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Integration over complex manifolds via Hochschild homology

Ajay C. Ramadoss

Abstract. Given a holomorphic vector bundle E on a connected compact complex manifold
X , in [FLS] a C-linear functional IE on H2n.X; C/ is constructed. This is done by producing
a linear functional on the 0-th completed Hochschild homology cHH0.D iff.E// of the sheaf
of holomorphic differential operators on E using topological quantum mechanics. It is shown
in [FLS] that this functional is

R
X

if E has non-zero Euler characteristic, and the conjecture is
that it is

R
X

for all E .
In a subsequent work [Ram] the author proved that the linear functional IE is independent

of the vector bundle E . This article builds upon the work in [Ram] to prove that IE D R
X

for an
arbitrary holomorphic vector bundle E on an arbitrary connected compact complex manifold X .
This is done using an argument that is very natural from the geometric point of view. Moreover,
this argument enables one to make the approach to this conjecture developed first in [FLS] and
subsequently in [Ram] independent of the Riemann–Roch–Hirzebruch theorem. This argument
allows us to extend the construction in [FLS] to a construction of a linear functional IE on
H2n

c .Y; C/ for a holomorphic vector bundle E with bounded geometry on an arbitrary connected
complex manifold Y with bounded geometry, and to prove that IE D R

Y
. We also generalize

a result of [Ram] pertaining to “cyclic homology analogs” of IE .
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Introduction

Let X be a smooth, connected compact complex manifold, and let E be a holomorphic
vector bundle on X . In what follows, the term vector bundle shall refer to a holomor-
phic vector bundle over a complex manifold unless explicitly stated otherwise. Let
D iff.E/ be the sheaf of holomorphic differential operators on E . We have a notion of
completed Hochschild homology bHH�.D iff.E// such that there is an isomorphism

ˇE W bHH�i .D iff.E// ' H2n�i .X; C/

for every integer i . In [FLS] B. Feigin, A. Losev and B. Shoikhet describe the
construction of a C-linear functional tr on bHH0.D iff.E// using topological quantum
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mechanics. Denote the linear functional tr B ˇ�1
E

on H2n.X; C/ by IE . We call
IE the FLS functional of E . We also have a notion of completed cyclic homologycHC�.D iff.E// such that

cHC�j .D iff.E// ' H2n�j .X; C/ ˚ H2n�j C2.X; C/ ˚ � � � :

The construction of tr can be generalized to provide linear functionals tr2i oncHC�2i .D iff.E// for each i � 0. The linear functional tr2i therefore yields a lin-
ear functional IE;2i;2k on H2n�2k.X; C/ whenever 0 � k � i .

In [FLS] it is shown that if E is a vector bundle of non-zero Euler characteristic,
then IE D R

X
as linear functionals on H2n.X; C/. This is done using the Riemann–

Roch–Hirzebruch theorem. In [FLS] it is conjectured that IE D R
X

in general. We
refer to this conjecture as the integral conjecture for the rest of this article. In [Ram]
it is demonstrated that IE D IF for any two holomorphic vector bundles E and F

on X . We may therefore refer to IOX
as the FLS functional on X . The fact that IE is

independent of E implies that IE D R
X

as long as E is a holomorphic vector bundle on a
compact complex manifold X that admits at least one vector bundle of non-zero Euler
characteristic. This proved the integral conjecture for compact complex manifolds
arising from complex algebraic varieties, since smooth complex algebraic variety has
at least one vector bundle of non-zero Euler characteristic (see the introduction in
[Ram] for an argument proving this assertion). The integral conjecture for arbitrary
compact complex manifolds, however, remained an open question as it is not known
whether or not there exist compact complex manifolds with no holomorphic vector
bundle of non-zero Euler characteristic.

The purpose of this article is to prove the integral conjecture in general. This is
done by building upon the work in [Ram] which, in turn, is a further development of
the approach to this problem in [FLS]. The argument used here is very natural from the
geometric point of view. Furthermore, it makes the approach to the integral conjecture
developed in [FLS] and subsequently in [Ram] independent of the Riemann–Roch–
Hirzebruch theorem.

Convention. Throughout this paper, a connected complex manifold shall mean a
connected complex manifold that is complete and has bounded geometry (positive
radius of injectivity plus all covariant derivatives of the Ricci curvature are bounded)
as a Riemannian manifold.

Our approach to the integral conjecture in this note also enables us to extend the
construction of the FLS functional to the construction of a C-linear functional IE

on H2n
c .Y; C/ given a vector bundle E with bounded geometry (see Definition on

p. 40) on an arbitrary connected complex manifold Y , and to prove that IE D R
Y

(Theorem 1). Here H�

c denotes cohomology with compact supports. One can also
extend the construction of IE;2i;2k for vector bundles on compact complex manifolds
to vector bundles on arbitrary complex manifolds. Given a vector bundle E with
bounded geometry on an arbitrary connected complex manifold Y , one can extend
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the construction of IE;2i;2k from the compact complex case to construct a C-linear
functional IE;2i;2k on H2n�2k

c .Y; C/. Strengthening a result of [Ram], we show that
IE;2i;0 D R

Y
and IE;2i;2k D 0 whenever k > 0 (Theorem 2).

Outline of this note. Section 1 contains certain remarks about the idea used in this
note. This may help the reader understand the motivation behind this article better.

Section 2 recalls the construction of the FLS functional on X .
In Section 3 the integral conjecture is proved in general and the construction of

the FLS functional is extended to vector bundles with bounded geometry on arbitrary
connected complex manifolds.

Acknowledgements. I am very grateful to Prof. Boris Tsygan for going through this
paper carefully and for his very useful comments and suggestions. I also thank the
referee for the careful reading of this article and for the helpful remarks and advice.

