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Abstract. In [1] we introduced the notion of a partial translation C*-algebra for a discrete
metric space. Here we demonstrate that several important classical C*-algebras and extensions
arise naturally by considering partial translation algebras associated with subspaces of trees.
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1. Introduction

The uniform Roe algebra C �
u .X/ is a C*-algebra associated with any discrete metric

space X which encodes analytically the coarse geometry of the space [6], Chapter 4.
For example, the space X has Yu’s property A [8] if and only if the uniform Roe
algebra of X is nuclear [7]. A rich source of examples of interesting metric spaces is
the class of discrete groups equipped with a left invariant metric. For such a group G,
the uniform Roe algebra contains the (right) reduced C*-algebra of the group C �

� .G/.
The uniform Roe algebra is vastly larger than C �

� .G/; indeed, unless G if finite, it
is not separable. For this reason, it is useful for general metric spaces to consider
an analogue of the reduced group C*-algebra. In [1] we introduced the notion of a
partial translation algebra for a discrete metric space to play this role.

In this paper we demonstrate the power of this approach by exhibiting several well-
known algebras in the new framework. In the context of subspaces of Z the partial
translation algebra encodes the additive structure. We provide several examples of
this phenomenon. In particular the Toeplitz extension arises here by considering the
algebra associated to the inclusion of the natural numbers in the integers (Theorem 1).
Replacing the natural numbers by Znf0g we obtain a trivial extension of C.S1/ by the
compacts which is therefore inequivalent to the Toeplitz extension (Theorem 2). It is
also natural to ask what the associated algebra tells us about the additive structure of
the primes, and here we make a connection with the classical de Polignac conjecture
(Theorem 3).
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By generalising these ideas to consider the inclusion of the 3-valent tree and the
rooted 3-valent tree into the Cayley graph of the free group on two generators we
are able to recover the extension used by Cuntz in his computation in [4] of the
K-theory of the Cuntz algebra O2 (Theorem 4). It is straightforward to generalise this
method for the algebras On, by considering the Cayley graph of the free group Fn on
n generators, and we give an outline of this.

Finally we use the geometry to construct an explicit embedding of C �
� .F2/ into

the Cuntz algebra O2 (Theorem 5). We do this by exhibiting explicit injective quasi-
isometries of the regular 4-valent tree into the regular 3-valent tree which are well
behaved with respect to the natural partial translations on these trees.

2. Partial translations

Let G be a discrete group equipped with a left invariant metric d . This means that
for every element l 2 G the map on G defined using the left multiplication by l is an
isometry with respect to the metric d . On the other hand, the right multiplication by
an element r 2 G moves every element g 2 G by the same amount:

d.g; gr/ D d.e; r/:

By analogy with metric geometry, we will call such maps translations. These two
actions together are responsible for the symmetries and the homogeneity of the group
G regarded as a metric space with respect to the left invariant metric d .

It is clear that one cannot hope to have the same amount of information for a
general discrete metric space X . However, in [1], we introduced a way of measuring
homogeneity. A starting point of our investigations was the observation that, up to a
bounded amount of distortion, a metric subspace of a discrete group retains a degree
of symmetry. Moreover, this induced structure can be codified.

By a partial translation we mean a bijection t defined on a subset S � X , taking
values in a subset of X , such that d.s; t.s// is bounded for all s 2 S . This notion
was introduced by Roe [6], Definition 10.21, in his discussion of the coarse groupoid
of Skandalis, Tu and Yu [7]. Equivalently, a partial translation may be described in
terms of its graph; from that point of view it may be defined as a subspace of X � X

which lies within a bounded distance of the diagonal and such that the coordinate
projections are injective. In the case when X is a discrete group, right multiplication
by an element g 2 X determines a partial translation tg W y 7! yg, which is defined
for every y 2 X .

Definition 1. Let X be a uniformly discrete bounded geometry space, and let T be
a family of disjoint partial translations on X . Each of the partial translations t 2 T

induces a partial isometry � on `2.X/ defined by �.ıx/ D ıt.x/ for x in the domain
of t , and �.ıx/ D 0 for x not in the domain.
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Figure 1. Solid arrows describe the partial translation � a acting on the subset fbna j n 2 Zg
of the free group F2; dashed arrows denote left multiplication by b � .

The partial translation algebra C �.T / is the C*-subalgebra of the uniform Roe
algebra, C �

u .X/, generated by the partial translations in T , regarded as partial isome-
tries in `2.X/; see [6], p. 67, for a discussion of C �

u .X/.
Note that for any partial translation t the inverse t�1 is also defined as a partial

translation on X and that as an element of `2.X/, it induces the adjoint �� of � .

