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Local analytic classification of q-difference equations
with jqj D 1
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Abstract. In this article, we establish, under convenient diophantine assumptions, a complete
analytic classification of q-difference modules over the field of germs of meromorphic func-
tions at zero, proving some analytic analogs of the results by Soibelman–Vologodsky and by
Baranovsky–Ginzburg.
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Introduction

For an algebraic complex semisimple group G and for a fixed q 2 C� D C n f0g,
jqj ¤ 1, V. Baranovsky and V. Ginzburg prove the following statement:

Theorem 1 ([3], Theorem 1.2). There exists a natural bijection between the isomor-
phism classes of holomorphic principal semistable G-bundles on the elliptic curve
C�=qZ and the integral twisted conjugacy classes of the points of G that are rational
over C..x//.

The twisted conjugation is an action of G.C..x/// on itself defined by

.g.x/; a.x// 7! g.x/a.x/ D g.qx/a.x/g.x/�1:

An equivalence class is call integral when it contains a point of G rational over CŒŒx��.
As the authors point out, this result is better understood in terms of q-difference

equations. If G D Gl� , then the integral twisted conjugacy classes of G.C..x///

correspond exactly to the isomorphism classes of formal regular singular q-difference
systems. In fact, consider a q-difference equation

Y.qx/ D B.x/Y.x/ with B.x/ 2 Gl�.C..x///:

�Work partially supported by ANR, contract ANR-06-JCJC-0028.
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Then this system is regular singular if there exists G.x/ 2 Gl�.C..x/// such that
B 0.x/ D G.qx/B.x/G.x/�1 2 Gl�.CŒŒx��/. In this case if Y.x/ is a solution of
Y.qx/ D B.x/Y.x/ in some q-difference algebra extending C..x//, then W.x/ D
G.x/Y.x/ is solution of the system W.qx/ D B 0.x/W.x/.

Y. Soibelman and V. Vologodsky in [26] use an analogous approach, via q-dif-
ference equations, to understand vector bundles on non-commutative elliptic curves.
Their classification, and hence the classification of analytic q-difference systems, with
jqj D 1, is a step inY. Manin’s Alterstraum [14] for understanding real multiplication
through non-commutative geometry. On the same topic, we point out the work of
Polishchuk and al. (cf. [18], [19], [20]).

In [26], the authors identify the category of coherent modules on the elliptic curve
C�=qZ, for q 2 C� not a root of unity, with the category of O.C�/ Ì qZ-modules
of finite presentation over the ring O.C�/ of holomorphic functions on C� (cf. [26],
§2, §3), both in the classic (i.e., jqj ¤ 1) and in the non-commutative (i.e., jqj D 1)
case. For jqj D 1, they study, under convenient diophantine assumptions, its Picard
group and make a list of simple objects. In the second part of the paper, they focus on
the classification of formal analogous objects defined over C..x//, namely C..x//-
finite vector spaces M equipped with a semilinear invertible operator †q such that
†q.f .x/m/ D f .qx/†q.m/ for any f .x/ 2 C..x// and any m 2 M .

In this paper we establish, under convenient diophantine assumptions, an analytic
classification of q-difference modules over the field C.fxg/ of germs of meromorphic
functions at zero, proving some analytic analogs of the results in [26] and [3].

We fix q 2 C, jqj D 1, not a root of unity. Let Bq (resp. yBq) be the category
of q-difference module over K ´ C.fxg/ (resp. yK ´ C..x//). Let us consider a
q-difference module over K and fix a basis e such that †qe D eB.x/, with B.x/ 2
Gl�.K/. If it is a regular singular, or equivalently if its Newton polygon has only the
zero slope (cf. Section 2.1), then we can choose a basis f of M ˝K C..x// such
that †qf D fB 0 and B 0 is a constant matrix in Gl�.C/. When jqj ¤ 1 we do not
need to extend the scalars to C..x// and we can find such a basis f over K. When
jqj D 1 this is not possible in general because of some small divisors appearing in
the construction of the basis change.

The dichotomy between the “jqj ¤ 1” and the “jqj D 1”case becomes even more
evident when the Newton polygons have more than one slope. In fact, let .M; †q/ be
an object of Bq with a Newton polygon having slopes �1 < � � � < �k such that the
projection of �i 2 Q on the x-axis has length ri 2 Z>0, and let . yM; �†q/ be the formal
object in yBq obtained by scalar extension to yK. If jqj ¤ 1, the analytic isomorphism
classes in Bq corresponding to the formal isomorphism class of . yM; �†q/ in yBq form
a complex affine variety of dimension (cf. [22], [23], [21])X

1�i<j �k

rirj .�j � �i /:
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When jqj D 1 it may happen that the formal and analytic isomorphism classes are
in one-to-one correspondence with each other, or that the situation gets much more
complicated than the one described above for jqj ¤ 1.

