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Properly infinite C.X/-algebras and K1-injectivity
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Abstract. We investigate if a unital C.X/-algebra is properly infinite when all its fibres are
properly infinite. We show that this question can be rephrased in several different ways,
including the question of whether every unital properly infinite C*-algebra isK1-injective. We
provide partial answers to these questions, and we show that the general question on proper
infiniteness of C.X/-algebras can be reduced to establishing proper infiniteness of a specific
C.Œ0; 1�/-algebra with properly infinite fibres.
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1. Introduction

The problem that we mainly are concerned with in this paper is whether any unital
C.X/-algebra with properly infinite fibres is itself properly infinite (see Section 2 for
a brief introduction to C.X/-algebras). An analogous study was carried out in the
recent paper [8] where it was decided when C.X/-algebras, whose fibres are either
stable or absorb tensorially a given strongly self-absorbing C*-algebra, themselves
have the same property. This was answered in the affirmative in [8] under the crucial
assumption that the dimension of the space X is finite, and counterexamples were
given in the infinite-dimensional case.

Along similar lines, Dadarlat [5] recently proved thatC.X/-algebras, whose fibres
are Cuntz algebras, are trivial under some K-theoretical conditions provided that the
space X is finite dimensional.

The property of being properly infinite turns out to behave very differently than
the property of being stable or of absorbing a strongly self-absorbing C*-algebra.
It is relatively easy to see (Lemma 2.10) that if a fibre Ax of a C.X/-algebra A is
properly infinite, then AF is properly infinite for some closed neighborhood F of x.
The (possible) obstruction to proper infiniteness of the C.X/-algebra is hence not
local. Such an obstruction is also not related to the possible complicated structure of
the space X , as we can show that a counterexample, if it exists, can be taken to be
a (specific) C.Œ0; 1�/-algebra (Example 4.1 and Theorem 5.5). The problem appears
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to be related with some rather subtle internal structure properties of properly infinite
C*-algebras.

Cuntz studied purely infinite – and in the process also properly infinite – C*-alge-
bras [4], where he among many other things (he was primarily interested in calculating
the K-theory of his algebras On) showed that any unital properly infinite C*-algebraA
isK1-surjective, i.e., the mapping U.A/ ! K1.A/ is onto; and that any purely infinite
simple C*-algebra A is K1-injective, i.e., the mapping U.A/=U0.A/ ! K1.A/ is
injective (and hence an isomorphism). He did not address the question of whether
any properly infinite C*-algebra is K1-injective. That question has not been raised
formally to our knowledge – we do so here – but it does appear implicitly, e.g. in [10]
and in [14], whereK1-injectivity of properly infinite C*-algebras has to be assumed.

Proper infiniteness of C*-algebras has relevance for existence (or rather non-
existence) of traces and quasi-traces. Indeed, a unital C*-algebra admits a 2-quasi-
trace if and only if no matrix algebra over the C*-algebra is properly infinite, and a
unital exact C*-algebra admits a tracial state again if and only if no matrix algebra
over the C*-algebra is properly infinite.

In this paper we show that every properly infinite C*-algebra is K1-injective if
and only if every C.X/-algebra with properly infinite fibres itself is properly infinite.
We also show that a matrix algebra over any such C.X/-algebra is properly infinite.
Examples of unital C*-algebrasA, whereMn.A/ is properly infinite for some natural
number n � 2 but where Mn�1.A/ is not properly infinite, are known, see [11] and
[12], but still quite exotic.

We relate the question of whether a given properly infinite C*-algebra isK1-injec-
tive to questions regarding homotopy of projections (Proposition 5.1). In particular
we show that our main questions are equivalent to the following question: is any
non-trivial projection in the first copy of O1 in the full unital universal free product
O1 � O1 homotopic to any (non-trivial) projection in the second copy of O1? The
specificC.Œ0; 1�/-algebra, mentioned above, is perhaps not surprisingly a sub-algebra
of C.Œ0; 1�;O1 � O1/.

Using ideas implicit in Rieffel’s paper [9], we construct in Section 4 a C.T /-
algebra B for each C*-algebra A and for each unitary u 2 A for which diag.u; 1/ is
homotopic to 1M2.A/; and B is non-trivial if u is not homotopic to 1A. In this way
we relate our question about proper infiniteness of C.X/-algebras to a question about
K1-injectivity.

The last mentioned author thanks Bruce Blackadar for many inspiring conversa-
tions on topics related to this paper.
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2. C.X/-algebras with properly infinite fibres

A powerful tool in the classification of C�-algebras is the study of their projections.
A projection in a C�-algebra is said to be infinite if it is equivalent to a proper subpro-
jection of itself, and it is said to be properly infinite if it is equivalent to two mutually
orthogonal subprojections of itself.

A projection which is not infinite is said to be finite. A unital C�-algebra is said to
be finite, infinite, or properly infinite if its unit is finite, infinite, or properly infinite,
respectively. IfA is a C*-algebra for whichMn.A/ is finite for all positive integers n,
then A is stably finite.

In this section we will study stability properties of proper infiniteness under (upper-
semi-)continuous deformations using the Cuntz–Toeplitz algebra which is defined
as follows. For all integers n � 2 the Cuntz–Toeplitz algebra Tn is the universal
C�-algebra generated by n isometries s1; : : : ; sn satisfying the relation

s1s
�
1 C � � � C sns

�
n � 1:

Remark 2.1. A unital C�-algebra A is properly infinite if and only if Tn embeds
unitally intoA for some n � 2, in which case Tn embeds unitally intoA for all n � 2.

In order to study deformations of such algebras, let us recall a few notions from
the theory of C.X/-algebras.

Let X be a compact Hausdorff space and C.X/ be the C�-algebra of continuous
functions on X with values in the complex field C.

