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The necklace Lie coalgebra and renormalization algebras
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Abstract. We give a natural monomorphism from the necklace Lie coalgebra, defined for any
quiver, to Connes and Kreimer’s Lie coalgebra of trees, and extend this to a map from a certain
quiver-theoretic Hopf algebra to Connes and Kreimer’s renormalization Hopf algebra as well as
to pre-Lie versions. These results are direct analogues of Turaev’s results in 2004, by replacing
algebras of loops on surfaces with algebras of paths on quivers. We also factor the morphism
through an algebra of chord diagrams and explain the geometric version. We then describe
how all of the Hopf algebras are uniquely determined by the pre-Lie structures and discuss
noncommutative versions of the Hopf algebras.
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1. Introduction

Motivated by an attempt to understand the moduli space of flat connections on a vector
bundle over a surface, Goldman constructed in [Gol84] a Lie bracket on the free vector
space spanned by homotopy classes of (basepoint-free) loops on a surface, together
with a Lie homomorphism (by taking trace of holonomy) to the Poisson algebra of
functions on the aforementioned moduli space.

In [Tur91], Turaev discovered that one may define, in a similar way, a cobracket
on the aforementioned space of loops, which is compatible with Goldman’s bracket
and yields a Lie bialgebra. He also constructed a quantization of this Lie bialgebra in
terms of link diagrams on the surface.

This left open the question to find an interpretation of the Lie coalgebra. In [Tur05],
Turaev discovered a relation between his Lie coalgebra and Connes and Kreimer’s
renormalization algebras [Kre98], [CK98], which form part of the algebraic foun-
dations of perturbative quantum field theory. Specifically, he found a homomor-
phism from an up-to-isotopy, pointed version of his Lie coalgebra of loops to Connes
and Kreimer’s Lie coalgebra of trees, and constructed from this a commutative Hopf
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algebra on the loop side1 mapping to Connes and Kreimer’s renormalization Hopf
algebra. This allows one to interpret the combinatorics of loops and Turaev’s Lie
coalgebra as Feynman diagrams connected to renormalization.

Turaev found that additional structure from the construction is preserved, and
accordingly generalized Connes and Kreimer’s algebras to include the extra data.
This attached to the trees the following: (1) a homotopy class of loops assigned to
each vertex; (2) orientations on the edges; and (3) a ribbon graph structure.

An essential step of the above construction is the observation that, when one has
a basepoint, Turaev’s Lie coalgebra actually arises from a more fundamental pre-Lie
coalgebra structure. In the basepoint-free case, Turaev constructed an “oriented trees”
version of Connes and Kreimer’s Lie coalgebra (which does not come from a pre-Lie
coalgebra), so that one is still equipped with a homomorphism.

There is a known analogue for quivers of the Goldman/Turaev Lie bialgebra of
loops, called the necklace Lie bialgebra. Here the Lie algebra was discovered for
much the same reason as the Goldman algebra: because of its representation into the
Poisson algebra of functions on the corresponding quiver variety [Gin01] (the Lie
algebra was independently discovered in [BLB02]). In [Sch05], the second author
constructed the cobracket and quantized the resulting Lie bialgebra, following in
analogy with [Tur91]. It is thus natural to ask for an interpretation of the cobracket
in terms of representations and, in particular, if all of the above results from [Tur05]
can be generalized to the quiver setting.

In this note we answer this question affirmatively and present quiver analogues
of the results of [Tur05]. We define a pre-Lie coalgebra on the quiver side in the
rooted (basepointed) case. We also define a commutative “renormalization” Hopf
algebra associated to any quiver.2 Then our main theorem (Theorem 3.3.16) is the
construction of a natural monomorphism from these quiver algebras and the (oriented)
necklace Lie coalgebra to the Connes and Kreimer algebras, with additional quiver-
theoretic structure we define. We explain how the pre-Lie and Hopf algebra structures
are essentially equivalent, in all cases (necklaces, trees (Connes–Kreimer) and loops
(Turaev)), using a general result about pre-Lie algebras [OG05].

Unlike in Turaev’s case, for quivers there is no distinction between “up to isotopy”
and “up to homotopy,” so there is only one Lie coalgebra to consider in each of the
oriented/rooted cases, which is the one that is compatible with the necklace bracket in
the oriented case. In contrast, the isotopy coalgebra from [Tur05] is not compatible
with the Goldman Lie bracket (compatibility requires passing to homotopy classes).

For quivers, we find that introducing a basepoint is the same as cutting a necklace

1This Hopf algebra differs significantly from the Hopf algebra mentioned in the previous paragraph:
aside from the previous one referring to homotopy classes rather than isotopy classes, the Hopf algebra
here is commutative, unlike the one of the previous paragraph.

2As in Turaev’s case, this Hopf algebra is quite different from the quantized necklace algebra of [Sch05]:
the latter is noncommutative, unlike the former; and the former involves paths which are not mod commu-
tators, unlike the latter.
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and considering algebras of paths, so our algebras in the rooted case are actually
algebras of paths in the quiver. The additional structure attached to trees in our setting
replaces the loops (with basepoint) attached to vertices with cyclic paths (paths) in
the quiver. The rest of the structure – the ribbon graph structure and orientation of
edges – is unchanged.

Furthermore, we discover that the monomorphisms factor through a “chord alge-
bra” we define, which essentially is the span of necklaces with certain chord diagrams
(Theorem 3.4.10). This clarifies the construction and the reason that it exists. We also
briefly describe the corresponding geometric object, in the setting of [Tur05], where
the chord diagrams become geometric chord diagrams [AMR96] (chord algebras were
not mentioned in [Tur05]).

Finally, we briefly give a noncommutative version of the Hopf algebra analogous
to Section 8.5 of [Tur05], which maps to Foissy’s noncommutative algebra of labeled
rooted trees [Foi02]. In particular, this shows that paths and loops have a noncommu-
tative (D ordering) structure which does not exist for rooted trees without labels. The
noncommutative Hopf algebras, unlike their commutative counterparts, are not deter-
mined by the pre-Lie structure alone (which essentially forgets about the “labelings”
on the associated trees).

