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Some notes on the Feigin–Losev–Shoikhet integral conjecture

Ajay C. Ramadoss

Abstract. Given a holomorphic vector bundle E on a smooth connected compact complex
manifoldX , Feigin, Losev and Shoikhet [FLS] use a notion of completed Hochschild homologycHH of D iff.E/ such that cHH0.D iff.E// is isomorphic to H2n.X;C/. On the other hand, they
construct a linear functional on cHH0.D iff.E//. This therefore gives rise to a linear functional
IE on H2n.X;C/. They show that this functional is

R
X

if E has non-zero Euler characteristic.
They conjecture that this functional is

R
X

for all E .
In this article it is proved that IE D IF for any pair .E;F / of holomorphic vector bundles

onX . In particular, ifX has one vector bundle with non-zero Euler characteristic, then IE D R
X

for every vector bundle E on X .
In [FLS] there is also used a notion of completed cyclic homology cHC of D iff.E/ such

that cHC�i .D iff.E// ' H2n�i .X;C/˚H2n�iC2.X;C/˚� � � . The construction yielding IE

generalizes to give linear functionals on cHC�2i .D iff.E// for each i � 0. The linear functional
thus obtained on cHC�2i .D iff.E// yields a linear functional IE;2i;2k on H2n�2k.X;C/ for
0 � k � i . It is conjectured in [FLS] that IE;2;0 D R

X
, and a further conjecture about IE;2;2

is made.
In this article we prove that IE;2i;0 D IE for all i � 0. In particular, if X has at least

one vector bundle with non-zero Euler characteristic, then IE;2i;0 D R
X

. We also prove that
IE;2i;2k D 0 for k > 0. The latter is stronger than what is expected in [FLS] when i D k D 1.
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1. Introduction

LetX be a smooth connected compact complex manifold such that dimCX D n. Let
E be a holomorphic vector bundle on X . Let D iff.E/ be the sheaf of holomorphic
differential operators on E . Let Diff.E/ be the algebra of global sections of D iff.E/.
One is interested in understanding the Hochschild homology of Diff.E/. This is,
however, not an object that one can easily analyze.
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Let Dolb�
.X;OX / denote the Dolbeaux resolution of the sheaf OX of holomorphic

functions on X . Let D iff �

.E/ D Dolb�
.X;OX /˝OX

D iff.E/. Following [FLS] we
replace Diff.E/ by

Diff �
.E/ ´ �.X;D iff �

.E//:

Let K �

E
denote the complex �C 1.X;Dolb�

.X;OX / ˝OX
E/ of smooth global

sections of Dolb�
.X;OX / ˝OX

E . This is the Dolbeaux complex of E . If D is a
holomorphic differential operator on E , then D gives rise to a C-endomorphism of
the complex K �

E
. It follows that D induces an endomorphism D� W Hi .X;E/ !

Hi .X;E/ for each i . The supertrace of D is given by

str.D/ ´
X

i

.�1/i trHi .X;E/ D�:

Note that Diff.E/ is a subalgebra of Diff �
.E/. It follows that there is a natural

map from the i -th Hochschild homology of Diff.E/ to that of Diff �
.E/ for all i . Also

recall that if A is any associative C-algebra concentrated in degree 0 then the 0-th
Hochschild homology HH0.A/ of A is the Abelianization of A. It follows that any
trace on A is a linear functional on HH0.A/ and a Hochschild 0-cocycle of A. Note
that the supertrace described in the previous paragraph is a Hochschild 0-cocycle of
Diff.E/.

In [FLS], a Hochschild 0-cocycle tr on Diff �
.E/ is constructed algebraically. This

Hochschild cocycle is constructed in such a way that the following diagram commutes:

HH0.Diff.E//

str

��

�� HH0.Diff �
.E//

tr

��
C

id
�� C.

The top row of the above diagram is the natural map from HH0.Diff.E// to
HH0.Diff �

.E// arising out of the natural inclusion of Diff.E/ as a subalgebra of
Diff �

.E/.
The theory that is more related to the cohomology ofX is, however, the completed

Hochschild homology of the sheaf D iff.E/ of holomorphic differential operators on
E . It is defined in Section 3. LetbHHi .D iff.E// denote the i -th completed Hochschild
homology of D iff.E/. By Lemma 3 we have the following generalization of a theorem
of Brylinski [Bryl]:

bHH�i .D iff.E// ' H2n�i .X;C/:

Call this isomorphism ˇE . This is the key property of bHH�.D iff.E// that relates it
to the cohomology of X with coefficients in C. In [FLS] there is also a notion of
completed Hochschild homology that has the same relation with H�.X;C/. However,
as pointed out in [FLS], understanding the isomorphismˇE is easier with the definition
of completed Hochschild homology used here.
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In [FLS] it is shown that the Hochschild cocycle tr of Diff �
.E/ “extends” to yield

a linear functional ytr on bHH0.D iff.E//. In this article, we are forced to redo this
very step in Section 3 since we use a definition of bHH�.D iff.E// that is a priori
different from that in [FLS]. Our definition of bHH�.D iff.E// implies that there is a
natural map from HH0.Diff.E// to bHH0.D iff.E// (see Section 3 for more details).
The outcome of our “extending” tr to a linear functional ytr on bHH0.D iff.E// is the
following commutative diagram:

HH0.Diff.E//

str

��

��
bHH0.D iff.E//

ytr
��

C
id

�� C.

The linear functional we construct on bHH0.D iff.E// still uses the basic construc-
tion of [FLS] and, as will be clear later in this article, yields an algebraic construction
of

R
X

when X has at least one vector bundle with non-zero Euler characteristic.
Denote the composite map ytr B ˇ�1

E
W H2n.X;C/ ! C by IE . IE is a linear

functional on H2n.X;C/.
The following theorem was proven in [FLS]. The proof goes through in our setup

as well.

Theorem 1 ([FLS]). If the Euler characteristic �E of E is non-zero, then IE D R
X

.

Further, in [FLS], it was conjectured that IE D R
X

for all vector bundles E , even
those of zero Euler characteristic. Here we prove the following theorem.

Theorem 2. If E and G are two vector bundles on X , then IE D IG .

The following corollary is immediate from this and Theorem 1.

Corollary 1. If X has a vector bundle G whose Euler characteristic �G is non-zero,
then IE D R

X
for any vector bundle E on X .

In particular, ifX is a smooth separated scheme over C, then the skyscraper sheaf
supported at a point p of X has non-zero Euler characteristic. On the other hand, it
is a coherent OX -module. It therefore has a finite resolution by (holomorphic) vector
bundles on X . It follows that at least one vector bundle in such a resolution has non-
zero Euler characteristic. Thus, if E is a vector bundle on a smooth compact complex
manifold X that is a smooth separated scheme over C, then IE D R

X
.

Note that if D is a global holomorphic differential operator on a vector bundle E

onX , then D is a 0-cycle of the Hochschild chain complex of Diff.E/. It follows that
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D yields an element in bHH0.D iff.E// and hence an element in H2n.X;C/, which
will be denoted by ŒD �. It follows from Corollary 1 that if X admits at least one
vector bundle with non-zero Euler characteristic, then

str.D/ D
Z

X

ŒD �:

The above statement is somewhat similar to a result (Corollary 5.6) in an article by
P. Schapira and J.-P. Schneiders [S-S]. More recently, an entirely different approach
has yielded a proof of a stronger version of this statement (the supertrace theorem)
without the condition thatX admits a vector bundle with non-zero Euler characteristic
[EnFe]. In a sequel to this article, we shall develop our approach further to show that
IE D R

X
for any vector bundle E on any compact complex manifold X . This yields

another proof of the supertrace theorem different from the one in [EnFe].
One also defines the completed cyclic homology cHC�.D iff.E// of D iff.E/. Fur-

ther, as in [FLS], the construction of the linear functional on the 0-th completed
Hochschild homology of D iff.E/ is extended to the construction of multiple linear
functionals ytr2i W cHC�2i .D iff.E// ! C. On the other hand, it is shown that one has
an isomorphism

cHC�2i .D iff.E// ' H2n.X;C/˚ H2n�2.X;C/˚ � � � ˚ H2n�2i .X;C/:

Denote the inverse of this isomorphism by �i
E

. Let IE;2i D ytr2i B �i
E

. Then

IE;2i W H2n.X;C/˚ H2n�2.X;C/˚ � � � ˚ H2n�2i .X;C/ ! C:

For 0 � k � i let IE;2i;2k W H2n�2k.X;C/ ! C be the composition of IE;2i with
the inclusion of H2n�2k.X;C/ in H2n.X;C/˚ H2n�2.X;C/˚ � � � ˚ H2n�2i .X;C/
as a direct summand. In [FLS] it is conjectured that IE;2;0 D C � R

X
where C is a

constant independent of E . Furthermore, there is a prediction in [FLS] that IE;2;2 is
the integral over a cycle related to the Chern classes of E and those of vector bundles
intrinsic to X . Here we prove the following theorem.

Theorem 3. IE;2i;0 D IE . Moreover, IE;2i;2k D 0 if k > 0.

The latter part is more than what is expected in [FLS], though a piece of circum-
stantial evidence for IE;2;2 to be 0 is provided there. By this theorem and Corollary 1,
IE;2i;0 D R

X
whenever X has a vector bundle with non-zero Euler characteristic. In

particular, this happens when X is a smooth separated scheme over C.

1.1. Outline of the article. The proofs of Theorems 2 and 3 are simple and involve
two easy “bookkeeping lemmas” (Lemma 1 and Lemma 4). This is done in Sections 3
and 4, respectively.
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Section 2 recalls basic notions about Hochschild homology that we require. In
addition, Section 2 recalls the definition of anA1-morphism between two differential
graded algebras. It shows that an A1-morphism F between two dg algebras A and
B induces a map FHoch of complexes from the complex of Hochschild chains of A

to that of B (Proposition 2). None of the material presented in this section is new.
Proposition 2 is from [FLS].

The first part of Section 3 recalls the basic set up for this note from [FLS]. In
particular, we recall the construction of the Hochschild 0-cocycle tr of Diff �

.E/ from
[FLS]. The completed Hochschild homology bHH�.D iff.E// is defined in Section 3.
We show that the formula for the Hochschild cocycle tr “extends” to a formula for a
linear functional ytr on bHH0.D iff.E//. In [FLS] something very similar is done. The
definition of bHH�.D iff.E// that is used in this article is however a priori somewhat
different from that used in [FLS]. This forces us to redo the parts where in [FLS] the
Hochschild cocycle tr of Diff �

.E/ is extended to a linear functional onbHH0.D iff.E//.
The last part of Section 3 is devoted to the “bookkeeping lemma for ytr” (Lemma 1).
Section 4 is devoted to understanding the relation between bHH�.D iff.E// and

H�.X;C/. In particular, we prove that

bHH�i .D iff.E// ' H2n�i .X;C/

(Corollary 6). For E D OX , this was proven by Brylinski [Bryl]. Let ˇE denote the
isomorphism between bHH�i .D iff.E// and H2n�i .X;C/. Section 4 also proves the
“bookkeeping lemma for ˇ” (Lemma 4). Theorem 2 is an immediate consequence of
Lemma 1 and Lemma 4.

Section 5 has four subsections. The first subsection recalls the basic notions of
cyclic homology that we require. In the second subsection we carefully examine
the linear functionals on the completed cyclic homology of D iff.E/. The third sub-
section analyses the relation between the completed cyclic homology of D iff.E/
and H�.X;C/. In the final subsection we write down the final steps of the proof of
Theorem 3.

Note. All complexes that appear in this article are cochain complexes by convention.
The term Hochschild cocycle of a dg algebra shall only refer to cocycles of the
complex of Hochschild cochains of that algebra as defined in Definition 2.
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for the help I received from many quarters. I am very grateful to Prof. Boris Tsygan
for going through the article carefully, introducing me to a article of N. Teleman
[Tel] and for some very useful comments and suggestions. I am also very grateful
to Prof. Madhav Nori for some very useful discussions, comments and suggestions.
Heartfelt thanks are also due to Prof. Ryszard Nest and Prof. Alexander Gorokhovsky
for helping me understand the correct completed tensor product to be used. I am also
grateful to Prof. Shrawan Kumar and Dr. Victor Protsak for useful discussions and
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2. Basic results about Hochschild homology

Conventions used in this section. The term “dg algebra” in this section refers to a
differential graded C-algebra with unit.

All complexes of C-vector space are cochain complexes, i.e, the differential of
any complex of C-vector spaces has degree C1.

2.1. The Hochschild chain complex and bar complex of a dg algebra

Definition 1. If A is a differential graded C-algebra with differential ı, the complex
of Hochschild chainsC �

.A/ is the cochain complex obtained by equipping the graded
C-vector space

L
i�1 AŒ1�˝i Œ�1� with the Hochschild differential. The Hochschild

differential d is given by the formula

d.a0 ˝ � � � ˝ an/ D
iDn�1X

iD0

.�1/.d0C���Cdi CiC1/a0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ an

C .�1/.dnC1/.d0C���Cdn�1Cn�1/ana0 ˝ a1 ˝ � � � ˝ an�1

C
j DnX
j D0

.�1/.d0C���Cdj �1Cj /a0 ˝ � � � ˝ ı.aj /˝ � � � ˝ an

for homogenous elements a0; : : : ; an of A of degrees d0; : : : ; dn, respectively.

