal dimension
operators as originally defined by Duflo and Moore in [28], although later authors use
the phrase “Duflo-Moore operators” for d;l/ % instead. For their theory, one may
consult [28] and also its excellent precursor [74]. The remarkable thing is that the
operators Uy (f) di/ % (or rather, their closures) are Hilbert-Schmidt whenever f
belongs to L2(G) — actually, our treatment of the harmonic analysis on Aff in the
long Section 7 amounts to an indirect proof of this fact. Then (2.14) holds, and
moreover

P(A(g)f) = (U+ ® U-)(g) Pf.
Also, for f in a suitable dense subspace of L?(G), the operators U( f ) d are nuclear.

3. An unusual special function

Before we plunge into calculating the quantizer, it is convenient to perform a few
exercises in real analysis, to be rewarded with later simplification.

We begin with the function A of (2.4). Note that A(0) = 1 and A(¢z) > O for all
t € R, that A(¢) | 0 ast — —oo, and that A(¢) ~ ¢ as t — 400 (see Figure 1). It is
easy to see that

AM—t) = e TA(1), (3.1a)
Alt) — A(—t) =t. (3.1b)
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(1,0)

Figure 1. The function A and its inverse function y.

These functional equations determine A uniquely. It is an analytic function for
|t| < 27, with expansion

Am_;enmﬁ msmﬁ_gma,

where the B,, are the well-known Bernoulli numbers.
The derivative of A(¢) is

V() = (1—e )t —get(1 — e=y2 = 20 _ AMOAED

t t
3.2)
_ @ (1= A1) = @ (141 —A@)).

Thus A(¢) is strictly increasing on R. Since (3.1b) entails A'(¢) + A'(—¢) = 1,
we see that A/(0) = % A brief calculation shows that A”(¢) > 0 for ¢z > 0; since
A"(t) = M'(—t), it follows that A'(¢) is increasing (i.e., A(¢) is convex), with A'(z) 1 1
ast — +00, and therefore A’(¢) < 1 for all 7.

Next, let y(r) denote the inverse function for A: y(r) = ¢ when r = A(¢). Itis
defined for r > 0, is strictly increasing with y(1) = Oand y’(1) = 2,and y(r) | —oc0
asr | 0, while y(r) ~ r as r 1 4o00. All that is evident on reflecting the graph of
r = A(t) about the main diagonal r = ¢. Of course, the chain rule and (3.2) give

_ y(r)
My@)  r(l=r+y()

In particular, y’(r) > 1 forall r > 0.
The special function worthy of our attention is

y'(r) =

o(r)y:=r—y(r), for r>0.
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For |r| < 1 we obtain, by [30, Section 2.1] for instance,

2. 4, 44, 104
1 o2t e 0% s
yaan=2r=3r g~ 55" et
and
2, 4, 44, 104
1 —1_ St f e % s
ot+n) T3 s Tas”

Write s = A(—t) and r = A(¢). Then relation (3.1b) shows that
s=o0(r) < r=o0(), (3.3)

or, not to put too fine a point on it, 6 (o (r)) = r, that is, o is self-inverse.

Note, too, that o (r) = re~?"), in view of relation (3.1a). Also, o(1) = 1 and
o’(1) = —1, as expected since the graph of o must be invariant on reflection in the
main diagonal. Now o’(r) = 1 — y’(r) < 0 always, so that ¢ is a strictly decreasing
function. Moreover, o(r) ~ —y(r)asr | 0, while 6(r) ~ re™ as r — +o00: the
graph of ¢ is exponentially asymptotic to both axes in the first quadrant. Note, as
well, from (3.3):

y(r)=—y(r): v'(r)=-y'(c(r)o'(r).
We remark that o/(r) = e 7 (1 —ry/(r)) = o(r)(r~" — y/(r)); writing s = o' (r)

gives

s=0'(0(5) () =5 - s(% —'@())o) = 506 (@), (B4

It is also useful for our purposes to dilate y and o by a factor y > 0, as follows:

yy(r) :=yy(r/y), oy(r):=yo(r/y).

Figure 2. The self-inverse function oy, for y > 0.
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It is immediate that oy (0y(r)) = r, so that o, also has a graph that is unchanged
on reflection in the diagonal, except that it now crosses the diagonal at (y, y): see
Figure 2. Moreover, the previous relations between y and o become

oy(r) =r —yy(r), Yy(0oy(r)) = —yy(r),

3.5
o) = 1= R00D o) = 0. o

4. The Stratonovich—-Weyl quantizer for the ‘ax + b’ group

4.1. Weyl quantization for the half-plane. Pre-existing work on image processing
[10], [11] points the way towards the quantizer: the transformation from “density
matrices” to “Wigner functions” considered in these papers respects reality, covariance
and “unitarity”, which is equivalent to traciality. Consider the Weyl operator,

W (u, v) i= exp{2mi (uP+ + v fi)} = Usr(e¥ v(e” —1)/u) = UL(e" ve* /A (u)).

Our candidate quantizer is

Qi(x +iy) = |y| // exp{—2mi(ux + vy)}Wi(u,v)dudv. 4.1)
R2

It can hardly be simpler! Aside from the factor |y|, that compensates for the measures
used on @, it means that the familiar definition from Quantum Mechanics works.
The recipe is actually imposed on us by the heuristic rule that 24 (Fp) should be the
quantization of §(F — Fy), or the equivalent remark in [11] that the quantization of
a plane wave should be given by the Weyl operator. It stands to reason that the Weyl
operator will play an essential role in an exponential group; one may treat (4.1) as an
Ansatz, and simply prove that it gives the Stratonovich—Weyl quantizer by verifying
all the required properties.

We carry out this verification for the upper half-plane I1. For —IT the argument
is identical. It is no longer worth the trouble to keep always the subscripts £, so we
mostly drop them.

4.2. Identification of the basic “parity”’ operators. The claim is that we can asso-

ciate to each symbol f(z) on IT an operator A on the representation space K4 = K,
and vice versa, by

A= /HQ(Z)f(Z) do(z) =1 Q(f). [f(2) =Tr(Q2(2)A4), 4.2)

with the properties required in the Introduction. The quantizer €2(z) remains to be
determined.
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With the machinery assembled in the previous section, the computation of €2 is
straightforward. First of all,

W)y (r) = 27 AWy ),
with operator kernel
W(u,vir,s) = e2™VS/A g5 — o¥r).

The right-hand side of (4.1), applied to ¥ € D (0, co), yields
Q(Z)lﬂ(r) =y // e—27ri(ux+vy—e“rv/)t(u))w(eur) du dv
R2

= y/ eT2TIUXS(y —re /()Y (e*r) du (4.3)
R
= SR O (0,(r).

For this, consider the diffeomorphism v +— r/A(—u) = w, whose inverse mapping
isu = —y(r/w) with Jacobian J(u; w) = rw~2y’(r/w). The general formula [79],
Chapter 1:

(Tw()), ) = (Tw), ¥uw)) [J(u;w))

in the present case easily gives
/ §(y —re /A(u))e 2" "y (e*r) du
R
= / §(y — w)e2m XYWy (=YW =29 (r fw) dw,
R

yielding (4.3). Similar computations will reappear throughout this paper; often we
shall just omit them. In particular, we have obtained

QY () =ry'(r)y(o(r).

A remarkable event has occurred. For the ordinary Moyal family, the “mother” ope-
rator in the Schrodinger representation is known to be essentially the (Grossmann—
Royer) parity operator. Matters are more involved here, but still €2(i) is basically
given by a kind of reflection; to wit, the involutive o function.