Definition 2.2. A C.X/-algebra is a C�-algebra A endowed with a unital �-homo-
morphism from C.X/ to the center of the multiplier C�-algebra M.A/ of A.

If A is as above and Y � X is a closed subset, then we put IY D C0.X n Y /A,
which is a closed two-sided ideal in A. We set AY D A=IY and denote the quotient
map by �Y .

For an element a 2 A we put aY D �Y .a/, and if Y consists of a single point x,
we will writeAx , Ix , �x and ax in the place ofAfxg, Ifxg, �fxg and afxg, respectively.
We say that Ax is the fibre of A at x.

The function

x 7! kaxk D inffk Œ1 � f C f .x/�ak W f 2 C.X/g
is upper semi-continuous for all a 2 A (as one can see using the right-hand side
identity above). A C.X/-algebra A is said to be continuous (or to be a continuous
C�-bundle over X ) if the function x 7! kaxk is actually continuous for all elements
a in A.
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For any unital C*-algebra A we let U.A/ denote the group of unitary elements in
A, U0.A/ denotes its connected component containing the unit ofA, and Un.A/ and
U0

n.A/ are equal to U.Mn.A// and U0.Mn.A//, respectively.
An element in a C*-algebra A is said to be full if it is not contained in any proper

closed two-sided ideal in A.
It is well known (see for example [13], Exercise 4.9) that if p is a properly infinite,

full projection in a C*-algebra A, then e - p, i.e., e is equivalent to a subprojection
of p for every projection e 2 A.

We state below more formally three more or less well-known results that will be
used frequently throughout this paper, the first of which is due to Cuntz [4].

Proposition 2.3 (Cuntz). LetA be a C*-algebra which contains at least one properly
infinite, full projection.

(i) Let p and q be properly infinite, full projections in A. Then Œp� D Œq� in K0.A/

if and only if p � q.

(ii) For each element g 2 K0.A/ there is a properly infinite, full projection p 2 A
such that g D Œp�.

The second statement is a variation of the Whitehead lemma.

Lemma 2.4. Let A be a unital C�-algebra.

(i) Let v be a partial isometry in A such that 1 � vv� and 1 � v�v are properly
infinite and full projections. Then there is a unitary element u in A such that
Œu� D 0 in K1.A/ and v D uv�v, i.e., u extends v.

(ii) Let u be a unitary element A such that Œu� D 0 in K1.A/. Suppose there exists
a projection p 2 A such that kup � puk < 1 and p and 1 � p are properly
infinite and full. Then u belongs to U0.A/.

Proof. (i) It follows from Proposition 2.3 (i) that 1 � v�v � 1 � vv�, so there is a
partial isometryw such that 1�v�v D w�w and 1�vv� D ww�. Now z D vCw is
a unitary element inAwith zv�v D v. The projection 1�v�v is properly infinite and
full, so 1 - 1�v�v, which implies that there is an isometry s inAwith ss� � 1�v�v.
As �Œz� D Œz�� D Œsz�s� C .1 � ss�/� in K1.A/ (see e.g. [13], Exercise 8.9 (i)), we
see that u D z.sz�s� C .1 � ss�// is as desired.

(ii) Put x D pupC .1�p/u.1�p/ and note that ku�xk < 1. It follows that x is
invertible in A and that u �h x in GL.A/. Let x D vjxj be the polar decomposition
of x, where jxj D .x�x/1=2 and v D xjxj�1 is unitary. Then u �h v in U.A/ (see
e.g. [13], Proposition 2.1.8) and pv D vp. We proceed to show that v belongs to
U0.A/ (which will entail that u belongs to U0.A/).

Write v D v1v2, where

v1 D pvp C .1 � p/; v2 D p C .1 � p/v.1 � p/:
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As 1�p - p we can find a symmetry t inA such that t .1�p/t � p. As t belongs to
U0.A/ (being a symmetry), we conclude that v2 �h tv2t , and one checks that tv2t

is of the form wC .1�p/ for some unitary w in pAp. It follows that v is homotopic
to a unitary of the form v0 C .1 � p/, where v0 is a unitary in pAp. We can now
apply eg. [13, Exercise 8.11] to conclude that v �h 1 in U.A/.

We remind the reader that if p, q are projections in a unital C*-algebra A, then p
and q are homotopic, in symbols p �h q (meaning that they can be connected by a
continuous path of projections in A) if and only if q D upu� for some u 2 U0.A/,
e.g., cf. [13], Proposition 2.2.6.

Proposition 2.5. Let A be a unital C*-algebra. Let p and q be two properly infinite,
full projections in A such that p � q. Suppose that there exists a properly infinite,
full projection r 2 A such that p ? r and q ? r . Then p �h q.

Proof. Take a partial isometry v0 2 A such that v�
0v0 D p and v0v

�
0 D q. Take

a subprojection r0 of r such that r0 and r � r0 both are properly infinite and full.
Put v D v0 C r0. Then vpv� D q and vr0 D r0 D r0v. Note that 1 � v�v and
1 � vv� are properly infinite and full (because they dominate the properly infinite,
full projection r � r0). Use Lemma 2.4 (i) to extend v to a unitary u 2 Awith Œu� D 0

in K1.A/. Now upu� D q and ur0 D vr0 D r0 D r0v D r0u. Hence u 2 U0.A/

by Lemma 2.4 (ii), and so p �h q as desired.

Definition 2.6. A unital C*-algebraA is said to beK1-injective if the natural mapping

U.A/=U0.A/ ! K1.A/

is injective. In other words, if A is K1-injective and if u is a unitary element in A,
then u �h 1 in U.A/ if (and only if) Œu� D 0 in K1.A/.