The organization of the paper is as follows. In Section 2, we briefly recall the
necessary definitions from [Kre98], [CK98], [Tur05] (for the tree side), and from
[Sch05] (for the quiver side). Then, in Section 3, we define the new quiver-theoretic
Hopf algebra and pre-Lie coalgebra, state our main result, and generalize it through
chord algebras. We also explain the equivalence of pre-Lie coalgebras and commu-
tative Hopf algebras of a special form, and give the noncommutative version of the
constructions in this paper. Finally, in Section 4, we provide the postponed proofs
(e.g., of the main theorem).

Acknowledgements. We are grateful to Victor Ginzburg for connecting the authors
and for some useful comments. We thank Muriel Livernet for helpful comments and
references. The first author was partially supported by NSF grant DMS-0726154.
The second author was partially supported by an NSF GRF.

1.1. Notation

Notation 1.1.1. Throughout, k denotes a fixed commutative ring with unit.

Notation 1.1.2. For any permutation � 2 †n, we define �� W V1 ˝ V2 ˝ � � � ˝ Vn !
V��1.1/ ˝ V��1.2/ ˝ � � � ˝ V��1.n/ as the permutation of components corresponding
to � .

Notation 1.1.3. We use cycle notation for our permutations. Thus, .123/ denotes the
permutation 1 7! 2 7! 3 7! 1.
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2. Tree algebras

In this section we recall the needed constructions of [Tur05], [Kre98], [CK98].

2.1. Algebras of trees. We recall the Lie coalgebra and Hopf algebra of rooted trees
from [Kre98], [CK98], following [Tur05], where the former is generalized to a pre-Lie
coalgebra and to the setting of oriented trees.

2.1.1. Pre-Lie (co)algebras. We recall first the definition of pre-Lie algebras (in-
dependently discovered by [Ger63] and [Vin63]) and their dual, pre-Lie coalgebras
(following [Tur05]). Note that there is a wide variety of important pre-Lie algebras,
including the Hochschild cochain complex of an algebra, vector fields on affine space,
and the examples in this paper.

A (left) pre-Lie algebra over k is a k-module with a k-bilinear product ? satisfying

.x ? y/ ? z � x ? .y ? z/ D .y ? x/ ? z � y ? .x ? z/:

If ? is a pre-Lie multiplication, then Œx; y� ´ x ? y � y ? x must be a Lie bracket.
To obtain the definition of pre-Lie coalgebra, we dualize in the sense of determin-

ing what structure exists on g� if g is a pre-Lie algebra. Precisely, a (left) pre-Lie
coalgebra, g, over k is a k-module with a k-linear map ı0 W g ! g ˝ g satisfying

.Id � �.12//.ı0 ˝ 1 � 1 ˝ ı0/ı0 D 0 2 Homk.g; g ˝ g ˝ g/:

If ı0 is a pre-Lie comultiplication, then ı ´ ı0 � �.12/ı0 must be a Lie cobracket.

2.1.2. The pre-Lie coalgebra of rooted trees and Lie coalgebra of oriented trees.
A rooted tree T is a collection of vertices V.T / and edges E.T /, and a map E.T / !
V.T /.2/ from edges to unordered pairs of vertices such that the resulting graph is
connected and has no cycles (or loops), together with a distinguished vertex, called
the root.

An oriented tree is the same but without the distinguished vertex, and whose edge
map is actually a map E.T / ! V.T /2 from edges to ordered pairs of vertices.

Let Trt be the free k-module with basis given by the isomorphism classes of rooted
trees. In [CK98] ([Tur05] for the “pre-”), the following pre-Lie comultiplication ıp;rt

is defined on Trt:
ıp;rt.T / D

X

e2E.T /

T 1
e ˝ T 2

e ; (2.1.1)

where T 1
e , T 2

e are the trees obtained by deleting the edge e and T 2
e is the tree which

contains the root. The root of T 1
e is the vertex which was incident to e, and the root

of T 2
e is the root of T .

Proposition 2.1.2 ([Tur05]). The map ıp;rt is a pre-Lie comultiplication.
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Thus, one deduces that the skew-symmetrization ırt ´ ıp;rt � �.12/ıp;rt is a Lie
cobracket, which was already discovered in [CK98] (and motivated the above result).

In [Tur05], a version for oriented trees is also given. Let Tor be the free k-module
with basis given by the isomorphism classes of oriented trees. Then a Lie cobracket
ıor W Tor ! Tor ˝ Tor is defined by the same formula as the skew-symmetrization of
(2.1.1), except letting T 2

e be the subtree that e points to and T 1
e be the subtree that e

points away from (note that there is no pre-Lie comultiplication ıp;or).
Finally, we will need the generalization given in [Tur05]: Let RTrees; OTrees be

the categories whose objects are rooted and oriented trees, respectively, and whose
morphisms are embeddings of trees (maps of rooted or oriented trees that preserve
incidence and are injective on vertices and edges; the root must get sent to the vertex
of the image subtree which is closest to the root of the whole tree).

Definition 2.1.3. For any contravariant functor ˆ W RTrees ! Sets (called a rooted
tree-structure), we let Trt.ˆ/ be the free k-module spanned by isomorphism classes
of pairs .T; s/ where T is a rooted tree and s 2 ˆ.T /. Here an isomorphism of pairs
.T; s/

�! .T 0; s0/ is an isomorphism of trees T
�! T 0 whose pullback carries s0 to s.

In the oriented case, one similarly defines Tor.ˆ/.