1. Some remarks

Remark 1. We note that the argument used to prove the integral conjecture in Sec-
tion 3.1 shows that to prove the integral conjecture for an arbitrary compact complex
manifold of complex dimension n, it suffices to prove it for one compact complex
manifold of the same complex dimension. This observation enables us to free this
approach from the Riemann–Roch–Hirzebruch theorem (see Section 3.2). Recall that
the proof of the integral conjecture for vector bundles of non-zero Euler characteris-
tic uses the fact that the class of the global differential operator id in H2n.X; C/ is
.Ch.E/ � TdX /2n (see [NT1] and [NT2]) along with the Riemann–Roch–Hirzebruch
theorem. It turns out that, by Theorem 2 of [Ram] together with the argument in
Section 3.1, we need this only for one particular vector bundle on one particular com-
pact complex manifold of dimension n for the integral conjecture to hold for every
compact complex manifold of dimension n. This is exploited in Section 3.2 to do
away with the need for the Riemann–Roch–Hirzebruch theorem altogether. A special
case of the fact that the class of the global differential operator id in H2n.X; C/ is
.Ch.E/ �TdX /2n is, however, still used. This fact together with the integral conjecture
implies the Riemann–Roch–Hirzebruch theorem itself, giving yet another proof of
the Riemann–Roch–Hirzebruch theorem.

Remark 2. The argument in Section 3.1 is also very natural from the geometric point
of view. Let U be an open disc with inclusions into two compact complex manifolds
X and Y . If ! is a top degree differential form on U supported compactly in U , thenZ

X

! D
Z

U

! D
Z

Y

!:



30 A. C. Ramadoss

The crux of this article is to prove “directly” that the Feigin–Losev–Shoikhet linear
functional mimics the above behavior of the integral. This is exploited along with
the results from [Ram] to prove the integral conjecture in general. We also note that
the same idea is behind the extension of the Feigin–Losev–Shoikhet construction of
the integral via topological quantum mechanics to non-compact complex manifolds
as well (Section 3.3). Of course, cohomology with compact supports has to be used
instead of cohomology itself.

Remark 3. A related conjecture in [FLS] that has since been proven in [EnFe] per-
tained to traces of global holomorphic differential operators on E . If D is a global
holomorphic differential operator on E , D induces endomorphisms on Hi .X; E/ for
all i . The supertrace of D, str.D/, is given by the formula

str.D/ D
X

i

.�1/i tr.DjHi .X;E//:

Further, D is seen to yield a class ŒD� inbHH0.D iff.E// (see [FLS], [Ram]). It follows
from the construction of tr W bHH0.D iff.E// ! C (see [FLS], [Ram]) that

tr.ŒD�/ D str.D/:

Denote the element ˇE.ŒD�/ of H2n.X; C/ by ŒD� itself. It was conjectured in [FLS]
and proven in [EnFe] that

str.ŒD�/ D
Z

X

ŒD�:

We shall refer to this result as the supertrace theorem. It is somewhat similar to
Corollary 5.6 of [S-S]. Note that the integral conjecture implies the supertrace theorem.
Also note that the supertrace theorem together with Theorem 2 of [Ram] implies
the integral conjecture for any compact complex manifold that admits at least one
holomorphic vector bundle admitting at least one global holomorphic differential
operator with non-zero supertrace. Unfortunately, we do not know whether every
compact complex manifold has this property. We also point out that by proving the
integral conjecture in full generality, this article completes a different “Riemann–
Roch–Hirzebruch theorem free” approach to the supertrace theorem from that in
[EnFe]. Proposition 4.1 of [EnFe] inspired us to use a “heat kernel” approach to push
the idea outlined in Remark 2 through.

2. Preliminary material

This section is meant to briefly recall the salient aspects of earlier work in [FLS]
and [Ram]. For further details, the reader is referred to [FLS] and [Ram]. Let
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Dolb.X; OX / denote the Dolbeaux resolution of OX . Denote by D iff �
.E/ the complex

D iff.E/ ˝OX
Dolb.X; OX /. Let Diff �

.E/ denote the differential graded algebra of
global sections of D iff �

.E/. Let K
�

E
denote the complex �.X; E ˝OX

Dolb.X; OX //.
By basic Hodge theory (see [Vois], Theorem 5.24), K

�

E
splits into a direct sum of a

complex K
�

0E
of C-vector spaces with 0 differential and an acyclic complex K

�

1E
.

2.1. The key construction of [FLS]. The reader may consult [FLS] for further
details regarding any assertion made in this section. The key construction of [FLS] is
of an A1-morphism F from Diff �

.E/ to End.K
�

0E
/. The A1-morphism F induces

a map FHoch from the Hochschild chain complex of Diff �
.E/ to that of End.K

�

0E
/.

One thus obtains a map FHoch� from the Hochschild homology of Diff �
.E/ to that of

End.K
�

0E
/. Let HHi .A/ denote the i -th Hochschild homology of a graded algebra A.

Then

HHi .End.K
�

0E// ' 0 for all i ¤ 0;

HH0.End.K
�

0E// ' C:

The only Hochschild 0-cycles that have nontrivial images in HH0.End.K
�

0E
// are

those arising out of degree 0 elements of End.K
�

0E
/. The image in C of the class

in HH0.End.K
�

0E
// of a Hochschild 0 cycle arising out of a degree 0 element M of

End.K
�

0E
/ is the supertrace str.M/ of M . We therefore denote the identification of

HH0.End.K
�

0E
// with C by str. It follows from this and from the formula for FHoch

(see [FLS]) that if a is a degree k � 1 element of Diff �
.E/˝k yielding a Hochschild

0-cycle of Diff �
.E/, then

tr.FHoch�.a// D
j Dk�1X

j D0

str.Fk.�j .a///: (1)

In the above equation, � is the C-endomorphism of Diff �
.E/˝k arising out of a cyclic

permutation of factors with the appropriate sign, and Fk is the k-th Taylor component
of the A1-morphism F (for more details, see [FLS]).