Let �n W A˝n ! A˝n denote the endomorphism given by the formula

a1 ˝ � � � ˝ an Ý .�1/.dnC1/.d1C���Cdn�1Cn�1/an ˝ a1 ˝ � � � ˝ an�1

for homogenous elements a1; : : : ; an of A of degrees d1; : : : ; dn, respectively. Let
@1 W A˝n ! A˝n�1 denote the morphism given by the formula

a1 ˝ � � � ˝ an Ý .�1/d1C1a1a2 ˝ � � � ˝ an

for homogenous elements a1; : : : ; an of A of degrees d1; : : : ; dn, respectively. Then
the Hochschild differential on A˝k is also given by the formula

iDkX
iD1

� i�1
k�1 B @1 B �k�iC1

k
C

iDkX
iD1

� i�1
k B .ı ˝ id ˝ � � � ˝ id/ B �k�iC1

k
:
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Contrary to the standard practice, we will refer to a degree �n cocycle of C �
.A/

as a Hochschild n-cycle of A.
The Hochschild homology HH�n.A/ of A is the �n-th cohomology of the com-

plex C �
.A/. By the definition of the Hochschild complex, it is clear that if A is a

C-algebra (i.e., A is concentrated in degree 0), then HH0.A/ D A
ŒA;A�

where ŒA;A�
is the commutator of A. Also, if A is a C-algebra, then HH�n.A/ D 0 if n < 0. And,
if A is dg algebra, then elements of ker.ı/ � A0 are 0-Hochschild cycles of C �

.A/

where ı denotes the internal differential on A. It follows that there is a canonical map
ker.ı/ ! HH0.A/.

Definition 2. The complex of Hochschild cochains of A is the complex whose �i -th
term is HomC.C

i .A/;C/ with differential induced by that on C �
.A/. A Hochschild

cocycle of A is a cocycle of the complex of Hochschild cochains of A. Note that a
Hochschild 0-cocycle of A induces a C-linear functional on HH0.A/.

Definition 3. The bar complex bar�
.A/ of A is the cochain complex obtained by

equipping the graded C-vector space
L

i�1 AŒ1�˝i Œ�1� with the bar differential.
The bar differential is given by the formula

d.a0 ˝ � � � ˝ an/ D
iDn�1X

iD0

.�1/.d0C���Cdi CiC1/a0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ an

C
j DnX
j D0

.�1/.d0C���Cdj �1Cj /a0 ˝ � � � ˝ ı.aj /˝ � � � ˝ an

for homogenous elements a0; : : : ; an of A of degrees d0; : : : ; dn, respectively.

The bar differential on A˝k is also given by the formula

iDk�1X
iD1

� i�1
k�1 B @1 B �k�iC1

k
C

iDkX
iD1

� i�1
k B .ı ˝ id ˝ � � � ˝ id/ B �k�iC1

k
:

We recall that if sn W bar�
.A/ ! bar��1

.A/ is the map a0 ˝ � � � ˝ an Ý �1 ˝
a0 ˝ � � � ˝an then the maps fsng, n � �1, give a homotopy between id W bar�

.A/ !
bar�

.A/ and 0 W bar�
.A/ ! bar�

.A/. It follows that bar�
.A/ is acyclic.

If V
� is a finite dimensional graded C-vector space then End.V �

/ DL
i;j Hom.V i ; V j /. Let �i;j denote the projection from End.V �

/ to Hom.V i ; V j /.

If M 2 End.V �
/, the supertrace of M is the alternating sum

P
i .�1/i tr.�i;i .M//.

We recall the following proposition from [FLS].

Proposition 1. Let V � be a finite dimensional graded C-vector space with zero dif-
ferential. The the following holds:
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(1) HHi .End.V �
// D 0 for i ¤ 0.

(2) HH0.End.V �
// ' C.

(3) The composite End.V �
/0 ! HH0.End.V �

// ! C takes an element of End.V �
/0

to its supertrace.

(4) The isomorphism HH0.End.V �
// ' C takes the class in HH0.End.V �

// of a
Hochschild 0-cycle in End.V �

/˝k to 0 for all k � 2.

Proof. The proof is a trivial modification of the proof of the Morita invariance of
Hochschild homology for matrices in Loday [2] (see Theorem 1.2.4 of [2]).

We may therefore denote the isomorphism HH0.End.V �
// ' C by str.

2.2. A1-morphisms between dg algebras. Let A and B be two dg algebras. Let
Fi W A˝i ! BŒni � be C-linear maps with ni 2 Z for each i . If k1; : : : ; kl are positive
integers such that

P
j kj D k and if

P
j nj D n, then Fk1

� � � � � Fkl
will denote

the C-linear map from A˝k to B˝l Œn� such that

Fk1
� � � � � Fkl

.a1 ˝ � � � ˝ ak/

D Fk1
.a1 ˝ � � � ˝ ak1

/˝ � � � ˝ Fkl
.ak1C���Ckl�1C1 ˝ � � � ˝ ak/:

Definition 4. An A1-morphism F from a dg algebra A to a dg algebra B is a
collection of maps

Fk W A˝k ! BŒ1 � k�
for all k � 1 such that the map Fbar W bar�

.A/ ! bar�
.B/ defined by

Fbar.a1 ˝ � � � ˝ ak/ D
X

.k1;:::;kl /

l>0;
P

j kj Dk

Fk1
� � � � � Fkl

.a1 ˝ � � � ˝ ak/

is a morphism of complexes from bar�
.A/ to bar�

.B/. The maps Fk are called the
Taylor components of F .

The condition that Fbar commutes with the differentials on the bar complexes
of A and B respectively is equivalent to the condition that the maps Fk satisfy the
following relations:

˙ Fk�1.a1 � a2 ˝ a3 ˝ � � � ˝ ak/� Fk�1.a1 ˝ a2 � a3 ˝ � � � ˝ ak/

˙ Fk�1.a1 ˝ a3 ˝ � � � ˝ ak�1 � ak/˙ Fk.ı.a1 ˝ a2 ˝ � � � ˝ ak//

˙ ı.Fk.a1 ˝ � � � ˝ ak//

˙
lDk�1X

lD1

˙Fl.a1 ˝ � � � ˝ al/ B Fk�l.alC1 ˝ � � � ˝ ak/ D 0; k � 1:

We recall the following proposition from [FLS].
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Proposition 2. An A1-morphism F from an associative dg algebra A to an asso-
ciative dg algebra B induces a map FHoch of complexes from the C �

.A/ to C �
.B/.

We recall the proof of this proposition from [FLS].

Proof. Denote by � W A˝k ! A˝k the map which takes a1 ˝ � � � ˝ ak to
.�1/.dkC1/.d1C���Cdk�1Ck�1/ak˝a1˝� � �˝ak�1 for homogenous elementsa1, …,ak

of A of degrees d1; : : : ; dk , respectively. Consider the map FHoch W C �
.A/ ! C

�
.B/

defined by the formula

FHoch.a1 ˝ � � � ˝ ak/ D
X

.k1;:::;kl /;

l>0;
P

j kj Dk

ŒFk1
� � � � � Fkl

.a1 ˝ � � � ˝ ak/

C
j Dkl �1X

j D1

Fkl
� Fk1

� � � � � Fkl�1
.�j .a1 ˝ � � � ˝ ak// �:

We leave the verification that FHoch respects the Hochschild differential to the
reader.

Let A be a dg algebra. Let V � be a finite dimensional graded C-vector space
with 0 differential. Suppose that F is an A1-morphism from A to End.V �

/ with
Taylor components Fk . Recall that for any k > 0, we have a map � W A˝k ! A˝k

such that �.a1 ˝ � � � ˝ ak/ D .�1/.dkC1/.d1C���Cdk�1Ck�1/ak ˝ a1 ˝ � � � ˝ ak�1

for homogenous elements a1; : : : ; ak of A of degrees d1; : : : ; dk , respectively. By
Proposition 1, str is a Hochschild 0-cocycle of End.V �

/. We now have the following
corollary of Proposition 2.

Corollary 2. The supertrace on End.V �
/ pulls back to a Hochschild 0-cocycle tr of

A. On Hochschild 0-cycles of A that arise from elements on degree k � 1 in A˝k ,
the Hochschild cocycle tr is given by the map from A˝k to C defined by

a1 ˝ � � � ˝ ak Ý
j Dk�1X

j D0

str.Fk.�
j .a1 ˝ � � � ˝ ak///:

Proof. The Hochschild cocycle tr is given by tr.x/ D str.FHoch.x// for any x 2
C 0.A/. Note that by Proposition 2, FHoch.x/ 2 C 0.End.V �

//. The exact formula
for tr given in this corollary is now immediate from the formula for FHoch given in
the proof of Proposition 2.
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3. The completed Hochschild homology of D iff.E/ and a linear functional on
bHH0.D iff.E//

3.1. The basic construction in [FLS]. Let K �

E
denote the Dolbeaux complex of

E , as in the introduction to this article. Then K �

E
decomposes as the direct sum of

a complex with zero differential and an acyclic complex, i.e., K �

E
D K

�

0E
˚ K

�

1E

where H�

.K
�

0E
/ D H�

.K
�

E
/, K �

0E
has 0 differential and K �

1E
is acyclic. This is a

consequence of Hodge theory (see, for instance, Theorem 5.24 in [Vois]).
Recall that D iff �

.E/ D Dolb�
.X;OX /˝OX

D iff.E/ and that

Diff �
.E/ ´ �.X;D iff �

.E//:

The main construction in [FLS] is that of an A1-morphism F from Diff �
.E/ to

End.K �

0E
/. Note that K �

0E
is a finite dimensional C-vector space with 0 differential.

As C-vector spaces, Ki
0E ' Hi .X;E/. We may therefore apply Propositions 1, 2 and

Corollary 2, with A D Diff �
.E/ and B D End.K �

0E
/. We obtain the following facts

immediately.

Fact 1. By Proposition 1, HHi .End.K �

0E
// D 0 for i ¤ 0 and HH0.End.K �

0E
// ' C.

This isomorphism is induced by the map taking a degree 0 element of End.K �

0E
/ to

its supertrace.

Fact 2. By Proposition 2, the supertrace on End.K �

0E
/ pulls back to a Hochschild

0-cocycle tr on Diff �
.E/. If D is a Hochschild 0-cycle of Diff �

.E/ that arises out
of a degree k � 1 element of Diff �

.E/˝k , and if ŒD� denotes the class of D in
HH0.Diff �

.E//, then

tr.ŒD�/ D
j Dk�1X

j D0

str.Fk.�
j .D///:

Notation. We shall also denote the map

D 7!
j Dk�1X

j D0

str.Fk.�
j .D///

by IFLS.

3.1.1. Construction of F . We now recall the construction of F from [FLS]. Let
Ck denote the configuration space ft1 < � � � < tk j ti 2 Rg=G.1/ where G.1/ is the
one-dimensional group of shifts .t1; : : : ; tk/ ! .t1 C c; : : : ; tk C c/. This is a smooth
.k�1/-dimensional manifold though it is not compact if k � 2. Let �i D tiC1 � ti for
1 � i � k � 1. The map .t1; : : : ; tk/Ý .�1; : : : ; �k�1/ is a diffeomorphism between
Ck and the product

QiDk�1
iD1 f�i > 0g. Let f�i > 0g denote the compactification of
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f�i � 0g by a point at infinity. The cubeCk ´ QiDk�1
iD1 f�i > 0g is a compactification

of Ck .
LetD D D1˝� � �˝Dk 2 Diff �

.E/˝k . Recall that theDi yield endomorphisms of
K

�

E
as follows: LetU � X be an open ball on which E is trivial. Let z1; : : : ; zn be local

holomorphic coordinates onU . A section ofK �

E
jU is a linear combination of sections

of the form s˝dzi1 ^� � �^dzim . Di .s˝dzi1 ^� � �^dzim/ D Di .s/˝dzi1 ^� � �^dzim .
Let @E

� be the Hodge adjoint of @E . Let�E denote the Laplacian of @E . We also
note that @E , @E

� and �E yield endomorphisms of K �

E
.

Let�D denote the differential form on Ck with values in End.K �

0E
/ given by the

formula

�D D …K
�

0E
BDk B expŒ�d.tk � tk�1/@E

� � .tk � tk�1/�E � B � � � BD1 B �K
�

0E

where…K
�

0E
and �K

�

0E
denote the projection fromK

�

E
toK �

0E
and the inclusion from

K
�

0E
to K �

E
respectively.

