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The universal Hopf-cyclic theory
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Abstract. We define a Hopf cyclic (co)homology theory in an arbitrary symmetric strict
monoidal category. Thus we unify all different types of Hopf cyclic (co)homologies under one
single universal theory. We recover Hopf cyclic (co)homology of module algebras, comod-
ule algebras and module coalgebras along with Hopf–Hochschild (co)homology of module
algebras, and describe the missing theory for comodule coalgebras.
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1. Introduction

In noncommutative geometry, as the category of algebras of various flavors replaced
the category of spaces of various flavors, Hopf algebras arose as the natural candi-
date to study the symmetries of a noncommutative space. Unlike the classical no-
tion of symmetry, the notion of noncommutative symmetry has four different types:
module coalgebra (MC), comodule algebra (CA), module algebra (MA) and comod-
ule coalgebra (CC). These symmetry conditions can be expressed concisely as the
(co)multiplication structure morphism of the corresponding (co)algebra being a B-
(co)module morphism where B is our base Hopf algebra [11]. We are interested in
such symmetries in the context of cyclic (co)homology. In the following, the term
“cyclic theory” is used for functors from a suitable category of (co)algebras into the
category of (co)cyclic objects over a small category C , namely the category of func-
tors from Connes’cyclic category ƒ [5] to the category C . On the other hand, the term
“cyclic (co)homology” is used for suitable (co)homology functors from the category
of (co)cyclic objects over a small category C into a category of modules over a fixed
base ring.

Any Hopf algebra H is a module coalgebra and a comodule algebra over itself via
its regular representations. Khalkhali and Rangipour [16] showed that the cyclic dual
of the canonical cocyclic object of the (MC)-type symmetry evaluated at H is functo-
rially isomorphic to the canonical cyclic object of the (CA)-type symmetry evaluated
at the same Hopf algebra H . Then the author and Khalkhali [14] successfully unified



334 A. Kaygun

the cyclic theories for the (MA) and (MC)-type symmetries and their cyclic duals
under the banner of bivariant Hopf-cyclic cohomology. These results suggest that
there is a deep meta-symmetry lurking behind, connecting all these cyclic theories in
the presence of a Hopf symmetry.

In this paper, we aim to unravel this meta-symmetry further and construct a new
universal cyclic theory covering all types of symmetries we stated above and recover all
of the Hopf-cyclic and equivariant cyclic (co)homologies of (co)module (co)algebras
previously defined in the literature. Our universal theory relies on categorical approx-
imation (Definition 4.1) results we obtain in Theorem 4.7 and Remark 4.9. Then each
individual cohomology theory is obtained by modifying certain parameters. These
parameters are (i) a symmetric monoidal category which will replace the category
modules over a ground ring k, (ii) a class of morphisms called transpositions which
will play the role of a coefficient, (iii) an arbitrary exact comonad which will re-
place a k-flat Hopf algebra and finally (iv) a suitable category of (co)algebras called
transpositive (co)algebras which will play the role of (co)module (co)algebras.

One practical consequence of this formal exercise in category theory is that we
no longer need to define a different theory for each type of symmetry and then prove
that it really is cyclic, which is quite technical and involved [8], [12], [14]. The
recipe we provide in this paper ensures that the end object is not only equivariantly
(co)cyclic but also the right object for all known cases. The results of this article
give us the license to ignore the technical problems of existence of a right kind of
cyclic theory and to engage with more pressing questions such as excision, Morita
invariance and homotopy invariance in the presence of a Hopf symmetry. Now that
these cyclic theories are defined by universal properties, we expect such questions to
become more accessible for further investigation.

Here is a plan of this paper. In Section 2 we give definitions of transpositions and
transpositive (co)algebras in an arbitrary symmetric strict monoidal category C . In the
same section we also describe ordinary B-(co)module (co)algebras over an arbitrary
bialgebra B as transpositive algebras in a specific monoidal category with respect
to certain classes of transpositions. In Section 3 we construct the universal para-
(co)cyclic theory for the category of transpositive (co)algebras. Next in Section 4, we
incorporate an arbitrary exact comonad B into our machinery. In this section, specifi-
cally in Theorem 4.7, we show that every pseudo-para-(co)cyclic B-coalgebra admits
an approximation (Definition 4.1) in the category of (co)cyclic B-coalgebras. For an
arbitrary bialgebra B , in Section 5 we recover the Hopf-cyclic and equivariant cyclic
theories of B-module (co)algebras [14] and bialgebra cyclic theory of B-comodule
algebras [12]. The key observation we use is that the universal para-cyclic theory
actually takes values in the category of pseudo-para-(co)cyclic B-modules in these
cases. As a side result, we recover the Hopf–Hochschild homology [13] by using the
techniques developed in this paper. We end the paper by defining the missing cyclic
theory for comodule coalgebras as a natural extension of the cyclic theories defined
hitherto.
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Throughout this article, we assume C is a small category. If we require C to be
monoidal ˝ will denote the monoidal product of C and we will assume .C ; ˝/ is a
symmetric strict monoidal category with a unit object I .

