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Geometric cycles, index theory and twisted K-homology

Bai-Ling Wang

Abstract. We study twisted Spinc-manifolds over a paracompact Hausdorff space X with a
twisting ˛ W X ! K.Z; 3/. We introduce the topological index and the analytical index on the
bordism group of ˛-twisted Spinc-manifolds over .X; ˛/, taking values in topological twisted
K-homology and analytical twisted K-homology respectively. The main result of this article
is to establish the equality between the topological index and the analytical index for closed
smooth manifolds. We also define a notion of geometric twisted K-homology, whose cycles are
geometric cycles of .X; ˛/ analogous to Baum–Douglas’s geometric cycles. As an application
of our twisted index theorem, we discuss the twisted longitudinal index theorem for a foliated
manifold .X; F / with a twisting ˛ W X ! K.Z; 3/, which generalizes the Connes–Skandalis
index theorem for foliations and the Atiyah–Singer families index theorem to twisted cases.
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1. Introduction

According to work of Baum and Douglas [10], [11], the Atiyah–Singer index theorem
([6], [7]) for a closed smooth manifold X can be formulated as in the following
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commutative triangle

K0.T �X/

Indext

������������
Indexa

������������

Kt
0.X/

�

Š
�� Ka

0 .X/;

(1.1)

whose arrows are all isomorphisms. Here K0.T �X/ denotes the K-cohomology with
compact supports of the cotangent bundle T �X , corresponding to symbol classes of
elliptic pseudo-differential operators on X . Kt

0.X/ is the topological K-homology
constructed in [10], and Ka

0 .X/ is the Kasparov’s analytical K-homology (see [30]
and [26]) of the C�-algebra C.X/ of continuous complex-valued functions on X .

The topological index and the analytical index can defined on the level of cycles.
The basic cycles for Kt

0.X/ (resp. Kt
1.X/) are triples .M; �; E/ consisting of even-

dimensional (resp. odd-dimensional) closed smooth manifolds M with a given Spinc

structure on the tangent bundle of M together with a continuous map � W M ! X and
a complex vector bundle E over M . The equivalence relation on the set of all cycles
is generated by the following three steps (see [10] for details):

(i) bordism,

(ii) direct sum and disjoint union,

(iii) vector bundle modification.

Addition in Kt
ev=odd.X/ is given by the disjoint union operation of topological cycles.

In this paper, this K-homology will be called the geometric K-homology of X , while
the notion of topological K-homology will be reserved for homotopy theoretically
defined K-homology.

Recall that a symbol class in K0.T �X/ of an elliptic pseudo-differential operator
D on X is represented by

�.D/ W ��E0 ! ��E1;

where � W T �X ! X is the projection, E0 and E1 are complex vector bundles over
X . Choose a Riemannian metric on X , let S.T �X ˚ R/ be the unit sphere bundle
in T �X ˚ R, equipped with the natural Spinc structure. Denote by � the projection
S.T �X ˚ R/ ! X . Let yE be the complex vector bundle over S.T �X ˚ R/ obtained
by the clutch construction (see Section 10 in [10]): as S.T �X ˚ R/ consists of two
copies of the unit ball bundle of T �X glued together along the unit sphere bundle,
one can use the symbol �.D/ to clutch ��E0 and ��E1 together along the unit
sphere bundle S.T �X/. The topological index Indext .Œ�.D/�/ is represented by the
following topological cycle

.S.T �X ˚ R/; yE; �/:
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The Kasparov analytical K-homology Ka
ev=odd.X/, denoted KKev=odd.C.X/; C/

in the literature, is generated by unitary equivalence classes of multi-graded Fred-
holm modules over C.X/ modulo operator homotopy relation [30]. Addition in
KKev=odd.C.X/; C/ is defined using a natural notion of direct sum of Fredholm mod-
ules; see [26] for details. The analytical index Indexa.Œ�.D/�/ is defined in terms of
Poincaré duality (cf. [31]):

K0.T �X/ Š KK0.C; Cc.T �X//

Š KK0.C.X/; C/ (Kasparov’s Poincaré duality)

D Ka
0 .X/:

On the level of cycles, an even dimensional topological cycle .M; �; E/ defines a
canonical element ŒD=

E
M � in Ka

0 .M/ determined by the Dirac operator

D=
E
M W C 1.SC ˝ E/ ! C 1.S� ˝ E/

where S˙are the positive and negative spinor bundles (called reduced spinor bundles
in [26]). Then the natural isomorphism

� W Kt
0.X/ ! Ka

0 .X/

is defined by the correspondence

.M; �; E/ 7! ��.ŒD=
E
M �/;

where �� W Ka
0 .M/ ! Ka

0 .X/ is the covariant homomorphism induced by �.
The commutative triangle (1.1) has played an important role in the understanding

of the Atiyah–Singer index theorem and its various generalizations such as the Baum–
Connes conjecture in [9]. In this article, we will generalize the Atiyah–Singer index
theorem to the framework of twisted K-theory following ideas inspired from Baum–
Douglas [10], [11] and Baum–Connes [9].

In this article, we aim to develop the index theorem in the framework of twisted
K-theory which is a natural generalization of the Baum–Douglas commutative trian-
gle (1.1). We need a notion of a twisting in complex K-theory, given by a continuous
map

˛ W X ! K.Z; 3/;

where K.Z; 3/ is an Eilenberg–MacLane space. We often choose a homotopy model
of K.Z; 3/ as the classifying space of the projective unitary group PU.H / of an
infinite dimensional, complex and separable Hilbert space H , equipped with the
norm topology. The norm topology could be too restrictive for some examples, one
might have to use the compact-open topology instead as discussed in [5].

For any paracompact Hausdorff space X with a continuous map ˛ W X ! K.Z; 3/,
the corresponding principal K.Z; 2/-bundle over X will be denoted by P˛ . Then
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any base-point preserving action of K.Z; 2/ on a spectrum defines an associated
bundle of based spectra. In this article, we mainly consider two spectra, one is the
complex K-theory spectrum K D f�nKg, the other is the Spinc Thom spectrum
MSpinc D fMSpinc.n/g. The corresponding bundle of based spectra over X will be
denoted by

P˛.K/ and P˛.MSpinc/;

respectively.
Twisted K-cohomology groups of .X; ˛/ are defined to be

�0.Cc.X; P˛.�nK///;

the homotopy classes of compactly supported sections of P˛.�nK/.
Let K be the C�-algebra of compact operators on the Hilbert space H , and P˛.K/

be the associated bundle of compact operators corresponding to the PU.H /-action
on K by conjugation. An equivalent definition of twisted K-theory of .X; ˛/ is the
algebraic K-cohomology groups of the continuous trace C�-algebra over X of com-
pactly supported sections of P˛.K/. The Bott periodicity of the K-theory spectrum
implies that we only have two twisted K-groups, denoted by

K0.X; ˛/ and K1.X; ˛/;

or simply Kev=odd.X; ˛/. We will review twisted K-theory and its basic properties in
Section 2.

We define topological twisted K-homology to be

Kt
n.X; ˛/ ´ lim�!

k!1
ŒSnC2k; P˛.�2kK/=X�;

the stable homotopy groups of P˛.K/=X . Due to Bott periodicity, we only have two
different topological twisted K-homology groups denoted by Kt

ev=odd.X; ˛/.
There is a notion of analytical twisted K-homology defined as Kasparov’s analyt-

ical K-homology:

Ka
ev=odd.X; ˛/ ´ KKev=odd.Cc.X; P˛.K//; C/:

Now we can state the main theorem of this article, which should be thought of as the
general index theorem in the framework of twisted K-theory.

MainTheorem (cf. Theorem 5.1 and Remark 5.3). Let X be a closed smooth manifold
and � W T �X ! X be the projection. Then there is a natural isomorphism

ˆ W Kt
ev=odd.X; ˛/ ! Ka

ev=odd.X; ˛/;

and there exist notions of the topological index and of the analytical index on

Kev=odd.T �X; ˛ B �/
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such that the following diagram

Kev=odd.T �X; ˛ B �/

Indext

���������������
Indexa

���������������

Kt
ev=odd.X; ˛/ Š

ˆ
�� Ka

ev=odd.X; ˛/

is commutative, and all arrows are isomorphisms.

We remark that topological and analytical twisted K-homology groups are well
defined for any paracompact Hausdorff space X with a continuous map ˛ W X !
K.Z; 3/. The above main theorem only holds for smooth manifolds, we believe that
the isomorphism

ˆ W Kt
ev=odd.X; ˛/ ! Ka

ev=odd.X; ˛/;

should be true for more general spaces such as paracompact Hausdorff spaces with
the homotopy type of finite CW complexes. We only establish this isomorphism for
smooth manifolds by applying the Poincaré duality in twisted K-theory which requires
differential structures, see the proof of Theorem 5.1 for details. It would be interesting
to have this isomorphism for paracompact Hausdorff spaces with the homotopy type
of finite CW complexes.

To prove the main theorem, we introduce a notion of ˛-twisted Spinc manifolds
over any paracompact Hausdorff space X with a continuous map ˛ W X ! K.Z; 3/

in Section 3, which consists of quadruples .M; 	; �; 
/, where

(1) M is a smooth, oriented and compact manifold together with a fixed classifying
map of its stable normal bundle,

	 W M ! BSO;

with BSO D lim�!k
BSO.k/ the classifying space of the stable normal bundle

of M ;

(2) � W M ! X is a continuous map;

(3) 
 is an ˛-twisted Spinc structure on M , that is, a homotopy commutative diagram
(see Definition 3.1 for details)

M

�

��

� �� BSO
�

�� �
�

�
�

�

�
�

�
�

�
W3

��
X ˛

�� K.Z; 3/.
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A manifold M admits an ˛-twisted Spinc structure if and only if there exists a con-
tinuous map � W M ! X such that

��.Œ˛�/ C W3.M/ D 0

in H 3.M; Z/. (This is known to physicists as the Freed–Witten anomaly cancellation
condition for type II D-branes (cf. [25]).)

We then define an analytical index for each ˛-twisted Spinc manifold over X

taking values in the analytical twisted K-homology Ka
ev=odd.X; ˛/ and establish its

bordism invariance.
In Section 4, we study the geometric ˛-twisted bordism groups �

Spinc

� .X; ˛/ and
establish a generalized Pontrjagin–Thom isomorphism (cf. Theorem 4.4) between
our geometric ˛-twisted bordism groups and the homotopy theoretic definition of
˛-twisted bordism groups

�Spinc

n .X; ˛/ Š lim
k!1

�nCk.P˛.MSpinc.k//=X/:

We also define a topological index on geometric ˛-twisted bordism groups. Then the
main theorem is proved in Section 5.

In Section 6, we explain the notion of geometric cycles for any paracompact
Hausdorff space X with a continuous map ˛ W X ! K.Z; 3/. Geometric cycles in
this sense are called ‘D-branes’ in string theory. These consist of an ˛-twisted Spinc

manifold M over X together with an ordinary K-class ŒE�. Following the work of
Baum–Douglas, we impose an equivalence relation generated by

(i) direct sum and disjoint union,

(ii) bordism,

(iii) Spinc vector bundle modification

on the set of all geometric cycles to obtain the geometric twisted K-homology
K

geo
ev=odd.X; ˛/. Then we establish the commutative diagram (cf. Theorem 6.4) for

a closed smooth manifold X with a twisting ˛ W X ! K.Z; 3/,

Kt
ev=odd.X; ˛/

‰

�	�����������
ˆ

	
������������

K
geo
ev=odd.X; ˛/ Š

�
�� Ka

ev=odd.X; ˛/,

(1.2)

whose arrows are all isomorphisms. One consequence of this commutative diagram is
that every twisted K-class in Kev=odd.X; ˛/ can be realized by appropriate geometric
cycles (cf. Corollary 6.5).
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Another application of the Main Theorem and the commutative diagram (1.2) is
that the index pairing

Kev=odd.X; ˛/ � Ka
ev=odd.X; ˛/ �! Z

can be expressed in terms of the usual index pairing for geometric cycles.
We remark that the commutative diagram (1.2) of isomorphisms should hold for

general paracompact Hausdorff spaces with the homotopy type of finite CW com-
plexes. The restriction to smooth manifolds is due to the fact that we only establish
the isomorphism ˆ in Theorem 5.1 for smooth manifolds. We expect that the equiv-
alence of geometric, topological and analytical twisted K-homology exists for any
finite CW complex. We will return to this equivalence and the corresponding index
paring in a sequel paper [13].

In Section 7, we study the twisted longitudinal index theorem (cf. Theorem 7.3)
for a foliated manifold .X; F / with a twisting ˛ W X ! K.Z; 3/, and show that this
twisted longitudinal index theorem generalizes both the Atiyah–Singer families index
theorem in [8] and Mathai–Melrose–Singer index theorem for projective families of
elliptic operators associated to a torsion twisting in [34].

In Section 8, we introduce a notion of twisted Spin manifolds over a manifold X

with a KO-twisting ˛ W X ! K.Z2; 2/. A smooth manifold M admits an ˛-twisted
Spin structure if and only if there exists a continuous map � W M ! X such that

��.Œ˛�/ C w2.M/ D 0

in H 2.M; Z2/. Here w2.X/ is the second Stiefel–Whitney class of TM . (This
is the anomaly cancellation condition for type I D-branes (cf. [44]).) We also dis-
cuss a notion of twisted string manifolds over a manifold X with a string twisting
˛ W X ! K.Z; 4/: A smooth manifold M admits an ˛-twisted string structure if and
only if there is a continuous map � W M ! X such that

��.Œ˛�/ C p1.M/

2
D 0

in H 4.M; Z/. Here p1.X/ is the first Pontrjagin class of TM . These notions could
be useful in the study of twisted elliptic cohomology.