As noted in [FLS], to write �D this way, we require that �E have discrete non
negative spectrum (which is the case for a compact complex manifold). Further, as
noted in [FLS], �D extends to a End.K �

0E
/-valued (non-homogenous) differential

form on Ck .
We define

Fk.D/ D
Z

Ck

�D D
Z

Ck

�D:

By the integral over Ck of a non-homogenous differential form we mean the integral
over Ck of its component of top de Rham degree. It helps to view the differential
forms above as differential forms on Ck rather than on Ck as that will ensure that the
integrals defining the Fk’s converge.

That the Fk’s defined in this manner are the Taylor coefficients of anA1-morphism
is shown in [FLS].

Before we proceed further, we note that if k D 1, then C1 is a point. The formula
for Fk given here yields that

F1.D/ D …K
�

0E
BD B �K

�

0E

for D 2 Diff �
.E/. In particular, if D 2 Diff.E/ and if D� 2 End.H�.X;E// is

the endomorphism of H�.X;E/ induced by D , then F1.D/ D D�. It follows from
Fact 2 on p. 414 that tr.ŒD �/ D str.D�/. This proves that the following diagram
commutes:

HH0.Diff.E//

str

��

�� HH0.Diff �
.E//

tr

��
C

id
�� C.
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3.1.2. Rewriting the formula for Fk. Given an endomorphism ' of K �

E
, let Œ'�i

denote the endomorphism id ˝ � � � ˝ ' ˝ � � � ˝ id of K �

E

˝k with ' acting on the i -th
factor from the right.

Let

ˆ D Œ id �k B Œ expŒ�d.tk � tk�1/@E
� � .tk � tk�1/�E ��k�1 B � � �

� � � B Œ expŒ�d.t2 � t1/@E
� � .t2 � t1/�E ��1:

This is a differential form on Ck with values in End.K�

E

˝k
/, though it is not a dif-

ferential operator. Similarly, if D D D1 ˝ � � � ˝ Dk 2 Diff �
.E/˝k , D yields an

endomorphism D ´ ŒD1�k B � � � B ŒDk�1 of End.K �

E

˝k
/.

We have a composition mapm W End.K �

E
/̋ k !End.K �

E
/. Identifying End.K �

E

˝k
/

with End.K �

E
/̋ k , we obtain a composition map m W End.K �

E

˝k
/ ! End.K �

E
/. We

recall from [FLS] that the formula for �D can be rewritten as follows:

�D D …K
�

0E
Bm.ˆ BD/ B �K

�

0E
:

Thus

Fk.D/ D
Z

Ck

…K
�

0E
Bm.ˆ BD/ B �K

�

0E
:

3.2. Extending the supertrace – I. Recall that D iff.E/ denotes the sheaf of holo-
morphic differential operators on E . Let D iff.E/.U / denote �.U;D iff.E// for any
open U � X . Let E�k denote the k-fold exterior tensor power of E on Xk ´ X �
� � ��X . We observe that the differential on the Hochschild complexC �

.D iff.E/.U //
extends to a differential on the graded vector space

L
k�1 D iff.E�k.U k//Œk � 1�.

The resulting complex is called the completed Hochschild complex of D iff.E/.U /

and denoted by 7C
�
.D iff.E/.U //.

Definition 5. The completed Hochschild complex of D iff.E/ is the sheaf of com-

plexes associated to the presheaf U Ý 7C
�
.D iff.E/.U // of complexes of C-vector

spaces.

The completed Hochschild complex of D iff.E/ is a sheaf of complexes of C-
vector spaces on X . It is denoted in this article by 1Hoch.D iff.E//.

Definition 6. The i -th completed Hochschild homology bHHi .D iff.E// of D iff.E/
is the hypercohomology Hi .X;1Hoch.D iff.E/// of 1Hoch.D iff.E//.

Note that the A1-map F whose construction we recalled in Section 3.1 enables
us to pull back the supertrace on End.K �

E
/ to a Hochschild 0-cocycle of Diff �

.E/.
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Unfortunately, the A1-map F does not automatically enable us to directly pull back
the supertrace to a C-linear functional on bHH0.D iff.E//. This subsection is devoted
to an important intermediate step that enables us to construct a C-linear functional on
bHH0.D iff.E// which extends the supertrace on Diff.E/.

3.2.1. “Estimating” IFLS. We now use a homotopy very similar to the homotopy in
Proposition 3.1 [Tel] to show that the FLS functional of any 0-cycle in C �

.Diff �
.E//

depends only on its component in Diff0.E/.

Construction 1. Let 	 W X � X ! Œ0;1/ be a Riemannian distance. Let t be any
positive real number. We can choose a finite cover of X by open sets Ui , 1 � i � m,
such that 	.x; y/ < t for all x; y 2 Ui for any i . Choose a partition of unity ffig by
compactly supported (nonnegative valued) smooth functions subordinate to the cover
fUig. Let gi be a compactly supported smooth function on Ui with values in Œ0; 1�
that is identically 1 on the support of fi . Then f ´ PiDm

iD1 fi ˝ gi is a smooth
function onX �X whose restriction to the diagonal is identically 1. Also f vanishes
outside the subset f	.x; y/ � tg of X �X , and the maximum value of f on X �X
is 1.

Somewhat as in [Tel], let Ef W Diff �

.E/˝k ! Diff �
.E/˝kC1 be the map

D1 ˝ � � � ˝Dk 7! �
iDmX
iD1

fi ˝ giD1 ˝D2 ˝ � � � ˝Dk :

Let d be the differential of the complex C �
.Diff �

.E//. Then

dEf CEf d D 1 �Nf ;

where

Nf .D1 ˝ � � � ˝Dk/

D ˙
iDmX
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk ˙
iDmX
iD1

fi ˝ .N@gi /D1 ˝ � � � ˝Dk

˙
iDmX
iD1

fi ˝ giDkD1 ˝ � � � ˝Dk�1 ˙
iDmX
iD1

Dkfi ˝ giD1 ˝ � � � ˝Dk�1

(1)

for all k � 2.

Basic argument. Note that if ˛ is a cycle in C �
.Diff �

.E//, then ˛ is homotopic to
Nf ˛. This is true for all t > 0. Also the FLS linear functional IFLS is a Hochschild
0-cocycle of Diff �

.E/. It follows that

IFLS.˛/ D IFLS.Nf ˛/:
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Let ˛ D ˛1 C � � � C p̨ with ˛i 2 Diff �
.E/˝i . We then show thatX

i�2

jIFLS.Nf ˛i /j � C
.t/;

whereC is a constant that only depends on ˛ and 
.t/ �vol.X�X/ is the volume of the
subset f	.x; y/ � tg ofX�X . Similarly, we show that jIFLS.˛1/�IFLS.Nf .˛1//j �
C 0
.t/where C 0 depends only on ˛. Since the construction of f as in Construction 1
is possible for all positive t , letting t approach 0 we see that IFLS.˛/ D IFLS.˛1/.

Remark. Recall that K �

0E
can be identified with the kernel of the Laplacian �E .

Denote by K
�

L2E
the Hilbert space of square integrable sections of

Dolb�
.X;OX / ˝OX

D iff.E/. Then �K
�

0E
B …K

�

0E
is an integral operator on K �

L2E

with smooth kernel that projects onto the image of �K
�

0E
(see [BGV], Chapter 2). We

will denote this operator by …0;E or …0 when there is no confusion regarding the
vector bundle being used. Also one can check that if M 2 End.K �

E
/, then …0M…0

makes sense as a trace class operator on K �

L2E
and

str.…0M…0/ D str.…K
�

0E
BM B �K

�

0E
/:

Proposition 3. Let D1; : : : ;Dk 2 Diff �
.E/. Then

jIFLS.Nf .D1 ˝ � � � ˝Dk//j � C
.t/ .

The constant C above depends only on D1; : : : ;Dk .

Proof. Part 1: The setup.
Recall that

Nf .D1 ˝ � � � ˝Dk/

D ˙
iDmX
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk ˙
iDmX
iD1

fi ˝ .N@gi /D1 ˝ � � � ˝Dk

˙
iDmX
iD1

fi ˝ giDkD1 ˝ � � � ˝Dk�1 ˙
iDmX
iD1

Dkfi ˝ giD1 ˝ � � � ˝Dk�1

for all k � 2.
We estimate the FLS functional of each of the summands on the right-hand side

separately. Let Fk denote the k-th Taylor component of the FLS A1-map. Let Ck

denote the configuration space
Qk�1

iD1 f�i > 0g. Then if ˛i 2 Diff �
.E/, it follows that

Fk.˛1 ˝ � � � ˝ ˛k/ D
Z

Ck

…0˛1
N@�e��1�˛2 : : : e

��k�1�˛k…0 d�1 : : : d�k�1:
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LetQ� .x; y/ 2 �.X �X;E ˝�0;� � .�0;�
/
� ˝ E�/ denote the (smooth) kernel

of the operator N@�e���. Let p1.x; y/ denote the (smooth) kernel of …0. Then the
kernel of Fk.˛1 ˝ � � � ˝ ˛k/ is

Z
Ck

Z
Xk

p1.y0; x1/˛1;x1
Q�1

.x1; x2/

: : :Q�k�1
˛k;xk

p1.xk; y
0
0/ jdx1j : : : jdxkj d�1 : : : d�k�1:

Recall that

IFLS.˛1 ˝ � � � ˝ ˛k/ D
sDk�1X

sD0

str.Fk.�
s.˛///:

Here � is a (signed) cyclic permutation. Each of the k cyclic permutations of
˛1 ˝ � � � ˝˛k yields exactly one summand contributing towards IFLS.˛1 ˝ � � � ˝˛k/.

Part 2: Estimating IFLS.˙ PiDm
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk/, I.

The cyclic permutations of
PiDm

iD1
N@fi ˝ giD1 ˝ � � � ˝Dk are as follows:

˙
iDmX
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk;

˙
lDmX
lD1

Dk�iC1 ˝ � � � ˝Dk ˝ N@fl ˝ glD1 ˝ � � � ˝Dk�i ; 1 � i � k � 1;

˙
lDmX
lD1

glD1 ˝ � � � ˝Dk ˝ N@fl :

We shall henceforth denote the kernel of an integral operator T on
�.X;E ˝�0;�

.X// by xT . LetDa denote the formal adjoint of a differential operator
D on �.X;E ˝ �0;�

.X//. This is a differential operator on �.X;�0;�
.X/� ˝ E�/

since the bundle of densities on X has a canonical trivialization (see [BGV], Chap-
ter 2). With this in mind, we have

FkC1

� PiDm
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk

�
D

Z
CkC1

Z
XkC1

PiDm
iD1 p1.y0; x0/.N@fi /.x0/Q�1

.x0; x1/gi .x1/D1;x1
Q�2

.x1; x2/ : : :

: : : p1.xk ; y
0
0/jdx0j : : : jdxk j d�1 : : : d�k
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D ˙
Z

CkC1

Z
XkC1

PiDm
iD1 p1.y0; x0/N@x0

fi .x0/Q�1
.x0; x1/gi .x1/D1;x1

Q�2
.x1; x2/ : : :

: : : p1.xk ; y
0
0/jdx0j : : : jdxk j d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

PiDm
iD1 p1.y0; x0/fi .x0/N@x0

Q�1
.x0; x1/gi .x1/D1;x1

Q�2
.x1; x2/ : : :

: : : p1.xk ; y
0
0/jdx0j : : : jdxk j d�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

ŒN@a
x0
p1.y0; x0/�Œ

PiDm
iD1 fi .x0/gi .x1/�ŒQ�1

.x0; x1/�ŒD1;x1
Q�2

.x1; x2/� : : :

: : : Œ: : : p1.xk ; y
0
0/�jdx0j : : : jdxk j d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�Œ
PiDm

iD1 fi .x0/gi .x1/�ŒN@x0
Q�1

.x0; x1/�ŒD1;x1
Q�2

.x1; x2/� : : :

: : : Œ: : : p1.xk ; y
0
0/�jdx0j : : : jdxk j d�1 : : : d�k : (2)

The last equality in (2) is valid since X is compact. Moreover, we also use
the fact that if h.x; y/ 2 �.X � X;E ˝ �0;� � �0;�� ˝ E�/, then it follows that
a.x/h.x; y/b.y/ D ˙a.x/b.y/h.x; y/ for smooth functions a, b on X . We now
note that if p� denotes the kernel of e��� then

Q� .x; y/ D N@�
xp� .x; y/ D N@�p.0;1/.x/p� .x; y/p.0;1/.y/;

where p.0;1/ is the projection to the span of the eigenvectors of � corresponding to
positive eigenvalues as in [BGV], Proposition 2.37. This is because N@� kills the kernel
of �. It follows from [BGV], Proposition 2.37, that

kQ� .x; y/kl � C.k � kl/e
� 1

2 �1� (3)

where k � kl is any C l norm on �.X �X;E ˝�0;� ��0;�� ˝ E�/ and �1 is the first
positive eigenvalue of �E .

