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Cohomology of Yang–Mills algebras

Michael Movshev

Abstract. In this paper we compute cyclic and Hochschild homology of the universal envelope
U.YM / of the Yang–Mills Lie algebra YM. We also compute Hochschild cohomology with
coefficients in U.YM /, considered as a bimodule over itself.

The result of the calculations depends on the number of generators n of YM. The semidirect
product so.n/ Ë Cn acts by derivations upon U.YM /. One of the important consequences of
our results is that if n � 3 then the Lie algebra of outer derivations of U.YM / coincides with
so.n/ Ë Cn.
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1. Introduction

This paper is an account of the preliminary material that appeared in the preprint [16].
Our main object of study is the Yang–Mills algebra YM as introduced in [6]

and [19].
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By definition the Lie algebra YM is a quotient of the free Lie algebra Free.V /,
where V is a complex n-dimensional linear space equipped with a symmetric non-
degenerate inner product . � ; � /. In a basisus the Gram matrix gss0 of the inner product
has the inverse gss0

. The relations defining the YM algebra

nX
s;s0D1

gss0

Œus; Œus0 ; ut �� D 0; t D 1; : : : ; n;

depend only on the choice of the bilinear form . � ; � /.
The purpose of this paper is to compute various kinds of homology of the universal

enveloping algebra U.YM /. We study cyclic and Hochschild homology as well as
Hochschild cohomology with coefficients in the adjoint bimodule.

Some words about the history of our subject are in order.
The associative algebra U.YM / was explicitly mentioned as an algebraic object

for the first time in [19], where some interesting representations of U.YM / were
presented. A thorough algebraic treatment of U.YM / has been done in [6] and [7].

In [6] Connes and Dubois-Violette defined the Yang–Mills algebra as a cubic as-
sociative algebra. They observed the fact that it is the universal enveloping algebra
of a graded Lie algebra and stated that it is a Koszul algebra of global dimension 3.
Also they noticed that it has the Poincaré duality property: a property that, follow-
ing Artin and Schelter [1], is referred to as the Gorenstein property. Moreover it is
also in this paper that Connes and Dubois-Violette gave an explicit formula for the
Poincaré series of this Yang–Mills algebra (and computed it by using the dimensions
of the homogeneous components of the corresponding Lie algebra in terms of the
Möbius function). We should acknowledge that most of our definitions and most of
the elementary properties of the algebra U.YM / discussed in Section 2 are already
contained in [6], [7]. Also [7] describes some components of the Hochschild homol-
ogy of U.YM /. Hence one can consider our work as a generalisation of the results
in [7].

Our main motivation was to understand symmetries of the Yang–Mills equation
over the flat Riemannian Rn that has been reduced to a point. More specifically we
consider covariant differentiations rs D @

@xs
C As.x1; : : : ; xn/, 1 � s � n, that

act on sections of a trivial N -dimensional Hermitian vector bundle over Rn. We
assume that rs preserve the Hermitian structure. The space Rn is equipped with the
metric gss0dxsdxs0

. The system of Yang–Mills equations gss0

Œrs; Œrs0 ;rt �� D 0,
t D 1; : : : ; n, is compatible with the space-time shifts. Upon the restriction of this
system to translation-invariant covariant differentiations it becomes a system of matrix
equations

nX
s;s0D1

gss0

ŒAs; ŒAs0 ; At �� D 0; t D 1; : : : ; n; (1.1)
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where A1; : : : ; An is an array of anti-hermitian matrices. The linear space of anti-
hermitian matrices u.N / is the Lie algebra of the unitary group U.N/-translation-
invariant gauge transformations. This is an obvious symmetry group of the equa-
tion (1.1).

Solutions of this equation can be identified with critical points of the functionP
1�s<t�n g

ss0

gt t 0

tr.ŒAs; At �ŒAs0 ; At 0 �/, defined on u.N /�n.
The complexification uC.N /

�n of the space u.N /�n coincides with the space of
n-tuples of complex .N �N/-matrices Mat�n

N . The latter has a system of coordinates
xs

ij , 1 � i; j � N , 1 � s � n. A GL.N;C/ Š UC.N /-invariant vector field on
Mat�n

N of degree k � 1 can constructed by the formulaX
csk

s1;s2;:::;sk�1
x

s1

i1i2
x

s2

i2i3
: : : x

sk�1

ik�2ik�1

@

@x
sk
ik�1i1

:

In this formula we perform summation over the repeated indices. The coefficients
c

sk
s1;s2;:::;sk�1

are arbitrary complex numbers. The above vector field can be
written in terms of the matrix multiplication and the trace functional:P
c

sk
s1;s2;:::;sk�1

tr.X s1X s2 : : : X sk�1 @
@Xsk

/; we use matrices X s and @
@Xs with en-

tries xs
ij and @

@xs
ij

respectively. We shall call a non-homogeneous linear combination

of such vector fields a noncommutative vector field. We would like to classify non-
commutative vector fields that are tangent to the space of solutions of the complexified
Euler–Lagrange equation (1.1) for allN , i.e., the corresponding derivations leave the
ideal of the equations invariant. In our classification we identify two vector fields that
coincide on the space of solutions, i.e., the difference of the two is a vector field with
the coefficients in the ideal.

Inspired by the general intuition about the noncommutative structures, described
in [12], it is not hard to see that there is a one-to-one correspondence between the
classes of noncommutative vector fields and derivations of the algebra U.YM /. The
standard method of the analysis of the space of derivations of an associative algebraA
is through the computation of its first Hochschild cohomology H 1.A;A/ [14]. This
explains our interest in H �

.U.YM /; U.YM //. So much then for motivations.

1.1. Formulation of the results. The Lie algebra YM and the universal enveloping
U.YM / are graded by the degree of monomials.

IfB DL
i>�1Bi is a graded linear space then the generating function (Poincaré

series) B.t/ DP
i

dim.Bi /t
i is a formal Laurent series.

Denote by HH�

.U.YM /; U.YM // and HH�.U.YM /; U.YM // the Hochschild co-
homology and the Hochschild homology of U.YM / with coefficients in the adjoint
bimodule U.YM /, respectively [14]. Let HC�.U.YM // be the cyclic homology of
U.YM / [13]. The grading on U.YM / induces a grading on the (co)homology groups
for which we will reserve bold indices.
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Define generating functions

HHi .U.YM /; U.YM //.t/ D
X

j

dim.HHi;j .U.YM /; U.YM ///tj ;

HHi .U.YM /; U.YM //.t/ D
X

j

dim.HHi;j .U.YM /; U.YM ///tj ;

HCi .U.YM //.t/ D
X

j

dim.HCi;j .U.YM ///tj :

Results of [7] can be easily adapted to prove of the following.
The generating functions HHi .U.YM /; U.YM //.t/ are well-defined formal Lau-

rent series. The homological generating functions are given by

HHi .U.YM /; U.YM //.t/ D HH3�i .U.YM /; U.YM //.t/t4: (1.2)

The proof can be found in Section 2.2.
Introduce the formal power series

�n.t/ D �
X
k�1

ln.1 � ntk C nt3k � t4k/�.k/
k
; (1.3)

where the totient function �.k/ is defined as the number of positive integers � k that
are relatively prime to k.

The main result of this paper is a proof of Theorems 1.1 and 1.2.

Theorem 1.1. If dim.V / D n � 3, then

HH0.U.YM /; U.YM //.t/ D 1;
HH1.U.YM /; U.YM //.t/ D n.n � 1/

2
C 1C n

t
;

HH2.U.YM /; U.YM //.t/ D �n.t/

t4
C n.n � 1/ � 1C 2n

t
;

HH3.U.YM /; U.YM //.t/ D �n.t/

t4
C n.n � 1/

2
� 1C n

t
C 1

t4
;

HHi .U.YM /; U.YM //.t/ D 0; i � 4;
and

HC0.U.YM //.t/ D 1C �n.t/C
�n.n � 1/

2
� 1

�
t4 C nt3;

HC1.U.YM //.t/ D n.n � 1/
2

t4 C nt3;
HC2.U.YM //.t/ D 1C t4;

HC3C2i .U.YM //.t/ D 0; i � 0;
HC4C2i .U.YM //.t/ D 1; i � 0:
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Theorem 1.2. If dim.V / D 2, then

HH0.U.YM /; U.YM //.t/ D 1

1 � t2 ;

HH1.U.YM /; U.YM //.t/ D 2 1C t � t2
t .1 � t2/.1 � t / ;

HH2.U.YM /; U.YM //.t/ D .2 � t /.1C t2/
.1 � t /2t3 ;

HH3.U.YM /; U.YM //.t/ D 1

.1 � t /2t4 ;
HHi .U.YM /; U.YM //.t/ D 0; i � 4;

(1.4)

and

HC0.U.YM //.t/ D 1

.1 � t /2 ;

HC1.U.YM //.t/ D .2 � t /t3
.1 � t /2 ;

HC2.U.YM //.t/ D 1C t4

1 � t2 ;
HC3C2i .U.YM //.t/ D 0; i � 0;
HC4C2i .U.YM //.t/ D 1; i � 0:

(1.5)

1.2. An outline of the proofs of the main theorems. For the proofs of the main
results – Theorems 1.1 and 1.2 – we need Connes’exact sequence for cyclic homology,
adapted to graded algebras (see Section 2.1). We also use Poincaré duality in the
homology of U.YM /.

Besides these the proof of Theorem 1.2 uses only elementary considerations, which
can be found in Section 6.2.

The proof of Theorem 1.1 is much more involved.
The computation of HHi .A;A/.t/, 0 � i � 3, where A is a graded associative

algebraAwith Poincaré duality in dimension 3, requires only knowledge ofA.t/ and
two of the three series HC0.A/.t/, HC1.A/.t/, HC2.A/.t/.

In addition, the equalities

HC2.A/.t/ D HH3.A;A/.t/C 1;
HC2.A/.t/C HC1.A/.t/ D HH2.A;A/.t/C 1; (1.6)

which are corollaries of Connes’exact sequence, imply that it suffices for our purposes
to know A.t/, HH2.A;A/.t/ and HH3.A;A/.t/. We briefly review this material in
Section 2.1.
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The Poincaré series

U.YM /.t/ D 1

1 � nt C nt3 � t4 ; with n D dim.V /; (1.7)

was computed in [6]. Our task then is to determine HH2.U.YM /; U.YM //.t/ and
HH3.U.YM /; U.YM //.t/. In view of (1.2) if we find HH0.U.YM /; U.YM //.t/ and
HH1.U.YM /; U.YM //.t/, the formulas of Section 2.1 will enable us to prove Theo-
rems 1.1 and 1.2. Thus from now on we concentrate on the groups

HH3.U.YM /; U.YM // Š HH0.U.YM /; U.YM // D Z.U.YM // (1.8)

and

HH2.U.YM /; U.YM // Š HH1.U.YM /; U.YM // D Out.U.YM /; (1.9)

where Z.U.YM // and Out.U.YM // denote the center and the Lie algebra of outer
derivations of U.YM /, respectively.

The groups HHi .U.YM /; U.YM // are isomorphic to H i .YM; U.YM //, the Lie
algebra cohomology groups [5] of YM with coefficients inU.YM /, equipped with the
adjoint action �.a/b D Œa; b�.

A central fact about the Lie algebra YM DL
i�1 YMi is that it contains a free Lie

subalgebra (a Lie ideal)
TYM D

M
i�2

YMi

(see [17] and also Section 4.1).
We evaluate H i .YM; U.YM //.t/, i D 0; 1, in two steps.

(1) We determine H i .YM; U.TYM //, i D 0; 1.

(2) Using our knowledge of the groups in (1) we calculateZ.U.YM //;Out.U.YM //

and as corollary we find HHi .U.YM /; U.YM ///.t/ D H i .YM; U.YM ///.t/,
i D 2; 3.

For this we use a spectral sequence technique.
We denote by Ker " � U.TYM / be the kernel of the canonical augmentation

" W U.TYM /! C.
The filtration

U.TYM / D F 0 � F 1 � � � � � F k � (1.10)

of U.TYM / is generated by powers of Ker ":

F k D Ker�k ":

Let
M D TYM=ŒTYM;TYM�:
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The filtration F i .U.TYM // defines a filtration

F iC
�
.YM; U.TYM // D C �

.YM; F i .U.TYM ///

and a spectral sequence

E
ij
1 D H iCj .YM;M˝i /) H iCj .YM; U.TYM //: (1.11)

We show the vanishing of H 0.YM;M˝j /, j � 1, in Section 4.3 and that of
H 1.YM;M˝j /, j � 2, in Section 4.4.

We identify the cohomology of the higher differential of our spectral sequence in
Sections 5.2, 5.4. From this we argue in Section 5.5 that H 0.YM; U.TYM // Š C
and H 1.YM; U.TYM // Š V C V .

For N a module over a Lie algebra g we denote by Sym.N / the symmetric
(polynomial) algebra of N with multiplication a • b.

In order to compute the cohomology H �
.YM; U.YM //, which is isomorphic to

H
�
.YM;Sym.YM //, we introduce a filtrationF i

TYMC
�.YM;Sym.YM //. By definition

F i
TYM.Sym.YM // D I�i (1.12)

F i
TYMC

�
.YM;Sym.YM // D C �

.YM; I�i /; (1.13)

where I is the ideal generated by TYM (see Section 6.1). Again this leads to a spectral
sequence

E
ij
1 Š H iCj .YM;Symi .TYM /˝Symk�i .V //) H iCj .YM;Symk.YM //: (1.14)

We say that

f .t/ D
X

k

akt
k � 0 iff ak � 0 for all k;

and also
f .t/ � g.t/ iff f .t/ � g.t/ � 0:

An estimate of the E2-term enables us to assert that Z.U.YM //.t/ and
Out.U.YM //.t/ are not larger than the series stated in Theorem 1.1; the opposite
inequality is obvious. From this we can completely determine the groupsZ.U.YM //

and Out.U.YM //. As a corollary we prove Theorem 1.1.

Let us rapidly review the contents of sections not explicitly mentioned above.
In Section 2 we collect known facts about the cohomology of the YM algebra and

more generally about algebras with Poincaré duality in dimension 3. Most of these
facts were discovered in [7] and [21].

The two basic spectral sequences are formally introduced in Section 3.
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In Section 4 we prove vanishing results for the E1-term of the first spectral se-
quence. The long exact sequence of Section 4.2 is our basic tool.

The methods of Section 5 complement the method of long exact sequences from
Section 4.2. They constitute the core of the paper.

The technical Section 5.3 and the Appendices C and D deal with homologies of
modules over the algebra of homogeneous polynomial functions on a nonsingular
quadric. This material is needed only for the proof of Proposition 5.6 and can be
skipped in a first reading.

Concerning the notations and terminology: the ground field is assumed to be the
field of complex numbers C. It is easy to check however that most of the proofs go
through for any field of characteristic zero. In particular Theorems 1.1 and 1.2 remain
valid when the ground field is Q.

By a module we understand a left module. Let K� be a cohomological complex;
then K� denotes the homological complex Ki D K�i , d i D d�i . Fix an integer i .
We let .K�

Œl �/i be equal to KiCl , with dKŒl� D .�1/ldK . Define .K�Œl �/i D Ki�l

for the homological indexing (see [8]).