Acknowledgements. We trace the genesis of this article back to a series of discussions
the author had with Krzysztof Worytkiewicz on the formal properties of the Hopf-
cyclic (co)homology. We would like to thank the referee for his/her constructive
review of the article.

2. Transpositions and transpositive (co)algebras

In this section we will use a rudimentary version of “calculus of braid diagrams” in
monoidal categories as developed in [18].

Definition 2.1. For each object X chosen from a subset T of Ob.C/, fix an ob-
ject M in C and a unique morphism wM;X W M ˝ X ! X ˝ M . The datum
.M; T ; fwM;XgX2T / is called a class of transpositions and is denoted by w. For
such an object X 2 T , the morphism wM;X and its inverse w�1

M;X if it exists, are
going to be denoted by

M X X M

X M M X

respectively. We do not require transpositions to be invertible, nor do we require the
inverses to be transpositions themselves even if they exist. But the reader may assume
so for convenience.

Recall that an object A in C is called an algebra if there exist morphisms
�A W A˝2 ! A and e W I ! A which satisfy associativity and unitality axioms.
These conditions for an algebra A will also be denoted by the following diagrams:

A A A A A A A A

A
D D D

A A A A A:

Definition 2.2. An algebra .A; �A; e/ in C is called a w-transpositive algebra if there
exists a morphism wM;A W M ˝ A ! A ˝ M in w such that the following diagram
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commutes:

M ˝ A ˝ A

M˝�A

��

wM;A˝A�� A ˝ M ˝ A
A˝wM;A�� A ˝ A ˝ M

�A˝M

��
M ˝ A

wM;A �� A ˝ M

M .
M˝e

��������������� e˝M

���������������

A w-transpositive coalgebra .C; ıC ; "/ is a wop-transpositive algebra in the oppo-
site monoidal category .Cop; ˝op/ where U ˝op V ´ V ˝ U for any two objects
U; V 2 Ob.Cop/. These axioms are reminiscent of the half of the axioms for the
distributivity laws of [1] or the entwining conditions of [4].

The interaction between the multiplication morphism and the transposition wM;A

and its inverse will be denoted by

M A A M A A A A M A A M

D D
A M M A:

A M M A

Similarly, the interaction between the unit morphism and the transposition wM;A and
its inverse will be denoted by

M M M M

D A M D M A:

A M M A

For the examples we are going to consider below, we fix a commutative associa-
tive unital ring k. Our base symmetric monoidal category is Mod.k/ the category of
k-modules with ˝k the ordinary tensor product over k taken as the monoidal prod-
uct ˝. We also assume B is an associative/coassociative unital/counital bialgebra,
or a Hopf algebra with an invertible antipode whenever it is necessary. We refer the
reader to [11] for the definitions of (co)module (co)algebras.

Example 2.3. Fix a left B-comodule M . We let wM;X W M ˝ X ! X ˝ M be a
transposition if (i) X is a left B-module and (ii) wM;X is defined by the formula

wM;X .m ˝ x/ ´ m.�1/x ˝ m.0/
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for any m˝x 2 M ˝X . For this class of transpositions w, an algebra .A; �A; e/ is w-
transpositive if A is a left B-module algebra. Similarly .C; ıC ; "/ is a w-transpositive
coalgebra, if C is a right B-module coalgebra.

Example 2.4. Fix a right B-module M . We let wM;X W M ˝ X ! X ˝ M be a
transposition if (i) X is a right B-comodule and (ii) wM;X is defined by the formula

wM;X .m ˝ x/ ´ x.0/ ˝ mx.1/

for any m ˝ x 2 M ˝ X . For this class of transpositions w, an algebra .A; �A; e/ is
w-transpositive if A is a right B-comodule algebra. Similarly .C; ıC ; "/ is a w-trans-
positive coalgebra if C is a left B-comodule coalgebra.

Example 2.5 ([19]). Fix a left B-comodule M and a right B-module N . We let
wM ˝N;X W M ˝ N ˝ X ! X ˝ M ˝ N be a transposition if X is a left B-comodule
and (ii) wM ˝N;X is defined by the formula

wM˝N;X .m ˝ n ˝ x/ D m.�1/x.0/ ˝ m.0/ ˝ nx.�1/:

In this case, a coalgebra C is a w-transpositive coalgebra if C is both a B-module
coalgebra and a B-comodule coalgebra. Similarly, an algebra A is a w-transpositive
algebra if A is both a B-module algebra and a B-comodule algebra.

3. The universal para-(co)cyclic theory

Let ƒ be Connes’ cyclic category [5] and ƒN be the variation of ƒ as defined in
[14]. A functor F W ƒ ! C will be referred to as a cocyclic module in C , while
any functor of the form F W ƒN ! C will be referred to as a para-cocyclic module
in C . A (para-)cyclic module F in C is defined to be a (para-)cocyclic module in
Cop. A morphism between (para-)cocyclic modules h W F ! G in C is just a natural
transformation of functors.