It follows from (3) that the sup-norm of each term within a square bracket in

each integrand that involves a Q�i
is bounded above by Ci e��i

�1
2 for some constant

Ci depending only on D1 ˝ � � � ˝ Dk . The remaining terms have finite sup-norm.
The sup-norm of

PiDm
iD1 fi .x0/gi .x1/ is 1. Hence there exists a positive constant C

depending only on D1 ˝ � � � ˝Dk such that��FkC1

� PiDm
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk

���
0

� C

Z
CkC1

e��1
�1
2 : : : e��k

�k
2 
.t/ vol.X/kC1d�1 : : : d�k D 2k

�k
1

C
.t/ vol.X/kC1;

(4)
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where 
.t/ vol.X �X/ is the volume of the support of f	.x; y/ � tg inX �X . Now

str.FkC1.˙
PiDm

iD1
N@fi ˝ giD1 ˝ � � � ˝Dk//

D ˙
Z

X

str.FkC1

� iDmP
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk

�
.y0; y0/ jdy0j:

It follows from (4) that

jstr.FkC1.˙
PiDm

iD1
N@fi ˝ giD1 ˝ � � � ˝Dk//j � C1
.t/

for some constant C1 depending on D1 ˝ � � � ˝Dk only.
The same method is used to estimate the other summands that contribute to

IFLS.˙ PiDm
iD1

N@fi ˝ giD1 ˝ � � � ˝ Dk// and show that those contributions are
at most C 0
.t/ as well - in fact the FLS functionals of the other summands of
Nf .D1 ˝ � � � ˝ Dk/ are estimated in the same way. We however, present the de-
tailed calculations in the next two parts to be extra careful.

Part 3: Estimating IFLS.˙ PiDm
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk//, II.
We show the equivalent of the calculation (2) for the other summands contributing

to IFLS.˙ PiDm
iD1

N@fi ˝ giD1 ˝ � � � ˝ Dk/. At the end of each calculation, the
integrand in the integral computing the kernel of the operator whose supertrace we
need is written as a product of terms marked by square brackets. The argument in
part 2 then works almost word for word to show that the corresponding contribution
to IFLS.Nf .D1 ˝ � � � ˝Dk// is bounded by a constant depending on the Di ’s times

.t/. We have

FkC1.
PlDm

lD1 Dk�iC1 ˝ � � � ˝Dk ˝ N@fl ˝ glD1 ˝ � � � ˝Dk�i /

D
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/Dk�iC1;x0

Q�1
.x0; x1/ : : :

: : :Dk;xi�1
Q�i

.xi�1; xi /.N@fl/.xi /Q�iC1
.xi ; xiC1/gl.xiC1/D1;xiC1

: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/Dk�iC1;x0

Q�1
.x0; x1/ : : :

: : :Dk;xi�1
Q�i

.xi�1; xi /N@xi
fl.xi /Q�iC1

.xi ; xiC1/glxiC1/D1;xiC1
: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/Dk�iC1;x0

Q�1
.x0; x1/ : : : :

: : :Dk;xi�1
Q�i

.xi�1; xi /fl.xi /N@xi
Q�iC1

.xi ; xiC1/gl.xiC1/D1;xiC1
: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k
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D ˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�ŒDk�iC1;x0
Q�1

.x0; x1/� : : :

: : : ŒDk;xi�1
N@a

xi
Q�i

.xi�1; xi /�Œ
PlDm

lD1 fl.xi /gl.xiC1/�ŒQ�iC1
.xi ; xiC1/�

� ŒD1;xiC1
: : : �Œ: : : p1.xk; y

0
0/�jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�ŒDk�iC1;x0
Q�1

.x0; x1/� : : :

: : : ŒDk;xi�1
Q�i

.xi�1; xi /�Œ
PlDm

lD1 fl.xi /gl.xiC1/�ŒN@xi
Q�iC1

.xi ; xiC1/�

� ŒD1;xiC1
: : : �Œ: : : p1.xk; y

0
0/�jdx0j : : : jdxkj d�1 : : : d�k (5)

and

FkC1.
PlDm

lD1 glD1 ˝ � � � ˝Dk ˝ N@fl/

D
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/gl.x0/D1;x0

Q�1
.x0; x1/ : : :

: : :DkQ�k
.xk�1; xk/.N@fl/.xk/p1.xk; y

0
0/jdx0j : : : jdxkj d�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/gl.x0/D1;x0

Q�1
.x0; x1/ : : :

: : :DkQ�k
.xk�1; xk/N@xk

fl.xk/p1.xk; y
0
0/jdx0j : : : jdxkjd�1 : : : d�k

˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/gl.x0/D1;x0

Q�1
.x0; x1/ : : :

: : :DkQ�k
.xk�1; xk/fl.xk/N@xk

p1.xk; y
0
0/jdx0j : : : jdxkjd�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�Œ
PlDm

lD1 fl.xk/gl.x0/�ŒD1;x0
Q�1

.x0; x1/� : : :

: : : ŒDk
N@a

xk
Q�k

.xk�1; xk/�Œp1.xk; y
0
0/�jdx0j : : : jdxkjd�1 : : : d�k

˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�Œ
PlDm

lD1 fl.xk/gl.x0/�ŒD1;x0
Q�1

.x0; x1/� : : :

: : : ŒDkQ�k
.xk�1; xk/�ŒN@xk

p1.xk; y
0
0/�jdx0j : : : jdxkj d�1 : : : d�k : (6)

Part 4: Estimating other summands contributing to IFLS.Nf .D1 ˝ � � � ˝Dk//.
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Recall that

Nf .D1 ˝ � � � ˝Dk/

D ˙
iDmX
iD1

N@fi ˝ giD1 ˝ � � � ˝Dk ˙
iDmX
iD1

fi ˝ .N@gi /D1 ˝ � � � ˝Dk

˙
iDmX
iD1

fi ˝ giDkD1 ˝ � � � ˝Dk�1 ˙
iDmX
iD1

Dkfi ˝ giD1 ˝ � � � ˝Dk�1

for all k � 2.

The cyclic permutations of
PlDm

lD1 fl ˝ glDkD1 ˝ � � � ˝Dk�1 that contribute to
its FLS functional are as follows:

lDmX
lD1

fl ˝ glDkD1 ˝ � � � ˝Dk�1;

Dk�i ˝ � � � ˝Dk�1 ˝
lDmX
lD1

fl ˝ glDkD1 ˝ � � � ˝Dk�i�1; 1 � i � k � 2;

lDmX
lD1

glDkD1 ˝ � � � ˝Dk�1 ˝ fl :

As before we have

Fk.
PlDm

lD1 fl ˝ glDkD1 ˝ � � � ˝Dk�1/

D
Z
Ck

Z
Xk

Œp1.y0; x1/�Œ
PlDm

lD1 fl.x1/gl.x2/�ŒQ�1
.x1; x2/�ŒDk;x2

D1;x2
: : : � : : :

: : : ŒDk�1p1.xk; y
0
0/�jdx1j : : : jdxkj d�1 : : : d�k�1; (7)

Fk.Dk�i ˝ � � � ˝Dk�1 ˝ PlDm
lD1 fl ˝ glDkD1 ˝ � � � ˝Dk�i�1/

D
Z
Ck

Z
Xk

Œp1.y0; x1/�ŒDk�i;x1
Q�1

.x1; x2/� : : :

: : : Œ
PlDm

lD1 fl.xiC1/gl.xiC2/�ŒQ�iC1
.xiC1; xiC2/�ŒDk;xiC2

D1;xiC2
: : : � : : :

Œ: : : p1.xk; y
0
0/�jdx1j : : : jdxkj d�1 : : : d�k�1 (8)
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and

Fk.
PlDm

lD1 glDkD1 ˝ � � � ˝Dk�1 ˝ fl/

D
Z
Ck

Z
Xk

Œp1.y0; x1/�Œ
PlDm

lD1 fl.xk/gl.x1/�ŒDk;x1
D1;x1

Q�1
.x1; x2/� : : :

: : : Œp1.xk; y
0
0/�jdx1j : : : jdxkj d�1 : : : d�k�1: (9)

For each of the summands dealt with by equations (7), (8) and (9) respectively,
one can argue exactly as we did after (2).

The cyclic permutations of
PlDm

lD1 Dkfl ˝ glD1 ˝ � � � ˝Dk�1 that contribute to
its FLS functional are

lDmX
lD1

Dkfl ˝ glD1 ˝ � � � ˝Dk�1;

lDmX
lD1

Dk�i ˝ � � � ˝Dk�1 ˝Dkfl ˝ glD1 ˝ � � � ˝Dk�i�1; 1 � i � k � 2;

lDmX
lD1

glD1 ˝ � � � ˝Dkfl :

We have

Fk.Dkfl ˝ glD1 ˝ � � � ˝Dk�1/

D
Z
Ck

Z
Xk

PlDm
lD1 p1.y0; x1/Dk;x1

fl.x1/Q�1
.x1; x2/gl.x2/D1;x2

: : :

: : :Dk�1;xk
p1.xk; y

0
0/jdx1j : : : jdxkj d�1 : : : d�k�1

D
Z
Ck

Z
Xk

ŒDa
k;x1

p1.y0; x1/�Œ
PlDm

lD1 fl.x1/gl.x2/�ŒQ�1
.x1; x2/�ŒD1;x2

: : : � : : :

: : : ŒDk�1;xk
p1.xk; y

0
0/�jdx1j : : : jdxkj d�1 : : : d�k�1; (10)

Fk.
PlDm

lD1 Dk�i ˝ � � � ˝Dk�1 ˝Dkfl ˝ glD1 ˝ � � � ˝Dk�i�1/

D
Z
Ck

Z
Xk

PlDm
lD1 p1.y0; x1/Dk�i;x1

Q�1
.x1; x2/ : : :

: : :Dk�1;xi
Q�i

.xi ; xiC1/Dk;xiC1
fl.xiC1/Q�iC1

.xiC1; xiC2/gl.xiC2/

�D1;xiC2
: : : p1.xk; y

0
0/jdx1j : : : jdxkj d�1 : : : d�k�1
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D
Z
Ck

Z
Xk

Œp1.y0; x1/�ŒDk�i;x1
Q�1

.x1; x2/� : : :

: : : ŒDk�1;xi
Da

k;xiC1
Q�i

.xi ; xiC1/�Œ
PlDm

lD1 fl.xiC1/gl.xiC2/�

� ŒQ�iC1
.xiC1; xiC2/�ŒD1;xiC2

: : : � : : : Œ: : : p1.xk; y
0
0/�

� jdx1j : : : jdxkj d�1 : : : d�k�1 (11)

and

Fk.
PlDm

lD1 glD1 ˝ � � � ˝Dkfl/

D
Z
Ck

Z
Xk

PlDm
lD1 p1.y0; x1/gl.x1/D1;x1

Q�1
.x1; x2/ : : :

: : :Dk�1;xk�1
Q�k�1

.xk�1; xk/Dk;xk
fl.xk/

� p1.xk; y
0
0/jdx1j : : : jdxkj d�1 : : : d�k�1

D
Z
Ck

Z
Xk

Œp1.y0; x1/�Œ
PlDm

lD1 fl.xk/gl.x1/�ŒD1;x1
Q�1

.x1; x2/� : : :

: : : ŒDk�1;xk�1
Da

k;xk
Q�k�1

.xk�1; xk/�

� Œp1.xk; y
0
0/�jdx1j : : : jdxkj d�1 : : : d�k�1: (12)

For each of the summands dealt with by equations (10), (11) and (12) respectively,
one can argue exactly as we did after (2).

