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Quantization of projective homogeneous spaces
and duality principle

Nicola Ciccoli, Rita Fioresi, and Fabio Gavarini�

Abstract. We introduce a general recipe to construct quantum projective homogeneous spaces,
with a particular interest for the examples of the quantum Grassmannians and the quantum
generalized flag varieties. Using this construction, we extend the quantum duality principle to
quantum projective homogeneous spaces.
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1. Introduction

A projective variety can be described via its homogeneous graded coordinate ring.
This ring is not an invariant associated to the variety but depends on a chosen embed-
ding of the variety into some projective space. Different embeddings will, in general,
produce non-isomorphic graded rings.

When a projective variety is homogeneous, i.e., endowed with a transitive action
of an (affine) algebraic group on it, it can be realized as quotient of affine algebraic
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groups G=H . In this case a projective embedding can be obtained via sections of a
line bundle on G=H , uniquely given once a character of H is specified.

If one approaches a quantization of this picture in the context of quantum groups
the problem immediately arising is that standard quantum groups have a very limited
set of quantum subgroups. This explains why usually the preferred approach goes
through representation theoretic techniques.

An explanation of the lack of quantum subgroups, together with a way to circum-
vent this problem, is suggested by considering the semiclassical picture, i.e., in the
context of algebraic Poisson groups. In such setting algebraic Poisson subgroups are
quite rare too; however there is no need of an algebraic Poisson subgroup to cook
up a Poisson quotient. The existence of a surjective Poisson map G ! G=H is
guaranteed simply by requiringH to be a coisotropic subgroup of G. This condition
can be expressed by saying that the defining ideal of H , in the function algebra of
G, is required to be a Poisson subalgebra rather than a Poisson ideal, as required for
Poisson subgroups.

Let Oq.G/ be a quantization of the affine algebraic Poisson groups G. At the
quantum level, a quantization Oq.H/ of its coisotropic subgroup H can be defined
through conditions on the projection � W Oq.G/ ! Oq.H/. We will see this in full
detail in the Sections 2, 3.

Our first aim is to build a quantum deformation Oq.G=H/ of the projective variety
G=H , i.e., of its graded ring O.G=H/, subject to the following requirements:

(1) there exists a one-dimensional corepresentation of the quantum coisotropic sub-
group Oq.H/ which is a deformation of the corepresentation of O.H/ corre-
sponding to the character ofH which defines the line bundle giving the projective
embedding of G=H ;

(2) a quantum analogue Oq.G=H/ to O.G=H/ is defined as the subset – inside
Oq.G/ – of “semi-invariant functions” with respect to the given corepresentation
of Oq.H/;

(3) the subset Oq.G=H/ is a graded subalgebra of Oq.G/;

(4) the graded subalgebra Oq.G=H/ is a graded left coideal of Oq.G/, so the co-
product in Oq.G/ induces a (left) Oq.G/-coaction on Oq.G=H/, and the latter
can be thought of as a quantum homogeneous space.

(5) the semiclassical limit of Oq.G=H/ is O.G=H/ – embedded into O.G/ – as a
graded subalgebra, left coideal and graded Poisson subalgebra.

In other words, a quantum deformation of a projective homogeneous space, em-
bedded into some projective space, consists of the deformation of the graded algebra
associated to the embedding in such a way that the action of the group on the homo-
geneous space is also naturally quantized.

We will work out the details of the construction for the case of the Grassmannian
and its Plücker embedding, that is, when G is the special linear group and H D P
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is a maximal parabolic subgroup, and we will sketch it in the more general case of
quantum flag varieties of simple Lie groups.

Our main motivation to develop this point of view is to adapt to projective ho-
mogeneous spaces the correspondence introduced by Ciccoli and Gavarini [5] for
coinvariant subalgebras. This recipe allows to associate functorially to a quantum
quasi-affine homogeneous space another quantum homogeneous space through a gen-
eralization of the quantum duality principle (QDP) defined by Drinfeld for quantum
groups. A part of the arguments in [5] does not directly apply to projective homo-
geneous spaces, since it is based on the realization of the ring of the homogeneous
space as the set of coinvariant functions inside the ring of the quantum group acting
on it. But this is possible – as in the classical case – if and only if the homogeneous
space is quasi-affine, which is not the case for projective varieties. The coordinate
ring of the homogeneous space is replaced by a graded ring inside the quantum group
ring consisting of semi-coinvariants with respect to a one-dimensional representation,
which can be seen as a deformation of the line bundle that classically determines the
projective embedding. The definitions introduced in Section 3 will allow us to define
a quantum duality functor and to obtain the QDP construction in this more general
setting. In the last chapter we will discuss applications to quantum flag manifolds.

2. The classical setting

In this section we recall some Poisson geometry (see [21] for details).

2.1. The affine case. Let k be a fixed field of characteristic 0. When doing algebraic
geometry construction, we tacitly assume that k be algebraically closed. However,
this assumption is not needed for our quantum constructions.

Let G be an affine algebraic group over k. We denote by O.G/ the algebra of
regular functions of G, in short its “function algebra”, which is naturally a Hopf
algebra (over k). We denote g ´ Lie.G/ the tangent Lie algebra ofG, and similarly
h ´ Lie.H/ for any closed algebraic subgroup H of G.

Assume that G is a Poisson group: this means that O.G/ is a Poisson Hopf
algebra, i.e., we have a Poisson bracket f ; g W O.G/ ˝ O.G/ ! O.G/ which is
compatible with the Hopf algebra structure. Moreover, g is a Lie bialgebra for some
Lie cobracket ı W g ! g ˝ g, and the same holds for its dual space g�, these two Lie
bialgebras structures being dual to each other. Indeed, the notion of Lie bialgebra
is the infinitesimal counterpart of the notion of Poisson group. Since the dual g�
of g is itself a Lie bialgebra, it follows that any connected algebraic group G� with
g� D Lie.G�/ is a Poisson group on its own, called (Poisson) dual to G. We are
going to see the example of the Poisson group GLn treated in detail in Section 5.2.
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Definition 2.1. A (closed) subgroupH ofG is called coisotropic if its defining ideal
I.H/ is a Poisson subalgebra of O.G/. Also, H is called a Poisson subgroup if the
embedding H ,! G is a Poisson map; this is equivalent to require I.H/ to be a
Poisson ideal. Hence a Poisson subgroup is coisotropic.

The following equivalent conditions give an infinitesimal characterization for a
connected subgroup H to be coisotropic (see [24]):

Proposition 2.2. Let G be an algebraic group and H a (closed) subgroup of the
Poisson group G. Then the following are equivalent:

(C-i) H is a coisotropic subgroup of G;

(C-ii) ı.h/ � h ^ g, that is, h is (a Lie subalgebra and) a Lie coideal of g;

(C-iii) the orthogonal space h? is (a Lie coideal and) a Lie subalgebra of g�.

Remark 2.3. Note that, thanks to these characterizations, the infinitesimal counterpart
of the notion of coisotropic subgroup is that of a Lie subalgebra Lie coideal. The latter
notion is self-dual. In fact, letG� be any connected Poisson group dual toG. IfH is
coisotropic in G, then any connected subgroup of G� with tangent Lie algebra h? is
in turn a coisotropic subgroup ofG�, called “complementary dual” toH and denoted
by H?.

We now want to describe the notion of Poisson quotient.

Definition 2.4. LetM be a Poisson affine variety, i.e., an affine variety whose function
algebra O.M/ is a Poisson algebra. Then M is a Poisson homogeneous G-space if
there is a (regular) transitive action � W G � M ! M which is a Poisson map with
respect to the product Poisson structure onG�M . We say that a Poisson homogeneous
G-spaceM is a Poisson quotient if there is a coisotropic closed Lie subgroupHM of
G such that G=HM ' M and the projection pM W G � G=HM ' M is a Poisson
map.

The following is a characterization of Poisson quotients (cf. [29]).

Proposition 2.5. Let � W G �M ! M be a homogeneous action of G on M . Then
the following are equivalent:

(PQ-i) there exists xm 2 M whose stabilizer G xm is a coisotropic subgroup of G;

(PQ-ii) there exists xm 2 M such that � xm W G ! M , g 7! �.g; xm/, is a Poisson
map, that is to say, M is a Poisson quotient;

(PQ-iii) there is xm 2 M such that f xmg is a symplectic leaf of M .
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For any xm 2 M with stabilizer G xm one has M � G=G xm as affine G-varieties.
As M is affine, this is equivalent to O.M/ Š O.G=G xm/. Finally, O.G=G xm/ Š
O.G/G xm , the subalgebra ofG xm-invariants in O.G/. The same holds withG xm replaced
by any subgroup H whose coset space G=H is affine. We then have an additional
characterization of (affine) Poisson quotients.

Proposition 2.6. If M is as above, then M is a Poisson quotient if and only if there
exists xm 2 M such that O.G/G xm is a Poisson subalgebra of O.G/.

In particular, if H is a subgroup of G and G=H is affine, then the following are
equivalent:

1. H is coisotropic,

2. G=H is a Poisson quotient,

3. O.G=H/ D O.G/H is a Poisson subalgebra of O.G/.

2.2. The projective case. We are now interested in the case when the homogeneous
G-varietyG=H is projective, i.e.,H is parabolic. To describe this in algebraic terms
(the setting we need for quantum deformations), we require a specific realization,
namely an embedding into a projective space.

Given a representation � ofH on some vector space V , we can construct a vector
bundle associated to it, namely

V ´ G �H V D G � V= '; .gh; v/ ' .g; h�1v/; for all h 2 H; g 2 G; v 2 V:
The space of global sections of this bundle is identified with the induced module (see,
e.g., [18] for more details)

H 0.G=H;V/ D IndGH .V / D ff W G ! V j f is regular; f .gh/ D h�1 � f .g/g:

Definition 2.7. Let � W H ! k� be a character of H , i.e., a one-dimensional repre-
sentation ofH on L Š k. Then L˝n is again a one-dimensional representation ofH
with character �n. Let Ln ´ G ˝H L˝n. Define

O.G=H/n ´ H 0.G=H;Ln/;

O.G=H/ ´ L
n�0

O.G=H/n � O.G/:

Then O.G=H/ is a subalgebra of O.G/ whose elements are called semi-invariants.
Note that now the notation O.G=H/ has not the same meaning as whenG=H is affine.

Assume now the bundle L to be very ample. In the present context, this is the
same (cf. [18], §II.7) as saying that L is generated by a set of global sections f0,
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f1, : : : , fN 2 O.G=H/1; in particular, the algebra O.G=H/ is graded, generated
in degree 1 (by the fi ’s). Then O.G=H/ is the homogeneous coordinate ring of the
projective variety G=H with respect to the embedding given via the global sections
of L (see [17], p. 176).

We want to reformulate this classical construction in purely Hopf algebraic terms,
more suited to the quantum setting we shall presently deal with.

Remark 2.8. In algebraic terms, saying that � W H ! k� is a character is the same
as saying that it is a group-like element in the coalgebra O.H/. The same holds
for all powers �n (n 2 N). In fact if � is group-like, then the same is true for all
its powers �n since O.H/ is a Hopf algebra. As the �n’s are group-like, if they
are pairwise different they also are linearly independent, which ensures that the sumP
n2N O.G=H/n – inside O.G/ – is a direct one. Moreover, once the embedding is

given, each summand O.G=H/n can be described in purely Hopf algebraic terms as

O.G=H/n ´ ff 2 O.G/ j f .gh/ D �n.h�1/f .g/g
D ff 2 O.G/ j ..id ˝ �/ B�/.f / D f ˝ S.�n/g;

with � W O.G/ � O.H/ the standard projection and S the antipode of O.H/.

To simplify notation, we set � ´ S.�/, the character of H which maps h 2 H

to �.h/ D �.h�1/, and we set �� ´ .id ˝ �/ B�, so that

O.G=H/n D ff 2 O.G/ j ��.f / D f ˝ �ng: (2.1)

Proposition 2.9. Let G=H be embedded into some projective space via some very
ample line bundle. Then there exists a t 2 O.G/ such that

��.t/ ´ ..id ˝ �/ B�/.t/ D t ˝ �.t/; (2.2)

�.tm/ ¤ �.tn/ for all m ¤ n 2 N; (2.3)

O.G=H/n D ff 2 O.G/ j ��.f / D f ˝ �.tn/g; (2.4)

O.G=H/ D L
n2N

O.G=H/n; (2.5)

and O.G=H/ is generated in degree 1, namely by O.G=H/1.

Proof. If f 2 O.G=H/n, then

�.f / D �
� P

.f / �.f.1//f.2/
� D .� ˝ �/.�.f // D .� ˝ id/.��.f // D �.f /�n:

Now by assumption there exists a non-zero global section of the line bundle onG=H ,
i.e., a regular function t 2 O.G=H/1 n f0g on G and �.t/ ¤ 0. By the above (for
n D 1), up to dividing out by �.t/, we can assume that �.t/ D �. The result follows
immediately.
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Notice that while � D �.t/ is group-like, t instead is something less, yet still has
an “almost group-like property” given by (2.2). This element t and its quantization
will turn out to be crucial for the quantum setting.

Remark 2.10. We point out that O.G=H/ is a unital subalgebra and also a (left)
coideal of O.G/; the latter reflects the fact that G=H is a (left) G-space. Thus, the
restriction of the comultiplication of O.G/, namely

�jO.G=H/ W O.G=H/ ! O.G/˝ O.G=H/;

is a coaction of O.G/ on O.G=H/, which makes O.G=H/ into an O.G/-comodule
algebra in the sense of [26], §4.1. Moreover O.G=H/ is graded and the coaction
�jO.G=H/ is also graded with respect to the trivial grading on O.G/, so that each
O.G=H/n is indeed a coideal of O.G/ as well.

As to Poisson geometrical properties in this projective setup, the following char-
acterization, which might be used to define the notion of Poisson quotient structure
for the projective G-space G=H , holds:

Proposition 2.11. Let G be a Poisson algebraic group, H a closed parabolic sub-
group, and t 2 O.G/ as in Remark 2.8. The following are equivalent:

(a) fI.H/; I.H/g � I.H/, that is,H is coisotropic, and in addition ft;O.G=H/g �
I.H/;

(b) fO.G=H/r ;O.G=H/sg � O.G=H/rCs for all r; s 2 N, that is, O.G=H/ is a
graded Poisson subalgebra of O.G/.