Another category we find useful for the purposes of this paper is the category S

with objects f0; 1g where there is one unique non-trivial morphism i ! j between
any two distinct objects i; j 2 f0; 1g. Any functor of the form F W S ! C will be
referred to as an S -module.

Suppose that C and M are two objects in C such that we have a transposition
wM;C W M ˝ C ! C ˝ M . For every n > 0, we define an S -module Pn.C; M/ in
C as follows: let Pn.C; M/ is the functor from S to C given on the objects by

Pn.C; M/.0/ ´ C ˝n ˝ M ˝ C;

Pn.C; M/.1/ ´ C ˝nC1 ˝ M:
(3.1)
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Moreover, we let Pn.C; M/.0 ! 1/ ´ tnC2 where tnC2 W C ˝n ˝ M ˝ C !
C ˝nC1 ˝M is the cyclic permutation coming from the symmetric monoidal structure
of C . Thus, the inverse of tnC2 provides Pn.C; M/.1 ! 0/.

Theorem 3.1. Let .C; ıC ; "/ be a w-transpositive coalgebra. Let colimS P�.C; M/

be level-wise colimit of P�.C; M/. Then colimS P�.C; M/ carries a para-cocyclic
module structure.

Proof. The cosimplicial structure morphisms are given by

@i ´ C ˝i ˝ ıC ˝ C ˝n�i ˝ M and �j ´ C ˝j C1 ˝ " ˝ C ˝n�1�j ˝ M;

which are defined only for 0 6 i 6 n and 0 6 j 6 n � 1 and on C ˝nC1 ˝ M . We
also let

@nC1 ´ .C ˝n ˝ wM;C ˝ C / B .C ˝n ˝ M ˝ ıC /;

which is a morphism defined on C ˝n ˝ M ˝ C . One can see that we have well-
defined morphisms @i and �j for 0 6 i 6 n C 1 and 0 6 j 6 n on the level-wise
colimits. The para-cocyclic structure morphisms are defined as

�n W Pn.C; M/.0/ ! Pn.C; M/.1/; �n ´ C ˝n ˝ wM;C ;

for any n > 0. Again, one can lift �n to the colimS Pn.A; M/ for any n > 0. The
verification of the cosimplicial identities between @i and �j for the range 0 6 i 6 n

and 0 6 j 6 n is standard and follows from the fact that C is a coassociative counital
coalgebra in C . As the first non-trivial case we will consider @j @nC1. If 0 6 j 6 n,
one can describe the composition by

� � � C � � � M C
� � � � � �
� � � � � �
� � � C C � � � C M C:

This shows that @j @nC1 D @nC2@j for 0 6 j 6 n. For j D n C 1, by using the fact
that C is a w-transpositive coalgebra, we see that @nC1@nC1 can be described as

� � � M C � � � M C � � � M C
� � � � � � � � �
� � � D � � � D � � �
� � � � � � � � �
� � � C C M C � � � � � �

� � � C C M C � � � C C M C;
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which is equivalent to saying that @nC1@nC1 D @nC2@nC1. This finishes the proof
that the level-wise colimit colimS P�.C; M/ is pre-cosimplicial. Now we consider
�i@nC1. If 0 6 i < n, the composition can be described by

� � � C � � � M C
� � � � � �
� � � � � �
� � � � � � C M C:

Then one can easily see that �i@nC1 D @n�i for 0 6 i < n. We also observe that
�n@nC1 D id since

� � � M C � � � M C
� � � � � �
� � � D � � �
� � � � � � M C:
� � � M C

This finishes the proof that colimS P�.C; M/ is a cosimplicial object in C . Now we
must check the para-cocyclic identities. First we observe that �nC1@0 D @nC1 by
definition. Next we consider �nC1@i . For the range 0 < i < n we represent the
composition by

� � � C � � � M C
� � � � � �
� � � C C � � � C M;

which means that one has �nC1@i D @i�1�n for the range 0 < i < n. For i D n we
consider @n�n, which is represented by

� � � M C � � � M C
� � � � � �
� � � D � � �
� � � � � �
� � � C C M � � � C C M;

which is equivalent to saying @n�n D �2
nC1@0 D �nC1@nC1. So far we have the

following relations

@i�n D �nC1@iC1 for 0 6 i < n and @n�n D �2
nC1@0:

Using these relations one can show that

@i�
j
n D �

j Cp
nC1 @q where .i C j / D .n C 1/p C q
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for any n > 0, 0 6 i 6 nC1 and j > 0, i.e., colimS P�.C; M/ is a pre-para-cocyclic
object in C . We leave the verification of the identities

�j
n �i D �q�

iCp
nC1 where .i � j / D .n C 1/.�p/ C q

involving para-cyclic operators and the codegeneracy operators to the reader.

For simplicity, the para-cocyclic module colimS P�.C; M/ will be denoted by
T�.C; M/.