The object of this paper is the characterization of the largest full subcategory B iso
q

of Bq such that the extension of scalars “� ˝K C..x//” induces an equivalence of
categories of B iso

q onto its image in yBq (i.e., the formal and analytic isomorphism
classes coincide).

The objects of B iso
q are q-difference modules over K satisfying a diophantine

condition (cf. Sections 2.2 and 3.4 below). They admit a decomposition associated
to their Newton polygon, namely they are direct sum of q-difference modules, whose
Newton polygon has one single slope. The indecomposable objects, i.e., those objects
that cannot be written as direct sum of submodules are obtained by iterated non-trivial
extension of a simple objet by itself. The simple objects are all obtained by scalar
restriction to K from rank 1 q1=n-difference objects over K.t/, x D tn, associated to
equations of the form y.q1=nt / D �

t� y.t/, � 2 C� and � 2 Z, with .�; n/ D 1.

If we call B
iso;f
q the subcategory of B iso

q of the objects whose Newton polygon has
only one slope equal to zero,1 then we have:

Theorem 2. The category B iso
q is equivalent to the category of Q-graded objects of

B
iso;f
q , i.e., each object of B iso

q is a direct sum indexed on Q of objects of B
iso;f
q and

the morphisms of q-difference modules respect the grading.

Notice that Soibelman and Vologodsky in [26] prove exactly the same statement
for the category of formal q-difference module yBq . Moreover we have:

Theorem 3. The category B
iso;f
q is equivalent to the category of finite dimensional

C�=qZ-graded complex vector spaces V , endowed with nilpotent operators which
preserve the grading, with the following property:

Let �1; : : : ; �n 2 C� be a set of representatives of the classes of C�=qZ corre-
sponding to non-zero homogeneous components of V . The series ˆ.qIƒ/.x/ (specified
in Definition 2.5) is convergent.

Combined with the result proved in [26] that the objects of yBq of slope zero form
a category which is equivalent to the category of C=qZ-graded complex vector spaces
equipped with a nilpotent operator respecting the grading, this gives a characterization
of the image of B

iso;f
q in yBq via the scalar extension.

To prove the classification described above, one only needs to study the small
divisor problem (cf. Section 1). Once this is done, the techniques used are similar
to the techniques employed in q-difference equations theory for jqj ¤ 1 (cf. the

1The notation yB iso;f
q reminds that this is a category of fuchsian q-difference modules.
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papers of F. Marotte and Ch. Zhang [17], J. Sauloy [25], M. van der Put and M. Re-
versat [21], which have their roots in the work of G. D. Birkhoff and P. E. Guether
[6], and C. R. Adams [1]). The statements we have cited in this introduction are
actually consequences of analytic factorization properties of q-difference linear op-
erators (cf. Section 2 below). Finally, we point out a work in progress by C. De
Concini, D. Hernandez, and N. Reshetikhin applying the analytic classification of
q-difference modules with jqj ¤ 1 to the study of quantum affine algebras. The study
of q-difference equations with jqj D 1 should help to complete the theory.

A last remark: the greatest part of the statements proved in this article remain
valid also in the ultrametric case, therefore we will mainly work over an algebraically
closed normed field C; j j.
Acknowledgement. I would like to thank the Centre de Recerca Matemàtica of
the Universitat Autonòma de Barcelona for hospitality, D. Sauzin and J.-P. Marco for
answering to all my questions on the small divisor problem, and D. Bertrand,Y. Manin
and M. Marcolli for their interest in this work. Finally, my thanks go to D. Hernandez:
it is mainly because of his questions that I started working on the present article.

1. A small divisor problem

Let

q D exp.2i�!/ with ! 2 .0; 1/ n Q;

� D exp.2i�˛/ with ˛ 2 .0; 1� and � 62 qZ�0 :

We want to study the convergence of the q-hypergeometric series

�.qI�/.x/ D
X
n�0

xn

.�I q/n

2 CŒŒx��;

where the q-Pochhammer symbols appearing in the denominator of the coefficients
of �.qI�/.x/ are defined by(

.�I q/0 D 1;

.�I q/n D .1 � �/.1 � q�/ : : : .1 � qn�1�/ for n � 1:

This is a well-known problem in complex dynamics. Nevertheless we give here some
proofs that already contain the problems and the ideas used in the sequel.