Proof. To simplify notation, we set IH;n ´ I.H/ \ O.G=H/n for n 2 N.
(a) H) (b): First of all, note that (2.1) can be reformulated as

O.G=H/n D ff 2 O.G/ j �.f / 2 f ˝ tn C O.G/˝ I.H/g: (2.6)

Second, by Remark 2.10 (a), each O.G=H/n is a coideal of O.G/, that is,
�.O.G=H/n/ � O.G/˝ O.G=H/n. This along with (2.6) gives

�.f / 2 f ˝ tn C O.G/˝ IH;n for all f 2 O.G=H/n: (2.7)

Then, for any f 2 O.G=H/r and ` 2 O.G=H/s , we have

�.ff; `g/ D f�.f /;�.`/g 2 ff ˝ t r C O.G/˝ IH;r ; `˝ t s C O.G/˝ IH;sg
D ff ˝ t r ; `˝ t sg C ff ˝ t r ;O.G/˝ IH;sg

C fO.G/˝ IH;r ; `˝ t sg C fO.G/˝ IH;r ;O.G/˝ IH;sg
� ff; `g ˝ t rCs C f `˝ ft r ; t sg C ff;O.G/g ˝ t rIH;s

C f O.G/˝ ft r ; IH;sg C fO.G/; `g ˝ IH;r t
s C O.G/`˝ fIH;r ; t sg

C fO.G/;O.G/g ˝ IH;rIH;s C O.G/O.G/˝ fIH;r ; IH;sg
� ff; `g ˝ t rCs C O.G/˝ IH;rCs
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due to (2.7) and to (a). Thus ff; `g 2 O.G=H/rCs by (2.6) again.
(b) H) (a): By assumption we have t 2 O.G=H/1, hence ft; f g 2 O.G=H/1Cn

for all f 2 O.G=H/n by (b). In particular, this gives

ft; f g.h/ D t1Cn.h/ft; f g.1G/ D 0 for all h 2 H
because any Poisson group structure is zero at the identity. Eventually, this yields that
ft;O.G=H/g � I.H/.

To prove that fI.H/; I.H/g � I.H/, we need some additional tools.
First, let O.G/1G

be the localization of O.G/ at J ´ Ker.�O.G//, a maximal
ideal in O.G/. This is the stalk at the point 1G of the structure sheaf of G, and the
Poisson bracket of O.G/ canonically (and uniquely) extends, for f1; f2 2 O.G/,
y1; y2 2 J , n1; n2 2 N, via the identity

ff1y�n1

1 ; f2y
�n2

2 g D ff1; f2gy�n1

1 y
�n2

2 � n1f1y�n1�1
1 fy1; f2gy�n2

2

� n2f2ff1; f2gy�n1

1 y
�n2�1
2 C n1n2f1f2fy1; y2gyn1�1

1 y
n2�1
2

to the local algebra O.G/1G
. The counit � of O.G/ uniquely extends to an algebra

morphism from O.G/1G
to k, again denoted by �, whose kernel isJ1G

, the localization
of J inside O.G/1G

. Finally, we denote by I.H/1G
the localization, inside O.G/1G

,
of the ideal I.H/ of O.G/.

Second, let Xt ´ ft D 0g be the zero locus in G=H defined by the vanishing
of the divisor t , and let 	 ´ .G=H/ n Xt . This is an affine open dense subset of
G=H whose algebra of regular functions is the graded localization of O.G=H/ by
the multiplicative subset ftngn2N, that is, O.G=H/Œt� ´ L

n2N t
�nO.G=H/n. Note

that O.G=H/Œt� naturally embeds into O.G/1G
because t 2 JG=H ´ O.G=H/ n J .

Again, the Poisson bracket of O.G=H/, induced by that of O.G/, uniquely extends
to O.G=H/Œt�, and so the latter is a graded Poisson subalgebra of O.G/1G

; thus Xt
is an affine Poisson variety. Also, � induces an algebra morphism from O.G=H/Œt�

to k, whose kernel we denote by JG=H
Œt�

.

Third, let O.G=H/1G
be the localization of O.G=H/Œt� at JG=H

Œt�
: by construction,

this is the stalk at 1G D 1GH of the structure sheaf ofG=H , and the Poisson bracket
of O.G=H/Œt� uniquely extends to O.G=H/1G

.
Now the maximal ideal J1G

in the local algebra O.G/1G
can be generated by a

local system of parameters onG at the point 1G , say fy1; : : : ; yng, with n ´ dim.G/.
As H is a closed subgroup of G, we can choose this system of parameters in such a
way that:

(1) ifh ´ dim.H/, the image inside O.H/1H
Š O.G/1G

=I.H/1G
of fy1; : : : ; yhg

is a local system of parameters on H at the point 1H D 1G ;

(2) yh D t � 1;
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(3) fyhC1; : : : ; yng is a local system of parameters on Xt at 1G ; in particular, it
generates in O.G=H/1G

the ideal JG=H
1G

´ Ker.�/ \ O.G=H/1G
.

As a direct consequence of the above assumptions, the elements yhC1, : : : , yn
generate the ideal I.H/1G

inside O.G/1G
. Moreover, we have yi D fi`

�1
i for some

fi 2 O.G=H/, `i 2 O.G=H/ n JG=H (for i D hC 1; : : : ; n). Then

fyi ; yj g D ffi`�1
i ; fj `

�1
j g D ffi ; fj g`�1

i `
�1
j � ffi ; j̀ g`�1

i fj `
�2
j

� fif`i ; fj g`�2
i `

�1
j C fifj f`�1

i ; `
�1
j g`�2

i `
�2
j ;

which – by assumption (b) yielding fO.G=H/;O.G=H/g � O.G=H/ – shows
that fyi ; yj g 2 .yhC1; : : : ; yn/ D I.H/1G

for all i , j . This together with Leib-
niz’s rule implies that fkiyi ; kjyj g 2 .yhC1; : : : ; yn/ D I.H/1G

for any ki ; kj 2
O.G/1G

(with i , j D h C 1; : : : ; n); in turn, I.H/1G
D .yhC1; : : : ; yn/ satisfies

fI.H/1G
; I.H/1G

g � I.H/1G
.

Eventually, since I.H/ D O.G/ \ I.H/1G
, the above results also give

fI.H/; I.H/g � O.G/ \ fI.H/1G
; I.H/1G

g � O.G/ \ I.H/1G
D I.H/:

3. Quantum bundles and quantum homogeneous spaces

3.1. Quantum groups. We want to translate all the framework of Section 2 into the
quantum setup. The first step is to introduce quantum groups, in the form of quantum
(or “quantized”) function algebras, as follows.

Let G be an algebraic Poisson group and O.G/ its function algebra.

Definition 3.1. By quantization of O.G/ we mean a Hopf algebra Oq.G/ over the
ground ring kq ´ kŒq; q�1
, where q is an indeterminate such that:

(a) the specialization of Oq.G/ at q D 1, that is, Oq.G/=.q � 1/Oq.G/, is isomor-
phic to O.G/ as a Poisson Hopf algebra;

(b) Oq.G/ is torsion-free as a kq-module;

(c) if IG ´ .q�1/Oq.G/CKer.�Oq.G//, then
T
n�0 I nG D T

n�0 .q � 1/nOq.G/.

We call Oq.G/ quantum (or quantized ) function algebra over G, or quantum
deformation of G, or even simply quantum group. It is standard terminology to say
that the Poisson Hopf algebra O.G/ is the semiclassical limit of Oq.G/.

Similarly, we say that a kq-algebra Oq.X/ is a quantization of the commutative
k-algebra O.X/ if it is torsion-free and Oq.X/=.q�1/Oq.X/ Š O.X/. Then O.X/

is also a Poisson algebra, called semiclassical limit of Oq.X/.
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Remark 3.2. (1) The technical requirement in (c) corresponds, in the context of
formal deformations, to require that the algebra is separated; we also point out that it
is satisfied by all quantum function algebras usually considered in literature. In any
case, it will not be necessary until Section 5. Moreover, both (b) and (c) above are
automatically satisfied when Oq.G/ is free as a kq-module.

(2) The classical algebra O.G/ inherits from Oq.G/ a Poisson bracket given as
follows: if x; y 2 Oq.G/=.q � 1/Oq.G/ Š O.G/, then

fx; yg ´ x0y0 � y0x0

q � 1 mod .q � 1/Oq.G/

for any lifts x0; y0 2 Oq.G/ of x and y, respectively. One checks that this bracket is
well defined and makes O.G/ into a Poisson Hopf algebra, so thatG is a Poisson group.
But G already had, by assumption, a Poisson group structure; then the requirement
in (a) above that Oq.G/=.q � 1/Oq.G/ Š O.G/ as Poisson Hopf algebra amounts
to say that, in particular, the two Poisson group structures of G are isomorphic.

On the other hand, if we start without askingG to have a Poisson group structure,
then the previous analysis tells that if a quantization Oq.G/ exists, then it automatically
endows O.G/ with a Poisson algebra structure. And similarly for a quantization
Oq.X/ of a commutative algebra O.X/.

3.2. Quantum subgroups and quantum coisotropic subgroups. Our second step
is to introduce the notions of quantum coisotropic subgroup and of quantum subgroup,
the former being weaker than the latter.

Definition 3.3. By quantum coisotropic subgroup of Oq.G/we mean a kq-coalgebra
Oq.H/, along with a projection � W Oq.G/ � Oq.H/ such that

(a) Oq.H/ is torsion-free, as a kq-module;

(b) � is a kq-coalgebra (epi)morphism;

(c) � is an Oq.G/-module (epi)morphism, where Oq.H/ has the Oq.G/-module
structure induced by � , that is, f � �.g/ D �.fg/.

If, in addition, Oq.H/ is a Hopf algebra and � is a Hopf algebra morphism, and
for IH ´ .q � 1/Oq.H/C Ker.�Oq.H// we have

.d/
T
n�0

I nH D T
n�0

.q � 1/nOq.H/

then we say that Oq.H/ is a quantum subgroup of G.
For later use, we introduce also the notation Iq.H/ ´ Ker.�/.

Remark 3.4. (1) Iq.H/ ´ Ker.�/ satisfies Iq.H/\.q�1/Oq.G/ D .q�1/Iq.H/.
So the specialization of Iq.H/ at q D 1, i.e., I1.H/ ´ Iq.H/=.q � 1/Iq.H/,
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coincides with the image of Iq.H/ under the specialization Oq.G/=.q�1/Oq.G/ Š
O.G/ of Oq.G/, which is Iq.H/=.Iq.H/ \ .q � 1/Oq.G//.

(2) Conditions (b) and (c) imply that Iq.H/ is a two-sided coideal and a left ideal
of Oq.G/. Then, by (1), the specialization I1.H/ is a coideal and a (two-sided) ideal
in the commutative ring O.G/. Moreover, I1.H/ equals the kernel of �1 W O.G/ D
O1.G/ � O1.H/, the specialization of � at q D 1, where O1.H/ ´ Oq.H/=.q �
1/Oq.H/ is the specialization of Oq.H/. So O1.H/ admits the unique quotient
Hopf algebra structure such that �1 is the canonical Hopf algebra epimorphism. In
particular, O1.H/ is the function algebra O.H/ of some closed algebraic subgroup
H ofG, and I1.H/ D Ker.�1 W O.G/ � O.H// D I.H/, whence the terminology
and notation.

In the Hopf algebra language, conditions (b) and (c) are expressed by saying that
Oq.H/ is an Oq.G/-module coalgebra, that is, a coalgebra and Oq.G/-module such
that �Oq.H/ and �Oq.H/ are Oq.G/-module morphisms.

(3) Assumptions at the quantum level imply properties for specializations. So
the semiclassical specialization of a quantum coisotropic subgroup is (the function
algebra of) a coisotropic subgroup since I1.H/ D Ker.�1/ is a Poisson subalgebra
of O.G/. On the other hand, the specialization of a quantum subgroup instead is (the
function algebra of) a Poisson subgroup.

At the semiclassical level there are many examples of coisotropic subgroups,
among which only a few are Poisson subgroups. This is a key motivation to focus on
the more general setting of quantum coisotropic subgroups.

(4) A quantum coisotropic subgroup Oq.H/ is by no means a “quantum group”
in the sense of Definition 3.1, unless it is a quantum subgroup.

3.3. Quantum line bundles. We now want to carry over to the quantum setting the
notion of embeddingG=H ,! PN associated to a line bundle L that we assume to be
very ample. The idea is to transfer to this framework the description (2.4) of O.G=H/n
given in terms of an element t 2 O.G/, as in Remark 2.8 and Proposition 2.9. Thus,
the starting point will be a quantization of such an element t that we will call a
pre-quantum section.

GivenG andH as in Section 2.2, we assume that quantizations of them be given,
i.e., we are given Oq.G/, Oq.H/ and � W Oq.G/ � Oq.H/ as in Definitions 3.1,
3.3. To simplify notation, hereafter we shall also write Ǹ ´ �.`/ 2 Oq.H/ for every
` 2 Oq.G/.

Moreover, we assume that an element t 2 O.G/ as in Remark 2.8, and the
corresponding closed embedding G=H ,! PN be given as in Proposition 2.9 (so, in
particular, t is a section of the line bundle L on G=H ).

We define a quantization of the latter setup as follows.

Definition 3.5. We define pre-quantization of t or pre-quantum section of the line
bundle L on G=H (given by t ) any d 2 Oq.G/ such that
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(a) ��.d/ D d ˝ �.d/, i.e., �.d/ 2 .d ˝ d C Oq.G/˝ Iq.H//,

(b) d mod .q � 1/Oq.G/ D t .2 O.G//

with respect to the identification Oq.G/=.q � 1/Oq.G/ Š O.G/.