Proposition 2.1.4 ([Tur05]). For any rooted tree-structure ˆ, the following formula
defines a pre-Lie comultiplication ıp;rt on Trt.ˆ/:

ıp;rt.T; s/ D
X

e2E.T /

.T 1
e ; sjT 1

e
/ ˝ .T 2

e ; sjT 2
e

/;

where T 1
e tT 2

e D T nfeg and T 2
e contains the root. Similarly, the skew-symmetrization

of this defines a Lie coalgebra in the case of oriented trees, where now T 2
e is the tree

that e points to.

2.1.3. The Hopf algebra on rooted trees. We briefly recall Connes and Kreimer’s
Hopf algebra on rooted trees [Kre98], [CK98], as formulated with tree-structures in
[Tur05].

Let Sym.Trt/ be the symmetric algebra on Trt (polynomials in rooted trees).

Definition 2.1.5 ([CK98]). A cut H of a rooted tree T with root rt 2 V.T / is a
subset H � E.T / of edges. It is a simple cut if each connected component of
T n frtg contains at most one edge in H . (The empty cut H D ; is included and is
simple.)

Definition 2.1.6 ([CK98]). For any simple cut H of T , let fTH;e j e 2 H g [ fTH;0g
be the set of connected components of T nH , where TH;0 is the component containing
the root rt and TH;e is the other connected component which was adjacent to e as a
subset of T .
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Definition 2.1.7 ([CK98], [Tur05]). For any rooted tree-structure ˆ W RTreesop !
Sets, define a map � W Trt.ˆ/ ! Sym Trt.ˆ/ ˝ Sym Trt.ˆ/ by the formula

lH .T; s/ ´
Y

e2H

.TH;e; sjTH;e
/ 2 Sym Trt.ˆ/; rH .T; s/ D .TH;0; sjTH;0

/;

�.T; s/ D .T; s/ ˝ 1 C
X

simple cuts H

lH .T; s/ ˝ rH .T; s/:

Here, by definition, l;.T; s/ D 1 and r;.T; s/ D .T; s/ for all T , s.

Proposition 2.1.8 ([CK98], [Tur05]). This defines a commutative Hopf algebra struc-
ture on Sym Trt.ˆ/ for any rooted tree-structure ˆ, with counit ".X/ D 0 for any
X D .T; s/.

Note that comultiplication has the form (for X D .T; s/)

�.X/ D 1 ˝ X C X ˝ 1 C �0.X/;

where �0 is the projection of � away from .1 ˝ Sym Trt.ˆ// ˚ .Sym Trt.ˆ/ ˝ 1/

(that is, �0 D .Id � � B "/˝2� with � the unit map).
Furthermore, using the natural grading by total number of edges in the trees,

�0.X/ has strictly lower degree than X if X is a tree. Thus, one may easily verify
(cf. [Sch05], §3.9) that the following general formula for the antipode S holds (with
X D .T; s/):

S.X/ D �X C
X

n�1

.�1/nC1�n B .�0/n.X/: (2.1.9)

(Here �n W Sym Trt.ˆ/˝.nC1/ ! Sym Trt.ˆ/ denotes the multiplication and
.�0/n W Sym Trt.ˆ/ ! Sym Trt.ˆ/˝.nC1/ is the iterated application of the coasso-
ciative �0.) This extends to products of trees anti-multiplicatively. So it is enough to
check the bialgebra condition above.

3. Quiver version and results

We now proceed to the quiver versions of the preceding and formulate our results.

3.1. Necklace (pre-)Lie coalgebras

3.1.1. Original necklace Lie coalgebra (“oriented”). We recall the definition of
the necklace Lie coalgebra from [Sch05], which will correspond to the “oriented”
case. Let Q be any quiver (with edge set also denoted by Q) and let xQ D Q t Q�
be the double quiver, with Q� ´ fe� j e 2 Qg, where if e is an arrow from i to j
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(denoted e W i ! j ), then e� W j ! i is the reverse. The double quiver has the same
set I of edges as Q. Let P be the path algebra on the double quiver. Precisely, one
has P D TkI h xQi, where h xQi is the kI -bimodule with basis xQ, so that ih xQij is the
space with basis those edges e W i ! j . For each edge e W i ! j let es ´ i , et ´ j

(the “source” and “target”, respectively).
Let L ´ P=ŒP; P � be the k-module with basis the cyclic paths in the quiver xQ

(forgetting the initial edge). We call such cyclic paths “necklaces,” and the cobracket
operation will involve splitting necklaces into two necklaces (by making two cuts and
gluing the endpoints of the two resulting strands D paths in the quiver). Then one
defines the cobracket ı D ıor W L ! L ^ L (or D oriented) as follows:

ıor.Œa1 : : : an�/ D
X

i<j

!.ai ; aj /Œ.aj /taj C1 : : : ai�1� ^ Œ.ai /taiC1 : : : aj �1�;

where !.e; e�/ D �!.e�; e/ D 1 for e 2 Q, and !.e; f / D 0 if e ¤ f � (we use
the notation .e�/� ´ e). A typical summand is depicted in Figure 1.

Before:

After: ^
Figure 1. The original Lie cobracket on P=ŒP; P � from [Sch05].

3.1.2. Necklace (pre-)Lie coalgebra of paths, “rooted”. We define “rooted” ver-
sions of the necklace Lie coalgebra. By being rooted, we will actually obtain a pre-Lie
structure, as in the rooted tree case.

To add a basepoint to a necklace, one should pick an initial edge. Equivalently,
one can replace the necklace with a closed path. In this generality, one may actually
speak of non-closed paths as well, which we do.

In [Sch07], a (Loday or Lie) cobracket is defined in this way by the following
idea: When one makes two cuts in a path and joins the cut ends the same way we
did before for necklaces, one obtains one path and one necklace. This is depicted in
Figure 2. This will not give a pre-Lie coalgebra, however: to get one, one needs (as
in [Tur05]) to split a path into two paths (resp. a rooted tree into two rooted trees by
cutting). To do this, we make two cuts in the path, but only glue once: the left strand
to the right, obtaining two strands (Figure 3). Precisely, we define the rooted pre-Lie
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Before:

After:
˝

Figure 2. The Loday cobracket P ! P=ŒP; P � ˝ P from [Sch07].