Proposition 1.1. Suppose that � 62 qZ. The series �.qI�/.x/ converges if and only
if both the series

P
n�0

xn

.qIq/n
and the series

P
n�0

xn

1�qn�
converge. Under these

assumptions the radius of convergence of �.qI�/.x/ is at least

R.!/ inf.1; r.˛//;
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where R.!/ and r.˛/ are the radii of convergence of
P

n�0
xn

.qIq/n
and

P
n�0

xn

1�qn�
,

respectively.

Remark 1.2. If � 2 qZ>0 , the series �.qI�/.x/ is defined and its radius of convergence
is equal to R.!/. Estimates and lower bounds for R.!/ and r.˛/ are discussed in the
following subsection.

The proof of the Proposition 1.1 obviously follows from the lemma below, which
is a q-analogue of a special case of the Kummer transformation formulaX

n�0

xs

.1 � ˛/.2 � ˛/ : : : .n � ˛/
D ˛ exp.x/

X
n�0

.�x/n

nŠ

1

˛ � n
;

used in some estimates for p-adic Liouville numbers [11], Chapter VI, Lemma 1.1.

Lemma 1.3 ([9], Lemma 20.1). We have the following formal identity:

�.qIq�/.x/ D
X
n�0

xn

.1 � q�/ : : : .1 � qn�/

D .1 � �/
� X

n�0

xn

.qI q/n

�� X
n�0

q
n.nC1/

2
.�x/n

.qI q/n

1

1 � qn�

�
:

Proof. We set x D .1 � q/t , Œn�q D 1 C q C � � � C qn�1 and Œ0�q D 1, Œn�Šq D
Œn�qŒn � 1�Šq . Then we have to show the identity

�.qIq�/..1 � q/t/ D .1 � �/
� X

n�0

tn

Œn�Šq

�� X
n�0

q
n.nC1/

2
.�t /n

Œn�Šq

1

1 � qn�

�
:

Consider the q-difference operator �q W t 7! qt . One verifies directly that the series
ˆ.t/ ´ �.qIq�/..1 � q/t/ is a solution of the q-difference operator

L D Œ�q �1
�B Œ��q �..q �1/t C1/� D ��2

q �..q �1/qt C1C�/�q C.q �1/qt C1:

In fact, we have

Lˆ.t/ D Œ�q � 1� B Œ��q � ..q � 1/t C 1/�ˆ.t/ D Œ�q � 1�.� � 1/ D 0:

Since the roots of the characteristic equation2 �T 2�.�C1/T C1 D 0 of L are exactly
��1 62 qZ and 1, any solution of Ly.t/ D 0 of the form 1 C P

n�1 antn 2 C ŒŒt ��

2The characteristic equation is the one whose coefficients are the constant terms of the coefficients of
the q-difference operator. For a complete description of its construction and properties see Section 2.
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must coincide with ˆ.t/. Therefore, to finish the proof of the lemma, it is enough to
verify that

‰.t/ D .1 � �/
� X

n�0

tn

Œn�Šq

�� X
n�0

q
n.nC1/

2
.�t /n

Œn�Šq

1

1 � qn�

�
is a solution of Ly.t/ D 0 and ‰.0/ D 1.

Let eq.t/ D P
n�0

tn

Œn�Šq
. Then eq.t/ satisfies the q-difference equation

eq.qt/ D ..q � 1/t C 1/eq.t/;

hence

L B eq.t/ D Œ�q � 1� B eq.qt/ B Œ��q � 1�

D eq.t/..q � 1/t C 1/Œ..q � 1/qt C 1/�q � 1� B Œ��q � 1�

D .�/
�
..q � 1/qt C 1/�q � 1

� B Œ��q � 1�;

where .�/ denotes a coefficient in C.t/ not depending on �q .
Consider the series

Eq.t/ D
X
n�0

q
n.nC1/

2
tn

Œn�Šq
;

which satisfies .1 � .q � 1/t/Eq.qt/ D Eq.t/; and the series

g�.t/ D
X
n�0

q
n.nC1/

2
.�t /n

Œn�Šq

1

1 � qn�
:

Then

L B eq.t/g�.t/ D .�/Œ..q � 1/qt C 1/�q � 1� B Œ��q � 1�g�.t/

D .�/Œ..q � 1/qt C 1/�q � 1�Eq.�qt/

D .�/Œ..q � 1/qt C 1/Eq.�q2t / � Eq.�qt/�

D 0:

It is enough to observe that eq.0/g�.0/ D 1
1��

to conclude that the series ‰.t/ D
.1 � �/eq.t/g�.t/ coincides with ˆ.t/.