One could argue that K1-injectivity should entail that the natural mappings
Un.A/=U

0
n.A/ ! K1.A/ be injective for every natural number n. However there

seems to be an agreement for defining K1-injectivity as above. As we shall see later,
in Proposition 5.2, if A is properly infinite, then the two definitions agree.

Proposition 2.7. Let A be a unital C�-algebra that is the pull-back of two unital,
properly infinite C�-algebras A1 and A2 along the �-epimorphisms �1 W A1 ! B

and �2 W A2 ! B:
A

'1

����
��

��
�� '2

���
��

��
��

�

A1

�1 ���
��

��
��

� A2

�2����
��

��
��

B .
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Then M2.A/ is properly infinite. Moreover, if B is K1-injective, then A itself is
properly infinite.

Proof. Take unital embeddings �i W T3 ! Ai for i D 1; 2, where T3 is the Cuntz–
Toeplitz algebra (defined earlier), and put

v D
2X

j D1

.�1 B �1/.tj /.�2 B �2/.t
�
j /;

where t1; t2; t3 are the canonical generators of T3. Note that v is a partial isometry
with .�1 B �1/.tj / D v.�2 B �2/.tj / for j D 1; 2. As .�1 B �1/.t3t

�
3 / � 1 � vv� and

.�2 B �2/.t3t
�
3 / � 1 � v�v, Lemma 2.4 (i) yields a unitary u 2 B with Œu� D 0 in

K1.B/ and with .�1 B �1/.tj / D u.�2 B �2/.tj / for j D 1; 2.
IfB isK1-injective, then u belongs to U0.B/, whence u lifts to a unitary v 2 A2.

Define Q�2 W T2 ! A2 by Q�2.tj / D v�2.tj / for j D 1; 2 (observing that t1, t2 generate
T2). Then �1 B�1 D �2 B Q�2, which by the universal property of the pull-back implies
that �1 and Q�2 lift to a (necessarily unital) embedding � W T2 ! A, thus forcing A to
be properly infinite.

In the general case (where B is not necessarily K1-injective) u may not lift to
a unitary element in A2, but diag.u; u/ does lift to a unitary element v in M2.A2/

by Lemma 2.4 (ii) (applied with p D diag.1; 0/). Define unital embeddings
Q�i W T2 ! M2.Ai /, i D 1; 2, by

Q�1.tj / D
�
�1.tj / 0

0 �1.tj /

�
; Q�2.tj / D v

�
�2.tj / 0

0 �2.tj /

�
;

for j D 1; 2. As .�1 ˝ idM2
/ B Q�1 D .�2 ˝ idM2

/ B Q�2, the unital embeddings Q�1

and Q�2 lift to a (necessarily unital) embedding of T2 intoM2.A/, thus completing the
proof.

Question 2.8. Is the pull-back of any two properly infinite unital C*-algebras again
properly infinite?

As mentioned in the introduction, one cannot in general conclude thatA is properly
infinite if one knows that Mn.A/ is properly infinite for some n � 2.

One obvious way of obtaining an answer to Question 2.8, in the light of the last
statement in Proposition 2.7, is to answer the question below in the affirmative:

Question 2.9. Is every properly infinite unital C*-algebra K1-injective?

We shall see later, in Section 5, that the two questions above in fact are equivalent.
The lemma below, which shall be used several times in this paper, shows that one

can lift proper infiniteness from a fibre of a C.X/-algebra to a whole neighborhood
of that fibre.
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Lemma 2.10. LetX be a compact Hausdorff space, let A be a unital C.X/-algebra,
let x 2 X , and suppose that the fibre Ax is properly infinite. Then AF is properly
infinite for some closed neighborhood F of x.

Proof. Let fF�g�2ƒ be a decreasing net of closed neighborhoods of x 2 X , fulfilling
that

T
�2ƒ F� D fxg, and set I� D C0.X n F�/A. Then fI�g�2ƒ is an increasing

net of ideals in A, AF�
D A=I�, I WD S

�2ƒ I� D C0.X n fxg/, and Ax D A=I .
By the assumption that Ax is properly infinite there is a unital �-homomorphism

 W T2 ! Ax , and since T2 is semi-projective there is a �0 2 ƒ and a unital �-
homomorphism ' W T2 ! AF�0

making the diagram

AF�0

�x
��

T2

'
���

�
�

�

 
�� Ax

commutative. We can thus take F to be F�0
.

Theorem 2.11. Let A be a unital C.X/-algebra where X is a compact Hausdorff
space. If all fibres Ax , x 2 X , are properly infinite, then some matrix algebra over A
is properly infinite.

Proof. By Lemma 2.10,X can be covered by finitely many closed setsF1; F2; : : : ; Fn

such that AFj
is properly infinite for each j . PutGj D F1 [F2 [ � � � [Fj . For each

j D 1; 2; : : : ; n � 1 we have a pull-back diagram

AGj C1

�����
��� �����

���

AGj

����
���

�
AFj C1

�����
���

AGj \Fj C1.

We know thatM2j �1.AGj
/ is properly infinite when j D 1. Proposition 2.7 (applied

to the diagram above tensored withM2j �1.C/) tells us thatM2j .AGj C1
/ is properly

infinite if M2j �1.AGj
/ is properly infinite. Hence M2n�1.A/ is properly infinite.

Remark 2.12. Uffe Haagerup has suggested another way to prove Theorem 2.11: If
no matrix-algebra over A is properly infinite, then there exists a bounded non-zero
lower semi-continuous 2-quasi-trace onA, see [7] and [1, page 327], and hence also an
extremal 2-quasi-trace. Now, ifA is also aC.X/-algebra for some compact Hausdorff
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spaceX , this implies that there is a bounded non-zero lower semi-continuous 2-quasi-
trace on Ax for (at least) one point x 2 X (see e.g. [8], Proposition 3.7). But then the
fibre Ax cannot be properly infinite.