It would be interesting to establish a local index theorem in the framework of
twisted K-theory in which differential twisted K-theory in [17], [28] will come into
play. We will return to these problems in subsequent work. Finally, we like to point
that, except in Sections 5 and 7 and Theorem 6.4 where X is smooth, X is assumed
to be a paracompact Hausdorff topological space throughout this article.
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2. Review of twisted K-theory

In this section, we briefly review some basic facts about twisted K-theory; the main
references are [5] and [18] (see also [15], [24], [39]).

Let H be an infinite dimensional, complex and separable Hilbert space. We shall
consider locally trivial principal PU.H /-bundles over a paracompact Hausdorff topo-
logical space X . The structure group PU.H / is equipped with the norm topology.
The projective unitary group PU.H / with the norm topology (cf. [32]) has the homo-
topy type of an Eilenberg–MacLane space K.Z; 2/. The classifying space of PU.H /,
as a classifying space of the principal PU.H /-bundle, is a K.Z; 3/. Thus, the set
of isomorphism classes of principal PU.H /-bundles over X is canonically identified
with (Proposition 2.1 in [5])

ŒX; K.Z; 3/� Š H 3.X; Z/:

A twisting of complex K-theory on X is given by a continuous map
˛ W X ! K.Z; 3/. For such a twisting, we can associate a canonical principal
K.Z; 2/-bundle P˛ through the following pull-back construction:

P˛

��

�� EK.Z; 2/

��
X ˛

�� K.Z; 3/.

(2.1)

Let K be the 0-th space of the complex K-spectrum. In what follows we take K to be
Fred.H /, the space of Fredholm operators on H . There is a base-point preserving
action of K.Z; 2/ on the K-theory spectrum

K.Z; 2/ � K ! K

which is represented by the action of complex line bundles on ordinary K-groups.
As we identify K.Z; 2/ with PU.H / and K with Fred.H /, the above base point
preserving action is given by the conjugation action

PU.H / � Fred.H / ! Fred.H /: (2.2)

The action (2.2) defines an associated bundle of K-theory spectra over X . Denote
by

P˛.K/ D P˛ �K.Z;2/ K

the bundle of based spectra over X with fiber the K-theory spectrum, and by
f�n

XP˛.K/ D P˛ �K.Z;2/ �nKg the fiber-wise iterated loop spaces.

Definition 2.1. The twisted K-groups of .X; ˛/ are defined to be the set of homotopy
classes of compactly supported sections of the bundle of K-spectra:

K�n.X; ˛/ ´ �0.Cc.X; �n
XP˛.K///:
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Due to Bott periodicity, we only have two different twisted K-groups K0.X; ˛/

and K1.X; ˛/. Given a closed subspace A of X , .X; A/ is a pair of topological spaces,
and we define relative twisted K-groups to be

Kev=odd.X; AI ˛/ ´ Kev=odd.X � A; ˛/:

Remark 2.2. Let ˛0; ˛1 W X ! K.Z; 3/ be a pair of twistings. If 
 W X � Œ1; 0� !
K.Z; 3/ is a homotopy between ˛0 and ˛1, written as

X

˛0


�

˛1

��K.Z; 3/;�

�

	
	
	
	

	
	
	
	

then there is a canonical isomorphism P˛0
Š P˛1

induced by 
. This canonical
isomorphism determines a canonical isomorphism on twisted K-groups,


� W Kev=odd.X; ˛0/
Š�! Kev=odd.X; ˛1/: (2.3)

This isomorphism 
� depends only on the homotopy class of 
. The set of homotopy
classes between ˛0 and ˛1 is an affine space modelled on ŒX; K.Z; 2/�. Note that the
first Chern class isomorphism is

Vect1.X/ Š ŒX; K.Z; 2/� Š H 2.X; Z/;

where Vect1.X/ is the set of equivalence classes of complex line bundles on X . We
remark that the isomorphisms induced by two different homotopies between ˛0 and
˛1 are related through an action of complex line bundles. This observation will play
an important role in the local index theorem for twisted K-theory.

Remark 2.3. Let K be the C�-algebra of compact operators on H . The isomor-
phism PU.H / Š Aut.K/ via the conjugation action of the unitary group U.H /

provides an action of K.Z; 2/ on the C�-algebra K . Hence, any K.Z; 2/-principal
bundle P˛ defines a locally trivial bundle of compact operators, denoted by P˛.K/ D
P˛ �K.Z;2/ K: Let Cc.X; P˛.K// be the C�-algebra of the compact supported sec-
tions of P˛.K/. We remark that Cc.X; P˛.K/ is the (unique up to isomorphism) sta-
ble separable complex continuous-trace C�-algebra over X with its Dixmier–Douady
class Œ˛� 2 H 3.X; Z/; here we identify the Čech cohomology of X with its singular
cohomology (cf. [39] and [38]). In [5] and [39], it was proved that twisted K-groups
Kev=odd.X; ˛/ are canonically isomorphic to the Kasparov KK-groups of the stable
continuous trace C�-algebra Cc.X; P˛.K//:

Kev=odd.X; ˛/ Š KKev=odd.C; Cc.X; P˛.K///: (2.4)
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The twisted K-theory is a 2-periodic generalized cohomology theory: a con-
travariant functor on the category of pairs consisting of a pair of topological spaces
A � Xwith a twisting ˛ W X ! K.Z; 3/ to the category of Z2-graded abelian
groups. Note that a morphism between two pairs .X; ˛/ and .Y; ˇ/ is a continuous
map f W X ! Y such that ˇ B f D ˛. The twisted K-theory satisfies the following
three axioms whose proofs are rather standard for 2-periodic generalized cohomology
theory.

(I) (The homotopy axiom) If two morphisms f; g W .Y; B/ ! .X; A/ are homo-
topic through a map 
 W .Y � Œ0; 1�; B � Œ0; 1�/ ! .X; A/, written in terms of
the following homotopy commutative diagram

.Y; B/

g

��

f �� .X; A/

�


� 


 
 
 



 
 
 
 

˛

��
.X; A/

˛
�� K.Z; 3/,

then we have the following commutative diagram:

Kev=odd.X; AI ˛/

g�

����������������
f �


���������������

Kev=odd.Y; BI ˛ B f / ��

�� Kev=odd.Y; BI ˛ B g/.

Here 
� is the canonical isomorphism induced by the homotopy 
.

(II) (The exact axiom) For any pair .X; A/ with a twisting ˛ W X ! K.Z; 3/, there
exists the following six-term exact sequence:

K0.X; AI ˛/ �� K0.X; ˛/ �� K0.A; ˛jA/

��
K1.A; ˛jA/

��

K1.X; ˛/�� K1.X; AI ˛/.��

Here ˛jA is the composition of the inclusion and ˛.

(III) (The excision axiom) Let .X; A/ be a pair of spaces and let U � A be a
subspace such that the closure xU is contained in the interior of A. Then the
inclusion � W .X � U; A � U / ! .X; A/ induces, for all ˛ W X ! K.Z; 3/, an
isomorphism

Kev=odd.X; AI ˛/ ! Kev=odd.X � U; A � U I ˛ B �/:

In addition, twisted K-theory satisfies the following basic properties (see [5], [18] for
detailed proofs).
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(IV) (Multiplicative property) Let ˛; ˇ W X ! K.Z; 3/ be a pair of twistings on X .
Denote by ˛ C ˇ the new twisting defined by the map

˛ C ˇ W X
.˛;ˇ/���! K.Z; 3/ � K.Z; 3/

m��! K.Z; 3/; (2.5)

where m is defined as

BPU.H / � BPU.H / Š B.PU.H / � PU.H // ! BPU.H /

for a fixed isomorphism H ˝H Š H . Then there is a canonical multiplication

Kev=odd.X; ˛/ � Kev=odd.X; ˇ/ ! Kev=odd.X; ˛ C ˇ/;

which defines a K0.X/-module structure on twisted K-groups Kev=odd.X; ˛/.

(V) (Thom isomorphism) Let � W E ! X be an oriented real vector bundle of
rank k over X with the classifying map denoted by 	E W X ! BSO.k/. Then,
for any twisting ˛ W X ! K.Z; 3/, there is a canonical isomorphism

Kev=odd.X; ˛ C .W3 B 	E // Š Kev=odd.E; ˛ B �/; (2.6)

with the grading shifted by k .mod 2/. Here W3 W BSO.k/ ! K.Z; 3/ is the
classifying map of the principal K.Z; 2/-bundle BSpinc.k/ ! BSO.k/.

(VI) (The push-forward map) For any differentiable map f W X ! Y between two
smooth manifolds X and Y , let ˛ W Y ! K.Z; 3/ be a twisting. Then there is
a canonical push-forward homomorphism

fŠ W Kev=odd.X; .˛ B f / C .W3 B 	f // ! Kev=odd.Y; ˛/; (2.7)

with the grading shifted by n .mod 2/ for n D dim.X/ C dim.Y /. Here 	f

is the classifying map
X ! BSO.n/

corresponding to the bundle TX ˚ f �T Y over X .

(VII) (Mayer–Vietoris sequence) If X is covered by two open subsets U1 and U2 with
a twisting ˛ W X ! K.Z; 3/, then there is a Mayer–Vietoris exact sequence

K0.X; ˛/ �� K1.U1 \ U2; ˛12/ �� K1.U1; ˛1/ ˚ K1.U2; ˛2/

��
K0.U1; ˛1/ ˚ K0.U2; ˛2/

��

K0.U1 \ U2; ˛12/�� K1.X; ˛/,��

where ˛1, ˛2 and ˛12 are the restrictions of ˛ to U1, U2 and U1 \ U2, respec-
tively.
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Remark 2.4. (1) Note that Œ˛ C .W3 B	E /� D Œ˛�CW3.E/. Our Thom isomorphism
agrees with the Thom isomorphism in [18] and [20], where the notation

Kev=odd.X; Œ˛� C W3.E// Š Kev=odd.E; ��.Œ˛�//

is used.
(2) The push-forward map constructed in [18] is established in the following form

fŠ W Kev=odd.X; f �Œ˛� C W3.TX ˚ f �T Y // ! Kev=odd.Y; Œ˛�/;

which is obtained by applying the Thom isomorphism and Bott periodicity as follows.
Choose an embedding i W X ! R2k . Then x 7! .f .x/; i.x// defines an em-

bedding of X ! Y � R2k whose normal bundle N is identified with a tubular
neighborhood of X . Let 	N W X ! BSO be the classifying map of the normal bundle
N , let � W N ! Y �R2k be the inclusion map, and � W Y �R2k ! Y be the projection.
We use the commutative diagram

N
� ��

��

Y � R2k

�

��
X

.f;i/
��










f
�� Y ˛

�� K.Z; 3/

to illustrate induced twistings ˛ B f , ˛ B � B � and ˛ B � on X , N and Y � R2nk ,
respectively. Notice the isomorphism, as bundles over X ,

N ˚ TX ˚ TX Š TX ˚ f �T Y ˚ R2n;

and the canonical Spinc structure on TX ˚ TX determines a canonical homotopy
between W3 B 	N and W3 B 	f , which in turn induces a canonical isomorphism

Kev=odd.X; .˛ B f / C .W3 B 	f // Š Kev=odd.X; .˛ B f / C .W3 B 	N //:

Applying the Thom isomorphism (2.6), we have

Kev=odd.X; .˛ B f / C .W3 B 	N // Š Kev=odd.N; ˛ B � B �/;

with the grading shifted by n .mod 2/ for n D dim.X/ C dim.Y /. The inclusion
map � W N ! Y � R2k induces a natural push-forward map

�Š W Kev=odd.N; ˛ B � B �/ ! Kev=odd.Y � R2n; ˛ B �/:

The Bott periodicity gives a canonical isomorphism

Kev=odd.Y � R2n; ˛ B �/ Š Kev=odd.Y; ˛/:

The composition of the above isomorphisms and the map �Š gives rise to the canonical
push-forward map (2.7).
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3. Twisted Spinc-manifolds and analytical index

Definition 3.1. Let .X; ˛/ be a paracompact Hausdorff topological space with a
twisting ˛. An ˛-twisted Spinc manifold over X is a quadruple .M; 	; �; 
/, where

(1) M is a smooth, oriented and compact manifold together with a fixed classifying
map of its stable normal bundle

	 W M ! BSO

with BSO D lim�!k
BSO.k/ the classifying space of stable normal bundle of M ;

(2) � W M ! X is a continuous map;

(3) 
 is an ˛-twisted Spinc structure on M , that is a homotopy commutative diagram

M

�

��

� �� BSO
�

�� �
�

�
�

�

�
�

�
�

�
W3

��
X ˛

�� K.Z; 3/,

where W3 is the classifying map of the principal K.Z; 2/-bundle BSpinc !
BSO associated to the third integral Stiefel–Whitney class and 
 is a homotopy
between W3 B 	 and ˛ B �.

Two ˛-twisted Spinc structures 
 and 
0 on M are called equivalent if there is a
homotopy between 
 and 
0.

Remark 3.2. (1) The definition of twisted Spinc manifolds over X was previously
given by Douglas in [21] using Hopkins–Singer’s differential cochains developed in
[28]. Here in Definition 3.1, we define an ˛-twisted Spinc structure on M to be a
homotopy between W3 B 	 and ˛ B � since it induces a canonical isomorphism 
� (3.5)
that will play an important role in our definition of the analytical index.

(2) Let .W; 	; �; 
/ be an ˛-twisted Spinc manifold with boundary over X . Then
there is a natural ˛-twisted Spinc structure on the boundary @W with outer normal
orientation, which is the restriction of the ˛-twisted Spinc structure on W :

@W

�j@W

��

�j@W �� BSO
�j@W

�� �
�

�
�

�

�
�

�
�

�
W3

��
X ˛

�� K.Z; 3/.