Before:

After:
˝

Figure 3. A summand in the pre-Lie multiplication of “Before”.

comultiplication ıp;rt and Lie cobracket ırt by the formulas

ıp;rt.a1 : : : an/ D
X

i<j

�!.ai ; aj /.ai /taiC1 : : : aj �1 ˝ .a1/sa1 : : : ai�1aj C1 : : : an;

(3.1.1)ırt D ıp;rt � �.12/ıp;rt:

Proposition 3.1.2. The maps ıor, ırt are Lie cobrackets, and ıp;rt is a pre-Lie comul-
tiplication.

Proof. It suffices to check that ıp;rt is a pre-Lie comultiplication (ıor is a Lie cobracket
by [Sch05]). This follows along similar lines to the proof that ıor is a Lie cobracket
in [Sch05], §2.2.

Note that, while in the rooted case, one may consider paths that are not closed,
the first component of the image of ıp;rt lies in the span of closed paths.
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3.2. Hopf algebra of paths. We now define a Hopf algebra which completes the
analogy “pre-Lie coalgebra of rooted trees :: Renormalization Hopf algebra DD
Necklace pre-Lie coalgebra of paths (rooted) :: ??” Note that this does not have an
oriented version (since there is no pre-Lie coalgebra in the oriented case, cf. Propo-
sition 3.5.2).

Definition 3.2.1. Given a path a1 : : : an 2 P , a cut H is a choice of pairs

H D f.i1; j1/; : : : ; .im; jm/g � f1; : : : ; ng2

such that

(1) i1; j1; : : : ; im; jm are distinct,

(2) for all `, i` < j`,

(3) the pairs do not cross: that is, there do not exist `; `0 such that i` < i`0 < j` < j`0 ,
and

(4) for all `, there exists e` 2 Q such that fai` ; aj`
g D fe`; e�

`
g.

Definition 3.2.2. A cut is called simple if there do not exist `, `0 with i` < i`0 < j`0 <

j`: that is, as in Figure 4, no added (semicircular) edge contains another such.

Definition 3.2.3. For any cut H of a path X ´ a1 : : : an, let fXH;cgc2H t fXH;0g
be the collection of paths obtained by applying Figure 3 repeatedly (cut each pair of
edges ai` ; aj`

and glue one pair of endpoints each, as in (3.1.1)). By definition, XH;0

is the unique path which shares the endpoints of the original path (beginning at .a1/s

and ending at .an/t ), and XH;c for c D .i`; j`/ is the unique path which begins at the
target .ai`/t of ai` and ends at the source .aj`

/s of aj`
.

Definition 3.2.4. For any cut H D f.i1; j1/; : : : ; .im; jm/g of a path a1 : : : an, let
"H D ˙1 be defined by

"H ´
mY

`D1

�!.ai` ; aj`
/:

Definition 3.2.5. Define the coproduct � W Sym P ! .Sym P /˝2 on a path X D
a1 : : : an by

lH .X/ ´ XH;c1
& : : : &XH;cjH j

; rH .X/ ´ XH;0; (3.2.6)

�.X/ ´ X ˝ 1 C
X

simple cuts H

"H lH .X/ ˝ rH .X/; (3.2.7)

where H D fc1; : : : ; cjH jg.
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Proposition 3.2.8. The map � endows Sym P with the structure of a commutative
Hopf algebra with antipode given by (2.1.9) (where X is a path).

This proposition will be proved in Section 4.1. Note that the result also follows
from Theorem 3.3.16, since the map � gives a monomorphism of Hopf algebras (i.e.,
without knowing Sym P is Hopf, the theorem shows that � is injective and carries the
proposed multiplication, comultiplication, unit, and counit to those for the Connes–
Kreimer Hopf algebra).

3.3. The monomorphisms to renormalization algebras.

3.3.1. The tree-structures. Following in analogy with [Tur05], we define a pre-
Lie coalgebra map .P; ıp;rt/ ! .Trt.ˆrt/; ıp;rt/ and a Lie coalgebra map .L; ıor/ !
.Tor.ˆor/; ıor/ for certain rooted (resp. oriented) tree-structures ˆrt; ˆor. The former
induces a Hopf algebra map .Sym.P /; �/ ! .Sym.Trt/; �/, as we explain. As a
result of the pre-Lie coalgebra map, one also obtains a Lie coalgebra map on the as-
sociated Lie coalgebra .P; ırt/ (by skew-symmetrizing the pre-Lie comultiplication).

Definition 3.3.1. A ribbon graph structure on a tree is a choice, for each vertex of
the tree, of a fixed cyclic ordering of the edges incident with that vertex.

Definition 3.3.2. Let ˆor be the oriented tree-structure which assigns to each oriented
tree a choice of ribbon graph structure on the tree, and to each vertex of the tree a
cyclic path in xQ (which is a basis element of L).

Definition 3.3.3 ([Tur05]). A corner3 of a vertex of a ribbon graph is a choice of
initial edge at the vertex (giving a linear ordering of the incident edges).

Definition 3.3.4. Let ˆrt be the rooted tree-structure which assigns to each rooted
tree a choice of ribbon graph structure with a corner at the root, together with an
orientation of all edges and a labeling of vertices by paths in xQ (basis elements of P ).

Remark 3.3.5. Instead of assigning (cyclic) paths to each vertex, an alternative would
be to assign a single element of P ˝V or L˝V to the tree, where ˝V means taking
˝jV j with components labeled by V . Then ˆ� would obtain a k-module structure,
and we could work with the quotient T .ˆ�/ of T .ˆ�/ by the relation .T; s C s0/ D
.T; s/ C .T; s0/.