Question 2.13. Is any unital C.X/-algebra A properly infinite if all its fibres Ax ,
x 2 X , are properly infinite?

We shall show in Section 5 that the question above is equivalent to Question 2.8
which again is equivalent to Question 2.9.

3. Lower semi-continuous fields of properly infinite C�-algebras

Let us briefly discuss whether the results from Section 2 can be extended to lower
semi-continuous C�-bundles .A; f�xg/ over a compact Hausdorff space X . Recall
that any such separable lower semi-continuous C�-bundle admits a faithful C.X/-
linear representation on a Hilbert C.X/-module E such that, for all x 2 X , the fibre
�x.A/ is isomorphic to the induced image of A in L.Ex/ [2]. Thus, the problem
boils down to the following: Given a separable HilbertC.X/-moduleE with infinite-
dimensional fibres Ex , such that the unit p of the C�-algebra LC.X/.E/ of bounded
adjointableC.X/-linear operators acting onE has a properly infinite image in L.Ex/

for all x 2 X . Is the projection p itself properly infinite in LC.X/.E/?
Dixmier and Douady proved that this is always the case if the space X has finite

topological dimension [6]. But it does not hold anymore in the infinite-dimensional
case; see [6], §16, Corollaire 1, and [12], even if X is contractible [3], Corollary 3.7.

4. Two examples

We describe here two examples of continuous fields; the first is over the interval and
the second (which really is a class of examples) is over the circle.

Example 4.1. Let .O1 � O1; .�1; �2// be the universal unital free product of two
copies of O1, and let A be the unital sub-C�-algebra of C.Œ0; 1�;O1 � O1/ given
by

A D ff 2 C.Œ0; 1�;O1 � O1/ W f .0/ 2 �1.O1/; f .1/ 2 �2.O1/g:
Observe that A (in a canonical way) is a C.Œ0; 1�/-algebra with fibres

At D

8̂<
:̂
�1.O1/; t D 0;

O1 � O1; 0 < t < 1;

�2.O1/; t D 1;

Š

8̂<
:̂

O1; t D 0;

O1 � O1; 0 < t < 1;

O1; t D 1:

In particular, all fibres of A are properly infinite.



Properly infinite C.X/-algebras and K1-injectivity 271

One claim to fame of the example above is that the question below is equivalent
to Question 2.13 above. Hence, to answer Question 2.13 in the affirmative (or in the
negative) we need only consider the case where X D Œ0; 1�, and we need only worry
about this one particular C.Œ0; 1�/-algebra (which of course is bad enough!).

Question 4.2. Is the C.Œ0; 1�/-algebra A from Example 4.1 above properly infinite?

The three equivalent statements in the proposition below will in Section 5 be shown
to be equivalent to Question 4.2.

Proposition 4.3. The following three statements concerning the C.Œ0; 1�/-algebra A

and the C*-algebra .O1 � O1; .�1; �2// defined above are equivalent:

(i) A contains a non-trivial projection (i.e., a projection other than 0 and 1).

(ii) There are non-zero projections p; q 2 O1 such that p ¤ 1, q ¤ 1, and
�1.p/ �h �2.q/.

(iii) Let s be any isometry in O1. Then �1.ss�/ �h �2.ss
�/ in O1 � O1.

We warn the reader that all three statements above could be false.

Proof. (i) ) (ii) Let e be a non-trivial projection in A. Let �t W A ! At , t 2 Œ0; 1�,
denote the fibre map. As A � C.Œ0; 1�;O1 � O1/, the mapping t 7! �t .e/ 2
O1 �O1 is continuous, so in particular �0.e/ �h �1.e/ in O1 �O1. The mappings
�1 and �2 are injective, so there are projections p; q 2 O1 such that �0.e/ D �1.p/

and �1.e/ D �2.q/. The projections p and q are non-zero because the mapping
t 7! k�t .e/k is continuous and not constant equal to 0. Similarly, 1 � p and 1 � q

are non-zero because 1 � e is non-zero.
(ii) ) (iii) Take non-trivial projectionsp; q 2 O1 such that �1.p/ �h �2.q/. Take

a unitary v in U0.O1 �O1/with �2.q/ D v�1.p/v
�. Let s 2 O1 be an isometry. If s

is unitary, then �1.ss�/ D 1 D �2.ss
�/ and there is nothing to prove. Suppose that s is

non-unitary. Then ss� is homotopic to a subprojection p0 of p and to a subprojection
q0 of q (use that p and q are properly infinite and full, then Lemma 2.4 (i), and last
the fact that the unitary group of O1 is connected). Hence �1.ss�/ �h �1.p0/ �h

v�1.p0/v
� and �2.ss�/ �h �2.q0/, so we need only show that v�1.p0/v

� �h �2.q0/.
But this follows from Proposition 2.5 with r D 1 � �2.q/ D �2.1 � q/, as we note
that p0 � 1 � q0 in O1, whence

�2.q0/ � �2.1/ D 1 D �1.1/ � �1.p0/ � v�1.p0/v
�:

(iii) ) (i) Take a non-unitary isometry s 2 O1. Then �1.ss�/ �h �2.ss
�/, and

so there is a continuous function e W Œ0; 1� ! O1 � O1 such that e.t/ is a projection
for all t 2 Œ0; 1�, e.0/ D �1.ss

�/ and e.1/ D �2.ss
�/. But then e is a non-trivial

projection in A.
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It follows from Theorem 2.11 that some matrix algebra over A (from Example 4.1)
is properly infinite. We can sharpen that statement as follows:

Proposition 4.4. M2.A/ is properly infinite; and if O1 � O1 is K1-injective, then
A itself is properly infinite.