Acknowledgement. The author would like to thank IAS, IHES, MPI and SUNY at
Stony Brook where this work has been done. He would also like to thank M. Kontse-
vich, N. Nekrasov, A. S. Schwarz, D. Sullivan for useful discussions, and M. Rocek
for the opportunity to present this material at the “Simons Workshop in Mathematics
and Physics 2005”. The author is deeply indebted to Anthony Phillips, who read the
manuscript and suggested numerous corrections and improvements.

2. Preliminaries

The material of this section is not new and is included in this article in a form convenient
for us to have a quick reference. Some part of this material is already contained
implicitly or explicitly in [7].

2.1. Algebras with Poincaré duality. The universal enveloping U.YM / is an ex-
ample of a graded associative algebra A with Poincaré duality in (co)homology of
dimension 3 (see [7], [18]). We review general facts about the homology of such
algebras. Missing definitions and constructions from this section can be found in the
book [13].

The Connes periodicity long exact sequence

! HCiC1.A/! HCi�1.A/! HHi .A;A/! HCi .A/!
becomes particularly simple for graded algebras. It is convenient to formulate it in
terms of the reduced homology theories HCi .A/ ´ HCi .A/=HCi .A0/ and
HHi .A;A/´ HHi .A;A/=HHi .A0; A0/.
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Theorem 2.1 ([13], Theorem 4.1.13). If A is a positively graded unital algebra with
Q � A0, then the Connes sequence for HCi .A/ splits into exact sequences

0! HCi�1;j .A/! HHi;j .A;A/! HCi;j .A/! 0: (2.1)

The equalities (1.6) are direct corollaries of this theorem.
The linear space of the algebra A can be considered as an object in two different

tensor categories: one is the category VectZ of Z-graded vector spaces with nontrivial
commutativity morphism R (A.3), and the other is a category similar to VectZ where
the morphism R has no˙ signs. If the latter is true then we shall call A even.

The Poincaré series A.t/ fully determines the generating function �HC.A/.t/ of
Euler characteristics of graded components of HC�.A/. This follows from the next
theorem.

Theorem 2.2. LetA be a positively graded associative even algebra. The generating
function �HC.A/.t/ giving the Euler characteristics of reduced cyclic homology can
be computed using the formula

�HC.A/.t/ D �
X
m�1

ln.A.tm//
�.m/

m
;

with the totient function � defined in (1.3).

Corollary 2.3. IfA is a positively graded associative algebra of homological dimen-
sion k, then

1 �
X
m�1

ln.A.tm//
�.m/

m
D

k�1X
iD0

.�1/i .k � i/HHi .A;A/.t/ (2.2)

kX
iD0

.�1/i HHi .A;A/.t/ D 0 (2.3)

HCi .A/ D 0; i � n: (2.4)

Proof. This follows from Theorems 2.1 and 2.2.

In the following we will be usingAop for the algebra with the multiplication defined
by the rule a˝ b ! ba, where a˝ b ! ab is the multiplication in A.

Let us assume that the algebra A satisfies Poincaré duality in dimension 3, i.e.,
there is a resolution of the diagonal

A A˝ Aop  A˝W1 ˝ Aop  A˝W2 ˝ Aop  A˝W3 ˝ Aop D P�
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and an A˝ Aop-isomorphism (duality)

HomA˝Aop.P�; A˝ Aop/! P
�

Œ3�: (2.5)

Here the subscript A ˝ Aop means that we are considering only A ˝ Aop-homo-
morphisms of the modules in question. Then W1 Š W �

2 and W3 Š hci, where hci
is a one-dimensional space spanned by a generator c, dual to 1 2 A ˝ Aop. The
isomorphism HHi .A;A/ Š HH3�i .A;A/ and the vanishing

HHi .A;A/ D 0; i ¤ 0; 1; 2; 3
are direct corollaries of (2.5).

The definition of duality has a refinement in the case of graded algebras, provided
that (2.5) is compatible with the grading. In particularH3;j .A;C/ ¤ 0 only for only
for one value of j . By definition the invariant j.A/ is equal to this value. Also

HHi;j .A;A/ D HH3�i;j .A/Cj .A;A/: (2.6)

The Poincaré duality (2.6), the exact sequence (2.1) and the formulas (2.2), (2.3),
(2.4) allow us to express HH3.A;A/.t/ and HH2.A;A/.t/ in terms of Z.A/.t/,
Out.A/.t/ and A.t/. The relevant formulas are listed in the following result.

Proposition 2.4.

HH3.A;A/.t/ D t�j.A/
�
1 �

X
m�1

ln.A.tm//�.m/
m

�
C Out.t/ � 2Z.A/.t/;

HH2.A;A/.t/ D t�j.A/
�
�

X
m�1

ln.A.tm//�.m/
m

�
C 2Out.t/ � 3Z.A/.t/;

HC2.A/.t/ D Z.A/.t/t�j.A/;

HC1.A/.t/ D .Out.t/ �Z.A/.t//t�j.A/:

This proposition explains why we pay so much attention in this paper to the low-
dimensional cohomology groups Z.U.YM // and Out.U.YM //.

2.2. Cohomology of YM: general facts. We first briefly recall the pertinent defini-
tions from [5]. Let g be a Lie algebra over the field C. If N is a g-module, then we
use the following notation for the action .l; n/! �N .l/n, l 2 g, n 2 N .

Definition 2.5. Let C �.g; N / be the standard cochain complex of g, N :

C k.g; N / D Hom.ƒk.g/; N /:
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The differential d W C k.g; N /! C kC1.g; N / is given by

.dc/.l; : : : ; lkC1/ D
kC1X
iD1

.�1/i�N .li /c.l1; : : : ; Oli ; : : : ; lkC1/

C
X
i<j

.�1/iCj �1c.Œli ; lj �; : : : ; Oli ; : : : ; Olj ; : : : ; lkC1/:

By definition H �
.g; N / is the cohomology of C �.g; N /.

The chain complex C�.g; N / is equal to
P

k ƒ
k.g/˝N . It is equipped with the

differential

d.m˝ l1 ^ � � � ^ lk/ D
kC1X
iD1

.�1/iC1�N .li /m˝ l1 ^ � � � ^ Oli ^ � � � ^ lk

C
X
i<j

.�1/iCj �1m˝ Œli ; lj � ^ � � � ^ Oli ^ � � � ^ Olj ^ � � � ^ lk

and H�.g; N /´ H�.C�.g; N //.

Definition 2.6. Let N DL
i Ni be a graded module. Then N.k/ is a module with

the shifted grading ŒN.k/�i D NkCi .

If the algebra g and the moduleN are graded, then the complexes are also graded:
C �.g; N / DL

j C
�;j .g; N / and C�.g; N / DL

j C�;j .g; N /. As it was mentioned
earlier we are using bold Roman letters for the grading indices.

Let N be a bimodule over U.g/. Define a new left module structure on N by the
formula

�N ad.l/n D ln � nl:

Theorem 2.7 ( [4]). There are canonical isomorphisms

HH�

.U.g/; N / Š H �

.g; N ad/;

HH�.U.g/; N / Š H�.g; N
ad/:

To simplify notations we shall work with an orthonormal basis v1; : : : ; vn of V .
Then the relations of YM become

nX
sD1

Œvs; Œvs; vt �� D rt D 0; t D 1; : : : ; n: (2.7)

If the Lie algebra g is isomorphic to YM then a complex C �.N /, which is much
smaller than C �.YM; N /, can be used for the computation of H �

.YM; N /. In the
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case of a graded module N , this C �.N / decomposes into a direct sum C �.N / DL
j C

�;j .N / with

C
�;j .N / D 0! Nj

d0

�! Nj C1 ˝ V � d1

�! Nj C3 ˝ V d2

�! Nj C4 ! 0: (2.8)

The differentials in C �;j .N / are defined by the formulas

d0w D
X

1�s�n

�N .vs/w ˝ v�s;

d1w ˝ v�i D
X

1�s�n

.�N .v
2
s /w ˝ vi � 2�N .vivs/w ˝ vs C �N .vsvi /w ˝ vs/;

d2w ˝ vi D �N .vi /w:

The elements v�s and vs (1 � s � n) are elements of orthogonal bases of V � and V ,
respectively.

Proposition 2.8. There are isomorphisms

H i;j .YM; N / Š H i;j .C.N //;

H3�i;j .YM; N / Š H i;j �4.C.N //:

In particular j.U.YM // D 4 (the invariant j was defined in (2.6)).

Proof. See [7].

The formula (1.2) is a direct consequence of this proposition.
For the sake of completeness we explain briefly how to construct a resolution of

the diagonal P�.U.YM //. The reader can easily reconstruct the details.
The tensor product U.YM / ˝ U.YM / is equipped with the left YM-action

�.vs/.a ˝ b/ D �avs ˝ b C a ˝ vsb. Let the YM-action on U.YM / be defined
by left multiplication.

Note that in this case the multiplication mapC �.U.YM /˝U.YM //! U.YM /Œ�3�
is a quasi-isomorphism. We defineP�.U.YM // to be equal toC�.U.YM /˝U.YM //Œ3�.
The Poincaré duality isomorphism (2.5) can be easily verified.

3. The spectral sequences

Our aim in this section is to provide the missing details about the spectral sequences
that were briefly defined in the introduction.

Let F i .X/ be a decreasing filtration of a linear space X . We will be using the
standard notation Gri

F .X/ for the adjoint quotient F i .X/=F iC1.X/. To shorten the
notations, when it does not lead to confusion, we will write Gri .X/ or Gri for Gri

F .X/.
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The adjoint quotients of the filtration (1.13) in C �.YM;Symk.YM // are equal to

F i
TYM \ C �

.YM;Symk.YM /=F iC1
TYM \ C �

.YM;Symk.YM /

D C �
.YM;Symi .TYM /˝ Symk�i .V //:

(3.1)

Proposition 3.1. The filtration (1.13) enables us to define a spectral sequence (1.14)
The action of YM on the tensor factor Symk�i .V / in the module of coefficients (3.1)
is trivial.

Proof. Even though the spectral sequence is located in the quadrants I and IV, there
are no problems with convergence because the depth of the filtration in Symk.YM /

is finite.
The construction of the spectral sequence is standard and can be found in [8].

The filtration F i D F i .U.TYM // was introduced in (1.10).

Proposition 3.2. There is a spectral sequence associated with the filtration F i :

E
i;j
1 D H iCj .YM;Gri .U.TYM ///) H iCj .YM; U.TYM //: (3.2)

There is also a spectral sequence in homology:

E1
i;j D HiCj .YM;Gr�i .U.TYM ///) HiCj .YM; U.TYM //: (3.3)

Poincaré duality defines an isomorphism of the spectral sequences Eij
r Š Er�i;3�j .

Proof. The cohomological spectral sequence is located in the quadrants I and IV. Its
homological counterpart is in the quadrants II and III. This might lead to convergence
problems. We shall address this issue presently.

In view of the isomorphism

F l
� M

i

U.YM /i

�
Š

M
i

F l.U.YM /i /

the filtration of C �.U.TYM // is the (direct) sum of the filtrations of C �;j .U.TYM //.
The complexes C �;j .U.TYM // are formed by finite-dimensional spaces. Spectral
sequences associated with finite filtrations always converge.

Other than that the proof is straightforward.

4. Computation of H
�

.YM; Grj .U.TYM//

Our main task in this section is to describe theE1-term of the spectral sequence (3.2).
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4.1. The structure of the Lie algebra TYM. This section contains preliminaries to
Section 4.2. To get a good grip on the cohomology H �

.YM;Grj .U.TYM // we need
an understanding of the YM-action on Grj .U.TYM //. The following theorem is the
first step in this direction.

Theorem–Definition 4.1 (See also [18]). The Lie algebra TYM is free. The space
M D TYM=ŒTYM;TYM� is a module over YMab (the subscript ‘ab’stands for abelian-
ization).

The proof is given in Appendix B.
From the canonical isomorphism YMab Š V any Sym.V /-module is a U.YM /-

module. Conversely if the action of TYM on a YM-moduleN is trivial thenN can be
considered as a Sym.V /-module.

In view of Theorem 4.1 the following corollary becomes evident.

Corollary 4.2. As a Sym.V /-module, Gri .U.TYM // coincides with M˝i and the
E1-terms of the spectral sequences (3.2), (3.3) are equal to H iCj .YM;M˝i / and
HiCj .YM;M˝.�i//, respectively.

We let xs (s D 1; : : : ; n) denote the image of the generator vs 2 YM under the
canonical map U.YM /! Sym.V /.

The next proposition is the key ingredient in the construction of the exact se-
quence (4.4).

Proposition 4.3. The following isomorphisms hold

H 0.C
�
.Sym.V /// D H 1.C

�
.Sym.V /// D 0;

H 3;�4.C
�
.Sym.V /// D C:

Define
Mj D H 2;j �4.C

�
.Sym.V ///:

The linear space M D L
j Mj is a Sym.V /-module. There is also an action

of the abelian Lie algebra YMab on M that comes from the identification of M with
TYM=ŒTYM;TYM�. These actions coincide.

See Appendix B for the proof.
The next set of definitions will be used to identify U.TYM / with a tensor algebra.
We start with a general construction. As before, we let g be a Lie algebra. Let

r W H1.g;C/ D gab ! g be a splitting of the canonical homomorphism g! gab of
Lie algebras. If g is positively graded then Im r defines a minimal set of algebraic
generators of g. The map r can be lifted to a surjective map Free.gab/! g.
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In particular the surjective mapping

r W T .M/! U.TYM / (4.1)

is an isomorphism. This is a corollary of Proposition 4.3.
We finish this section with the construction of a certain exact triangle in the derived

category of Sym.V /-modules.
Namely there is a triangle

M
u�! C

�
.Sym.V //Œ2�.�4/ v�! CŒ�1�!MŒ1� (4.2)

in the (bounded) derived category of graded Sym.V /-modules.
The morphism u is represented by a “roof” .s; f / in the localized category; it has

the following components. The map

f W ��0C
�
.Sym.V //Œ2�.�4/! C

�
.Sym.V //Œ2�.�4/

is the inclusion (the operation ��0 is the truncation functor). The map

s W ��0C
�
.Sym.V //Œ2�.�4/!M

is the projection to the zero cohomology of ��0C �.Sym.V //Œ2�.�4/.
The map v is the projection to the first cohomology C �.Sym.V //Œ2�.�4/.

4.2. A long exact sequence for H
�
.YM; M ˝j /. From Corollary 4.2 we know

that the E1-term of the spectral sequence (3.3) coincides with the homology group
HiCj .YM;M˝�i /. The linear spacesM˝j are Sym.V /- andU.YM /-modules at the
same time. To understand these homology groups we introduce a long exact sequence
that involves H�.YM;M˝j /, H�.V;M

˝j / and H�.V;M
˝.j C1//.

The following terminology is standard.

Definition 4.4. Let N denote a Sym.V /-module. Let us interpret the linear space V
as an abelian Lie algebra g. The complex C�.V;N /´ C�.g; N / is called the Koszul
complex of N .

Remark 4.5. The algebra Sym.V / is a Hopf algebra with the diagonal

� W Sym.V /! Sym.V /˝ Sym.V /I �.xs/ D xs ˝ 1C 1˝ xs: (4.3)

We use it to define a tensor product (over C) of representations: N1 ˝N2.
The map �2 W Sym.V / ! Sym.V /˝3 is the composition .� ˝ id/ B � D

.id ˝ �/ B �. There are similarly defined maps �j �1 W Sym.V / ! Sym.V /˝j .
They do not depend on the way we present them as a composition of id˝k˝�˝ id˝l .
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We introduce the following notation. Suppose thatN is a graded Sym.V /-module.
We denote bi-degree .1; 1/ generators of ƒ.V / in the Koszul complex C�.V;N / by
&1; : : : ; &n; n D dim.V /. Also

Ci .V;N / D
M

j

Ci;k.V;N / D
M

k

Nk�i ˝ƒi ŒV �

is the decomposition of C�.V;N / into graded components.