In view of (2.7), covariance requires Q(z) = U(g;)Q2(i)UT(g,), where U(g,) =
U(1/y, x/y) with adjoint operator U (g,) = U(y, —x). We leave this direct verifi-
cation as an exercise.

The kernel of Q(z) is given by

Qzirs) = Sy ()X 5 — 0y (). (442)
y
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An alternative form is

. r
Q(Z; r, S) — yeZJrlxlog(r/s)S(y _ m)

. r—=s
_ 2mixlog(r/s) o
e (" Tgerm)

For the normalization property the operators €2(z) must be of trace 1, in the
distributional sense. We check this by computing

(4.4b)

[e.e] d o0
Tr Q(7) :/0 Q;r, r)Tr =/(; ry' (ré(y(r))dr = 1. 4.5)

The normalization Tr €2(z) = 1 is then automatic, since the U(g) are unitary. It can
be proved that the operators Q( f), for f any test function on IT, are nuclear [41].

4.3. Selfadjointness of the quantizer operators. Note that the £2(z) are unbounded
operators. They are defined at least on (0, co). Indeed, since oy is monotonic and
smooth, the right-hand side of (4.3) lies in & (0, co) whenever ¥ does, and we see
that

2@y = % [0 YL 19 0y () dr
[ ORI OR o0

1 [* d
== [ smonoReo RS

where (3.5) has been used. Since s — sy; (s) increases from 1 to + oo for0 < s < oo,
no bound of the form ||Q2(i )y || < C ||| is possible. We remark that the equivalent
operators are (of course) bounded for compact groups, and for the Heisenberg group.
But unboundedness is not unheard of, as it happens for the Poincaré group [19],
Section 4.

The 2(z) are hermitian on the domain D (0, co). For ¢, i in this domain, we get

oo d oo
wieow) = [ 3menve) T = [ 50y e vee)dr
— [ FEO e v o)l ds 6)
° —_— d
= [ 0FEm e = @0,

Likewise, (¢ |Q(z)¥) = (2(2)¢ | V) by covariance, since U T (g) preserves D (0, co).
We prove that €2(z) is closable and identify its closure, and then show selfadjointness.
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This is easy to do using the fortunate fact that its square is a multiplication operator,
Q*z)=M 2 where the unbounded positive function 7; is given by

Nz (r) = ry =20y (r) v, (r) v, (0y (1))

Notice that n,(r) = n;(r/y) for z € I1. The natural domains for the several (z)
are the dense subspaces B, of K defined as

B, ={¢yeXK:nvekK}i
Note that (4.6) remains valid for ¢, ¢ € B; so that 2(z) is hermitian on this domain.
Proposition 4.1. On the respective domains B, the operators Q2(z) are selfadjoint.

Proof. First, take v € £D(0,00). One sees at once that indeed Q2(2)y (r) =
n2(r) ¥ (r). We already showed that |Q2(z)¥| = [n:¥|, using (4.3); and this
continues to hold for all ¢ € B,. Observe that B, is complete in the graph norm
given by || [I> := [v]|® + |n:v |2, and that D (0, co) is dense in B; for this norm.
Thus Q(z), with domain B, is a closed operator. Clearly Dom ©2(z) C Dom (z)"
since 2(z) is hermitian on B;.

Note that if ¥ € Dom Q7(z), and if y, is the indicator function of the interval
[1/n,n], say, then x,Q(z)"¥ € B, and a routine argument, using the monotone
convergence theorem, shows that

2@ Y] = lim |xa2@ ] = lim sup (@) (xap)|¥)] == nzv].

n—oo [¢ll=1

so that necessarily ¥ € B,. Thus Dom Q(z)" = B, = Dom Q(z), as required.
Note also that the original domain £ (0, c0), being dense in each B, for the graph

norm, is a common core for all the €(z), which are therefore essentially selfadjoint

on that domain. 0

A consequence of the operators £2(z) being selfadjoint (not just formally so) is that
they become observables in the quantum-mechanical sense. For the Stratonovich—
Weyl operators in the standard (Heisenberg covariant) case, see the discussion in [71].

4.4. Traciality
Lemma 4.2. The quantizer is tracial, in the sense that
Tr(Q(w)Q(z)) =yd(w—2z) forallw,z €11,

where the right-hand side is the reproducing kernel for the Hilbert space
L*(I1,dx dy/ ).
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Proof. Withw = u +iv,z = x + iy, we obtain

Tr(Q(w)Q(Z))
= /OO/OOQ(w;r, s)Q(z;s,r)dr ds
/ / y) e~ 2RO/ =ul (5 (5))8(s — 0y (1)) dr ds
_ T (N ()N (T —amiGe)y—ufv) =0y () _
LR ———

The argument of this last delta vanishes if and only if 0y, (r) = 0, (r), that is, if and
only if v = y. On setting f(v) := 0y(0y(r)) — r, it follows that

Oy (o) - (o(2)) ()
L -oo5)elD) = £al) o))

%U(g) )//(U(g))(g(r —oy(0y(r))) =8(v —y),

and (4.5) follows at once:
o0
Tr(Qw)Q(z)) = 8(v—y)/O y/(g)e_z’”(x_“)”(r/y)dr = y§(x—u)§(v—y). O

Corollary 4.3. The maps (4.2) establish an isometric isomorphism between the
Hilbert space of Hilbert—Schmidt operators on X and the Hilbert space L*(I1, dw(z))
of square-summable functions on the upper Poincaré half-plane with the left-invariant
measure. (]

4.5. Relation with the Wigner functions on the half-plane. Starting from (4.4a),
by dequantization we obtain

Wa(z) = Tr(Q(2)A) = /000/0 A(r,s) Q(z;s,1) —r%

- 1[00/00 A(r,9) 7' (s/y) "SIV §(r — 0 (s)) dr ds
i @4.7)

1 o0 .
-~ /0 A(0y(s). ) ¥ (s ) FEr6IN g

= / ~ A(YA(u), yA(—u)) e 27 XU dy.

—0o0
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Note how by means of (4.4b) we recover the kernel of A from its dequantization:

dxd o0 — )
A = [ meaeny == = [ WA(X,ﬁ)eZ”’xbg(rmdx.
—0oQ
4.8)

In particular, the Wigner function WV of a state v is simply the expected value
of the Stratonovich—Weyl operator 2 or the dequantization of the projector | ) {(y|:

WY(2) == (¥|Q@)¥) = (@)Y |Y) = Tr(Q() [¥) (¥ ).
The operator |) (| has kernel A(r,s) = ¥ (r)y¥*(s). Thus,

w¥(z) = Ae_z"ix"w(y/\(u))w*(yl(—u)) du. (4.9)

Now, for the upper half-plane, a plethora of “affine Wigner functions” were orig-
inally constructed by the Bertrands [10]; see also [59]. One family among sev-
eral options satisfying good covariance properties (under the ‘ax + b’ group and
some extensions of it) is distinguished by “unitarity”, that is, the correspondence
|¥) (| — WY should extend to a unitary isomorphism between Hilbert—Schmidt
operators and L2(I1, dx dy/y). For our purposes, it is enough to check that (4.9) with
our quantizer coincides with their Wigner functions. This is done by inspection of for-
mula (57) in [59], modulo our conventions for the unirrep K[O4], or equation (IV.7)
in [11], where Darboux coordinates on the phase space are used.

For an arbitrary normalized state ¥, we remark that [ (WY ()P dw(z) = 1,
which seems curious since 1 need not belong to the domains of all 2(z). We return
to this question in [41]. Geometrical properties of the affine Wigner functions have
been much investigated, in regard to positivity, localization, marginal distributions,
interference, etc. On this, we can do little better than to refer to Flandrin’s articles
[33], [34].