It follows from Theorem 5.5 below that A is properly infinite if and only if
O1 � O1 is K1-injective.

Proof. We have a pull-back diagram

A

													
















AŒ0; 1
2 �

�1=2 












AŒ 1

2 ;1�

�1=2												

O1 � O1.

One can unitally embed O1 into AŒ0; 1
2 � via �1, so AŒ0; 1

2 � is properly infinite, and
a similar argument shows that AŒ 1

2 ;1� is properly infinite. The two statements now
follow from Proposition 2.7.

The example below, which will be the focus of the rest of this section, and in parts
also of Section 5, is inspired by arguments from Rieffel’s paper [9].

Example 4.5. Let A be a unital C*-algebra, and let v be a unitary element in A such
that �

v 0

0 1

�
�h

�
1 0

0 1

�
in U2.A/:

Let t 7! ut be a continuous path of unitaries in U2.A/ such that u0 D 1 and
u1 D diag.v; 1/. Put

p.t/ D ut

�
1 0

0 0

�
u�

t 2 M2.A/;

and note that p.0/ D p.1/. Identifying, for each C*-algebra D, C.T ;D/ with the
algebra of all continuous functions f W Œ0; 1� ! D such that f .1/ D f .0/, we see
that p belongs to C.T ;M2.A//. Put

B D pC.T ;M2.A//p;
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and note that B is a unital (sub-trivial) C.T /-algebra, being a corner of the trivial
C.T /-algebra C.T ;M2.A//. The fibres of B are

Bt D p.t/M2.A/p.t/ Š A

for all t 2 T .
Summing up, for each unital C*-algebra A, for each unitary v in A for which

diag.v; 1/ �h 1 in U2.A/, and for each path t 7! ut 2 U2.A/ implementing this
homotopy we get a C.T /-algebra B with fibres Bt Š A. We shall investigate this
class of C.T /-algebras below.

Lemma 4.6. In the notation of Example 4.5,�
1 0

0 1

�
� p �

�
0 0

0 1

�
in C.T ;M2.A//:

In particular, p is stably equivalent to diag.1; 0/.

Proof. Put

vt D ut

�
0 0

0 1

�
; t 2 Œ0; 1�:

Then

v0 D u0

�
0 0

0 1

�
D

�
0 0

0 1

�
; v1 D u1

�
0 0

0 1

�
D

�
v 0

0 1

� �
0 0

0 1

�
D

�
0 0

0 1

�
;

so v belongs to C.T ;M2.A//. It is easy to see that v�
t vt D diag.0; 1/ and vtv

�
t D

1 � p.t/, and so the lemma is proved.

Proposition 4.7. Let A, v 2 U.A/, and B be as in Example 4.5. Conditions (i) and
(ii) below are equivalent for any unital C*-algebra A, and all three conditions are
equivalent if A in addition is assumed to be properly infinite.

(i) v �h 1 in U.A/.

(ii) p � diag.1A; 0/ in C.T ;M2.A//.

(iii) The C.T /-algebra B is properly infinite.

Proof. (ii) ) (i) Suppose that p � diag.1; 0/ in C.T ;M2.A//. Then there is a
w 2 C.T ;M2.A// such that

wtw
�
t D

�
1 0

0 0

�
and w�

t wt D pt
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for all t 2 Œ0; 1� andw1 D w0 (as we identifyC.T ;M2.A//with the set of continuous
functions f W Œ0; 1� ! M2.A/ with f .1/ D f .0/). Upon replacing wt with w�

0wt

we can assume that w1 D w0 D diag.1; 0/. Now, with t 7! ut as in Example 4.5,

wtut

�
1 0

0 0

�
D

�
at 0

0 0

�
;

where t 7! at is a continuous path of unitaries in A. Because u0 D diag.1; 1/ and
u1 D diag.v; 1/ we see that a0 D 1 and a1 D v, whence v �h 1 in U.A/.

(i) ) (ii) Suppose conversely that v �h 1 in U.A/. Then we can find a continuous
path t 7! vt 2 U.A/, t 2 Œ1 � "; 1�, such that v1�" D v and v1 D 1 for an " > 0 (to
be determined below). Again with t 7! ut as in Example 4.5, define

Qut D
´
u.1�"/�1t ; 0 � t � 1 � ";
diag.vt ; 1/; 1 � " � t � 1:

Then t 7! Qut is a continuous path of unitaries in U2.A/ such that Qu1�" D u1 D
diag.v; 1/ and Qu0 D Qu1 D 1. It follows that Qu belongs to C.T ;M2.A//. Provided
that " > 0 is chosen small enough we obtain the following inequality:���� Qut

�
1 0

0 0

�
Qu�

t � p.t/
���� D

���� Qut

�
1 0

0 0

�
Qu�

t � ut

�
1 0

0 0

�
u�

t

���� < 1
for all t 2 Œ0; 1�, whence p � Qu diag.1; 0/ Qu� � diag.1; 0/ as desired.

(iii) ) (ii) Suppose that B is properly infinite. From Lemma 4.6 we know that
Œp� D Œdiag.1A; 0/� inK0.C.T ; A//. Because B andA are properly infinite, it follows
that p and diag.1A; 0/ are properly infinite (and full) projections, and hence they are
equivalent by Proposition 2.3 (i).

(ii) ) (iii) SinceA is properly infinite, diag.1A; 0/ and hence p (being equivalent
to diag.1A; 0/) are properly infinite (and full) projections, whence B is properly
infinite.

We will now use (the ideas behind) Lemma 4.6 and Proposition 4.7 to prove the
following general statement about C�-algebras.

Corollary 4.8. Let A be a unital C�-algebra such that C.T ; A/ has the cancellation
property. Then A is K1-injective.