Remark 1.4. Let .C; j j/ be a field equipped with an ultrametric norm and let q 2 C ,
with jqj D 1 and q not a root of unity. Then the formal equivalence in Lemma 1.7
is still true. The series

P
n�0

xn

.qIq/n
is convergent for any q 2 C such that jqj D 1

(cf. [2], §2). However the series
P

n�0
xn

qn��
is not always convergent. If

ˇ̌
��1
q�1

ˇ̌
< 1

then its radius of convergence coincides with the radius of convergence of the seriesP
n�0

xn

n�˛
, where ˛ D log �

log q
(cf. [9], §19, [11], Ch. VI); otherwise it converges for

jxj < 1.
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1.1. Some remarks on Proposition 1.1. Let us make some comments on the con-
vergence of the series

P
n�0

xn

.qIq/n
and

P
n�0

xn

1�qn�
. A first contribution to the study

of convergence of the series
P

n�0
xn

.qIq/n
can be found in [12]. The subject has been

considered in detail in [13].

Definition 1.5 (cf. for instance [16], §4.4). Let
˚

pn

qn

�
n�0

be the convergents of !

occurring in its continued fraction expansion. Then the Brjuno function B of ! is
defined by

B.!/ D
X
n�0

log qnC1

qn

;

and ! is a Brjuno number if B.!/ < 1.

Now we are ready to recall the well-known results by [27], [7], Theorem 2.1, [16],
Theorem 5.1.

Theorem 1.6 (Yoccoz’s lower bound). If ! is a Brjuno number then the seriesP
n�0

xn

.qIq/n
converges.

Moreover its radius of convergence is bounded from below by e�B.!/�C0 , where
C0 > 0 is an universal constant (i.e., independent of !).

Sketch of the proof. Suppose that ! is a Brjuno number. Then our statement is much
easier than the results mentioned above, and it is actually an immediate consequence
of Davie’s lemma (cf. [16], Lemma 5.6 (c), or [7], Lemma B.4, 3)).

We set kxkZ D infk2Z jx C kj. Then, as far as the series
P

n�0
xn

1�qn�
is con-

cerned, we have:

Lemma 1.7. The following assertions are equivalent:

(1) The series
P

n�0
xn

1�qn�
is convergent.

(2) lim supn!1
log j1��qnj�1

n
< C1.

(3) lim infn!1 kn! C ˛k1=n
Z > 0.

Proof. The equivalence between (1) and (2) is straightforward. Let us prove the
equivalence “.1/ () .3/” (using a really classical argument).

Notice that for any x 2 Œ0; 1=4� we have f .x/ ´ sin.�x/ � x � 0, in fact
f .0/ D 0 and f 0.x/ D � cos.�x/�1 � 0. Therefore we conclude that the following
inequality holds for any x 2 Œ0; 1=2�:

sin.�x/ > min.x; 1=4/:
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This implies that

jqn� � 1j D jexp.2i�.n! C ˛// � 1j
D 2 sin.�kn! C ˛kZ/ 2 Œmin.2kn! C ˛kZ; 1=2/; 2�kn! C ˛kZŒ

and ends the proof.

Remark 1.8. A basic notion in complex dynamics is that a number ˛ is diophantine
with respect to another number, say !. If ˛ is diophantine with respect to !, then
˛ and ! have the properties of the previous lemma. It is known that for a given
! 2 Œ0; 1� n Q, the complex numbers exp.2i�˛/ such that ˛ is diophantine with
respect to ! form a subset of the unit circle of full Lebesgue measure; cf. [4], §1.3.