Remark 3.3.6. Note that at all vertices other than the root of a rooted tree with a
ribbon-graph structure, the cyclic ordering actually has a canonical lifting to a linear

3This is called a corner to agree with [Tur05], Remark 2 of §5.2, where it is defined as a choice of two
consecutive edges in the cyclic ordering (these are the last and first edges in our linear ordering).
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ordering (i.e., a corner) by choosing as initial the edge that lies between the given
vertex and the root. So with the corner at the root, one obtains rooted trees with linear
orderings at all vertices (rather than merely cyclic orderings).

3.3.2. Chord diagrams and dual trees. In order to define the homomorphisms of
(pre-)Lie coalgebras and Hopf algebras, we first need to construct from a simple cut
of a (cyclic) path the dual tree to the chord diagram associated to this cut:

Definition 3.3.7. For any path X D a1 : : : an of length n, associate to this a line
segment LX � R with edges ei D �

i � 1
2
; i C 1

2

�
for all 1 � i � n, and vertices˚

1
2
; 3

2
; : : : ; n C 1

2

�
. The root is defined to be rt ´ 1

2
. (See Figure 4).

We also think of the vertex n C 1
2

as the root, essentially considering it to be the
same vertex as 1

2
. That is, a circle with basepoint is essentially equivalent to a line

by cutting at the basepoint: then the endpoints of the line are both the basepoint. We
chose 1

2
rather than n C 1

2
for the root only for definiteness: the choice makes no

difference.

Definition 3.3.8. For any cut H D f.i1; j1/; : : : ; .im; jm/g of a path X D a1 : : : an 2
P , consider the associated chord diagram CX;H , obtained from LX by adding interior
vertices i`; j` to the edges ei` , ej`

, and a new edge with endpoints i`, j` for each `,
as in Figure 4. The edges are chosen so as to not intersect (giving a planar graph).

Definition 3.3.9. For any cut H as above, let the dual rooted tree TH be obtained
by dualizing the chord diagram: place one vertex inside each face of the chord dia-
gram, and one edge crossing each edge of the chord diagram, connecting the vertices
associated to the two faces. The root corresponds to the unbounded face (which is
included as a face).

Definition 3.3.10. For any cut H of a path as above with dual rooted tree TH , we
define an element sH of ˆrt.TH / as follows: first, orient the edges of the chord
diagram, by assigning the edge with endpoints i`, j` the orientation i` ! j` if
ai` 2 Q and j` ! i` otherwise. Then the orientation of the edge e of TH which
crosses an edge f of the chord diagram is such that e ^ f is the positive orientation
on R2. Next, the unbounded face is still considered a face and its vertex is declared
the root. This is naturally a ribbon graph. The linear ordering of the edges at the
root (choice of corner) is given by the usual linear ordering of the endpoints of the
edges of the unbounded face of the chord diagram in the interval

�
1
2
; n C 1

2

�
. Finally,

the labeling of the vertices is given as follows: to each face f of the chord diagram,
J D @f \�

1
2
; nC 1

2

�
is a union of closed intervals; let J B be the interior. Let iJ be the

vertex of the quiver which is the left endpoint of J : that is, iJ D .amin.J B\f1;:::;ng//t .
Then iJ

Q
j 2J B\f1;2;:::;ng aj is the path associated to the vertex attached to f (it is the

path which remains in that face after performing cuts as in Figure 4).
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The dual tree is depicted (without the tree-structure) in Figure 4.

root

1
2

12 C 1
2

1 3
2

Figure 4. A typical chord diagram (for a cut) and its dual tree.

We proceed to define the dual oriented tree.

Definition 3.3.11. For any cut H as above, the dual oriented tree is the dual tree
TH , forgetting the root, together with the orientation of edges given by the element
of ˆrt.TH / above. Call it TH;or.

Definition 3.3.12. For any closed path a1 : : : am with dual oriented tree TH;or, define
an element sH;or of ˆor.TH;or/ from sH by taking the image of the labels of vertices
in cyclic paths (L D P=ŒP; P �) and forgetting the corner structure.

The following is easily verified.

Lemma 3.3.13. For any closed path a1 : : : am, the space of cuts of a1 : : : am is
naturally isomorphic to that of aiaiC1 : : : ama1 : : : ai�1, for all i , in a way that yields
a natural isomorphism of dual oriented trees which carries the elements ˆor.TH;or/

to each other. One may therefore define a cut of the cyclic path Œa1 : : : am� and its
associated dual oriented tree TH;or, with associated element sH;or 2 ˆor.TH;or/.

3.3.3. The homomorphisms. Finally, we may define the homomorphisms and state
the first theorem.

Definition 3.3.14. For any path a1 : : : an, define the element �rt.a1 : : : an/ 2 Trt.ˆrt/

by

�rt.a1 : : : an/ D
X

cuts H

"H .TH ; sH /:
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Definition 3.3.15. For any cyclic path Œa1 : : : an�, define the element �or.Œa1 : : : an�/ 2
Tor.ˆor/ by

�or.Œa1 : : : an�/ D
X

cuts H

.TH;or; sH;or/:

Theorem 3.3.16. The maps �or and �rt extend linearly to an injective pre-Lie coal-
gebra homomorphism .P; ıp;rt/ ! Trt.ˆrt/ and an injective Lie coalgebra homomor-
phism .L; ıor/ ! Tor.ˆor/, respectively. Furthermore, �rt extends multiplicatively
(and linearly) to a Hopf algebra monomorphism Sym P ! Sym Trt.ˆrt/.

This theorem will be proved in Section 4.2.
M. Livernet pointed out to us that, by [CL01], the pre-Lie coalgebra of decorated

trees Trt.ˆ/ is a cofree pre-Lie coalgebra for any ˆ. This explains why morphisms
such as the above must always exist (although the one we construct is particularly
natural).