Proposition 4.6. For j � 0 there is an exact sequence

� � �
Bi�1

M˝.j C1/;k���������! Hi;k.YM;M˝j /
I i

M ˝j ;k�����! Hi;k.V;M
˝j /

S i

M˝j ;k������! Hi�2;k.V;M
˝.j C1//

Bi�2

M ˝.j C1/;k���������! Hi�1;k.YM;M˝j / �! � � � :
(4.4)

To avoid clutter in notations we will abbreviate B i
M ˝j ;k

, I i
M ˝j ;k

and S i
M ˝j ;k

to

B i
j;k, I i

j;k and S i
j;k, respectively. Furthermore we might drop some of the remaining

unused indices.

Proof. Apply the functor A) C�.V; A˝M˝j / to the triangle (4.2).
Since C �.Sym.V // consists of free Sym.V /-modules, if follows that the bicom-

plex C�.V; C
�.Sym.V //˝M˝j / is quasi-isomorphic to C �.M˝j /.

Proposition 4.7 is a related statement.

Proposition 4.7. LetN be a YM-module. There is a long exact sequence in homology

� � � ! Hi .YM; N /
I i

N��! Hi .V;H0.TYM; N //

! Hi�2.V;H1.TYM; N //! Hi�1.YM; N /! � � � ;
(4.5)

where the map I i
N is induced by abelianization.

There is a graded version of the exact sequence (4.5).
The exact sequence (4.5) reproduces (4.4) in the case that N ŠM˝j .

Proof. The E2-term of the homological Hochschild–Serre spectral sequence [9] as-
sociated with a pair TYM � YM has many trivial entries. Indeed, E2

ij is equal to
Hi .YM=TYM;Hj .TYM; N // D Hi .V;Hj .TYM; N //. As we know, TYM is free,
thus Hj .TYM; N / D 0 for j � 2. In fact, the Hochschild–Serre spectral sequence
reduces to the long exact sequence (4.5). This proves the first statement.

The statement about the map I i
N is a direct consequence of the construction.
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For the proof of the last statement we assume that the action of YM on N factors
through V D YMab. Let us calculate H�.YM; N / using the language of resolutions.
We start with C�.U.YM //Œ3�, a free U.YM /resolution of C.

Let ModA denote the category of left modules over an algebra A. Consider the
spectral sequence of composition (see [8]) of two derived functors of the following
right exact functors. The first one is K ) H0.TYM; K ˝ N/, which acts from
ModU.YM / to ModSym.V /. The second one is L) H0.V; L/; it acts from ModSym.V /

to the category of vector spaces Vect.
Notice that the complexes H0.TYM; C�.U.YM /Œ3� ˝ N/ D C�.N /Œ3� and

C�.U.YM //Œ3� are adjusted (see [8] for the definition) to the first functor.
The Er -term (r � 1) of the spectral sequence of the composition of our

two functors is equal to the Er -term of the spectral sequence of the bicomplex
C�.V; C�.Sym.V //˝N/.

The long exact sequence (4.5) for N Š M˝j is canonically isomorphic to (4.4)
because of the equivalence of the classical and the derived approaches to the Hoch-
schild–Serre sequence.

The graded version of the statement can be derived straightforwardly.

Here are our first vanishing results.

Lemma 4.8. The map

I 3
C;k W H3;k.YM;C/! H3;k.V;C/

is trivial.
If dim.V / D 2 then H3;k.YM;M˝j / Š C for k D 2j C 4, j � 0; otherwise

H3;k.YM;M˝j / D 0.
If dim.V / � 3 then H3.YM;M˝j / D 0 for j � 1.

Proof. Representatives of cycles generating H1.YM;C/ and H2.YM;C/ are

vs 2 C1.YM;C/ and
nP

sD1

vs ^ Œvs; vt � 2 C2.YM;C/.

From this we find that a representative of the class Œc� 2 H3.YM;C/ is

c D
X

1�s<t�n

vs ^ vt ^ Œvs; vt �: (4.6)

The map I D I 3
C;k is induced by abelianization (see Proposition 4.7). The class

I.Œc�/ is zero because of the commutators in the formula (4.6).
The proof in the case of dim.V / D 2 is straightforward and is omitted.
An identification of the formulas for differentials in complexesC�.N / andC�.V;N /

shows that H3.YM; N / D Hn.V;N / for any Sym.V /-module N . The result fol-
lows from the long exact sequence (4.4), the vanishing of Hi .V;M

˝j / for i < 0,
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dim.V / < i and the vanishing of Hk.YM;M˝j / for k > 3 and k < 0 (Proposi-
tion 2.8).

As was already mentioned in Section 2.2, the algebra U.YM / is homologically
three-dimensional. This lets us push our analysis of (4.4) a bit further.

Proposition 4.9. For j � 0 there is an exact sequence

0! H3;k.V;M
˝j /

S3
j;k���! H1;k.V;M

˝.j C1//
B1

j C1;k�����! H2;k.YM;M˝j /

I 2
j;k��! H2;k.V;M

˝j /
S2

j;k���! H0;k.V;M
˝.j C1//

B0
j C1;k�����! H1;k.YM;M˝j /

I 1
j;k��! H1;k.V;M

˝j /! 0:

(4.7)

There are also isomorphisms

H0;k.YM;M˝j / D H0;k.V;M
˝j /;

HiC2;k.V;M
˝j / D Hi;k.V;M

˝.j C1//; i � 2:

If dim.V / D 2 then

Hs;k.V;M
˝j / Š

(
ƒ2j CsŒV � if k D 2j C s; s D 2;
0 if s > 2 or s D 2; k ¤ 2j C s:

If dim.V / � 3 then

Hs;k.V;M
˝j / Š

(
ƒ2j CsŒV � if k D 2j C s; s � 2; except s D 2; j D 1;
0 if k ¤ 2j C s:

There is a Sym.V /-linear map

ri
j W Hi .YM;M˝j /! HiC1.YM;M˝j �1/; j � 1;

which is equal to the composition B i
j B I i

j . Then riC1
j �1 B ri

j D 0 (we omit the index k

to make the formulas more readable).

Proof. The proposition follows directly from Proposition 4.6 and Lemma 4.8.

In our cohomological computations we will need a presentation of the Sym.M/-
moduleM using generators and relations. Such presentation is given in the next two
statements.
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Lemma 4.10. The module M is a subquotient of C 2.Sym.V //. It is generated by
elements

Fij D xi ˝ vj � xj ˝ vi

of degree �2 (C2 in the homological complex). The generators satisfy

Gijk D xiFjk C xkFij C xj Fki D 0 (4.8)

and
nX

sD1

xsFsj D 0:

The last formula is a consequence of the defining relations (2.7).

Proof. The differential d3 in C �.Sym.V // coincides with the differential d0 in the
Koszul complex C�.V;Sym.V //. The module Ker d0 is generated by Fij ; this fol-
lows from the acyclicity of C�.V;Sym.V //. The relations (4.8) follow from explicit
computations with the differential d2 in C �.Sym.V //.

To establish the structure of M we need to show that the set of relations found in
Lemma 4.8 is complete.

Proposition 4.11. There are exact sequences and an isomorphism

0! ƒ4V ! H2;4.V;M/! C! 0; (4.9)

0! ƒ3V ! H1;3.V;M/! V ! 0; (4.10)

ƒ2V Š H0;2.V;M/ D H0.V;M/:

In particular all the relations in the moduleM follow from the relations described in
Lemma 4.10.

Proof. Consider the exact sequence (4.7) for j D 0. Clearly the map I 1
C is an

isomorphism. So the map S2
C is surjective. The elements Fij , 1 � i < j � n,

define a minimal set of generators of the module M . This is because the equationP
1�i<j �n cij Fij D da has no solutions (the linear space C 1;2.Sym.V // is zero).

This implies that I 2
M ˝j D 0.

From this we conclude that the segment of (4.7) containing S3
M ˝j , B1

M ˝.j C1/ and
corresponding to (4.10) in fact coincides with (4.10).

Using Lemma 4.8 we find that the segment of (4.4) containing S4
C and B2

M coin-
cides with (4.9).

The elements v.i1˝� � �˝vik/ and vŒi1˝� � �˝vik � of V ˝k are the symmetrization
(resp. antisymmetrization) of vi1 ˝ � � � ˝ vik .



372 M. Movshev

The cocycles in H2;4.V;M/ D ƒ4.V /CC are spanned by FŒij ˝ &k ^ &l� andP
1�i<j �n Fij ˝ &i ^ &j . The S2

M images of these cocycles in H0;4.V;M
˝2/ are

FŒij˝Fkl� and
P

1�i<j �n Fij˝Fij , which are clearly linearly independent elements
of H0;4.V;M

˝2/. Thus S2
M and S2

M;k have no kernel. The following proposition
generalises this observation.

Proposition 4.12. The map S iC2
M;k W HiC2;k.V;M/ ! Hi;k.V;M

˝2/ is an embed-
ding.

Proof. For the remaining case of i � 1 this statement follows from Proposition 4.9.

The previous proposition and its corollary, which we are about to formulate, will
turn out useful in Sections 5.1 and 5.2.

Corollary 4.13. The mapB1
M ˝2;k

W H1;k.V;M
˝2/! H2;k.YM;M/ is a surjection.

Proof. Combine Propositions 4.12 and 4.9.

4.3. Properties of the module M . The module M has a description in terms of
the differential algebraic 1-forms on a quadric. This will complement its original
description (Theorem 4.1). In this section we will also give a representation-theoretic
characterisation of the graded components of M .

Let us start with a definition.

Definition 4.14. Let C be a commutative algebra and let I � C ˝ C be the kernel
of the multiplication map C ˝ C ! C . The C -module of Kähler differentials
	C is equal to I=I 2. There is a universal derivation d W C ! 	C defined by
d.a/ D a˝ 1 � 1˝ a. Any derivation @ with values in a module N factors through
d , i.e., there is a C -homomorphism m@ W 	C ! N such that @ D m@ B d .

Let us introduce an algebra

A D Sym.V /=.q/; (4.11)

q D
nX

sD1

x2
s : (4.12)

We can define a derivation eu of A by the formula

nX
sD1

xs

@

@xs

:

The description of M briefly mentioned above is formally stated in the next lemma.
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Lemma 4.15. The module M coincides with the kernel of 	A

meu��! A.

Proof. The module 	.V / is equal to 	Sym.V / as a free Sym.V /-module generated
by dxs . Let d denote the de Rham differential Sym.V / ! 	.V /. The module 	A

is equal to 	1.V /=q	1.V /C Adq.
The homomorphismM ! 	A, Fij ! xidxj�xjdxi , is unambiguously defined.

For the proof the reader should use the description of M as the second cohomology
group of C �.Sym.V //.

Corollary 4.16. Define a complex

0! A.�2/ d0

�! A˝ V.�1/ d1

�! A! 0 D zC �
: (4.13)

Let dxs , s D 1; : : : ; n, denote a basis of V . For the differentials we then obtain
d0.a/ D Pn

sD1 axsdxs , d1.asdxs/ D asxs . Then H 0. zC/ D 0, H 1. zC/ D M and
H 2. zC/ D C.

Proof. The isomorphism	A Š 	1.V /=q	1.V /CAdq is equivalent to a short exact
sequence 0 ! A.�2/ ! A˝ V.�1/ ! 	A ! 0. After this observation the proof
is a straightforward consequence of Lemma 4.15.

Let U be a multiplicatively closed subset of C . Denote by NŒU�1� a localisation
of N with respect to U , and for g 2 C denote by AnnN .g/ the kernel of the map

N
g���! N .
Choose a basis in the space V; dim.V / � 3 such that the tensor q has the form

qijxixj D Qx1 Qx2 C Qx2
3 C � � � C Qx2

n.

Proposition 4.17. Suppose that dim.V / � 3. Let . Qx1/ denote the multiplicative
system generated by Qx1.

The maps A! AŒ. Qx1/
�1� and M !MŒ. Qx1/

�1� have no kernel.
The module MŒ. Qx1/

�1� is free over AŒ. Qx1/
�1� D CŒ Qx1; Qx�1

1 �˝CŒ Qx3; : : : ; Qxn� of
rank dim.V / � 2.

Proof. If the groups AnnA. Qx1/, AnnM . Qx1/ are trivial then the first statement of the
proposition is true.

The group AnnA. Qx1/ is trivial because q is irreducible.
The short exact sequence

0! Sym.V /
Qx1���! Sym.V /! Sym.V /= Qx1 Sym.V /! 0

induces a long exact sequence of YM-cohomology. Then AnnM . Qx1/ coincides with
H 1.YM;Sym.V /= Qx1 Sym.V // D H.Sym.V /= Qx1 Sym.V // (the reader should con-
sult Appendix B for the definition and properties of the functor H ).
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It is obvious that AnnSym.V /= Qx1 Sym.V /.q/ D 0 if dim.V / � 3. The groups
Hi .V;Sym.V /= Qx1 Sym.V // are nontrivial only for i D 0; 1 (we omit their compu-
tation). Thus the conditions of Lemma B.5 hold and H.Sym.V /= Qx1 Sym.V // D 0.

The last statement can be proved in a straightforward manner.

Corollary 4.18. If dim.V / � 3 then H 0.YM;M˝j / D 0 for j � 1.

We finish this section with the analysis of the son representation-theoretic content
of the module M .

We need to introduce notations for the complex finite-dimensional irreducible
representations of the Lie algebra of the algebraic complex Lie group SO.n/

Definition 4.19. Let Œw1; w2; : : : ; wŒn=2�� denote an irreducible complex represen-
tation of son D Lie.SO.n//, n � 5. It has the highest weight with coordinates
.w1; w2; : : : ; wŒn=2�/ in a standardly ordered basis of fundamental weights. For ex-
ample Œ1; 0; : : : ; 0� stands for the defining representation in V . The representation
Œ0; : : : ; 1; : : : ; 0� where the unit is in the i -th place corresponds to ƒi .V / (i � n=2)
and so on. Every such representation comes from a representation of a finite cover of
SO.n/ (see [20] for details).

The Lie groups SO.2/, SO.3/, SO.4/ are exceptional here.
An irreducible complex representation of SO.2/ is classified by an integer.
The Lie algebra of SO.3/ is isomorphic to sl2. We adopt the notation Œw� for

Symw.W /, where W is the two-dimensional representation of sl2.
The Lie algebra Lie.SO.4// of SO.4/ is isomorphic to sl2 � sl2. The irreducible

representations, in this case Symw1.W1/˝ Symw2.W2/, are denoted by Œw1�Œw2� for
w1; w2 2 Z�0.