The notion of a partial translation algebra was introduced to play the role of the
reduced group C*-algebra for a discrete metric space, and in [1], Theorem 27, we prove
that in a countable discrete group there is a canonical family of partial translations T

such that the algebra C �.T / is isomorphic to C �
� .G/.

In general, without additional constraints on the partial translations, we do not
expect to be able to recover (or use) geometric information. However, as we showed
in [1], in many cases, and in particular in the case of a subspace of a discrete group, we
can choose our partial translations to satisfy strong (partial) homogeneity conditions
which control the structure of the corresponding partial translation algebras and relate
this to the geometry of the space. The analytic properties of this algebra capture some
interesting metric properties of the space X . One example of this relation is the
statement that when X is sufficiently homogeneous (i.e., in the language of [1] it
admits a free and globally controlled atlas for some partial translation structure), then
the following statements are all equivalent [1], Theorem 29:

(1) The space X has property A;

(2) The uniform Roe algebra C �
u .X/ is nuclear;

(3) The algebra C �
u .X/ is exact.

The conditions of this statement are satisfied, for example, when X admits an injective
uniform embedding into a countable discrete group.

In this paper we will consider subspaces of trees, which of course embed in free
groups and therefore inherit well behaved partial translations.
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3. Translation subspaces of Z

Coburn’s theorem, [3], states that the Toeplitz algebra is the middle term of an exten-
sion:

0 ! K ! T ! C.S1/ ! 0;

where K denotes the compacts. This extension arises naturally by viewing the gen-
erator of the Toeplitz algebra as the unilateral shift on `2.N/ and identifying the
generator of C.S1/ with the bilateral shift on `2.Z/, induced by the identification of
C.S1/ with the reduced C*-algebra of Z. The point of introducing it here is that,
as we shall see, it yields the first non-trivial example of a partial translation algebra,
arising from the inclusion of N in Z.

3.1. The translation algebra C �.N/. In this section we establish the following:

Theorem 1. The translation algebra C �.N/ arising from the inclusion of the natural
numbers in the integers is isomorphic to the Toeplitz algebra, and moreover the
inclusion induces the Toeplitz extension.

Regarding Z as an infinite cyclic group, it is equipped with a canonical family of
partial translations inherited from the right action of the group on itself. The partial
translation algebra of Z induced by this is, by definition, the reduced group C*-algebra
C �

� .Z/. This is generated by a single element, �1, the bilateral shift on `2.Z/ induced
by the partial translation (actually a translation) n 7! n C 1.

The subspace N (which for our purposes will include 0) inherits a family of partial
translations by restricting, and corestricting the translations of Z to N. That is, the
set of partial translations on N consists of all maps tn defined on N of the form
tn.j / D j C n where n � 0, along with all maps of the form

t�1
n W fn; n C 1; n C 2; : : : g ! N; t�1

n W j 7! j � n;

where n > 0.
The corresponding partial translation algebra is by definition the C*-algebra

C �.N/ � B.`2.N// generated by the partial isometries �i and ��i correspond-
ing to the partial translations ti W N ! N n f0; : : : ; i � 1g, ti .j / D j C i and
t�1
i W N n f0; : : : ; i � 1g ! N, t�1

i .j / D j � i .

Lemma 1. The partial translation algebra C �.N/ is generated by �1 (and its adjoint)
where �1 acts on `2.N/ as a unilateral shift. It contains the algebra of compact
operators on `2.N/.

Proof. It is clear that for each n the operator �n
1 is induced by the partial translation

tn, while .��
1 /n is induced by t�1

n proving the first part of the lemma. The operator
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��
1 �1 � �1��

1 is the projection onto the subspace spanned by 0, and conjugating by
the operators �n

i we obtain all the matrix elements, so C �.N/ contains the algebra of
compact operators.

Since one can cancel pairs ��
1 �1, a general element of C �.N/ of the form

�
i1
1 .��

1 /j1�
i2
1 .��

1 /j2 : : : �
ik
1 .��

1 /jk

can be reduced to � i
1.��

1 /j .
Suppose that n D i � j is positive. Then it is easy to see that ti t

�1
j is a sub-

translation of tn, that is, its domain is a subset of the domain of tn and where both
are defined they are equal. Moreover the domains differ only by a finite set. Hence
as operators � i

1.��
1 /j and �n

1 differ by a finite rank operator. Similarly if i � j D n

is negative then ti t
�1
j is a subtranslation of t�1

n , and the operators � i
1.��

1 /j and .��
1 /n

again differ by a finite rank operator.
Thus elements of the form �n

1 and .��
1 /n along with finite rank operators span a

dense subspace of C �.N/. It is easy to see that � i
1 and .��

1 /j never differ by a compact
operator (there is no cancellation between them) while � i