We now describe the construction of the Taylor components Fk of F .

2.1.1. The Taylor components of F . Suppose that Ck is the configuration space
ft1 < � � � < tk j ti 2 Rg=G.1/ where G.1/ is the one-dimensional group of shifts
.t1; : : : ; tk/ ! .t1 C c; : : : ; tk C c/. This is a smooth .k � 1/-dimensional manifold
which is not compact if k > 1. Note that setting �i ´ tiC1 � ti identifies the Ck

with the open orthant
QiDk�1

iD1 f�i > 0g. Let f�i > 0g denote the compactification of

f�i � 0g by a point at infinity. Let Ck D QiDk�1
iD1 f�i > 0g. This is a compactification

of Ck .
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If � is an element of End.K
�

E
/, let Œ��i denote the endomorphism id ˝ � � � ˝ � ˝

� � � ˝ id of .K
�

E
/˝k where � acts on the i -th factor from the right. Recall that N@�

E

denotes the Hodge adjoint of N@E . Similarly, �E denotes the Laplacian of N@E .
Let ˆ denote the differential form

Œ id �k B Œ expŒ�d�k�1
N@�

E � �k�1�E ��k�1 B � � � B Œ expŒ�d�1
N@�

E � �1�E ��1

on Ck with values in End.K
�

E
/˝k (note that End..K

�

E
/˝k/ ' End.K

�

E
/˝k). This

extends to a differential form on Ck with values in End.K
�

E
/˝k . In addition, there

is a composition map from End.K
�

E
/˝k to End.K

�

E
/ which we shall denote by mk .

An element D of Diff �
.E/˝k yields an element of End.K

�

E
/˝k which shall also be

denoted by D. If � and … denote the inclusion of K
�

0E
as a direct summand of K

�

E

and the projection from K
�

E
to K

�

0E
respectively, then

Fk.D/ D
Z

Ck

… B mk.ˆ B D/ B � D … B
� Z

Ck

mk.ˆ B D/

�
B �: (2)

That the Fk form the Taylor components of an A1-morphism is shown in [FLS].

2.2. A linear functional on bHH0.D iff.E//. For an open subset U of X , let
Diff.E/.U / and Diff �

.E/.U / denote by �.U; D iff.E// and �.U; D iff �
.E//, respec-

tively. Let C
�
.Diff.E/.U // denote the complex of Hochschild chains of Diff.E/.U /

(converted into a cochain complex). We note that the Hochschild differential on
C

�
.Diff.E/.U // extends to a differential of degree 1 on the graded vector spaceL
k�1 Diff.E�k/.U k/Œk � 1� where E�k is the k-fold external tensor power of E

on Xk . We denote the resulting complex by 7C
�
.Diff.E/.U //. Similarly, we note that

the Hochschild differential on C
�
.Diff �

.E/.U // extends to a differential of degree 1

on the graded vector space
L

k�1 Diff �
.E�k/.U k/Œk � 1�. We denote the result-

ing complex by 7C
�
.Diff �

.E/.U //. Let 5C �
.D iff.E// denote the sheaf of complexes

associated to the pre-sheaf

U Ý 7C
�

.Diff.E/.U //

of complexes of C-vector spaces on X . Similarly, let FHoch.D iff.E// denote the
sheaf of complexes associated to the pre-sheaf

U Ý 7C
�

.Diff �
.E/.U //

of complexes of C-vector spaces on X .

By definition, bHHi .D iff.E// D Hi .X; 5C
�
.D iff.E///.

Alas, F does not automatically yield a map of complexes from FHoch.D iff.E// to
C

�
.End.K

�

0E
//. One has, however, the following facts (see Proposition 6 of [Ram]).
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Recall that any 0-cocycle ˛ of C
�
.Diff �

.E// is of the form
P

k ˛k where ˛k 2
Diff �

.E/˝kŒk � 1�. Note that ˛1 2 Diff0.E/ and ˛k D 0 for almost all k. Let …0

denote the projection from K
�

E
onto the kernel of the Laplacian �E W K

�

E
! K

�

E
. This

is an integral operator with smooth kernel (see [BGV] Chapter 2).

Fact 1. The linear functionals

˛ 7!
X

k

j Dk�1X
j D0

str.Fk.�j .˛k/// and ˛ 7! str.…0˛1…0/

coincide on the space of 0-cocycles of C
�
.Diff �

.E//. Denote this linear functional
by IFLS. Recall from [FLS] that IFLS vanishes on 0-coboundaries.

Fact 2. The linear functional IFLS extends to a linear functional on the 0-th cohomol-
ogy of �.X; FHoch.D iff.E///. We will denote it by ytr.

On the other hand, the natural degree preserving map of complexes from
5C

�
.D iff.E// to FHoch.D iff.E// is a quasi-isomorphism since Diff �

.E�k/.U k/ is
quasi-isomorphic to Diff.E�k/.U k/ for any k � 1 and any open subset U of X . Also,
FHoch.D iff.E// is a complex of sheaves of C-vector spaces that are modules over the
sheaf of smooth functions on X . It follows that the i -th cohomology of the com-

plex �.X; FHoch.D iff.E/// is Hi .X; FHoch.D iff.E/// D Hi .X; 5C
�
.D iff.E/// D

bHHi .D iff.E//.
It follows that ytr is a linear functional on bHH0.D iff.E//. Also recall (for instance,

[Ram] Lemma 3) that 5C �
.D iff.E// is quasi-isomorphic to the shifted constant sheaf

CŒ2n�. It follows that bHH�i .D iff.E// ' H2n�i .X; C/. Moreover, ytr yields a linear
functional on H2n.X; C/, which we denote by IE .