(3.1)

(3) Given an oriented real vector bundle E of rank k over a smooth manifold M ,
the classifying map of E

	E W M ! BSO.k/
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and the principal K.Z; 2/-bundle BSpinc.k/ ! BSO.k/ define an associated twisting

W3 B 	E W M ! BSO.k/ ! K.Z; 3/:

Proposition 3.3. Let M be a smooth, oriented and compact n-dimensional manifold
and let X be a paracompact space with a twisting ˛ W X ! K.Z; 3/. Then the
following holds:

(1) M admits an ˛-twisted Spinc structure if and only if there exists a continuous
map � W M ! X such that

��.Œ˛�/ C W3.M/ D 0 (3.2)

in H 3.M; Z/. Here W3.M/ is the third integral Stiefel–Whitney class,

W3.M/ D ˇ.w2.M//

with ˇ W H 2.M; Z2/ ! H 3.M; Z/ the Bockstein homomorphism and w2.M/

the second Stiefel–Whitney class of TM . (Condition (3.2) is the Freed–Witten
anomaly cancellation condition for type II D-branes; cf. [25].)

(2) If ��.Œ˛�/ C W3.M/ D 0, then the set of equivalence classes of ˛-twisted Spinc

structures on M is an affine space modelled on H 2.M; Z/.

Proof. If M admits an ˛-twisted Spinc structure, then W3 B 	 and ˛ B � are homotopic
as maps from M to K.Z; 3/. This means that the third integral Stiefel–Whitney class
of the stable normal bundle is equal to ��.Œ˛�/. As M is compact, we can find an
embedding

ik W M n ! RnCk

for a sufficiently large k. Denote by 	.ik/ the normal bundle of ik . Then we know
that W3.	.ik// D ��.Œ˛�/, and

	.ik/ ˚ TM Š i�
k .T RnCk/

is a trivial bundle, which implies W3.M/CW3.	.ik// D 0. So ��.Œ˛�/CW3.M/ D 0.
Conversely, if ��.Œ˛�/ C W3.M/ D 0, then W3.	.ik// agrees with ��.Œ˛�/. Hence

the classifying map 	k W M ! BSO.k/ makes the following diagram homotopy
commutative for some homotopy 
:

M

�

��

�k �� BSO.k/

�

�� 
























W3

��
X ˛

�� K.Z; 3/.

This defines an ˛-twisted Spinc structure on M by letting k ! 1.
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The set of equivalence classes of ˛-twisted Spinc structures on M corresponds to
the set of homotopy classes of homotopies between W3 B 	 and ˛ B �. The latter is an
affine space over

Œ†M; K.Z; 3/� Š ŒM; K.Z; 2/�:

Here † denotes the suspension. Since ŒM; K.Z; 2/� Š H 2.M; Z/, H 2.M; Z/ acts
freely and transitively on the set of equivalence classes of ˛-twisted Spinc structures
on M .

Remark 3.4. (1) If the twisting ˛ W X ! K.Z; 3/ is homotopic to the trivial map,
then an ˛-twisted Spinc structure on M is equivalent to a Spinc structure on M .

(2) Let �X W X ! BSO be a classifying map of the stable tangent bundle of X ,
then a W3 B �X -twisted Spinc structure on M is equivalent to a K-oriented map from
M to X .

(3) Let .M; 	; �; 
/ be an ˛-twisted Spinc manifold over X . Any K-oriented map
f W M 0 ! M defines a canonical ˛-twisted Spinc structure on M 0.

Recall that for k 2 f0; 1; 2; : : : g and a separable C�-algebra A, Kasparov’s
K-homology group

KKk.A; C/ Š KK.A; Cliff.Ck//

is the abelian group generated by unitary equivalence classes of Cliff.Ck/-graded
Fredholm modules over A modulo certain relations (see [26] for details). Then
KKev.A; C/ and KKodd.A; C/ denote the direct limits under the periodicity maps

KKev.A; C/ D lim�!
k

KK2k.A; C/ and KKodd.A; C/ D lim�!
k

KK2kC1.A; C/:

Definition 3.5. Suppose that X be a paracompact Hausdorff space with a twisting
˛ W X ! K.Z; 3/. Let P˛.K/ be the associated bundle of compact operators on X .
Analytical twisted K-homology, denoted by Ka

ev=odd.X; ˛/, is defined to be

Ka
ev=odd.X; ˛/ ´ KKev=odd.Cc.X; P˛.K//; C/;

the Kasparov Z2-graded K-homology of the C�-algebra Cc.X; P˛.K//. Given a
closed subspace A of X , the relative twisted K-homology Ka

ev=odd.X; AI ˛/ is defined
to be

KKev=odd
�
Cc.X � A; P˛.K//; C

�
:

Analytical twisted K-homology is a 2-periodic generalized homology theory.

We first discuss the relationship between the stable normal bundle of M and its
stable tangent bundle, and apply it to study the corresponding twisted K-homology
groups. Note that the classifying space of SO.k/ is given by the direct limit

BSO.k/ D lim�!
m

Gr.k; m C k/;
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where Gr.k; m C k/ is the Grassmann manifold of oriented k-planes in RkCm. The
classifying space of the stable special orthogonal group is lim�!k

BSO.k/, and will be
denoted by BSO.

The map Ik;m W Gr.k; m C k/ ! Gr.m; k C m/ of assigning to each oriented
k-plane in RkCm its orthogonal m-plane induces a map

I W BSO ! BSO;

with I 2 the identity map.
For a compact n-dimensional manifold M n, the stable normal bundle is repre-

sented by the normal bundle of an embedding ik W M n ! RnCk for any sufficiently
large k. The normal bundle 	.ik/ of ik is the quotient of the pull-back of the tangent
bundle T RnCk D RnCk � RnCk by the tangent bundle TM . Then the normal map

	k W M ! Gr.k; k C n/

and the tangent map

�k W M ! Gr.n; k C n/

are related to each other by �k D Ik;n B 	k . So the classifying map for the stable
normal bundle

	 W M ! BSO

and the classifying map of the stable tangent bundle

� W M ! BSO

are related by � D I B 	. Thus, we have a natural isomorphism

I � W �� BSpinc.K/ ! 	�BSpinc.K/: (3.3)

on the associated bundles of compact operators. This determines an isomorphism

I� W Ka
ev=odd.M; W3 B �/ Š Ka

ev=odd.M; W3 B 	/: (3.4)

on the corresponding twisted K-homology groups.

Remark 3.6. Given an embedding ik W M ! RnCk with the normal bundle N , the
natural isomorphism

TM ˚ N ˚ N Š RnCk ˚ N

and the canonical Spinc structure on N ˚ N define a canonical homotopy between
W3 B � and W3 B 	. The isomorphism (3.4) is induced by this canonical homotopy.
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For a Riemannian manifold M , denote by Cliff.TM/ the bundle of complex
Clifford algebras of TM over M . As algebras of the sections, C.M; Cliff.TM// is
Morita equivalent to C.M; �� BSpinc.K//. Hence, we have a canonical isomorphism

Ka
ev=odd.M; W3 B �/ Š KKev=odd.C.M; Cliff.M//; C/;

with the degree shift by dim M .mod 2/. Applying Kasparov’s Poincaré duality
(cf. [31])

KKev=odd.C; C.M// Š KKev=odd.C.M; Cliff.M//; C/;

we obtain a canonical isomorphism

PD W K0.M/ Š Ka
ev=odd.M; W3 B �/;

with the degree shift by dim M .mod 2/. The Poincaré dual of the unit element
in K0.M/ is the fundamental class ŒM � 2 Ka

ev=odd.M; W3 B �/. Note that ŒM � 2
Ka

ev.M; W3.M// if M is even dimensional, and ŒM � 2 Ka
odd.M; W3.M// if M is odd

dimensional. The cap product

ZW Ka
ev=odd.M; W3 B �/ ˝ K0.M/ ! Ka

ev=odd.M; W3 B �/

is defined by the Kasparov product. We remark that the cap product of the fundamental
class ŒM � and ŒE� 2 K0.M/ is given by

ŒM � Z ŒE� D PD.ŒE�/:

Given an ˛-twisted Spinc manifold .M; 	; �; 
/ over X , the homotopy 
 induces an
isomorphism 	�BSpinc Š ��P˛ as principal K.Z; 2/-bundles on M , hence defines
an isomorphism

	�BSpinc.K/
��

���!Š ��P˛.K/

as bundles of C�-algebras on M . This isomorphism determines a canonical isomor-
phism

C.M; 	�BSpinc.K// Š C.M; ��P˛.K//

between the corresponding continuous trace C�-algebras. Therefore, we have a canon-
ical isomorphism


� W Ka
ev=odd.M; W3 B 	/ Š Ka

ev=odd.M; ˛ B �/: (3.5)

Notice that the natural push-forward map in analytic K-homology theory is

�� W Ka
ev=odd.M; ˛ B �/ ! Ka

ev=odd.X; ˛/: (3.6)

We can introduce a notion of analytical index for any ˛-twisted Spinc manifold over
X , taking values in analytical twisted K-homology of .X; ˛/.
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Definition 3.7. Given an ˛-twisted Spinc closed manifold .M; 	; �; 
/ and ŒE� 2
K0.M/, we define its analytical index

Indexa..M; 	; �; 
/; ŒE�/ 2 Ka
ev=odd.X; ˛/

to be the image of the cap product ŒM � Z ŒE� 2 Ka
ev=odd.M; W3 B �/ under the maps

(3.4), (3.5) and (3.6):

Ka
ev=odd.M; W3 B �/

��B��BI��������! Ka
ev=odd.X; ˛/:

The analytical index enjoys the following properties.

Proposition 3.8. (1) The analytical index Indexa..M; 	; �; 
/; ŒE�/ depends only on
the equivalence class of the ˛-twisted Spinc structure 
.

(2) (Disjoint union and direct sum) Let .M1; 	1; �1; 
1/ and .M2; 	2; �2; 
2/ be a
pair of ˛-twisted Spinc manifolds, and let ŒEi � 2 K0.Mi /. Then

Indexa..M2; 	2; �2; 
2/ t .M2; 	2; �2; 
2/; ŒE1� t ŒE2�/

D Indexa..M1; 	1; �1; 
1/; ŒE1�/ C Indexa..M2; 	2; �2; 
2/; ŒE2�/:

(3) (Bordism invariance) If .W; 	; �; 
/ is an ˛-twisted Spinc manifold with bound-
ary over X and ŒE� 2 K0.W /, then

Indexa..@W; @	; @�; @
/; ŒEj@W �/ D 0:

Proof. In the definition of Indexa..M; 	; �; 
/; ŒE�/ the ˛-twisted Spinc structure 


shows up only through


� W Ka
ev=odd.M; W3 B 	/ Š Ka

ev=odd.M; ˛ B �/:

This isomorphism depends only on the homotopy class of 
. So claim (1) is obvious.
Claim (2) follows from the disjoint union and direct sum property of the funda-

mental classes and the cap product.
To establish claim (3), let .W; 	; �; 
/ be an ˛-twisted Spinc manifold with bound-

ary over X and denote its boundary by M D @W with the induced ˛-twisted Spinc

structure .@	; @�; @
/. Let i W M ! W be the boundary inclusion map. The ex-
act sequence in topological K-theory and analytical K-homology are related through
Poincaré duality (assume that W is odd dimensional) as in the following commutative
diagram of exact sequences:

K1.W; M/

PD
��

K0.M/��

PD
��

K0.W /
i�

��

PD
��

Ka
0 .W; W3 B �W / Ka

0 .M; W3 B �M /
i�

�� Ka
1 .W; M I W3 B �W /,

@
��

(3.7)



Geometric cycles, index theory and twisted K-Homology 515

where �M and �W are classifying maps of the stable tangent bundles of M and W ,
respectively. One could get this K-homology exact sequence by applying the Kasparov
KK-functor to the following short exact sequence of C�-algebras:

0 ! C0.W; Cliff.W // ! C.W; Cliff.W // ! C.M; Cliff.M// ! 0:

C0.W; Cliff.W // is the C�-algebra of continuous sections of Cliff.W / vanishing at the
boundary M . The relative analytical K-homologyKKev=odd.C0.W; Cliff.W //; C/ is
isomorphic to Ka

ev=odd.W; M I W3B�/, and hence isomorphic to Ka
ev=odd.W; M I W3B	/

under (3.4).
It follows from (3.7) that the Poincaré dual of

Œi�E� 2 K0.M/

is mapped to zero in Ka
0 .W; W3 B �W / for ŒE� 2 K0.W / under the map

i� B PD B i�.ŒE�/ D i� B @ B PD.ŒE�/ D 0: (3.8)

Notice that Indexa..M; @	; @�; @
/; ŒEjM �/ is image of the class PD.i�ŒE�/ under
the sequence of maps

Ka
0 .M; W3 B �M /

I��! Ka
0 .M; W3 B @	/

.@�/����! Ka
0 .M; ˛ B @�/

.@�/����! Ka
0 .X; ˛/;

and the inclusion map i W M ! W induces the following commutative diagram:

Ka
0 .M; W3 B �M /

i�
��

I� �� Ka
0 .M; W3 B @	/

i�
��

.@�/� �� Ka
0 .M; ˛ B @�/

i�
��

.@�/�

	
�����������

Ka
0 .W; W3 B �W /

I�

�� Ka
0 .W; W3 B 	/

��

�� Ka
0 .W; ˛ B 	/

��
�� Ka

0 .X; ˛/.