Lemma 4.10 implies that if dim.V / � 5 thenM2 D Œ0; 1; 0; : : : ; 0�. Suppose that
ai and m2 are highest weight vectors in Ai and M2. Using the multiplication map
Ai ˝ M2 ! M2Ci we can construct the highest weight vector ai � m2 2 M2Ci

(Proposition 4.17 implies that ai �m2 is nonzero). Then a subrepresentation

Œi; 1; 0; : : : ; 0� �MiC2 (4.14)

is generated by the action of son on ai �m2.
If dim.V / D 2 then using the defining relations (2.7) we can see that

M2Ci D 0; i � 1:

If dim.V / D 3 then M2 D Œ2� and

M2Ci � Œ2C 2i�; i � 0: (4.15)
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If dim.V / D 4 then M2 D Œ2�Œ0�C Œ0�Œ2� and

M2Ci � Œ2C i �Œi �C Œi �Œ2C i �; i � 0: (4.16)

We need to make a short digression into Borel–Weyl–Bott theory adapted to the
Lie algebra so.n/. This is a theory about cohomology of invertible sheaves on the
manifold of full isotropic flags Fl D f0 D F0 � F1 � : : : FŒn=2� � V g, the basic
compact Kähler homogeneous space of SO.n/. The total space of a line bundle Ti ,
1 � i � Œn=2�, is defined as f.F1 � � � � � FŒn=2� � V; l 2 Fi=Fi�1/g. According
to [15] the duals T �

i are free very ample generators of Pic.Fl/. A cover of SO.n/
that simultaneously acts on all Ti is Spin.n/. Let O.w1; : : : ; wŒn=2�/ denote the tensor

product
NŒn=2�

iD1 T
�˝wi

i . By functoriality the cohomologyH j .Fl;O.w1; : : : ; wŒn=2�//

becomes a Spin.n/-representation.
The Borel–Weyl–Bott theory (see [15]) applied to the space of isotropic flags Fl

among other things asserts that the cohomology groupH j .Fl;O.w1; : : : ; wŒn=2�// can
be nonzero for only one value of j . At this value the group is an irreducible Spin.n/-
representation. In particular, if all wi � 0 then H j .Fl;O.w1; : : : ; wŒn=2�/ D 0 for
j > 0 andH 0.Fl;O.w1; : : : ; wŒn=2�/ is the irreducible representation Œw1; : : : ; wŒn=2��.
For example the algebra A is equal to

L
w�0H

0.Fl;O.w; 0; : : : ; 0//.
Proposition 4.17 implies that the embedding M2 ! H 0.Fl;O.0; 1; : : : ; wŒn=2�/

extends to a homomorphism t W M.2/!L
w�0H

0.Fl;O.w; 1; 0; : : : ; 0/, where all
graded components tj of t are nonzero.

Definition of a quadratic algebra. Let C D CCL
i�1 Ci be a graded algebra. We

say that C is quadratic if

(1) C is generated by C1;

(2) the ideal of relations of C is quadratic, i.e., if we let � denote the natural
map � W T .C1/ ! C , then Ker � D L

i;j �0 C
˝i
1 ˝ W ˝ C

˝j
1 , where

W D Ker � \ C˝2
1 .

Definition of a quadratic module over a quadratic algebra. Let C be a quadratic
algebra. A graded module N DL

i�0Ni over C is quadratic if

(1) N is generated by N0;

(2) the submodule of relations of N is quadratic, i.e., if we let 
 denote the natural
map
 W C˝N0 ! N then Ker 
 DL

i�0 Ci˝U , whereU D Ker 
\C1˝N0.

Let B be a Borel subgroup of a reductive algebraic group G and let L1 : : :Ll

denote an array of ample line bundles on G=B . Kempf and Ramanathan proved in
[12] that the equations defining the embedding ofG=B in the complete linear system
of L1 : : :Ll are quadratic.
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This implies that
L

w1;w2�0H
0.Fl;O.w1; w2; 0; : : : ; 0// is a quadratic algebra

and consequently
L

w�0H
0.Fl;O.w; 1; 0; : : : ; 0// is a quadraticA-module. In these

considerations n � 5.
It is a matter of a simple check using the classical invariant theory of H. Weyl or

alternatively the results of [10] that V ˝ ƒ2.V / Š V C ƒ3.V / C Œ1; 1; 0; : : : ; 0�.
Thus V Cƒ3.V / is a maximal subrepresentation of V ˝ƒ2.V /.

We conclude that the module M.2/ has the same relations as the moduleL
w�0H

0.Fl;O.w; 1; : : : ; 0// and the map t is an isomorphism. For n � 5 we
have proved the following.

Proposition 4.20. Inclusions (4.14), (4.15), (4.16) are isomorphisms. The son rep-
resentations Mi are self-dual.

Proof. The representationMiC2 (non-canonically) is a subrepresentation ofV ˝.nC2/,
whose elements satisfy some symmetry conditions with respect to the natural sym-
metry group action.

By definition V ˝.nC2/ is a complexification of a real representation, equipped
with a positive-definite bilinear form. Therefore all subrepresentations of V ˝.nC2/

are self-dual.
The exceptional cases 3 � n � 4 can be treated similarly to the generic case

n � 5, with a minor modification in dimension 4.

4.4. Computation of H 1.YM; M ˝j /. It is convenient to introduce the following
notations. There are canonical projections of algebras lj W Sym.V /˝j ! A˝j . By
abuse of notation we denote the composition lj B �j �1 by �j �1. By definition
�0 D l .

The element q acts on M˝j through multiplication on �j �1.q/. Though �0q is
zero, the element �.q/ is nonzero and is equal to 2

P
s xs ˝ xs . Using the axioms

of Hopf algebra it is not hard to see that � ˝ � � � ˝ � ˝ id˝ id B�j �1.q/ D �1.q/,
where � W A! C is the standard augmentation. This implies that �j �1.q/ ¤ 0.

Lemma 4.21. If dim.V / � 3 and j � 2 then AnnM ˝j �j �1.q/ D 0.

Proof. The moduleM˝j is an A˝j submodule of .MŒ. Qx1/
�1�/˝j . The latter is free

over .AŒ. Qx1/
�1�/˝j (Proposition 4.17).

Proposition 4.22. (1) H 1.YM;M˝j / D H2.YM;M˝j / D 0 if dim.V / � 3 and
j � 2.

(2) H 1.YM;M˝j / D V � ˝M˝j for j � 0 if dim.V / D 2.

Proof. The proof follows from Lemmas B.3 and B.5 and Propositions 4.9, 4.21.
The case of dim.V / equal to 2 is self-evident.
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5. Analysis of the E1-differential

Proposition 4.22 shows that E1-terms of the spectral sequences (3.2), (3.3) have
significant numbers of zeros. However there is no reason to believe that E1;0

1 D
H 1.YM;M/ Š H2.YM;M/ D E1�1;3 is trivial. In fact it is not (the interested reader
may consult [16], which gives a decomposition ofH 1.YM;M/ into SO.n/-irreducible
components). It follows immediately from our previous computations that E1;0

1 is
the only nontrivial component of E1 that can contribute to the limiting cohomology
H 1.YM; U.TYM //.

In this section we choose the homological framework for a computation of the
groups (1.8), (1.9). We shall analyze the higher differential d of the spectral sequence
(3.3) for which we reserve a separate notation:

ı W H2.YM;M/ D E1�1;3 ! H1.YM;M˝2/ D E1�2;3: (5.1)

There is a more down-to-earth description of the differential ı in terms of a short exact
sequence of YM-modules:

0!M˝2 ! F 1.U.TYM //=F 3.U.TYM //!M ! 0:

The differential ı is the connecting homomorphism in the corresponding sequence of
homology. The proof of this fact is a simple exercise in understanding the definition
of a spectral sequence.

5.1. Basic properties of the differential ı. The differential (5.1) is in fact a com-
position:

ı W H2.YM;M/! H1.YM; ƒ2.M// ,! H1.YM;M˝2/:

Indeed, by anti-commutativity of the Lie bracket in TYM only the ƒ2.M/ tensor
component of the direct sumƒ2.M/CSym2.M/ DM˝2 appears in the range of ı.

Let us consider the surjective mapsB1
M ˝2 W H1.V;M

˝2/! H2.YM;M/ (Corol-
lary 4.13) and I 1

M ˝2 W H1.YM;M˝2/! H1.V;M
˝2/ (Proposition 4.6).

Definition 5.1. The space H2.YM;M/ can be decomposed into a direct sum

H2.YM;M/ D H2.YM;M/s CH2.YM;M/a;

where by definitionH2.YM;M/s D B1
M ˝2.H1.V;Sym2.M/// andH2.YM;M/a D

B1
M ˝2.H1.V;ƒ

2.M///. We call elements of H2.YM;M/s symmetric and those of
H2.YM;M/a antisymmetric.

We denote the restrictions of ı to H2.YM;M/a and to H2.YM;M/s by ıa and
ıs , respectively.
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We now turn to the explicit construction of the maps B1
M ˝2 W H1.V;M

˝2/ !
H2.YM;M/ and B0

M ˝3 W H0.V;ƒ
3.M//! H1.YM; ƒ2.M// in terms of chains of

C�.YM;M/. The map r (4.1) enables us to lift elements ofM into TYM. Pick a cycle
z DP

d ijsai ˝ aj ˝ &s in the class Œz� 2 H1.V;M
˝2/.

Proposition 5.2. There is a procedure for constructing elements ck; Qck0 2 TYM and
coefficients f kk0

sj such that an element

Qz D
X

d ijsai ˝ .raj ^ vs/C
X

d ijsf kk0

sj ai ˝ .ck ^ Qck0/ 2M ˝ƒ2.YM/; (5.2)

ck; Qck0 2 TYM, is a cycle in C2.YM;M/ representing B1
M ˝2.z/.

The map B0
M ˝3 W H0.V;ƒ

3.M// ! H1.YM; ƒ2.M// � H1.YM;M˝2/ is de-
fined on chains by the formula

a ^ b ^ c ! a ^ b ˝ c C c ^ a˝ b C b ^ c ˝ a 2 ƒ2.M/˝ YM:

Proof. The proof follows easily from the description of the maps B1
M ˝2 and B0

M ˝3

in terms of Hochschild–Serre spectral sequence given in Proposition 4.7.

We finish this section with a formula for the differential ı.

Lemma 5.3. Under the differential ı the cycle (5.2) transforms into

ı Qz D 2
X

d ijs.ai ^ aj ˝ vs C f kk0

sj ck ^ Qck0 ˝ raj

� f kk0

sj ck ^ ai ˝ Qck0 C f kk0

sj Qck0 ^ ai ˝ ck/ 2 ƒ2ŒM �˝ƒ1.YM /:
(5.3)

By abuse of notation we write ck and Qck0 for the image of ck and Qck0 in M D
TYM=ŒTYM;TYM�.

Proof. We lift Qz to an element of F 1=F 3˝ƒ2.YM / and apply the homology differ-
ential d . The result belongs to C1.YM; F 2=F 3/ D C1.YM; ƒ2.M//. In the formula
for the boundary we identify the commutators Œra; rb� 2 F 2=F 3, a; b 2 M , which
are the coefficients of the chain, with the monomials 2a ^ b.

We leave details to the reader.

5.2. Properties of ıa. To simplify our analysis of (5.1) we decompose the differen-
tial ı into the sum

ı D ıa C ıs (5.4)

as in Definition 5.1. In this section we study the kernel of ıa.

Proposition 5.4. Consider the map r that has been defined in Proposition 4.9. The
composition r2

1 B ıa W H2.YM;M/a ! H2.YM;M/ transforms H2.YM;M/a to
itself. As an operator acting on H2.YM;M/a the map r2

1 B ıa is equal to 2 � id. In
particular H2.YM;M/a \ Ker ı D 0.
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Proof. We may assume that every homology class inH2.YM;M/ has a representative
(5.3) for suitable Qz (use Corollary 4.13 and Proposition 5.2).

The map I 2
M transforms all terms of (5.3) to zero, except the ones containing a

˝vs-factor. This follows from the description of the map I in Proposition 4.7 as a
map in homology induced by abelianization.

This implies that

I 2
M B ı B B1

M ˝2

� X
d ijsai ˝ aj ˝ vs

�
D 2

X
d ijsai ^ aj ˝ vs; (5.5)

where we identify Œai ; aj � (an element in F 2=F 3) with 2ai ^ aj 2 ƒ2ŒM � �M˝2.
Let z DP

d ijsai˝aj ˝vs satisfy
P
d ijsai˝aj ˝vs D �P

d ijsaj ˝ai˝vs ,
i.e., Œz� 2 H2.YM;M/a. It follows from (5.5) that 2B1

M ˝2.z/ D r2
1 B ı B B1

M ˝2.z/.

5.3. TorA
i

.N1; N2/ and related functors. In this section we formulate the rather
technical Proposition 5.6. It will be used once, in Section 5.4. Besides this, the main
line of exposition is independent of this material.

There is a resolution

A Sym.V /
�q �� Sym.V /.�2/: (5.6)

A cocycle �, which will be introduced in the following lemma, is needed for the
formulation of the main proposition of this section.

The next lemma easily follows from a standard computation with the resolution
(5.6) and degree counting.

Lemma 5.5. We have Tor0;i .A;A/ D Ai , Tor1;i .A;A/ D Ai�2.
A cocycle inC�.V; A˝A/ that represents anA-generator in Tor1;2.A;A/ is given

by

� D
nX

sD1

.xs ˝ 1 � 1˝ xs/˝ &s: (5.7)

Next a map of Sym.V /-modules N1 ˝ N2 ! N3 defines a map of complexes
C�.V;N1/˝ C�.V;N2/! C�.V;N3/.

We want to apply this construction toN1 D A˝A,N2 DM˝M ,N3 DM˝M ,
where the module map is multiplication. In this context any cocycle a 2 C�.V; A˝A/
defines a multiplication map a�W C�.V;M ˝M/!C�.V;M ˝M/. By abuse of
notation we write a for a�.

Proposition 5.6. There is a right exact sequence

H0;j �2.V;M ˝M/
��! H1;j .V;M ˝M/! Cokerj ! 0; (5.8)
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where the element � is defined in equation (5.7). The group Cokerj is equal to zero
for j ¤ 5 and Coker5 D ƒ5.V / C ƒ3.V / C V . The group H0;3.V;M ˝M/ is
equal to zero.

The proof is given in Appendix D.

5.4. Properties of ıs. The computation of the kernel of ıs (5.4) is the most difficult
part of the present paper. It will be carried out in Proposition 5.13, which is the
main result of this section. Proposition 5.8 lets us decrease by one the homological
degree of the cycles involved in the computations. This greatly simplifies the proof of
Proposition 5.13. In the proof of the main assertion, Proposition 5.10 is technically
central.

Fix a Lie algebra g. The group

D.g/ D H0.g;Sym2.g// (5.9)

has already been found useful in [11], where Kontsevich studied noncommutative
analogs of formal symplectic geometry.

We would like to specialize the construction (5.9) to the case of the algebra h
defined as the quotient

0! ŒTYM; ŒTYM;TYM��! TYM
�! h! 0:

The algebra h is the universal central extension of the abelian Lie algebra M :

0! ƒ2.M/! h!M ! 0: (5.10)

The algebra YM acts on TYM by commutators. Let �TYM W YM ! End.TYM /

denote the corresponding representation. The action �TYM preserves the Lie ideal
ŒTYM; ŒTYM;TYM��. Denote the representation of YM in End.h/ by �h.

To analyzeD.h/ it will be convenient to choose a linear splitting of the extension
(5.10) and to identify the linear space h with ƒ2.M/CM .