1.2. A corollary. Let

q D exp.2i�!/ with ! 2 .0; 1/ n Q;

m 2 Z>0 and �i D exp.2i�˛i / for i D 1; : : : ; m with ˛i 2 .0; 1� and �i 62 qZ:

For further reference we state the corollary below, which is an immediate consequence
of Proposition 1.1:

Corollary 1.9. Let ƒ D .�1; : : : ; �m/. The series

�.qIƒ/.x/ D
X
n�0

xn

.�1I q/n : : : .�mI q/n

2 CŒŒx�� (1)

converges if and only if both the series
P

n�0
xn

.qIq/n
and the series

P
n�0

xn

1�qn�i

converge for i D 1; : : : ; m. Under these assumptions the radius of convergence of
�.qIƒ/.x/ is at least

R.!/m �
mY

iD1

inf.1; r.˛i //:

2. Analytic factorization of q-difference operators

Notation 2.1. Let .C; j j/ be either the field of complex numbers with the usual norm
or an algebraically closed field with an ultrametric norm. We fix q 2 C such that
jqj D 1 and q is not a root of unity, and a set of elements q1=n 2 C such that
.q1=n/n D q. If C D C then let ! 2 .0; 1� n Q be such that q D exp.2i�!/.

We suppose that the series
P

n�0
xn

.qIq/n
is convergent, which happens for instance

if ! is a Brjuno number.
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The contents of this section is largely inspired by [25], where the author proves
an analytic classification result for q-difference equations with jqj ¤ 1: the major
difference is the small divisor problem that the assumption jqj D 1 introduces. Of
course, once the small divisor problem is solved, the techniques are the same. For
this reason some proofs will be only sketched.

2.1. The Newton polygon. We consider a q-difference operator

L D
�X

iD0

ai .x/� i
q 2 CfxgŒ�q�;

i.e., an element of the skew ring CfxgŒ�q�, where Cfxg is the C-algebra of germs
of analytic functions at zero and �qf .x/ D f .qx/�q . The associated q-difference
equations is

Ly.x/ D a�.x/y.q�x/ C a��1.x/y.q��1x/ C � � � C a0.x/y.x/ D 0 :

We suppose that ˛�.x/ ¤ 0 and call � the order of L (or of Ly D 0).

Definition 2.2. The Newton polygon NP.L/ of the equation Ly D 0 (or of the
operator L) is the convex envelop in R2 of the set

f.i; k/ 2 Z � R j i D 0; : : : ; �I ai .x/ ¤ 0; k � ordx ai .x/g;
where ordx ai .x/ � 0 denotes the order of zero of ai .x/ at x D 0.

Notice that the polygon NP.L/ has a finite number of finite slopes, which are
all rational and possibly negative, and two infinite vertical sides. We will denote by
�1; : : : ; �k the finite slopes of NP.L/ (or, briefly of L), ordered so that �1 < �2 <

� � � < �k (i.e., from left to right), and by r1; : : : ; rk the length of their respective
projections on the x-axis. Notice that �iri 2 Z for any i D 1; : : : ; k.

We can always – and actually will – assume that the boundary of the Newton
polygon of L and the x-axis intersect only in one point or in a segment by clearing
some common powers of x in the coefficients of L. With this convention, the Newton
polygon is completely determined by the set f.�1; r1/; : : : ; .�k; rk/g 2 Q � Z>0,
therefore we will identify the two data.

Definition 2.3. A q-difference operator whose Newton polygon has only one slope
(equal to �) is called pure (of slope �).3

3Some authors call pure the objects that are the direct sum of objects having only one slope. The objects
that we call pure are then called isoclinic.
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Remark 2.4. All the properties of Newton polygons of q-difference equations listed
in [25], §1.1, are formal and therefore independent of the field C and of the norm of q:
they can be rewritten, with exactly the same proof, in our case. We recall, in particular,
two properties of the Newton polygon that we will use in the sequel (cf. [25], §1.1.5):

� Let 	 be a solution in some formal extension of C.fxg/ D Frac.Cfxg/ of
the q-difference equation y.qx/ D xy.x/. The twisted conjugate operator
xC 	�L	�� 2 CfxgŒ�q�, where C is a convenient non-negative integer, is as-
sociated to the q-difference equation4

a�.x/q�� �.�C1/
2 xC ���y.q�x/

C a��1.x/q�� �.��1/
2 xC ��.��1/y.q��1x/ C � � � C xC a0.x/y.x/ D 0;

(2)

and has Newton polygon f.�1 � �; r1/; : : : ; .�k � �; rk/g.

� If eq;c.x/ is a solution of y.qx/ D cy.x/ with 2 C�, then the twisted operator
eq;c.x/�1Leq;c.x/ has the same Newton polygon as L, while all the zeros of
the polynomial

P�
iD0 ai .0/T i are multiplied by c.