4.6. Summary. The strategy outlined in Section 4.1 has been successful. The out-
come is that the deceptively simple formula for the operator-valued distribution

D'(T) ® B(K) > Q(F) := / e 2 HFIX) U(exp X) d X, (4.10)
aff

with d X the Lebesgue measure, makes sense, and the bounded operators
/ a(F) / e 2 HFIX) U(exp X) dX dF
aff* aff

for a a test function on aff*, supported on II, are explicitly given. Lest the reader
be misled by the heuristic approach ostensibly taken in Section 4.1, it must be said
that (4.10) recommends itself because from it covariance of €2 is ensured to hold by
an abstract argument. Again, the reader will have no difficulty in checking it. This
point of view had been emphasized in [75].
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5. The Moyal twisted product on the half-plane

The Moyal product f *h of two functions £, & on IT is by definition the dequantization
of the operator Q(f)Q (h); to wit,

fah(z) = Tr[Q(z)/f(w)Q(w) dw(w)/g(l)Q(t) dw(z)]

(5.1)

:// Koz, w, 1) F(w)h(r) do(w) do(?),
12

where
Ki(z,w,t) 1= Tr(Q(z)2(w)2(1)). 5.2)

The “trikernel” K, enjoys left invariance:

TH(Q(Z - 2)QZ - w)RAZ - 1)) = Tr(U(g2) QW)U (g2))
=Tr(Q((z)Q2w)R(1)).

Using this invariance we can rewrite the Moyal product of two functions — also, using
(1.2) and the cyclicity of the trace-integral, eventually of many distributions [44] —
on I, gifted with the invariant measure dw(z) = dx dy/y, in the following ways:

f*xh(z) = // Ki(z,w,t) f(w)h(t) do(w) dw(t)
12
:/ K.(i,z7V - w,z7t - ) f(w)h(t) do(w) do(t)
112
=/ Ki(i,w,t)f(z - wh(z - t)do(w)dw(t).
12

Let Ry, R; denote right multiplication operators (i.e., the right regular action) for the
group structure on IT, and note the elegance of the final “deformation” formula:

fxh= / K.(i,w,t)Ry fRihdw(w) dw(t). (5.3)
112
We do not omit, finally, the tracial identity for our star product:

/ f*h(z)dw(z):/ f(@)h(z)dw(z);
n mn

this comes straight from (5.1) on using the properties of the Stratonovich—Weyl quan-
tizer.
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5.1. The trikernel for the twisted product and its symmetries. We need the solu-
tion x (yo, y1, y2) of the equation

5 = 0y (0y, (0y,(5))).

Equivalently, it is the solution of

Oyo (8) = 0y, (0y,(5)) or 0y,(s) = 0y, (0y,(5)).

Given any (positive) values of ygo, ¥1, ¥2, there is indeed a unique solution to these
equations, for one of the sides increases monotonically from O to co, whereas the
other decreases from oo to 0. Under the exchange zy <> z,, with z; held fixed,
the value of k is unchanged. Moreover, k is a homogeneous function of degree 1,
since ¢ 'k (cyg, cy1.cy2) and k (g, y1, y2) solve the same equation. We abbreviate
0012 := Oy, © 0y, © 0y,, whose inverse function is 0219 := 0y, © 0y, © Ty,.

With this in hand, one can proceed to compute the trikernel. After a straightfor-
ward, though tedious, calculation, one obtains

Ky, (K)0y, (K) Yy, (1) Yy, (0, (K)) Yy, (0y, ()

yoy1y2(1 =01, (k)) (5.4)

Q2T [%yyo (=353, (@3, ) =52y, @]
,

K.(z0,21,22) =

where the dependence on yy, 1, y» through « is understood.
The trikernel is of the general form

K. (20,21, 22) = A(zo, 21, z2)e?™ 5 (F0:21,72)

for real amplitude A: M3 — R and phase S: M> — R functions. By its construc-
tion, we expect K, to have several symmetries. First of all, cyclical symmetry. With
K (Yo, y1, y2) defined by k = 0,01 (k), with the obvious notation, the same calculation
gives
K0y, (K)ay, (K)yy, (K)yy,(0y, () 7y, (0y, ()

Yoy1y2(1 =034, (%)) (5.5)

271 [ 32 73, © =32 30 (0, @)= 3L vy, @]

Ki(z2,20.21) =

e
But & is just oy, (k); thus
Vya (K) = VY (’2) and also Oy (K) = Oy, (’2)’ 1mp1y1ng Vyo (Uyl (’2)) = Yy (K)’

and one sees at once that the numerator of the fraction in (5.4) and the phase factor
coincide with those of the new formula (5.5). Moreover,

0301 (k) = 0)/;2 (0y,(0y, ())) 03,;0 (0y, (k) UJ/;I (k)

= O—Jliz(K) 0),/0 (O—yl (Oyz (K))) O—)/;l (Uyz (K)) = U(l)lz(K),
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and we conclude that, as expected,

Ky (z0,21,22) = Ki(22,20,21) = Ky (21, 22, Z0).
Next we investigate the switch zy <> z5 (with z; fixed). We observe that

1 _ _0510(0210(’()) _ _0510(’()
1 — 09, (k) 1 —03,0(0210(k)) 1— 0510("),

since 0210(k) = k. On multiplying the numerator of the fraction occurring in (5.4)
by
—0310(k) = =03, (0y, (0y, (K))) 0y, (03, (K)) 03, (k)

and taking (3.5) into account, the whole fraction becomes

K Uyo (K) O—yz (K) V)/zz ((Uyz (K)) y)’}] (Uyo (K)) V}l;o (K)
yoy1y2 (1 = 0314(x))

In other words, the fraction is unchanged by the switch zy <> z,. Now note that

Y31 (0y, (K)) = 0y, (k) — 0y, (0y, (k) = Oy, (k) — 0y, (K) = Yyo (k) — Yy, (k).

Using this formula, we can reexpress the phase factor in the trikernel (5.4) as

exp {21 (1 = o)+ (S = ) @)].

This is manifestly skewsymmetric under the exchange zo <> z», with z; held fixed.
In fine, we have shown that

K, (20.21,22) = Ku(22, 21, 20) = Ki(20.22,21) = Ky (21, 20, 22),

where cyclic symmetry has been reinvoked; in particular, this confirms that complex
conjugation is an antilinear involution for the twisted product. Corollary 4.3 can now
be read as stating that (L2(I1, dw), ) is a Hilbert algebra.

Finally, we expect K. (z¢,21,22) = Ki(i, 251 © Z1,Zg - Z2), in view of left
invariance. Indeed, the trikernel is invariant under the transformations

1

Xo 0, x> Xx1—X0y1/Yo, X2b>X2—XoV2/Yo,
yor> 1, y1+ y1/yo, Y2 = y2/yo,

on account of the homogeneity properties of «.

Inspired by earlier exact results [42], [82], Weinstein [81] developed a heuristic
argument for the construction of trikernels on symplectic symmetric spaces. In this
approach, the phase function S is postulated to be an (invariant) oriented symplectic
area of a geodesic triangle for which zg, z1, z, are the midpoints of the sides, and the
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amplitude A is chosen as to achieve associativity of the twisted product — implicit in
our treatment — and other desirable properties. The idea has been further developed
in [69] — where some caveats are made —and in [12] and [24, § 3.3.5]. Itis sometimes
linked to the purported role of reflections in producing quantizers. However, it is
known [76] that reflections do not lead directly to Stratonovich—Weyl quantizers in
general; and itis straightforward to verify that, although it enjoys the same symmetries,
our phase function is not the area. The question deserves further investigation [13].