The linear space D.h/ is a quotient of Sym2.M C ƒ2.M// Š Sym2.M/ C
ƒ2.M/ ˝M C Sym2.ƒ2.M//. The image of the last summand in D.h/ is zero
because of the equivalence Œa; b� • Œc; d � 	 �b • Œa; Œc; d �� D 0. The linear subspace
Sym2.M/ injects intoD.h/. The spaceƒ3.M/ � ƒ2.M/˝M maps isomorphically
to Ker 
 because of the relation Œa; b� • c 	 �Œa; c� • b.

The space D.h/ is naturally a YM-module. By definition the commutators
Œvi ; vj � 2 TYM act trivially on D.h/. This means that the action factors through
YMab. We have proved the following.

Proposition 5.7. The linear spaceD.h/ is a Sym.V /-module. There is a short exact
sequence of modules

0! ƒ3.M/! D.h/
��! Sym2.M/! 0:
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Proposition 5.8. There is a commutative diagram

H2.YM;M/
ı �� H1.YM;M˝2/

H1.V;Sym2.M//

B1

M˝2

��

ıD.h/ �� H0.V;ƒ
3.M//.

B0

M˝3

��
(5.11)

The map ıD.h/ is the boundary differential in homology corresponding to the exten-
sion D.h/.

Proof. This follows from Lemma 5.3 and Proposition 5.2.

Our plan is to replace computations that involve ı by the corresponding simpler
computations that use ıD.h/.

To study ı we need information about the kernels of the maps B1
M ˝2 and B0

M ˝3

in the commutative diagram (5.11). This we will attend to do presently.

Lemma 5.9. The following holds:

KerB0
M ˝3 D 0; (5.12)

H1.V;Sym2.M// \ KerB1
M ˝2 Š ƒ5.V / � H1;5.V;Sym2.M//: (5.13)

Proof. The long exact sequence (4.7) implies that KerB0
M ˝3 D Im S2

M ˝2 . The
group H2.V;M

˝2/ D H2;6.V;M
˝2/ Š ƒ6.V /, dim.V / � 3, has been com-

puted in Proposition 4.7. Nontrivial cocycle representatives that span this group are
FŒij ˝Fkl˝&s ^&t�. The map S2

M ˝2 transforms them into FŒij ˝Fkl˝Fst�, which
are elements of Sym3.M/. Considered as zero-cycles these elements are clearly not
equivalent to any of ƒ3.M/. This proves (5.12) in the case dim.V / � 3, because
KerB0

M ˝3 D 0. The remaining case, dim.V / is equal to 2, is straightforward.
The generators of H3.V;M/ are FŒij ˝ &s ^ &t ^ &u�. They are mapped by S3

M

to FŒij ˝ Fst ˝ &u� 2 C1.V;Sym2.M//. The isomorphism (5.13) holds because of
the equality KerB1

M ˝2 D Im S3
M .

Proposition 5.10. Suppose that dim.V / � 3 holds. Then the kernel of ıD.h/ is
ƒ5.V /C V Š H1;5.V;Sym2.M//.

Proof. The isomorphismH1;5.V;M
˝2/ Š ƒ5.V /Cƒ3.V /CV follows from Propo-

sition 5.6.
The subspaces ƒ5.V / and V of H1;5.V;M

˝2/ are spanned by the cocycles

FŒij ˝ Fkl ˝ &m�
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and
nX

1�i<j �n

Fij ˝ Fij ˝ &k C
nX

i;j D1

.Fki ˝ Fij C Fij ˝ Fki /˝ &j ;

respectively.
The subspace ƒ3.V / is spanned by elements

nX
sD1

.FŒij ˝ Fks ˝ &s� C 2FŒis ˝ Fjs ˝ &k�/;

which belong to H1;5.V;ƒ
2.M//. So ƒ3.V / � H1;5.V;ƒ

2.M//

The boundary differential ıD.h/ preserves the bold grading (see Section 2.2). Thus

ıD.h/H1;5.V;Sym2.M// � H0;5.V;ƒ
3.M//:

On the other hand the lowest degree component ofƒ3.M/ isƒ3.M/6 becauseM is
generated by elements of degree two. Hence ıD.h/H1;5.V;Sym2.M// D 0.

Using Proposition 5.6 we conclude that

Ker ıD.h/ D Ker ıD.h/ \ Im � CH1;5.V;Sym2.M//;

and that there are surjective maps H0;j .V;ƒ
2.M//

��! H1;j C2.V;Sym2.M//,
j � 4. We define x as

x D Fij ˝ x˛Fkl � x˛Fkl ˝ Fij 2 ƒ2.M/ �M˝2: (5.14)

The linear space Im � is spanned by elements

�.x/ D
nX

sD1

.xsFij ˝ x˛Fkl � Fij ˝ xsx
˛Fkl/˝ &s

C
nX

sD1

.x˛Fkl ˝ xsFij � xsx
˛Fkl ˝ Fij /˝ &s:

In the following part of the proof we shall show that Ker ıD.h/ \ Im � D 0.
We do it by proving that the composition ıD.h/ B � has a trivial kernel.
A choice of the isomorphism r in (4.1) enables us to transfer the YM-action from

TYM to Free.M/.
If m 2M � Free.M/ then

�Free.M/.vs/m D xsmC  2
s .m/C  3

s .m/C � � � :
In this formula  k

s W M ! Freek.M/, for k D 2; : : : , are linear maps, where
Freek.M/ ´ Free.M/ \ M˝n is the linear subspace of Free.M/ spanned by k
repeated commutators of generators.
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The algebra TYM � YM acts on Free.M/ by inner derivations. As before Fij are
Sym.V /-generators of M . Then by definition

Œ�Free.M/.vi /; �Free.M/.vj /�m D ŒFij ; m� 2 Free.M/:

Since  k
s 2 ŒTYM; ŒTYM;TYM�� for k � 3, the formula for the YM-action on h

involves only  2
i .

As a result we can write the differential ıD.h/ using only  s ´  2
s :

ıD.h/ B �.x/ D

a1‚ …„ ƒ
nX

sD1

 s.xsFij /˝ x˛Fkl C

b1‚ …„ ƒ
nX

sD1

xsFij ˝  s.x
˛Fkl/

C

a2‚ …„ ƒ
nX

sD1

� s.Fij /˝ xsx
˛Fkl C

b2‚ …„ ƒ
nX

sD1

�Fij ˝  s.xsx
˛Fkl/

C

a3‚ …„ ƒ
nX

sD1

 s.x
˛Fkl/˝ xsFij C

b3‚ …„ ƒ
nX

sD1

x˛Fkl ˝  s.xsFij /

C

a4‚ …„ ƒ
nX

sD1

� s.xsx
˛Fkl/˝ Fij C

b4‚ …„ ƒ
nX

sD1

�xsx
˛Fkl ˝  s.Fij / :

The element ıD.h/ B �.x/ belongs to the zero homology group H0.V;ƒ
3.M//.

The equivalence relation 	 for zero cycles gives some freedom for algebraic manip-
ulations. In particular

a1 C a2 	
� nX

sD1

 s.xsFij /C�.xs/ s.Fij /
�
˝ x˛Fkl : (5.15)

There are similar formulas for a3 C a4, b1 C b2 and b3 C b4. The diagonal map �
from (4.3) enables us to define the action of xs 2 Sym.V / on ƒ2.M/.

Consider the operator L W M ! Free.M/ defined by the formula

L.m/´
nX

sD1

�Free.M/.vs/�Free.M/.vs/m:

By abuse of notation we write L for the composition 
 BL W M ! h. It can be written
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in terms of the operators  s and xs:

L.m/ D
nX

sD1

�.xs/ s.m/C  s.xsm/ 2 h:

Observe that the left tensor factor in (5.15) has the same form.
To make our computations more tractable we need further simplifications. For

this we map H0.V;ƒ
3.M// to ƒ2.V / ˝ H0.V;ƒ

2.M// via the map p, which we
define in the next paragraph. The composition p B ıD.h/ B � has a simpler structure
then ıD.h/ B �. We will manage to prove that Ker.p B ıD.h/ B �/ D 0. This will imply
injectivity of ıD.h/ B �. Let us equipƒ2.V / with a trivial Sym.V /-module structure.
The module M is generated by the linear space M0 D ƒ2.V / (Lemma 4.10), and
there is a canonical map of Sym.V /-modules M !M0. We denote elements of the
generating set of M as in Lemma 4.10 by Fij , and their images in ƒ2.V / by yFij .

There is a map of Sym.V /-modules p W ƒ3.M/! ƒ2.V /˝ƒ2.M/, defined by
the formula

p.aFij ^ bFkl ^ cFst / D a.0/ yFij ^ bFkl ^ cFst

C aFij ^ b.0/ yFkl ^ cFst C aFij ^ bFkl ^ c.0/ yFst :

Here the map a! a.0/ is the standard augmentation of Sym.V /. It is easy to check
that thisp is unambiguously defined. The homomorphism induces a map in homology
p W H0.V;ƒ

3.M//! ƒ2.V /˝H0.V;ƒ
2.M//.

Under the son-isomorphism Ad.son/ Š ƒ2.V / an element yFij 2 ƒ2.V / trans-
forms into a generator �ij 2 son. The linear space H0.V;ƒ

2.M// is an son-
representation, so it makes sense to talk about the generators �ij acting on an element
x 2 H0.V;ƒ

2.M//.

Lemma 5.11. Let x be as in (5.14). Then the following formula holds:

p B ıD.h/ B �.x/ D 4
X

1�s<t�n

yFst ˝ �stx:

Proof. The simplification pointed out in (5.15) leads to

ıD.h/B�.x/ D L.Fij /˝x˛Fkl�L.x˛Fkl/˝Fij�Fij˝L.x˛Fkl/Cx˛Fkl˝L.Fij /:

Let us write x˛Fij as xi1 : : : xik Fij , where j˛j D k. The element

a D
nX

sD1

�h.vs/�h.vs/�h.vi1/ : : : �h.vik /Fij 2 h

satisfies

a D L.x˛Fij /C
kX

tD1

nX
sD1

�.x2
s xi1 : : : xit�1

/ it
.xitC1

: : : xik Fij / 2 ƒ2.M/: (5.16)
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On the other hand

a D
kX

tD1

nX
sD1

�h.vs/ : : : �h.vit�1
/ŒFsit

; �h.vitC1
/ : : :Fij �

C
nX

sD1

�h.vs/�h.v1/ : : : �h.vs/Fij (5.17)

D 2
kX

tD1

nX
sD1

�.xsxi1 : : : xit�1
/.ŒFsit

; xitC1
: : :Fij �/C 2

X
s

�.x˛/ŒFsi ;Fsj �:

In the proof of (5.17) we use the identities

nX
sD1

�h.vs/�h.vs/Fij D 2
nX

sD1

ŒFsi ;Fsj � and
nX

sD1

xsFsj D 0:

The first holds in h, the second in M .
We use the formulas (5.16), (5.17) to compute p B ıD.h/ B �.x/. By manipulations

similar to (5.15) we obtain

p.a1 C a2/ 	 2 yFsi ˝ Fsj ^ x˛Fkl � 2 yFsj ˝ Fsi ^ x˛Fkl ;

p.a3 C a4/ 	 2 yFsk ˝ Fsj ^ x˛Fsl � 2 yFsl ˝ Fij ^ x˛Fsk;

p.b1 C b2/ 	 2 yFsk ˝ Fij ^ x˛Fsl � 2 yFsl ˝ Fij ^ x˛Fsk

C 2 yFst ˝ Fij ^ .�stx
˛/Fkl ;

p.b3 C b4/ 	 2 yFst ˝ Fij ^ .�stx
˛/Fkl C 2 yFsi ˝ Fsj ^ x˛Fkl

� 2 yFsj ˝ Fsi ^ x˛Fkl :

(5.18)

The formulas (5.16), (5.17) imply that L.x˛Fij / represents a trivial element in
H0.V;ƒ

2.M//, which is used in the proof of formulas (5.18).
From this we conclude that

p.a1C a2C a2C a4C b1C b3C b2C b4/ 	 4
X

1�s<t�n

yFst ˝ �st .Fij ^ x˛Fkl/:

Lemma 5.11 implies that the composed mappBıB� has its kernel precisely equal to
the son-invariant elements in H0.V;ƒ

2.M//. The space ƒ2.ƒ2.V // D ƒ2.M2/ Š
H0;4.V;ƒ

2.M// � H0.V;ƒ
2.M// contains no invariants sinceƒ2.V / is isomorphic

to the adjoint representation, which can have only a symmetric invariant bilinear form.
For j � 5 the componentsH0;j .V;ƒ

2.M// are quotients ofMj �2˝M2. The latter
contains no invariants, because by Lemma 4.20 the Mj are mutually nonisomorphic
self-dual representations. From this we conclude thatpBıB� has no kernel. Therefore
ı B � has no kernel, which is equivalent to saying that Ker ı \ Im � D 0.
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The following lemma will be used only in Section 5.5.

Lemma 5.12. The composition r1
1 B ıs W H2.YM;M/s ! H2.YM;M/ is zero.

Proof. The proof follows the lines of the proof of Proposition 5.4 and uses the formula
(5.5).

Finally we are in a position to prove the central statement of this section.

Proposition 5.13. The kernel of the map ı in (5.11) is equal to V .

Proof. Suppose that x 2 Ker ı. Then r1
1 B ı.x/ D 0. Decompose x D xa C xs

according to Definition 5.1. Proposition 5.4 and Lemma 5.12 imply that xa D 0.
This means that x 2 H2.YM;M/s . Proposition 5.8, Lemma 5.9 and Proposition 5.10
then yield that x 2 V � H2;5.YM;M/.

5.5. Computation of the cohomology H 1.YM; U.TYM//

Proposition 5.14. Suppose that dim.V / � 3. Then the following isomorphisms hold:

(1) H 0.YM; U.TYM // Š H3.YM; U.TYM // D C.

(2) H 1.YM; U.TYM // Š H2.YM; U.TYM // Š V C V .

If dim.V / D 2 then

(3) H 0.YM; U.TYM // Š H3.YM; U.TYM // Š U.TYM /.

(4) H 1.YM; U.TYM // Š H2.YM; U.TYM // Š V ˝ U.TYM /.

Proof. Suppose that dim.V / � 3. Proposition 4.17 implies that H 0.YM;M˝n/ D
H 0.V;M˝n/. ThatH 0.YM; U.TYM // Š H 0.YM;C/CH 0.YM; F 1.U.TYM /// Š
CC0 follows from the spectral sequence (3.2) and the definition of the filtration (1.10).

The groups H i .YM;C/ can be easily computed with the complex C �.C/. This
observation will be used in the following.

LetN be the submodule ofU.YM / generated byV D U.YM /1 andF 1.U.TYM //.
Since �N .vs/V � F 1.U.TYM // we have a short exact sequence

0! F 1.U.TYM //! N ! V ! 0

with ıN the boundary map in cohomology. The YM-action on V is trivial. The
boundary differential ıN maps V D H 0;1.YM; V / into H 1;1.YM; F 1.U.TYM ///.
On the level of chains of the cochain complex (2.8) it maps xk 2 C 0.V / toPn

sD1Œvs; vk� ˝ v�s 2 C 1.F 1U.TYM //. This last cocycle represents a nontrivial
cohomology class because the group C 0;1.YM; F 1.U.TYM /// is zero. From this we
conclude that H 1.YM; F 1.U.TYM /// contains a nontrivial subspace.
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We can also compute H 1.YM; F 1.U.TYM /// using the spectral sequence of
Proposition 3.2.