2.2. Admissible q-difference operators. Suppose that 0 is a slope of NP.L/. We
call the polynomial

a�.0/T � C a��1.0/T ��1 C � � � C a0.0/ D 0

characteristic polynomial of the zero slope. The characteristic polynomial of a slope
� 2 Z is the characteristic polynomial of the zero slope of the q-difference operator
xC 	�L	�� (cf. equation (2)). In the general case, when � 2 QnZ, we reduce to the
previous assumption by performing a ramification. Namely, for a convenient n 2 Z>0

we set t D x1=n. With this variable change, the operator L becomes
P

ai .t
n/� i

q1=n .
Notice that the characteristic polynomial does not depend on the choice of n.

Finally, we call the non-zero roots of the characteristic polynomial of the slope �

the exponents of the slope �. The cardinality of the set Exp.L; �/ of the exponents
of the slope �, counted with multiplicities, is equal to the length of the projection of
� on the x-axis.

Definition 2.5. Let .�1; : : : ; �r/ be the exponents of the slope � of L and let

ƒ D f�i�
�1
j j i; j D 1; : : : ; r I �i�

�1
j 62 qZ�0g:

We say that a slope � 2 Z of L is admissible if the series �.qIƒ/.x/ (cf. equation (1))
is convergent and that a slope � 2 Q is almost admissible if it becomes admissible
in Cfx1=ngŒ�q1=n � for a convenient n 2 Z>0.

4Notice that there is no need to determine the function � .
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A q-difference operator is said to be admissible (resp. almost admissible) if all its
slopes are admissible (resp. almost admissible).

Remark 2.6. A rank 1 q-difference equation is admissible as long as the seriesP
n�0

xn

.qIq/n
is convergent.

2.3. Analytic factorization of admissible q-difference operators. The main result
of this subsection is the analytic factorization of admissible q-difference operators.
The analogous result in the case jqj ¤ 1 is well known (cf. [17], [25], §1.2, or, for
a more detailed exposition, [24], §1.2). The germs of those works are already in [6],
where the authors establish a canonical form for the solution of analytic q-difference
systems.

Theorem 2.7. Suppose that the q-difference operator L is admissible, with Newton
polygon f.�1; r1/; : : : ; .�k; rk/g. Then for any permutation $ of the set f1; : : : ; kg
there exists a factorization of L,

L D L$;1 B L$;2 B � � � B L$;k;

such that L$;i 2 CfxgŒ�q� is admissible and pure of slope �$.i/ and order r$.i/.

Remark 2.8. Given the permutation $ , the q-difference operator L$;i is uniquely
determined modulo a factor in Cfxg.

Exactly the same statement holds for almost admissible q-difference operators
(cf. Theorem 3.16 below).

Theorem 2.7 follows from the recursive application of the following statement.

Proposition 2.9. Let � 2 Z be an admissible slope of the Newton polygon of L and
let r be the length of its projection on the x-axis. Then the q-difference operator L

admits a factorization L D zL B L� such that

(1) the operator zL is in CfxgŒ�q� and NP. zL/ D NP.L/ n f.�; r/g;

(2) the operator L� has the form

L� D .x��q � �r/hr.x/ B .x��q � �r�1/hr�1.x/ B � � � B .x��q � �1/h1.x/;

where �1; : : : ; �r 2 C are the exponents of the slope �, ordered so that if
�i

�j
2 qZ>0 then i < j , and h1.x/; : : : ; hr.x/ 2 1 C xCfxg.

Moreover, if L is admissible (resp. almost admissible), then the operator zL is also
admissible (resp. almost admissible).

Proposition 2.9 follows from an iterated application of the following lemma:
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Lemma 2.10. Let .�; r/ 2 NP.L/ D f.�1; r1/; : : : ; .�k; rk/g be an integral slope
of L with exponents .�1; : : : ; �r/. Fix an exponent � of � such that

(1) qn� is not an exponent of the same slope for any n > 0;

(2) the series �
.qI. �1

�
;:::; �r

�
//

.x/ is convergent.

Then there exists a unique h.x/ 2 1 C xCfxg such that L D zL B .x��q � �/h.x/

for some zL 2 CfxgŒ�q�. Moreover let 
 D 1; : : : ; k such that �� D �.
If r� D 1, then NP. zL/ D f.�1; r1/; : : : ; .���1; r��1/; .��C1; r�C1/; : : : ; .�k; rk/g.
If r� > 1, then we have NP. zL/ D f.�1; r1/; : : : ; .��; r� � 1/; : : : ; .�k; rk/g and

Exp. zL; ��/ D Exp.L; ��/ n f�g.