Therefore, we conclude that

Indexa..M; @	; @�; @
/; ŒEjM �/

D .@�/� B .@
/� B I� B PD.i�ŒE�/ (Definition 3.7)

D �� B 
� B I� B i� B PD.i�ŒE�/ (the above commutative diagram)

D 0 (3.8): �

Remark 3.9. Given an ˛-twisted Spinc structure 
 on .M; 	; �/ and a complex line
bundle L over M , denote by c1 � Œ
� the action of the first Chern class c1 D c1.L/ 2
H 2.M; Z/ on the homotopy class of 
. Then the analytical index depends on the
choice of equivalence classes of ˛-twisted Spinc structures through the following
formula

Indexa..M; 	; �; c1 � Œ
�/; ŒE�/ D Indexa..M; 	; �; Œ
�/; .ŒL� ˝ ŒE�//:
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4. Twisted Spinc bordism and topological index

Given a manifold X with a twisting ˛ W X ! K.Z; 3/, ˛-twisted Spinc manifolds over
X form a bordism category, called the ˛-twisted Spinc bordism over .X; ˛/, whose
objects are compact smooth manifolds over X with an ˛-twisted Spinc structure as
in Definition 3.1. A morphism between ˛-twisted Spinc manifolds .M1; 	1; �1; 
1/

and .M2; 	2; �2; 
2/ is a boundary preserving continuous map f W M1 ! M2 and the
following diagram

M1

�1

��

�1

��

f

���
��

��
��

�

M2

�2

��

�2 �� BSO
�2

�� �
�

�
�

�

�
�

�
�

�
W3

��
X ˛

�� K.Z; 3/

(4.1)

is a homotopy commutative diagram such that

(1) 	1 is homotopic to 	2 B f through a continuous map 	 W M1 � Œ0; 1� ! BSO;

(2) �2 B f is homotopic to �1 through continuous map � W M1 � Œ0; 1� ! X ;

(3) the composition of homotopies .˛ B �/ � .
2 B .f � Id// � .W3 B 	/ is homotopic
to 
1.

The boundary functor @ applied to an ˛-twisted Spinc manifold .M; 	; �; 
/ is the
manifold @M with outer normal orientation and the restriction of the ˛-twisted Spinc

structure to M .
Two ˛-twisted Spinc manifolds .M1; 	1; �1; 
1/ and .M2; 	2; �2; 
2/ are called

isomorphic if there exists a diffeomorphism f W M1 ! M2 such that the diagram
(4.1) is a homotopy commutative diagram.

Definition 4.1. We say that an ˛-twisted Spinc manifold .M; 	; �; 
/ is null-bordant if
there exists an ˛-twisted Spinc manifold W whose boundary is .M; 	; �; 
/ in the sense
of (3.1). We define the ˛-twisted Spinc bordism group of X , denoted by �Spinc

.X; ˛/,
to be the set of all isomorphism classes of closed ˛-twisted Spinc manifolds over X

modulo null-bordism, with the sum given by the disjoint union.

The subgroup of isomorphism classes of n-dimensional closed ˛-twisted Spinc

manifolds over X will be denoted �
Spinc

n .X; ˛/. Set

�Spinc

ev .X; ˛/ D
M

k

�
Spinc

2k
.X; ˛/;

�
Spinc

odd .X; ˛/ D
M

k

�
Spinc

2kC1
.X; ˛/:
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Proposition 4.2. The analytical index defined in the previous section induces a ho-
momorphism

Indexa W �
Spinc

ev=odd.X; ˛/ ! Ka
ev=odd.X; ˛/: (4.2)

Proof. Let .M; �; 	; 
/ be ˛-twisted Spinc manifold over X representing an element
in the ˛-twisted Spinc bordism group �

Spinc

ev=odd.X; ˛/. Define

Indexa.M; �; 	; 
/ D Indexa..M; �; 	; 
/; ŒC�/ 2 Ka
ev=odd.X; ˛/;

where C denotes the trivial line bundle over M representing the unit element in
K0.M/. We need to show that for a pair of isomorphic objects

.M1; �1; 	1; 
1/ and .M2; �2; 	2; 
2/

in the ˛-twisted Spinc bordism category over X , we have

Indexa.M1; �1; 	1; 
1/ D Indexa.M2; �2; 	2; 
2/:

Let f be a diffeomorphism from M1 to M2 such that (4.1) is a homotopy commutative
diagram. Let �1 and �2 be classifying maps of the stable tangent bundles of M1 and
M2, respectively. The homotopy between 	1 and 	2 Bf implies that �1 and �2 Bf are
homotopy equivalent. This defines a canonical Spinc structure on TM1 ˚ f �TM2.
Hence, there is a canonical Morita equivalence

C.M1; Cliff.M1// � C.M1; f � Cliff.M2//:

This Morita equivalence defines a canonical isomorphism

Ka
ev=odd.M1; W3 B �1/ Š Ka

ev=odd.M1; W3 B �2 B f /:

Recall that natural push-forward map in analytical K-homology is related to the K-
theoretical push-forward map fŠ in topological K-theory via the Poincaré duality
(PD):

Kev=odd.M1/

ŠPD
��

fŠ �� Kev=odd.M2/

ŠPD
��

Ka
ev=odd.M1; W3 B �1/

f�

�� Ka
ev=odd.M2; W3 B �2/,

where the Poincaré duality shifts the degree by the dimension of the underlying
manifold. Applying the natural push-forward map in analytical K-homology, we
obtain that

f� W Ka
ev=odd.M1; W3 B �1/ Š Ka

ev=odd.M1; W3 B �2 B f / ! Ka
ev=odd.M2; W3 B �2/;
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with the degree shifted by d.f / D dim M1 � dim M2 .mod 2/. The homotopy
between W3 B 	1 and W3 B 	2 B f defines a canonical homomorphism

f� W Ka
ev=odd.M1; W3 B 	1/ Š Ka

ev=odd.M1; W3 B 	2 B f / ! Ka
ev=odd.M2; W3 B 	2/

such that the following diagram commutes:

Ka
ev=odd.M1; W3 B �1/

f�

��

I
M1
� �� Ka

ev=odd.M1; W3 B 	1/

f�

��
Ka

ev=odd.M2; W3 B �2/
I

M2
�

�� Ka
ev=odd.M2; W3 B 	2/.

(4.3)

Similarly, the homotopy between .˛ B �/ � .
2 B .f � Id// � .W3 B 	/ and 
1 induces
a commutative diagram

Ka
ev=odd.M1; W3 B 	1/

f�

��

.�1/� �� Ka
ev=odd.M1; ˛ B �1/

f�

��
Ka

ev=odd.M2; W3 B 	2/
.�2/�

�� Ka
ev=odd.M2; ˛ B �2/:

(4.4)

The homotopy between ˛ B �2 B f and ˛ B �1 induces the following commutative
triangle

Ka
ev=odd.M1; ˛ B �1/

f�

��

.�1/�

���������������

Ka
ev=odd.X; ˛/

Ka
ev=odd.M2; a B �2/.

.�2/�

���������������

(4.5)

These commutative diagrams (4.3), (4.4) and (4.5) imply that

Indexa.M2; �2; 	2; 
2/ D .�2/� B .
2/� B I M2� .ŒM2�/

D .�2/� B .
2/� B I M2� B f�.ŒM1�/

D .�1/� B .
1/� B I M1� .ŒM1�/

D Indexa.M1; �1; 	1; 
1/:

Now the bordism invariance in Proposition 3.8 tells us that Indexa is a well-defined
homomorphism from �

Spinc

ev=odd.X; ˛/ to Ka
ev=odd.X; ˛/.
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We recall the construction of Thom spectrum of Spinc bordism. Let �k be the
universal bundle over BSO.k/. The pull-back bundle over BSpinc.k/ is given by

Q�k D E Spinc.k/ �Spinc.k/ Rk :

Denote by MSpinc.k/ the Thom space of Q�k . The inclusion map jk induces a pull-back
diagram

j �
k

Q�kC1
��

��

Q�kC1

��
BSpinc.k/

jk �� BSpinc.k C 1/

with j �
k

Q�kC1 Š Q�k ˚ R, where R denotes the trivial real line bundle. Then the Thom

space of j �
k

Q�kC1 can be identified with † MSpinc.k/ (the suspension of MSpinc.k/).
Thus we have a sequence of continuous maps

Th.jk/ W † MSpinc.k/ ! MSpinc.k C 1/;

i.e., fMSpinc.k/gk is the Thom spectrum associated to BSpinc D lim�!k
BSpinc.k/.

Since BSpinc.k/ is a principal K.Z; 2/-bundle over BSO.k/, we have a base point
preserving action of K.Z; 2/ on the Thom spectrum fMSpinc.k/g, written as

K.Z; 2/C ^ MSpinc.k/ D K.Z; 2/ � MSpinc.k/

K.Z; 2/ � � ! MSpinc.k/;

which is compatible with the base-point action of K.Z; 2/ on the K-theory spectrum
K in the sense that there exists a K.Z; 2/-equivariant map, called the index map

Ind W MSpin ! K:

This K.Z; 2/-equivariant map has been constructed in [21] and [43]. Here we provide
a more geometric construction. Write the principal BU.1/-bundle BSpinc.2k/ as the
pull-back bundle

BSpinc.2k/ ��

��

EK.Z; 2/

��
BSO.2k/

W3 �� K.Z; 3/,

which induces a natural PU.H /-action

PU.H / � BSpinc.2k/ ! BSpinc.2k/:

This action corresponds to the action of the set of complex line bundles on the set
of Spinc structures. The PU.H /-action on BSpinc.2k/ can be lifted to a base point
preserving action

PU.H / � MSpinc.2k/ ! MSpinc.2k/
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of PU.H / on MSpinc.2k/. Note that there is a fundamental Z2-graded spinor bundle
SC ˚ S� over BSpinc.2k/ – see Theorem C.9 in [33] –, which defines a canonical
Thom class in K0.MSpinc.2k//. This canonical Thom class determines a PU.H /-
equivariant map

Ind W MSpin.2k/ ! Fred.H /:

Hence we have associated bundles of Thom spectra over X ,

P˛.MSpinc.k// D P˛ �K.Z;2/ MSpinc.k/;

and natural maps

Ind W P˛.MSpinc.k// ! P˛.K/ D P˛ �K.Z;2/ K

to the associated bundle of K-theory spectra.

Remark 4.3. The Spinc bordism groups over a pointed space X , denoted by �
Spinc

� .X/

as in [41], can be identified (via the Pontrjagin–Thom isomorphism) as the stable ho-
motopy groups of MSpinc ^X

�Spinc

n .X/ Š �S
n .MSpinc ^X/ ´ lim�!

k

�nCk.MSpinc.k/ ^ X/: (4.6)

The index map Ind W MSpin ! K determines a natural transformation from the even
or odd dimensional Spinc bordism group of X to K-homology of X , which is called
the topological index:

�
Spinc

ev=odd.X/ ! Kt
ev=odd.X/:

The following theorem is the twisted version of the Pontrjagin–Thom isomorphism
(4.6).

Theorem 4.4. The bordism group �
Spinc

n .X; ˛/ of n-dimensional ˛-twisted Spinc

manifolds over X is isomorphic to the stable homotopy group

‚ W �Spinc

n .X; ˛/
Š�! �S

n.P˛.MSpinc/=X/:

Here we denote �S
n.P˛.MSpinc/=X/ ´ limk!1 �nCk.P˛.MSpinc.k//=X/.

Proof. The proof is modeled on the proof of the classical Pontrjagin–Thom isomor-
phism (cf. [41])

Step 1. Definition of the homomorphism ‚.
Let � be an element in �

Spinc

n .X; ˛/ represented by an n-dimensional ˛-twisted
Spinc manifold .M; �; 	; 
/ over X . Let ik W M ! RnCk be an embedding with the
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classifying map of the normal bundle denoted by 	k . Then we have the following
pull-back diagram:

N
Q�k ��

�

��

�k

��
M

�k �� BSO.k/.

(4.7)

Here the total space N of the normal bundle of ik can be thought of as a subspace of
RnCk � RnCk . Under the addition map RnCk � RnCk ! RnCk , for some sufficiently
small " > 0, the "-neighborhood N" of the zero section M �f0g of N is an embedding
"jN"

W N" ! RnCk , whose restriction to the zero section M � f0g is the embedding
ik W M ! RnCk .

Consider SnCk as RnCk [ f1g (the one point compactification), so we have an
embedding N" ! SnCk . Define

c W SnCr ! N"=@N"

by collapsing all points of SnCk outside and on the boundary of N" to a point. Note
that N"=@N" is homeomorphic to the Thom space Th.N / of the normal bundle of ik ,
induced by multiplication by "�1. Denote this homeomorphism by

"�1 W N"=@N" ! Th.N /:

The pull-back diagram

PW3B�k

��

�� EK.Z; 2/

��
M

W3B�k

�� K.Z; 3/

induces a homotopy pull-back

PW3B�k
.BSpinc.k//

��

�� EK.Z; 2/.BSpinc.k//

��
M

W3B�k

�� K.Z; 3/.

Since EK.Z; 2/ is contractible, EK.Z; 2/.BSpinc.k// is homotopy equivalent to
BSO.k/. This implies that the diagram

PW3B�k
.BSpinc.k//

��

�� BSO.k/

��
M

W3B�k

�� K.Z; 3/
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is a homotopy pull-back. Notice that the diagram

M

Id

��

�k �� BSO.k/

W3

��
M

W3B�k

�� K.Z; 3/

is commutative. Thus there exists a unique map (up to homotopy)

h W M ! PW3B�k
.BSpinc.k//

such that the diagram

M

Id

	


�k

	


h

	
������������

PW3B�k
.BSpinc.k//

��

�� BSO.k/

�� � � � � � � �

� � � � � � �

W3

��
M

W3B�k

�� K.Z; 3/

is homotopy commutative. Together with the pull-back diagram

Q�k
��

��

�k

��
BSpinc.k/ �� BSO.k/;

we obtain a homotopy commutative diagram

N

��

�� PW3B�k
. Q�k/

��
M �� PW3B�k

.BSpinc.k//,

which in turn determines a canonical map

h� W Th.N / ! PW3B�k
.MSpinc.k//=M:

Notice that the ˛-twisted Spinc-structure on M defines a continuous map

�� W PW3B�k
.MSpinc.k//=M ! P˛.MSpinc.k//=X:
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The composition �� B h� B "�1 B c is a continuous map of pairs


 D 
.M;�;�;�/ W .SnCk; 1/ ! .P˛.MSpinc.k//=X; �/;

here � is the base point in P˛.MSpinc.k//=X , hence represents an element of

lim
k!1

�nCk.P˛.MSpinc.k//=X/:

The stable homotopy class of 
 does not depend on choices of ik; 	k; " in the
construction for sufficiently large k. Thus, we assign an element in

lim
k!1

�nCk.P˛.MSpinc.k//=X/

represented by 
 to every closed ˛-twisted Spinc manifold .M; �; 	; 
/ over X .
Now we show that the stable homotopy class of 
 depends only on the bordism

class of M . Let W be an .n C 1/-dimensional ˛-twisted Spinc manifold and let
j W @W ! RnCk be an embedding for some sufficiently large k with the classifying
map 	k for the normal bundle:

N@W

Q�k ��

�

��

�k

��
@W

�k �� BSO.k/.