1 and �
j
1 differ by a compact

operator only if i D j . Hence the map �n
1 7! �n

1 , .��
1 /l 7! .��

1 /n, and k 7! 0 for
every compact operator k, extends to a well-defined linear map from a dense subspace
of C �.N/ to C �

� .Z/. This map is moreover a *-algebra homomorphism, and extends
by continuity to a *-homomorphism from C �.N/ to C �

� .Z/ with kernel consisting of
compact operators, giving us an extension

0 ! K.`2.N// ! C �.N/ ! C �
� .Z/ ! 0:

We now make the following identifications. The Hilbert space `2.N/ is naturally
identified with the Hardy space H2 by taking en to zn for n 2 N. Similarly `2.Z/ is
naturally identified with L2.S1/, again the map takes en to zn (however this is now
for all n 2 Z). With these identifications �1 is identified with Tz , the Toeplitz operator
associated with the identity map z W S1 ! S1, while the generator �1 of C �

� .Z/ is
identified with Mz , the operator of pointwise multiplication by the function z. Since
C �.N/ and T are generated by �1 and Tz respectively, the above identification of
Hilbert spaces gives an isomorphism C �.N/ Š T . Similarly we have C �

� .Z/ Š
C.S1/.

The isomorphisms C �.N/ Š T and C �
� Z Š C.S1/ identify this with the Toeplitz

extension,
0 ! K.H2/ ! T ! C.S1/ ! 0:

3.2. The translation algebra C �.Z n f0g/. From now on we will abuse notation,
denoting both a partial translation and the operator that it defines with the same symbol,
using context to determine the meaning. Hence if s is a partial translation we may
write s� to denote the adjoint of the operator corresponding to s.
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We next consider the effect of removing a single point from the group Z.

Theorem 2. The partial translation algebra C �.Z n f0g/ is a trivial extension of
C.S1/ by the compact operators which is therefore not equivalent (in the sense of
K-homology) to the Toeplitz extension.

Proof. Let X D Z n f0g. The partial translations on X that we obtain by restricting
and corestricting the translations of Z have the form

sn W Z n f�n; 0g ! Z n f0; ng; sn W j 7! j C n:

Note that s0 is the identity and s�n D s�
n for all n 2 Z.

It appears a priori that we need all of these partial translations to generate the
algebra C �.Z n f0g/, since it is not true in this case that sn D .s1/n. In fact we will
see that it suffices to have s0 D 1; s1 and s2.

Consider s1s�
1 . This acts as the identity on i for all i ¤ 1, while it is undefined

at 1. Thus, as an element of the algebra, s1s�
1 D 1 � p1 where p1 denotes the rank 1

projection onto the basis element e1 in `2.X/. Hence the algebra C �.X/ contains
the rank 1 projection p1. Now for any i; j 2 X , the matrix element ei;j is given by
si�1p1.s�

j �1/, hence the algebra contains all matrix elements, and hence all compact
operators.

Now consider compositions of the form si1si2 : : : sik . Where this is defined it
translates by l D i1 C � � � C ik . In other words it is a subtranslation of sl . The domain
on which this is defined is

Z n f0; �ik; �.ik�1 C ik/; : : : ; �lg
in particular it differs from the domain of sl by only finitely many points. As before
si � sj is compact only if i D j and hence we deduce that we have an extension of
the form

0 ! K.`2.X// ! C �.X/ ! C �
� .Z/ ! 0;

where the map C �.X/ ! C �
� .Z/ is given by extending linearly the map taking sl

to Œl � and vanishing on the compacts.
We can identify the algebra C �.X/ more explicitly as follows. Consider the

partial translation s1. This takes Z n f�1; 0g to Z n f0; 1g. We can extend it to a
globally defined translation t on X by defining t .j / D s1.j / for j 2 X , j ¤ �1 and
t .�1/ D 1. Note that this is a compact perturbation of s1 and hence lies in the algebra.
Moreover, tn is a compact perturbation of sn for all n, thus C �.X/ is generated by t

along with all compact operators.
Now consider the algebra generated by t alone. Let � W X ! Z be the bijective

coarse equivalence defined by �.j / D j for j > 0 and �.j / D j C1 for j < 0. If U

denotes the corresponding unitary from `2.X/ to `2.Z/ then UtU � is right translation
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by 1, i.e., it is the element Œ1� in C �
� .Z/. Hence using U to identify these two Hilbert

spaces, the algebra C �.t/ is identified with C �
� .Z/, the algebra of compacts K.`2.X//

is identified with K.`2.Z// and hence (since these together generate C �.X/) we
deduce that C �.X/ is identified with the sum C �

� .Z/ C K.`2.Z//. This identifies
the extension as

0 ! K.`2.Z// ! C �
� .Z/ C K.`2.Z// ! C �

� .Z/ ! 0:

As a K-homology cycle for C �
� .Z/ this extension is .`2.Z/; �; 1/ where � denotes

the right regular representation. This cycle is degenerate, hence it is a trivial element
in K-homology. However the K-homology class represented by the Toeplitz extension
is non-trivial, thus the two extensions are not equivalent.