Corollary 4.2, Propositions 4.22 and 5.13 together imply that E2�j;2Cj D 0

for j � 2. Furthermore, it follows that only E2�1;3 D V can contribute to
H2.YM; F 1.U.TYM /// Š H 1.YM; F 1.U.TYM ///. From the above considerations
we know that the space V survives all the higher differentials. Therefore we have
H 1.YM; F 1.U.TYM /// Š V .

Combining all the previous considerations together we finally conclude that
H 1.YM; U.TYM // D H 1.YM; F 1.U.TYM ///H 1.YM;C/ Š V C V .

In the case of dim.V / D 2 the arguments are completely straightforward.

6. The center and the Lie algebra of outer derivations of U.YM/

In this section we shall determineZ.U.YM // and Out.U.YM //, the main ingredients
of the formulas of Proposition 2.4.

To get an idea how derivations of U.YM / might look like we list some examples
in the following lemma.

Lemma 6.1. The following holds:

H 1.YM; U.YM // � CC V Cƒ2.V /; (6.1)

H 1.YM; YM/ � CCƒ2.V /: (6.2)

Proof. Let us make some simple observations. The algebra U.YM / is graded, hence
we have a derivation corresponding to the grading. This explains the C in (6.1).

The linear space spanned by the relations (2.7) of YM is invariant with respect
to the action of the group of symmetries of the bilinear form . � ; � /. This Lie group
coincides with O.n/ and has the Lie algebra son. The adjoint representation of son

coincides with ƒ2.V /. This explains the last summand in (6.1).
The formulasDs.vt / D ıst define derivations of U.YM /. The linear space gener-

ated byDs is equipped with theO.n/-action. As anO.n/-representation this space is
isomorphic to the fundamental representation V . The derivationDs does not preserve
the Lie algebra YM inside U.YM /. This explains why V is not present in (6.2).

A linear combination of these derivations cannot belong to Inn.U.YM // because
it would have degree strictly less than one, the degree of the generators vs .

From now on it will be convenient to consider the cases dim.V / � 3 and
dim.V / D 2 separately.
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6.1. A generic YM algebra. We assume throughout this section that dim.V / � 3.
This entire section is devoted to the proof of the following result.

Proposition 6.2. The center and the Lie algebra of outer derivations of U.YM / and
of YM are given in the next formulas:

Out.U.YM // D H 1;�1.YM; U.YM //CH 1;0.YM; U.YM //;

H 1;0.YM; U.YM // Š ƒ2.V /CC; H 1;�1.YM; U.YM // Š V;
Out.U.YM // D H 1;0.YM;YM/;

H 1;0.YM;YM/ Š CCƒ2.V /;

Z.U.YM // D H 1;0.YM; U.YM //;Š C

Z.YM / D 0:

Recall that for calculating the cohomology of YM with coefficients in the adjoint
module U.YM / we use the isomorphic module Sym.YM /. So

Z.U.YM // Š H 0.YM;Sym.YM //;

Z.YM / Š H 0.YM;YM/;

Out.U.YM // Š H 1.YM;Sym.YM //;

Out.YM / Š H 1.YM;YM/:

We use the spectral sequence (1.14) to compute these groups. Our prime interest
will be the fragment Eij

r , i C j D 0; 1, because it is the only part contributing to
H k.YM;Sym.YM //, k D 0; 1.

The results of the previous section provide us with the necessary information
about Eij

1 . They are reformulated in the next two statements in a more convenient
form.

Lemma 6.3. The following isomorphisms hold:

(1) H 1.YM;Symi .TYM // D 0, i � 2, and H 1.YM;Symi .TYM // Š V , i D 0; 1.

(2) H 0.YM;Symi .TYM // D 0, i � 1.

Proof. Set
Fij D Œvi ; vj � 2 YM: (6.3)

The cocycles
P

s Fks ˝ v�s , k D 1; : : : ; n, of the complex C 1.Sym.TYM // span
H 1.YM;Sym.TYM // by Proposition 5.14. The latter is a direct summand of
Sym.TYM /. From this we conclude that H 1.YM;Symj .TYM // D 0, j � 2. The
case i D 0 is obvious. The statement about H 0.YM;Symj .TYM // follows from
Proposition 5.14.
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This lemma implies that Ej;1�j
1 D 0 for j � 2 in the spectral sequence (1.14).

Corollary 6.4. The group H 1.YM;Symi .V / ˝ Symk.TYM // is equal to
Symi .V /˝ V if k D 0; 1, and is equal to zero if k > 1.

Also H 0.YM;Sym.V // is isomorphic to Sym.V / (this is obvious).

Proof. This follows from (6.3).

We would like to compute the differential

d W Ei;j
1 ! E

iC1;j
1

in the range i C j � 2. We introduce a special notation for the segments

E0;0 ! E1;0 ! E2;0 and E0;1 ! E1;1

of Ei;j
1 that takes into account the isomorphism (1.11):

H 0.YM;Symk.V //
dk

I��! H 1.YM;Symk�1.V /˝ TYM /

dk�1
II���! H 2.YM /;Symk�2.V /˝ Sym2.TYM //

(6.4)

and

H 1.YM;Symk.V //
dk

III��! H 2.YM /;Symk�1.V /˝ TYM /: (6.5)

The analogs of groups that appeared in (6.4), (6.5) with higher symmetric powers of
TYM are not present in E1-term because they vanish (Lemma 6.3).

Information about the differentials dk
I , dk

II and dk
III is contained in the extensions

TYM ˝ Symk�1.V /! Qk ! Symk.V /;

Qk D F 0
TYM \ Symk.YM /=F 2

TYM \ Symk.YM /;
(6.6)

and
Sym2.TYM /˝ Symk�2.V /! Rk ! TYM ˝ Symk�1.V /;

Rk D F 1
TYM \ Symk.YM /=F 3

TYM \ Symk.YM /;
(6.7)

with F i
TYM.YM / as in (1.12).

More precisely dI, dII and dIII are the boundary maps

dk
I W H 0.YM;Symk.V //! H 1.YM;TYM ˝ Symk�1.V //;

dk
II W H 1.YM;Symk.V //! H 2.YM;TYM ˝ Symk�1.V //;

dk
III W H 1.YM;TYM ˝ Symk.V //! H 2.YM;Sym2.TYM /˝ Symk�1.V //

in the long exact sequences of cohomology associated with (6.6), (6.7).
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Lemma 6.5. The space d1
III.H

1.YM; V ˝ TYM// is equal to

ƒ2.V / � H 2;2.YM; V ˝ TYM/:

Proof. We already know that d1
I W H 0.YM; V /! H 1.YM;TYM/ is an isomorphism

(Lemma 6.3); hence d2
II W Sym2.V / D H 0.YM;Sym2.V // ! H 1.YM; V ˝ TYM /

is an embedding. In view of Lemma 6.3, H 1.YM; V ˝ TYM / decomposes as
Sym2.V /Cƒ2.V /.

Equation d1
IIId

2
I D 0 is a consequence of the equation .d/2 D 0 satisfied by

the spectral sequence differential. From this the equality d1
IIIjSym2.V / D 0, with

Sym2.V / � H 1.YM; V ˝ TYM / described above, follows immediately. Thus the
map d1

III factors through the projection on ƒ2.V / � H 1.YM; V ˝ TYM /.
Suppose that a cocycle a 2 C 1.TYM ˝ V / is defined by the formula

a D
nX

sD1

.v1 • F2;s � v2 • F1;s/˝ v�s:

Let a also denote the lift of a to a cochain in C 1.R2/. Then

d2
II .a/ D �2

nX
s;tD1

.Fs;1 • Œvt ;Fs;2� � Fs;2 • Œvt ;Fs;1�/˝ vt

C 4
nX

s;tD1

.Fs;1 • Œv2;Fs;t � � Fs;2 • Œv1;Fs;t �/˝ vt :

This is a nontrivial cocycle inH 2;2.Sym2.TYM // since C 1;2.Sym2.TYM // D 0.

We would like to generalize the statement of Lemma 6.5. As in the case k D 2

we prove that the map dk
I W H 0.YM;Symk.V //! H 1.YM;Symk�1.V /˝ TYM / is

an embedding. We interpret dk
I as the de Rham differential dDR, mapping polyno-

mial functions to polynomial 1-forms, via the isomorphisms H 0.YM;Symk.V // Š
Symk.V / and H 1.YM;Symk�1.V /˝ TYM / Š Symk�1.V /˝ V .

With a 2 H 0.YM;Symm.V //, b 2 H 1.YM;Symk.V /˝ TYM / the differential
dII satisfies

dII.ab/ D dII.a/b C adII.b/

for suitable m, k. This is one of the standard properties of the differential in the
spectral sequence defined by a multiplicative filtration.

The proof of the following lemma is left to the reader.

Lemma 6.6. Let dII W Sym.V / ˝ ƒ1.V / ! Sym.V / ˝ ƒ2.V / be a linear map
such that dII.ab/ D dDRab C adIIb, a 2 Sym.V /, dIIdDR D 0 and dII.xidDRxj / D
dDRxi ^ dDRxj . Then dII D dDR.
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Proposition 6.7. The complex (6.7) is acyclic in the middle term. The zeroth coho-
mology is equal to C.

Proof. Using Lemma 6.5 we identifyƒ2.V /with a subspace ofH 2;2.YM; V˝TYM /.
The subcomplex of (6.4)

H 0.YM;Symk.V //
dk

I��! H 1.YM;Symk�1.V /˝TYM /
dk�1

II���! ƒ2.V /˝ Symk�2.V /

can be interpreted as a truncated polynomial De Rham complex on the space V , which
is acyclic in the middle term.

We can rephrase the statement of this proposition as that no subquotients of E1;0
1

contribute toH 1.YM;Symk.YM //; also onlyH 0.YM;C/ from all subquotients con-
tributes H 0.YM; U.YM //. This observation proves the following.

Corollary 6.8. H 0.YM; U.YM // Š C:

An alternative spot in the E1-term of (1.14) that can potentially contribute to
H 1.YM;Symn.YM // is E0;1

1 D H 1.YM;Symn.V //. We proceed with the analysis
of this remaining case.

Lemma 6.9. The boundary map d1
I W H 1.YM; V / ! H 2.YM;TYM / has its image

equal to Sym2.V /=Cq (Cq is a linear subspace spanned by the tensor q 2 Sym2.V /).

Proof. The proof follows from direct inspection of the complex C �.Q1/ and is con-
ceptually similar to the proof of Lemma 6.5.

Using the Leibniz rule and Lemma 6.9 we factor the differential dIII (6.5) into a
composition

H 1.YM;Symk.V // Š Symn.V /˝ V dDR˝1����! Symk�1.V /˝ V ˝2

1˝p���! Symn�1.V /˝ Sym2.V /=Cq � H 2.YM;Symk�1.V /˝ TYM /:

(6.8)

The map p is the obvious projection p W V ˝2 ! Sym2.V /=Cq. The differen-
tial dIII has the following geometric interpretation. The linear space Sym.V / ˝ V
can be identified with the space of polynomial vector fields on Cn, and the space
Sym.V /˝ Sym2.V /=Cq with the space of polynomial traceless (with respect to the
metric g defined by the bilinear form . � ; � /) symmetric two-tensors. In this setup
dIII.�/, � 2 Sym.V /˝ V , is the traceless part of the Lie derivative L�gq .

Lemma 6.10. The kernel of the map dIII in (6.8) is the Lie algebra of the conformal
Lie group.
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Proof. The statement about Ker dIII can be considered as a definition of the mentioned
Lie algebra. If dim.V / � 3 then the following vector fields form a basis of Ker dIII:

@
@xi

-shifts, xi
@

@xj
� xj

@
@xi

-rotations,
Pn

iD1.xkxi
@

@xi
� 1=2x2

i
@

@xk
/ DPn

sD1 aks
@

@xs
-

conformal vector fields,
Pn

iD1 xi
@

@xi
-dilation.

This lemma fits into the framework of our spectral sequence as follows. The term
E

0;1
2 of the spectral sequence is equal to the Lie algebra of the conformal group. All

other entries of Ei;j
2 with i C j D 1 are equal to zero. From this we conclude that

H 1.YM;Sym.YM // is a subspace of the conformal algebra.
We already know that translations, rotations and dilations are symmetries of YM;

they represent nontrivial cocycles inH 1.YM;Sym.YM // and survive all the spectral
sequence differentials. A possibility to construct similar cocycles for conformal vector
fields is explored in the remaining part of the proof.

First we associate with a conformal vector field
Pn

sD1 aks
@

@xs
the 1-cocycle

a DPn
sD1 aks ˝ v�s 2 C 1.Sym2.V //; for example

v�i ; (6.9)

xi ˝ v�j � xj ˝ v�i ; (6.10)
nP

sD1

xsv
�s (6.11)

are the cocycles corresponding to shifts, rotations and dilations. Let d2 denote the
differential in E2. The fact that d2.a/ D 0 means that the cocycle can be lifted to a
cocycle with values in E D F 0=F 2. We would like to know if it is possible to lift it
to a cocycle with values in Sym2.YM /. To do that it is sufficient to evaluate on a the
boundary operator ıSym2.YM / associated with the extension

Sym2.TYM /! Sym2.YM /! Q2:

Lemma 6.11. The conformal vector field a cannot be lifted to a 1-cocycle in
C �.Sym2.YM //.

Proof. Otherwise the cohomology class of ıSym2.YM /.a/ would be trivial.
On the other hand explicit computation shows that ıSym2.YM /.a/ is equal to

nX
s;tD1

4Œvs; vk� • Œvs; vt �˝ vt � Œvs; vi � • Œvs; vi �˝ vk 2 C 2;1.Sym2.TYM //:

This is a nonzero cocycle. It cannot be a coboundary because C 1;1.Sym2.TYM // is
zero. We conclude that ıSym2.YM /.a/ is a nontrivial cohomology class.
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The cocycles (6.9), (6.10), (6.11) can be lifted to cocycles in C 1.Sym.YM //. To
do this it suffices to make a substitution xs ! vs in the formulas (6.9), (6.10), (6.11).

This completes the proof of Proposition 6.2

6.2. The YM2 algebra. Throughout this section the dimension of the vector spaceV
is two. Let YM2 denote the YM algebra in this context.

Set F D F1;2, with F1;2 as in (6.3). The Lie algebra YM2 is isomorphic to the
classical Heisenberg algebra, a nontrivial central extension of the two-dimensional
abelian Lie algebra. This follows easily from the relations Œv1;F � D Œv2;F � D 0.

The close relation of U.YM2/ to the algebra Diff.R/ of differential operators with
polynomial coefficients on the real line is not very surprising. This is the content of
the following lemma.

Proposition 6.12. There is an embedding W U.YM2/! Diff.R/˝CŒh� defined by
 .v1/ D x,  .v2/ D h @

@x
.

Proof. The degree in v2 defines an increasing filtration of the space U.YM2/. The
algebra Diff.R/˝CŒh� is equipped with a similar filtration by degree in @

@x
. The map

 is compatible with the filtrations. The sums of adjoint quotients of these filtrations
are the polynomial algebras CŒx1; x2; F � and CŒx; y; h�. The map between them
defined by x1 ! x, x2 ! yh, F ! h is obviously an embedding.

The following is a corollary of the proposition we have just proved.