Choose i W W ! RnCk � Œ0; 1� to be an embedding agreeing with j � f1g on @W ,
embedding a tubular neighborhood of @W orthogonally along j.@W / � f1g, and with
the image missing RnCk � f0g. The previous construction applied to the embedding
i yields a null-homotopy of the map


 W .SnCk; 1/ ! .P˛.MSpinc.k//=X; �/:

Assigning the stable homotopy class of the map 
 to each ˛-twisted Spinc bordism
class, we have defined a map

‚ W �Spinc

n .X; ˛/ ! �S
n.P˛.MSpinc/=X/:

Step 2. ‚ is a homomorphism.
Let .M1; �1; 	1; 
1/ and .M2; �2; 	2; 
2/ be a pair of closed ˛-twisted Spinc man-

ifolds over X representing two classes in �
Spinc

n .X; ˛/. Then for a D 1 or 2,
‚.ŒMa; �a; 	a; 
a�/ is represented by a map


a W .SnCk; 1/ ! .P˛.MSpinc.k//=X; �/

constructed as above.
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Choose an embedding i W M1tM2 ! RnCk such that the last coordinate is positive
for M1 and negative for M2. Taking small enough ", the previous construction gives
us a map

.SnCk; 1/
d��! SnCk ^ SnCk �1C�2�����! .P˛.MSpinc.k//=X; �/;

where d denotes the collapsing the equator of SnCk . This map represents the sum of
the homotopy classes of 
1 and 
2. Hence,

‚.ŒM1; �1; 	1; 
1� C ŒM2; �2; 	2; 
2�/ D ‚.ŒM1; �1; 	1; 
1�/ C ‚.ŒM2; �2; 	2; 
2�/:

Step 3. ‚ is a monomorphism.
Let .M; �; 	; 
/ be an ˛-twisted Spinc n-manifold such that ‚.ŒM; �; 	; 
�/ D 0.

Then for some large k, the above construction in step 1 defines a continuous map


0 D �� B h� B "�1 B c W .SnCk; 1/ ! P˛.MSpinc.k//=X

which is null-homotopic. Since P˛.BSpinc.k// � P˛.MSpinc.k//=X , since M is
the zero section of N , and since the map

�� B h� W Th.N / ! P˛.MSpinc.k//=X

sends the zero section of N to P˛.BSpinc.k//, we have

M D 
�1
0 .P˛.BSpinc.k///:

The trivial map, denoted by 
1, maps SnCk to the base point of P˛.MSpinc.k//=X , so
we know that 
�1

1 .P˛.BSpinc.k/// is an empty set. Now we can choose a homotopy

H W SnCk � Œ0; 1� ! P˛.MSpinc.k//=X

between 
0 and 
1 for some sufficiently large k such that H is differentiable near and
transversal to

P˛.BSpinc.k// � P˛.MSpinc.k//=X:

Thus
W D H �1.P˛.BSpinc.k///

is a submanifold of RnCk � Œ0; 1� with @W D M meeting RnCk � f0g orthogonally
along M . The map H jW sends W to P˛.BSpinc.k// because P˛.BSpinc.k// is a
fibration over X , so we have a continuous map �W W W ! X .

Note that the pull-back diagram

P˛

��

�� EK.Z; 2/

��
X ˛

�� K.Z; 3/
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induces a homotopy pull-back

P˛.BSpinc.k//

��

�� EK.Z; 2/.BSpinc k//

��
X ˛

�� K.Z; 3/.

Since EK.Z; 2/ is contractible, the associated fiber bundle EK.Z; 2/.BSpinc.k// is
homotopy equivalent to BSO.k/. This implies that the diagram

P˛.BSpinc.k//

��

�� BSO.k/

��
X ˛

�� K.Z; 3/

is a homotopy pull-back. We see that the map H jW defines a homotopy commutative
diagram

W

	


��

H jW
�������������

P˛.BSpinc.k//

��

�� BSO.k/

�� � � � � � � �

� � � � � � �
W3

��
X ˛

�� K.Z; 3/.

Hence W admits an ˛-twisted Spinc structure such that the boundary inclusion
M ! W is a morphism in the ˛-twisted Spinc bordism category. This implies
that .M; �; 	; 
/ is null-bordant, so ŒM; �; 	; 
� D 0 in �

Spinc

n .X; ˛/.

Step 4. ‚ is an epimorphism.
Let 
 W .SnCk; 1/ ! .P˛.MSpinc.k//=X; �/, for a large k, represent an element

in
�S

n.P˛.MSpinc/=X/:

As SnCk is compact, we may find a finite dimensional model for BSpinc.k/, so we
may pretend that BSpinc.k/ is finite dimensional. We can deform the map 
 to a map
h such that

(1) h agrees with 
 on an open set containing 1;

(2) h is differentiable on the preimage of some open set containing P˛.BSpinc.k//

and is transverse on P˛.BSpinc.k//;

(3) if M D h�1.P˛.BSpinc.k///, then h is a normal bundle map from a tubular
neighborhood of M in SnCk to P˛.MSpinc.k//=X .
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Then M is a smooth compact n-dimensional manifold with the following homotopy
commutative diagram:

M

�

	


�

��

hjM
�������������

P˛.BSpinc.k//

��

�� BSO.k/

�� � � � � � � �

� � � � � � �
W3

��
X ˛

�� K.Z; 3/.

Therefore, M admits an ˛-twisted Spinc structure .�; 	; 
/. The above generalized
Pontrjagin–Thom construction implies that ‚.ŒM; �; 	; 
�/ is the class represented
by 
 .

The index map Ind W MSpin ! K (the complex K-theory spectrum) induces a map
of bundles of spectra over X

Ind W P˛.MSpinc/ ! P˛.K/:

The stable homotopy group of P˛.K/=X by definition is the twisted topological
K-homology groups Kt

ev=odd.X; ˛/. Due to the periodicity of K, we have

Kt
ev.X; ˛/ D lim�!

k!1
�2k.P˛.K/=X/

and

Kt
odd.X; ˛/ D lim�!

k!1
�2kC1.P˛.K/=X/:

Here the direct limits are taken by the double suspension

�nC2k.P˛.K/=X/ ! �nC2kC2.P˛.S2 ^ K/=X/

and then followed by the standard map

�nC2kC2.P˛.S2 ^K/=X/
b^1��! �nC2kC2.P˛.K^K/=X/

m�! �nC2kC2.P˛.K/=X/;

where b W R2 ! K represents the Bott generator in K0.R2/ and m is the base point
preserving map inducing the ring structure on K-theory.

Definition 4.5 (Topological index). There is a homomorphism called the topological
index,

Indext W �
Spinc

� .X; ˛/ ! Kt
ev=odd.X; ˛/; (4.8)
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defined to be Ind� B ‚, the composition of ‚ (as in Theorem 4.4),

‚ W �Spinc

n .X; ˛/
Š�! �S

n.P˛.MSpinc/=X/;

and the induced index transformation

Ind� W lim�!
k!1

�nC2k.P˛.MSpinc.2k//=X/ ! lim�!
k!1

�nC2k.P˛.K/=X/:

5. Topological index D analytical index

In this section we will establish the main result of this paper. It should be thought of
as the generalized Atiyah–Singer index theorem for ˛-twisted Spinc manifolds over
X with a twisting ˛ W X ! K.Z; 3/. Here we assume throughout that X is a closed
smooth manifold.

Theorem 5.1. There is a natural isomorphism ˆ W Kt
ev=odd.X; ˛/ ! Ka

ev=odd.X; ˛/

such that the following diagram commutes:

�
Spinc

ev=odd.X; ˛/

Indext

�	�����������
Indexa

	
�����������

Kt
ev=odd.X; ˛/ Š

ˆ
�� Ka

ev=odd.X; ˛/,

that is, given a closed ˛-twisted Spinc manifold .M; 	; �; 
/ over X , we have

Indexa.M; 	; �; 
/ D Indext .M; 	; �; 
/

under the isomorphism ˆ.

Remark 5.2. If ˛ W X ! K.Z; 3/ is the trivial map, then we have following commu-
tative diagram:

�
Spinc

ev=odd.X/

Indext

������������
Indexa

������������

Kt
ev=odd.X/ Š �� Ka

ev=odd.X/,

(5.1)

where the isomorphism Kt
ev=odd.X/ Š Ka

ev=odd.X/ follows from the work of Atiyah
[2], Baum–Douglas [10] and Kasparov [30]. If X is a point, then the diagram (5.1)
is the usual form of Atiyah–Singer index theorem for Spinc manifolds.
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Proof of Theorem 5.1. Notice that Kt
ev=odd.X; ˛/ and Ka

ev=odd.X; ˛/ are two gener-
alized homology theories dual to the twisted K-theory. The twisted K-cohomology
Kev=odd.X; ˛/ is defined as the homotopy classes of sections of the associated bundle
of K-theory spectra,

Kev.X; ˛/ D lim�!
k!1

�0.�.X; P˛.�2kK//;

Kodd.X; ˛/ D lim�!
k!1

�0.�.X; P˛.�2kC1K//;

and �kK is the iterated loop space of K. We will show that there are natural iso-
morphisms from twisted K-homology (topological and analytical) to twisted K-coho-
mology with the twisting shifted by

˛ 7! ˛ C .W3 B �/;

where � W X ! BSO is the classifying map of the stable tangent space and ˛C.W3B�/

denotes the map X ! K.Z; 3/ defined in (2.5), representing the class Œ˛� C W3.X/

in H 3.X; Z/.

Step 1. There exists an isomorphism Kt
ev=odd.X; ˛/ Š Kev=odd.X; ˛ C .W3 B �//

with the degree shifted by dim X .mod 2/.
Assume that X is n dimensional, choose an embedding i2k W X ! RnC2k for some

large k, with its normal bundle � W N2k ! X identified as an "-tubular neighborhood
of X . Any two embeddings X ! RnC2k are homotopic through a regular homotopy
for a sufficiently large k. Under the inclusion RnC2k � 0 � RnC2kC2, the Thom
spaces of N2k and N2kC2 are related through the reduced suspension by S2

Th.N2kC2/ D S2 ^ Th.N2k/: (5.2)

By the Thom isomorphism ([18]), we have an isomorphism

Kev=odd.X; ˛ C .W3 B �// Š lim�!
k!1

Kev=odd.N2k; ˛ B �/; (5.3)

where ˛B� W N2k ! K.Z; 3/ is the pull-back twisting on N2k . There is a natural map
from Kev=odd.N2k; ˛ B �/ to Kt

ev=odd.X; ˛/ by considering SnC2k as RnC2k [ f1g
and the following pull-back diagram:

P˛B�.K/ ��

��

P˛.K/

��
N2k

� �� X .
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Given an element of Kev.N2k; ˛ B �/ represented by a compactly supported section

 W N2k ! P˛B�.K/, we have

SnC2k c�! Th.N2k/
��! P˛B�.K/=N2k ! P˛.K/=X;

representing an element in Kt
ev=odd.X; ˛/. Replacing X by X � R, this construction

gives a map from Kodd.N2k; ˛ B �/ to Kt
odd.X; ˛/. Recall that there is a homotopy

equivalence K � �2K induced by the map

S2 ^ K
b^1���! K ^ K

m��! K;

where b represents the Bott generator in K0.R2/ and m is the base point preserving
map inducing the ring structure on K-theory. Together with (5.2), we obtain

SnC2k
c ��

s

��

Th.N2k/ ��

s

��

P˛.K/=X

s

��
S2 ^ SnC2k

��

1^c �� S2 ^ Th.N2k/

��

�� P˛.S2 ^ K/=X

mB.b^1/

��
SnC2kC2

c �� Th.N2kC2/ �� P˛.K/=X ,

(5.4)

where S is the reduced suspension map by S2. This implies that the stable homotopy
equivalent class of sections defines the same element in Kt�.X; ˛/, with the degree
given by n .mod 2/. Thus, we have a well-defined homomorphism

‰t W Kev=odd.X; ˛ C .W3 B �// ! Kt
ev=odd.X; ˛/: (5.5)

Conversely, for a sufficiently large k, let 
 W .SmC2k; 1/ ! .P˛.K/=X; �/ rep-
resent an element in Kt

ev=odd.X; ˛/ (depending on even or odd m). We can lift this

map to a map 
0 W SmC2k ! P˛.MSpinc.2k//=X . As in step 4 of the proof of Theo-
rem 4.4, 
0 can be deformed to a differentiable map h on the preimage of some open
set containing P˛.BSpinc.2k//, is transverse to P˛.BSpinc.2k// and agrees with 
0

on an open set containing 1. Then

M D h�1.P˛.BSpinc.2k/// � RmC2k D SmC2k � f1g
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is a smooth compact manifold and admits a natural ˛-twisted Spinc structure

M

�

	


�

��

hjM
�������������

P˛.BSpinc.2k//

��

�� BSO

�� � � � � � � �

� � � � � � �

W3

��
X ˛

�� K.Z; 3/.