The cyclic permutations of
PlDm

lD1 fl ˝ .N@gl/D1 ˝ � � � ˝Dk that contribute to its
FLS functional are as follows:

lDmX
lD1

fl ˝ .N@gl/D1 ˝ � � � ˝Dk;

lDmX
lD1

Dk�i ˝ � � � ˝Dk ˝ fl ˝ .N@gl/D1 ˝ � � � ˝Dk�i�1; 0 � i � k � 2;

lDmX
lD1

.N@gl/D1 ˝ � � � ˝Dk ˝ fl :

We have

FkC1.
PlDm

lD1 fl ˝ .N@gl/D1 ˝ � � � ˝Dk/

D
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/fl.x0/Q�1

.x0; x1/.N@gl/.x1/D1;x1
: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkjd�1 : : : d�k
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D ˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/fl.x0/Q�1

.x0; x1/N@x1
gl.x1/D1;x1

: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/fl.x0/Q�1

.x0; x1/gl.x1/N@x1
D1;x1

: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkjd�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�Œ
PlDm

lD1 fl.x0/gl.x1/�ŒN@a
x1
Q�1

.x0; x1/�

� ŒD1;x1
: : : � : : : Œ: : : p1.xk; y

0
0/�jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�Œ
PlDm

lD1 fl.x0/gl.x1/�ŒQ�1
.x0; x1/�ŒN@x1

�D1;x1
: : : � : : : Œ: : : p1.xk; y

0
0/�jdx0j : : : jdxkj d�1 : : : d�k; (13)

FkC1.
PlDm

lD1 Dk�i ˝ � � � ˝Dk ˝ fl ˝ .N@gl/D1 ˝ � � � ˝Dk�i�1/

D
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/ : : :Q�iC1

.xi ; xiC1/fl.xiC1/

�Q�iC2
.xiC1; xiC2/.N@gl/.xiC2/D1;xiC2

: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/ : : :Q�iC1

.xi ; xiC1/fl.xiC1/

�Q�iC2
.xiC1; xiC2/N@xiC2

gl.xiC2/D1;xiC2
: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/ : : :Q�iC1

.xi ; xiC1/fl.xiC1/

�Q�iC2
.xiC1; xiC2/gl.xiC2/N@xiC2

D1;xiC2
: : :

: : : p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/� : : : Œ: : :Q�iC1
.xi ; xiC1/�Œ

PlDm
lD1 fl.xiC1/gl.xiC2/�

� ŒN@a
xiC2

Q�iC2
.xiC1; xiC2/�ŒD1;xiC2

: : : � : : : Œ: : : p1.xk; y
0
0/�
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� jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/� : : : Œ: : :Q�iC1
.xi ; xiC1/�

� ŒPlDm
lD1 fl.xiC1/gl.xiC2/�

� ŒQ�iC2
.xiC1; xiC2/�ŒN@xiC2

D1;xiC2
: : : � : : : Œ: : : p1.xk; y

0
0/�

� jdx0j : : : jdxkjd�1 : : : d�k (14)

and

FkC1.
PlDm

lD1 .
N@gl/D1 ˝ � � � ˝Dk ˝ fl/

D
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/.N@gl/.x0/D1;x0

Q�1
.x0; x1/ : : :

: : : fl.xk/p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/N@x0

gl.x0/D1;x0
Q�1

.x0; x1/ : : :

: : : fl.xk/p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

PlDm
lD1 p1.y0; x0/gl.x0/N@x0

D1;x0
Q�1

.x0; x1/ : : :

: : : fl.xk/p1.xk; y
0
0/jdx0j : : : jdxkj d�1 : : : d�k

D ˙
Z

CkC1

Z
XkC1

ŒN@a
x0
p1.y0; x0/�Œ

PlDm
lD1 fl.xk/gl.x0/�ŒD1;x0

Q�1
.x0; x1/� : : :

: : : Œp1.xk; y
0
0/�jdx0j : : : jdxkj d�1 : : : d�k

˙
Z

CkC1

Z
XkC1

Œp1.y0; x0/�Œ
PlDm

lD1 fl.xk/gl.x0/�ŒN@x0
D1;x0

Q�1
.x0; x1/� : : :

: : : Œp1.xk; y
0
0/�jdx0j : : : jdxkj d�1 : : : d�k : (15)

For each of the summands dealt with by equations (13), (14) and (15) respectively,
one can argue exactly as we did after (2).

This finally proves Proposition 3.

Proposition 4. Let ˇ D ˇ1 C � � � C ˇk be a 0-cycle in C �
.Diff �

.E// with ˇk 2
Diff �

.E/˝k . Then
IFLS.ˇ/ D IFLS.ˇ1/:

Proof. Pick any t > 0. If f is as in Construction 1 (see p. 417), then the cycle ˇ is
homotopic to the cycle Nf .ˇ/. Since IFLS is a Hochschild 0-cocycle of Diff �

.E//,
we have

IFLS.ˇ/ D IFLS.Nf .ˇ// D IFLS.Nf .ˇ1//C � � � C IFLS.Nf .ˇk//:



428 A. C. Ramadoss

By Proposition 4,
j DkX
j D2

jIFLS.Nf . ǰ //j � C
.t/

for some constant C depending on ˇ only. Also

Nf .ˇ1/ D ˇ1 ˙
lDmX
lD1

.N@fl/˝ glˇ1 ˙
lDmX
lD1

fl ˝ .N@gl/ˇ1:

The proof of Proposition 4 can also be used to verify thatˇ̌
IFLS

� PlDm
lD1 .

N@fl/˝ glˇ1 ˙ PlDm
lD1 fl ˝ .N@gl/ˇ1

�ˇ̌ � C 0
.t/

for some constant C 0 depending only on ˇ1. It follows that

jIFLS.ˇ/ � IFLS.ˇ1/j D jIFLS.Nf .ˇ/ � IFLS.ˇ1/j � .C C C 0/
.t/ .

Now t may be chosen to be arbitrarily small. In this case, 
.t/ becomes arbitrarily
small as well. As C C C 0 depends only on ˇ, the proposition follows.

Proposition 3 implies the following (surprising) statement.

Proposition 5. The linear functional

D 7! str.…0D…0/

vanishes on 0-chains of Diff �
.E/ that are commutators of elements in Diff �

.E/.

Proof. Let D1;D2 2 Diff0.E/. This proposition is immediate from Proposition 4
and the following two facts: IFLS.d.D1 ˝D2// D 0 since IFLS is a Hochschild 0-co-
cycle, and the component of d.D1 ˝D2/ in Diff �

.E/ is precisely �D1D2 CD2D1.

Of course, when D is the commutator of two purely holomorphic differential
operators on E , the above proposition is standard. The above proposition in general is
however very counter-intuitive, and the author does not see any other way of proving
it.

3.3. Extending the supertrace – II. Let D iff �
.E/.U / denote �.U;D iff �

.E//.
Note that the differential on C �

.D iff �
.E/.U // extends to a differential on the graded

vector space
L

k D iff �
.E�k/.U k/Œk � 1�. We denote the resulting complex by

8C
�
.D iff �

.E/.U //.
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Let FHoch.D iff.E// denote the sheaf associated to the pre-sheaf

U 7! 8C
�

.D iff �
.E/.U //

of complexes of C-vector spaces. Note that FHoch.D iff.E// is a complex whose terms
are modules over the sheaf of smooth functions on X . It follows that

H�

.�.X;FHoch.D iff.E//// ' H
�

.X;FHoch.D iff.E///:

The following proposition follows from Proposition 4.

Proposition 6. IFLS extends to a linear functional on �.X;FHoch.D iff.E/// that

vanishes on the image of the differential d of �.X;FHoch.D iff.E///.

Proof. Part 1: Constructing �str:

Let GHochk.D iff.E// denote the sheaf associated to the pre-sheaf

U 7! D iff �
.E�k/.U k/Œk � 1�

of graded C-vector spaces. Then any 0-cycle in �.X;FHoch.D iff.E/// is given by

ˇ1 C � � � C ˇk where ˇi 2 �.X; FHochi .D iff.E///. Note that FHoch1.D iff.E// D
D iff �

.E/. It follows that ˇ1 is an element of Diff0.E/.

Let �str be the linear functional on�.X;FHoch.D iff.E/// that vanishes onp-chains

wheneverp ¤ 0. For a 0-chain ˇ D ˇ1 C� � �Cˇk with ˇi 2 �.X; FHochi .D iff.E///,
set �str.ˇ/ D IFLS.ˇ1/:

This is a well-defined linear functional on the space of 0-chains of

�.X;FHoch.D iff.E///.

Part 2: We now need to show that �str vanishes on the image of d .

Claim A: The natural map from Diff �
.E�2/Œ1� to �.X; FHoch2.D iff.E/// is a

surjection of graded C-vector spaces.
We postpone the proof of Claim A for the next part of the proof. Note that the

differential on C �
.Diff �

.E// extends to a differential d on
L

k Diff �
.E�k/Œk � 1�.

This differential is a sum of the differentials dH W Diff �

.E�k/ ! Diff �
.E�k�1/ and N@.

By Proposition 4 and Claim A, to show that �str vanishes on the image of d , it suffices
to show that the map Diff0.E/ ! C,

D 7! str.…0D…0/;

vanishes on the image of dH W Diff0.E�2/ ! Diff0.E/.
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Let Diff�k;�

.E/ denote �.X;Dolb�
.X;OX /˝ D iff�k.E// where D iff�k.E/ de-

notes the sheaf of differential operators on E of order � k. Equip Diff�k;�

.E/ with
the topology generated by the family of seminorms fk � kK;s j K � X compact; s 2
�.K;E ˝�

�
/g given by

kDkK;s D supfkD.s/.x/k j x 2 Kg:
The topology on Diff �

.E/ is the direct limit of the topologies on the Diff�k;�

.E/. The
topology on Diff �

.E�2/ is defined analogously.
Note that Diff �

.E/˝2 is dense in Diff �
.E�2/. Furthermore, it follows that

dH W Diff �

.E�2/ ! Diff �
.E/ is continuous. The restriction of dH to Diff0.E/˝2

is just the map
D1 ˝D2 7! D2D1 �D1D2:

The proposition now follows from Proposition 5.

Part 3: Proof of Claim A.
Given any element ˛ of �.X; FHoch2.D iff.E///, pick a finite coverX D S

i Ui of
open sets such that ˛jUi

is an element of Diff �
.E�2/.Ui �Ui /Œ1�. Pick a partition of

unity ffig by compactly supported smooth functions subordinate to he cover
S

i Ui .
Let gi be a compactly supported smooth function supported on a subset of Ui that is
identically 1 on the support of fi . ThenX

i

.fi � gi /˛jUi

is an element of Diff �
.E�2/Œ1� whose image in �.X; FHoch2.D iff.E/// is ˛.

Next we note that we have a natural (degree preserving) map


 W 1Hoch.D iff.E// ! FHoch.D iff.E//

of complexes of sheaves of C-vector spaces on X . This induces a map


� W H
�

.X;1Hoch.D iff.E/// ! H
�

.X;FHoch.D iff.E///:

Recall that H0.�.X;FHoch.D iff.E/// D H0.X;FHoch.D iff.E///. The following
corollary of Proposition 6 is immediate.

Corollary 3. The Hochschild cocycle str W HH0.Diff �
.E// ! C extends to a C-

linear functional �str W H0.X;FHoch.D iff.E/// ! C.

It is obvious that �str B 
� yields a linear functional on H0.X;1Hoch.D iff.E///.
We state this as a corollary for emphasis.
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Corollary 4. The linear functional �str in the previous corollary gives us a linear
functional ytr W H0.X;1Hoch.D iff.E/// ! C.

We denote H�i .X;1Hoch.D iff.E/// by bHH�i .D iff.E//.
Now consider a global holomorphic differential operator D on E . D can be

thought of as an element of �.X;D iff �

.E// as well. Thus,D gives us a 0-cocycle of

the cochain complex �.X;FHoch.D iff.E///. Let xD denote this cocycle.
One the other hand, D can be thought of as a global section of the degree 0 term

of the complex 1Hoch.D iff.E//. It follows that D yields a 0-cycle in the bi-complex
computing H�.X;1Hoch.D iff.E///. Call this 0-cycle zD. It is easy to check that

. zD/ D xD. We have thus proven the following proposition.

Proposition 7. The following diagram commutes:

HH0.Diff.E//

str

��

��
bHH0.D iff.E//

tr

��
C

id
�� C.

3.4. The first bookkeeping lemma. Consider E as a sub bundle of E ˚ F where
F is another vector bundle on X . We then have a map � W D iff.E/ ! D iff.E ˚
F / of sheaves of C-vector spaces whose restriction to U , � W �.U;D iff.E// !
�.U;D iff.E ˚F //, is an injection that preserves addition and multiplication for each
open U � X . This also induces an map N� W D iff �

.E/ ! D iff �
.E ˚ F / of sheaves

of C-vector spaces whose restriction to U , N� W D iff �
.E/.U / ! D iff �

.E ˚ F /.U /,
is an injection for each open U � X .

The map N� preserves addition and multiplication though it does not preserve the

identity. Thus N� induces a map from FHoch.D iff.E// to eHoch.D iff.E ˚ F //, which

we will denote by Q�. Let Q�� denote the map from H�.�.X;FHoch.D iff.E//// to

H�.�.X;eHoch.D iff.E ˚ F //// induced by Q�. The following “bookkeeping lemma”
holds.

Lemma 1. The following diagram commutes:

H0.�.X;FHoch.D iff.E////

�str
��

Q�� �� H�.�.X;eHoch.D iff.E ˚ F ////

�str
��

C
id

�� C.

Proof. By Proposition 5 and the proof of Proposition 6, it is enough to show that

str.…K
�

0E
D�K

�

0E
/ D str.…K

�

0E˚F
Q�.D/�K

�

0E˚F
/



432 A. C. Ramadoss

for any D 2 Diff0.E/.
The above equality holds since the following diagrams commute:

K
�

E

D

��

�� K�

E˚F

Q�.D/

��
K

�

E
�� K�

E˚F
,

K
�

E

…
K

�

0E
��

�� K�

E˚F

…
K

�

0E˚F
��

K
�

0E
�� K�

0E˚F
,

K
�

0E

�
K

�

0E
��

�� K�

0E˚F

�
K

�

0E˚F
��

K
�

E
�� K�

E˚F
.

The map � induces a map O� W 1Hoch.D iff.E// ! 1Hoch.D iff.E ˚ F //. Let O��
denote the map induced by O� from bHH�.D iff.E// to bHH�.D iff.E ˚ F //. The
following corollary holds.