Proof. It is enough to prove the lemma for � D 0 and � D 1 (cf. Remark 2.4). Write
y.x/ D P

n�0 ynxn, with y0 D 1, and ai .x/ D P
n�0 ai;nxn. Then we obtain by

direct computation that Ly.x/ D 0 if and only if for any n � 1 we have

F0.qn/yn D �
n�1X
lD0

Fn�l.q
l/yl ;

where Fl.T / D P�
iD0 ai;lT

i . Observe that assumption (1) is equivalent to the
property: F0.qn/ ¤ 0 for any n 2 Z>0.

The convergence of the coefficients ai .x/ of L implies the existence of two con-
stants A; B > 0 such that jFn�l.q

l/j � ABn�l for any n � 0 and any l D 0; : : : ; n�1.
We set

sn D F0.1/F0.q/ : : : F0.qn/yn:

Then

jsnj �
ˇ̌̌ n�1X

lD0

slF0.qlC1/ : : : F0.qn�1/Fn�l.q
l/

ˇ̌̌
� AnBn

n�1X
lD0

jsl j
.AB/l

;

and therefore

jtnj �
n�1X
lD0

jtl j with tl D sl

.AB/l
:

If jtl j < CDl for any l D 0; : : : ; n � 1 with D > 1, then jtnj � C
Pn�1

lD0 Dl �
CDn.D � 1/�1 � CDn. Hence jtnj � CDn for any n � 1 and so jsnj � C.ABD/n.
Hypothesis (2) assures that the series

P
n�1

xn

F0.1/:::F0.qn/
is convergent, which implies

that y.x/ is convergent. We conclude setting h.x/ D y.x/�1.
For the assertion on the Newton polygon see [25].

For further reference we point out that we have actually proved the following two
corollaries:
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Corollary 2.11. Under the hypothesis of Lemma 2.10, suppose that L has a right
factor of the form .�

�
q � �/ B h.x/, with � 2 Q, � 2 C� and h.x/ 2 CŒŒx��. Then

h.x/ is convergent.

Remark 2.12. Corollary 2.11 above generalizes [5], Theorem 6.1, where J.-P. Bézivin
proves that a formal solution of an analytic q-difference operator satisfying some
diophantine assumptions is always convergent.

Corollary 2.13. Any almost admissible q-difference operator L admits an analytic
factorization in Cfx1=ngŒ�q�, with �qx1=n D q1=nx1=n, for a convenient n 2 Z>0.

The irreducible factors of L in Cfx1=ngŒ�q� have the form .x�=n�q � �/h.x1=n/,
with � 2 Z, � 2 C� and h.x1=n/ 2 1 C x1=nCfx1=ng.

The following example shows the importance of considering admissible operators.

Example 2.14. The series ˆ.x/ D ˆ.qIq�/..1 � q/x/ studied in Proposition 1.1 is
solution of the q-difference operator L D .�q � 1/ B Œ��q � ..q � 1/x C 1/�. This
operator is already factored.

Suppose that � 62 qZ<0 . If the series ˆ.x/ is convergent, i.e., if L is admissible,
the operator .�q � 1/ B ˆ.x/�1 is a right factor of L, as we could have deduced from
Lemma 2.10. We conclude that if ˆ.x/ is not convergent, the operator L cannot be
factored “starting with the exponents 1”.

2.4. A digression on formal factorization of q-difference operators. If we drop
the diophantine assumption of admissibility and consider an operator L 2 CŒŒx��Œ�q�,
the notions of Newton polygon and exponent still make sense. The following result
is well known (cf. [26], [25]) and can be proved reasoning as in the previous section.

Theorem 2.15. Suppose that the q-difference operator L 2 CŒŒx��Œ�q� has Newton
polygon f.�1; r1/; : : : ; .�k; rk/g with integral slopes. Then for any permutation $

of the set f1; : : : ; kg there exists a factorization of L,

L D L$;1 B L$;2 B � � � B L$;k;

such that L$;i 2 CŒŒx��Œ�q� is pure of slope �$.i/ and order r$.i/. Any L$;i admits
a factorization of the form

L$;i D .x�$.i/�q � �r$.i/
/hr$.i/

.x/ B .x�$.i/�q � �r�1/hr�1.x/ B � � �
� � � B .x�$.i/�q � �1/h1.x/;

where Exp.L; �$.i// D .�1; : : : ; �r$.i/
/ are the exponents of the slope �$.i/, or-

dered so that if �i

�j
2 qZ>0 then i < j , and h1.x/; : : : ; hr$.i/

.x/ 2 1 C xCŒŒx��.
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3. Analytic classification of q-difference modules