(5.6)

Therefore, we can assume that the map 
 W .SmC2k; 1/ ! .P˛.K/=X; �/ comes
from the following commutative diagram:

RmC2k
� �� P˛.K/

��

N"

j
�����������

�
���

��
��

��
��

M

��

�
�� X ,

where N" is the normal bundle of M in RmC2k , identified as the "-neighborhood of
M in SmC2k . In particular, the continuous map


 B j W N" ! SmC2k ! P˛.K/=X

determines a compactly supported section of P˛B�B�.K/ D .� B �/�P˛.K/.
Choose an embedding �2k0

W M ! R2k0 , the ˛-twisted Spinc structure (5.6) on
M over X induces a natural ˛ B �-twisted Spinc structure (5.6) on M over X � R2k0

M

.�;�2k0
/

��

� �� BSO

�� �
� � � �

� � � � �
W3

��
X � R2k0

˛B�0

�� K.Z; 3/

such that .�; �2k0
/ is an embedding. Here �0 is the projection X � R2k0 ! X . Notice

that
Kt

ev=odd.X; ˛/ Š Kt
ev=odd.X � R2k0 ; ˛/:

Therefore, without losing any generality, we may assume that � W M ! X is an
embedding and there is an embedding i2k W X ! RnC2k . Denote by NX the normal
bundle of the embedding i2k and by NM the normal bundle of M in RnC2k . We
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implicitly assume that any normal bundle of an embedding is identified with a tubular
neighborhood of the embedding. Then we have the following collapsing map

Th.NX / ! Th.NM /

since NM is imbedded in NX with appropriate choices of tubular neighborhood.
The map 
 W .SmC2k; 1/ ! .P˛.K/=X; �/ is stable homotopic to

.SnC2k; 1/
c�! .Th.NM /; �/ ! .P˛.K/=X; �/: (5.7)

Hence we obtain a map

Th.NX / ! Th.NM / ! P˛.K/=X;

which gives a compactly supported section of P˛B�.K/ where � denotes the projection
NX ! X . This section defines an element in Kev.NX ; ˛ B �/, hence an element of
Kev.X; ˛ C .W3 B �// under the isomorphism (5.3) and the diagram (5.4). It is
straightforward to show that this map from Kt

ev=odd.X; ˛/ to Kev=odd.X; ˛ C .W3 B�//

is the inverse of ‰t defined before.
Hence we have established the isomorphism

‰t W Kev=odd.X; ˛ C .W3 B �// ! Kt
ev=odd.X; ˛/; (5.8)

with the degree shifted by dim X mod 2. This is the Poincaré duality in topological
twisted K-theory.

Step 2. There is an isomorphism ‰a W Ka
ev=odd.X; ˛/ Š Kev=odd.X; ˛ C .W3 B �//

with the degree shifted by dim X .mod 2/.
Recall that for a twisting ˛ W X ! K.Z; 3/ there is an associated bundle of C�

algebras, denoted by P˛.K/ where K be the C�-algebra of compact operators on
an infinite dimensional, complex and separable Hilbert space H . Here we identify
K.Z; 2/ as the projective unitary group PU.H / with the norm topology (see [5]
for details). There is an equivalent definition of Kev=odd.X; ˛/ in [39], using the
continuous trace C� algebra Cc.X; P˛.K//, which consists of compactly supported
sections of the bundle of C�-algebras, P˛.K/. Moreover, Atiyah–Segal established
a canonical isomorphism in [5] between Kev=odd.X; ˛/ and the analytical K-theory of
Cc.X; P˛.K//. The latter K-theory can be described as the Kasparov KK-theory

KK.C; Cc.X; P˛.K///:

There is an equivalent definition of Kev=odd.X; ˛ C .W3 B �// in [39], using the
continuous trace C� algebras, which consists of compactly supported sections of the
bundle of C�-algebra, P˛C.W3B�/.K/.

In [22] (see also [42]), a natural isomorphism, called the Poincaré duality in
analytical twisted K-theory,

KK.C; Cc.X; P˛.K// Ő Cc.X/ Cc.X; Cliff.TX/// Š KK.Cc.X; P�˛.K//; C/
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is constructed using the Kasparov product with the weak dual-Dirac element associ-
ated to P˛.K/; see Definition 1.11 and Theorem 1.13 in [22] for details.

Note that there is a natural Morita equivalence

Cc.X; P˛.K// Ő Cc.X/ Cc.X; Cliff.TX// � Cc.X; P˛C.W3B�/.K//

which induces a canonical isomorphism on their KK-groups. The isomorphism

KK.Cc.X; P�˛.K//; C/ Š KK.Cc.X; P˛.K//; C/

is obvious using the operator conjugation. So in our notation, the Poincaré duality in
analytical twisted K-theory can be written in the form

‰a W Kev=odd.X; ˛ C .W3 B �// ! Ka
ev=odd.X; ˛/; (5.9)

with the degree shifted by dim X .mod 2/ coming from the shift of grading on the
evev/odd dimensional complex Clifford algebra.

Applying the Poincaré duality isomorphisms (5.8) and (5.9) in topological twisted
K-theory and analytical twisted K-theory, we have a natural isomorphism

ˆ W Kt
ev=odd.X; ˛/

‰aB‰�1
t�����! Ka

ev=odd.X; ˛/;

such that the following diagram commutes:

Kev=odd.X; ˛ C .W3 B �//

‰t

Š
���������������
‰a

Š ����������������

Kt
ev=odd.X; ˛/ Š

ˆ
�� Ka

ev=odd.X; ˛/.

(5.10)

Step 3. Show that Indexa D ˆ B Indext .
Applying the suspension operation, we only need to prove the even case. Let

.M; �; 	; 
/ be a 2n-dimensional closed ˛-twisted Spinc manifold over X ,

M

�

��

� �� BSO
�

�� �
�

�
�

�

�
�

�
�

�
W3

��
X ˛

�� K.Z; 3/,

representing an element in the ˛-twisted Spinc bordism group �
Spinc

n .X; ˛/.
The analytical index of .M; �; 	; 
/, as defined Definition 3.7, is given by

Indexa.M; �; 	; 
/ D �Š.ŒM �/ D �Š B PD.ŒC�/; (5.11)
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where PD W K0.M/ ! Ka
0 .M; W3 B �/ is the Poincaré duality isomorphism with �

the classifying map for the stable tangent bundle. The push-forward map �Š in (5.11)
is obtained from the following sequence of maps

Ka
0 .M; W3 B �/

I���! Ka
0 .M; W3 B 	/

����! Ka
0 .M; ˛ B �/

����! Ka
0 .X; ˛/:

There is a natural push-forward map

�Š W �Spinc

ev .M; ˛ B �/ ! �Spinc

ev .X; ˛/

such that the following diagrams for the analytical index

�
Spinc

ev .M; ˛ B �/

Indexa

��

�Š �� �
Spinc

ev .X; ˛/

Indexa

��
Ka

0 .M; ˛ B �/
�Š

�� Ka
0 .X; ˛/

and for the topological index

�
Spinc

ev .M; ˛ B �/

Indext

��

�Š �� �
Spinc

ev .X; ˛/

Indext

��
Kt

0.M; ˛ B �/
�Š

�� Kt
0.X; ˛/

are commutative.
Since .M; Id; 	; Id/ is a natural ˛ B �-twisted Spinc manifold over M , we only need

to prove that

.I�/�1 B ˆ B Indext .M; Id; 	; Id/ D ŒM � D PD.C/ (5.12)

in Ka
0 .M; W3 B �/. We will show that the identity (5.12) follows from the Thom

isomorphism

K0.M/ Š K0.NM ; W3 B 	k B �/;

where we choose an embedding ik W M ! R2nCk with its normal bundle NM , � is
the projection NM ! M and 	k W M ! BSO.k/ is the classifying map of the normal
bundle NM . The image of ŒC� under the above Thom isomorphism is represented by
the map


M W .S2nCk; 1/ ! .Th.NM /; �/ ! .PW3B�kB�.K/=NM ; �/
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arising from the W3 B 	k-twisted Spinc structure on M as in the following diagram:

Th.NM / �� PW3B�k
.MSpinc.k//=M �� PW3B�k

.K/=M

M
� �

��

Id

�������������������� �� PW3B�k
.BSpinc.k//

��

� �

��

�� BSO.k/

W3

��
M

W3B�k �� K.Z; 3/.

This same diagram also defines the topological index of .M; Id; 	; Id/ under the index
map

Indext W �Spinc

ev .M; W3 B 	/ ! Kt
0.M; W3 B 	/:

Hence we establish the following commutative diagram:

�
Spinc

ev=odd.X; ˛/

Indext

�	�����������
Indexa

	
�����������

Kt
ev=odd.X; ˛/ Š

ˆ
�� Ka

ev=odd.X; ˛/.

Remark 5.3. Let �X W TX ! X be the projection. Applying the Thom isomorphism
([18]), we obtain the following isomorphism:

Kev=odd.TX; ˛ B �X / Š Kev=odd.X; ˛ C .W3 B �//:

Hence, the above commutative diagram (5.10) becomes

Kev=odd.TX; ˛ B �X /

PD

Š
���������������

PD

Š
���������������

Kt
ev=odd.X; ˛/ Š

ˆ
�� Ka

ev=odd.X; ˛/,

(5.13)

which should be thought of as a generalized Atiyah–Singer index theorem for
˛-twisted Spinc manifolds over X with a twisting ˛ W X ! K.Z; 3/. If
˛ W X ! K.Z; 3/ is a trivial map, the commutative diagram (5.13) becomes

Kev=odd.TX/

Indext

�	�����������
Indexa

	
�����������

Kt
ev=odd.X/ Š

ˆ
�� Ka

ev=odd.X/,
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which is the basic form for the Atiyah–Singer index theorem. The upper vertex repre-
sents the symbols of elliptic pseudo-differential operators on X . Each of these index
maps is essentially just the Poincaré duality isomorphism between the K-cohomology
of T �X and the two realizations of the K-homology K0.X/. See [10] for more details.

If ˛ is the twisting associated to the classifying map W3 B � W X ! K.Z; 3/ of
the stable tangent bundle, then we have the following twisted index theorem, given
by the following commutative diagram:

Kev=odd.TX; W3 B � B �/

Indext


����������������
Indexa

�����������������

Kt
ev=odd.X; W3 B �/ Š

ˆ
�� Ka

ev=odd.X; W3 B �/.

This is a special case of twisted longitudinal index theorem for foliations. We will
return to this issue later.

6. Geometric cycles and geometric twisted K-homology

Definition 6.1. Let X be a paracompact Hausdorff space and let ˛ W X ! K.Z; 3/ be
a twisting over X . A geometric cycle for .X; ˛/ is a quintuple .M; �; 	; 
; ŒE�/ such
that

(1) M is a smooth closed manifold equipped with an ˛-twisted Spinc structure,

M

�

��

� �� BSO
�

�� �
�

�
�

�

�
�

�
�

�
W3

��
X ˛

�� K.Z; 3/,

where � W M ! X is a continuous map, 	 is a classifying map of the stable
normal bundle of M , and 
 is a homotopy from W3 B 	 and ˛ B �;

(2) ŒE� is a K-class in K0.M/ represented by a Z2-graded vector bundle E over M .

Two geometric cycles .M1; �1; 	1; 
1; ŒE1�/ and .M2; �;2 	2; 
2; ŒE2�/ are isomorphic
if there is an isomorphism f W .M1; �1; 	1; 
1/ ! .M2; �2; 	2; 
2/, as ˛-twisted Spinc

manifolds over X , such that fŠ.ŒE1�/ D ŒE2�.

Let �.X; ˛/ be the collection of all geometric cycles for .X; ˛/. We now impose
an equivalence relation � on �.X; ˛/, generated by the following three elementary
relations:
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(1) Direct sum – disjoint union.

If .M; �; 	; 
; ŒE1�/ and .M; �; 	; 
; ŒE2�/ are two geometric cycles with the same
˛-twisted Spinc structure, then

.M; �; 	; 
; ŒE1�/ [ .M; �; 	; 
; ŒE2�/ � .M; �; 	; 
; ŒE1� C ŒE2�/:

(2) Bordism.

Let .M1; �1; 	1; 
1; ŒE1�/ and .M2; �2; 	2; 
2; ŒE2�/ be two geometric cycles.
Then there exist an ˛-twisted Spinc manifold .W; �; 	; 
/ and ŒE� 2 K0.W /

such that

@.W; �; 	; 
/ D �.M1; �1; 	1; 
1/ [ .M2; �2; 	2; 
2/ and @.ŒE�/ D ŒE1� [ ŒE2�:

Here �.M1; �1; 	1; 
1/ denotes the manifold M1 with the opposite ˛-twisted
Spinc structure.

(3) Spinc vector bundle modification.

Suppose that we are given a geometric cycle .M; �; 	; 
; ŒE�/ and a Spinc vector
bundle V over M with even dimensional fibers. Denote by R the trivial rank
one real vector bundle. Choose a Riemannian metric on V ˚ R and let

yM D S.V ˚ R/

be the sphere bundle of V ˚ R. Then the vertical tangent bundle T v. yM/ of
yM admits a natural Spinc structure with an associated Z2-graded spinor bundle

SC
V ˚ S�

V . Denote by � W yM ! M the projection which is K-oriented. Then

.M; �; 	; 
; ŒE�/ � . yM; � B �; 	 B �; 
 B �; Œ��E ˝ SC
V �/:

Definition 6.2. Denote by K
geo� .X; ˛/ D �.X; ˛/=� the geometric twisted K-

homology. Addition is given by disjoint union/direct sum relation. Note that the equiv-
alence relation � preserves the parity of the dimension of the underlying ˛-twisted
Spinc manifold. Let K

geo
0 .X; ˛/ (resp. K

geo
1 .X; ˛/ ) the subgroup of K

geo� .X; ˛/ de-
termined by all geometric cycles with even (resp. odd) dimensional ˛-twisted Spinc

manifolds.