5.2. The extended covariance group of the twisted product. The ordinary Moyal
product on the full plane R? has a larger covariance group than the original Heisenberg
group of phase-space translations under which it is equivariant; this is the inhomoge-
neous metaplectic group of unitaries U(g) such that Q(f) — U(g) Q(f) UT(g) =:
O(f o ¢) implements a diffeomorphism ¢ of the plane that normalizes the action
of the Heisenberg group. For the half-plane IT, its analogue will be a Lie group of
symplectomorphisms normalizing the action of Aff. At the infinitesimal level, the
generators of this group are given by symbols f; such that the Moyal bracket

[fi hls :=27i(fi xh—h x f;)
coincides, for arbitrary &, with the Poisson bracket

(iohe =y (G5 - )

corresponding to the symplectic 2-form dx A dy/y on I1. In other words, these f;
are “distinguished observables” in the sense of [9].

The (neutral component of ) the normalizer of Aff within the group of symplec-
tomorphisms of IT is easily determined [75]. Any one-parameter subgroup is gen-
erated by a Hamiltonian vector field of the form Hy = y( Iy % — fx%) for some

f € C°°(I1). Since the action of aff on IT is generated by the vector fields y% and
y %, we require that

9 9 9
[Hf,y 5] = —(fxy + fy)ya + yzfxxg,

ad ] ad 5 i
He,y —|=— — —
[ R % Ofyy + )y ox + ¥ fxy ay
be linear combinations of y % and y % This easily entails that

f(x,y)=ax+ By +ylogy +4§

for some constants «, 8, y, §. Ignoring the trivial constant term that does not contribute
to Hf = —ay % + By % +vy %, we obtain a solvable 3-parameter group G extending
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Aff by R. The appearance of the log function above is related to the existence of ray
unirreps of G given by

Ula,b, o)y (r) = 207 r27iCy (ar).

This covariance group was also found in [10] by a not very different method.

To ascertain that this group is indeed a symmetry group of our twisted product,
one must verify that the three functions x, y, log y are distinguished observables.

Lemma 5.1. For any smooth function h on T, the following relations hold:

oh oh oh
[x,hle = y—; [, hls =—=y-—; [logy,hlx = ——. (5.6)
ay 0x ax

Proof. We first determine the operator kernels corresponding, via (4.8), to the three
basic functions:

Qx(ra S) — / x€2ﬂixlog(r/s) dx
R

1 1
—68'(logr —logs) = —(s28'(r —s) — s8(r —s)).
2mi

2mi
_ [ "5 omixleg(r/s)
Qy(r,s) = /I; log(r/s)e g dx
! rs
= m S(logr —logs) = mg(r —9),
Qlogy(r.s) = /D;log(lorg(_r/ss))eZTIixlog(r/s) dx
B m blogr —logs) = (slogr — s log A(log(r/s))) 8(r —5).

5.7

We have written Q, for Q(x), and similarly for the other operators. If the quantized
operator Q (h) has kernel B(s, t), then Q([x, h],,) = 2mi[Qx, O(h)] has kernel

o0 d
i /0 (0+(r 1) B(t,s) — B(r, 1) Ox(t,5)) Tt
= /oo(t 8(r—1t)—68(r—1))B(t,s)— B(r,t)(t8'(t —s)—8(t —s))dt
0

= %)tzr(—zB(t,s)) - % _ 1B = —r%—l:(r, )+ %—lj(” 9)-
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On the other hand, (4.7) yields
0B
yo—(2) = / (yk(u)a_(yk(”),yl(—u))
R r
i —2mwixu
+ yk(—u)g(yk(u), yk(—u)))e 2 du
1 [~ 0B s
N ;/o ray 0y ()Y} (r)e 2T Xyl gy
1 [~ 0B .
i _/ s_(ay(s)’S)V;(S)ezme(S/y) ds
y 0
0B
= / / _r— + 5— )(r S) )/y(s)ezﬂlxy(s/y)(g(r_a (S)) dr ds

and using (4.7) once more we obtain the desired relation:
oh
{x,h}pg = Y3, = Wo(x.n,) = [x, hl+.
y
The other cases are simpler. One finds from (5.7) that the kernel of Q([y, h].) =

2wi[Qy, Q(h)] is 2mi(r — s) B(r, s) and that Q([log y, h],) has kernel 27i(logr —
log s)B(r, s). Therefore,

112 = 220 [0, = 51303 51503 016277 s
= —2mi /oo B(Gy(s),s)yJ/)(s)(y(s/y)e2ﬂixl’(s/y)) ds
0

oo

B(oy(s), S)}/; (s)ezﬂixV(S/y) ds

o
0 oh
= ——(hE) = =y 3-().

An almost identical calculation, with the relation oy, (s) —s = —y y(s/y) replaced by
the identity log o), (s) —logs = —y(s/y), yields [log y, h]. = —0h/0x. Or we may
just remark that [ -, ], is a derivation. O

On regarding the functions x, y on phase space as elements of the Lie algebra aff,
the first two equalities of (5.6) show that our twisted product is an aff-invariant
*-quantization in the sense of [9], [36].

5.3. Onthe universal enveloping algebra product. By duality and symmetrization,
the universal enveloping algebra U (g) of a Lie algebra g can be realized by an algebra
P (g*) of polynomial functions on g*. Thus it makes sense to compare the (restriction
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to IT of) the product on U (aff) as transferred to P (g*) with the twisted product; in
our case the correspondence gives X1 +— x = x1; X» — ¥ = Xx. Let us denote
by * that transported product. Its expression is complicated in general, but it is well
known that one obtains

o0
h
i = X; B, sym (X)) —/
x; % h xh—l—Z; 1;1:( {ad(xg,) ... ad(xg,)}s (x)anl i
n= 1.---Kn
1 ah
h*x; =xih+ EZ[Xj»xi]Wj (5.8)
J
+i3 > fad(xg,) ... ad(xk, )} (x~)L
n=2 nk] k e o 8Xk1...ann’

where the k; take the values 1 or 2 in all possible forms and {... }s,;, means total
symmetrization of the operations inside the curly brackets. The rule makes sense
because the Lie products are supposed known: here [x;, x2] = x,. For instance, we
see that, if # depends only on the second variable, then the series terminates, and
xxh(x,y) =xh(y)+ %yh/(y). The second term of the series in (5.8) is just % times
the Poisson bracket:

oh oh oh oh
]Z[xj,x]gj = —)’@, ;[MJ’]E = y5~

Thus in particular

Xi *h_h*xi = {x’h}PB = [xl"h]*-

A detailed comparison between * and the asymptotic expansion of » would lengthen
this paper too much; we come back on this matter in [41] and [13].

6. Right-covariant quantization

In this section the notation d;z will be used for dw(z) = dxdy/y, and d,z for
dx dy/y?. For the purposes outlined in the introduction, we are actually interested in
a right-covariant star product, as well as the left-covariant one constructed so far. We
summarize again our desideratum: a pair of quantizers L, QR both acting on X,
satisfying

@) @Bk @) = bR(@),

(i) U(g)QH(2)UT(gz) = QF(2' - 2) and UT(g:)QR (2)U(gr) = QR (z - 7)),
(i) TrQLR(z) =1,
(iv) Tr(QER(z) QLR(2') = I r(z.7),
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with /7 and Ig denoting the reproducing kernels for L2(I1, d;z) and L*(I1,d,z),
respectively. Here Q% = Q is the quantizer already found. Define

f) = fz7Y withz7'=(x+iy) ' i=—x/y +i/y,

the inverse for the product (2.7). It seems natural to replace the quantization rule (4.2)
by

A= [ 25@) 1@ 4z = 0l
when using the right-covariant quantizer. We obtain Q g( f ) = Q(f) if we declare

that
QR = Q@E™.