Remark 3.6. (a) Given a pre-quantum sectiond , property (a) in Definition 3.5 implies
that �.d/ D Nd is a group-like element in Oq.H/. Therefore, it defines a one-
dimensional corepresentation of Oq.H/, namely

�d W kq ! kq ˝kq
Oq.H/; 1 7! 1˝ Nd;

which gives back, modulo .q � 1/, the one-dimensional representation of O.H/,

�� W k ! k ˝k O.H/; 1 7! 1˝ �;

corresponding to the character � D �.t/ of the group H we started from.
(b) In the classical setup, having the character � is equivalent to having a Hopf

algebra morphism kŒx; x�1
 ! O.H/ given by xz 7! �z.z 2 Z/. Indeed, this
occurs because the powers �z do exist in O.H/ and are group-like because � is. In
fact, each one of them corresponds to a one-dimensional corepresentation, namely
the z-th tensor power of ��,

�˝z
�

D ��z W k ! k ˝k O.H/; 1 7! 1˝ �z :

On the other hand, in the quantum setup there is no natural analogue, since the
powers Nd z are not even defined in Oq.H/ – which is not an algebra! – nor can we
assume (in case we define them in some way) that they are group-like. This means
that we miss somehow the “tensor powers” of �d . In [1] one can find an example of
a countable family of group-like elements in a quantum coisotropic subgroup, which
are not obtained by projecting powers of the same element, but quantize a classical
character.

However, when Oq.H/ is a quantum subgroup instead, it is a Hopf algebra; hence
the group-like Nd is invertible, and all powers Nd z exist and are group-like in Oq.H/.
So we do have all “tensor power corepresentations”

�˝z
d

W kq ! kq ˝kq
Oq.H/; 1 7! 1˝ Nd z;

which in turn means that having Nd is equivalent to having a Hopf kq-algebra mor-
phism kqŒx; x�1
 ! Oq.H/ given by xz 7! Nd z.z 2 Z/.

Moreover, notice also that Nd z D d z for all z � 0, so that �d˝z for z � 0 can
be directly recovered from the element d z in Oq.G/; thus in the end we can handle
everything working with the elements dn 2 Oq.G/, n 2 N.
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Definition 3.7. Let d 2 Oq.G/ be a pre-quantum section on G=H .
(a) We call d -semi-invariants of degree n the elements of the set

Oq.G=H/n ´ f` 2 Oq.G/ j ��.`/ D `˝ �.dn/g
D f` 2 Oq.G/ j �.`/ 2 .`˝ dn C Oq.G/˝ Iq.H//g:

(b) We call d -semi-invariants the elements of the set

Oq.G=H/ ´ P
n2N

Oq.G=H/n:

It is clear that each Oq.G=H/n is a kq-submodule of Oq.G/, hence the same holds
for Oq.G=H/. We shall now see some further properties of these modules, which
eventually will tell us that – under suitable, additional assumptions – we can take
Oq.G=H/ as a quantization of O.G=H/.

Lemma 3.8. Let d 2 Oq.G/ be a pre-quantum section on G=H . Then:

(a) d 2 Oq.G=H/1, i.e., d is semi-invariant of degree 1.

(b) for any n 2 N and any ` 2 Oq.G=H/n, we have Ǹ D �.`/dn.

(c) the map � W Oq.G/ � Oq.H/ restricts to a kq-module epimorphism

� 0 W Oq.G=H/ � spankq
.fdngn2N/:

Proof. The only statement which needs a proof here is (b), which quickly follows
applying .� ˝ id/ to both sides of ��.`/ D `˝ dn.

Remark 3.9. The semi-invariants have a good arithmetic property, which ensures
that the specialization of Oq.G=H/n � Oq.G/ (and of Oq.G=H/) at q D 1 will
be consistent with that of Oq.G/ itself. Namely, given n 2 N, since Oq.G=H/n is
defined by kq-linear conditions we find at once that

Oq.G=H/n \ cOq.G/ D cOq.G=H/n for all c 2 kq;

and, in particular, Oq.G=H/n \ .q � 1/Oq.G/ D .q � 1/Oq.G=H/n.

The next result shows that each Oq.G=H/n is a left coideal of Oq.G/, hence it
bears a structure of left Oq.G/-comodule.

Proposition 3.10. Every Oq.G=H/n is a left coideal of Oq.G/, that is,

�.Oq.G=H/n/ � Oq.G/˝ Oq.G=H/n for all n 2 N;

so that�jOq.G=H/n makes Oq.G=H/n into a left Oq.G/-comodule. Thus, Oq.G=H/

is a left coideal of Oq.G/, hence a left Oq.G/-comodule.
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Proof. Let O ´ Oq.G/, On ´ Oq.G=H/n, and set O0 ´ k.q/ ˝kq
O, O0

n ´
k.q/˝kq

On. Then O ˝kq
O naturally embeds into O0 ˝k.q/ O0 because O and O0

n

are torsion free as kq-modules. Using this embedding, given any ` 2 Oq.G=H/n we
can always write �.`/ D P

i g
0
i ˝ h0

i for some g0
i ; h

0
i 2 O0 such that the g0

i ’s are all
linearly independent, and similarly for the h0

i ’s. Then (taking a common denominator)
there exists c 2 kq such that �.`/ D c�1 P

i gi ˝ hi , with the gi ’s in Oq.G/ being
linearly independent and the hi ’s in Oq.G/, which are linearly independent too.

We shall now prove thatP
i

gi ˝ P
.hi /

.hi /.1/ ˝ .hi /.2/ D P
i

gi ˝ hi ˝ dn: (3.1)

Indeed, the left-hand side of (3.1) is just the image of c` via the map

.id ˝ ..id ˝ �/ B�// B� D .id ˝ id ˝ �/ B .id ˝�/ B�:
By coassociativity of �, the latter map coincides with

.id˝ id˝�/B.id˝�/B� D .�˝�/B� D .�˝ id/B.id˝�/B� D .�˝ id/B�� ;
and now the last map applied to c` gives

.�˝ id/.��.c`//
~D .�˝ id/.c`˝ dn/ D P

i

gi ˝ hi ˝ dn;

where
~D follows from the assumption ` 2 Oq.G=H/n, which implies that c` 2

Oq.G=H/n as well. This eventually gives the right-hand side of (3.1).
Now, because of the linear independence of the hi ’s, the identity (3.1) implies

that all the hi ’s satisfy
P
.hi /
.hi /.1/ ˝ .hi /.2/ D hi ˝ dn, which means exactly that

hi 2 Oq.G=H/n for every index i . Thus we have

�.c`/ D P
i

gi ˝ hi ; gi 2 Oq.G/; hi 2 Oq.G=H/n;

the gi ’s resp. hi ’s being linearly independent, and also

�.c`/ 2 cOq.G/˝ Oq.G/:

These two conditions imply that hi 2 Oq.G=H/n \ cOq.G/ D cOq.G=H/n due
to Remark 3.9. Therefore �.`/ 2 Oq.G/ ˝ Oq.G=H/n. Finally, the claim for
Oq.G=H/ follows from that for the Oq.G=H/n’s.

The above construction provides us with a reasonable candidate for a quantum
analogue of O.G=H/, namely the space of the d -semi-invariants Oq.G=H/, which
we proved has many important properties. Nevertheless, we still would like Oq.G=H/

to verify three more key properties, namely:
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(a) Oq.G=H/ is a subalgebra of Oq.G/;

(b) Oq.G=H/ is a graded object, its n-th (for all n 2 N) graded summand being
Oq.G=H/n;

(c) the grading is compatible with all other structures, so Oq.G=H/ is a graded
Oq.G/-comodule algebra (when Oq.G/ is given the trivial grading).

Indeed, we are still missing these properties so far. In order to have them, an additional
property must be required in addition to the pre-quantum section d we started from.
This is provided by the following result.

Proposition 3.11. Set Iq.H/ ´ Ker.�/, and let d be a pre-quantum section on
G=H . Then the following properties are equivalent:

(a) Oq.G=H/r � Oq.G=H/s � Oq.G=H/rCs for all r; s 2 N, hence, in particular,
Oq.G=H/ is a kq-subalgebra of Oq.G/;

(b) Œd; f 
 D N0 in Oq.H/ for all f 2 Oq.G=H/;

(c) Œd;Oq.G=H/
 � Iq.H/.

Proof. (b) H) (a): For any r; s 2 N pick f 2 Oq.G=H/r , g 2 Oq.G=H/s . Then,
by Proposition 3.10, for�.f / D P

.f / f.1/ ˝ f.2/ and�.g/ D P
.g/ g.1/ ˝g.2/ we

have f.2/ 2 Oq.G=H/r , g.2/ 2 Oq.G=H/s . This, along with assumption (b) to get

the equality
~D, yields the chain of identities

��.fg/ D P
.f /;.g/

f.1/g.1/ ˝ f.2/g.2/ D P
.f /;.g/

f.1/g.1/ ˝ f.2/ � g.2/
D P
.f /;.g/

.f.1/ ˝ f.2// � .g.1/ ˝ g.2//

D � P
.f /

f.1/ ˝ f.2/
� � � P

.g/

g.1/ ˝ g.2/
�

D � P
.f /

f.1/ ˝ f.2/
� � �

g ˝ d s
� D P

.f /

f.1/g ˝ f.2/ � d s

D P
.f /

f.1/g ˝ f.2/d
s ~D P

.f /

f.1/g ˝ d sf.2/

D P
.f /

f.1/g ˝ .d sf.2// � N1 D ..1˝ d s/ � P
.f /

f.1/ ˝ f.2// � .g ˝ N1/

D ..1˝ d s/�.f // � .g ˝ N1/ D ..1˝ d s/.f ˝ d r C ' ˝ �// � .g ˝ N1/
D .1˝ d s/ � .fg ˝ d r C 'g ˝ N�/ D fg ˝ d sCr D fg ˝ �.d sCr/

for some suitable ' 2 Oq.G/, � 2 Iq.H/, with notation .x ˝ y/ � .a ˝ Nb/ ´
.xa/ ˝ .y � Nb/ referring to the action of Oq.G/ ˝ Oq.G/ onto Oq.G/ ˝ Oq.H/
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induced by the action of Oq.G/ onto Oq.H/, via � , and onto itself, via left regular
representation. So fg is also d -semi-invariant of degree r C s.

(a) H) (b): Assume that (a) holds. Then for f 2 Oq.G=H/n we have df ,
fd 2 Oq.G=H/nC1, and so Œd; f 
 2 Oq.G=H/nC1. Then the identity

Œd; f 
 D �.Œd; f 
/d @.f /C1

holds by Proposition 3.8. But clearly �.Œd; f 
/ D 0, hence Œd; f 
 D N0, that is,
Œd; f 
 2 Iq.H/. The outcome is Œd;Oq.G=H/
 � Iq.H/.

(b) H) (c): This is just a matter of rephrasing.

Definition 3.12. We call quantization of t , or quantum section (of the line bundle L)
on G=H , any pre-quantum section d of G=H (cf. Definition 3.5) which satisfies any
of the equivalent conditions in Proposition 3.11.

The following result gives a criterion to detect quantum sections, and shows that
for quantum subgroups they are just pre-quantum sections.

Proposition 3.13. (a) Let d be a pre-quantum section on G=H . If Œd; Iq.H/
 �
Iq.H/, then d is a quantum section.

(b) Let Oq.H/ be a quantum subgroup. Then any pre-quantum section on G=H
is a quantum section.

Proof. (a) Pick any f 2 Oq.G=H/r , g 2 Oq.G=H/s . Definition 3.7 gives

�.f / D f ˝ d r C f1 ˝ �1; f1 2 Oq.G/; �1 2 Iq.H/;
�.g/ D g ˝ d s C g1 ˝ �1; g1 2 Oq.G/; �1 2 Iq.H/:

Therefore, for the product fg we have

�.fg/ D �.f /�.g/ D .f ˝ d r Cf1 ˝ �1/.g ˝ d sCg1 ˝ �1/

D fg ˝ d rCsCfg1 ˝ d r�1Cf1g ˝ �1d
sCf1g1 ˝ �1�1:

Now d r�1; �1�1 2 Iq.H/ because Iq.H/ is a (left) Oq.G/-submodule, and

�1d
s D d s�1 C Œ�1; d

s
 2 .Iq.H/C Iq.H// D Iq.H/

because, in addition, Œd; Iq.H/
 � Iq.H/ by assumption (d). Thus

�.fg/ 2 .fg ˝ d rCs C Oq.G/˝ Iq.H//;

which means exactly that fg 2 Oq.G=H/rCs , again by Definition 3.7. Thus condi-
tion (a) of Proposition 3.11 holds, hence we conclude by Definition 3.12.

(b) If Oq.H/ is a quantum subgroup, then Iq.H/ is a two-sided ideal. Therefore,
Œd; Iq.H/
 � Iq.H/, hence by (a) we get the claim.
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The following result records yet another feature of quantum sections.

Lemma 3.14. Let d be a quantum section on G=H . Then dn 2 Oq.G=H/n, and
dn is group-like in Oq.H/ for all n 2 N. Moreover, spankq

.fdngn2N/ is a kq-sub-
coalgebra of Oq.H/ and

spankq
.fdngn2N/ D L

n2N

kqdn:

Proof. By Definition 3.12 and condition (a) of Proposition 3.11 we have that dn 2
Oq.G=H/n for all n 2 N. This means that �.dn/ 2 .dn ˝ dn C Oq.G/˝ Iq.H//,
whence, as � W Oq.G/ � Oq.H/ is a coalgebra morphism, we obtain that

�.dn/ D �.�.dn// D .� ˝ �/.�.dn// D �.dn/˝ �.dn/ D dn ˝ dn:

Thus the dn’s are group-like and different from other since so are the tn D dnjqD1.
Finally, this implies that spankq

.fdngn2N/ is a kq-subcoalgebra of Oq.H/ and that

the dn’s are linearly independent, which gives spankq
.fdngn2N/ D L

n2N kqdn.

Collecting all the previous results, we can now show that semi-invariants built out
of a quantum section satisfy all properties we look for.

Theorem 3.15. Let d be a quantum section on G=H . Then:

(a) Oq.G=H/ is a graded kq-module, its n-th graded summand (n 2 N) being
Oq.G=H/n.

(b) Oq.G=H/ is a subalgebra of Oq.G/.

(c) The grading in (a) is compatible with all other structures of Oq.G=H/, so that
Oq.G=H/ is a graded Oq.G/-comodule algebra, where we take on Oq.G/ the
trivial grading.

(d) For every c 2 kq , we have Oq.G=H/ \ cOq.G/ D cOq.G=H/. In particular,
Oq.G=H/ \ .q � 1/Oq.G/ D .q � 1/Oq.G=H/.