3. Generalizing the integral conjecture

Let X be a compact complex manifold admitting at least one holomorphic vector
bundle of non-zero Euler characteristic. Let E be a homomorphic vector bundle on
X . Let IE W H2n.X; C/ ! C be as in the introduction. Since we have already shown
in [Ram] that IE D IF for any vector bundle F on X , we may assume without loss
of generality that E D OX . Let K

�

X denote the Dolbeaux complex of OX . Let Ck and
Ck be as in Section 2.1.1.

Let D iff.X/ denote D iff.OX /. Choose open discs U , W with U � W � X .

Since GHoch.D iff.X// is a complex of soft sheaves quasi-isomorphic to CŒ2n�, the

complex �c.U; FHoch.D iff.X/// is quasi-isomorphic to H2nC�

c .U; C/. Here �c is the
functor “sections with compact support” and H�

c denotes cohomology with compact
support. Note that H2n

c .U; C/ ' C and Hi
c.U; C/ D 0 for all i ¤ 2n.
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It follows that

H0.�c.U; FHoch.D iff.X//// ' H2n
c .U; C/ ' C:

For any 0-cocycle ˛ of �c.U; FHoch.D iff.X///, let Œ˛�U denote the class of ˛ in
H2n

c .U; C/. We state the following obvious fact as a proposition for emphasis.

Proposition 1. There is a Hochschild 0-cycle ˛ of �c.U; FHoch.D iff.X/// such that

Œ˛�U ¤ 0 in H0.�c.U; FHoch.D iff.X//// ' H2n
c .U; C/.

Let ˛ be as in Proposition 1. Let � denote the Laplacian of N@ on K
�

X . Let
K

�

XL2 denote the Hilbert space of square integrable Dolbeaux forms on X . This is

a Z2-graded Hilbert space. Let Dk denote sheaf associated to the pre-sheaf U Ý
Diff �

.U k/Œk �1�. Let ˛k denote the component of ˛ in �c.U; Dk/. Note that ˛k D 0

for almost all k, and that ˛1 is a compactly supported element of diff0.U /. Therefore,
˛1 may also be thought of as an element of diff0.X/.

We now recall Proposition 2.45 of [BGV] as a lemma.

Lemma 1. For any scalar t > 0, the operator ˛1e�t� makes sense as a trace class
operator on K

�

XL2 .

Thus, if
'.˛/ ´ ˛1;

then '.˛/e�t� makes sense as a trace class operator on K
�

XL2 . Let strX .�/ denote
the supertrace of � for any trace class operator � on K

�

XL2 . Note that ˛ may also be

thought of as a 0-cocycle of �.X; FHoch.D iff.X///. Let Œ˛�X denote the class of ˛ in
H2n.X; C/. If jX denotes the inclusion from U into X , then Œ˛�X D jX�Œ˛�U .

Proposition 2.

lim
t!1 strX .'.˛/e�t�/ D

Z
X

Œ˛�X :

Proof. Let K
�

0X denote the kernel of �. Recall that K
�

0X is finite dimensional. Recall
that � is an operator on K

�

XL2 with discrete non-negative spectrum that preserves the
Z2-grading. One can thus find a graded Hilbert space basis of K

�

XL2 made up entirely
of eigenvectors of �. Let fe1; : : : ; en; : : : g be such a basis with �i denoting the
eigenvalue of ei . Let h ; i denote the inner product of K

�

XL2 . We will denote '.˛/ by
' for the remainder of this proof.

Then

strX .'e�t�/ D
X

i

˙h'e�t�.ei /; ei i D
X

i

˙e�.t�1/�i h'e��.ei /; ei i
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for any t > 1. Note that the above sums converge absolutely by the fact that 'e�t�

is a trace class operator for any t > 0. It follows that

lim
t!1 strX .'e�t�/ D lim

t!1
X

i

˙e�.t�1/�i h'e��.ei /; ei i

D
X

fi j�i D0g
˙h'.ei /; ei i:

The last sum is a finite sum and is equal to str.…K
�

0X
B ' B �K

�

0X
/ where …K

�

0X

and �K
�

0X
are the projection from K

�

X to K
�

0X and the inclusion from K
�

0X into K
�

X ,
respectively. Since X has at least one vector bundle of non-zero Euler characteristic,
it follows that

str.…K
�

0X
B ' B �K

�

0X
/ D

Z
X

Œ˛�X

by [Ram], Theorem 2. This completes the proof.

Note that
K

�

XL2 D K
�

UL2 ˚ K
�

XnUL2 ;

as graded Hilbert spaces. Let �U denote the restriction of �X to U .

Proposition 3. '.˛/e�t�U is an operator with trace on K
�

UL2 and

strX .'.˛/e�t�X / D strU .'.˛/e�t�U /

for any t > 0.

Proof. Denote '.˛/ by ' in this proof. Recall from [BGV] that e�t�X is an operator
with smooth kernel pt (called the heat kernel) and that

strX .'e�t�X / D
Z

X

str.'pt .x; x//jdxj D
Z

U

str.'pt .x; x//jdxj D strU .'e�t�U /:

The last equality holds because the heat kernel on U is unique (see [Don]). The
construction of the heat kernel for a non-compact Riemannian manifold is done by
modifying the construction in [BGV] for the compact case. As in [Don] this modifica-
tion goes through, provided that the manifold in question has bounded geometry. The
second equality above holds since ' is a differential operator supported compactly
in U .

Recall that Œ˛�U denotes the class of ˛ in H2n
c .U; C/.