4. Approximation theorems for pseudo-para-(co)cyclic objects

Definition 4.1. Assume C is an arbitrary small category and D is a subcategory. For
an arbitrary object X of C a morphism uX W AppD.X/ ! X is called the approx-
imation of X within D if (i) AppD.X/ is an object in D and (ii) every morphism
v W D ! X with D 2 Ob.D/ factors uniquely through uX , i.e., there exists a unique
morphism v0 W D ! AppD.X/ such that v D uX Bv0. Similarly, the co-approximation
CoAppD.X/ is the approximation of X within Dop viewed as an object of Cop. We
do not make any assumptions about the existence of (co)approximations.

Theorem 4.2. Assume C is a small category with equalizers. Then the approximation
Appƒ.X�/ of any para-(co)cyclic module X� within the category of (co)cyclic modules
in C exists.

Proof. Every para-(co)cyclic object has a canonical endomorphism !� defined at each
degree n > 0 by !n ´ �nC1

n , which commutes with all the structure morphisms. The
cyclic approximation Appƒ.X�/ of a para-(co)cyclic object X� is defined degree-wise
as the equalizer of the pair .!�; id�/ of para-(co)cyclic modules in C . Since both !� and
id� are morphisms of para-(co)cyclic module in C , their equalizer Appƒ.X�/ ! X� is
a morphism of para-(co)cyclic modules in C . Moreover, �nC1

n D idn on Appƒ.Xn/,
i.e., Appƒ.X�/ is a (co)cyclic module in C . Suppose that we have a morphism
f� W Y� ! X� of para-(co)cyclic modules in C where Y� is a (co)cyclic module in
C . Since !nfn D �nC1

n fn D fn�nC1
n D fn for any n > 0, f� factors through the

equalizer Appƒ.X�/.

Recall from [17] that an endo-functor B W C ! C is called a comonad if there
exist natural transformations � W B ! B2 and " W B ! idC which satisfy associativity
and unitality axioms. We will refer to an object X as a B-coalgebra if there exists a



The universal Hopf-cyclic theory 341

morphism �X W X ! B.X/ such that the following diagrams commute:

B.X/
�X �� B2.X/ B.X/

"X �� X

X

�X

��

�X

�� B.X/,

B.�X /

��

X .

�X

����������
idX

��

A morphism f W X ! Y between two B-coalgebras is called a morphism of B-
coalgebras if one has a commuting diagram of the form

X

f

��

�X �� B.X/

B.f /

��

"X �� X

f

��
Y �Y

�� B.Y /
"Y

�� Y .

The full subcategory of B-coalgebras in C is denoted by CoAlg.B/ and the category
of B-coalgebras and their morphisms is denoted by CB.

Example 4.3. Let .C ; ˝/ be the category of k-modules with ordinary tensor product
of modules as the monoidal product. Then any k-coalgebra .C; �; "/ defines two
comonads . � ˝C / and .C ˝ � /. Moreover, the category of coalgebras in these cases
are the same as the category of right and left C -comodules respectively.

Example 4.4. Let .C ; ˝/ be the opposite category of k-modules with ordinary tensor
product of modules as the monoidal product. Then any k-algebra .A; �; e/ determines
two comonads . � ˝ A/ and .A ˝ � /. Moreover, the category of coalgebras with
respect to these comonads are the same as the category of right and left A-modules
respectively.

Definition 4.5. A comonad B is called left exact (resp. right exact) if B commutes
with arbitrary small limits (resp. colimits). In other words for any functor F W � ! C

one has canonical isomorphisms

lim�.B B F / Š B.lim� F / (resp. colim�.B B F / Š B.colim� F //:

And a comonad is called exact if it is both left and right exact.

Let ƒC be the subcategory of ƒN generated by @n
j and �n

i with only 0 6 i 6 n

and 0 6 j 6 n. In other words, ƒC is the subcategory of the category ƒ leaving out
the cyclic morphisms and the last face morphisms @n

nC1 at each degree n > 0.

Definition 4.6. Let B be a comonad on a category C . A para-(co)cyclic object
T� W ƒN ! CoAlg.B/ is called a pseudo-para-(co)cyclic B-coalgebra if its restriction
to the subcategory ƒC factors through CB.
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Theorem 4.7. Let B be a left exact comonad on a complete category C . Then every
pseudo-para-cyclic B-coalgebra T� W ƒ

op
N ! CoAlg.B/ admits an approximation of

the form Appƒ.T B
�

/ W ƒ
op
N ! CB within the category of cyclic B-coalgebras.

Proof. We are going to abuse the notation and use @j , �i and �`
n to denote T .@n

j /,

T .�n
i / and T .�`

n/ respectively. For every n > 0, denote the B-coalgebra structure
morphisms Tn ! B.Tn/ by �n. For any n > 0, define �n;m W T m

n ! Tn as the
equalizer of the pair of morphisms B.�m

n /�n and �n�m
n for every m 2 N. Now define

T B
n ´ lim

m2N
T m

n

�n;m���! Tn;

where �n W T B
n ! Tn is the canonical morphism into Tn for any n > 0. Consider the

following non-commutative diagram in C :

B.Tn/
B.�

j
n / �� B.Tn/

B.� i
n/ �� B.Tn/

Tn

�n

��

�
j
n

�� Tn

�n

��

� i
n

�� Tn

�n

��

T B
n

�n

��

T B
n .