Proof. It suffices to show that the natural maps Un�1.A/=U
0
n�1.A/!Un.A/=U

0
n.A/

are injective for all n � 2. Let v 2 Un�1.A/ be such that diag.v; 1A/ 2 U0
n.A/ and

find a continuous path of unitaries t 7! ut in Un.A/ such that

u0 D 1Mn.A/ D
�
1Mn�1.A/ 0

0 1A

�
and u1 D

�
v 0

0 1A

�
:
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Put

pt D ut

�
1Mn�1.A/ 0

0 0

�
u�

t ; t 2 Œ0; 1�;

and note that p0 D p1 so that p defines a projection in C.T ;Mn.A//. Repeating the
proof of Lemma 4.6 we find that 1Mn.A/ �p � diag.0; 1A/ in C.T ;Mn.A//, whence
p � diag.1Mn�1.A/; 0/ by the cancellation property of C.T ; A/, where we identify
projections in Mn.A/ with constant projections in C.T ;Mn.A//. The arguments
going into the proof of Proposition 4.7 show that v �h 1Mn�1.A/ in Un�1.A/ if (and
only if) p � diag.1Mn�1.A/; 0/. Hence v belongs to U0

n�1.A/ as desired.

5. K1-injectivity of properly infinite C*-algebras

In this section we prove our main result that relates K1-injectivity of arbitrary unital
properly infinite C*-algebras to proper infiniteness of C.X/-algebras and pull-back
C*-algebras. More specifically we shall show that Question 2.9, Question 2.13,
Question 2.8, and Question 4.2 are equivalent.

First we reformulate in two different ways the question if a given properly infinite
unital C*-algebra is K1-injective.

Proposition 5.1. The following conditions are equivalent for any unital properly
infinite C*-algebra A:

(i) A is K1-injective.

(ii) Let p, q be projections in A such that p � q and p, q, 1�p, 1� q are properly
infinite and full. Then p �h q.

(iii) Let p and q be properly infinite, full projections in A. There exist properly
infinite, full projections p0; q0 2 A such that p0 � p, q0 � q, and p0 �h q0.

Proof. (i) ) (ii) Let p, q be properly infinite, full projections in A with p � q such
that 1 � p, 1 � q are properly infinite and full. Then by Lemma 2.4 (i) there is a
unitary v 2 A such that vpv� D q and Œv� D 0 in K1.A/. By the assumption in (i),
v 2 U0.A/, whence p �h q.

(ii) ) (i) Let u 2 U.A/ be such that Œu� D 0 in K1.A/. Take, as we can, a
projection p in A such that p and 1�p are properly infinite and full. Set q D upu�.
Then p �h q by (ii), and so there exists a unitary v 2 U0.A/ with p D vqv�. It
follows that

pvu D vqv�vu D v.upu�/v�vu D vup:

Therefore vu 2 U0.A/ by Lemma 2.4 (ii), which in turn implies that u 2 U0.A/.
(ii) ) (iii) Let p, q be properly infinite and full projections in A. There exist

mutually orthogonal projections e1, f1 such that e1 � p, f1 � p and e1 � p � f1,
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and mutually orthogonal projections e2, f2 such that e2 � q, f2 � q and e2 � q � f2.
Being equivalent to eitherp or q, the projections e1, e2, f1 and f2 are properly infinite
and full. There are properly infinite, full projections p0 � e1 and q0 � e2 such that
Œp0� D Œq0� D 0 in K0.A/ and p0 � q0 (cf. Proposition 2.3). As f1 � 1 � p0 and
f2 � 1 � q0, we see that 1 � p0 and 1 � q0 are properly infinite and full, and so we
get p0 �h q0 by (ii).

(iii) ) (ii) Let p; q be equivalent properly infinite, full projections in A such that
1 � p, 1 � q are properly infinite and full. From (iii) we get properly infinite and
full projections p0 � p, q0 � q which satisfy p0 �h q0. Thus there is a unitary
v 2 U0.A/ such that vp0v

� D q0. Upon replacing p by vpv� (as we may do because
p �h vpv

�) we can assume that q0 � p and q0 � q. Now, q0 is orthogonal to 1�p
and to 1 � q, and so 1 � p �h 1 � q by Proposition 2.5, whence p �h q.

Proposition 5.2. Let A be a unital properly infinite C*-algebra. The following con-
ditions are equivalent:

(i) A is K1-injective, ie., the natural map U.A/=U0.A/ ! K1.A/ is injective.

(ii) The natural map U.A/=U0.A/ ! U2.A/=U
0
2.A/ is injective.

(iii) The natural maps Un.A/=U
0
n.A/ ! K1.A/ are injective for each natural num-

ber n.

Proof. (i) ) (ii) holds because the map U.A/=U0.A/ ! K1.A/ factors through the
map U.A/=U0.A/ ! U2.A/=U

0
2.A/.

(ii) ) (i) Take u 2 U.A/ and suppose that Œu� D 0 inK1.A/. Then diag.u; 1A/ 2
U0

2.A/ by Lemma 2.4 (ii) (with p D diag.1A; 0/). Hence u 2 U0.A/ by injectivity
of the map U.A/=U0.A/ ! U2.A/=U

0
2.A/.

(i) ) (iii) Let n � 1 be given and consider the natural maps

U.A/=U0.A/ ! Un.A/=U
0
n.A/ ! K1.A/:

The first map is onto, as proved by Cuntz in [4], see also [13], Exercise 8.9, and the
composition of the two maps is injective by assumption, hence the second map is
injective.

(iii) ) (i) is trivial.