3.3. Coarsely disconnected subspaces. We will now consider subspaces of Z such
as fi2 W i 2 Ng, having arbitrarily large gaps. These are said to be coarsely discon-
nected.

Proposition 1. Let X be a subset of Z which is coarsely equivalent to fi2 W i 2 Ng.
Then C �.X/ is isomorphic to the unitised compacts zK.l2.X//.

Proof. Subspaces of Z which are coarsely equivalent to fi2 W i 2 Ng can be charac-
terised as follows. Let XC denote the non-negative part of X and let X� denote the
negative part of X . Then XC is either finite or consists of an increasing sequence ai

of points with aiC1 � ai tending to infinity as i ! 1. Similarly X� is either finite
or consists of an decreasing sequence bi of points with bi � biC1 tending to infinity
as i ! 1, and XC; X� cannot both be finite.

Now fix some n ¤ 0, and consider tn the translation by n on X . The domain of
tn consists of those x 2 X such that x C n lies in X . Since if X� is infinite, the gaps
bn � bnC1 tend to infinity, it follows that if the domain is non-empty then there is a
least such x. Similarly there is a greatest such x, and hence the domain of tn is finite.
Thus as an operator on l2.X/ it follows that tn is compact. For n D 0 the translation
by n is the identity on X , and hence we deduce that C �.X/ is a subalgebra of the
unitisation of the compact operators zK.l2.X//.

We will now show that C �.X/ contains all matrix elements. Pick some n > 0 for
which the domain of tn is non-empty, let x be the least element of the domain, and
let y be the greatest element. Then y � x D mn for some m > 0, and the translation
.tn/m takes x to y and is undefined otherwise. Hence as an operator .tn/m is the rank 1

operator taking ex to ey . Now, for any a; b in X , the composition tb�y.tn/mtx�a is
the rank 1 operator taking ea to eb . The closed span of these operators is K.l2.X//,
hence we conclude that C �.X/ D zK.l2.X//.

As in the previous examples there is an extension: in this case we see that taking
the quotient by the compact operators we obtain a map to C, since only the identity on
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X has infinite support, and the quotient here can be regarded as the group C*-algebra
of the trivial group. Thus we have the extension

0 ! K.l2.X// ! zK.l2.X// ! C �
� .f0g/ ! 0:

3.4. The translation algebra of the primes. The primes inherit a partial translation
algebra C �.P / from the integers and for each positive integer n there is specific
element tn 2 C �.P / represented by translation by n. Since there is only one even
prime the element t�

1 t1 is a rank 1 projection, and since the translations act transitively
the partial translation algebra contains every compact operator. Clearly the element t0
is the identity, so the partial translation algebra of the primes actually contains the
unitised algebra zK.l2.P // which is an extension of the form:

0 ! K.l2.X// ! zK.l2.X// ! C �
� .f0g/ ! 0:

Now the twin prime conjecture is equivalent to the statement that the operator t2
is not compact. Indeed de Polignac’s generalisation of the twin primes conjecture,
which asserts the existence of infinitely many prime pairs separated by distance n for
each even n ([5]), is equivalent to the statement that tn is not compact for any even n.
Note that if de Polignac’s conjecture holds for some even n then the algebra C �.P /

is strictly larger than zK.l2.X//.
The algebra zK.l2.X// has a unique ideal, namely K.l2.X//. If C �.P / is iso-

morphic to zK.l2.X// it also must contain a unique ideal and this must be K.l2.X//

since this is an ideal in C �.P /. It follows that taking the quotient by this ideal we
obtain in both cases a copy of C. Hence C �.P / D zK.l2.X//.

Theorem 3. The algebra C �.P / is not isomorphic to zK.l2.X// if and only if de
Polignac’s conjecture holds for some even n, if and only if the quotient of C �.P / by
the compact operators is strictly larger than C.

4. Translation subspaces of Fn

4.1. Translation algebras and the Cuntz extension. In this section we will consider
the translation algebras arising from subspaces of the regular 4-valent tree, the Cayley
graph of the free group of rank 2, F2. We will indicate briefly how the arguments
carry over to the general case. Let X denote the set of positive words in F2 including
the identity. That is X consists of e along with all words in the generators a and b.