3.4. Factorization of � through chord algebras. It turns out that one can under-
stand the � homomorphisms (and their injectivity) through a factorization as follows:

.L; ıor/
Sor

,�! Chor
Dor��! Tor.ˆor/; (3.4.1)

.P; ıp;rt/
Srt

,�! Chrt
Drt��! Trt.ˆrt/; (3.4.2)

where Chor and Chrt, called chord algebras, are spanned by chord diagrams on neck-
laces or paths, and the first maps in (3.4.1), (3.4.2) take a necklace (resp., path) to the
sum of all possible chord diagrams on that necklace or path. We will equip Chrt and
Chor with the appropriate pre-Lie and Lie coalgebra structures, and Sym Chrt with
the appropriate Hopf algebra structure, so that one obtains the following sequence of
Hopf algebra homomorphisms:

Sym P
Srt

,�! Sym Chrt
Drt��! Sym Trt.ˆrt/: (3.4.3)

We also briefly explain how this construction can also be done in the context of
[Tur05], yielding the space of geometric chord diagrams.

Definition 3.4.4. A necklace chord diagram is a necklace (D cyclic monomial)
Œa1 : : : an� 2 L, for ai 2 xQ, together with a cut H of Œa1 : : : an�. Denote the necklace
chord diagram by .Œa1 : : : an�; H/.

Definition 3.4.5. A path chord diagram is a path a1 : : : an 2 P for ai 2 xQ together
with a cut H of a1 : : : an. The path chord diagram is denoted by .a1 : : : an; H/.
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Definition 3.4.6. The chord algebra Chrt is defined(as a linear space) to be the free
k-module with basis the path chord diagrams. Similarly, Chor is defined to have basis
the necklace chord diagrams.

Definition 3.4.7. Define ıp;rt W Chrt ! Ch˝2
rt as follows. Let X D a1 : : : an be

a path for a` 2 xQ, and let H D f.i1; j1/; : : : ; .im; jm/g be a cut. For any 1 �
` � m, let c` ´ .i`; j`/ and let H 1

c`
; H 2

c`
� H be the two subcuts obtained by

removing c` D .i`; j`/ from H : H 1
c`

is the collection of .i`0 ; j`0/ on the inside of
c` (in particular, `0 ¤ `), and H 2

c`
is the collection on the outside of c`. Explicitly,

.i`0 ; j`0/ 2 H 1
c`

iff i`0 > i` (equivalently, j`0 < j`). Finally, we then let Xc`;1; Xc`;2

be two chord diagrams thus obtained: Xc`;1 ´ ..ai`/tai`C1 : : : aj`�1; H 1
c`

/ and
Xc`;2 ´ .a1 : : : ai`�1.aj`

/taj`C1 : : : an; H 2
c`

/. Then we define

ıp;rt.X; H/ D
mX

`D1

�!.ai` ; aj`
/Xc`;1 ˝ Xc`;2:

Definition 3.4.8. Define ıor W Chor ! Ch˝2
or as follows. Let X D Œa1 : : : an� be

a necklace for a` 2 xQ, and let H be a cut of X , which corresponds to the cut
f.i1; j1/; : : : ; .im; jm/g of a1 : : : an. For any 1 � ` � m, let Xc`;1, Xc`;2 be the two
chord diagrams obtained by removing .i`; j`/ from H , defined as in Definition 3.4.7,
except adding braces Œ � � around the obtained paths. Then define

ıor.X; H/ D
mX

`D1

�!.ai` ; aj`
/.Xc`;1 ˝ Xc`;2 � Xc`;2 ˝ Xc`;1/:

Definition 3.4.9. Define the coproduct � on Sym Chrt as follows: For any chord
diagram X ´ .a1 : : : an; H/ with H D f.i1; j1/; : : : ; .im; jm/g, and any simple cut
H 0 with H 0 � H , let fXH 0;cgc2H 0 [ fXH 0;0g be the collection of chord diagrams
obtained by cutting out the chords in H 0: each time we cut out a chord from H 0, we
divide a cut into two separate cuts, as in Definition 3.4.7, and divide the corresponding
path into two paths. Then XH 0;0 is the obtained chord diagram which contains the
basepoint (.a1/s and .an/t ), and fXH 0;cg is the other chord diagram which is cut from
the chord c 2 H 0. Then we define

lH 0.X/ ´
Y

c2H 0

XH 0;c ; rH 0.X/ D XH 0;0; "H 0 D
Y

cD.i`;j`/2H

�!.ai` ; aj`
/;

�..a1 : : : an; H// D X ˝ 1 C
X

simple cuts H 0 � H

"H 0 lH 0.X/ ˝ rH 0.X/:

Finally we have the following theorem, which is a strengthening ofTheorem 3.3.16.
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Theorem 3.4.10. The algebra .Chrt; ıp;rt/ is a pre-Lie coalgebra and .Chor; ıor/ is a
Lie coalgebra, and Sym Chrt is a Hopf algebra given by (3.4.9), (2.1.9) (with counit
given by ".X/ D 0 for any chord diagram X ). Then the diagrams (3.4.1),(3.4.2) and
(3.4.3) are homomorphisms, where S� takes a path or necklace to the sum over all
chord diagrams over that path or necklace, and D� takes a chord diagram with cut
H to its dual tree in the oriented case, and to "H times its dual tree in the rooted case,
assigning data as in Section 3.3.3.

This theorem will be proved in Section 4.2.

3.4.1. Geometric chord diagrams. We briefly indicate the geometric counterpart
of Theorem 3.4.10 (since algebras of chord diagrams were not discussed in [Tur05]).
We consider geometric chord diagrams with a single loop: this means ([AMR96]) a
smooth map of a loop with chords into a surface such that the map is constant on the
chords. Let us also assume that the chords are such that, if the loop is drawn in the
plane and all the chords are in the interior of the loop, then the chords do not intersect.
Then we let Chrt be the algebra which, as a free k-module, has basis the isotopy classes
of geometric chord diagrams with a single loop with basepoint (the isotopies must
be through such geometric chord diagrams), and Chor is, as a k-module, the space
of isotopy classes of geometric chord diagrams with a single loop without basepoint.
One may then form the sequences of homomorphisms (3.4.1), (3.4.2) and (3.4.3):
the map S� takes an isotopy class of loops to the sum of all isotopy classes of chord
diagrams whose underlying isotopy class of loops is the original class, and the map
D� takes a geometric chord diagram to the dual tree, which then has all the structure
required of ˆor, ˆrt.