Proposition 6.13. Any element of the center of U.YM2/ is a polynomial in the vari-
able F . Moreover,  .F / D h.

Let us describe some derivations of U.YM2/.
The algebraU.YM2/ is equipped with derivation eu corresponding to the grading.

Fix a central element P.F /. A new derivation can be constructed by multiplying eu
with P.F /. We shall call it a derivation of the first kind.

Let a be an element of U.YM2/. It is easy to check using the embedding  that
Œa; v1� and Œa; v2� are divisible on F . Define a derivation @a ofU.YM2/ by the formula
@a.x/ D Œa; x�=F . We shall call it a derivation of the second kind.

Outer derivations of U.YM2/ are characterised as follows.

Proposition 6.14.

HH1.U.YM2/; U.YM2// Š H 1.YM2; U.YM2// Š CŒx1; x2�=CCCŒh�:

Proof. Let @ be a derivation of U.YM2/. Subtracting from @ a suitable derivation of
the first kind we will make @F a constant.
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The space of derivations splits according to eigenvalue decomposition with respect
to the operator eu W Der.U.YM // ! Der.U.YM //, defined by eu.@/ D Œeu; @�. We
call eigenvectors of eu homogeneous derivations and the corresponding eigenvalues
their degree.

It is easy to see that the minimal possible degree of a derivation is equal to mi-
nus one, whereas a homogeneous derivation @, with @F being equal to a nontrivial
constant, has degree minus two. Hence the constant is zero.

We conclude that every derivation can be decomposed into a sum of an F -linear
derivation and a derivation P.F /eu of the first kind.

It is easy to see that an F -linear derivation @U.YM2/ can be extended to an h-linear
derivation @ of Diff.R/˝CŒh; h�1� via the embedding  .

The equality Œx; @.h @
@x
/� D Œh @

@x
; @.x/�, which follows from the commutation rela-

tions in Diff.R/˝CŒh; h�1�, implies that there is an element a 2 Diff.R/˝CŒh; h�1�

such that @.y/ D Œa; y�, y 2 Diff.R/˝CŒh; h�1�. The inclusion Œa; Im � � Im 

implies that a can be chosen to be an element of h�1 Im . So @U.YM2/ is a derivation
of the second kind.

Consider a short exact sequence of YM2-modules

U.YM2/
h! U.YM2/! U.YM2/=.F / D CŒx1; x2�: (6.12)

The action of YM2 on CŒx1; x2� is trivial. The sequence (6.12) gives rise to a long
exact cohomology sequence

0! Z.U.YM2//
h! Z.U.YM2//! CŒx1; x2�

! Out.U.YM2//
F! Out.U.YM2//! V ˝CŒx1; x2�! � � � :

From this we conclude that the space of nonequivalent derivations of the second kind
is isomorphic to CŒx1; x2�=C.

7. Proofs of the main theorems

Proof of Theorem 1.1. Recall that U.YM /.t/ is given by the formula (1.7); also
j.U.YM // D 4 (Proposition 2.8).

The equalities

�HC.U.YM //.t/ D �
X
k�1

ln.1 � ntk C nt3k � t4k/�.k/
k
;

Z.U.YM //.t/ D 1;
Out.U.YM //.t/ D n.n � 1/

2
C 1C n

t
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follow from Theorem 2.2 and Proposition 6.2. Then Proposition 2.4 yields Theo-
rem 1.1.

Proof of Theorem 1.2. The generating functions

Z.U.YM2//.t/ D 1

1 � t2 ;

Out.U.YM2//.t/ D 1

.1 � t /2 � 1C
1

1 � t2

can be easily found from Propositions 6.13 and 6.14.
To compute�HC.U.YM2//.t/ explicitly one can use the following considerations.

The series �HC.U.YM2//.t/ depends only upon the formal function U.YM2/.t/.
Then for a computation of �HC.U.YM2//.t/ we are free to choose any A, as long as
A.t/ D U.YM2/.t/. One of the options is to take A D CŒx1; x2; F �, with deg.x1/ D
deg.x2/ D 1, deg.F / D 2. A simple application of Corollary 2.3 and the Hochschild–
Kostant–Rosenberg theorem [13] yields

�HC.U.YM2//.t/ D �HC.A/.t/ D .3t C 2/t
1 � t2 :

From this using Proposition 2.4 we arrive at the formulas (1.4) and (1.5). This
finishes the proof of Theorem 1.2.

A. Cyclic homology of a multi graded free algebra

The formulas presented in this section are not new and should be well known to
specialists. They are hard to locate in print or online and are presented here for the
readers’ convenience.

A positively multi-graded vector space W DL
W˛ has Poincaré series W.z/ D

W.z1; : : : ; zk/ D
P

˛ dim.W˛/z
˛ . For a multi-index ˛ D .i1; : : : ; ik/ we define

j˛j DPk
j D1 ij .

Let T .W / be a free algebra onW and let Cyc.W / denote the linear space spanned
by cyclic words over the alphabet make up of elements of some basis of W . While
performing cyclic identification of words the sign rule must be applied. There is
an obvious isomorphism Cyc.W / Š T .W /=ŒT .W /; T .W /�, where ŒT .W /; T .W /�
the linear space spanned by the graded commutators. The linear space Cyc.W / by
definition is equal to Cyc.W /=C, this is the reduced version of Cyc.W /.
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Theorem A.1. The reduced cyclic homology groups HCi .T .W // are equal to zero
for i > 0 and

HC0.T .W //.z1; : : : ; zk/ D Cyc.W /.z1; : : : ; zk/

D �
X
t�0

�.t/
t

ln.1 �W..�1/tC1zt
1; : : : ; .�1/tC1zt

k//

(A.1)

where �.t/ is as in (1.3).

Proof. See [16].

In the following part of this section we discuss some applications of formula (A.1).
Let A be a positively graded associative algebra with A D L

i�1Ai . The iso-
morphism HC�.A/ Š HC�.A/ is proved in [13]. The Connes complex C �

� A [13] is
isomorphic to Cyc.AŒ�1�/. In this context the linear space A is bi-graded: it carries
both the original and the cohomological gradation c deg ( by definition c deg.A/ D 1).
The whole space Cyc.AŒ�1�/ inherits the bi-grading. This enables us to define
Cyc.AŒ�1�/.z1; z2/. The generating function for Euler characteristics �HC�.A/.z/

is equal to Cyc.AŒ�1�/.z;�1/.
Now we are in a position to apply formula (A.1). SinceA.z1; z2/ D .A.z1/�1/z2,

after simple manipulations we conclude that

Cyc.AŒ�1�/.z;�1/ D �
X
n�1

lnA..�1/nC1zn/�.n/
n
:

We have just proved the following.

Proposition A.2. Let A be a positively graded algebra. Then

�HC.A/.z/ D �
X
n�1

lnA..�1/nC1zn/�.n/
n
: (A.2)

Proof ofTheorem 2.2. The grading of an associative algebra is an additional structure
on which cyclic homology depends.

In the statement of Proposition A.2 it is assumed that the algebra A belongs to
the tensor category VectZ of Z-graded linear spaces with commutativity morphism
R W W1 ˝W2 ! W2 ˝W1 satisfying

R.w1 ˝ w2/ D .�1/deg.w1/ deg.w2/w2 ˝ w1: (A.3)

If we wish for no˙ sign to appear in (A.3) (the algebra A in Theorem 2.2 is an even
object), this can be achieved by scaling the grading of A by the factor of two. In
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abstract terms this is the same as to say that the category of graded vector spaces
with trivial commutativity morphism is the subcategory of VectZ formed by even
objects. This results in the substitution A.t/! A.t2/ in the generating function and
eliminates all ˙ signs occurring in formula (A.2). After this the inverse substitu-
tion �HC.T .V /; d/.t/! �HC.T .V /; d/.

p
t / yields the generating function we are

looking for.

B. Proof of Theorem 4.1

First we compute the Lie algebra homology of TYM. We choose to follow an indirect
approach.

One of the examples of representations of YM is in Sym.V /, which we will now
describe.

We will follow convention of Section 4.1 where the symbols xs , s D 1; : : : ; n,
denote the generators of the abelianization YMab D V .

Notice that Sym.V / Š U.YM /˝U.TYM /C. This isomorphism means that Sym.V /
is induced from the trivial TYM-module.

Consider the homology H�.YM;Sym.V //.

Lemma B.1. H�;j .YM;Sym.V //Œ3� D H�;j .TYM;C/.

Proof. The module Sym.V / is induced from the trivial representation of TYM. The
result follows from the Shapiro lemma.

Let q denote the quadric (4.12). The tensor q is the inverse to the bilinear form
used in the definition of the algebra YM. We introduce the following notation.

Definition B.2. Let N be a Sym.V /-module.

Ann.N / D fm 2 N j am D 0 for a 2L
k�1 Symk.V /g;

Z.N / D fmi 2 N; i D 1; : : : ; n jPn
sD1 xkxsms D qmkg;

B.N / D fmi D xim j m 2 N g; it is easy to see that B.N/ � Z.N/;
H.N/ D Z.N/=B.N/:

Define a map � W H.N/! Ann.N=qN/ by the formula

� W m1; : : : ; mn !
nX

sD1

sxsms: (B.1)

The next lemma is self-evident.
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Lemma B.3. There are isomorphismsH 0.C.N // Š Ann.N /,H 1.C.N // Š H.N/,
H 3.C.N // Š N˝Sym.V / C. In the last formula C D Sym0.V / is a Sym.V /-module
via the standard augmentation ".

Lemma B.4. If the map “multiplication on q” inN has no kernel then the map (B.1)
is an isomorphism.

Proof. We check first that the map (B.1) is correctly defined. Since xk

Pn
sD1 xsms D

qmk 2 qN the element
Pn

sD1 xsms belongs to Ann.N=qN/. The array .ms/ such
that ms D xsn maps via � into qn 2 qN is identically zero in Ann.N=qN/.

Suppose that m 2 Ann.N=qN/. Then by definition of Ann.N=qN/ we can find
elements ms 2 N such that xsm D qms . This implies that

Pn
sD1 xsqms D qm and

q�.m1; : : : ; mn/ D qm. Assume that multiplication by q has a trivial kernel. Then
�.m1; : : : ; mn/ D m. This proves that map � is surjective.

Suppose that �.m1; : : : ; mn/ D 0 2 Ann.N=qN/. This means that there is an
element m 2 N such that qm D Pn

sD1 xsms . By assumption xk

Pn
sD1 xsms D

qmk . Hence we have xkqm D qmk . After dividing by q we see that .m1; : : : ; mn/

is the trivial element in H.N/.

It is easy to interpret the group Ann.N / in terms of the Koszul complexC�.V;N /.
A direct inspection shows that the mapm! m&1 ^ � � � ^ &n defines an isomorphism
of groups Ann.N / Š Hn.V;N /.

Lemma B.5. Suppose the map “multiplication by q” in the module N has no kernel
and that Hn.V;N / D Hn�1.V;N / D 0. Then the group H.N/ is trivial.

Proof. The short exact sequence 0! N
q! N ! N=qN ! 0 defines a long exact

sequence in homology, whose terminal segment is of interest to us:

0! Hn.V;N /! Hn.V;N /! Hn.V;N=qN/! Hn�1.V;N /! � � � :
The group Hn.V;N=qN/ is trivial because both Hn�1.V;N / and Hn�1.V;N / are.
Together with Lemma B.4, this implies that H.N/ D 0.

The algebra Sym.V / has no zero divisors, so Ann.Sym.V /// D 0. The module
Sym.V / is cyclic, hence Sym.V /˝Sym.V / C D C.

The homology H�.V;Sym.V // is trivial because the module of coefficients is
free. If dim.V / � 2 then the conditions of Lemma B.5 are met, soH.Sym.V // D 0.
By Lemma B.3 the complex C �.Sym.V // has cohomology in degree 2 and 3. In
degree 3 it is one-dimensional. Denote the two-dimensional cohomology by M .
From Proposition 2.8 it follows thatH0;0.TYM;C/ D C andH1;j .TYM;C/ DMj .

The combination of these observations gives a proof of Proposition 4.3. The
natural action of YM on the homology H�.YM;Sym.V // is trivial. This enables us
to identify xsm˝ l1 ^ � � � ^ lk with

P
i m˝ l1 ^ � � � ^ Œvs; li � ^ � � � ^ lk .
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It is easy to computeM.t/ using the generating function for Euler characteristics
of graded components of C �.Sym.V //. Indeed,

t�4.M.t/ � 1/ D 1 � nt�1 C nt�3 � t�4

.1 � t /n D �C �
.Sym.V //.t/:

We use the equality Sym.V /.t/ D 1
.1�t/n . The free algebra T .M/ has Poincaré

series T .M/.t/ D 1
1�M.t/

D .1�t/n

1�ntCnt3�t4 .
The isomorphism of graded spaces U.YM / Š Sym.V / ˝ U.TYM / and for-

mula (1.7) imply that U.TYM /.t/ D .1�t/n

1�ntCnt3�t4 .
The surjective graded map (4.1) is an isomorphism since T .M/.t/ D U.TYM /.t/.

C. The graded Heisenberg Lie algebra

The algebra (4.11) is Koszul (see for example [3]). A resolution of the trivial mod-
ule C can be constructed by means of a quite general and powerful theory of such
algebras [2]. We have tried to avoid the general theory as much as possible so as to
keep this paper self-contained. Thus we give an ad hoc construction of the resolution
in the setup of the algebra A (4.11).

Definition C.1. The graded Heisenberg algebra Heis has two components
Heis�1CHeis�2. The odd Heis�1 has a basis h�1; : : : ; �ni, the even Heis�2 is
spanned by a generator l . The commutation relations are Œ� i ; �j � D ıij l .

The algebra Heis admits two commuting actionsL,R by derivations on the graded
commutative algebra ƒ.V /˝CŒh� Š ƒ.&1; : : : ; &n/˝CŒh�:

L.�s/ D @

@&s

C &s

@

@h
; L.l/ D 2 @

@h
;

R.�s/ D � @

@&s

C &s

@

@h
; R.l/ D �2 @

@h
:

Consider the tensor product A ˝ ƒ.V / ˝ CŒh�, and introduce operators d1 DPn
sD1 xsL.�

s/, d2 D Pn
sD1 xsR.�

s/. Define a multiplicative bi-grading on
A ˝ ƒ.V / ˝ CŒh� D L

i;j A ˝ ƒ.V / ˝ CŒh�i;j as follows: assign to genera-
tors xs the bi-degree .0; 1/, to &s the bi-degree .1; 1/, and to h the bi-degree .2; 2/. It
is easy to see that A˝ƒ.V /˝CŒh� decomposes into a direct sum of subcomplexes
A˝ƒ.V /˝CŒh�j DL

i A˝ƒ.V /˝CŒh�i;j .

Proposition C.2. The operators di satisfy d2
i D 0, i D 1; 2. The complexes

.A ˝ ƒ.V / ˝ CŒh�; di /, i D 1; 2, have only one nontrivial one-dimensional ho-
mology group in degree zero.
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Proof. We leave to the reader a verification of the equation d2
i D 0.

The universal enveloping algebra U.Heis/ DL
i�0 U.Heis/i has the structure of

a graded co-commutative Hopf algebra. The values of the diagonal on algebraic
generators are equal to �.�s/ D �s ˝ 1 C 1 ˝ �s . By our definition the dual
U.Heis/� ´L

i�0 U.Heis/�i with U.Heis/��i D .U.Heis/i /� has the structure of a
graded commutative algebra, induced by �. As an associative algebra U.Heis/� is
isomorphic to ƒ.V /˝CŒh�.