Corollary 1.

lim
t!1 strU .'.˛/e�t�/ D

Z
U

Œ˛�U :
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Proof. Since ˛ is compactly supported on a subset of U , we have
R
X

Œ˛�X D R
U

Œ˛�U .
The corollary now follows from Proposition 3 and Proposition 2.

3.1. Proof of the integral conjecture in general. Let Y be an arbitrary compact
complex manifold with dimC Y D dimC X . Note that we can find an open disc on Y

that we can identify (holomorphically) with W . Let WX and WY denote W thought
of as open subdiscs of X and Y , respectively. Moreover, the Hermitian metric on
	0;�

.WY / can be chosen such that it coincides with that on 	0;�
.UX / on UY .

Let jX and jY denote the inclusions from U into X and Y , respectively. Let ˛ be
as in Proposition 1. Denote '.˛/ by ' in this subsection. ThenZ

U

Œ˛�U D
Z

X

jX�Œ˛�U D
Z

Y

jY�Œ˛�U : (3)

On the other hand, we have

strX .'e�t�X / D strU .'e�t�U / D strY .'e�t�Y /

for any t > 0 by Proposition 3. Taking the limit as t ! 1 and applying Corollary 1,
we get

lim
t!1 strY .'e�t�Y / D lim

t!1 strU .'e�t�U / D
Z

U

Œ˛�U :

By (3), we have

lim
t!1 strY .'e�t�Y / D

Z
Y

jY�Œ˛�U :

But Œ˛�Y D jY�Œ˛�U , where ˛ on the left-hand side is viewed as a 0-cocycle of

�.Y; GHoch.D iff.Y ///. Now, following the proof of Proposition 2, we see that

lim
t!1 strY .'e�t�Y / D …K

�

0Y
B ' B �K

�

0Y
:

The right-hand side is precisely the Feigin–Losev–Shoikhet linear functional on Y

applied to Œ˛�Y . It follows that the Feigin–Losev–Shoikhet linear functional on Y

applied to Œ˛�Y is precisely
R

Y
Œ˛�Y . Since Œ˛�Y D jY�Œ˛�U ¤ 0, this proves that the

Feigin–Losev–Shoikhet linear functional on Y is exactly
R

Y
.

3.2. Proving the integral conjecture without the Riemann–Roch–Hirzebruch
theorem. Let Z and Y be two compact complex manifolds of complex dimension n.
The proof in Section 3.1 also shows that the following holds.

Theorem A. The integral conjecture holds for Z iff it holds for Y .

Consider the vector bundle OP1 on P1
C. Consider the differential operator id on

OP1 . The following special case of the supertrace theorem uses a result from [NT1]
and a hands-on calculation.
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Proposition 4.

1 D str.id/ D
Z

P1

Œ id �:

Proof. Let TP1 denote the tangent bundle of P1. That str.id/ D 1 follows from the
fact that H0.P1; OP1/ ' C and H0.P1; OP1/ D 0. By Theorem 7.1.1 of [NT1],
Œid� D .Td.TP1//2. We therefore need to verify that

R
P1.Td.TP1//2 D 1. Note that

TP1 is a line bundle. It follows that .Td.TP1//2 D 1
2

c1.TP1/ where c1.E/ denotes
the first Chern class of E . Also, TP1 D O.2/. It therefore suffices to show thatR

P1 c1.O.1// D 1. Then c1.O.1// is the class of the Chern form of O.1/, which we
will denote by !Ch. Let z denote the local holomorphic coordinate on an affine line
U � P1. Then

R
P1 !Ch D R

U
!Ch. On the other hand, on U we have

!Ch D i

2


dz ^ d Nz
.1 C jzj2/2

by Lemma 3.16 of [Vois]. Setting z D x C iy, it follows thatZ
U

!Ch D 1




Z
R2

dxdy

.1 C x2 C y2/2
D 1:

This proves the proposition.

It follows that the operator id˝n on OP1�n also has supertrace 1. Further, by
Proposition 5 below, after identifying H2n.P1�n

; C/ with H2.P1; C/˝n, we obtain
that

1 D
Z

P1�n
Œ id˝n� D

Z
P1�n

Œ id �˝n:

The integral conjecture therefore holds for P1�n
, and hence (by Theorem A) for

any compact complex manifold, provided that we prove the following result. In the
following proposition, Y and Z are compact complex manifolds. D1 and D2 are
global holomorphic operators on Y and Z, respectively. As a result D1 ˝ D2 is a
global holomorphic differential operator on Y � Z.

Proposition 5.
ŒD1 ˝ D2� D ŒD1� ˝ ŒD2�:

Proof. Step 1: Fixing basic notation.
Let n and m denote the complex dimensions of Y and Z respectively. Let

5C
�
.D iff.M// denote the completed Hochschild chain complex 6C

�
.D iff.OM // for

any complex manifold M (converted into a cochain complex). We recall from [Bryl]

that 5C
�
.D iff.M// is quasi-isomorphic to the shifted constant sheaf CŒ2d � on M ,

where d is the complex dimension of M . Denote this quasi-isomorphism by iM .
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Let C
�
.A/ denote the Hochschild chain complex of an C-algebra A viewed as a

cochain complex. Recall that if A and B are C-algebras, the shuffle product Ш yields
a map of complexes from C

�
.A/ ˝ C

�
.B/ to C

�
.A ˝ B/ (see [Lod], Section 4.2).

In particular if U and V are open discs in Y and Z respectively, the shuffle product
yields a map of complexes from C

�
.Diff.U // ˝ C

�
.Diff.V // to C

�
.Diff.U � V //.

This further extends to a map of complexes of sheaves of C-vector spaces on Y � Z

from 5C
�
.D iff.Y // ˝ 5C

�
.D iff.Z// to 8C

�
.D iff.Y � Z//, which we will denote by

mSh.

Step 2: Reduction to a “local check”.