Consider the partial translations on X defined by a and b (acting by right trans-
lation). Then a is globally defined, while the image of a is the set of all positive
words ending in a. Similarly b is globally defined with image consisting of positive
words ending in b. The partial translations a� and b� are left inverses of a and b,
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respectively. Viewed as an operator on `2.X/, the element a� acts as a bijection from
the words ending in a to all words, and acts as zero on e and all words ending with b.
Similarly for b, hence we have the following algebra relations:

a�a D b�b D 1; a�b D b�a D 0; aa� C bb� D 1 � pe;

where pe denotes the rank 1 projection onto e in `2.X/.
A general translation is given by right multiplication by a reduced word x1 : : : xk

with xi 2 fa; b; a�1; b�1g. It is easy to see that as a partial translation .x1 : : : xk/ acts
as the composition ykyn�1 : : : y1 where yi equals a or b respectively if xi is a or b,
while yi D a�; b� respectively if xi is a�1 or b�1. Note the reversal of the order of
composition, due to the fact that we are using right multiplications, e.g., the operator
ab is right multiplication by the group element ba.

We thus see that the algebra C �.X/ is the C*-algebra generated by a and b. (We
do not need to explicitly include the identity since a�a D 1.)

We now compare C �.X/ with the algebra C �.Y / of a slightly bigger subset of
F2. Let Y denote the set of elements in F2 of the form anw.a; b/, where n 2 Z and
w.a; b/ is a word in a and b. That is, Y consists of reduced words in a, a�1 and b,
where a�1 can only occur before the first b. Using Y fixes a defect in X : each vertex
of X has three neighbours with the exception of the identity, which only has two. In
Y however every vertex has three neighbours, i.e., Y is a three regular tree.

We will now consider the algebra C �.Y /. Again the algebra is generated by two
elements a and b, with a�a D b�b D 1. Let A denote the set of words ending with
either a or a�1, along with the identity e. (Note that the only words ending with a�1

are words of the form a�n.) Let B denote the set of words ending with b. Note that
B is the complement of A in Y . The partial translation a gives a bijection from Y to
A while, b gives a bijection from Y to B . The partial translations a� and b� are left
inverses to a and b, hence, as an operator, aa� is the identity on A and vanishes on
B , i.e., it is the projection of `2.Y / onto `2.A/. Conversely bb� is the projection of
`2.Y / onto `2.B/.

Thus we conclude that C �.Y / is a subalgebra of B.l2.Y // generated by two
isometries a and b, with the property that

aa� C bb� D 1:

This is the defining property of the Cuntz algebra O2, thus we have C �.Y / Š O2.1

We will now relate C �.Y / to C �.X/. It will be important to remember at each
stage whether a word in a, b, a�, b� is to be considered as an operator on `2.X/ or on
`2.Y /. Let x D xkxk�1 : : : x1 be a word in a, b, a�, b�, considered as an operator
on `2.X/, and let y D ykyk�1 : : : y1 denote the corresponding operator on `2.Y /.
We claim that this gives a well-defined map from C �.X/ to C �.Y /.

1Recall that the Cuntz algebra is constructed concretely as the algebra generated by two such isometries.
Cuntz showed that this is the unique algebra with these properties.
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We will say that a word is quasi-reduced if it does not contain a�a or b�b (since
these will act as the identity), and does not contain a�b or b�a (since these will act
as zero). The quasi-reduced words (as operators on `2.X/) span a dense subalgebra
of C �.X/.

We claim that the quasi-reduced words are linearly independent. Note that a
quasi-reduced word is necessarily of the form w.a; b/w0.a�; b�/, where w.a; b/

(resp. w0.a�; b�/ denotes a positive word in a; b (resp. a�; b�). Say that a word
is of type l if w0 is a word of length l . Note that a quasi-reduced word of type l acts
as the zero operator on words in X of length 0; 1; : : : ; l � 1. Thus for a linear combi-
nation of quasi-reduced words, the part of type 0 determines the action on e. Having
removed the type 0 part, the words of type 1 then determine the action on words
in X of length 1, etc. Hence considering the action on words of length 0; 1; 2; : : :

we deduce that a linear combination which acts as zero must be zero; that is, the
quasi-reduced words are linearly independent.

Now we return to the above map

x D xkxk�1 : : : x1 2 B.`2.X// 7! y D ykyk�1 : : : y1 2 B.`2.Y //:

Since the quasi-reduced words are linearly independent, this gives a well-defined
map from their linear span to C �.Y /. This is a *-algebra homomorphism, and hence
contractive, so it extends to a well-defined *-homomorphism from C �.X/ to C �.Y /.
Since a; b generate C �.Y /, this homomorphism is surjective.