Proof. (a) We must simply prove that the sum
P
n2N Oq.G=H/n is direct so that

Oq.G=H/ ´ P
n2N Oq.G=H/n D L

n2N Oq.G=H/n. But this is an easy conse-
quence of Lemma 3.14.

Indeed, let
P
n2N cnfn D 0 a linear dependence relation, with fn 2 Oq.G=H/n

and cn 2 kq (almost all zero) for every n 2 N. Applying �� to this relation we getP
n2N cnfn ˝ dn D 0. But by Lemma 3.14 the dn’s are linearly independent; thus

cn D 0 for all n.
(b) This follows directly from Definition 3.12 and Proposition 3.11.



466 N. Ciccoli, R. Fioresi, and F. Gavarini

(c) This follows (again) from Definition 3.12 and Proposition 3.11 as well as from
Proposition 3.10 and the Hopf algebra axioms.

(d) This easily follows from the identity Oq.G=H/ D L
n2N Oq.G=H/n given

by claim (a), and from Remark 3.9.

Corollary 3.16. Let d be a quantum section onG=H (in the sense of Definition 3.12).
Then the restriction of � W Oq.G/ � Oq.H/ yields an epimorphism of graded
Oq.G/-module coalgebras:

� 0 W Oq.G=H/ � spankq
.fdngn2N/ D L

n2N

kqdn:

Proof. By Lemma 3.8 we know that � 0 is a well-defined epimorphism of graded
kq-modules. The rest follows from Oq.G=H/ being a subalgebra of Oq.G/, and �
being a morphism of Oq.G/-module coalgebras.

The last aspect to take into account is the behavior of Oq.G=H/ under special-
ization at q D 1. The last part of claim (d) of Theorem 3.15 ensures that such
specialization is consistent with that of Oq.G/: in other words, the embedding
Oq.G=H/ ,! Oq.G/ gets down under specialization to an embedding O1.G=H/ ´
Oq.G=H/=.q � 1/Oq.G=H/ ,! O.G/. The next result tells us something about the
specialized space O1.G=H/ itself.

Proposition 3.17. O1.G=H/ ´ Oq.G=H/=.q � 1/Oq.G=H/ is a graded Poisson
subalgebra of O.G=H/ D L

n2N O.G=H/n and a graded left coideal of O.G/, with
O1.G=H/n ´ Oq.G=H/n=.q � 1/Oq.G=H/n as n-th graded summand (n 2 N).
In particular, it is a left O.G/-comodule algebra.

Proof. For all n 2 N, the restriction to Oq.G=H/n of the specialization map

p1 W Oq.G/ � Oq.G/=.q � 1/Oq.G/ Š O.G/

has kernel Oq.G=H/n \ .q � 1/Oq.G/ D .q � 1/Oq.G=H/n by Remark 3.9. This
in turn ensures also that the restriction of p1 to Oq.G=H/ D L

n2N Oq.G=H/n has
kernel

L
n2N.q � 1/Oq.G=H/n, so its image is Oq.G=H/=.q � 1/Oq.G=H/, i.e.,

just the specialization of Oq.G=H/. So

O1.G=H/ ´ Oq.G=H/=.q � 1/Oq.G=H/ D p1.Oq.G=H//

where the right-hand side is a subalgebra of p1.Oq.G// D O.G/. Moreover, we
have also that the specialization maps preserves the grading, namely

p1.Oq.G=H// D p1
� L
n2N

Oq.G=H/n
� D L

n2N

p1.Oq.G=H/n/
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so that O1.G=H/ is graded, with n-th graded summand

p1.Oq.G=H/n/ D Oq.G=H/n=.q � 1/Oq.G=H/n μ O1.G=H/n:

Now Theorem 3.15 implies at once that O1.G=H/ is a graded subalgebra left
coideal inside p1.Oq.G// D O.G/, hence a graded (left) O.G/-comodule algebra.
In addition, the identity

Oq.G=H/ \ .q � 1/Oq.G/ D .q � 1/Oq.G=H/
implies also that the Poisson bracket defined in O.G=H/ starting from its quantization
Oq.G=H/ – see Remark 3.2 – coincides with the restriction to O.G=H/ of the Poisson
bracket similarly induced on O.G/ from Oq.G/. Therefore, O1.G=H/ is also a
Poisson subalgebra of O.G/.

We are only left to prove that the embedding of O1.G=H/ into O.G/ maps
O1.G=H/ into O.G=H/ respecting the grading on either side, that is

O1.G=H/n � O.G=H/n for all n: (3.2)

Now the left-hand side of (3.2) is Oq.G=H/n=.q � 1/Oq.G=H/n, with

Oq.G=H/n ´ f` 2 Oq.G/ j ��.`/ D `˝ �.dn/g
(cf. Definition 3.7), while the right-hand side, by (2.4), is

O.G=H/n D ff 2 O.G/ j ��.f / D f ˝ �.tn/g:
But all specialization maps commute with the coproducts � and with the (quantum
and classical) maps � , and the specialization of each dn is nothing but tn. Therefore,
we conclude that (3.2) holds.

Finally, we can define our “quantum projective homogeneous spaces”.

Definition 3.18. LetG be an algebraic Poisson group,H a coisotropic subgroup as in
§2.2, and let Oq.G/, Oq.H/ and � W Oq.G/ � Oq.H/ be given (cf. Definitions 3.1,
3.3). Let d be a quantum section on G=H (see Definition 3.12, Proposition 2.9), in
particular

(a) ��.d/ D d ˝ �.d/;

(b) d 	 t mod .q� 1/, where t is a non-zero section of the very ample line bundle
on G=H giving the embedding into some projective space.

We say that
Oq.G=H/ ´ L

n2N

Oq.G=H/n
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with

Oq.G=H/n ´ f` 2 Oq.G/ j ��.`/ D `˝ �.dn/g
D f` 2 Oq.G/ j �.`/ 2 .`˝ dn C Oq.G/˝ Iq.H//g

is a quantization of O.G=H/ if

Oq.G=H/=.q � 1/Oq.G=H/ Š O.G=H/

as graded O.G/-module algebras and as Poisson algebras over k. We will then refer
to Oq.G=H/ as quantum projective homogeneous space.

In particular, we have seen that any such Oq.G=H/ has the following properties
(Theorem 3.15):

(I) it is a graded subalgebra of Oq.G/;

(II) it is a left coideal of Oq.G/, hence a left Oq.G/-comodule via

�jOq.G=H/ W Oq.G=H/ ! Oq.G/˝ Oq.G=H/:

Remark 3.19. As a matter of fact, the only additional property required in Def-
inition 3.18 is that the embedding of Oq.G=H/=.q � 1/Oq.G=H/ into O.G=H/

provided by Proposition 3.17 be onto. But actually, as both these are graded alge-
bras, and O.G=H/ is generated in degree one, this is equivalent to requiring (only)
the embedding

Oq.G=H/1=.q � 1/Oq.G=H/1 ,! O.G=H/1

be onto.
This requirement might be seen as the quantum analogue of the requirement – at

the semiclassical level, see Section 2.2 – of having enough global sections of the line
bundle L on G=H in order to have an embedding of G=H into PN .

In Section 5 we show that quantum Grassmannians and quantum generalized flag
varieties are examples of quantum projective homogeneous space.

4. The quantum duality principle (QDP)

4.1. The QDP philosophy. The quantum duality principle (QDP) is a two-fold
recipe which allows to obtain a quantum group dual, in an appropriate sense, to a
given one.

In [5] Ciccoli and Gavarini extended this principle to quantum formal homoge-
neous spaces. Their result goes as follows.
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Given a Poisson group G, we consider pairs .H;G=H/ where H is a coisotropic
subgroup of G and G=H is the corresponding homogeneous space. At a local level,
i.e., in the setup of formal geometry, any such pair can be described in algebraic terms
by any one of the following four objects,

U.h/; U.g/h; I.H/; O.G=H/ (4.1)

where hereafter h ´ Lie.H/ and g ´ Lie.G/, and the notation is standard except for
O.G=H/ which here denotes the algebra of regular functions on the formal algebraic
variety G=H . The main result in [5] is a four-fold functorial recipe which, from a
quantization of each object in (4.1), constructs a quantization of one of the four objects
of the similar quadruple which describes the “dual” pair .H?; G�=H?/, where “dual”
refers to Poisson duality.

If we try to do the same at a global level (cf. [6]), i.e., not restricting ourselves
to the framework of formal geometry, then something changes when handling the
algebra O.G=H/. Namely, the latter is meaningful – that is, it permits to get back the
pair .H;G=H/ – only if G=H is a quasi-affine variety. This is the case, in particular,
if G=H is affine, but it is not so if G=H is projective. Therefore, in the latter case
one describes G=H taking instead of the algebra of regular functions the algebra of
(algebraic) sections of a line bundle on G=H realizing an embedding in a projective
space, i.e., what is denoted O.G=H/ in Section 2. Once this is settled, one can
consider a quantization Oq.G=H/ and try to cook up a suitable analogue of the recipe
of [5], [6].

With this program in mind, we want to associate to any quantum homogeneous
G-space Oq.G=H/ – in the sense of Definition 3.18 – a (local) quantization Uq.h?/
of the dual G�-space (actually, of the dual coisotropic subgroup), right in the spirit
of the QDP.

Warning. In order to make our statements simpler, from now on we take as ground
ring the local ring

k0
q ´ .kq/.q�1/ D localization of kq at the ideal generated by .q � 1/:

Therefore, hereafter we shall tacitly extend scalars from kq to k0
q for all kq-modules

and kq-algebras we have considered so far, with no further mention.

LetG be an affine algebraic group andH a closed coisotropic parabolic subgroup,
i.e., G=H is a projective homogeneous space. Let Oq.G/, Oq.H/ and Oq.G=H/ be
quantum deformations of O.G/, O.H/ and O.G=H/ as defined in Section 3. In
particular, Oq.G=H/ is built out of a specific quantum section d on G=H . Also,
�.d/ D Nd 2 Oq.H/ is (non-zero) group-like, hence �.d/ D �. Nd/ D 1, and d
specializes to d jqD1 D t 2 O.G=H/ � O.G/.

In addition, we make the following assumption: d is an Ore element in the algebra
Oq.G/.



470 N. Ciccoli, R. Fioresi, and F. Gavarini

This property will allow us to enlarge the algebras Oq.G/ and Oq.G=H/ by the
formal inverse d�1. Geometrically, it corresponds to asking – besides a quantization
of O.G=H/ – for a quantization of a Zariski neighbourhood of the identity element;
more precisely, it means that we have a quantization of the function algebra O.Xt / of
the affine variety Xt , the complement in G=H of the divisor defined by the function
t D d jqD1. This property is satisfied in the examples of the Grassmannian and the
flag varieties (cf. Section 5), with a suitable choice of d .

Let us define

Oloc
q .G=H/ ´ Oq.G=H/Œd

�1
proj � Oq.G/Œd
�1


where the localization is a projective localization, i.e., we take the elements of degree
zero in the ring Oq.G=H/Œd

�1
, where d�1 is given degree �1.

4.2. The QDP functor. We now recall the definition of the functor Oq.G/ 7!
Oq.G/

_, which sends quantized function algebras (of Poisson groups) to quantized
universal algebras (of Lie bialgebras). More precisely, Oq.G/

_ is a quantization of
U.g�/, where g� is the Lie bialgebra dual to g. For more details and proofs, we refer
the reader to [14], Theorem 2.2 and Theorem 4.7.

Remark. The overall assumption in [14] for G is to be connected; nevertheless, this
condition is not needed in the proof of Theorem 4.7 therein.

Definition 4.1. Let JG ´ Ker.� W Oq.G/ ! k0
q/ be the augmentation ideal of

Oq.G/. Also, let IG ´ JG C .q � 1/Oq.G/. We define

Oq.G/
_ ´ P

n�0
.q � 1/�nI nG D P

n�0
..q � 1/�1IG/n D S

n�0
..q � 1/�1IG/n:

This is a well-defined k0
q-subalgebra of k.q/˝k0

q
Oq.G/. Notice also that

Oq.G/
_ D P

n�0
.q � 1/�nJ nG D P

n�0
..q � 1/�1JG/n:

The results of [14] – in particular, Theorem 4.7 therein – tell us that Oq.G/
_ is a

quantization ofU.g�/, that is, Oq.G/
_=.q�1/Oq.G/_ Š U.g�/ as co-Poisson Hopf

algebras. Our idea is to somehow “restrict to Oq.G=H/” the definition of Oq.G/
_,

so as to define Oq.G=H/
_. To begin with, let

JG=H ´ Ker.�jOq.G=H//:

Notice that � extends uniquely to Oq.G/Œd
�1
, so we can also define

J loc
G=H ´ Ker.�jOloc

q .G=H//:
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Definition 4.2. We define

Oq.G=H/
_ ´ P

n�0
.q � 1/�n.J loc

G=H
/n D P

n�0
..q � 1/�1J loc

G=H
/n;

the unital k0
q-subalgebra of k.q/˝k0

q
Oloc
q .G=H/ generated by .q � 1/�1J loc

G=H
, or –

what amounts to the same – by .q � 1/�1I loc
G=H

, where by definition we set I loc
G=H

´
J loc
G=H

C .q � 1/Oloc
q .G=H/.

Indeed, one can check that the construction Oq.G=H/ 7! Oq.G=H/
_ is functorial

in a natural sense (see Remark 4.12 later on).
In order to study Oq.G=H/

_, we need a rather explicit description of it. In turn,
this requires a description of Oq.G/

_, which we take from [14].
Let J1 be the augmentation ideal of O.G/, namely

J1 ´ Ker.� W O.G/ �! k/ D JG mod .q � 1/Oq.G/
so that J1=J 21 D g�, the cotangent Lie bialgebra of G. Let fy1; : : : ; yng be a subset
of J1 whose image in the local ring of G at e (the unit element of the group G) is
a local system of parameters; in particular, n D dim.G/. Define fj1; : : : ; jng as a
pull-back of fy1; : : : ; yng to JG .

Theorem 4.3 (see [14], Lemma 4.1). (a) The set of ordered monomials
fQn

sD1 j
es
s j e D .e1; : : : ; en/ 2 Nng is a k0

q-pseudobasis (or topological basis)

of fOq.G/, the IG-adic completion of Oq.G/. In other words, each element of fOq.G/
has a unique expansion as a formal infinite k0

q-linear combination of the j e’s. In

particular, fOq.G/ is generated – as a topological k0
q-algebra – by fj1; : : : ; jng.