3.5. Relationship between the Hopf algebras and pre-Lie algebras. We note that
the Hopf algebras considered here all have the following special form: as an algebra
they are Sym V for some vector space V , and the comultiplication � and counit "

have the form

�.v/ D v ˝ 1 C 1 ˝ v C �0.v/; �0.v/ 2 .Sym�1 V / ˝ V; ".v/ D 0 (3.5.1)

for all v 2 V . We claim that such Hopf algebras are in one-to-one correspondence
with pre-Lie comultiplications on the vector space V as follows (this was essentially
observed in [OG05] in the dual setting, but not quite formulated in the same way):

Proposition 3.5.2. Let V be any ZC-graded vector space.

(i) For any Hopf algebra structure on Sym V satisfying (3.5.1), the map � W V !
V ˝ V given by the composition of �0 with the projection to V ˝ V , is a pre-Lie
comultiplication.

(ii) Conversely, given any pre-Lie comultiplication � W V ! V ˝V which preserves
the total grading (induced by the grading on V ), there exists a unique graded
comultiplication on Sym V of the form (3.5.1), which yields � as in part (i).
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(iii) Moreover, we describe an inductive procedure for computing the � guaranteed
in part (ii).

Proof. In all parts, let subscripts n denote the standard (not total) grading on Sym V

so that .Sym V /n D Symn V , extended to .Sym V /˝2 and .Sym V /˝3 by

.Sym V /˝2
n D

M

iCj Dn

Symi V ˝ Symj V;

.Sym V /˝3
n D

M

iCj CkDn

Symi V ˝ Symj V ˝ Symk V:

(i) Let us formally write
� D �0 C �1 C �2 C � � � ;

where �n W V ! Symn V ˝ V for n � 1 and �0.v/ D 1 ˝ v C v ˝ 1 for any v 2 V

(and �n.1/ D 0 if n > 0 and �0.1/ D 1 ˝ 1); for any v 2 V , only finitely many
of the �n.v/ can be nonzero. Also, let �0

0.X/ ´ �0.X/ � .1 ˝ X C X ˝ 1/ (thus
�0

0.v1v2/ D v1˝v2Cv2˝v1 for any v1; v2 2 V ). Then, modulo
L

m�4.Sym V /˝3
m ,

one has

0 D .� ˝ 1/�.v/ � .1 ˝ �/�.v/

D ..�1 ˝ 1/�1.v/ � .1 ˝ �1/�1.v// C .�0
0 ˝ 1/�2.v/:

This equation says that, setting � ´ �1, � is pre-Lie (since .�0
0 ˝ 1/�2.v/ is

symmetric in the first and second components).
(ii), (iii) Suppose that we are given �1; : : : ; �n for n � 1 such that

��n ´ �0 C �1 C � � � C �n, extended multiplicatively to Sym V , is coassociative
modulo

L
m�nC2.Sym V /˝3

m . We would like to find �nC1 such that ��n C �nC1

is coassociative modulo
L

m�nC3.Sym V /˝3
m . This is equivalent to

.�0
0 ˝ 1/�nC1.v/ D

X

iCj DnC1;i;j >0

.1 ˝ �i � �i ˝ 1/�j .v/:

In particular, �nC1 exists iff the first two components live in �0
0.Sym V /, and in this

case �nC1 is unique and may be computed algorithmically as indicated. Existence
follows from the dual version of the construction of [OG05].

We note that we used the grading above only to guarantee finiteness of the sum
�0 C �1 C � � � on any vector v 2 V : without assuming gradedness, the above
proposition still holds if we work in the completed tensor product Sym V ˝ Sym V

with respect to the grading .Sym V /˝2� . Alternatively, one could assume that iterated
applications of � on any v 2 V eventually yield zero.

As a result of the proposition, proving the main results of this paper (or [Tur05])
on the pre-Lie level is in fact equivalent to proving them on the Hopf algebra level,
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as one can translate between the two using the above proposition. This explains why
one must arrive at (3.2.7) (resp. the formulas from [Tur05], §8.3) for coproduct given
the choice of pre-Lie comultiplication.

We see that the fact that the pre-Lie structure fails to exist in the oriented case
is the same as the fact that the renormalization Hopf algebra does not exist without
using rooted trees.

3.5.1. Noncommutative version. In [Tur05], §8.5, a “noncommutative” version
of the Hopf algebras was defined, using the tensor algebras over V instead of the
symmetric algebras. In this version, �0 is the usual “shuffle” coproduct on T .V /

generated multiplicatively by �0.v/ D 1 ˝ v C v ˝ 1 for v 2 V . In this case,
Proposition 3.5.2 is no longer true (for instance, �0

0.vw �wv/ D 0 for any v; w 2 V ,
so that one would have a choice of �2).

However, in the case of paths, as in Turaev’s case of loops, one has a canonical
choice of �. Namely, in T .P /, we can define the coproduct by (3.2.6), (3.2.7) except
replacing lH in (3.2.6) by an ordered tensor product, choosing the left-to-right order
of components induced by the original ordering on the path of the left endpoints of
each component. As in [Tur05], it is easy to check that this gives a Hopf algebra and
that a suitable version of the homomorphism � maps this Hopf algebra to Foissy’s
noncommutative algebra of labeled rooted trees [Foi02] (the rooted trees must have
labeled edges, or equivalently, labeled vertices in order to capture the left-to-right
order that we obtain in paths). So more “noncommutative” or “ordering” information
is included in paths or loops than in rooted trees without labels.