Clearly the kernel includes pe since aa� C bb� 7! 1. Hence in fact the kernel
includes K.`2.X//, since one can easily construct all matrix elements by pre- and
post-composing pe with translations.

Lemma 2. Let x D xkxk�1 : : : x1 be a word in a, b, a�, b�, considered as an operator
on `2.X/. Consider the corresponding operator y D ykyk�1 : : : y1 on `2.Y /, and
let x0 be the truncation PyP where P is the projection of `2.Y / onto `2.X/. Then
x0 is a compact perturbation of x.

Proof. Note that as operators on `2.Y /, Pyi and yiP differ only on a single basis
vector. Hence Py �yP is a compact operator. Thus x0 D PyP D Pykyk�1 : : : y1P

is a compact perturbation of .PykP /.Pyk�1P / : : : .Py1P /. It now suffices to note
that PyiP D xi , i.e., for a; b etc. viewed as translations of Y , truncating to X gives
the corresponding translation on X .

Since we have a right-inverse, which is also a left-inverse modulo compact oper-
ators, it follows that the kernel is precisely the compact operators. We thus produce
an extension of O2:

0 ! K.`2.X// ! C �.X/ ! C �.Y / Š O2 ! 0:

This is an analogue for the Cuntz algebra of the Toeplitz extension.
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Note that the argument showing that there is a map from C �.X/ to C �.Y / in fact
shows that C �.X/ has a universal property: If A is any C*-algebra generated by two
elements s, t satisfying

s�s D t�t D 1 and s�t D t�s D 0;

then there is a surjection from C �.X/ to A taking a to s and b to t . These relations
suffice to show that there is a homomorphism from the algebra spanned by the quasi-
reduced words to A, and this extends by continuity to a surjective *-homomorphism.

Another example of an algebra satisfying these relations is the algebra E2 of Cuntz,
[4]. By definition this is the subalgebra of O3 generated by the first two isometries
V1, V2, and since V1V �

1 C V2V �
2 C V3V �

3 D 1, it follows that V �
1 V2 D V �

2 V1 D 0.
Thus there is a surjection from C �.X/ to E2. In [4], Cuntz showed that there is an
extension

0 ! J2 ! E2 ! O2 ! 0

where J2 is an ideal in E2 isomorphic to the algebra of compact operators. Here the
quotient map takes the generators of E2 to the generators of O2. Thus the quotient
map C �.X/ ! C �.Y / Š O2 factors through the map C �.X/ ! E2. The kernel of
the latter is thus an ideal in the kernel of the former, which is K.`2.X//. Since this
is simple, and the kernel is not the whole of K.`2.X//, we deduce that the surjection
from C �.X/ to E2 is in fact an isomorphism. Thus we have proved the following
theorem.

Theorem 4. There is a canonical isomorphism between the Cuntz extension

0 ! J2 ! E2 ! O2 ! 0

and the extension

0 ! K.`2.X// ! C �.X/ ! C �.Y / ! 0

where X and Y are subsets of F2 as above.

4.2. The algebras On. Following the construction in the previous section we replace
the free group F2 with Fn. Again we define the subtree X to be spanned by all positive
words, and choosing a generator we extend this to a regular n C 1-valent tree which
we call Y . The inclusions of X and Y into the Cayley graph endow them with
partial translation algebras C �.X/, C �.Y / respectively and we obtain isomorphisms
C �.X/ Š En and C �.Y / Š On, with the algebras defined by Cuntz in [4]. By
the same argument as above the inclusion of X into Y can be shown to induce the
extension

0 ! Jn ! En ! On ! 0:
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4.3. Embedding C �
� F2 in O2. In [2] it was shown that there is an injection of the

reduced C*-algebra C �
� F2 into O2. We conclude by constructing such an inclusion

explicitly using our identification of O2 with C �.Y /. To do so we will construct
explicit injective quasi-isometries from F2 into Y . It is well known that for any
n; m > 2 the n-regular tree is quasi-isometric to the m-regular tree, and such quasi-
isometries are easy to construct. The purpose of the construction given here is that
these quasi-isometries are defined in such a way that they behave well with respect to
the natural partial translations on F2 and on Y .

An element g 2 F2 is uniquely determined by a geodesic segment emanating from
the identity element, and this is encoded by a sequence of turns in the Cayley graph
of F2. To formalise what we mean by a turn we consider the extension of F2 by the
cyclic group of order 4 generated by a rotation of the Cayley graph around the base
point as follows.