(b) The .q � 1/-adic completion cOq.G/_ of Oq.G/
_ admits the set of ordered

monomials f.q� 1/�.e1C���Cen/
Qn
sD1 j

es
s j .e1; : : : ; en/ 2 Nng as a k0

q-pseudobasis.

In particular, it follows that cOq.G/_ is generated – as a topological k0
q-algebra – by

fj_
s ´ .q � 1/�1js j s D 1; : : : ; ng.

The description of Oq.G=H/
_ goes much along the same lines.

Recall that t 2 O.G=H/ is the specialization of d 2 Oq.G=H/. We then consider
Xt , the open subvariety of G=H where t ¤ 0. On this variety, choose functions
l1; : : : ; ln�h, where h D dim.H/, such that the set

fxs ´ ls mod .q � 1/Oq.G=H/ j s D 1; : : : ; n � hg
yields, in the localization of O.Xt / at eH 2 Xt (� G=H ), a local system of para-
meters at eH .
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Theorem 4.4. (a) The set of ordered monomials

˚ n�hQ
sD1

l
es
s j .e1; : : : ; en�h/ 2 Nn�h�

is a k0
q-pseudobasis of eOloc

q .G=H/, the latter being the I loc
G=H

-adic completion of

Oloc
q .G=H/ where I loc

G=H
´ J loc

G=H
C .q � 1/Oloc

q .G=H/.

In particular, eOloc
q .G=H/ is (topologically) generated by fl1; : : : ; ln�hg.

(b) The .q�1/-adic completion cOq.G=H/_ of Oq.G=H/
_ admits as a k0

q-pseudo-
basis the set of ordered monomials

˚
.q � 1/�.e1C���Cen�h/

n�hQ
sD1

l
es
s j .e1; : : : ; en�h/ 2 Nn�h�:

In particular, cOq.G=H/_ is (topologically) generated by the set

fl_s ´ .q � 1/�1ls j s D 1; : : : ; n � hg:
Proof. The argument follows the proof of Theorem 4.9 in [15]. This theorem deals
with the general setting of a quantization Oq.V / of any Poisson affine variety V with
a distinguished point on it, given by a character � of Oq.V /, the kernel of � playing
the role of JG above. Here we apply all this to V D Xt .� G=H/ with �jO.Xt / as
character on O.Xt / D Oloc

q .G=H/.

The next lemma plays a crucial role in the construction of the QDP.

Lemma 4.5. The quantum section d 2 Oq.G=H/ enjoys the following properties:

(a) d is invertible in eOloc
q .G=H/, with d�1 D PC1

kD0 .1 � d/k;

(b) d is invertible in cOq.G=H/_, with d�1 D PC1
kD0 .q � 1/k�

.1�d/

.q�1/
�k

.

Proof. Observe that �.d/ D 1 implies that

d D 1 � .1 � d/ 2 .1C J loc
G=H / � .1C I loc

G=H /I

this gives the invertibility in eOloc
q .G=H/.

Similarly since J loc
G=H

� .q � 1/Oq.G=H/_, the identity

d D 1C .d � 1/ 2 .1C J loc
G=H / � .1C .q � 1/Oq.G=H/_/

also ensures that d is invertible in cOq.G=H/_.
In both cases, the explicit formula for d�1 follows by taking the limit of the

geometric series, namely .1 � x/�1 D PC1
kD0 xk , applied to x D 1 � d .
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Proposition 4.6. There are natural embeddings

fOq.G=H/ ,! fOq.G/; cOq.G=H/ ,! cOq.G/;
which both are extensions of the embedding Oq.G=H/ ,! Oq.G/. Moreover, via
these embeddings the pseudobases for the (topological) algebras on G=H identify
with subsets of the corresponding ones for the (topological) algebras on G.

Proof. By construction, we have lk D js=d
cs for some js 2 JG=H , cs 2 N

(s D 1; : : : ; n � h). Since d is invertible (in both cases), the previous analysis
tells us that we can replace the lk’s with the jk’s (k D 1; : : : ; n � h) in the descrip-
tions of fOq.G=H/_ and cOq.G=H/_ given above (i.e., in the k0

q-pseudobases and as
topological generators). But then, since

fjsjs D 1; : : : ; n � hg � JG=H � Oq.G=H/ � Oq.G/;

we can always complete fjs j s D 1; : : : ; n � hg to a set fjr j r D 1; : : : ; ng such
that fyr ´ jr mod .q�1/Oq.G/ j r D 1; : : : ; ng yield, in the localization of O.G/

at e 2 G, a local system of parameters at e. Thus using the latter we can describefOq.G/ and cOq.G/ as explained above.

From now on we shall use these embeddings to identify fOq.G=H/ and cOq.G=H/
with a subalgebra of fOq.G/ and cOq.G/, respectively.

Lemma 4.7. Oq.G=H/
_ \ .q � 1/Oq.G/_ D .q � 1/Oq.G=H/_.

Proof. Let us choose a subset fj1; : : : ; jng inJ loc
G=H

as explained above for the descrip-
tion of Oq.G=H/

_. Then, mapping Oq.G/
_ and Oq.G=H/

_ into their .q � 1/-adic
completions, and exploiting the descriptions of the latter via pseudobases given above,
we easily get the claim.

The next result is that Oq.G=H/
_ is a quantization of U.h?/:

Theorem 4.8. Oq.G=H/
_ is a quantization of U.h?/ as a k-algebra, a subalgebra

of U.g�/, where h D Lie.H/ and g D Lie.G/.

Proof. By assumption,H is coisotropic inG. Therefore, h D Lie.H/ is a Lie coideal
(and subalgebra) of g D Lie.G/, and h? is a Lie subalgebra (and coideal) of g� (see
Proposition 2.2). Thus the claim does make sense.

In order to prove the statement, we proceed much like in the proof of the fact that
Oq.G/

_=.q � 1/Oq.G/_ Š U.g�/, cf. [14], Theorem 4.7. The arguments being the
same, we briefly recall them.
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Fix again a special subset fj1; : : : ; jng of JG as we did in the proof of Proposi-
tion 4.6, in particular with j1; : : : ; jn�h 2 JG=H . Also, set notation:

O1.G/
_ ´ Oq.G/

_=.q � 1/Oq.G/_;
J_
G ´ .q � 1/�1JG � Oq.G/

_;
j_ ´ .q � 1/�1j for all j 2 JG ;

t ´ J_
G mod .q � 1/Oq.G/_:

Taking into account that the specializations at q D 1 of any k0
q-module and of its

.q � 1/-adic completion are the same, the above discussion gives that

˚ nQ
sD1
.j_
s /
es mod .q � 1/Oq.G/_ j .e1; : : : ; en/ 2 Nn

�
is a k-basis of O1.G/

_. Similarly, fj_
1 ; : : : ; j

_
n g is a k-basis of t.

Now, j�j� � j�j� 2 .q � 1/JG (for ; � 2 f1; : : : ; ng) implies that

j�j� � j�j� D .q � 1/
nP
sD1

csjs C .q � 1/2�1 C .q � 1/�2

for some cs 2 k0
q , �1 2 JG and �2 2 J 2G . Therefore

Œj_
� ; j

_
� 
 ´ j_

� j
_
� � j_

� j
_
�

D
nP
sD1

csj
_
s C �1 C .q � 1/�_

2 	
nP
sD1

csj
_
s mod .q � 1/Oq.G/_;

where �_
2 ´ .q�1/�2�2 2 .q�1/�2.J_

G /
2 � Oq.G/

_; thus t is a Lie subalgebra of
O1.G/

_. But then we have O1.G/
_ Š U.t/ as Hopf algebras by the above description

of O1.G/
_ and PBW theorem.

Next, the specialization map p_ W Oq.G/
_ � O1.G/

_ D U.t/ restricts to
� W J_

G � t ´ J_
G mod .q � 1/Oq.G/

_. Moreover, multiplication by .q � 1/�1

yields a k0
q-module isomorphism  W JG Š

,� J_
G . Consider the natural projection

map � W J1 � J1=J
2
1 D g�, and let � W g� ,! J1 be a section of �. The special-

ization map p W Oq.G/ � O.G/ restricts to p0 W JG � J1, and we fix a section
� W J1 ,! JG of p0. Then the composition map � ´ � B  B � B � W g� �! t is a
well-defined Lie bialgebra isomorphism, independent of the choice of � and � .

So far we did not exploit our special choice of the subset fj1; : : : ; jng: we do it
now to prove that t D h?. In fact, the analysis above to prove that � W g� Š t shows
also that the unital subalgebra

O1.G=H/
_ ´ Oq.G=H/

_ mod .q � 1/Oq.G/_
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of U.g�/ is generated by �.fj_
1 ; : : : ; j

_
n�hg/, and

�.fj_
1 ; : : : ; j

_
n�hg/ D .� B /.fj1; : : : ; jn�hg/

D .� B  B �/.fy1; : : : ; yn�hg/
D .� B  B � B �/.f Ny1; : : : ; Nyn�hg/ D �.f Ny1; : : : ; Nyn�hg/

where Nys ´ ys mod .J 21 / (s D 1; : : : ; n � h). Therefore O1.G=H/
_ is the subal-

gebra of U.g�/ generated by the k-span of f Ny1; : : : ; Nyn�hg.
Finally, the k-span of f Ny1; : : : ; Nyn�hg coincides with the subspace h? of g�. In-

deed, as O.G=H/ is the algebra of semi-invariant functions on G, every ys is a
(H -)semi-invariant function on G: but it also vanishes at e 2 H , hence by H -semi-
invariance it vanishes on all of H . When mapping ys to Nys 2 J1, then, it is mapped
into h?. Thus the whole k-span of f Ny1; : : : ; Nyn�hg is contained in h?, hence coincides
with it by dimension equality.

The outcome is that O1.G=H/
_ is the subalgebra of U.g�/ generated by h?,

which is a Lie subalgebra of g�, so O1.G=H/
_ D U.h?/.

We now wish to explore the nature of cOq.G=H/_ as a “quantum homogeneous
space”. We start with an important observation on the extensions of the comultipli-
cation � in Oq.G/ to the new algebras we have defined.

Remark 4.9. Let� W Oq.G/ ! Oq.G/˝ Oq.G/ be the comultiplication in Oq.G/.
Then � can be uniquely (and canonically) extended to a coassociative morphism of
topological algebras

z� W fOq.G/ ! fOq.G/ z̋ fOq.G/;
where again fOq.G/ is the IG-adic completion of Oq.G/ and z̋ is the IG˝-adic
completion of Oq.G/ ˝ Oq.G/, with IG˝ ´ IG ˝ Oq.G/C Oq.G/˝ IG . Even
more, such a z� actually restricts to a coassociative algebra morphism (we use the
same symbol to denote it):

z� W Oq.G/Œd
�1
 ! Oq.G/Œd

�1
 z̋ Oq.G/Œd
�1
:

In fact, as d is a quantum section we have (see Definition 3.12)

�.d/ D d ˝ d C P
i

hi ˝ ki for some hi 2 Oq.G/; ki 2 Iq.H/: (4.2)

Since d is Ore, we can re-write z�.d/ D �.d/.d�1 ˝ d�1/.d ˝ d/, which reads

z�.d/ D .1˝ 1C P
i

hid
�1 ˝ kid

�1/.d ˝ d/:
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This in turn implies that

z�.d�1/ D z�.d/�1 D .d ˝ d/�1.1˝ 1C P
i

hid
�1 ˝ kid

�1/�1

D .d�1 ˝ d�1/
C1P
nD0

.�1/n.P
i

hid
�1 ˝ kid

�1/n;
(4.3)

where the bottom term does belong to Oq.G/Œd
�1
 z̋ Oq.G/Œd

�1
, as expected, be-
cause ki 2 Iq.H/ � IG (for every i ), hence the last formal series above is convergent
in the IG˝-adic topology.

Let us now turn our attention to the algebra Oq.G/
_ and its .q�1/-adic completioncOq.G/_. By construction (cf. [14]), the coproduct of Oq.G/

_, hence of cOq.G/_ too,
is induced by the coproduct� of Oq.G/. Note that the coproduct y� of cOq.G/_ takes
values in the topological tensor product cOq.G/_ y̋ cOq.G/_, which by definition is
the .q�1/-adic completion of the algebraic tensor product cOq.G/_ ˝ cOq.G/_ – and
coincides, moreover, with the .q � 1/-adic completion of Oq.G/

_ ˝ Oq.G/
_.

We are ready to move another key step.

Proposition 4.10. cOq.G=H/_ is a left coideal of cOq.G/_.

Proof. We want to show that the coproduct y� maps cOq.G=H/_ into the topological
tensor product cOq.G/_ y̋ cOq.G=H/_.

We first observe that

z�.d�1/ 2 Oq.G/Œd
�1
 z̋ Oq.G=H/Œd

�1
:

This is because Oq.G=H/ is a left coideal of Oq.G/, cf. Proposition 3.10, Theo-
rem 3.15. Hence the elements ki occurring in formula (4.2) can be taken to belong
to Oq.G=H/.