Remark 6.3. (1)According to Proposition 3.3, M admits an ˛-twisted Spinc structure
if and only if

��.Œ˛�/ C W3.M/ D 0:

(If � is an embedding, this is the anomaly cancellation condition obtained by Freed
and Witten in [25]. The cycle .M; �; 	; 
; ŒE�/ is referred to by physicists as a D-brane
and appears in type IIB string theory; see [25], [44], [29], [14].)
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(2) Different definitions of topological twisted K-homology were proposed in
[36] using Spinc-manifolds and twisted bundles. It is not clear to the author if their
definition is equivalent to Definition 6.2.

(3) If f W X ! Y is a continuous map and ˛ W X ! K.Z; 3/ is a twisting, then
there is a natural homomorphism of abelian groups

f� W K
geo
ev=odd.X; ˛/ ! K

geo
ev=odd.Y; ˛ B f /

sending ŒM; �; 	; 
; E� to ŒM; f B �; 	; 
; E�.

Given a geometric cycle .M; �; 	; 
; ŒE�/, the analytical index (as in Definition 3.7)
determines an element

�.M; �; 	; 
; ŒE�/ D Indexa.M; �; 	; 
; ŒE�/

D �� B 
� B I � B PD.ŒE�/

in Ka
ev=odd.X; ˛/.

Theorem 6.4. The assignment .M; �; 	; 
; ŒE�/ ! �.M; �; 	; 
; ŒE�/, called the as-
sembly map, defines a natural homomorphism

� W K
geo
ev=odd.X; ˛/ ! Ka

ev=odd.X; ˛/;

which is an isomorphism for any closed smooth manifold X with a twisting ˛ W X !
K.Z; 3/.

Proof. Step 1. We need to show that the correspondence is compatible with the three
elementary equivalence relations, so the assembly map � is well defined. We only
need to discuss the even case.

Proposition 3.8 ensures that Indexa.M; �; 	; 
; ŒE�/ is compatible with the bor-
dism relation and disjoint union/direct sum relation. We only need to check that the
assembly map is compatible with the relation of Spinc vector bundle modification.

Suppose that .M; �; 	; 
; ŒE�/ is a geometric cycle of even dimension and Spinc is
a vector bundle V over M with even dimensional fibers. Then

.M; �; 	; 
; ŒE�/ � . yM; � B �; 	 B �; 
 B �; Œ��E ˝ SC
V �/;

where yM D S.V ˚R/ is the sphere bundle of V ˚R and � W yM ! M is the projection.
The vertical tangent bundle T v. yM/ of yM admits a natural Spinc structure with an
associated Z2-graded spinor bundle SC

V ˚ S�
V . The K-oriented map � induces a

natural homomorphism (see [4])

�Š W K0. yM/ ! K0.M/
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sending Œ��E ˝ SC
V � to ŒE�. This follows from the Atiyah–Singer index theorem

for families of longitudinally elliptic differential operator associated to the Dirac
operator on the round 2n-dimensional sphere. Applying the Poincaré duality, we
have the commutative diagram

K0. yM/
	Š ��

PD
��

K0.M/

PD

��
Ka

0 . yM; W3 B � B �/ 	�

�� Ka
0 .M; W3 B �/,

which implies that PD.ŒE�/ D �� B PD.Œ��E ˝ SC
V �/. Hence we have

�.M; �; 	; 
; ŒE�/ D �. yM; � B �; 	 B �; 
 B �; Œ��E ˝ SC
V �/:

Step 2. We establish the following commutative diagram

Kt
ev=odd.X; ˛/

‰

�	�����������
ˆ

Š 	
������������

K
geo
ev=odd.X; ˛/

� �� Ka
ev=odd.X; ˛/

and show that ‰ is surjective. This implies that � is an isomorphism.
First, we construct a natural map ‰ W Kt

0.X; ˛/ ! K
geo
0 .X; ˛/. Let, for suffi-

ciently large k, an element of Kt
0.X; ˛/ be represented by a map


 W .SmC2k; 1/ ! .P˛.K/=X; �/:

We can lift this map to a map 
0 W SmC2k ! P˛.MSpinc.2k//=X . As in step 4 of the
proof of Theorem 4.4, 
0 can be deformed to a differentiable map h on the preimage
of some open set containing P˛.BSpinc.2k//, is transverse to P˛.BSpinc.2k// and
agrees with 
0 on an open set containing 1. Then

M D h�1.P˛.BSpinc.2k/// � RmC2k D SmC2k � f1g
admits a natural ˛-twisted Spinc structure

M

�

	


�

��

hjM
�������������

P˛.BSpinc.2k//

��

�� BSO

�� � � � � � � �

� � � � � � �

W3

��
X ˛

�� K.Z; 3/.
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A homotopy equivalence map gives rise to a bordant ˛-twisted Spinc manifold. Hence
we have a geometric cycle .M; �; 	; 
; ŒC�/, whose equivalence class does not depend
on various choices in the construction. This defines a map

‰ W Kt
0.X; ˛/ ! K

geo
0 .X; ˛/:

It is straightforward to show that ‰ is a homomorphism. Note that ˆ D �B‰ follows
from the definition of ˆ and Theorem 5.1.

To show that ‰ is surjective, let .M; �; 	; 
; ŒE�/ be a geometric cycle. Then the
˛-twisted Spinc manifold .M; �; 	; 
/ defines a bordism class in �

Spinc

ev .X; ˛/. The
topological index

Indext .M; �; 	; 
/ 2 Kt
0.X; ˛/

is represented by the canonical map


 W .SmC2k; 1/ ! .Th.NM /; �/ ! .P˛.MSpinc.2k/=X; �/ ! .P˛.K/=X; �/

associated to the normal bundle � W NM ! M of an embedding ik W M ! RmC2k

as in step 1 of the proof of Theorem 5.1. This map defines a compactly supported
section of P˛B�B�.K/ (a bundle of K-theory spectra over NM ). We also denote this
section by 
 . Then the homotopy class of the section 
 defines a twisted K-class in
K0.NM ; ˛ B � B �/, which is mapped to ŒC� under the Thom isomorphism

K0.NM ; ˛ B � B �/ Š K0.NM ; W3 B 	 B �/ Š K0.M/:

Let � W M ! K be a map representing the K-class ŒE�. Then � B � is a section
of the trivial bundle K over NM . Define a new section of P˛B�B�.K/ by applying the
fiberwise multiplication m W K^K ! K to .
; � B�/. Then m.
; � B�/ is a compactly
supported section of P˛B�B�.K/ which determines a map, denoted by 
 � � ,


 � � W .SmC2k; 1/ ! .Th.NM /; �/ ! .P˛B�B�.K/=NM ; �/:

The homotopy class of 
 �� as an element in K0.NM ; ˛ B �B�/ is uniquely determined
by the stable homotopy class of 
 and the homotopy class of � . Under the Thom
isomorphism K0.NM ; ˛ B � B �/ Š K0.M/, Œ
 � �� is mapped to ŒE�. Hence,

‰.Œ
 � ��/ D ŒM; �; 	; 
; ŒE��:

Therefore, ‰ is surjective.

Corollary 6.5. Given a twisting ˛ W X ! K.Z; 3/ on a smooth manifold X , every
twisted K-class in Kev=odd.X; ˛/ is represented by a geometric cycle supported on
an .˛ C .W3 B �//-twisted closed Spinc-manifold M and an ordinary K-class ŒE� 2
K0.M/.
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Proof. We only need to prove the even case, the odd case can be obtained by the
suspension operation. Assume that X is even dimensional and � W TX ! X is the
projection. Then we have the following isomorphisms

K0.X; ˛/ Š K0.TX; .˛ B �/ C .W3 B � B �// (Thom isomorphism)

Š Ka
0 .X; ˛ C .W3 B �// (Remark 5.3)

Š K
geo
0 .X; ˛ C .W3 B �// (Theorem 6.4):

From the definition of K
geo
0 .X; ˛ C .W3 B �// we know that each element in

K
geo
0 .X; ˛ C .W3 B �// is represented by a geometric cycle .M; ı; 	; 
; ŒE�/ for

.X; ˛ C .W3 B �//, which is a generalized D-brane supported on an .˛ C .W3 B �//-
twisted closed Spinc-manifold M and an ordinary K-class ŒE� 2 K0.M/.

Remark 6.6. Let Y be a closed subspace of X . A relative geometric cycle for
.X; Y I ˛/ is a quintuple .M; �; 	; 
; ŒE�/ such that

(1) M is a smooth manifold (possibly with boundary) equipped with an ˛-twisted
Spinc structure .M; �; 	; 
/;

(2) if M has a non-empty boundary, then �.@M/ � Y ;

(3) ŒE� is a K-class in K0.M/ represented by a Z2-graded vector bundle E over M ,
or a continuous map M ! K.

The relation � generated by disjoint union/direct sum, bordism and Spinc vector
bundle modification is an equivalence relation. The collection of relative geometric
cycles modulo the equivalence relation is denoted by

K
geo
ev=odd.X; Y I ˛/:

Then we have the following commutative diagram whose arrows are all isomorphisms:

Kt
ev=odd.X; Y I ˛/

‰

���������������
ˆ

���������������

K
geo
ev=odd.X; Y I ˛/

�
�� Ka

ev=odd.X; Y I ˛/.

7. The twisted longitudinal index theorem for foliation

Given a C 1 foliated manifold .X; F /, that is, F is an integrable sub-bundle of TX ,
let D be an elliptic differentiable operator along the leaves of the foliation. Denote by
�D the longitudinal symbol of D, whose class in K0.F �/ is denoted by Œ�D�. In [19],
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Connes and Skandalis defined the topological index and the analytical index of D

taking values in the K-theory of the foliation C�-algebra C �
r .X; F / and established

the equality between the topological index and the analytical index of D. See [19] for
more details. In this section, we will generalize the Connes–Skandalis longitudinal
index theorem to a foliated manifold .X; F / with a twisting ˛ W X ! K.Z; 3/.

Let NF D TX=F be the normal bundle to the leaves whose classifying map
is denoted by 	F W X ! BSO.k/. Here assume that F is of rank k and X is n-
dimensional. We can equip X with a Riemannian metric such that we have a splitting

TX D F ˚ NF :

Then the sphere bundle M D S.F � ˚ R/ is a W3 B 	F -twisted Spinc manifold over
X . To see this, let � be the projection M ! X . We need to calculate the third
Stiefel–Whitney class of M D S.F � ˚ R/ from the following exact sequence of
bundles over M ,

0 ! ��.F ˚ R/ ! TM ˚ R ! ��TX ! 0; (7.1)

from which we have

W3.TM/ D ��W3.F / C ��W3.TX/

D ��W3.F / C ��.W3.F / C W3.NF //

D ��W3.NF /:

Note that ��W3.NF / D ŒW3 B 	F B �� 2 H 3.M; Z/. So S.F � ˚ R/ admits a natural
W3 B 	F -twisted Spinc structure

M

�

��

� �� BSO
�

�� �
�

�
�

�

�
�

�
�

�
W3

��
X

W3B�F

�� K.Z; 3/,

where 	 is the classifying map of the stable normal of M and 
 is a homotopy
associated to a splitting of (7.1) as follows. Given a splitting of (7.1), the natural
isomorphisms

TM ˚ R Š ��TX ˚ ��.F ˚ R/

Š ��.F ˚ NF / ˚ ��.F ˚ R/

Š ��.F ˚ F / ˚ ��NF ˚ R

and the canonical Spinc structure on ��.F ˚F / define the homotopy between W3 B�

and W3 B 	F . Different choices of splittings of (7.1) gives rise to the same homotopy
equivalence class, hence do not change the twisted Spinc bordism class of M .
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Let an elliptic differentiable operator along the leaves of the foliation with longi-
tudinal symbol class Œ�D� 2 K0.F �/ be represented by a map

�D W ��E1 ! ��E2

of a pair of vector bundles E1 and E2 over X such that �D is an isomorphism away
from the zero section of F �. Applying the clutching construction as described in
[10], M D S.F � ˚ R/ consists of two copies of the unit ball bundle of F � glued
together by the identity map of S.F �/. We form a vector bundle over M by gluing
��E1 and ��E2 over each copy of the unit ball bundle along S.F �/ by the symbol
map �D . Denote the resulting vector bundle by yE. The quintuple .M; �; 	; 
; Œ yE�/ is
a geometric cycle of .X; W3 B 	F /.