We give below another application of K1-injectivity for properly infinite C*-al-
gebras. First we need a lemma:

Lemma 5.3. Let A be a unital, properly infinite C*-algebra, and let '; W O1 ! A

be unital embeddings. Then  is homotopic to a unital embedding  0 W O1 ! A for
which there is a unitary u 2 A with Œu� D 0 inK1.A/ and for which 0.sj / D u'.sj /

for all j (where s1; s2; : : : are the canonical generators of O1).
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Proof. For each n set

vn D
nX

j D1

 .sj /'.sj /
� 2 A; en D

nX
j D1

sj s
�
j 2 O1:

Then vn is a partial isometry in A with vnv
�
n D  .en/, v�

nvn D '.en/, and  .sj / D
vn'.sj / for j D 1; 2; : : : ; n. Since 1� en is full and properly infinite it follows from
Lemma 2.4 that each vn extends to a unitary un 2 A with Œun� D 0 in K1.A/. In
particular,  .sj / D un'.sj / for j D 1; 2; : : : ; n.

We proceed to show that n 7! un extends to a continuous path of unitaries t 7! ut ,
for t 2 Œ2;1/, such that ut'.en/ D un'.en/ for t � nC 1. Fix n � 2. To this end
it suffices to show that we can find a continuous path t 7! zt , t 2 Œ0; 1�, of unitaries
in A such that z0 D 1, z1 D u�

nunC1, and zt'.en�1/ D '.en�1/ (as we then can set
ut to be unzt�n for t 2 Œn; nC 1�).

Observe that

unC1'.en/ D vnC1'.en/ D vn D un'.en/:

Set A0 D .1 � '.en�1//A.1 � '.en�1//, and set y D u�
nunC1.1 � '.en�1//. Then

y is a unitary element in A0 and Œy� D 0 in K1.A0/. Moreover, y commutes with
the properly infinite full projection '.en/ � '.en�1/ 2 A0. We can therefore use
Lemma 2.4 to find a continuous path t 7! yt of unitaries inA0 such that y0 D 1A0

D
1 � '.en�1/ and y1 D y. The continuous path t 7! zt D yt C '.en�1/ is then as
desired.

For each t � 2 let  t W O1 ! A be the �-homomorphism given by  t .sj / D
ut'.sj /. Then  t .sj / D  .sj / for all t � j C 1, and so it follows that

lim
t!1 t .x/ D  .x/

for all x 2 O1. Hence  2 is homotopic to  , and so we can take  0 to be  2.

Proposition 5.4. Any two unital �-homomorphisms from O1 into a unital K1-
injective ( properly infinite) C*-algebra are homotopic.

Proof. In the light of Lemma 5.3 it suffices to show that if '; W O1 ! A are
unital �-homomorphisms such that, for some unitary u 2 A with Œu� D 0 in K1.A/,
 .sj / D u'.sj / for all j , then  �h '. By assumption, u �h 1, so there is a
continuous path t 7! ut of unitaries in A such that u0 D 1 and u1 D u. Letting
't W O1 ! A be the �-homomorphism given by 't .sj / D ut'.sj / for all j , we get
t 7! 't is a continuous path of �-homomorphisms connecting '0 D ' to '1 D  .

Our main theorem below, which in particular implies that Question 2.9, Ques-
tion 2.13, Question 2.8 and Question 4.2 all are equivalent, also gives a special con-
verse to Proposition 5.4: Indeed, with �1; �2 W O1 ! O1 � O1 the two canonical
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inclusions, if �1 �h �2, then condition (iv) below holds, whence O1�O1 isK1-injec-
tive, which again implies that all unital properly infinite C*-algebras areK1-injective.
Below we retain the convention that O1 � O1 is the universal unital free product
of two copies of O1 and that �1 and �2 are the two natural inclusions of O1 into
O1 � O1.

Theorem 5.5. The following statements are equivalent:

(i) Every unital, properly infinite C�-algebra is K1-injective.

(ii) For every compact Hausdorff spaceX , every unital C.X/-algebra A, for which
Ax is properly infinite for all x 2 X , is properly infinite.

(iii) Every unital C�-algebra A, that is the pull-back of two unital, properly infinite
C�-algebras A1 and A2 along �-epimorphisms �1 W A1 ! B , �2 W A2 ! B ,

A
'1

����
��

��
�� '2

���
��

��
��

�

A1

�1 ���
��

��
��

� A2

�2����
��

��
��

B

is properly infinite.

(iv) There exist non-zero projections p; q 2 O1 such that p ¤ 1, q ¤ 1, and
�1.p/ �h �2.q/ in O1 � O1.

(v) The specific C.Œ0; 1�/-algebra A considered in Example 4.1 (and whose fibres
are properly infinite) is properly infinite.

(vi) O1 � O1 is K1-injective.

Note that statement (i) is reformulated in Propositions 5.1, 5.2, and 5.4; and
that statement (iv) is reformulated in Proposition 4.3. We warn the reader that all
these statements may turn out to be false (in which case, of course, there will be
counterexamples to all of them).

Proof. (i) ) (iii) follows from Proposition 2.7.
(iii) ) (ii) This follows from Lemma 2.10 as in the proof of Theorem 2.11, except

that one does not need to pass to matrix algebras.
(ii) ) (i) Suppose that A is unital and properly infinite. Take a unitary v 2 U.A/

such that diag.v; 1/ 2 U0
2.A/. Let B be theC.T /-algebra constructed in Example 4.5

from A, v, and a path of unitaries t 7! ut connecting 1M2.A/ to diag.v; 1/. Then
Bt Š A for all t 2 T , so all fibres of B are properly infinite. Assuming (ii), we can
conclude that B is properly infinite. Proposition 4.7 then yields that v 2 U0.A/. It
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follows that the natural map U.A/=U0.A/ ! U2.A/=U
0
2.A/ is injective, whenceA

is K1-injective by Proposition 5.2.
(ii) ) (v) is trivial (because A is a C.Œ0; 1�/-algebra with properly infinite fibres).
(v) ) (iv) follows from Proposition 4.3.
(iv) ) (i) We show that Condition (iii) of Proposition 4.3 implies Condition (iii)

of Proposition 5.1.
Let A be a properly infinite C�-algebra and let p, q be properly infinite, full

projections in A. Then there exist (properly infinite, full) projections p0 � p and
q0 � q such thatp0 � 1 � q0 and such that 1�p0 and 1�q0 are properly infinite and
full, cf. Propositions 2.3. Take isometries t1; r1 2 A with t1t�1 D p0 and r1r�

1 D q0;
use the fact that 1 - 1�p0 and 1 - 1�q0 to find sequences of isometries t2; t3; t4; : : :
and r2; r3; r4; : : : in A such that each of the two sequences ftj t�j g1

j D1 and frj r�
j g1

j D1

consist of pairwise orthogonal projections.
By the universal property of O1 there are unital �-homomorphisms'j W O1 ! A,

j D 1; 2, such that'1.sj / D tj and'2.sj / D rj , where s1; s2; s3; : : : are the canonical
generators of O1. In particular,

'1.s1s
�
1 / D p0 and '2.s1s

�
1 / D q0:

By the property of the universal unital free products of C�-algebras, there is a unique
unital �-homomorphism ' W O1 � O1 ! A making the diagram

O1 � O1

'

��

O1

'1 













�1
�����������

O1

'2												

�2
�����������

A

commutative. It follows that p0 D '.�1.s1s
�
1 // and q0 D '.�2.s1s

�
1 //. By Condi-

tion (iii) of Proposition 4.3, �1.s1s�
1 / �h �2.s1s

�
1 / in O1 � O1, whence p0 �h q0 as

desired.
(i) ) (vi) is trivial.
(vi) ) (v) follows from Proposition 4.4.

6. Concluding remarks

We do not know whether all unital properly infinite C*-algebras areK1-injective, but
we observe thatK1-injectivity is assured in the presence of certain central sequences:
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Proposition 6.1. Let A be a unital properly infinite C*-algebras that contains an
asymptotically central sequence fpng1

nD1, where pn and 1�pn are properly infinite,
full projections for all n. Then A is K1-injective

Proof. This follows immediately from Lemma 2.4 (ii).

It remains open if arbitrary C.X/-algebras with properly infinite fibres must be
properly infinite. If this fails, then we already have a counterexample of the form
B D pC.T ;M2.A//p, cf. Example 4.5, for some unital properly infinite C*-algebra
A and for some projection p 2 C.T ;M2.A//. (The C*-algebra B is a C.T /-algebra
with fibres Bt Š A.)

On the other hand, any trivial C.X/-algebra C.X;D/ with constant fibre D
is clearly properly infinite if its fibre(s) D is unital and properly infinite (because
C.X;D/ Š C.X/˝ D). We extend this observation in the following easy proposi-
tion:

Proposition 6.2. Let X be a compact Hausdorff space, let p 2 C.X;D/ be a pro-
jection, and consider the sub-trivial C.X/-algebra pC.X;D/p whose fibre at x is
equal to p.x/Dp.x/.

If p is Murray–von Neumann equivalent to a constant projection x 7! q, then
pC.X;D/p isC.X/-isomorphic to the trivialC.X/-algebraC.X;D0/, whereD0 D
qDq. In this case,pC.X;D/p is properly infinite if and only ifD0 is properly infinite.

In particular, if X is contractible, then pC.X;D/p is C.X/-isomorphic to a
trivial C.X/-algebra for any projection p 2 C.X;D/ and for any C*-algebra D.

Proof. Suppose that p D v�v and q D vv� for some partial isometry v 2 C.X;D/.
The mapf 7! vf v� defines aC.X/-isomorphism frompC.X;D/p ontoqC.X;D/q,
and qC.X;D/q D C.X;D0/.

If X is contractible, then any projection p 2 C.X;D/ is homotopic, and hence
equivalent, to the constant projection x 7! p.x0/ for any fixed x0 2 X .

Remark 6.3. One can elaborate a little more on the construction considered above.
Take a unital C*-algebra D such that for some natural number n � 2, Mn.D/ is
properly infinite, but Mn�1.D/ is not properly infinite (see [11] or [12] for such
examples). Take any space X , preferably one with highly non-trivial topology, e.g.
X D Sn, and take, for some k � n, a sufficiently non-trivialn-dimensional projection
p inC.X;Mk.D// such thatp.x/ is equivalent to the trivial n dimensional projection
1Mn.D/ for allx (ifX is connected we need only assume that this holds for onex 2 X ).
The C.X/-algebra

A D p C.X;Mk.D//p

then has properly infinite fibres Ax D p.x/Dp.x/ Š Mn.D/. Is A always properly
infinite? We guess that a possible counterexample to the questions posed in this paper
could be of this form (for suitable D, X , and p).
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Let us end this paper by remarking that the answer to Question 2.13, which asks
if any C.X/-algebra with properly infinite fibres is itself properly infinite, does not
depend (very much) on X . If it fails, then it fails already for X D Œ0; 1� (cf. Theo-
rem 5.5) and Œ0; 1� is a contractible space of low dimension. However, if we make
the dimension ofX even lower than the dimension of Œ0; 1�, then we do get a positive
answer to our question:

Proposition 6.4. LetX be a totally disconnected space, and letA be aC.X/-algebra
such that all fibres Ax , x 2 X , of A are properly infinite. Then A is properly infinite.

Proof. Using Lemma 2.10 and the fact thatX is totally disconnected we can writeX
as the disjoint union of clopen sets F1; F2; : : : ; Fn such that AFj

is properly infinite
for all j . As

A D AF1
˚ AF2

˚ � � � ˚ AFn
;

the claim is proved.
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