�n

��

Since �n is the equalizer of the pairs of morphisms .�n� i
n; B.� i

n/�n/ for all i 2 N, if
we can show that

�n� i
n�j

n �n D B.� i
n/�n�j

n �n (4.1)

for all i 2 N we will obtain a functorial ‘restriction’ of �
j
n to T B

n , which will be
denoted by .�

j
n /B for any j 2 N. Consider the left-hand side of equation 4.1, which

is
�n� iCj

n �n D B.� iCj
n /�n�n D B.� i

n/B.�j
n /�n�n D B.� i

n/�n�j
n �n;

as we wanted to show.
Now, for 0 6 j 6 n C 1 consider the following diagram in C :

B.TnC1/
B.@j / �� B.Tn/

B.� i
n/ �� B.Tn/

TnC1

�nC1

��

@j

�� Tn

�n

��

� i
n

�� Tn

�n

��

T B
nC1

�nC1

��

T B
n .

�n

��
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Here the square on top right does not commute and the square on top left commutes
as long as 0 6 j 6 n. However, since @nC1 D @0�nC1 (recall that T� is cyclic, not
cocyclic) and �nC1 has a restriction to T B

nC1, one can assume without loss of generality
that 0 6 j 6 n. If we can show that

�n� i
n@j �nC1 D B.� i

n/�n@j �nC1 (4.2)

for any i 2 N, one obtains a unique morphism T B
nC1 ! T B

n , which is going to be
denoted as .@j /B. The uniqueness of this morphism implies its functoriality. Consider
the left-hand side of the equation 4.2,

�n� i
n@j �nC1 D�n@q�

iCp
nC1 �nC1;

where .i C j / D .n C 1/p C q and 0 6 q 6 n. Now use the fact that 0 6 j 6 n and
T� is a pseudo-para-cyclic to deduce

�n@q�
iCp
nC1 �nC1 D B.@q/�n�

iCp
nC1 �nC1 D B.@q/B.�

iCp
nC1 /�n�nC1

D B.� i
nC1/B.@j /�n�nC1 D B.� i

nC1/�n@j �nC1;

as we wanted to show. One can similarly prove that the relevant diagrams commute
for the degeneracy morphisms. This finishes the proof that T B

�
is a para-cyclic module

in C .
Now, for an arbitrary j 2 N consider the non-commutative diagram

Tn
�n �� B.Tn/

B.�n/ �� B2.Tn/

Tn

�
j
n

��

�n

�� B.Tn/

B.�
j
n /

��

B.�n/
�� B2.Tn/

B2.�
j
n /

��

T B
n

�n

��

B.T B
n /

B.�n/

��

and the composition

B2.�j
n /B.�n/�n�n D B2.�j

n /�Tn
�n�n D �Tn

B.�j
n /�n�n

D �Tn
�n�j

n �n D B.�n/�n�j
n �n

D B.�n/B.�j
n /�n�n:

The equality of the first and the last terms implies that �n�n factors through the limit
of the equalizers of the pairs B2.�

j
n /B.�n/ and B.�n/B.�

j
n / as j runs through the set

of all natural numbers. But B is a left exact comonad, which means that this limit is
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exactly B.T B
n /. Thus we get the B-coalgebra structure on T B

n , which implies T B
�

is a
para-cyclic module in CoAlg.B/.

Now we need to show that given any morphism � W Œn	 ! Œm	 in ƒN, the morphism
�B W T B

m ! T B
n is a morphism of B-coalgebras. In order to prove this we need the

following diagram to commute for any i > 0 and 0 6 j 6 n:

B.T B
n / B.T B

m/
B.�/��

T B
n

�n

��

T B
m.

�B
��

�m

��

To achieve this, first we need to show that the larger squares in the following diagrams
commute:

B.Tn/ B.TnC1/
B.@j /��

Tn

�n

��

TnC1

�n

��

@j

��

T B
n

�n

��

T B
nC1,

�n

��

.@j /B
��

B.Tn/
B.�j /�� B.TnC1/

Tn

�n

��

�j

�� TnC1

�m

��

T B
n

�n

��

.�j /B
�� T B

nC1.

�n

��

In these diagrams the top squares commute since T� is pseudo-para-cyclic. We have
already shown that the bottom squares commute. Thus both diagrams commute for
the prescribed range. Then we must show that the larger square in the following
diagram commutes:

B.Tn/
B.� i

n/ �� B.Tn/

Tn

�n

��

� i
n

�� Tn

�n

��

T B
n

�n

��

.� i
n/B

�� T B
n .