It is not idle to check consistency of this rule with previous use of the coadjoint
action and the diffeomorphism z > g,. We need to verify that

zagy=(g vz ) l=z2.7. (6.1)
Indeed,
’ ’ . -1 _x/_xy/ i \7! / ’ .
(O =)o (=x/y +ify) T = (o ) = 0 iy
Yy Yy

The right-covariant quantizer is thus given by the following expression:
1 .
QR(z) = — / / 2T WX/ YN (* v /A (—u)) du dv.
Y JJR2

It is easy to check consistency of this with Q(z) = Q& (z~!). Itis also straightforward
to verify, along the same lines as before, the four properties listed above; in particular,

Tr(QE(2) QR (w)) = y28(z — w).
For the trikernel, one obtains
KRGz, w, 1) = Tr (@R () QR (w) QR (1)) = K.z w7,

This yields the following tautological relation between the twisted products * and »&:
f*Rhiz) = / KRz, w,t) f(w)h(t) dyw dyt
112
= / K.z Lw ™Y f(w)h(t) dow dyt
112

- / Koz w.t) f ORGY) dyw dit = (F % 7)(2).
Hz
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consistent with
OQr(f % h) = Qr(f) Qr(h).

We finally register the following formula for the product &, similar to (5.3):
faRh = / K.(i,w,t)Ly fL:hdjw d;t,
12
and the tracial identity for the «® product:

/ f*Rhz)d,z =[ f)h(2)d,z.
II II

7. Fourier-Moyal transformations on the ‘ax + b’ group

7.1. The Fourier—Moyal kernels. Consider the following distribution or kernel:

E(z.g) = EL(z.8) 1= Tr(Q+(2) U(g)) = Wy, (9)(2).

for z € 11, respectively, and g € Aff. As a consequence of this definition, we see
that E is the symbol for the unirreps:

Us(g) = /i EG0920) dos (2), (7.1)

We compute the kernel, expecting the covariance property
E(h>z,hgh™') = E(z, g). (7.2)

It comes as a “nice surprise” that the kernel is a U(1)-valued smooth function. Take
Imz > 0. From equation (4.1), one gets

Q(n)U(g) =y // e 2mixuty (et o™ (b + v/A(u)) du dv,
R2

and the kernel of this operator is thus
QU(z, g:r,s) =y // e—2ni(xu+yv)62nie“(b—l-v//l(u))rsg(s —re*a) du dv
R2
=y // e—z:-ri(xu—i-yv)ezme”(b—i-v/)t(u))r(g(u —log(s/ra)) du dv
R2
— y/ e—27[i(xlog(s/ra)+yv)827ria_1s(b—l—v/)t(log(s/ra))) dv
R

— ye—zmxlog(s/ra)ezmbs/ag(y _ s/a /\(log(s/ra))).
(7.3)
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Its trace is the desired kernel, explicitly:

e )
d
[E(Z,g):/0 QU(Z,g;r,r)Tr

) © . dr
— eanxloga/ e2mrb/a5 —r/Aloga
y | (y —r/A(loga))—~ (7.4)

— yeZTtixloga / €2nirb/a/\(10ga)8(r _ yk(lOg Cl))ﬂ
0 r

— eZm'(x loga+ybA(loga)/a)

We then see that [ is smooth and of modulus 1. We check the coadjoint covariance
of this kernel. With i = (a’, b’), one indeed finds that

E(x+b'y/a" +iy/a";(a,d’b +b'(1-a))) = E(x +iy:(a.D)).

since (a~! — 1)A(loga) = —loga from the definition (2.4). By computing on the
second orbit, the formula is valid for y < 0 as well.
Similarly, the right-covariant quantizer yields another kernel:

Er(z, ¢) := Tr(QR(2) U(g)) = E(z", 9),
with the expected covariance property:
Er(z <h,h™'gh) = ERr(z, g),
which follows from (7.2), in view of (6.1). Thus we get, explicitly,
Er(z, g) = 27 (Cxloga+bilioza)/a)]y.

It is enlightening to pass to Lie-algebra coordinates in the E-functions, for the first
group arguments:

E(z:u, b) = 2 @X+DAC0N  [Fp(ziy, by = 2T Cux+bAw)/y.
or for both:
[E(Z; u, U) — eZni(ux-‘rvy)’ [ER(Z; u, v) — eZm'(—ux/y—I—v/y)'
Note the simplicity of the last result for [. If we regard z as an element of aff*, then
Tr(Q4(z) UsL(exp X)) = exp(2mi{z | X)) forall X € aff,

has been proved to hold.
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In conclusion, the left Fourier—Moyal transformation, denoted [y, is given by
Falf1e) = [ EGo) f(o) die

du dv
Au)

// exp{2ni(xloga + bA(loga)y/a)} f(a,b)
Aff

// exp{2mi(ux + vy)} f(e*, v/A(—u))
dadb

Compare (2.11). The right Fourier-Moyal transformation [F{; in turn is given by

FLLA1() = / Er(z.2) f(g) drg

dudv
()
da db

- // expl2mi (—ux/y + v/ )} F(e. v/ A (<)

// exp{2mi(—xloga/y 4+ bA(loga)/ay)} f(a.b)
Aff

We run a first few checks on these Fourier—Moyal kernels. Fora = 1, b = 0, we
recover trivially Tr QL-R(z) = 1. Also, from (7.3) for g = 1, one gleans without
effort the form (4.4) for the kernel of Q2(z), that was useful to invert the Wigner
function in Section 4.5.

We should be able, as well, to recover the character from the right kernel, say.
Indeed, since f I QR(2)dyz = 1x - the characters of the representations Uy are
retrieved from

/ e—Znixloga/yeZnibA(loga)/uy dx dy — 8(a _ l)eZniybd_y — X:I:(g)-
+I1

2 x
y R |yl

This leads to ;[ y+] = w~+: the ugly duckling of a character (2.8) turns here into the
swan of the symplectic form. The same holds for Fy. Also, the following equalities
are immediate:

TULLf] = L R/ diz = L ELA1E .5)

7.2. The modified Fourier-Moyal kernels. Just as the operator Fourier transform
needs modification for groups that are not unimodular, we must redefine our Fourier
kernels in order to get a Fourier inversion theorem and a Parseval formula. Consider
now the following distribution or kernel:

E™(z2.8) 1= Tr(Qu (1) Us(8) dy*) = Wy, (g)12(2).
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for z € £T1, respectively. Take Im z > 0. From (4.1), we obtain

Q()U(g)d? =y /f eI (Mg e (b + v/A(u)M /- du dv,
R2

and the kernel of this operator is thus
QUA?(z,g:r, )

=y // e—2m'(xu+yv)62m'e“(b+v//l(u))rs3/28(s . reua) du dv
R2

=y // e—27ti(xu+yv)s1/2627rie”(b+v//l(u))r8(u _ log(s/ra)) du dv
R2

=y/e—27ri(x10g(s/ra)+yv)e27ria1s(b+v//l(log(s/ra)))\/gdv
R

— —2mixlog(s/ra) ,2nwibs/a 5( _;)
ye ¢ Vsb(y alr(log(s/ra))

Its trace gives us the desired kernel:
o0
d
E™(z,8) = / QUd'2(z. g:r. 1)
0 r

oo
. ) d
= ye?rixloea / e2mirblag(y — r /) (loga)) e
0 v

)
, : d
— yeZﬂlxloga / e2mrb/a/\(10ga)8(r _ y)t(loga))—r
0 NG
— /Iyll(log a)eZTti(xloga-i—yb/l(loga)/a)'

We have written |y| for y, so the formula remains valid on the second orbit. We then
see that E™ is no longer of modulus 1. We check the coadjoint variation of this
kernel, and find that

E™4(z, g) = AV2(ME™Y(h >z, hgh™").