Let ˛ be the automorphism of F2 taking a to b and b to a�1. We will use the
notation x˛ for the image of x under ˛. Let H be the group of automorphisms of F2

generated by ˛, and let G be the semi-direct product H ËF2. This group is generated
by a, b, ˛ with the relations ˛4 D 1, ˛a˛�1 D b and ˛b˛�1 D a�1. In general we
have ˛x˛�1 D x˛ , for x a word in F2.

An element of F2, viewed as a subgroup of G, can be written uniquely in the
form a�n˛i0a˛i1a : : : ˛id�1a˛id , where n; d � 0, ij 2 f�1; 0; 1g for j < d ,
i0 C � � � C id D 0 mod 4, and if n > 0 then i0 ¤ 0. A reduced word in F2 can
be directly transcribed in this form, and we note that the condition that the word is
reduced translates directly into the restrictions that i0 ¤ 0 if n > 0, and that there are
no factors of ˛2, except possibly for the final term ˛id .

We will now consider a couple of examples. The word aba is equal to the normal
form word a0˛0a˛1a˛�1a˛0. Geometrically we can interpret this as saying that
starting from an initial heading of East (the a direction) we go forwards (˛0) then turn
left and move forward one unit (˛1) then turn right and move forward one unit (˛�1).
Our final heading is East and this may be read from the terminal ˛0. The word a�1b2

is equal to a�1˛1a˛0a˛�1, which geometrically we interpret as moving backwards
by 1 while facing East, turning left and moving one unit (˛1) then continuing forwards
for one unit (˛0). Note that at the end we are facing North, which may also be read
from the terminal ˛�1. Backwards moves are special in the following sense: they
can only occur as initial moves, and they do not change the direction in which we are
facing. We will call the direction in which we are facing at any stage the heading.

We define a heading function h W F2 ! Z=4Z by h.a�n˛i0a : : : a˛id / D �id .
As i0 C � � � C id D 0 mod 4, we have h.x/ D i0 C � � � C id�1. This justifies the
observation above that our final heading can be read from the terminal exponent of ˛.
Indeed we note that for a word x in F2, if x D a�n for n � 0 then h.x/ D 0, otherwise
h.x/ determines the final term in the word: if x D x1 : : : xk then xk D ˛h.x/a˛�h.x/.

To embed F2 into Y , we will need to encode the turns ˛ij and the headings h.x/
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as words in a, b. Define u0 D a, u1 D b2, u�1 D ab, and define v0 D a2, v1 D b2,
v2 D ab and v3 D ba (the index is interpreted modulo 4). We can now define an
embedding of F2 into Y

�0 W F2 ! Y; �0 W x D a�n˛i0a˛i1a : : : ˛id 7! a�nui0ui1 : : : uid�1
vh.x/:

This expression for �0.x/ is not necessarily a reduced word, however at most there
is cancellation of one factor of a from ui0 with one factor of a�1. One can read off
id ; id�1; : : : ; i0 from the right of the word, hence one can recover the original word
x. Thus �0 is injective.

We can extend �0 to a map from G to Y in the following simple way. A general
element of G is of the form a�n˛i0a˛i1a : : : ˛id , where n; d � 0, ij 2 f�1; 0; 1g
for j < d , and if n > 0 then i0 ¤ 0. Note that we now drop the requirement that
i0 C � � � C id D 0 mod 4. We will call this the normal form for an element of G. We
define

ˆ W x D a�n˛i0a˛i1a : : : ˛id 7! a�nui0ui1 : : : uid�1
vh.x/

where as before h.x/ D �id . Again we can recover the word x from its image, thus
ˆ is injective. Moreover it is a bijection: for any element y of Y we can read off a
corresponding word x such that ˆ.x/ D y.

The restriction of ˆ to F2 in G is �0. Moreover G decomposes as four left cosets
of F2, and these are preserved by the right action of F2 on G. Using the bijection
ˆ we can define a corresponding action of F2 on Y . This action is free and has four
orbits which are identified with the cosets by ˆ. Given the set of orbit representatives
I D fv0; v1; v2; v3g the space l2.Y / is thus identified as l2.F2/ ˝ l2.I /, and the
action of F2 on the right gives rise to the representation � ˝ 1 where � is the right
regular representation of l2.F2/. This the natural embedding of C �

� .F2/ into C �
� .G/.

Furthermore the bijection ˆ induces an isomorphism ˆ� between the bounded linear
operators on `2.G/ and those on `2.Y /.

Theorem 5. The image of C �
� .F2/˝1 under the map ˆ� is contained in C �.Y / Š O2.