�n

��

The bottom square commutes, while the top square does not. However, �n equalizes
�n� i

n and B.� i
n/�n. Therefore the larger diagram commutes. This finally finishes the

proof that T B
�

is a para-cyclic B-coalgebra. Now we use Theorem 4.2 to complete the
proof.
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Theorem 4.8. Let B be a left exact comonad on a complete category C . Then every
pseudo-para-cocyclic B-coalgebra T� W ƒN ! CoAlg.B/ admits an approximation
of the form Appƒ.T B

�
/ W ƒN ! CB within the category of cocyclic B-coalgebras.

Proof. As before let �n denote the B-coalgebra structure morphism on Tn for any
n > 0. Let 
.n/ be the set of pairs of morphism of the form

.�n� i
n; B.� i

n/�n/ for i > 0 or .�n@nC1; B.@nC1/�n/;

and we define �.�/ W T
	
n ! Tn as the equalizer of a pair � 2 
.n/. Next we define

the approximation T B
n for each n > 0 as

T B
n ´ lim

	
T 	

n

�.	/���! Tn;

where we use �n W T B
n ! Tn to denote the canonical morphism into Tn. The rest of

the proof is very similar to that of Theorem 4.7, and we leave it to the reader.

Remark 4.9. There are eight versions of Theorem 4.7

Assume B is an exact (co)monad on C . Then any pseudo-para-(co)cyclic
B-(co)algebra in C admits an(a) (co)approximation in the category of (co)cyclic
B-(co)algebras.

By assuming C is both complete and cocomplete, one can use C and Cop interchange-
ably. This reduces the number of versions to four:

Assume B is an exact (co)monad on C . Then any pseudo-para-(co)cyclic
B-(co)algebra in C admits an approximation in the category of (co)cyclic B-
(co)algebras.

We gave proofs for two of these statements in Theorem 4.7 and Theorem 4.8 above.
The proofs of the remaining 2 statements are very similar and therefore will be omitted.

Definition 4.10. Assume that B is a (co)monad on C . The (co)cyclic B-(co)algebra
Appƒ.T B

�
/ corresponding to a pseudo-para-(co)cyclic B-(co)algebra T� is called the

universal (co)cyclic B-(co)algebra of T�. Moreover, given a functor of the form
F W CoAlg.B/ ! Mod.k/ (resp. F W Alg.B/ ! Mod.k/) and a (co)homology func-
tor H� on the category of (co)cyclic k-modules, one can compute

H�F .Appƒ.T B
�

//:

We will call this (co)homology the B-equivariant H -(co)homology of T� with coeffi-
cients in F .
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5. The universal cyclic theory of (co)module (co)algebras

Cyclic cohomology of Hopf algebras is defined by Connes and Moscovici in their
work on the transverse index theorem [6], [7]. This theory evolved to include algebras
admitting Hopf symmetries [8]. However, a (co)cyclic theory and basic tools of cyclic
cohomology had to be built from scratch for each type of symmetry separately [8],
[12], [14]. In the following, we give the construction of Hopf-cyclic theories for
(co)module (co)algebras including the missing case for comodule coalgebras using
the universal Hopf-cyclic theory we developed above.

5.1. Hopf and equivariant cyclic theory of module coalgebras. Fix a commutative
unital ring k and an associative/coassociative unital/counital k-bialgebra B . Our base
category is the category of k-modules with the ordinary tensor product over k, i.e.,
.C ; ˝/ ´ .Mod.k/; ˝k/. Our base monad in C is going to be B ´ .B ˝ � /. Since
we use B as a monad, we will use the algebra structure on B .

The category of B-algebras in C (i.e., left B-modules) is a monoidal category with
respect to the ordinary tensor product of k-modules with the diagonal action of B on
the left. Explicitly, given a pair of B-modules X and Y , the B-module structure on
the product is given by

b.x ˝ y/ ´ b.1/x ˝ b.2/y

for any x ˝ y 2 X ˝ Y . However, the product is not symmetric unless B is co-
commutative, but there is a braided monoidal structure if one restricts oneself to use
Yetter–Drinfeld modules. If we denote the full subcategory of left B-modules of
Mod.k/ by L.B/ then one can see that Alg.B/ D L.B/. Therefore, the subcategory
CB of C which consists of B-algebras and their morphisms is the monoidal category
of left B-modules Mod.B/.

Fix a left/left B-module/comodule M and for each X 2 Ob.CB/ define a trans-
position wM;X W M ˝ X ! X ˝ M by

wM;X .m ˝ x/ ´ m.�1/x ˝ m.0/

for any m ˝ x 2 M ˝ X , as in Example 2.3. Any coalgebra .C; ıC ; "/ in CB is
a B-module coalgebra and therefore is automatically w-transpositive. We form the
objects P�.C; M/ and T�.C; M/ ´ colimS P�.C; M/ Š L

n>0 C ˝nC1 ˝ M in C

and consider the latter as a para-cocyclic module in C . The structure maps are defined
as

@n
j .c0 ˝ � � � ˝ cn ˝ m/

D
(

.� � � ˝ c
j

.1/
˝ c

j

.2/
˝ � � � ˝ m/ if 0 6 j 6 n;