Corollary 5. The following diagram commutes:

bHH0.D iff.E//

ytr
��

O�� ��
bHH0.D iff.E ˚ F //

ytr
��

C
id

�� C.

Proof. For this we only need to recall that by the definition of � at the beginning of
this section the following diagram commutes:

�.U k;D iff.E�k//

�

��

O� �� �.U k;D iff..E ˚ F /�k//

�

��
�.U k;D iff �

.E�k//
Q� �� �.U k;D iff �

..E ˚ F /�k//.

Taking hypercohomology we see that 
� B O�� D Q�� B
�. The corollary now follows
immediately from Lemma 1.

4. The completed Hochschild homology of D iff.E/ and the cohomology of X

4.1. Preliminaries. Recall the definition of 1Hoch.D iff.E// from Section 3.2. Let
1Hoch.Diff.X// denote 1Hoch.D iff.OX //. Let C denote the constant sheaf onX such
that �.U;C/ ' C for every open U � X and whose restriction maps are all identity.

Lemma 2 ([Bryl]). 1Hoch.Diff.X// is quasi-isomorphic to CŒ2n� where n is the
dimension of X .
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Sketch of the proof recalled from [Bryl]. It is enough to check the above fact for any
open ball U � X at the level of pre-sheaves. In other words, it is enough to show
that the complex Diff.U �

/ with Hochschild differential is quasi-isomorphic to CŒ2n�
as complexes of C-vector spaces.

We filter Diff.U / by degree. More precisely, set F �n.Diff.U // ´ Diff�n.U /.
The associated graded gr.Diff.U // is the space of functions OT �U on the cotangent
bundle T �U that are algebraic(polynomial) along the fibres.

This filtration of Diff.U / is exhaustive. It yields a filtration of the complex
Diff.U �

/ equipped with Hochschild differential. This filtration yields a spectral
sequence converging to the cohomology of the complex Diff.U �

/. The Em
1 ´L

pCqDmE
p;q
1 -term is m-th cohomology of the completed Hochschild complex of

OT �U . This is isomorphic to the space of �m-holomorphic forms on T �U that are
algebraic along the fibres (see [Bryl]). Given local coordinates z1; : : : zn on U and
y1; : : : ; yn on the fibre of T �U , putting the weight of dzi equal to 0 and that of dyi

equal to 1 for all i enables us to define the notion of the weight of a holomorphic form
on T �U . In the spectral sequence of this proof-sketch,Ep;m�p

1 is simply the space of
�m-forms on T �U of weight �p. Therefore, E�n;�n

1 is the only non-zero summand
of E�2n

1 . By Theorem 3.1.1 and Corollary 2.2.2 of [Bryl], the Em
2 D Em1-term of

this spectral sequence is the 2n C m-th de Rham cohomology of T �U . This is 0 if
m ¤ �2n and C otherwise. This proves the lemma. Moreover, E�n;�n

2 is the only
nontrivial summand of E�2n

2 . Therefore, the �2n-th cohomology of this complex
can be identified with E�n;�n

2 .

Lemma 3. 1Hoch.D iff.E// is quasi-isomorphic to CŒ2n� where n is the dimension
of X .

Proof. This is again something that needs to be verified locally. We imitate the proof
of the Morita invariance of Hochschild homology in [Lod], Section 1.2, here.

Part 1: Recalling the proof of Morita invariance of the Hochschild homology of a
C-algebra.

Recall from [Lod] that if A is any C-algebra, and if Matr.A/ denotes the algebra
of r � r matrices with entries in A, then we have a map tr from the Hochschild
complex of Matr.A/ to that of A. The Hochschild chain M1 ˝ � � � ˝Mk is mapped
to tr.M1 ˇ � � � ˇMk/where ˇW Matr.A/˝ Matr.B/ ! Matr.A˝B/ is an exterior
multiplication. There is also a map inc of complexes into the opposite direction which
is induced by the inclusion of A in Matr.A/ taking an element a of A to the matrix
with a �E11. Then tr B inc D id and there is a presimplicial homotopy h from inc B tr
to id. This homotopy is given by h D P

i .�1/ihi where hi W Matr.A/
˝kC1 !
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Matr.A/
˝kC2 is defined by the formula

hi .˛
0 ˝ � � � ˝ ˛k/

D
X

Ej1.˛
0
jr/˝E11.˛

1
rm/˝ � � � ˝E11.˛

i
pq/˝E1q.1/˝ ˛iC1 ˝ � � � ˝ ˛k :

The sum here is over all possible tuples of indices .j; r; : : : ; p; q/, see [Lod], Sec-
tion 1.2, and Eij .x/ D x � Eij , where Eij is the elementary matrix whose only
non-zero entry is a 1 at the ij position.

Let U be an open ball contained in X .

Part 2: Morita invariance of the completed Hochschild homology of Diff.U /.

Recall that the completed Hochschild complex 5C
�
.Diff.U // is obtained by equip-

ping the graded vector space
L

k�1 Diff.U k/Œk � 1� with the Hochschild differ-
ential. In this complex, Diff.U k/ should be viewed as the k-th completed ten-
sor power of Diff.U /. With this in mind, the k-th completed tensor power of
Matr.Diff.U //will be Matr.C/˝k ˝ Diff.U k/. One may verify that the Hochschild
differential on C �

.Matr.Diff.U /// extends to a differential on the graded vector
space

L
k�1 Matr.C/˝k ˝ Diff.U k/Œk�1�. The resulting complex is the completed

Hochschild complex bC �
.Matr.Diff.U ///.

One can verify without much difficulty that tr and inc extend to maps of complexes

tr W bC �

.Matr.Diff.U /// ! 5C
�

.Diff.U //

and

inc W 5C �

.Diff.U // ! bC
�

.Matr.Diff.U ///

respectively such that tr B inc D id. It is also useful for us to note explicitly that if
m1; : : : ; mk 2 Matr.C/ and ˛ 2 Diff.U k/, then

tr.m1 ˝ � � � ˝mk ˝ ˛/ D tr.m1 B � � � Bmk/˛:

Moreover h extends to a map h W bC k.Matr.Diff.U /// ! 1C kC1.Matr.Diff.U /// for

all k with dhC hd D id � inc B tr. Thus tr W bC �
.Matr.Diff.U /// ! 5C

�
.Diff.U //

is a quasi-isomorphism. It follows from Lemma 2 that bC �
.Matr.Diff.U /// is quasi-

isomorphic to CŒ2n�.

Part 3: Proof of the lemma.
Let r be the rank of E . If U is an open ball of X , on which E is trivial,

then Diff.EjU / is isomorphic to Matr.Diff.U // as topological algebras. The ac-
tual isomorphism depends on the choice of (holomorphic) trivialization of E . For
a holomorphic trivialization 	 of E over U , let 	ı denote the isomorphism be-
tween Diff.EjU / and Matr.Diff.U //. Then 	ı induces an isomorphism of com-
plexes C �

.D iff.E/.U // ! C
�
.Matr.Diff.U ///. This extends to an isomorphism
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of complexes 	� W 7C
�
.D iff.E/.U // ! bC

�
.Matr.Diff.U ///. We know however that

bC
�
.Matr.Diff.U /// is quasi-isomorphic to CŒ2n�.
The lemma will follow provided that we check that the quasi-isomorphism tr B	�

is independent of the choice of trivialization 	. We will show that if  is another
holomorphic trivialization of E over U , then the maps tr B � D tr B	� of complexes

from 6C
�
.Diff.EjU // to 5C

�
.Diff.U // induce the same map on cohomology.

Note that 	� B  �1� W bC �
.Matr.Diff.U /// ! bC

�
.Matr.Diff.U /// is induced by

the map Matr.Diff.U // ! Matr.Diff.U // taking an element of Matr.Diff.U // to
its conjugate by an .r � r/-matrix N of holomorphic functions on U . Denote this
map of completed Hochschild complexes by cN . We only need to show that the maps
tr B cN and tr of complexes of C-vector spaces induce the same map on cohomology.

Recall that Diff.U / is a filtered algebra with F�m.Diff.U // D Diff�m.U /, the
space of (holomorphic) differential operators on U of order at most m. This yields
a filtration on Matr.Diff.U // with F�m.Matr.Diff.U /// D Matr.Diff�m.U //. We
have gr.Matr.Diff.U /// D Matr.gr.Diff.U ///.

This filtration gives us a spectral sequence withEn
1 D bHH�n.gr.Matr.Diff.U ////

and En1 D bHH�n.Matr.Diff.U ///. The endomorphism induced by the endomor-
phism ˛ Ý N˛N�1, where N is a matrix of holomorphic functions, preserves the
filtration on Matr.Diff.U // and thus induces an endomorphism of a spectral sequence
on the spectral sequence described above.

Note that gr.Matr.Diff.U /// D Matr.gr.Diff.U /// and that the endomorphism
induced by conjugation byN is still conjugation byN . Denote this endomorphism by
cN as well. We now claim that the following diagram commutes up to cohomology:

2C
�
.Matr.gr.Diff.U ////

tr
��

cN ��
2C

�
.Matr.gr.Diff.U ////

tr
��

7C
�
.gr.Diff.U /// id

��
7C

�
.gr.Diff.U ///.

To see this, note that if ˛ 2 7C k.gr.Diff.U /// is a cocycle, then it follows that
˛ D tr

�
1
r

id ˝ � � � ˝ id ˝˛
�
. In other words, ˛ is the trace of a “scalar” matrix whose

diagonal elements are ˛ up to a scalar factor. Now

cN .id ˝ � � � ˝ id ˝ ˛/ D .N ˝ � � � ˝N/.id ˝ � � � ˝ id ˝ ˛/.N�1 ˝ � � � ˝N�1/

D .id ˝ � � � ˝ id ˝ ˛/;

so .tr B cN /�.id ˝ � � � ˝ id ˝ ˛/ D tr�.id ˝ � � � ˝ id ˝ ˛/ where id ˝ � � � ˝ id ˝ ˛

denotes the class in cohomology of the cocycle id ˝ � � � ˝ id ˝ ˛.
Therefore, the map of spectral sequences induced by tr B cN coincides with that

induced by tr at the E1-level, and hence at the E2 D E1-level. Finally, by part 2 of
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this proof and by the proof-sketch for Lemma 2,E�n;�n
2 is the only non-zeroE2-term

in this spectral sequence, and E�n;�n
2 ' C. It follows that the endomorphisms on

cohomology induced by tr and tr B cN are indeed the endomorphisms they induce
on E�n;�n

2 . We have just shown that the maps induced tr and tr B cN on Er -terms
coincide for any r � 1. This proves the lemma.

We can now state the following immediate corollary to Lemma 3.

Corollary 6. bHH�i .D iff.E// ' H2n�i .X;C/.

We denote the isomorphism described in this corollary by ˇE .

4.2. The second “bookkeeping” lemma. We once more look at the situation where
E is a direct summand of E ˚ F . Notation is as in Section 3.4 of this article. We
have a map � W D iff.E/ ! D iff.E ˚ F /. This induces a map, denoted by O�, from
1Hoch.D iff.E// to 1Hoch.D iff.E ˚ F //. The following lemma holds.

Lemma 4. The following diagram commutes:

bHH�i .D iff.E//

ˇE

��

O�� ��
bHH�i .D iff.E ˚ F //

ˇE˚F

��
H2n�i .X;C/

id
�� H2n�i .X;C/.

Proof. Step 1: Let D.ShC.X// denote the derived category of sheaves of C-vector
spaces on X .

Recall that in the proof of Lemma 3 we showed that the complex 1Hoch.D iff.E//
of sheaves of C-vector spaces is quasi-isomorphic to 1Hoch.D iff.OX //. Denote this
quasi-isomorphism by iE . Now 1Hoch.D iff.OX // is quasi-isomorphic to CŒ2n�. Let
i denote this quasi-isomorphism for this proof.

It suffices to verify that the following diagram commutes in D.ShC.X//:

1Hoch.D iff.E//

iBiE

��

O� ��
1Hoch.D iff.E ˚ F //

iBiE˚F

��
CŒ2n�

id
�� CŒ2n�.

(16)

Since a sheaf of C-vector spaces is injective iff it is flabby (see [Riet], Lemma 3.3),
the constant sheaf C is an injective object in the category of sheaves of C-vector spaces
on X . It follows from this that

HomD.ShC.X//.C;C/ ' C:
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The diagram (16) thus commutes in D.ShC.X// up to a scalar factor. Checking
that that scalar factor is 1 can be “done locally”. It therefore suffices to verify that
there exists a neighbourhood U of every point in X such that the following diagram
commutes in D.ShC.U //:

1Hoch.D iff.E//jU
iBiE jU

��

O�jU ��
1Hoch.D iff.E ˚ F //jU

iBiE˚F jU
��

CŒ2n�
id

�� CŒ2n�.