We define the topological index of Œ�.D/� to be

Indext .Œ�D�/ D ŒM; �; 	; 
; yE� 2 K
geo
ŒnCk


.X; W3 B 	F /;

where Œn C k� denotes the mod 2 sum (even or odd if n C k is even or odd).
The analytical index of Œ�D� is defined through the following sequence of isomor-

phisms:

K0.F �/ Š KŒk
.X; W3.F // .Thom isomorphism/

Š Ka
ŒnCk
.X; W3.F ˚ TX// .Poincaré duality/

Š Ka
ŒnCk
.X; W3.NF // .F ˚ TX Š F ˚ F ˚ NF /

Š Ka
ŒnCk
.X; W3 B 	F /:

The resulting element is denoted by

Indexa.Œ�D�/ 2 Ka
ŒnCk
.X; W3 B 	F /:

Now we apply Theorems 5.1 and 6.4, and Remark 5.3 to obtain the following
version of the longitudinal index theorem for the foliated manifold .X; F /. This
longitudinal index theorem is equivalent to the Connes–Skandalis longitudinal index
theorem through the natural homomorphism

Ka
Œn�k
.X; W3 B 	F / ! K0.C �

r .X; F //:

Theorem 7.1. Given a C 1 n-dimensional foliated manifold .X; F / of rank k, the
longitudinal index theorem for .X; F / is given by the following commutative diagram

K0.F �/

Indext

��������������
Indexa

��������������

K
geo
Œn�k


.X; W3 B 	F /
�

Š
�� Ka

Œn�k

.X; W3 B 	F /,

whose arrows are all isomorphisms.
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Remark 7.2. If .X; F / comes from a fibration �B W X ! B such that the leaves are the
fibers of �B , then F is given by the vertical tangent bundle T .X=B/ and NF Š ��

BTB .
This isomorphism defines a canonical homotopy 
0 realizing W3 B	F � W3 B�B B�B ,
where �B is the classifying map of the stable tangent bundle of B . The homotopy
diagram

S.F � ˚ R/

�

��

� �� BSO
�

�� � � � � � � � � �

� � � � � � � � �

W3

��
X

�

��

W3B�F ��
�0

�� �
�

�
�

�
�

�
�

�
�

�
� K.Z; 3/

B
W3B�B

������������������

implies that .S.F � ˚R/; �B B�; 	; 
�
0; Œ yE�/, where 
�
0 is the obvious homotopy
joining 
 and 
0, is a geometric cycle of .B; W3 B �B/ and

.�B/Š.S.F � ˚ R/; �; 	; 
; Œ yE�/ D .S.F � ˚ R/; �B B �; 	; 
 � 
0; Œ yE�/:

The commutative diagram

K0.F �/

Indext

��������������
Indexa

��������������

K
geo
Œn�k


.X; W3 B 	F /

.�B /Š

��

� �� Ka
Œn�k


.X; W3 B 	F /

.�B /Š

��
K

geo
Œn�k


.B; W3 B �B/
� ��

PD ��������������
Ka

Œn�k

.B; W3 B �B/

PD��������������

K0.B/

becomes the Atiyah–Singer families index theorem in [8].

In the presence of a twisting ˛ W X ! K.Z; 3/ on a foliated manifold .X; F /,
Theorems 5.1 and 6.4, and Remark 5.3 give rise to the following twisted longitudinal
index theorem.

Theorem 7.3. Given a C 1 n-dimensional foliated manifold .X; F / of rank k and
a twisting ˛ W X ! K.Z; 3/, let � W F � ! X be the projection. Then the twisted
longitudinal index theorem for the foliated manifold .X; F / with a twisting ˛ is given
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by the commutative diagram

K0.F �; ˛ B �/

Indext

�����������������
Indexa

�����������������

K
geo
Œn�k


.X; ˛ C .W3 B 	F //
�

Š
�� Ka

Œn�k

.X; ˛ C .W3 B 	F //,

whose arrows are all isomorphisms. In particular, if .X; F / comes from a fibration
�B W X ! B and a twisting ˛ B �B on X comes from a twisting ˛ on B , then we
have the following twisted version of the Atiyah–Singer families index theorem with
notations from Remark 7.2:

K0.T �.X=B/; ˛ B �B B �/

.�B /ŠBIndext


�����������������
.�B /ŠBIndexa

������������������

K
geo
Œn�k


.B; ˛ C .W3 B �B//
� ��

PD
������������������

Ka
Œn�k


.B; ˛ C .W3 B �B//

PD

�����������������

K0.B; ˛/.

In [34], Mathai–Melrose–Singer established the index theorem for projective fam-
ilies of longitudinally elliptic operators associated to a fibration � W Z ! X and an
Azumaya bundle A˛ for ˛ representing a torsion class in H 3.X; Z/.

Given a local trivialization of Aa for an open covering of X D S
i Ui , according

to [34], a projective family of longitudinally elliptic operators is a collection of lon-
gitudinally elliptic pseudo-differential operators acting on finite dimensional vector
bundles of fixed rank over each of the open sets f��1.Ui /g such that the compatibility
condition over triple overlaps may fail by a scalar factor. The symbol class of such a
projective family of elliptic operators determines a class in

K0.T �.Z=X/; ˛ B � B �/;

where T �.Z=X/ is dual to the vertical tangent bundle of Z and � W T �.Z=X/ ! Z

is the projection. Let n be the dimension of Z and k be the dimension of the fiber of �.
The Thom isomorphism, Theorems 5.1 and 6.4 give rise to the following commutative
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diagram

K0.T �.Z=X/; ˛ B � B �/

�ŠBIndext

����������������
�ŠBIndexa

�����������������

K
geo
Œn�k


.X; ˛ C .W3 B �//
� ��

PD ����������������
Ka

Œn�k

.X; ˛ C .W3 B �//

PD

Š
�����������������

K0.X; ˛/.

Here ˛ C .W3 B �/ represents the class Œ˛� C W3.X/ 2 H 3.X; Z/. Readers familiar
with [34] will recognise that the above theorem is another way of writing the Mathai–
Melrose–Singer index theorem (cf. Theorem 4 in [34]) for projective families of
longitudinally elliptic operators associated a fibration � W Z ! X and an Azumaya
bundle A˛ for ˛ representing a torsion class Œ˛� 2 H 3.X; Z/.

8. Final remarks

Let M be an oriented manifold with a map 	 W M ! BSO classifying its stable normal
bundle. Given any fibration � W B ! BSO, we can define a B-structure on M to be
a homotopy class of lifts Q	 of 	:

B

�

��
M

Q�
���

�
�

�

�
�� BSO.

(8.1)

When B is BSpinc , then a lift Q	 in (8.1) is a Spinc structure on its stable normal bundle.
When B is BSpin, then a lift Q	 in (8.1) is a Spin structure on its stable normal bundle.

Define
String D lim�!

k!1
String.k/;

where String.k/ is an infinite dimensional topological group constructed in [40].
There is a map String.k/ ! Spin.k/ which induces an isomorphism �n.String.k// Š
�n.Spin.k// for all n except n D 3 when �3.String.k// D 0 and �3.Spin.k// Š Z.

Let M be a Spin manifold with a classifying map 	 W M ! BSpin for the Spin
structure on its stable normal bundle. A string structure on M is a lift Q	 of 	:

BString

�

��
M

Q�
��












�
�� BSpin.
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We point out that an oriented manifold M admits a spin structure on its stable normal
bundle if and only if its second Stiefel–Whitney class w2.M/ vanishes, and a spin
manifold M admits a string structure on its stable normal bundle if p1.M/

2
vanishes,

where p1.M/ denotes the first Pontrjagin class of M (cf. [37], [40]). If M is a string
manifold, then M has a canonical orientation with respect to elliptic cohomology.

The tower of Eilenberg–MacLane fibrations

BString

K.Z;3/

��
BSpin

K.Z2;1/

��

p1
2 �� K.Z; 4/

BSO
w2 �� K.Z2; 2/

gives rise to Thom spectra

MString ! MSpin ! MSO;

with corresponding bordism groups

�
String� .X/ ! �

Spin� .X/ ! �SO� .X/:

Remark 8.1. Given a paracompact space X , a continuous map ˛ W X ! K.Z2; 2/

is called a KO-twisting, and a continuous map ˛ W X ! K.Z; 4/ is called a string
twisting. For a principal G-bundle P over X for a compact Lie group G equipped
with a map BG ! K.Z; 4/ representing a degree 4 class in H 4.BG; Z/, there is a
natural string twisting

X ! BG ! K.Z; 4/:

Given a string twisting ˛ W X ! K.Z; 4/, a universal Chern–Simons 2-gerbe was
constructed in [16].

For any KO-twisting ˛, there is a corresponding notion of an ˛-twisted Spin
manifold over .X; ˛/.

Definition 8.2. Let .X; ˛/ be a paracompact topological space with a twisting
˛ W X ! K.Z2; 2/. An ˛-twisted Spin manifold over X is a quadruple .M; 	; �; 
/

where

(1) M is a smooth, oriented and compact manifold together with a fixed classifying
map of its stable normal bundle

	 W M ! BSOI
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(2) � W M ! X is a continuous map;

(3) 
 is an ˛-twisted Spin structure on M , that is, a homotopy commutative diagram

M

�

��

� �� BSO
�

�� �
�

�
�

�

�
�

�
�

�
w2

��
X ˛

�� K.Z2; 2/,

where w2 is the classifying map of the principal K.Z2; 1/-bundle BSpin ! BSO
associated to the second Stiefel–Whitney class and 
 is a homotopy between
w2 B 	 and ˛ B �.

Two ˛-twisted Spin structures 
 and 
0 on M are called equivalent if there is a
homotopy between 
 and 
0.

Remark 8.3. Let M be a smooth, oriented and compact n-dimensional manifold and
let X be a paracompact space with a KO-twisting ˛ W X ! K.Z2; 2/.

(1) M admits an ˛-twisted Spin structure if and only if there exists a continuous
map � W M ! X such that

��.Œ˛�/ C w2.M/ D 0 (8.2)

in H 2.M; Z2/. Here w2.M/ is the second Stiefel–Whitney class of TM . (The
condition (8.2) is the anomaly cancellation condition for type I D-branes, cf. [44].)

(2) If ��.Œ˛�/ C w2.M/ D 0, then the set of equivalence classes of ˛-twisted Spin
structures on M is an affine space modelled on H 1.M; Z2/.

Let HR be an infinite dimensional, real and separable Hilbert space. The projective
orthogonal group PO.HR/ with the norm topology (cf. [32]) has the homotopy type
of an Eilenberg–MacLane space K.Z2; 1/. The classifying space of PO.HR/, as a
classifying space of the principal PO.HR/-bundle, is a K.Z2; 2/. Thus, the set of
isomorphism classes of locally trivial principal PO.HR/-bundles over X is canonically
identified with

ŒX; K.Z2; 2/� Š H 2.X; Z2/:

Given a KO-twisting ˛ W X ! K.Z2; 2/, there is a canonical principal K.Z2; 1/-
bundle over X , or equivalently, a locally trivial principal PO.HR/-bundle P˛ over X .
Let KR be the C�-algebra of real compact operators on HR. Let Cc.X; P˛.KR// be
the C�-algebra of compactly supported sections of the associated bundle

P˛.KR/ ´ P˛ �PO.HR/ KR:

In [39] (see also [35]), twisted KO-theory is defined for X with a KO-twisting

˛ W X ! K.Z2; 2/
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to be
KOi .X; ˛/ ´ KOi .Cc.X; P˛.KR///:

Let KR be the 0-th space of the KO-theory spectrum. Then there is a base-point
preserving action of K.Z2; 1/ on the real K-theory spectrum

K.Z2; 1/ � KO ! KO;

which is represented by the action of real line bundles on ordinary KO-groups. This
action defines an associated bundle of KO-theory spectrum over X . Denote

P˛.KR/ D P˛ �K.Z2;1/ KR

the bundle of based spectra over X with fiber the KO-theory spectra, and let
f�n

XP˛.KR/ D P˛ �K.Z2;1/ �nKRg be the fiber-wise iterated loop spaces. Then
we have an equivalent definition of twisted KO-groups of .X; ˛/ (cf. [39]) as the set
of homotopy classes of compactly supported sections of the bundle of K-spectra:

KOn.X; ˛/ D �0.Cc.X; �n
XP˛.KR///:

Due to Bott periodicity, we only have eight different twisted K-groups KOi .X; ˛/

(i D 0; : : : ; 7). Twisted KO-theory is an 8-periodic generalized cohomology theory.
One would expect that results in this paper can be extended to twisted KO-theory.

Much of the constructions and arguments in this paper go through in the case of twisted
KO-theory. The subtlety is to study the twisted KR-theory for the (co)-tangent bundle
with the canonical involution. This may requires additional arguments.

Another interesting generalization is the notion of twisted string structure for a
paracompact topological space X with a string twisting given by

˛ W X ! K.Z; 4/:

Definition 8.4. Let .X; ˛/ be a paracompact topological space with a string twisting
˛ W X ! K.Z; 4/. An ˛-twisted string manifold over X is a quadruple .M; 	; �; 
/

where

(1) M is a smooth compact manifold with a stable spin structure on its normal bundle
given by

	 W M ! BSpin;

with BSpin D lim�!k
BSpin.k/ the classifying space of the stable spin structure;

(2) � W M ! X is a continuous map;

(3) 
 is an ˛-twisted string structure on M , that is, a homotopy commutative diagram

M

�

��

� �� BSpin
�

�� 
























p1
2

��
X ˛

�� K.Z; 4/,
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where p1

2
W BSpin ! K.Z; 4/ is the classifying map of the principal K.Z; 3/-

bundle BString ! BSpin, representing the generator of H 4.BSpin; Z/, and 
 is
a homotopy between p1

2
B 	 and ˛ B �.

Two ˛-twisted String structures 
 and 
0 on M are called equivalent if there is a
homotopy between 
 and 
0.

Remark 8.5. Let M be a smooth compact spin manifold and let X be a paracompact
space with a string twisting ˛ W X ! K.Z; 4/.

(1) M admits an ˛-twisted string structure if and only if there is a continuous map
� W M ! X such that

��.Œ˛�/ C p1.M/

2
D 0 (8.3)

in H 4.M; Z/. Here p1.X/ is the first Pontrjagin class of TM .
(2) If ��.Œ˛�/ C p1.M/

2
D 0, then the set of equivalence classes of ˛-twisted string

structures on M is an affine space modelled on H 3.M; Z/.

Given a manifold X with a twisting ˛ W X ! K.Z; 4/, one can form a bordism
category, called the ˛-twisted string bordism over .X; ˛/, whose objects are compact
smooth spin manifolds over X with an ˛-twisted string structure. The corresponding
bordism group �

String� .X; ˛/ is called the ˛-twisted string bordism group of X . We
will study these ˛-twisted string bordism groups and their applications elsewhere.
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