Even more precisely, as the Oq.G/-coaction on Oq.G=H/ via � is graded (by
Theorem 3.15 (c)), all the ki ’s have degree 1, like d itself. Thus, the series occurring
in (4.3) in fact belongs to Oq.G/Œd

�1
 z̋ Oloc
q .G=H/. To sum up, we obtain that

z�.d�1/ D .d�1 ˝ d�1/ � ı˝ with ı˝ 2 Oq.G/Œd
�1
 z̋ Oloc

q .G=H/: (4.4)

Since the coaction � W Oq.G=H/ ! Oq.G/ ˝ Oq.G=H/ is grading-preserving
and product-preserving, the definitions of Oloc

q .G=H/ and Oloc
q .G/ and (4.4) together

yield that
z�.Oloc

q .G=H// � Oq.G/Œd
�1
 z̋ Oloc

q .G=H/: (4.5)

We described above, forA 2 fOq.G=H/;Oq.G/g, the completions of the algebras
A and A_ with respect to the IG-adic or the .q � 1/-adic topology. Using that, or an
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entirely similar analysis, we see also that

Oq.G/Œd
�1
 z̋ Oloc

q .G=H/ � cOq.G/_ y̋ cOq.G=H/_:
In short, this is because IG � .q � 1/Oq.G/_ and IG=H � .q � 1/Oq.G=H/_. Also
it is easily seen that

z�.I loc
G=H / � Oq.G/Œd

�1
 z̋ I loc
G=H C IG z̋ Oloc

q .G=H/:

This along with (4.5) immediately implies that

y�..q � 1/�1I loc
G=H / � Oq.G/Œd

�1
 y̋ .q � 1/�1I loc
G=H C .q � 1/�1IG y̋ Oloc

q .G=H/;

which in turn yields, by the very definition of Oq.G/
_ and Oq.G=H/

_, that

y�.Oq.G=H/_/ � Oq.G/
_ y̋ Oq.G=H/

_:

Finally, taking .q � 1/-adic completions on both sides, and also noting that
Oq.G/

_ y̋ Oq.G=H/
_ D cOq.G/_ y̋ cOq.G=H/_, we get

y�.cOq.G=H/_/ � Oq.G/
_ y̋ cOq.G=H/_:

In the end, we obtain the main result of this section:

Theorem 4.11. cOq.G=H/_ is a quantization of U.h?/ as a subalgebra and left

coideal of U.g�/. In other words, cOq.G=H/_ is an infinitesimal quantization of the
coisotropic subgroup H? of G�.

Proof. Just collect the previous results. First we have

cOq.G=H/_ \ .q � 1/cOq.G/_ D .q � 1/cOq.G=H/_
as an easy consequence of Lemma 4.7. Then, by Theorem 4.8 and by the fact thatcOq.G=H/_jqD1 D Oq.G=H/

_jqD1, we have that the specialization of cOq.G=H/_ is
U.h?/. Moreover, Proposition 4.10 shows that the subalgebra cOq.G=H/_ of cOq.G/_
is also a left coideal. Therefore, cOq.G=H/_ is an infinitesimal quantization of H?
in the standard sense.

Remark 4.12. The construction of cOq.G=H/_ is functorial in the following sense.
For a fixed Oq.G/ every Oq.G=H/ is uniquely characterized by the pair .�H ; dH /
given by the projection �H W Oq.G/ � Oq.H/ and the quantum section dH 2
Oq.G/. The natural notion of morphism among such pairs, say .�H 0 ; dH 0/ !
.�H 00 ; dH 00/, can be cast into the form a Hopf algebra endomorphism � of Oq.G/ such
that �.Ker.�H 0// � Ker.�H 00/ – or �.Iq.H 0// � Iq.H

00/ – and �.dH 0/ D dH 00 .
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Then, one defines . /_ on morphisms by scalar extension followed by restriction;
proving the functoriality is a matter of bookkeeping. More in general, one might
decide not to fix Oq.G/, nor even G. Then morphisms � W Oq.G

0/ ! Oq.G
00/ take

the place of the endomorphisms of (the single) Oq.G/ in the recipe above, yet . /_
is defined again on morphisms via scalar extension and restriction, and one has to
exploit the functoriality of . /_ over quantum groups Oq.G/.

5. Examples: Quantum Grassmannians and quantum flag varieties

In this section we want to examine in detail some examples of quantum homogeneous
spaces and apply the quantum duality principle recipe to them. We start with the
quantum Grassmannian.

5.1. The quantum Grassmannian as quantum projective homogenous space.
Let us recall the classical setting.

Let G D GLn.k/ and let H D P a (standard) maximal parabolic subgroup, say

P D ˚�
A B
0 D

� j A 2 GLr.k/; B 2 Matr;n�r.k/; D 2 GLn�r.k/
�
:

First we want to give a very ample line bundle on the homogeneous space G=P –
the Grassmann variety – that realizes the classical Plücker embedding into a projective
space, following the recipe in Section 2.2.

Let I D .i1; : : : ; ir/, 1 
 i1 < � � � < ir 
 n. Define

d I W g D .xij / 7! d I .g/ ´ P
�2Sr

.�1/`.�/xi1;�.1/ : : : xir ;�.r/ (5.1)

as the function corresponding to the determinant of the minor of a matrix g D
.xij / 2 GLn.k/ obtained by taking rows i1; : : : ; ir and columns 1; : : : ; r . Then
d I 2 O.GLn.k// for all I , i.e., these are regular functions on GLn.k/.

If I0 ´ .1; : : : ; r/, then d I0 restricts to a map (with same name)

d I0 W P ! k�; M ´ �
A B
0 D

� 7! d I0.M/ D det.A/;

which is a character of P . One checks that the line bundle L associated to d I0 is
very ample, and it provides an embedding of G=P into a projective space, following
the recipe in Section 2.2. Algebraically, this means that the graded algebra O.G=P /

is realized as embedded into O.G/ as

O.G=P / D L
n�0

O.G=P /n D L
n�0

H 0.G=P;L˝n/:

In particular, one can easily verify, for any set I of r rows, that

d I .gp/ D d I0.p/d I .g/ for all g 2 GLn.k/; p 2 P;
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i.e., d I is d I0-semi-invariant of degree 1. In addition, one proves that the d I ’s form
a k-basis of the space O.G=P /1 of semi-invariants of degree 1 (cf. [23]).

On the other hand, the spaces O.G=P /n D H 0.G=P;L˝n/ are in one-to-one
correspondence – up to twisting by any integral power of det (i.e., by any character
of GLn.k/) – with the irreducible representations of GLn.k/.

We will now see that this picture extends to the quantum setup.
Let Oq.Mn/ be the unital associative algebra over kq D kŒq; q�1
with generators

xij (for 1 
 i; j 
 n) and relations

xijxik D qxikxij ; xj ixki D qxkixj i for all j < k and all i;

xijxkl D xklxij for all i < k; j > l or i > k; j < l;

xijxkl � xklxij D .q � q�1/xkjxil for all i < k; j < l

(the so-called “Manin relations”). This algebra bears also a structure of kq-bialgebra,
whose coproduct and counit are given by

�.xij / D
nP
kD1

xik ˝ xkj ; �.xij / D ıij for all i; j:

Define the “quantum determinant” (of order n) detq as

detq ´ P
�2Sn

.�q/`.�/x1;�.1/ : : : xn;�.n/ 2 Oq.Mn/:

One proves that detq belongs to the center of O.Mn/, and it is group-like, i.e.,
�.detq/ D detq ˝ detq and �.detq/ D 1.

More generally, for any 1 
 r 
 n and for any choice of r-tuples of increasing
indices I D .i1; : : : ; ir/ and J D .j1; : : : ; jr/, we define the “quantum determinant
of the minor .I; J /”, i.e., of the minor (of the matrix with entries the xij ’s) whose
sets of rows and columns are I and J , namely

DI
J ´ P

�2Sr

.�q/`.�/xi1;j�.1/
: : : xir ;i�.r/

: (5.2)

These satisfy (cf. [19], §9.2.2) the following quantum analogue of well-known
classical identities (e.g., the first one is analogous to Binet’s theorem):

�.DI
J / D P

K

DI
K ˝DK

J ; �.DI
J / D ıI;J : (5.3)

Since detq is central in Oq.Mn/, it is a Ore element as well, and we can con-
sider the enlarged algebra Oq.GLn/ ´ Oq.Mn/Œdet�1

q 
 obtained from Oq.Mn/ by
formally inverting detq . Then – see [19] again – the bialgebra structure of Oq.Mn/

uniquely extends to Oq.GLn/; even more, the latter then is a Hopf algebra. In fact,
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by construction Oq.GLn/ is a quantum group, namely a quantization of GLn.k/ in
the sense of Definition 3.1.

We shall again denote by xij the images in Oq.GLn/ of the generators xij of
Oq.Mn/. Similarly, we shall denote by DI

J the images in Oq.GLn/ of the “quan-
tum minors” of Oq.Mn/: then they again enjoy (5.2) and (5.3). Letting J0 ´
.1; : : : ; r/ DW I0, hereafter we shall set DI ´ DI

J0
.

The specialization (at q D 1) of any quantum minor DI
J is the corresponding

classical minor d IJ (on the same sets of rows and columns); in particular, every DI

specializes to d I – see (5.1) – and, among them, DI0 to d I0 .
We define the quantum parabolic subgroup Oq.P / as the quotient algebra

Oq.P / ´ Oq.GLn/=.fxij j r C 1 
 i 
 nI 1 
 j 
 rg/:
One can easily check that this Oq.P / is in fact a Hopf algebra quotient. Thus the
natural projection map � W Oq.G/ � Oq.P / is a Hopf algebra epimorphism. There-
fore, Oq.P / is a quantum Poisson subgroup of Oq.G/ D Oq.GLn.k// in the sense
of Definition 3.3, whose specialization is O.P /.

We are now in a position to appreciate the first important fact, in the present setting,
about quantum minors:

Lemma 5.1. The quantum minorDI0 is a quantum section of the line bundle onG=P
given by d I0 in the sense of Definition 3.12.

Proof. Using the first identity in (5.3) one gets

��.D
I0/ D ..id ˝ �/ B�/.DI0/ D .id ˝ �/.

P
K

D
I0

K ˝DK
J0
/ D P

K

D
I0

K ˝DK
J0

and then from this

��.D
I0/ D D

I0

I0
˝D

I0

J0
D DI0 ˝DI0

because DK
J0

´ �.DK
J0
/ D ıK;I0

D
I0

J0
by definition of � , and DI0

I0
D D

I0

J0
D DI0 .

Therefore (see Definition 3.5)DI0 is a pre-quantum section; but Oq.P / is a quantum
subgroup, so (see Proposition 3.13) DI0 is a quantum section.

UsingDI0 , we can perform the construction of the algebra Oq.G=P /ofDI0-semi-
invariants (or simply semi-invariants) as in Section 3. First we have the following
result.

Lemma 5.2. The quantum minors DI are all semi-invariants of degree 1, that is to
say, DI 2 Oq.G=P /1 for every set of rows I D .i1; : : : ; ir/.
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Proof. Arguing as in the proof of Lemma 5.1, we prove the claim by

��.D
I / D ..id ˝ �/ B�/.DI /

D .id ˝ �/.
P
K

DI
K ˝DK

J0
/

D
X
K

DI
K ˝DK

J0
D DI

I0
˝D

I0

J0
D DI ˝DI0 : �

Roughly speaking, the outcome of this last result is that the line bundle on G=P
given by d I0 has enough “quantum sections” to provide a “quantum projective em-
bedding”. To be precise, the following holds:

Corollary 5.3. The space Oq.G=P / of all DI0-semi-invariants is a quantization of
O.G=P /, in the sense of Definition 3.18.

Proof. By construction every quantum minor DI specializes to the corresponding
classical minor d I . By Section 5.1, the latter form a basis of O.G=P /1.

This along with Lemma 5.2 proves that the natural embedding

Oq.G=P /1=.q � 1/Oq.G=P /1 ,! O.G=P /1

is onto. But then, as noticed in Remark 3.19, the claim follows.

Actually, we can prove the following, much more precise result:

Proposition 5.4. The algebra Oq.G=P / is generated by the DI ’s.

Proof. By Lemma 5.2, the DI ’s belong to Oq.G=P /. Therefore, we are only left
to prove that, conversely, every semi-invariant is contained in the k-subalgebra of
Oq.G/ generated by the DI ’s.

To this end, Theorems 1.2 and 1.3 in [16] give us immediately the result if we take
k.q/ as ground ring instead of kq ´ kŒq; q�1
. Then Lemmas 3.9, 3.10, 3.11 in [12]
give us our result. We now present this in detail.

We start by rewriting the Proposition 1.1 in [16] in our notation:

LetA
�! B

 ! C be a complex of kq-modules such thatC is torsion free. Suppose
there are kq-module decompositions A D L

j Aj , B D L
j Bj , C D L

j Cj such
thatBj is finitely generated, and the maps � and respect the decomposition, that is,
�.Aj / � Bj and  .Bj / � Cj . If the sequence xA ! xB ! xC obtained by reduction
modulo .q � 1/ is exact, then so is

k.q/˝kq
A

�! k.q/˝kq
B

 ! k.q/˝kq
C

Let us apply this result to our special situation.
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The subalgebra A ´ kqŒDI 
 generated in Oq.SLn/ by quantum determinants
is a kq-graded module (by the degree). This fact is non-trivial and depends on the
explicit form of this algebra in terms of generators and relations; see [9]. We have
that an element a 2 Oq.SLn/ is in Aj iff

P
.a/

a.1/ ˝ Na.2/ D a˝ Nd j ;

where �.a/ D P
.a/ a.1/ ˝ a.2/ and Nx denotes reduction of x modulo Iq.P / (see

notation in Section 3.3).
So we can set up maps

A
�! Oq.SLn/

 ! Oq.SLn/˝ Oq.P /;

where � is the inclusion and  is defined by

 .a/ D P
.a/

a.1/ ˝ Na.2/ � a˝ Nd j for all a 2 Aj :

One can check that all the hypotheses of the previous result, for B ´ Oq.SLn/
and C ´ Oq.SLn/˝ Oq.P /, are satisfied. Thus we get k.q/˝k A Š Ker.id ˝ /.
In other words, the semi-invariants coincide with the subalgebra generated by the
quantum determinants over the ring k.q/.

We now obtain the result over kq by Lemma 3.11 in [10], namely:
If wX 2 kqŒDI 
, w 2 kq , w ¤ 0, then X 2 kqŒDI 
.

Remark 5.5. Thus, using our own recipe, we have constructed the quantum homoge-
neous space Oq.G=P /. It is immediate to see that this is the same as the deformation of
the algebra of the classical Grassmannian, along with its classical Plücker embedding,
as it is described in [9] or in [28].

Finally, for the Oq.G/-comodule structure of the space of semi-invariants of de-
gree 1, we have also the following analogue of a classical result:

Proposition 5.6. Oq.G=P /1 Š V
q.k

n
q/ as left Oq.G/-comodules.

Proof. This is a direct calculation, which we sketch. By all the previous analysis,
we already know that Oq.G=P /1 the set of all the DI ’s forms a basis, and the left
Oq.G/-coaction on Oq.G=P /1 is given by

DI 7! P
K

DI
K ˝DK :
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Now consider the coaction of Oq.G/ on
V
q.k

n
q/ given by

�i1 : : : �ir 7! P
k1;:::;kr

gi1k1
: : : girkr

˝ �k1
: : : �kr

D P
�

.�q/`.�/gi1k1
: : : girkr

˝ �ko
1

� � � �ko
r

D P
K

DI
K ˝ �ko

1
: : : �ko

r
;

where � is the permutation reordering k1; : : : ; kr andK D .ko1 ; : : : ; k
o
r / are the same

indices, but reordered. Now the result follows.