.c0
.1/

˝ c1 ˝ � � � ˝ cn ˝ m.�1/c
0
.2/

˝ m.0// if j D n C 1I
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�n
i .c0 ˝ � � � ˝ cn ˝ m/

D
(

".cj C1/.c0 ˝ � � � ˝ cj ˝ cj C2 ˝ � � � ˝ m/ if 0 6 j 6 n � 1;

".c0/.c1 ˝ � � � ˝ cn ˝ m/ if j D nI

�n.c0 ˝ � � � ˝ cn ˝ m/ D .c1 ˝ � � � ˝ cn ˝ m.�1/c
0 ˝ m/:

In fact T�.C; M/ carries a pseudo-para-cocyclic B-algebra structure. In this context
this means that (i) T�.C; M/ is a graded B-module, (ii) T�.C; M/ is a para-cocyclic k-
module, (iii) every @n

j W Tn.C; M/ ! TnC1.C; M/ for 0 6 j 6 n is a B-module map.
Note that as a part of the definition, we exclude @n

nC1 and �n from being B-module
maps for any n > 0. Then we define

Q�.C; M/ ´ Appƒ.T�.C; M/B/;

which is the quotient of the T�.C; M/ by the smallest B-submodule and cocyclic
k-submodule generated by the images of the commutators ŒLb; � i

n	 of the linear op-
erators � i

n and Lb (left action by b 2 B) for any n > 0, i 2 N and b 2 B . Then
Q�.C; M/ is the largest quotient of T�.C; M/ which is a cocyclic B-module. In other
words, if we have a commutative diagram

T�.C; M/

		�����������
f� �� X�

Q�.C; M/

ef�





where X� is a cocyclic B-module and f� is a morphism of graded B-modules and
para-cocyclic k-modules, then one has a unique morphism zf� of cocyclic B-modules.
This is the Hopf-equivariant cocyclic object defined in [14] for a B-module coalgebra
C and an arbitrary B-module/comodule M . Therefore, the Hopf cyclic cohomology
of the triple .C; B; M/ is defined as the cyclic cohomology of the cocyclic k-module
C�.C; M/ ´ k ˝B Q�.C; M/.

Similarly, any algebra .A; �A; 1/ in CB is a B-module algebra and therefore is
automatically w-transpositive. We form the objects P�.A; M/ and T�.A; M/ ´
colimS P�.A; M/ Š L

n>0 A˝nC1 ˝ M in C and consider the latter as a para-cyclic
module in C . In fact T�.A; M/ carries a pseudo-para-cyclic B-algebra structure. In
this context this means that (i) T�.A; M/ is a graded B-module, (ii) T�.A; M/ is a para-
cyclic k-module and (iii) every @n�1

j W Tn.C; M/ ! Tn�1.C; M/ for 0 6 j 6 n � 1

is a B-module. As a part of the definition, we again exclude @n�1
n W Tn.A; M/ !

Tn�1.A; M/ and �n from being B-module maps for any n > 1. If we let

Q�.A; M/ ´ CoAppƒ.T�.A; M/B/
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then Q�.A; M/ is the largest pseudo-para-cyclic submodule of T�.A; M/ which is
a cyclic B-module. This is the Hopf-equivariant cyclic object defined in [14] for a
B-module algebra A and an arbitrary B-module/comodule M . Therefore, the Hopf-
cyclic (co)homology of the triple .A; B; M/ is defined as the cyclic (co)homology of
the cyclic k-module C�.A; M/ ´ k ˝B Q�.A; M/.

5.2. Hopf–Hochschild homology. Let .C ; ˝/, M , w, B and B be as before. As-
sume that A is a B-module algebra and construct P�.A; M/ in C . Again, we define
Tn.A; M/ as the colimit of Pn.A; M/ W S ! C for each n. Then T�.A; M/ ŠL

n>0 A˝nC1 ˝ M is a pseudo-para-cyclic object in CB. Observe that any para-
cyclic object is also a simplicial object. Now define T 0

�
.A; M/ as App� T�.A; M/B

replacing the cyclic category ƒ by its simplicial subcategory �. This is the largest
quotient of T�.A; M/ which is a simplicial B-module. The singular homology of the
simplicial module k ˝B T 0

�
.A; M/ is the Hopf–Hochschild homology of the triple

.A; B; M/ as constructed in [13].

5.3. Hopf and equivariant cyclic theory of comodule (co)algebras. Fix a com-
mutative unital ring k and a Hopf algebra B . Our base category is the category of
k-modules with the ordinary tensor product over k, i.e., .C ; ˝/ ´ .Mod.k/; ˝k/.
Our base comonad in C is going to be B ´ .B ˝ � /, thus we will use the coalgebra
structure on B .

The category of left B-comodules (i.e., B-coalgebras in C ) is a monoidal category
with respect to the ordinary tensor product of k-modules, with the diagonal coaction
of B on the left. Explicitly, given a pair of B-modules X and Y , the B-comodule
structure on the product is given by

�.x ˝ y/ ´ xŒ�1
yŒ�1
 ˝ .xŒ0
 ˝ yŒ0
/

for any x ˝ y 2 X ˝ Y . However, the product is not symmetric unless B is com-
mutative, but there is a braided monoidal structure if one restricts oneself to use
Yetter–Drinfeld modules.