In conclusion, we make the new definition

FLf(2) = / E™ (2. ¢) f(¢) dig
du dv
NATE

This is seen to coincide with the Fapk transform of [3]: compare (2.13).
Summarizing, the situation is as follows: the formulas analogous to (7.5) are
true as well for the Fourier—Kirillov transform, as pointed out in Section 2; that is of

= VIl // exp{2mi (ux + vy} fe*, v/ A(—u)) Ll
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course well known, and happens for the good reason that the character is concentrated
at a = 1 (i.e., at the subgroup generated by the Pukdnszky subalgebra subordinate
to the maximal orbits). On the other hand, for the inversion and Plancherel theorems
to be perfect analogues of the ordinary case, we also need a modified Fourier—Moyal
transform. This “fact of life” reflects the non-unimodularity of the group. The relevant
results are established in the next section.

7.3. The basic theorems of Fourier analysis

Theorem 7.1. The left Fourier—Moyal kernel and transformation enjoy the following
properties:
 Hermiticity: complex conjugation gives E(z,g) = E(z,g™1).
 Covariance: E(z,g) = E(h >z, hgh™") for all h € Aff.
¢ Character formula: / E(z,g)dwi(z) =TrUx(g).
+11

* Convolution theorem: Fy[ f * h] = Fu[f] * FumlA].
Analogous properties hold for the right Fourier—Moyal kernel and map.

Proof. Thefirst property is obvious from the definition and the selfadjointness of 2(z).
The second and third properties have already been established. The fourth is easy:
note first that

E(-.8)*E(.g) =E(-,g8) (7.6)
on account of (7.1) and (5.2). Therefore,

fulf sh = | EC.eg)f@he)digdig’ = ulfl«Bulil.  C
AIF X Aff
Analogous properties hold for the modified kernel, as follows.

Theorem 7.2. The modified Fourier—Moyal kernel and transformation enjoy the fol-
lowing properties:

* Modified hermiticity: E™d(z, g) = A~1/2(g) E™d(z, g~ 1).
* Modified covariance: E™4(z, g) = AY2(h)E™(h>z, hgh™") forall h € Aff.
 Modified convolution: for all f € L'(Aff,d;g) and h € L' N L?(Aff, d;g),

o (f % h) = Fulf 1+ B[] = BiLf 1« BulA™"2A).

Proof. The first two are elementary. For the third, first notice that

Fmlf1(z) = /Aff Tr(Q(z) Ux(8)) f() d1g = Tr(Q(2)U(f)) = Wu()(2)
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for z € #II, when f € L'(Aff,d;g). On the other hand, when & € L! N
L?(Aff, d;g), the relation

Us(hydy? = d>Us(A™12h)

follows from selfadjointness of d and the semi-invariance relation (2.15), integrated
over the group. More precisely, this equality on the domain of di/ % extends to the
operator closures, which are everywhere defined and Hilbert—Schmidt on X [3], [28].
Thus, over the orbits =TT we obtain

mod _ _ _ mod
|:FM (f * h) - WUi(f)Ui(h)dj:/z = WU:I:(f) * WUi(h)dzlt/z = [FM[f] * [FM [h]
[4pt] = WUi(f)dj_JZUi(A—lﬁh) = WUi(f)arj_J2 * Wy, a-1/2m)
[4p1] = FIY £] » Fy[ATY/2A]. O

The modifications make the nontrivial theorems of Fourier analysis available:
namely, the analogue of the Schur orthogonality relations for compact groups (the U+
are discrete-series representations), the Fourier inversion theorem and the Plancherel—
Parseval unitarity relation. (See [31] for the compact semisimple case and an appli-
cation of it.) To state them, we extend the measure v = w4+ U w— from IT U —IT to
aff* by declaring the complement R to be a nullset.

Theorem 7.3. These additional properties hold for the modified Fourier—Moyal kernel
and transformation:

* Orthogonality: /
A

Emod(z, g) E™Y(w, g)d;g = |y|8(z — w) for z,w € +TI.
fi
* Inversion theorem: f(g) = / Emod(z, g) F[ £1(z) dw(z) whenever f €
aff*
D (AfF).
 Plancherel formula: / I £1(2))? do(z) = / | f(2)|* d;g whenever
aff* Aff

f e L2(Aff, d; ).

Proof. For the Plancherel formula, it is enough to show the relation for ' € D (Aff);
the extension to L?(Aff, d;g) by unitarity is immediate.

Take z = x + iy, w = u + iv in II; the case of z, w € —II is similar. The
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orthogonality relation is straightforward:

/ EI(z. g) E™(w. g) dig
Aff

)dadb

— vA(los a eZm'((x—u)loga+b(v—y)l(loga)/a
| vitoga -

oo 27i (x—u)1 da
= [ yrmemeesy o) S |yistc— iy - ).
0 a
The result obviously implies that

Q@) = / Ed(z, g) U(g)d "2 dyg.
Aff

where the + signs have been omitted.
For the inversion formula, take f € D (Aff); then

[ FE O R 16 dot)
= / */ [EmOd(Z,g) [Em"d(z,g/)f(g’)dlg’ dw(z)
aff ™ J Aff
=/ IyI/ VA(loga)/A(loga’)
nu—-11 Aff

e—Zni(x(log a—loga’)+y(bA(loga)/a—b’A(log a')/a/))f(a” b’)Lﬁbl dx dy
a Y
. / / ’ da/ db/
_ / A(loga’)8(a — a’)e= 2T b=b)A0s ) dp(y! -~ dy
R J Aff

— / / A(10ga)e—27‘[iy(b—b/)l(loga)/a‘f(a’b/) db/ dy — f(a,b)
R JR a

We note the agreeable similarity between the Fourier transformation and cotransfor-
mation.

Finally, the Plancherel relation follows directly from the inversion theorem. Again
we take f € D(Aff), for simplicity:

/ R Pdo() = / [ TG e Bl dig doe)
aff aff ™ JAff
- / 7@ /(9) dis.
Aff

We invite the reader to make a direct proof of this; it proceeds along the lines of the
inversion formula, and is even shorter. O
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Recall that in the case of a compact semisimple group, the Plancherel measure
dw(z) is supported on the integral coadjoint orbits ;, on each of which the formal
dimension d; is a constant. By taking [Fl\r}[]"d(z, g) = djl/ Z[FM(Z, g) when z € O,
one recovers the usual aspect of the Plancherel formula for || £ ||? as a weighted sum
of integrals over these orbits [31]. The role of the Duflo-Moore operator as a formal
dimension operator is transparent in our context.

Using Moore’s concept of reduced character [60], defined for all f € D(Aff),
one can establish a character property for [Fl{,[“"d. We forgo this. Finally, the right
Fourier—-Moyal kernel and transformation may be modified in the same way, leading
to altogether analogous harmonic analysis properties, mutatis mutandis.