Remark 5.7. Similar arguments can be used to prove that any quantum flag variety
is a “quantum projective homogeneous space” in the sense of Definition 3.18 (for
details about quantum flag varieties, we refer to [11]).

For the flag of type .m1; : : : ; ms/, the quantum section d to start with is

d ´ D.m1/ : : :D.mn/

where the D.mj /’s are the principal quantum minors of size mj .
The proofs of all results go over exactly as in the Grassmannian case.

We now turn to the construction of the quantum big cell ring that will be crucial
for the explicit construction of the QDP functor.

Definition 5.8. Let I0 D .1 : : : r/, D0 ´ DI0 . Put

Oq.G/ŒD
�1
0 
 ´ Oq.G/ŒT 
=.TD0 � 1;D0T � 1/

We define the big cell ring Oloc
q .G=P / to be the kq-subalgebra of Oq.G/ŒD

�1
0 
 gen-

erated by the elements

tij ´ .�q/r�j�ijD�1
0 for all i; j with 1 
 j 
 r < i 
 n;

where �ij ´ D1::: Oj :::ri for all i , j as above (see [10] for more details).

As in the commutative setting, we have the following result:

Proposition 5.9. Oloc
q .G=P / Š Oq.G=P /ŒD

�1
0 
proj, where the right-hand side is the

degree-zero component of Oq.G=P /ŒT 
=.TD0 � 1;D0T � 1/.

Proof. In the classical setting, the analogous result is proved by the following argu-
ment: one uses the so-called “straightening relations” to get rid of the extra minors
(see, for example, [8], §2). Here the argument works essentially in the same way, using
the quantum straightening (or Plücker) relations (see [9], §4, [28], formula (3.2) (c)
and Note I, Note II).
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Remark 5.10. As before, we have that

Oloc
q .G=P / \ .q � 1/Oloc

q .G/ D .q � 1/Oloc
q .G=P /:

This can be easily deduced from Remark 3.9, taking into account Proposition 5.9. As
a consequence, the map

Oloc
q .G=P /=.q � 1/Oloc

q .G=P / ! Oloc
q .G/=.q � 1/Oloc

q .G/

is injective, so that the specialization map

� loc
G=P W Oloc

q .G=P / � Oloc
q .G=P /=.q � 1/Oloc

q .G=P /

coincides with the restriction of the specialization map

� loc
G W Oloc

q .G/ � Oloc
q .G/=.q � 1/Oloc

q .G/:

The following proposition gives a description of the algebra Oloc
q .G=P /:

Proposition 5.11. The big cell ring is isomorphic to a matrix algebra

Oloc
q .G=P / ! Oq.M.n�r/�r/; tij 7! xij ;

for all 1 
 j 
 r < i 
 n, i.e., the generators tij satisfy the Manin relations.

Proof. See [10], Proposition 1.9.

Remark 5.12. The Grassmannian GLn=P can also be realized as a similar quotient
of SLn by a suitable parabolic P 0 (corresponding to P , say). Then one can also
perform all related quantum constructions – the previous and the later ones – using
SLn instead of GLn, and modifying each step as needed. To begin with, one considers

Oq.SLn/ ´ Oq.GLn/=.detq � 1/ Š Oq.Mn/=.detq � 1/;
where .detq �1/ is the (two-sided) ideal generated by detq �1, which is again a
Hopf algebra, for the quotient structure from either Oq.GLn/ or Oq.Mn/. This is
a quantization of SLn.k/ in the sense of Definition 3.1, for which we can consider
again quantum minors and a corresponding Oq.P / as before. Then all this can be
used to give an alternative definition of Oq.G=P / D Oq.SLn =P 0/ and of all what
was considered above. Similarly, all constructions and results of Section 5.2 hereafter
can be carried on using Oq.SLn/ – and its related gadgets – instead of Oq.GLn/.

Finally, similar considerations hold as well for the quantum flag varieties men-
tioned in Remark 5.7.
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5.2. QDP for quantum Grassmannians. We now turn to the quantum duality prin-
ciple applied explicitly to the quantum homogeneous spaces constructed above. We
start with Grassmannians.

Let us first explicitly describe the Poisson structure of the algebraic group GLn.
Starting from Oq.GLn/, as usual the classical algebra O.GLn/ inherits from the
former a Poisson bracket, which makes it into a Poisson Hopf algebra, so that GLn
becomes a Poisson group (see Remark 3.2 (2)). We want to describe now this Poisson
bracket. Recall that

O.GLn/ D kŒf Nxij gi;jD1;:::;n
Œdet�1
 D kŒf Nxij gi;jD1;:::;n
Œt 
=.t det �1/

where det ´ det. Nxi;j /i;jD1;:::;n is the usual determinant. Setting Nx D p.x/ for
p W Oq.GLn/ ! O.GLn/, the Poisson structure is given (as usual) by

f Na; Nbg ´ .q � 1/�1.ab � ba/jqD1 for all Na; Nb 2 O.GLn/:

In terms of generators, we have

f Nxij ; Nxikg D Nxij Nxik for all j < k; f Nxij ; Nx`kg D 0 for all i < `; k < j

f Nxij ; Nx j̀ g D Nxij Nx j̀ for all i < `; f Nxij ; Nx`kg D 2 Nxij Nx`k for all i < `; j < k;

fdet�1; Nxij g D 0; fdet; Nxij g D 0 for all i; j D 1; : : : ; n:

As GLn is a Poisson Lie group, its Lie algebra gln has a Lie bialgebra structure
(see [3], p. 24). To describe it, let us denote with mij the elementary matrices, which
form a basis of gln. Define (for all i D 1; : : : ; n � 1, j D 1; : : : ; n)

ei ´ mi;iC1; gj ´ mj;j ; fi ´ miC1;i ; hi ´ gi � giC1:

Then fei ; fi ; gj j i D 1; : : : ; n�1; j D 1; : : : ; ng is a set of Lie algebra generators
of gln, and a Lie cobracket is defined on gln by

ı.ei / D hi ˝ ei � ei ˝ hi ; ı.gj / D 0; ı.fi / D hi ˝ fi � fi ˝ hi for all i; j:

This cobracket makes gln itself into a Lie bialgebra: this is the so-called standard Lie
bialgebra structure on gln. It follows immediately that U.gln/ is a co-Poisson Hopf
algebra, whose co-Poisson bracket is the (unique) extension of the Lie cobracket of
gln while the Hopf structure is the standard one.

Similar constructions hold for the group SLn. One simply drops the generator
d�1, imposes the relation d D 1 in the description of O.SLn/, and replaces the gs’s
with the hi ’s (i D 1; : : : ; n) when describing sln.

Since gln is a Lie bialgebra, its dual space gl�
n admits a Lie bialgebra structure,

which is dual to that of gln. Let feij ´ m�
ij j i; j D 1; : : : ; ng be the basis of gl�

n
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dual to the basis of elementary matrices for gln. As a Lie algebra, gl�
n can be realized

as the subset of gln ˚ gln of all pairs0
BBBBB@

0
BBBBB@

�m11 0 : : : 0

m21 �m22 : : : 0
:::

:::
:::

:::

mn�1;1 mn�1;2 : : : 0

mn;1 mn;2 : : : �mn;n

1
CCCCCA ;

0
BBBBB@

m11 m12 : : : m1;n�1 m1;n
0 m22 : : : m2;n�1 m2;n
:::

:::
:::

:::
:::

0 0 : : : mn�1;n�1 mn�1;n
0 0 : : : 0 mn;n

1
CCCCCA

1
CCCCCA ;

with its natural structure of Lie subalgebra of gln ˚ gln. In fact, the elements eij
correspond to elements in gln ˚ gln in the following way:

eij Š .mij ; 0/ for all i > j;

eij Š .�mij ;Cmij / for all i D j;

eij Š .0;mij / for all i < j:

Then the Lie bracket of gl�
n is given by

Œei;j ; eh;k
 D ıj;hei;k � ık;ieh;j for all i 
 j; h 
 k and i > j; h > k;

Œei;j ; eh;k
 D ık;ieh;j � ıj;hei;k for all i D j; h > k and i > j; h D k;

Œei;j ; eh;k
 D 0 for all i < j; h > k and i > j; h < k:

Note that the elements (1 
 i 
 n � 1, 1 
 j 
 n)

ei D e�
i D ei;iC1; fi D f �

i D eiC1;i ; gj D g�
j D ejj

are Lie algebra generators of gl�
n. In terms of them, the Lie bracket reads

Œei ; fj 
 D 0; Œgi ; ej 
 D ıijEi ; Œgi ; fj 
 D ıij fj for all i; j:

On the other hand, the Lie cobracket structure of gl�
n is given by

ı.ei;j / D
nP
kD1

ei;k ^ ek;j for all i; j D 1; : : : ; n;

where x ^ y ´ x ˝ y � y ˝ x.
Finally, all these formulæ also provide a presentation of U.gl�

n/ as a co-Poisson
Hopf algebra.

A similar description holds for sl�
n D gl�

n=Z.gl�
n/, where Z.gl�

n/ is the centre of
gl�
n generated by ln ´ g1 C � � � C gn. The construction is immediate by looking at

the embedding sln ,! gln.
We now turn to the construction of the QDP functor.
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Observation 5.13. Oq.G/
_ (see Definition 4.1 and Section 5.1) is generated, as a

unital subalgebra of Oq.G/˝kq
k.q/, by the elements

�� ´ .q � 1/�1.D�1
q � 1/; �ij ´ .q � 1/�1.xij � ıij / for all i; j D 1; : : : ; n;

where the xij ’s are the generators of Oq.G/. As xij D ıij C .q � 1/�ij 2 Oq.G/
_,

we have an obvious embedding of Oq.G/ into Oq.G/
_.

Following Definition 4.2, we define

Oq.G=P /
_ ´ h.q � 1/�1J loc

G=P i D
1P
nD0

.q � 1/�n.J loc
G=P

/n:

We can provide a concrete description of Oq.G=P /
_:

Proposition 5.14. We have

Oq.G=P /
_ D kqhfij gjD1;:::;r

iDrC1;:::;ni=IM ;
where ij ´ .q � 1/�1tij ( for all i and j ), IM is the ideal of the Manin relations
among the ij ’s, and tij ´ .�q/r�j�ijD�1

0 ( for all i and j ).

Proof. Trivial from definitions and Proposition 5.11.

We want to see explicitly what is Oq.G=P /
_jqD1 inside U.gln

�/. In other words,
we want to understand what is the space that Oq.G=P /

_ is quantizing. We check
now by direct inspection that this is U.p?/, as already prescribed by Theorem 4.8.

Proposition 5.15.
Oq.G=P /

_jqD1 D U.p?/
as a subalgebra of Oq.G/

_jqD1 D U.gln
�/, where p? is the orthogonal subspace to

p ´ Lie.P / inside gln
�.

Proof. Due to the previous discussion, it is enough to show that

�_
G.Oq.G=P /

_/ D U.p?/ � U.gln
�/ D Oq.G/

_jqD1:

To do this, we describe the isomorphism Oq.G/
_jqD1 Š U.gln

�/ (cf. [14]). Accord-
ing to Remark 5.13, the algebra Oq.G/

_ is generated by the elements

�� ´ .q � 1/�1.D�1
q � 1/; �ij ´ .q � 1/�1.xij � ıij / for all i; j D 1; : : : ; n

inside Oq.G/˝kq
k.q/. In terms of these generators, the isomorphism reads

Oq.G/
_jqD1 ! U.gln

�/;
S�� 7! �.e1;1 C � � � C en;n/; �i;j 7! ei;j for all i; j:
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where we used notation xX ´ X mod .q � 1/Oq.G/
_. Indeed, from �i;j 7! ei;j

and .q � 1/�1.Dq � 1/ 2 Oq.G/
_, one gets SDq 7! 1 and .q � 1/�1.Dq � 1/ 7!

e1;1C� � �Cen;n. Moreover, the relationDqD�1
q D 1 in Oq.G/ implies thatDq�� D

�.q � 1/�1.Dq � 1/ in Oq.G/
_, whence clearly S�� 7! �.e1;1 C � � � C en;n/, as

claimed.
In other words, the specialization p_

G W Oq.G/
_ � U.gln

�/ is given by

p_
G.��/ D �.e1;1 C � � � C en;n/; p_

G.�i;j / D ei;j for all i; j:

If we look at 2Oq.G/
_, things are even simpler. Since

Dq 2 .1C .q � 1/Oq.G/_/ � .1C .q � 1/ 2Oq.G/_/;

it follows that D�1
q 2 .1C .q � 1/ 2Oq.G/

_/, and the generator �� can be dropped.

The specialization map 1p_
G=P

of course is still described by formulæ as above.

Let us compute p_
G=P

.Oq.G=P /
_/ D cp_

G.Oq.G=P /
_/. Recall that Oq.G=P /

_
is generated by the ij ’s, with

ij ´ .q � 1/�1tij D .q � 1/�1.�q/r�j�ijD�1
0

for i D r C 1; : : : ; n and j D 1; : : : ; r ; thus we must compute cp_
G.ij /.

By definition, for every i 6D j the element xij D .q � 1/�ij is mapped to 0 bycp_
G . Instead, for each ` the element x`` D 1 C .q � 1/�`` is mapped to 1 (by cp_

G

again). But then, expanding the q-determinants one easily finds that

cp_
G..q � 1/�1�ij / D ..q � 1/�1 P

�2Sr

.�q/`.�/x1�.1/ : : : xr�.r//

D cp_
G

�
.q � 1/�1 P

�2Sr

.�q/`.�/.ı1�.1/ C .q � 1/�1�.1// : : :

: : : .ı1�.r/ C .q � 1/�1�.r//
�
:

The only term in .q � 1/ in the expansion of �ij comes from the product

.1C .q�1/�11/ : : : .1C .q�1/�rr/.q�1/�ij 	 .q�1/�ij mod .q�1/2O.G=P /:
Therefore, from the previous analysis we get

cp_
G..q � 1/�1�ij / D cp_

G.�i;j / D ei;j ;cp_
G.D0/ D cp_

G.1/ D 1;cp_
G.D

�1
0 / D cp_

G.1/ D 1:
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Hence we conclude that cp_
G.ij / D .�1/r�j ei;j for all 1 
 j 
 r < i 
 n.