Think of D1 and D2 as elements of �.Y; 5C 0.D iff.Y /// and �.Z; 5C 0.D iff.Z///

respectively. Then

mSh.D1 ˝ D2/ D D1 ˝ D2 2 �.Y � Z; 8C 0.D iff.Y � Z///:

To prove this proposition, it therefore suffices to show that the following diagram
commutes in the derived category D.ShC.Y � Z// of sheaves of C-vector spaces on
Y � Z:

5C
�
.D iff.Y // ˝ 5C

�
.D iff.Z//

iY ˝iZ
��

mSh ��
8C

�
.D iff.Y � Z//

iY �Z

��
CŒ2n� ˝ CŒ2m� �� CŒ2n C 2m�.

Since a sheaf of C-vector spaces is injective iff it is flabby (see [Riet], Lemma 3.3),
the constant sheaf C is an injective object in the category of C-vector spaces on X . It
follows from this that the diagram above commutes in D.ShC.Y � Z// up to a scalar.
Checking that that scalar factor is one is “done locally”. Let U and V be open discs
in Y and Z, respectively. It suffices to show that the following diagram commutes up
to cohomology in the category of complexes of C-vector spaces:

5C
�
.Diff.U // ˝ 5C

�
.Diff.V //

iY jU ˝iZ jV
��

mSh ��
8C

�
.Diff.U � V //

iY �Z jU �V

��
CŒ2n� ˝ CŒ2m� �� CŒ2n C 2m�.

The bottom row of the above diagram is the natural identification of C ˝ C with
C that takes 1 ˝ 1 to 1.

Step 3: The “local check”.
Let sgn.�/ denote the sign of a permutation � 2 Sk . Note that if W is any

C-vector space, then � acts on W ˝k on the right as

�.w1 ˝ � � � ˝ wk/ D w�.1/ ˝ : : : : ˝ w�.k/ .
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Let !.z/ denote the Hochschild 2-cycle

1 ˝ @
@z

˝ z � 1 ˝ z ˝ @
@z

C 1 ˝ 1 ˝ 1

of the Weyl algebra generated by z and @
@z

. Then

!2n ´ !.z1/ Ш !.z2/ Ш � � � Ш !.zn/

is a Hochschild 2n-cycle of the Weyl algebra An generated by z1; : : : ; zn and
@

@z1
; : : : ; @

@zn
. If z1; : : : ; zn are local holomorphic coordinates on U , then An is a

subalgebra of Diff.U /. It follows that !2n is a Hochschild 2n-cycle in C
�
.Diff.U //.

Note that that image of !2n in the normalized Hochschild chain complex of Diff.U /

is the normalized Hochschild 2n-cycleX
�2S2n

sgn.�/1 ˝ �. @
@z1

˝ z1 ˝ � � � ˝ @
@zn

˝ zn/:

We recall from [BrGe] and [FT] that

iY jU .Œ!2n�/ D 1:

To check that the above diagram commutes, we only need to verify that

mSh.!2n ˝ !2m/ D !2nC2m:

This is immediate from our definition of !2n.

Remark. The construction of iY jU from [Bryl] is what we used in [Ram]. Even with
this construction if iY jU , we can directly verify that iY jU .Œ!2n�/ D 1. We now sketch

how this can be done. Recall that the cohomology of 5C
�
.Diff.U // is computed using

the spectral sequence arising out of the filtration induced by a specific filtration F
�

on Diff.U /. Here F �k Diff.U / is the space of differential operators on U of order
at most k. Let z1; : : : ; zn be local holomorphic coordinates on the cotangent bundle
T �U of U . Let y1; : : : ; yn be local holomorphic coordinates on the fibre of T �U .
Setting the weight of the dzi to be 0 and that of the dyi to be 1 enables us to define
the notion of the weight of a holomorphic form on T �U . In the next paragraph,
differential forms on T �.U / shall always refer to holomorphic differential forms on
T �U that are algebraic along the fibres.

The E
p;q
1 -term of the spectral sequence computing the cohomology of 5C �

.Diff.U //

is precisely the space of �p �q-forms on T �U of weight �p that are algebraic along
the fibres. In fact, the image of the cycle !2n in E

�n;�n
1 can be verified to be the

differential form dy1 ^dz1 ^dy2 ^dz2 ^ : : : :^dyn ^dzn. Recall from [Bryl] (The-
orem 3.1.1) that the differential on the E

�;�

1 -terms is the differential of the canonical
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complex of the Poisson manifold T �U . Moreover the canonical complex of T �U

may be identified with the (shifted) de Rham complex of T �U . Under this identifica-
tion, dy1 ^ dz1 ^ dy2 ^ dz2 ^ � � � ^ dyn ^ dzn is identified with 1. This is a de Rham
0-cocycle. It follows that the image of !2n in E

�n;�n
2 is 1. Since E

p;q
2 D 0 whenever

.p; q/ ¤ .�n; �n/, the cohomology of 5C
�
.Diff.U // is identified with E

�n;�n
2 ' C.

This shows that iY jU .Œ!2n�/ D 1.

3.3. The Feigin–Losev–Shoikhet construction for vector bundles on non-compact
complex manifolds. As a byproduct of this proof, we have in fact extended the
construction of the Feigin–Losev–Shoikhet linear functionals associated with cer-
tain holomorphic bundles on complex manifolds to complex manifolds that are not
compact. Let E be a holomorphic vector bundle on an arbitrary connected complex
manifold Y . Let �E denote the Laplacian of E . This depends on a choice of Her-
mitian metric for Y as well as for E . Recall that the Laplacian �E D �E C F ,
where �E is the Laplacian of a connection on E (see Definition 2.4 of [BGV]) and
F 2 �.Y; End.E//.