The algebraU.Heis/ is a free right module over itself. Its graded dualU.Heis/� is a
left U.Heis/-module. Consider the chain complex C �.Heis; U.Heis/�/. The module
U.Heis/� is co-induced. It has cohomology equal to C because of the Shapiro lemma.

It will be convenient during the proof to use a modified cohomological grading
in A˝ƒ.V /˝CŒh�. The degrees of h, &s remain unchanged, but the degree of xs

becomes equal to two.
There is a map of differential graded algebras

 W .C �
.Heis; U.Heis/�/; d/! .A˝ƒ.V /˝CŒh�; d1/:

The map establishes the obvious isomorphism of U.Heis/� � C �.Heis; U.Heis/�/
withƒ.V /˝CŒh�. Also  surjects Sym.Heis�Œ�1�/ � C �.Heis; U.Heis/�/ onto A.

The reader should check the compatibility of this map with the differentials.
Let us introduce a filtration F j .U.Heis/�/ D L

j �i U.Heis/�j and a similar fil-
tration on ƒ.V /˝CŒh�. The map  is compatible with the filtrations and induces a
map of spectral sequences. It is straightforward to check that  defines an isomor-
phism of E1-terms. It is easy to construct a decomposition of C �.Heis; U.Heis/�/ DL

k C
�.Heis; U.Heis/�/k into a sum of finite-dimensional complexes in complete

analogy with the decomposition of A˝ƒ.V /˝CŒh�. The filtrations agree with the
direct sum decomposition. The pair of spectral sequences converges in both cases
because they can be reduced to spectral sequences defined by finite filtrations. This
proves the proposition for .A˝ƒ.V /˝CŒh�; d1/.

One can construct a rightU.Heis/-module using the left multiplication inU.Heis/
composed with the antipodal map. From this we get a map of differential graded
algebras  0 W .C �.Heis; U.Heis/�/; d 0/ ! .A ˝ ƒ.V / ˝ CŒh�; d2/. To establish
the desired homological properties of .A˝ƒ.V /˝CŒh�; d2/, we can use the same
technique.

Suppose that N is a finitely generated graded A-module. Define a differential on
A˝ N ˝ƒ.V /˝ CŒh� as the sum of two differentials d1 D Pn

sD1.xs ˝ 1/L.�s/,
d2 DPn

sD1.1˝ xs/R.�
s/. The complex A˝N ˝ƒ.V /˝CŒh� is assembled from

free A-modules.

Proposition C.3. Suppose that a graded A-module N satisfies N D L
i�k Ni and

dim.Ni / <1. Then the complex A˝N ˝ƒ.V /˝CŒh� is a free resolution of N .
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Proof. Define a filtration onN by F j .N / DL
i�j Ni . Consider the filtration of the

complex defined by F j .A˝ N ˝ƒ.V /˝ CŒh�/ D A˝ F j .N /˝ƒ.V /˝ CŒh�.
From Proposition C.2 we deduce that theE1-term of the associated spectral sequence
is isomorphic to N (placed in zero degree).

The complex A ˝ N ˝ ƒ.V / ˝ CŒh� D L
kA ˝ N ˝ ƒ.V / ˝ CŒh�k (con-

structed in the same way as for A ˝ ƒ.V / ˝ CŒh� ) decomposes into a sum of
finite-dimensional subcomplexes compatible with the filtration; hence we do not have
to deal with convergence.

Corollary C.4. The cohomology of the complex

C�.V; hhi; N1 ˝N2/´ N1 ˝N2 ˝ƒ.V /˝CŒh� (C.1)

is equal to TorA
�
.N1; N2/ if the modules N1, N2 satisfy the finiteness properties that

have been formulated in Proposition C.3.

Proof. This follows from definition of Tor and Proposition C.3.

D. Proof of Proposition 5.6

In this section we assume that allA-modules satisfy the conditions of Proposition C.3.
We use the complex C�.V; hhi; N1 ˝ N2/ from (C.1) for the computation of

TorA
i;j .N1; N2/. C�.V;N1 ˝N2/ is a subcomplex of C�.V; hhi; N1 ˝N2/. Together

they define a short exact sequence of complexes:

0! C�.V;N1 ˝N2/
��! C�.V; hhi; N1 ˝N2/

h�1

��! C�.V; hhi; N1 ˝N2/Œ�2�! 0:

(D.1)
In the last formula we denote the embedding map by �.

Lemma D.1. For any A-modules N1, N2 there is a long exact sequence

� � � ! TorA
iC1;j .N1; N2/! TorA

i�1;j �2.N1; N2/
ı�! Tori;j .N1; N2/

��! TorA
i;j .N1; N2/! TorA

i�2;j �2.N1; N2/! � � �
with the terminal segment

� � � ! TorA
2;j .N1; N2/! TorA

0;j �2.N1; N2/

ı�! Tor1;j .N1; N2/
��! TorA

1;j .N1; N2/! 0;

Tor0;j .N1; N2/ D TorA
0;j .N1; N2/:

(D.2)

As usual Tori;j .N1; N2/ stands for the i -th Tor functor over Sym.V /.
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Proof. This is the long exact sequence of cohomology associated with the short exact
sequence (D.1).

Lemma D.1 has also a proof that uses the language of derived categories, which
the interested reader may try to reconstruct.

Lemma D.2. With the notations of Lemma 5.5, we have �.a/ D ı B �.a/ for any cycle
a 2 Ci .V;N1 ˝N2/.

Proof. The complex C�.V; hhi; A ˝ A/ contains an element h such that dh D � 2
C1.V; A˝ A/. The proof readily follows from this observation.

Lemma D.3. Cokerj Š TorA
1;j .M;M/:

Proof. The module M satisfies conditions of Proposition C.3. The proof follows
from (D.2) and Lemma D.2.

Lemma D.4. Let N be an A-module. Then there is an isomorphism

TorA
i;j .M;N / Š TorA

iC2;j .C; N / for i � 2:
If Hn.V;N / D 0 then the above isomorphism holds for i � 1.

Proof. The complex (4.13) can be used to define an exact triangle

CŒ�2�!M ! zC �
Œ1�! CŒ�1�

in the (bounded) derived category of graded A-modules. If we apply the functor of
tensor multiplication by N and pass to hypercohomology then the triangle will give
us a long exact sequence of TorA groups.

The complex zC � consists of free A-modules, adapted in the derived sense to the
functorK� ) K

�˝L
A N (L stands for left derived functor). Thus the hypercohomol-

ogy of the complex . zC �/˝L
A N coincides with H �

. zC ˝A N/.
The claim of the lemma for i � 2 follows from the long exact sequence for the

functor Tor because H j . zC � ˝N/ D 0 for j � �1.
If Hn.V;N / D 0 then the map N ! N ˝ V , which is defined by the formula

n ! Pn
sD1 xsn˝ vs , has no kernel. Thus H 0. zC � ˝ N/ is zero. This is sufficient

for the extension of the previous result to the case i � 1.

Corollary D.5. There is an isomorphism TorA
1;j .M;M/ Š TorA

5;j .C;C/.

Proof. The isomorphisms TorA
1;j .M;M/ Š TorA

3;j .C;M/ Š TorA
5;j .C;C/ follow

from Lemma D.4.
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Lemma D.6. There is an isomorphism TorA
i;i .C;C/ Š

L
k�0ƒ

i�2k.V �/. Also

TorA
i;j .C;C/ D 0 for i ¤ j .

Proof. Use C�.V; hhi;C˝C/ Š ƒ.V /˝CŒh� with zero differential for the compu-
tation of TorA

i;i .C;C/.

Corollary D.7. Tor1;5.M;M/ ŠL
k�0.ƒ

5�2k.V /hk/�.

Proof. The proof follows from Lemma D.6, the long exact sequence (D.2) and the
isomorphism TorA

0;3.M;M/ D 0.

The sequence (5.8) is a part of the long exact sequence (D.2), with
N1 D N2 D M , under the identifications H0;j �2.V;M ˝M/ Š TorA

0;j �2.M;M/

and H1;j .V;M ˝ M/ Š TorA
1;j .M;M/. There is an isomorphism Coker5 Š

Tor1;5.M;M/ (because H0;3.V;M ˝M/ D 0).
The proof of Proposition 5.6 follows from the results of the previous lemmas.

References

[1] M. Artin and W. F. Schelter, Graded algebras of global dimension 3. Adv. Math. 66 (1987),
171–216. Zbl 0633.16001 MR 917738

[2] J. Backelin, A distributiveness property of augmented algebras, and some re-
lated homological results. Ph.D. thesis, University of Stockholm, Stockhom 1982.
http://www.matematik.su.se/ joeb/avh/sum.html

[3] R. Bezrukavnikov, Koszul property and Frobenius splitting of Schubert varieties. Preprint
1995. arXiv:alg-geom/9502021

[4] H. Cartan and S. Eilenberg, Homological algebra. Princeton Landmarks Math., Princeton
University Press, Princeton, NJ, 1999. Zbl 0933.18001 MR 1731415

[5] C. Chevalley, Theory of Lie groups I. Princeton Landmarks Math., Princeton University
Press, Princeton, NJ, 1999. Zbl 0946.22001 MR 1736269

[6] A. Connes and M. Dubois-Violette, Yang–Mills algebra. Lett. Math. Phys. 61 (2002),
149–158. Zbl 1028.53025 MR 1936574

[7] A. Connes and M. Dubois-Violette, Yang–Mills and some related algebras. In Rigorous
quantum field theory, Progr. Math. 251, Birkhäuser, Basel 2007, 65–78. MR 2279211

[8] S. I. Gelfand andYu. I. Manin, Methods of homological algebra. 2nd ed., Springer Monogr.
Math., Springer-Verlag, Berlin 2003. Zbl 1006.18001 MR 1950475

[9] G. Hochschild and J.-P. Serre, Cohomology of Lie algebras. Ann. of Math. (2) 57 (1953),
591–603. Zbl 0053.01402 MR 0054581

[10] K. Koike and I. Terada,Young-diagrammatic methods for the representation theory of the
classical groups of type Bn, Cn, Dn. J. Algebra 107 (1987), 466–511. Zbl 0622.20033
MR 885807

http://www.emis.de/MATH-item?0633.16001
http://www.ams.org/mathscinet-getitem?mr=917738
http://www.matematik.su.se/~joeb/avh/sum.html
http://arxiv.org/abs/alg-geom/9502021
http://www.emis.de/MATH-item?0933.18001
http://www.ams.org/mathscinet-getitem?mr=1731415
http://www.emis.de/MATH-item?0946.22001
http://www.ams.org/mathscinet-getitem?mr=1736269
http://www.emis.de/MATH-item?1028.53025
http://www.ams.org/mathscinet-getitem?mr=1936574
http://www.ams.org/mathscinet-getitem?mr=2279211
http://www.emis.de/MATH-item?1006.18001
http://www.ams.org/mathscinet-getitem?mr=1950475
http://www.emis.de/MATH-item?0053.01402
http://www.ams.org/mathscinet-getitem?mr=0054581
http://www.emis.de/MATH-item?0622.20033
http://www.ams.org/mathscinet-getitem?mr=885807


404 M. Movshev

[11] M. Kontsevich, Formal (non)-commutative symplectic geometry. In The Gelfand math-
ematical seminars, 1990–1992, Birkhäuser, Boston 1993, 173–187. Zbl 0821.58018
MR 1247289

[12] M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces. In The Gelfand
mathematical seminars, 1996–1999, Birkhäuser, Boston 2000, 85–108. Zbl 1003.14001
MR 1731635

[13] J.-L. Loday, Cyclic homology. 2nd ed., Grundlehren Math. Wiss. 301. Springer-Verlag,
Berlin 1998. Zbl 0885.18007 MR 1600246

[14] S. Mac Lane, Homology. Classics Math., Springer-Verlag, Berlin 1995. Zbl 0818.18001
MR 1344215

[15] Yu. I. Manin, Gauge field theory and complex geometry. 2nd ed., Grundlehren Math. Wiss.
289, Springer-Verlag, Berlin 1997. Zbl 0884.53002 MR 1632008

[16] M. Movshev, On deformations of Yang-Mills algebras. Preprint 2005.
arXiv:hep-th/0509119

[17] M. Movshev and A. Schwarz, On maximally supersymmetric Yang–Mills theories. Nu-
clear Phys. B 681 (2004), 324–350. Zbl 1044.81097 MR 2038191

[18] M. Movshev and A. Schwarz, Algebraic structure of Yang–Mills theory. In The unity
of mathematics, Progr. Math. 244, Birkhäuser, Boston 2006, 473–523. Zbl 05050086
MR 2181815

[19] N. A. Nekrasov, Lectures on open strings, and noncommutative gauge theories. In Unity
from duality: gravity, gauge theory and strings (Les Houches, 2001), NATO Adv. Study
Inst., EDP Sciences, Les Ulis 2002; Springer-Verlag, Berlin 2002, 477–495. MR 2010977

[20] A. L. Onischik and E. Vinberg (eds.), Lie groups and Lie algebras III. Encyclopaedia
Math. Sci. 41, Springer-Verlag, Berlin 1994. Zbl 0797.22001 MR 1349140

[21] M. Van den Bergh, A relation between Hochschild homology and cohomology for Goren-
stein rings. Proc. Amer. Math. Soc. 126 (1998), 1345–1348; erratum ibid. 130 (2002),
2809–2810. Zbl 0894.16005 MR 1443171 MR 1900889

Received March 12, 2008; revised April 15, 2008

M. Movshev, Stony Brook University, Stony Brook, NY, 11794-3651, U.S.A.

E-mail: mmovshev@math.sunysb.edu

http://www.emis.de/MATH-item?0821.58018
http://www.ams.org/mathscinet-getitem?mr=1247289
http://www.emis.de/MATH-item?1003.14001
http://www.ams.org/mathscinet-getitem?mr=1731635
http://www.emis.de/MATH-item?0885.18007
http://www.ams.org/mathscinet-getitem?mr=1600246
http://www.emis.de/MATH-item?0818.18001
http://www.ams.org/mathscinet-getitem?mr=1344215
http://www.emis.de/MATH-item?0884.53002
http://www.ams.org/mathscinet-getitem?mr=1632008
http://arxiv.org/abs/hep-th/0509119
http://www.emis.de/MATH-item?1044.81097
http://www.ams.org/mathscinet-getitem?mr=2038191
http://www.emis.de/MATH-item?05050086
http://www.ams.org/mathscinet-getitem?mr=2181815
http://www.ams.org/mathscinet-getitem?mr=2010977
http://www.emis.de/MATH-item?0797.22001
http://www.ams.org/mathscinet-getitem?mr=1349140
http://www.emis.de/MATH-item?0894.16005
http://www.ams.org/mathscinet-getitem?mr=1443171
http://www.ams.org/mathscinet-getitem?mr=1900889

	Introduction
	Preliminaries
	The spectral sequences
	Computation of H(YM,Gr^j(U(TYM))
	Analysis of the E_1-differential
	The center and the Lie algebra of outer derivations of U(YM)
	Proofs of the main theorems
	Cyclic homology of a multi graded free algebra
	Proof of Theorem 4.1
	The graded Heisenberg Lie algebra
	Proof of Proposition 5.6
	References