8. Discussion

8.1. The Fronsdal program and differential equations for the Fourier—Moyal
kernel. In the terminology of [36], our E-function is a x-representation, that is, it
satisfies equation (7.6). In view of the first part of theorem 7.1, we have a sym-
metric *-representation (here called hermitian) in the sense of that reference. Such
*-representations are intrinsic objects on coadjoint orbit, introduced by Fronsdal as a
(putative) lifting to the group level of the x-exponentials of [9], which play a funda-
mental role in the theory of star products. They fulfil systems of differential equations.
Concretely, Fronsdal’s generic proposal for the x-representation kernel is the locally
given x-exponential:

o .
2ni X ) (F
Er(F. g) = exp, [2niX|(F) = Y CriX)™(E) g g = X,
n!
n=0
The coefficient 2z thrown in here is convenient, given our definitions. Good treat-
ments of the x-exponential are given by Arnal [5] and Gutt [48]. One readily sees

that this object satisfies formally the equation of a x-representation:

Er(-.g) *Ep(-.g) =Er(-.g8"). (8.1

From the covariance relation (8.1) one derives ordinary PDE for this type of x-re-
presentation kernel, that may be sufficient to determine it under favourable circum-
stances. Substituting e’X for g and g’, for any X € g one obtains by differentiation
of (8.1) at the formal level,

[X. Eplx = [r(X) = [(X)]EE.

with /(X), r (X)) respectively the corresponding left- and right-invariant vector fields.
We proceed now directly on aff and use its standard basis; then X; = x, X, = y.
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Thus because of the invariance formulae (5.6), we must have in our case:

9 9
yo-B(x,yia,b) = [r(X1) = (XD)]E(x, yia,b) = b E(x, y;a,b),
dy ab 82)

VarE (e, yia ) = 106) — r(o)JEe via,B) = (@~ 12 ECx,via,b).
x b

This is the fundamental Fronsdal differential system for Aff. Direct inspection of
the explicit form (7.4) of our E shows that these equations are indeed fulfilled. We
already saw in Section 7.3 that the analogue of (8.1) is satisfied by our [ as well.

Following the Fronsdal program, invariant affine *-quantization was studied
in [51]; the latter is the oldest work on quantization based on the affine group of
which we are aware. Equations (8.2) coincide with equations (2.9) of [51], when
allowance is made for a slightly different definition of the affine group multiplica-
tion. Of course, our focus in this paper is on the tracial property rather than general
covariance. Thus we did obtain a distinguished solution.

8.2. Relation with the formalism of Alief al. In [2], [3], [54] taken in the context of
the affine group of the line, the Wigner functions are indirectly defined as the images
of the map

HS(X ) ® HS(K_) — L%(aff*, dwy U dw_),

obtained by composition of the inverse Plancherel transformation and the Fapg -trans-
formation already given in Section 2.3:

W[A] = Farx[P~' (A)].
These authors furthermore propose “formal Wigner operators” W ( F') via the property
Tr(A W(F)) := WI[A](F).

In view of the results in Section 7.3, it is clear that the dequantization Wy in (1.1)
and in Section 4.5 is the same as W[A], and the formal Wigner operators W (F) are
just the Stratonovich—Weyl (de)quantizers Q(F'), which are not merely formal at all,
and have been explicitly calculated in this paper. It is remarkable that the integral
expression (49) for W(F) in [2] makes manifest use of the Duflo-Moore operators,
whereas ours does not; they however coincide.

Nevertheless, the difference between our axiomatic approach and the treatment
based on the Plancherel transform and the a priori Fourier transformation (2.12) is
not moot. Only the coadjoint orbits have an interpretation as elementary physical
systems (see [19] in this respect); the coalgebra g* by itself is an empty vessel. Now,
the second definition raises the problem of the eventual indecomposability of W [A]
on the coadjoint orbits; or, on account of the Kirillov map, on the unirreps. This
indecomposability actually happens [3]. Moreover the definition of Fapx will not do
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for compact groups; and the character formula a la Kirillov is lost with it, anyway. It
seems preferable to accept that the Stratonovich—Weyl quantizer generally determines
the correct scalar Fourier transform, rather than the other way around, and that for a
non-unimodular group there are four such pertinent objects: Fyy, F{i°d and [y, [Fl{,[md’r.

In other words, our approach is geared to fit better with Kirillov theory. It has
an obvious drawback, in that no one knows precisely for which categories of groups
and unirreps do quantizers exist (for non-type-I groups there is no hope whatsoever).
We give an apercu of the question in the following section, through the story of
Stratonovich—Weyl operators so far.

To conclude, note that our Weyl Ansatz for Q( f) can be rewritten in the form

0(f) = / L0 Us e, ve A0 du .

where F is the ordinary Fourier transformation between functions on aff * and on aff,
and to use it, we extend f by zero on the complement of I1. Thus, the quantization
prescription is not unrelated to the proposal of Manchon [56] for Weyl quantization of
solvable Lie groups — which however ignores the issue of supports within coadjoint
orbits, needed to establish boundedness or compactness of the quantized operators.

8.3. Setting the record straight. The concept of Stratonovich—Weyl quantizer was
introduced in the late eighties [45], [77] by two of us. In [46], Section 3.5, we
reported that the name had not caught on, and called them “Moyal quantizers” instead.
But the concept itself certainly did catch on, and beyond [15], which inaugurated a
wealth of applications, we find it in [2] under the name “Wigner operators”. Lest that
nomenclature be misread as a priority claim, it seems wise to revert to form. We still
speak here of Moyal-type quantization for tracial quantization, and of Fourier—-Moyal
kernels and transformations.

The main motivation for the early works was to extend the remit of phase-space
Quantum Mechanics. In particular, tracial twisted products covariant under SU(2), for
dealing with spinning particles, were developed in full detail, including applications,
in [77]. There we were elaborating on old work by Stratonovich [73] — who should
thus be credited with introducing the “fuzzy sphere” — and were unaware of another
precedent [1]. An equivalent version of the SU(2)-Stratonovich-Weyl quantizer,
simpler than our original expression, is given in [49].

The Stratonovich—Weyl quantizer appropriate to deal with relativistic particles [19]
was developed shortly after [45], [77]. Indeed, the prevalence of the Heisenberg
groups in quantization is an artifact. From the physical viewpoint, the coadjoint orbit
for the 7-dimensional Heisenberg group makes its appearance as a direct factor of
the splitting group Gal of the covering group of the Galilei group [17], that linearizes
its multiplier representations. Thus the restriction of the quantizer for Gal to the flat
part of the orbits renders the standard Moyal quantizer [45]; for an explicit calcula-
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tion showing the multiplier Galilean covariance of the ordinary Moyal framework,
peruse [65]. All this often goes unremarked.

Stratonovich—Weyl quantizers exist for all compact Lie groups. This was shown
in principle in [31] by the time-honoured method of interpolating between the “ac-
tive” and “passive” symbols associated to semitracial quantizers. Then in the nineties,
apparently unaware of that work, N. V. Pedersen introduced a similar set of postu-
lates, and proved the existence of Stratonovich—Weyl quantizers, for nilpotent Lie
groups [64]. See also [37], Section 4.5, on this matter. Prior to all that, the Unter-
bergers [76] had shown by the interpolation method the existence of a Moyal-type
quantization for the discrete-series representations of SL(2, R). In this regard, we
wish to mention [66] as well. (To our knowledge, however, no one has been able
to exhibit explicitly the Stratonovich—Weyl quantizers for this case.) These older
examples and the work of Ali and coworkers indicate that Stratonovich—Weyl quan-
tizers exist for large classes of semi-direct product groups. The time seems ripe for
a renewed assault on Moyal-type quantization and scalar group Fourier transforms
covariant under larger classes of solvable and reductive groups.

Fourier—-Moyal kernels are arguably even more important than Stratonovich—Weyl
quantizers, because of their crucial role in harmonic analysis. They seem destined to
complete Kirillov theory. For years, the abstract nature of expansions of functions
on Lie groups in terms of equivalence classes of unitary transformations has been a
source of some dissatisfaction [50]. However, one still finds the Plancherel measure
usually realized on (A}, rather than on g*. For compact group symmetry, we demon-
strated in [31] how the Fourier—Moyal transformation solves the problem of giving a
formulation of harmonic analysis parallel to standard Fourier analysis. This section
and the previous one show a wider applicability of its method; and, although here we
have opted for concrete proofs, there is a good chance, in view of the Leptin—Ludwig
theorem, that similar results are valid for all exponential groups. To finish, we should
mention that a bit earlier — see [6] and references therein — a concept of scalar “adapted
Fourier transform” had been proposed; because of covariance trouble it actually does
not seem to be all that well adapted to the context.