(17)

Step 2: Verifying (17).
It suffices to verify (17) at the level of pre-sheaves. We must therefore prove that

the following diagram commutes in the category of complexes of C-vector spaces up
to cohomology:

7C
�
.D iff.E/.U //

iBiE jU
��

O� ��
1C

�
.D iff.E ˚ F /.U //

iBiE˚F jU
��

CŒ2n�
id

�� CŒ2n�.

To verify that the above diagram commutes up to cohomology, it suffices to verify
that the diagram below commutes up to cohomology in the category of complexes of
C-vector spaces:

7C
�
.D iff.E/.U //

iE jU
��

O� ��
1C

�
.D iff.E ˚ F /.U //

iE˚F jU
��

5C
�
.D iff.U // id

�� 5C �
.D iff.U //.

(18)

Most of the hard work necessary for this step has already been done. Let 	E

and 	F denote holomorphic trivializations over U of E and F , respectively. Then
	 ´ 	E ˚ 	F is a holomorphic trivialization of E ˚ F over U .

This yields the following commutative diagram, all of whose morphisms are con-
tinuous. Here r and s denote the ranks of E and F , respectively:

D iff.E/.U /

�E

��

� �� D iff.E ˚ F /.U /

�

��
Matr.Diff.U //

�r;s

�� MatrCs.Diff.U //.
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This gives the following commutative diagram:

7C
�
.D iff.E/.U //

�E;�

��

O�� ��
1C

�
.D iff.E ˚ F /.U //

��

��
bC

�
.Matr.Diff.U /// O�r;s;�

��
1C

�
.MatrCs.Diff.U ///.

Here �r;s denotes the embedding from Matr.Diff.U // to MatrCs.Diff.U // which
takes a matrix ˛ 2 Matr.Diff.U // to N̨ 2 MatrCs.Diff.U //, where N̨ ij D ˛ij if
.i; j / 2 f1; : : : ; rg � f1; : : : ; rg and N̨ ij D 0 otherwise.

Now we showed that iE jU D trr B	E;� in part 3 of the proof Lemma 3. Here trr is

the map tr W bC �
.Matr.Diff.U /// ! 5C

�
.Diff.U // described in the proof of Lemma 3.

Similarly, i.E˚F /jU D trrCs B 	�.
It therefore suffices to prove that the following diagram commutes:

bC
�
.Matr.Diff.U ///

trr

��

O�r;s;� ��
1C

�
.MatrCs.Diff.U ///

trrCs

��
5C

�
.Diff.U // id

�� 5C �
.Diff.U //.

This follows immediately from the explicit formula for trr recalled in part 2 of the
proof of Lemma 3. This finally verifies (18), thus proving the lemma.

4.3. Proof of Theorem 2

Proof of Theorem 2. Corollary 5 states that the following diagram commutes:

bHH0.D iff.E//

ytr
��

O�� ��
bHH0.D iff.E ˚ F //

ytr
��

C
id

�� C.

Lemma 4 for i D 0 now states that the following diagram commutes:

bHH0.D iff.E//

ˇE

��

O�� ��
bHH0.D iff.E ˚ F //

ˇE˚F

��
H2n.X;C/

id
�� H2n.X;C/.
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It follows that ytr B ˇE
�1 D ytr B ˇE˚F

�1. In the notation of Theorem 2, this says
that IE D IE˚F . A symmetric argument shows that IF D IE˚F . This completes
the proof of Theorem 2.

5. The completed cyclic homology of Diff.E/

5.1. Recollections on cyclic homology

5.1.1. Tsygan’s double complex. Let A be a dg C-algebra such that An D 0

for almost all n. Let dbar and dHoch denote the differentials of bar�
.A/ and C �

.A/

respectively.
For homogenous elements a1; : : : ; ak of A of degrees d1; : : : ; dk , respectively, let

the map a1˝� � �˝ak Ý.�1/.dkC1/.d1C���Cdk�1Ck�1/ak ˝a1˝� � �˝ak�1 be denoted
by � W A˝k ! A˝k . Let N W A˝k ! A˝k be the map N D 1C � C � � � C �k�1.

The maps � and N induce maps from A˝k to A˝k for any k. It follows that
� and N induce maps from bar�n.A/ to C�n.A/ and from C�n.A/ to bar�n.A/,
respectively, for any n.

Consider the following double complex the degree of whose non-zero columns is
non-positive:

� � � �� � � � �� � � � �� � � � �� � � �

� � �
dHoch

��

N �� bar0.A/

�dbar

��

id�� �� C 0.A/

dHoch

��

N �� bar0.A/

�dbar

��

id�� �� C 0.A/

dHoch

��

� � �
dHoch

��

N �� bar�1.A/

�dbar

��

id�� �� C�1.A/

dHoch

��

N �� bar�1.A/

�dbar

��

id�� �� C�1.A/

dHoch

��

� � �
dHoch

��

N �� bar�2.A/

�dbar

��

id�� �� C�2.A/

dHoch

��

N �� bar�2.A/

�dbar

��

id�� �� C�2.A/

dHoch

��

� � �
dHoch

��

�� � � �
�dbar

��

�� � � �
dHoch

��

�� � � �
�dbar

��

�� � � � .

dHoch

��

We denote the above double complex by CC�;�
.A/. Then CCp;q.A/ D C q.A/

if p is even and non-positive, CCp;q.A/ D barq.A/ if p is odd and negative, and
CCp;q.A/ D 0 otherwise.

The vertical differential dv W CCp;q.A/ ! CCp;qC1.A/ is dHoch if p is even and
non-positive, and �dbar if p is odd and negative.

The horizontal differential dh W CCp;q.A/ ! CCpC1;q.A/ is given by id � � if p
is odd and negative and N if p is even and negative.
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The double complex CC�;�
.A/ is called the Tsygan double complex of A.

Definition 7. The cyclic complex of A is the total complex of CC�;�
.A/. It is denoted

by Cycl�
.A/.

Definition 8. The cyclic homology HC�i .A/ is the �i -th cohomology of Cycl�
.A/.

As in Section 2.1, contrary to the standard practice, we refer to a �i cocycle
of Cycl�

.A/ as an i -cycle in Cycl�
.A/. The following standard propositions are

important to us.

Proposition 8. (i) If B D End.V �
/, where V � is a finite dimensional graded C-

vector space with zero differential, then

HC�2i .B/ ' C

for all i � 0. All other cyclic homologies of B vanish.
(ii) The map tr2i yielding the above isomorphism is obtained by mapping the

class in HC�2i .B/ of a 2i -cycle in Cycl�
.B/ given by a tuple .b2i ; b2i�1; : : : ; b0/ to

str.b0/, where bk 2 CC�2iCk;�k.B/.
(iii) The map tr2i yielding the above isomorphism maps the class in HC�2i .B/ of

a 2i -cycle in Cycl�
.B/ given by a tuple .b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j / (j > 0,

bk 2 CC�2iCk;�k.B/) to str.b0/.

Proof. There is a spectral sequence, namely the one that arises out of the filtration of
the double complex CC�;�

.B/ by columns, converging to HC�.B/ such that Ep;q
1 D

H q.CCp;�
.B//. Since B has a unit, bar�

.B/ is acyclic (see p. 411). Now C
�
.B/

is quasi-isomorphic to C concentrated in degree 0 by Proposition 1. It follows that
E

�2i;0
1 ' C for all i � 0 and Ep;q

1 D 0 for all other .p; q/. This spectral sequence
therefore collapses at E1. It follows that HC�2i .B/ ' E

�2i;0
1 ' C for all i � 0.

This proves part (i).
Let F � be the filtration on Cycl�

.B/ yielding the spectral sequence in part (i).
Consider a tuple .b2i ; b2i�1; : : : ; b0/ with bk 2 CC�2iCk;�k.B/ that yields a cyclic
cycle. Then .b2i ; b2i�1; : : : ; b0/ 2 F �2i Cycl�

.B/. It follows that the image of

.b2i ; b2i�1; : : : ; b0/ in F �2i Cycl�.B/

F �2iC1 Cycl�.B/
' C

�
.B/ is the Hochschild 0-cycle b0. Note

that E�2iCj;�j
1 D 0 for j ¤ 0 and E�2i;0

1 D H0.
F �2i Cycl�.B/

F �2iC1 Cycl�.B/
/ ' HH0.B/.

It follows that the image of the tuple .b2i ; b2i�1; : : : ; b0/ in E�2i;0
1 , and hence in

HC�2i .B/, is the image of b0 in HH0.B/. By Proposition 1, this is precisely str.b0/.

This shows that tr2i .E.b2i ; : : : ; b0// D str.b0/ where E.b2i ; : : : ; b0/ is the class in
HC�2i .B/ of the cycle obtained from .b2i ; b2i�1; : : : ; b0/. This proves part (ii).
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To prove part (iii), note that if .b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j / (j > 0) is
a cyclic cycle, then b�2j is a Hochschild �2j -cycle. It follows from Proposi-
tion 1 that b�2j D dHochc�2j C1 for some c�2j C1 2 C 2j �1.B/. Now consider
c�2j C1 2 CC�2i�2j;2j �1.B/ as an element of Cycl�2i�1.B/. Then the cycle
.b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j / � dCyclc�2j C1 arises out of the cycle
.b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j C1 C Nc�2j C1; 0/ of CC�;�

.B/. Therefore the
class of .b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j / in HC�2i .B/ is the same as the class
of .b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j C1 CNc�2j C1; 0/ in HC�2i .B/. Since the bar
complex of B is acyclic, it follows that b�2j C1 CNc�2j C1 D dbarc�2j C2 for some
element c�2j C2 of bar2j �2.B/. The previous step can be repeated to show that the
class of .b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j / in HC�2i .B/ is the same as the class of
.b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j C2 C.id��/c�2j C2; 0; 0/ in HC�2i .B/. This pro-
cess can be continued to show that the class of .b2i ; b2i�1; : : : ; b0; b�1; : : : ; b�2j / in
HC�2i .B/ is the same as the class of .b2i ; b2i�1; : : : ; b0 C .id � �/c0/ in HC�2i .B/

for some element c0 of bar0.B/. By part (ii) of this proposition, this is equal to
str.b0 C .id � �/c0/. But str..id � �/c0/ D 0 for any element c0 of bar0.B/. This
proves (iii).

If A is a (unital) dg C-algebra, let CCf2g;�.A/ denote the bi-complex consisting
of the columns CC�1;�.A/ and CC0;�.A/ with differentials as in CC�;�

.A/.
We recall that we have an exact sequence of complexes

0 ! Tot.CCf2g;�
.A//

I�! Cycl�
.A/

S�! Cycl�C2.A/ ! 0:

We recall that CC1;�.A/ is acyclic (see p. 411). It follows that CCf2g;�.A/ is quasi-
isomorphic to C �

.A/. This quasi-isomorphism is realized by the map of complexes
taking ak 2 C�k.A/ to .ak; 0/ 2 C�k.A/˚ bar1�k.A/. We denote the composite
of I with this quasi-isomorphism by �. The map S is obtained by projection to the
double complex obtained from CC�;�

.A/ by truncating the columns CCi;�.A/ for
i D 0;�1. We now obtain the following proposition.

Proposition 9. If B D End.V �
/, where V � is a finite dimensional graded C-vector

space with zero differential, then the following diagrams commute:

HC�2i .B/

tr2i

��

S �� HC�2iC2.B/

tr2i�2

��
C

id
�� C,

HH0.B/

str
��

� �� HC0.B/

tr0

��
C

id
�� C.

Proof. Let .b2i ; b2i�1; : : : ; b0/, bj 2 CC�2iCj;�j .B/, be a tuple yielding a cyclic
cycle. We already demonstrated while proving part (iii) of Proposition 8 that any
class in HC�2i .B/ can be represented by a cycle coming from a tuple of this form.
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Lete.b2i ; b2i�1; : : : ; b0/ denote the class of .b2i ; b2i�1; : : : ; b0/ in HC�2i .B/. Then

tr2i .e.b2i ; b2i�1; : : : ; b0// D str.b0/ by Proposition 8 and S..b2i ; b2i�1; : : : ; b0// D
.b2i�2; b2i�3; : : : ; b0/ by the definition of S . Finally, by Proposition 8,

tr2i�2.A.b2i�2; b2i�3; : : : ; b0// D str.b0/. This shows that the first diagram com-
mutes.

Let b0 be a Hochschild 0-cycle of B. Then �.b0/ D b0 2 CC0;0.B/. Let Nb0

denote the class of b0 in HH0.B/. Then, xb0 D str.b0/. However, �. Nb0/ D eb0. Now
tr0.eb0/ D str.b0/ by Proposition 8. This proves that the second diagram commutes.

Moreover, if F W A ! B is an A1-morphism with Taylor components Fk , we
have the following result.

Proposition 10. The map FHoch mentioned in Proposition 2 extends to a map FCycl

of complexes from Cycl�
.A/ to Cycl�

.B/.

Proof. It suffices to check that FHoch extends to a map of FTsyg bi-complexes from
CC�;�

.A/ to CC�;�
.B/.