Definition. We say that E has bounded geometry if for some choice of Hermitian
metric on E , there exists a connection OE on E such that �E D �E C F , where �E

is the Laplacian of OE and F 2 �.Y; End.E//, and all covariant derivatives of the
curvature of �E as well as of F are bounded on Y .

Let E be a vector bundle having bounded geometry. Let K
�

EL2 denote the

(Z2-graded) Hilbert space of square integrable sections of K
�

E
. Then e�t�E can

be constructed as an integral operator on K
�

EL2 following [Don]. Suppose that

˛ 2 �c.Y; FHoch.D iff.E///, and let Dk.E/ denote the sheaf associated with the pre-
sheaf U Ý Diff �

.E�k/.U k/. Let ˛k denote the component of ˛ in �c.Y; Dk.E//.
Note that ˛k D 0 for almost all k. Put

'.˛/ D ˛1:

The following result generalizes Proposition 6 of [Ram].

Proposition 6. (1) '.˛/e�t�E makes sense as a trace class operator on K
�

EL2 for
any t > 0.

(2) Furthermore, the map

˛ Ý lim
t!1 str.'.˛/e�t�E /

induces a C-linear functional on H0.�c.Y; FHoch.D iff.E////.
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Proof. Step 1: To prove part (1), note that the support of ˛ can be covered by finitely
many open discs U1; : : : ; Um � Y such that each Ui is contained in an open disc
Wi � Y with E is trivial on each Wi . Let Z D Y n S

i
SUi . One can find a partition

of unity ff1; : : : ; fm; f g on Y subordinate to the cover Y D S
i Ui [ Z with fi

supported on Ui . Note that the support of fi is compact. Also, f D 0 on the support
of ˛. Writing ˛ as

P
i fi˛ it suffices to prove part (1) for ˛ compactly supported on

an open disc U contained in an open disc W on which E is trivial. One may find
a compact complex manifold X containing an open disc WX with which W can be
identified holomorphically. Let E 0 D O

p
X , where p is the rank of E . The metrics

on X and E 0 may be chosen to coincide with those of U and EjU , respectively, on

UX . Let ˛X denote ˛ thought of as an element of �.X; GHoch.D iff.E 0///. By an easy
generalization of Lemma 1, '.˛X /e�t�E0 makes sense as a trace class operator on
K

�

E0L2 for any t > 0. Since ˛X is supported on a compact subset of UX and since
K

�

E0L2 D K
�

E0jUX
L2 ˚ K

�

E0jXnUX
L2 , an easy extension of Proposition 3 implies that

'.˛X /e�t�E0 makes sense as a trace class operator on K
�

E0jUX
L2 for any t > 0, and

that
strX .'.˛X /e�t�E0 / D strUX

.'.˛X /e�t�E0 /:

But since ˛X , UX and �E0 jUX
are identified with ˛, U and �E jU , respectively,

'.˛/e�t�E makes sense as a trace class operator on K
�

EjU L2 for any t > 0, and

strU .'.˛/e�t�E / D strX .'.˛X /e�t�E0 /

for any t > 0. Noting that K
�

EL2 D K
�

EjU L2 ˚ K
�

EjY nU L2 and ˛ is supported on a

compact subset of U , we see that '.˛/e�t�E makes sense as a trace class operator on
K

�

EL2 for any t > 0, and

strY .'.˛/e�t�E / D strX .'.˛X /e�t�E0 / (4)

for any t > 0. This proves part (1).

Step 2: By (4), we have

lim
t!1 strY .'.˛/e�t�E / D lim

t!1 strX .'.˛X /e�t�E0 /:

Since X is compact, a trivial modification of the argument proving Proposition 2 will
show that the right-hand side is finite. It follows that ˛ Ý limt!1 str.'.˛/e�t�E /

yields a linear functional on the space of compactly supported sections of degree 0 of
FHoch.D iff.E// that are supported on any fixed open disc U � W such that W � Y

is an open disc on which E is trivial. That this extends to a linear functional on the

space of degree 0 elements of �c.Y; FHoch.D iff.E/// follows from a partition of unity
argument similar to that used to prove part (1) of this proposition.
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Step 3: To show that ˛ Ý limt!1 str.'.˛/e�t�E / yields a linear functional on

H0.�c.Y; FHoch.D iff.E//// , we need to show that limt!1 str.'.dHochˇ/e�t�E / D 0

for any degree �1 element ˇ of �c.Y; FHoch.D iff.E///. Here, dHoch is the differential

of the complex �c.Y; FHoch.D iff.E///. Once more, as in the proof of part (1), one
can first show that it suffices to confirm that limt!1 str.'.dHochˇ/e�t�E / D 0 for

any degree �1 element ˇ of �c.Y; FHoch.D iff.E/// supported on a subset of an open
disc U � W such that W � Y is an open disc on which E is trivial. In this case, if
X and E 0 are as in step 1 of this proof, then

lim
t!1 strY .'.dHochˇ/e�t�E / D lim

t!1 strX .'.dHochˇX /e�t�E0 /:

Since X is compact, by an easy generalization of Proposition 2, we obtain that

lim
t!1 strX .'.dHochˇX /e�t�E0 / D …K

�

0E0
B '.dHochˇX / B �K

�

0E0
:

The right-hand side is precisely
R
X

ŒdHochˇX � D 0 by the integral conjecture for
compact complex manifolds. This proves part (2) of the proposition.

Note that FHoch.D iff.E// is a complex of soft sheaves which are modules over the

sheaf of smooth functions on Y . Furthermore, FHoch.D iff.E// is quasi-isomorphic to
5C

�
.D iff.E//, which in turn is quasi-isomorphic to the shifted constant sheaf CŒ2n�

(see [Ram], Lemma 3). It follows that H0.�c.Y; FHoch.D iff.E//// ' H2n
c .Y; C/. By

part (2) of Proposition 6, we have constructed a C-linear functional on H2n
c .Y; C/,

which we will denote by IE . The formula for this linear functional on H2n
c .Y; C/

coincides with that for the FLS functional on E as constructed in [Ram] when Y is
compact. The following generalization of Theorem 2 of [Ram] holds.