9. Spectral triples on the half-plane

We turn at last to noncommutative spectral triples. The upper half-plane IT is a model
for the simplest hyperbolic geometry, living on a Riemannian surface with negative
constant scalar curvature. It may be regarded as a homogeneous space of the group
SL(2, R), acting by M&bius transformations z — (az + b)/(cz + d) on II.
Writing a typical element of the Iwasawa decomposition SL(2, R) = ANK as

e o2 0 1 s cos%Q sin%Q
g=amskg =\ o /2] o —sin%@ cos 56/’
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the compact subgroup K = SO(2) fixes i and thus IT &~ SL(2, R)/SO(2) is a principal
homogeneous space for the subgroup AN. The orbits of A are half-lines emanating
from 0, and the orbits of N are horizontal lines: see Figure 3.

Figure 3. Orbits of A and N for the half-plane.

Under the identification
AN samg <—amg i =a; - (i +5)=se' +ie' =x+iy=zeTIl, 9.1
we may transfer the group operation of AN to IT by letting
(x +iy)e (X' +iy) :=x+x"y +iyy.
On the other hand, we may identify AN with Aff by the group isomorphism

el —seét
aing —> (0 1 ) . 9.2)

Observe, however, that the product « induced by the (left) Mobius action of Aff on IT
is opposite to that of (2.7), induced by the (left) coadjoint action of Aff on IT. This
is to be expected, since (9.1) and the identification (9.2) leads to (a,b) = (y, —x),
which is g1 with the definition (2.6).

The spinor bundle S — II over the Poincaré half-plane has rank two and is
the direct sum of two trivial line bundles, since II is contractible. Let #y :=
L?*(T1,y2dxdy) and let # := Hoy @ Ho be the Hilbert space of spinors. The
Dirac operator is I} = —i(G+V;§+ + O_Vgi), using the isotropic basis E4 =
2y0; = y(0x —i0y), E_ := 2y0, = y(dx + idy), and the spin connection
Vgp = E, - %f‘gao“aﬂ is determined by the Christoffel symbols of the Levi-
Civita connection, for any zweibein {E£,}. The Levi-Civita connection is canonical
here because IT is a symmetric space [68]. Standard formulas [46], [62] then yield

. 0 2y0; + %
b= I(Zyaz—é 0 )
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Following Palmer et al [63], one can find a representation 7 of SL(2, R) on #
under which ) is invariant. It can be written in the form

[t(e)¥](z) == u(g.2)¥(g" - 2),

where the factor u is of the form
_ (v 0
u(g,Z) L ( O v(g_17z)_1/2 )

with v(g, z) := iiig for g = (‘c{ g), whenever the square root of z — v(g, z) can
be chosen smoothly, e.g., for g lying in suitable one-parameter subgroups. A set of
infinitesimal generators Fy, Fy, F> representing s[(2, R) is found to be

Fo=-3(1+2%0; - 11 -2%0, + +(z - Z)o3,

Fi = —(20; +20;) = —(x0x + ydy), Fo+ F, = —0y.

The invariance of ) follows directly from the relations [Fj, IJ] = 0. For instance,
[Fy, D] vanishes because [x dx + y dy, y x F iy d,] = 0. One can observe that the
components of Ip are left-invariant differential operators on I1, regarded as a group.
This is why they commute with the fundamental vector fields F; and Fy + F5, which
are of course right-invariant [18].

Now let a suitably chosen algebra of functions on I, under the twisted product,
act diagonally on spinors. This defines on IT a noncommutative operator module in
the sense of [8]. That is to say, there is a noncommutative algebra (+, x) involutively
represented by bounded operators on a Hilbert space, and a self-adjoint operator D
on the same Hilbert space, unbounded in the present case, whose domain is preserved
by the action of .

We shall now show that the basic pre-condition for a spectral triple holds, to wit,
the commutator of D with the twisted multiplication by elements of « is bounded.

The expression (5.3) may be applied componentwise when the function /4 is re-
placed by the two-spinor ¢, namely:

Rape) = (D 00) = (S16025) = Lo

with an obvious notation. Now, because the factor u(g, z) is trivial for g € AN, the
invariance of I} under all t(g) allows us to conclude that L; ) = D L}, and thus

B(f *$)() — f * Bo(z)
- / Kuliow.)(B2(Ly, f(2)L$(2) — Loy f(2) B L (2)) dyw dyt
HZ

- / Kulow. )L, B fLpE) diwdit = B f x $(2),
H2
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where the second equality uses the invariance of the Dirac operator under the (restric-
tion to AN of) the SL(2, R)-action by Mobius transformations on its orbit I1. Thus
the Leibniz rule is valid for the action of I on the (left-covariant for the coadjoint
action, right-covariant for the Mdbius action) twisted product. In particular, if L, (f)
denotes the operator of left twisted multiplication, then [, L,(f)] = L.(I} f) is
bounded whenever f has a bounded exterior derivative. Moreover, arguing as in [38],
we also get Connes’ first-order condition [21] from the associativity and complex con-
jugation properties of the twisted product. Needless to say, from here to showing or
disproving that the Moyal half-plane in our sense is a noncommutative geometry,
there is still some way to travel.

Some reflection on what has been achieved — and what has not — is in order.
The half-plane carries a natural symmetry, namely the left Mobius action of SL(2, R).
However, in order to preserve the Leibniz rule, we have been led to an algebra which is
right-invariant, rather than left-invariant, under (the restriction to the subgroup AN of)
that action. To our knowledge, this was first stated in [14], which moreover contains a
beautiful study of the differential equations a general covariant trikernel must satisfy.
If one insists on having left-invariance of the algebra under the Mobius action, one
can bring into play instead the Dirac operator associated to the right-invariant metric
on AN, which is given by

D= i 0 (x —i)dx + y0y + 3
- (x +1)0x + ydy + 5 0 '

Alternatively, one might try to deform the Dirac operator itself.

10. Outlook

We conclude with a brief review of possible ramifications for our work in this paper.

* Harmonic analysis by way of the scalar Fourier kernels can of course be pursued
much further, around standard lines. For instance, the third assertion in Theo-
rem 7.2 remains true when f is a bounded measure. In general, one uses the
power d jl:/ P of the dimension operators for L?-Fourier analysis. Some matters of
rigour — see the remark at the end of Section 4.5 — will be treated separately [41].
More to the point, the role of the Fourier—Moyal transformation in relating Wild-
berger’s group class and coadjoint orbit hypergroups [83], arguably in the spirit
of [35], is an appealing subject of research. See, with regard to Wildberger’s
theory, the remarks in [53, Section 6.4].

e The issue of SL(2, R) symmetry for a satisfactory star product is not ended. It
should be obvious that KR can be extended to define semitracial, SL(2, R)-co-
variant star products on the half-plane. That should allow a fresh attack on the
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determination of the Stratonovich—Weyl quantizers for this group [13]. A solu-
tion would bring the prize of a suitable and strong definition of noncommutative
Riemann surfaces.

* There seems to be no obstruction to the generalization of our method for con-
structing star products on A N -symmetric spaces, on the basis of the Iwasawa
decomposition. For complex groups, this leads naturally to Manin triples — see
for instance [16].3
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