Proof. Note that C �
� .F2/˝1 is generated by the elements �.a/˝1, �.b/˝1. We will

construct two elements ta; tb 2 C �.Y / and show that these are the images under ˆ�
of �.a/ ˝ 1, �.b/ ˝ 1 respectively. It will thus follow that the image of C �

� .F2/ ˝ 1

is contained in C �.Y /.
Recall that right multiplication by a; b; a�1; b�1 in F2 induce partial isometries

a; b; a�; b� on `2.Y /. Let ta; tb be the partial isometries defined as follows:

ta D a3.a�/2C ba.a�/2b�C aba�b�a�b�C b2.b�/2a�b�C a2ba.b�/2C a2b2b�a�;
tb D b2a.b�/2C aba�b�a�C a2a�.b�/2a�C ba.b�/3a�C b3aa�b�C b4.a�/2:

Viewed as partial translations our operators are chosen so that for any element
y 2 Y � F2, there is a unique term in ta which is defined at y, and likewise for tb .
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Moreover we will see that ta and tb are bijections from Y to itself. In terms of the
algebra C �.Y / this means that ta and tb are unitaries.

The following tables show which term in ta; tb acts on any given word in y, and
how the word is changed.

Word ends in Applicable term for ta Ending replaced by

a2 D v0 a3.a�/2 a3 D u0v0

a2b D u0v2 ba.a�/2b� ab D v2

abab D u�1v2 aba�b�a�b� ba D v3

b2ab D u1v2 b2.b�/2a�b� b2 D v1

b2 D v1 a2ba.b�/2 aba2 D u�1v0

ba D v3 a2b2b�a� b2a2 D u1v0

Word ends in Applicable term for tb Ending replaced by

b2 D v1 b2a.b�/2 ab2 D u0v1

aba D u0v3 aba�b�a� ba D v3

ab2a D u�1v3 a2a�.b�/2a� a2 D v0

b3a D u1v3 ba.b�/3a� ab D v2

ab D v2 b3aa�b� ab3 D u�1v1

a2 D v0 b4.a�/2 b4 D u1v1

For the benefit of the reader we consider the following example. Let y D
ˆ.˛0a˛1/ D u0v3. Then tay D u0u1v0 D ˆ.˛0a˛1a˛0/. Thus the action of
ta on y, is the same as the right action of a on y, via the identification ˆ of Y with G.
Similarly tby D v3 D ˆ.˛/, and we note that the right action of b on a˛ produces
a˛2a˛�1 D ˛2a�1a˛�1 D ˛. Thus the action of tb on y agrees with the right action
of b on y.

We now consider the general case. Right multiplication by the element a takes a
word of the form a�n˛i0a˛i1a : : : ˛id to a�n˛i0a˛i1a : : : ˛id a˛0. This is in normal
form unless id D 2 in which case we have cancellation as a˛2a D ˛2a�1a D ˛2,
thus

a�n˛i0a˛i1a : : : ˛id�1a˛id a˛0 D a�n˛i0a˛i1a : : : ˛id�1C2:

In terms of the action of F2 on Y we thus find that multiplication by a has the effect of
taking a word of the form yv0 to yu0v0, taking yv1 to yu�1v0, taking yv3 to yu1v0

and taking yuiv2 to yv2�i . Thus the translation ta is precisely the right action of a

on Y .
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Similarly right multiplication by the element b takes a word of the form

a�n˛i0a˛i1a : : : ˛id

to a�n˛i0a˛i1a : : : ˛id C1a˛�1. This is in normal form unless id C 1 D 2 in which
case we have the cancellation

a�n˛i0a˛i1a : : : ˛id�1a˛id C1a˛�1 D a�n˛i0a˛i1a : : : ˛id�1C1:

Hence in terms of the action of F2 on Y we find that multiplication by b has the
effect of taking a word of the form yv0 to yu1v1, taking yv1 to yu0v1, taking yv2

to yu�1v1 and taking yuiv3 to yv3�i . Again one can check that this is precisely the
effect of tb . Thus the translation tb is the right action of b on Y .

We conclude that the subalgebra C �.ta; tb/ of C �.Y / is generated by two unitaries
which act on l2.Y / Š l2.F2/ ˝ l2.I / as �.a/ ˝ 1, �.b/ ˝ 1, where � is the right
regular representation of F2 on l2.F2/. This completes the proof.

We conclude this section by remarking that the above theorem generalises to show
that C �

�G
.G/ embeds into C �.Y / where �G denotes the right regular representation

of G on l2.G/. Taking ta, tb as in the proof of the theorem, we additionally define

t˛ D ab.a�/2 C a2.b�/2 C b2a�b� C bab�a�:

Then t˛ takes a word of the form yvi to yvi�1. This is precisely the action of ˛ by
right multiplication on Y , hence the subalgebra C �.ta; tb; t˛/ of C �.Y / is canonically
identified as C �

�G
.G/. We thus have an embedding of C �

�G
.G/ into O2 D C �.Y /.
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