Theorem 1. Let E be a holomorphic vector bundle having bounded geometry on a
connected complex manifold Y . Then

IE D
Z

Y

W H2n
c .Y; C/ ! C:

Proof. Let U , W be open discs with U � W � Y . Choose a 0-cocycle ˛ of

�c.Y; FHoch.D iff.E/// such that Œ˛�U ¤ 0 in H2n
c .U; C/. Let UX , X and E 0 be as in

step 1 of the proof of Proposition 6. Then

IE0.jX�Œ˛�U / D
Z

X

jX�Œ˛�U

by the integral conjecture for compact complex manifolds. But
R
X

jX�Œ˛�U D
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U

Œ˛�U D R
Y

jY�Œ˛�U . Moreover,

IE.jY�Œ˛�U / D lim
t!1 strY .'.˛/e�t�E /;

IE0.jX�Œ˛�U / D lim
t!1 strX .'.˛X /e�t�E0 /:

By (4), IE.jY�Œ˛�U / D IE0.jX�Œ˛�U /. It follows that
R

Y
jY�Œ˛�U D IE.jY�Œ˛�U /.

Since jY�Œ˛�U ¤ 0 and H2n
c .Y; C/ is a one-dimensional C-vector space, the theorem

follows.

Remark. One may define the “completed Hochschild homology with compact sup-
port” of D iff.E/. The completed Hochschild homology bHHc

� .D iff.E// of D iff.E/

is given by R�c.5C
�
.D iff.E///. Note that since FHoch.D iff.E// is a complex of soft

sheaves on X quasi-isomorphic to 5C
�
.D iff.E//, we have

6HHc
i .D iff.E// ' Hi .�c.Y; FHoch.D iff.E////:

Also note that if Y is compact, then �c D � . It follows that 6HHc
i .D iff.E// D

6HHi .D iff.E// if Y is compact. It now becomes easy to observe that Proposition 6
extends the definition of IE to vector bundles on arbitrary manifolds by generalizing
the definition of the linear functional tr on bHH0.D iff.E// in the compact case to that

of a linear functional on 6HHc
0.D iff.E//.

Denote by 8CC�
.Diff �

.E/.U // the completed Tsygan double complex of
Diff �

.E/.U /. Denote the sheafification of the pre-sheaf

U Ý Tot. 8CC�
.Diff �

.E/.U ///

by eCycl.D iff.E//. This is a (soft) sheaf of modules over the sheaf of smooth functions
on Y that is quasi-isomorphic to the completed cyclic complex of D iff.E/. Since the
latter complex is quasi-isomorphic to CŒ2n� ˚ CŒ2n C 2� ˚ � � � , we have

H�2i .�c.Y; FHoch.D iff.E//// ' H2n�2i
c .Y; C/˚H2n�2iC2

c .Y; C/˚� � �˚H2n
c .Y; C/:

One may also note that a �2i cocycle of �c.Y; eCycl.D iff.E/// arises out of a

tuple .ˇ�2i ; : : : ; ˇ0; : : : ; ˇl/, where ˇk 2 �c.Y; FHoch.D iff.E//k/ if k is even, and

ˇk 2 �c.Y; Ebar.D iff.E//k/ if k is odd. Note that the terms of the “bar complex”
Ebar.D iff.E// are the same as those of FHoch.D iff.E//, but the differential of the

complex Ebar.D iff.E// is an extension of the bar differential rather than the Hochschild
differential. The proof of the following result, which uses Proposition 6, is very similar
to that of Proposition 13 of [Ram] and is thus omitted.



44 A. C. Ramadoss

Proposition 7. The map

.ˇ�2i ; : : : :; ˇ0; : : : ; ˇl/ Ý lim
t!1 str.'.ˇ0/e�t�E /

induces a C-linear functional on H�2i .�c.Y; FHoch.D iff.E////.

On H2n�2i
c .Y; C/˚H2n�2iC2

c .Y; C/˚� � �˚H2n
c .Y; C/ we have thus constructed a

C- linear functional. We will denote the composition of this C-linear functional with
the inclusion of H2n�2k

c .Y; C/ into H2n�2i
c .Y; C/˚H2n�2iC2

c .Y; C/˚� � �˚H2n
c .Y; C/

as a direct summand by IE;2i;2k whenever 0 � k � i . The following generalization
of Theorem 3 of [Ram] holds. Its proof completely parallels the proof of Theorem 3
in [Ram], Section 5.

Theorem 2. Let E be a holomorphic vector bundle having bounded geometry on a
complex manifold Y . Then

IE;2i;0 D
Z

Y

W H2n
c .Y; C/ ! C

for any i � 0. Furthermore,

IE;2i;2k D 0 for all 0 < k � i :

Remark. One may define the “completed cyclic homology with compact support”
6HCc

� .D iff.E//. By definition, 6HCc
� .D iff.E// D R�c.Y; 6Cycl.D iff.E/// where

6Cycl.D iff.E// is the completed cyclic chain complex of D iff.E/. As eCycl.D iff.E//

is quasi-isomorphic to 6Cycl.D iff.E// and is a complex of soft sheaves on Y , it follows
that

6HCc
i .D iff.E// ' Hi .�c.Y; eCycl.D iff.E////:

Then IE;2i;2k is constructed in the non-compact case by observing that the construction

of tr2i in the compact case generalizes to yield a linear functional on 7HCc�2i .D iff.E//

for each i � 0 by Proposition 7.
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