Fix a left/left B-module/comodule M and for each X 2 Ob.CB/ define a trans-
position wM;X W M ˝ X ! X ˝ M by

wM;X .m ˝ x/ ´ xŒ0
 ˝ xŒ�1
m

for any m ˝ x 2 M ˝ X , as in Example 2.4.
Any coalgebra .C; ıC ; "/ in CoAlg.B/ is a B-comodule coalgebra and therefore

is automatically w-transpositive. We form the objects P�.C; M/ and T�.C; M/ ´
colimS P�.C; M/ Š L

n>0 C ˝nC1 ˝ M in C and consider the latter as a para-
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cocyclic module in C . The structure maps are defined as

@n
0.c0 ˝ � � � ˝ cn ˝ m/ D .c0

.1/ ˝ c0
.2/ ˝ c1 ˝ � � � ˝ cn ˝ m/;

�n
0 .c0 ˝ � � � ˝ cn ˝ m/ D ".c1/.c0 ˝ c2 ˝ � � � ˝ m/;

�n.c0 ˝ � � � ˝ cn ˝ m/ D .c1 ˝ � � � ˝ cn ˝ c0
Œ0
 ˝ c0

Œ�1
m/;

with @n
j ´ �

�j
nC1@n

0�
j
n and �n

j D �
�j
n�1�n

0 �
j
n for appropriate j . Here we distinguish the

B-comodule structure and coalgebra structures on C by using �C .c/ D cŒ�1
˝cŒ0
 for
the former and �C .c/ D c.1/ ˝ c.2/ for the latter. In fact T�.C; M/ carries a pseudo-
para-cocyclic B-comodule structure. In this context this means that T�.C; M/ is a
graded B-module and the structure maps @n

j and �n
i are all B-module maps except

@n
nC1 and � i

n for any n > 0 and i 2 Z. Then we define

Q�.C; M/ ´ Appƒ.T�.C; M/B/;

which is the quotient of T�.C; M/ by the smallest graded B-submodule and cocyclic k-
submodule generated by the images of the commutators ŒLb; � i

n	 of the linear operators
� i

n and Lb with b 2 B and i 2 Z. Then Q�.C; M/ is a cocyclic B-coalgebra,
i.e., a cocyclic B-comodule, and we define the Hopf-cyclic cohomology of C with
coefficients in M as the cyclic cohomology of the cocyclic k-module k˝B Q�.C; M/.

Similarly, any algebra .A; �A; 1/ in the category CoAlg.B/ is a B-comodule alge-
bra and therefore is automatically w-transpositive. We form the objects P�.A; M/ and
T�.A; M/ ´ colimS P�.A; M/ in C and consider the latter as a para-cyclic module
in C . In fact T�.A; M/ carries a pseudo-para-cyclic B-coalgebra structure and we see
that

Q�.A; M/ ´ CoAppƒ.T�.A; M/B/

is the largest pseudo-para-cyclic submodule of T�.A; M/ which is a cyclic B-como-
dule. Moreover, the cyclic cohomology of the cyclic k-module k ˝B Q�.A; M/ is
the bialgebra cyclic homology of a module coalgebra as defined in [12].

Remark 5.1. Based on Connes and Moscovici’s seminal work [6], [7] on cyclic
cohomology of Hopf algebras, we see two parallel yet different families of (co)cyclic
theories for (co)module (co)algebras in the literature. One starts with [8], [9] by
Hajac, Khalkhali, Rangipour and Sommerhäuser, which lead to [12] by the author
and [14] by Khalkhali and the author, which in turn forms the basis of this article.
The parallel family starts with [15] by Khalkhali and Rangipour and then [10] by Jara
and Ştefan and evolves into [2], [3] by Böhm and Ştefan, where the authors expand
the cyclic theories we develop in this paper for arbitrary monoidal categories in the
dual direction. Namely, the authors construct a cyclic object for a coalgebra and a
cocyclic object for an algebra. We now know that the (co)cyclic modules developed
in [10] and [8] are cyclic duals of each other (in the sense of Connes’ [5]) thanks to
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[16] by Khalkhali and Rangipour. We conjecture that (co)cyclic theories developed
here and in [2] are cyclic duals for symmetric strict monoidal categories, provided that
the class of tranpositions satisfy the analogue of the SAYD condition. Nonetheless,
we do recover the dual Hopf-cyclic cohomology of (co)module (co)algebras with
arbitrary coefficients via the bivariant Hopf-cyclic cohomology developed in [14]
and the (co)cyclic theories developed in this paper using the classical version of
Khalkhali–Rangipour duality isomorphism [16].

References

[1] J. Beck, Distributive laws. In Seminar on triples and categorical homology theory
(ETH, Zürich, 1966/67), Lecture Notes in Math. 80, Springer, Berlin 1969, 119–140.
Zbl 0186.02902 MR 0241502
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