Let FTsyg W CCp;q.A/ ! CCp;q.B/ be FHoch if p is even and non-positive and
Fbar if p is odd and negative.

By Proposition 2, FHoch W CCp;�
.A/ ! CCp;�

.B/ is a map of complexes of C-
vector spaces if p is even and non-positive. By the definition of an A1-morphism,
Fbar W CCp;�

.A/ ! CCp;�
.B/ is a map of complexes if p is odd and negative.

The following verifications, which we leave to the reader, complete the proof that
FTsyg is a map of bi-complexes, and thus yields a map FCycl W Cycl�

.A/ ! Cycl�
.B/

of complexes:

.id � �/ B Fbar D FHoch B .1 � �/;
N B FHoch D Fbar BN:

Here N and � are as in the definitions of CC�;�
.A/ and CC�;�

.B/.

We also state the following consequence of Propositions 10 and 8 as a proposition.

Proposition 11. Let A be a dg C algebra. Let B be as in Proposition 9. Suppose
that F is an A1-morphism from A to B. Let eFCycl denote the map from HC�.A/ to
HC�.B/ induced by FCycl. Then the following holds:

(1) tr2i B eFCycl.D.a2i ; : : : ; a0; a�1; : : : ; a�l// D str.FHoch.a0//.
(2) If a0 is a Hochschild 0- cycle arising out of a degree k � 1 element of A˝k

then

tr2i B eFCycl.D.a2i ; : : : ; a0; a�1; : : : ; a�l// D
sDk�1X

sD0

str.Fk.�
s.a0///;
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where � is as in Corollary 2.

Proof. By the proof of Proposition 10, we have

FTsyg.a2i ; : : : ; a0; a�1; : : : ; a�l/

D .FHoch.a2i /;Fbar.a2i�1/; : : : ;Fbar.a1/;FHoch.a0/; : : : ;Fbar/hoch.a�l//;

where Fbar=Hoch.a�l/ D FHoch.a�l/ if l is even and Fbar=Hoch.a�l/ D Fbar.a�l/ if l
is odd. Part (1) now follows immediately from Proposition 8, part (iii), and part (2)
is a consequence of part (1) and Corollary 2.

5.2. The complex GCycl�

.D iff.E//. Let C1 denote the sheaf of smooth functions
onX . For each open U � X , we can consider the completed Hochschild complex of

D iff �

.E/.U / as in Section 3.3. Denote this complex by 8C
�
.D iff �

.E//.U /. Consider

the sheafification of the pre-sheaf U Ý 8C
�
.D iff �

.E//.U /. Recall that this sheaf of

complexes of C1-modules is denoted by FHoch.D iff.E// in Section 3.3. Unlike in

Section 3.3, let GHochn.D iff.E// denote the degree n component of FHoch.D iff.E//.

One can also consider the completed bar complex bbar�
.D iff �

.E/.U //. This is
defined as in Section 3.3: the underlying graded C-vector space of the complex
bbar�

.D iff �

.E/.U // is the same as that of 8C �
.D iff �

.E//.U /, but the differential on
bbar�

.D iff �

.E/.U // is the bar differential. We will denote the sheafification of the

pre-sheaf U Ýbbar�
.D iff �

.E/.U // by Fbar�
.D iff.E//. We have the following result.

Proposition 12. The differentials in Tsygan’s double complex for D iff �

.E/.U / extend
to yield differentials for the following double complex of C1 -modules on X :

� � � �� � � � �� � � � �� � � � �� � � �

� � �

dHoch

��

N ��
Cbar0.D iff.E//

�dbar

��

id�� ��
DHoch0.D iff.E//

dHoch

��

N ��
Cbar0.D iff.E//

�dbar

��

id�� ��
DHoch0.D iff.E//

dHoch

��

� � �

dHoch

��

N ��
Dbar�1.D iff.E//

�dbar

��

id�� ��
EHoch�1.D iff.E//

dHoch

��

N ��
Dbar�1.D iff.E//

�dbar

��

id�� ��
EHoch�1.D iff.E//

dHoch

��

� � �

dHoch

��

N ��
Dbar�2.D iff.E//

�dbar

��

id�� ��
EHoch�2.D iff.E//

dHoch

��

N ��
Dbar�2.D iff.E//

�dbar

��

id�� ��
EHoch�2.D iff.E//

dHoch

��

� � �

dHoch

��

�� � � �
�dbar

��

�� � � �
dHoch

��

�� � � �
�dbar

��

�� � � � .

dHoch

��
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Proof. This only needs to be checked at the level of pre-sheaves. The double complex

mentioned is the sheafification of the pre-sheaf U Ý bCC�;�
.D iff �

.E/.U //. Here,
bCC�;�

.D iff �

.E/.U // is the double complex obtained by replacing the Hochschild and
bar complexes that make up the columns of Tsygan’s double complex of D iff �

.E/.U /

with their completed versions. It is also clear that id � � and N extend to horizontal
differentials on the double complex in this proposition.

We denote the total complex of this double complex by eCycl�.D iff.E//. Since
it is a complex of C1 modules, its hypercohomology is computed by the complex
�.X; eCycl�.D iff.E///.

The following cyclic analog of Proposition 6 follows from Proposition 11 and the
fact that

P
s �

s.id � �/ D 0. We denote by fHC�2i .D iff.E// the �2i -th cohomology
of �.X; eCycl�.D iff.E///.

Proposition 13. The formula described in Proposition 11 extends to yield us a C-
linear functional Qtr2i W fHC�2i .D iff.E// ! C.

Proof. The fact that the formula makes sense follows directly from Proposition 11 and
Proposition 6. To show that it vanishes on coboundaries, we recall that Proposition 6
also tells us that it vanishes on the image of the dHoch differential. We only need to
verify that it vanishes on the image of the id � � differential. This is a consequence
of the fact that

P
s �

s.id � �/ D 0.

Recall that we had a map S W Cycl�
.Diff �

.E// ! Cycl�C2.Diff �
.E//. It is easy to

verify that this yields a map S W eCycl�.Diff �
.E// ! eCycl�C2.Diff �

.E//. Similarly, �

can be seen to extend to a map of complexes � W FHoch.D iff.E// ! eCycl�.Diff �
.E//.

A direct consequence of the formula in Proposition 11 is the following proposition.

Proposition 14. The following diagrams commute:

fHC�2i .D iff.E//

Qtr2i

��

S �� fHC�2iC2.D iff.E//

Qtr2i�2

��
C

id
�� C,

H�.�.X;FHoch.D iff.E////
� ��

�str
��

fHC0.D iff.E//

Qtr0

��
C

id
�� C.
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5.3. The completed cyclic homology of D iff.E/ and the cohomology of X

5.3.1. The completed cyclic homology of D iff.E/. We define the completed bar

complex of D iff.E/ to be the sheafification of the pre-sheafU ! 8bar�
.D iff.E/.U //.

The terms of this complex are the same as in 1Hoch.D iff.E//, but the differential is
the bar differential. We denote this by cbar.D iff.E//.

We can obtain the completed Tsygan double complex of D iff.E/. This is a double
complex of sheaves of C-vector spaces on X , whose non-positive even columns are
1Hoch�.D iff.E// and whose negative odd columns are cbar.D iff.E//. The horizontal
differentials inTsygan’s double complex extend to this situation to give us well-defined
horizontal differentials. We will denote the total complex of this double complex by
bCycl�.D iff.E//.

Before we proceed, we note that as before we have a (degree preserving) natu-
ral map of complexes 
 W bCycl�.D iff.E// ! eCycl�.D iff.E//. This induces a map

� W H�.X; bCycl�.D iff.E/// ! H�.X; eCycl�.D iff.E///. Note that the map S ex-
tends to a map of complexes bCycl�.D iff.E// ! bCycl�C2.D iff.E//. Similarly, the
map � extends to a map of complexes � W 1Hoch.D iff.E// ! bCycl�.D iff.E//. Fur-
thermore, we have the following commutative diagrams:

1Hoch.D iff.E//

�

��

� ��
bCycl�.D iff.E//

�

��
AHoch.D iff.E//

�
��
eCycl�.D iff.E//,

bCycl�.D iff.E//

�

��

S ��
bCycl�C2.D iff.E//

�

��
eCycl�.D iff.E//

S
��
eCycl�C2.D iff.E//.

We denote by cHC�j .D iff.E// the hypercohomology H�j .X; bCycl�.D iff.E///.
Again we note that the complex eCycl�.D iff.E// is a complex of C1 modules.

Thus, its hypercohomology is precisely fHC�.D iff.E//. It follows that we have the
following corollaries of Propositions 13 and 14, respectively.

Corollary 7 (Corollary to Proposition 13). There exist traces

ytr2i W cHC�2i .D iff.E// ! C:

Proof. This follows from ytr2i D ztr2i B 
�.



446 A. C. Ramadoss

Corollary 8 (Corollary to Proposition 14). The following diagrams commute:

bHH0.D iff.E//

ytr
��

I �� cHC0.D iff.E//

ytr0

��
C

id
�� C,

cHC�2i .D iff.E//

ytr2i

��

S �� cHC�2iC2.D iff.E//

ytr2i�2

��
C

id
�� C.

Proof. This is an immediate consequence of Proposition 14 and the two commutative
diagrams shown at the top.

We have the following cyclic homology analog of Lemma 3.

Lemma 5. bCycl�.D iff.E// is quasi-isomorphic to CŒ2n�˚ CŒ2nC 2�˚ � � � .

Proof. It suffices to verify this assertion locally at the level of pre-sheaves. In other
words, we need to look at the completed Tsygans double complex for D iff.E/.U /
where U is an open set so that E is trivial on U . Of course, all tensor products here
are completed tensor products.

The completed bar complex of D iff.E/.U / is acyclic since the homotopy of rec-
ollection 1, Section 2.1 between the identity endomorphism and the 0 endomorphism
of the bar complex of D iff.E/.U / can be shown to “extend to” a homotopy between
the identity and 0 endomorphisms of the completed bar complex of D iff.E/.U /.

The complex bHoch.D iff.E/.U // is quasi-isomorphic to CŒ2n� by Lemma 3. It
follows that the spectral sequence converging to the completed cyclic homology of
D iff.E/.U / that arises out of the filtration of the completed Tsygan double complex
for D iff.E/.U / by columns satisfies:

E
�2i;�2n
1 ' C for all i � 0 and E

p;q
1 D 0 otherwise.

The lemma now follows from this.

Corollary 9. cHC�2i .D iff.E// D H2n.X;C/˚H2n�2.X;C/˚� � �˚H2n�2i .X;C/.

Denote the isomorphism in the above corollary by J2i . Then, following the proof
of Lemma 5, we obtain the following result.

Proposition 15. The following diagrams commute:

cHC�2i .D iff.E//

S

��

J2i �� H2n.X;C/˚ H2n�2.X;C/˚ � � � ˚ H2n�2i .X;C/

��cHC�2iC2.D iff.E//
J2i�2

�� H2n.X;C/˚ H2n�2.X;C/˚ � � � ˚ H2n�2iC2.X;C/,
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bHH0.D iff.E//

ˇE

��

I �� cHC0.D iff.E//

J0

��
H2n.X;C/

id
�� H2n.X;C/.

The vertical arrow in the right column of the first diagram is the obvious projection.

5.4. Proof of Theorem 3

Proof of Theorem 3. We apply the second diagram in Corollary 8 i times to obtain
the following diagram:

cHC�2i .D iff.E//

ytr2i

��

S i
�� cHC0.D iff.E//

ytr0

��
C

id
�� C.

We apply the first diagram Proposition 15 i times to obtain the following diagram:

cHC�2i .D iff.E//

J2i

��

S i
�� cHC0.D iff.E//

J0

��
H2n.X;C/˚ H2n�2.X;C/˚ � � � ˚ H2n�2i .X;C/ �� H2n.X;C/.

In the notation used to state Theorem 3, this tells us that IE;2i;0 D IE;0;0 and
IE;2i;2k D 0 for k > 0. Lastly, the second diagram of Proposition 15 and the first
diagram of Corollary 8 together imply that ytr B ˇ�1

E
D �tr0 B J�1

0 . This shows that
IE;0;0 D IE , which completes the proof.

Remark 1. Our notion of completed Hochschild and cyclic homologies seems to
differ in detail from that used in [FLS]. This forced us to rework some steps of [FLS]
– in particular, Proposition 6 and related matters – in our situation.

Remark 2. The key step in the proof of Theorem 1 in [FLS] consists in showing, on
the one hand, that the linear functional defined in [FLS] applied to the operator id in
Diff.E/ is indeed its supertrace, i.e., the Euler characteristic of E , and showing that the
image of id in bHH0.D iff.E/ gives the class Ch.E/ � Td.TX /2n (this is done by citing
[NT1] and [NT2]) after passing to H2n.X;C/ and then applying the Hirzebruch R–R
theorem. In spite of the differences in detail between our construction of completed
Hochschild homology and that of [FLS] it may be checked that these two key steps
go through, thus maintaining Theorem 1 in this situation.
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