On the other hand, one can obtain a generalization of Proposition 3.5.2 if one
imposes the additional condition that �n.V / � Symn V ˝ V � T n.V / ˝ V . In
this case, there is not really anything new to check since coassociativity is proved in
Sym.V / � T .V / and extends to all of T .V / using the bialgebra condition (since we
define �.fg/ ´ �.f /�.g/). This might be the dual version of the noncommutative
structure hinted at in Remark 2.14 of [OG05]. However, this is not the way to construct
the noncommutative Hopf algebras described above, since they use extra structure (the
ordering in paths, or in the case of trees, the labeling on edges and/or vertices) and
their coproducts do not map V to .Sym V ˝ V / ˚ .1 ˝ V /.

4. Postponed proofs

4.1. Proof of Proposition 3.2.8. We only need to check coassociativity. Then the
bialgebra property essentially follows from the definition. Coassociativity is easily
verified by an explicit formula as follows.

Definition 4.1.1. For any path X D a1 : : : an 2 P , any cut H of X and any vertex
v of LX (so v 2 Z C 1

2
and 1

2
� v � n C 1

2
), define the order ord.H; v/ to be the

minimum number of chords (the edges connecting i` and j` if H D f.i`; j`/g1�`�m)
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of the chord diagram CX;H that must be crossed by any path from v to the root
which intersects the chord diagram CX;H only transversely. If v is the root, we define
ord.H; rt/ ´ 0.

Definition 4.1.2. For any path X and cut H , let the order of H , ord.H/, be defined
to be the maximum of all ord.H; v/ for vertices v of LX .

We note that a nonempty cut is simple iff its order is one.

Definition 4.1.3. For two disjoint cuts H1; H2 of a path X D a1 : : : an, we say that
H1 � H2 if from all points there is a path, intersecting H1 and H2 transversally, to
the root that does not intersect chords from H1 after those from H2. In other words,
the chords from H2 are not separated from the root by any chords from H1.

In particular, ; � H and H � ;. Note that � satisfies the transitivity property.
We now may give the formula

.� ˝ 1/�.X/ D �.X/ ˝ 1 C
X

1�ord.H/�2

"H

X

simple cuts H1;H2
such that HDH1tH2;

H1�H2

lH1
˝ lH2;H1

˝ rH2
;

where lH2;H1
is the product of all paths along LX cut from the chord diagram for H

which lie between a chord from H1 and a chord from H2. The same formula holds
for .1 ˝ �/�.X/, which implies the result.

4.2. Proof of Theorems 3.3.16, 3.4.10. We prove Theorem 3.4.10 as well as injec-
tivity of the composition D� B S�, which implies Theorem 3.3.16.

First, we show that S� is a homomorphism of pre-Lie or Lie coalgebras. For this,
we note that a cut H together with a specified chord c 2 H is the same information
as a specified chord c together with two cuts H1, H2, one on each side of c, under the
correspondence H D H1 t H2 t fcg. The datum .H; c/ corresponds to a summand
in the expression for ı� B S� of a given (cyclic) path, while the datum .c; H1; H2/

corresponds to a summand in the expression for .S� ˝ S�/ B ı�. It is then easy to see
that the two summands are identical.

Next, we show that Srt extends to a homomorphism of Hopf algebras (3.4.3).
We only need to check that Srt sends the coproduct on Sym P to the coproduct on
Sym Chrt. For this, we extend the observation of the previous paragraph: the da-
tum .H; H1/ of a cut H and a simple subcut H1 (corresponding to a summand of
� B Srt.X/) yields the same information as the datum .H1; fH 0

cgc2H1
; H 0

0/, where
H1 is a simple cut, and fH 0

c ; H0gc2H1
is a collection of cuts on the connected

components fXH1;cgc2H1
t fXH1;0g which result from cutting X along H1 (cor-

responding to a summand of .Srt ˝ Srt/ B �.X/). This correspondence is given by
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H D H1 t F
c2H1

H 0
c t H 0

0. Corresponding data produce identical summands of
� B Srt.X/ and .Srt ˝ Srt/ B � given by

"H1
lH1

.X/fH 0
cgc2H1

˝ rH1
.X/H 0

0
;

where the subscripts of H 0
0; H 0

c indicate which chord diagrams to attach to the corre-
sponding paths in the above monomial of paths.

Next we show that D� is a homomorphism. First we tackle the pre-Lie, Lie
cases. For any chord diagram CX;H , we need to show that .D� ˝ D�/ı�.CX;H / D
ı� B D�.CX;H /. First, note that a choice of chord of a chord diagram is the same as a
choice of edge of the dual tree. It is easy to see that the same tree-structure is obtained
by either cutting along this chord and then applying D� (dualizing) or applying D�
first and then removing the corresponding edge. It remains to show that, for any chord
c 2 H , we have

"Hnc"c D "H ;

which follows from the definition (and was first noticed in [Tur05]).
In the Hopf algebra setting (3.4.2), showing Drt is a homomorphism amounts to

showing, for any chord diagram CX;H , that .Drt ˝ Drt/�.CX;H / D �.Drt.CX;H //.
First, we note that a simple subcut of a chord diagram is the same as a simple cut of
the dual tree. As before, it remains to show that the signs work out correctly, that is,
if H1 is a simple subcut of H , then

"H1
"HnH1

D "H :

This identity, noticed in [Tur05], is obvious from the definition.
Finally, we show that D� B S� is injective. This follows because, for any (cyclic)

path X , the trivial chord diagram yields a summand of D� BS�.X/ which is the trivial
tree (a point) whose rooted or oriented tree-structure at that point includes X itself.
All other summands are trees with � 1 edges. So if we compose D� B S� with the
projection to the space spanned by the trivial tree with arbitrary structure, we easily
obtain the (cyclic) path X .

Note that if the tree-structure is forgotten and we take the map to the [CK98]
algebra of trees itself, the composition is not injective; e.g., any path without any pair
of edges of the form e, e� for e 2 Q must map to the trivial tree.
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