The outcome is that p_
G=P

.Oq.G=P /
_/ D U.h/, where

h ´ span.fei;j j r C 1 
 i 
 n; 1 
 j 
 rg/:
On the other hand, from the very definitions and our description of gln

� one easily
finds that h D p? for p ´ Lie.P /. The claim follows.

Proposition 5.16. 4Oq.G=P /
_ is a left coideal of 2Oq.G/

_.

Proof. This is the same as Proposition 4.10.

Hence for the quantum Grassmannian we have proved directly the following result:

Theorem 5.17. 4Oq.G=P /
_ is a quantum homogeneous G�-space, which is an in-

finitesimal quantization of the homogeneous G�-space p?.

5.3. Quantum generalized flag varieties for simple groups as quantum projective
homogeneous spaces. We now turn to a more general example of quantum projective
space: the quantization of a generalized flag variety for any simple group, following
[20]. As before, we begin with a brief description of the classical setting.

Let G be a connected, simply connected, complex simple Lie group and let g be
its Lie algebra. Let S be a subset of simple roots of g and let � D P

˛i 62S !i be a
weight of g, where the !i ’s are fundamental weights.

Let V.�/ be the highest weight representation of g (and of G) associated with
the weight �, and let v� be a non-zero highest weight vector of V.�/. We have the
following morphism of algebraic varieties:

G ! P.V .�//; g 7! g � v�:
This induces a projective embedding of the flag varietyG=PS into the projective space
P.V .�//, where PS ´ StabG.v�/ is the parabolic subgroup associated to the set S .
The graded algebra of regular functions on G=PS relative to this embedding is given
by

O.G=PS / D L
n2N

V.n�/�; (5.4)

where the grading is given by O.G=PS /n ´ V.n�/� and the multiplication is via
the Cartan multiplication (see [12] for more details).

We are now going to identify O.G=PS /with a graded subalgebra of O.G/. Indeed,
the algebra O.G/ is in (Hopf) duality with U.g/ and it can be thought of as the
linear span inside U.g/� of the functionals c�

f;v
W U.g/ ! C (the so-called “matrix

coefficients”) given by

c�f;v.u/ ´ f .u � v/ for all u 2 U.g/; f 2 V.�/�; v 2 V.�/:
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Then O.G=PS / can be realized, equivalently, as the subalgebra of O.G/ generated
by the c�

f;v�
’s for all f 2 V.�/�.

This point of view carries over without changes to the quantum setting: it is con-
sidered in [22], [27] and by several others; a quick review of this construction can
be found in [20]. The key point is that every finite dimensional representation V./
of U.g/ of highest weight  has a (standard) quantization, which is a representation
for Uq.g/, call it Vq./. In particular, one can again define matrix coefficient func-
tionals c�

f;v
– for every f 2 Vq./

� and v 2 Vq./ – for all dominant weights 
of g. Their kq-span inside Uq.g/

� is, by definition, the algebra Oq.G/, which is a
quantization of O.G/. In fact, the latter follows because Vq./ respectively Vq./

�
specializes to V./ respectively V./� at q D 1, hence “quantum” and “classical”
matrix coefficients bijectively correspond to each other – via c�

f;v
7! c

�

f;v
, say – under

specialization at q D 1.
For later use, we point out how matrix coefficient behave under the coproduct.

For any dominant weight  of g, let fv1; : : : ; vrg be a kq-basis of Vq./ with r D
dim.Vq.�//, and let ff1; : : : ; frg be the dual basis of Vq./

�. Then every matrix
coefficient c�

f;v
has coproduct given by

�.c
�

f;v
/ D Pr

iD1 c
�

f;vi
˝ c

�

fi ;v
(5.5)

(just because Uq.g/ is acting on Vq./ via matrices!).
From the quantization Oq.G/ the group G inherits a Poisson group structure –

cf. Remark 3.2 (2) – for which PS is a Poisson subgroup. On the other hand, let
Iq.PS / be the two-sided ideal of Oq.G/ generated by the set of matrix coefficients
fc�
f;v

j for all n 2 N W  ¤ n� or v 62 .kq n f0g/ � vn�g. Then, using (5.5), one easily
shows that Iq.PS / is a Hopf ideal of Oq.G/; therefore the quotient kq-module and
the canonical map

Oq.PS / ´ Oq.G/=Iq.PS /; � W Oq.G/ � Oq.PS / (5.6)

are respectively a quotient Hopf algebra and a Hopf algebra epimorphism. Indeed,
this provides a quantization of PS as a Poisson subgroup of G, namely Oq.PS / is a
quantum subgroup of G in the sense of Definition 3.3.

In view of the above construction of Oq.G/ and of the classical description of
O.G=PS / in (5.4), we define

Oq.G=PS /
0 ´ L

n2N

Vq.n�/
� D kq-span of fcn�

f;vn�
g
f 2Vq.n�/

�;n2N
(5.7)

where v� is a non-zero element of weight � in Vq.�/. Then, as the quantum matrix
coefficients specialize to the classical ones, comparing (5.7) with (5.4) we see at once
that

Oq.G=PS /
0=.q � 1/Oq.G=PS /0 Š O.G=PS / (5.8)



Quantization of projective homogeneous spaces and duality principle 491

so that Oq.G=PS /
0 is a quantization, as a kq-module, of O.G=PS /.

We are now going to show that this Oq.G=PS /
0 is in fact a quantum homogeneous

space in the sense of Definition 3.18, in particular it can be realized as the space of
semi-invariants inside Oq.G/ with respect to a suitable quantum section. Indeed, we
shall find that Oq.G=PS /

0 D Oq.G=PS /, where the latter is the space of all semi-
invariants (for a suitable quantum section) as in Definition 3.7 and Definition 3.18.

First of all, let � be the dominant weight fixed above, and let v� be the (up to
a scalar factor) uniquely determined non-zero element of weight � in Vq.�/. Fix a
kq-basis fv1; : : : ; vrg of Vq.�/ with v1 D v�, and let ff1; : : : ; frg be the dual basis
of Vq./

� for which we set f� ´ f1.

Proposition 5.18. The element c�
f�;v�

is a quantum section in Oq.G/.

Proof. Due to Proposition 3.13 (b) we only need to show that c�
f�;v�

is a pre-quantum
section with respect to the setup of (5.6), i.e.,

��.c
�
f�;v�

/ D c�f�;v�
˝ �.c�f�;v�

/:

But this follows at once from the identity (5.5) applied to the bases chosen above,
once we notice in addition that c�

fi ;v�
2 Iq.PS / for all i 6D 1.

Proposition 5.19. The space of c�
f�;v�

-semi-invariants of degree 1 inside Oq.G/, that

is, Oq.G=PS /1 ´ ff 2 Oq.G/ j ��.f / D f ˝ �.c�
f�;v�

/g, is just the kq-span of

fc�
f;v�

j f 2 Vq.�/�g. In other words,

Oq.G=PS /1 D kq-span of fc�f;v�
j f 2 Vq.�/�g:

Proof. This again is immediate as before. Consider any kq-linear combination of
several c�

f;v
’s which is semi-invariant of degree 1 with respect to the quantum section

d ´ c�
f�;v�

. We can assume these c�
f;v

’s to be linearly independent over kq , and
so the semi-invariance of their linear combination as a whole also implies the semi-
invariance of each of the c�

f;v
’s on its own.

Now assume that a single matrix coefficient c�
f;v

is semi-invariant of degree 1 (with

respect to c�
f�;v�

). Then (5.5) implies at once that  D �. Moreover, choosing bases
fv1 D v�; v2; : : : ; vrg and ff1 D f�; f2; : : : ; frg as before in Proposition 5.18, the
identity (5.5) also gives

c�f;v ˝ �.c�f�;v�
/ D ��.c

�
f;v/ D c�f;v�

˝ �.c�f�;v
/C

rP
iD2

c�
f;vi

˝ �.c�
fi ;v

/:

This forces c�
fi ;v

2 Ker.�/ D Iq.PS / for all i > 1, so that v 2 kq � v�, say v D �v�
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for some � 2 k, whence eventually

c�f;v D c�f;	v D �c�f;v 2 kq-span of fc�f;v�
j f 2 Vq.�/�g:

This proves that Oq.G=PS /1 is indeed contained in the prescribed kq-span. The
converse is clear, just reversing the previous argument.

Proposition 5.20. The space of c�
f�;v�

-semi-invariants of degree n inside Oq.G/,

that is, Oq.G=PS /n ´ ff 2 Oq.G/ j ��.f / D f ˝ �..c�
f�;v�

/n/g, is just the

kq-span of fcn�
f;vn�

j f 2 Vq.n�/�g. In other words,

Oq.G=PS /n D kq-span of fcn�f;vn�
j f 2 Vq.n�/�g:

Proof. This follows from an argument which closely mimics the one used in the proof
of Proposition 5.19. One takes into account, in addition, the following two remarks:

(a) The vector v˝n
�

has weight n� inside Vq.�/
˝n; thus it can be canonically

identified with a (non-zero) highest weight vector, say vn�, in Vq.n�/, hence it can
be chosen as v1 ´ vn�, the first element of a suitable kq-basis of Vq.n�/ to be used
in that argument;

(b) With notation as above, the n-th power function .c�
f�;v�

/n inside Oq.G/ is

nothing but a matrix coefficient again, namely .c�
f�;v�

/n D cn�
fn�;vn�

.
These two remarks, drafted into an argument totally similar to the one used for

Proposition 5.19, yield the claim.

We are now ready for the main result of this subsection.

Theorem 5.21. Let Oq.G=PS / be defined as in Definition 3.7, with respect to the
quantum section d ´ c�

fe ;v�
2 Oq.G/. Then Oq.G=PS / is a quantum projective

homogeneous space, namely, it is a quantization of O.G=PS /, in the sense of Defini-
tion 3.18.

Proof. This follows at once by putting together the previous results, i.e., Proposi-
tions 5.18, 5.19 and 5.20, and the specialization formula (5.8).

Remark 5.22. (1) With some extra work, one can also show that Oq.G=PS / is
generated, as a graded algebra, in degree 1, i.e., by Oq.G=PS /1.

(2) In this setup of quantum generalized flag varieties one can also apply the QDP,
following the general recipe of Section 4.

Indeed, in [20], §3.4, it is noticed that the quantum section d ´ c�
fe ;v�

is a
Ore element in Oq.G/. Therefore, as pointed out in Section 4.1, we can define the
localizations

Oq.G=Ps/Œ.c
�
fe ;v�

/
�1

 � Oq.G/Œ.c

�
fe ;v�

/
�1



and can then apply the QDP, according to Section 4, to this setting.
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5.4. The coisotropic case. One could argue whether the generality we are working
with is necessary or not. In this section we will describe how to find families of
coisotropic parabolic subgroups inside semisimple algebraic groups with the standard
multiplicative Poisson structure.

Such families give rise to smooth Poisson bivectors on the projective quotients
which cannot be obtained as quotient by Poisson parabolic subgroups. It would be
therefore interesting to investigate whether in such examples it is possible to find and
quantize a graded Poisson algebra associated to them as described in Section 2.

We shall start with a low-dimensional example and describe in a very explicit
manner the objects we are interested in and then generalize such results.

Let us consider the group SL2.C/ with the standard Poisson algebraic structure,
normalized as follows: if a, b, c, d are matrix coefficients in positions

�
a b
c d

�
, we let

fa; bg D ab, fa; cg D ac, fb; dg D bd , fc; dg D cd , fb; cg D 0, fa; dg D 2ad

(this is the normalization opposite to that in [21]). We take the standard parabolic
subgroup of upper triangular matrices

P D ˚�
a b
0 d

� j a; b; d 2 C
�

This is a Poisson subgroup in SL2.C/; thus, the quotient P1C ' SL2.C/=P is
endowed with the (homogenous) quotient smooth Poisson bivector �0.

Let us now consider the following element

g" ´
� p

"
p
1 � "

�p
1 � " p

"

�
; " 2 Œ0; 1
;

and let P" ´ g"Pg
�1
" . Then P" is defined inside the group SL2.C/ by the equationp

".1 � "/.a � d/ D ." � 1/b C "c:

The infinitesimal generators of its Lie algebra are

H" ´ g"Hg
�1
" D .2" � 1/H � 2

p
".1 � "/.XC CX�/;

X" ´ g"X
Cg�1

" D
p
".1 � "/H C "XC � .1 � "/X�:

It is then easily verified, through the infinitesimal criterion of Proposition 2.2, that P"
is coisotropic, because

ı.H"/ D H" ^H; ı.X"/ D X" ^H:
This means that on P1C there is an induced Poisson bivector �" as quotient
SL2.C/=P". That this Poisson bivector is different from �0 follows considering
the image of the diagonal subgroup of SL2.C/, which induces a single 0-dimensional
Poisson leaf with respect to �0 and an S1-family of 0-dimensional leaves with respect
to �".
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This phenomenon, as mentioned above, is not only specific for P1C but can be,
for example, shown to take place for all complex Grassmannians.

LetG be a complex semisimple algebraic group and letK be its real compact form.
Up to a factor {, which is inessential in what follows, the standard Poisson structure
on G can be identified with the one which is automatically defined on it when it is
identified with Drinfeld’s double of K. Let now H be a coisotropic subgroup of K
and let us consider the subgroupHK� of G (hereK� D AN is the Manin dual ofK
inside G). Then P D HK� is parabolic in G, H D P \ K and K=H ' G=P as
smooth manifolds. It can be shown quite easily that the coisotropy of K implies the
coisotropy ofP , and furthermore, via Theorem 4.1 in [7], thatK=H andG=P are also
Poisson diffeomorphic. Thus in order to check whether P is coisotropic it is enough
to check whether P \K is coisotropic with respect to the standard Poisson structure
on the compact real groupK. There we can rely on results in [7], where a 1-parameter
family of coisotropic subgroups H" � SU.n/ was given. Such subgroups induce a
1-parameter family of homogeneous Poisson quotients on complex Grassmannians.
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