Let K D C.fxg/ be the field of germs of meromorphic function at 0, i.e., the field
of fractions of Cfxg. In the following we will denote by yK D C..x// the field of
Laurent series, and by Kn D K.x1=n/ (resp. yKn D yK.x1=n/) the finite extension of
K (resp. yK) or degree n, with its natural q1=n-difference structure. We remind that we
are assuming throughout the paper that the series

P
n�0

xn

.qIq/n
is convergent.

3.1. Generalities on q-difference modules. We recall some generalities on q-dif-
ference modules (for a more detailed exposition cf. for instance [8], Part I, [25]
or [10]).

Let F be a q-difference field over C, i.e., a field F=C of functions with an action
of �q .

Definition 3.1. A q-difference modules M D .M; †q/ over F (of rank �) is a finite
F -vector space M of dimension � equipped with a �q-linear bijective endomorphism
†q , i.e., a C-linear isomorphism such that †q.f m/ D �q.f /†q.m/, for any f 2 F

and any m 2 M .
A morphism of q-difference modules ' W .M; †M

q / ! .N; †N
q / is a C-linear

morphism M ! N , commuting with respect to the action of †M
q and †N

q , i.e.,
†N

q B ' D ' B †M
q .

If G is a q-difference field extending F (i.e., G=F is a field extension and the
action of �q on G extends the one on F ), the module MG D .M ˝F G; †q ˝ �q/ is
naturally a q-difference module over G.

If Fn, n 2 Z>1, is a q1=n-difference field containing F and such that �q1=n jF D �q

(for instance, think of K and Kn), to any q-difference modules M D .M; †q/ over F

we can associate the q1=n-difference module MFn
D .M ˝F Fn; †q ˝ �q1=n/ over

Fn.
For other algebraic constructions (tensor product, internal Hom, …) we refer to

[8] or [25].

Remark 3.2 (The cyclic vector lemma). The cyclic vector lemma says that a q-
difference module M over F of rank � contains a cyclic element m 2 M , i.e., an
element such that m; †qm; : : : ; †��1

q m is an F -basis of M . This is equivalent to
saying that there exists a q-difference operator L 2 F Œ�q� of order � such that we
have an isomorphism of q-difference modules

M Š F Œ�q; ��1
q �

F Œ�q; ��1
q �L

:

We will call L a q-difference operator associated to M, and M the q-difference
module associated to L.
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Example 3.3 (Rank 1 q-difference modules5). Let � 2 Z, � 2 C� and h.x/ 2 K
(resp. h.x/ 2 yK). Consider the rank 1 q-difference module M�;� D .M�;�; †q/ over
K (resp. yK) associated to the operator .x��q � �/ B h.x/ D h.qx/x��q � h.x/�.
There exists a basis f of M�;� such that †qf D h.x/

h.qx/
�

x� f . If one considers the

basis e D h.x/f , then †qe D �
x� e.

A straightforward calculation shows that M�;� is isomorphic, as a q-difference
module, to M�0;�0 if and only if � D �0 and �

�0 2 qZ. Moreover, we proved in the

previous section that a q-difference operator �q � a.x/ with a.x/ 2 yK can be always
be written in the form �q � �

x�
h.x/

h.qx/
for some h.x/ 2 yK. We also know that if q is

such that
P

n�0
xn

.qIq/n
converges and if a.x/ 2 K, then h.x/ is a convergent series.

The remark and the example above, together with the results of the previous
section, imply that we can attach to a q-difference modules a Newton polygon by
choosing a cyclic vector, and that the Newton polygon of a q-difference modules is
well defined (cf. [25]). Moreover the classes modulo qZ of the exponents of each
slope are independent of the choice of the cyclic vector (cf. [26], Theorems 3.12
and 3.14, and [25]). Both the Newton polygon and the classes modulo qZ of the
exponents are an invariant of the formal isomorphism class.

3.2. Main result. Let us call Bq (resp. OBq) the category of q-difference module
over K (resp. yK). We will use the adjective analytic (resp. formal) to refer to objects,
morphisms, isomorphism classes, etc. of Bq (resp. OBq).

We are concerned with the problem of finding the largest full subcategory B iso
q of

Bq defined by the following property:
An object M of Bq belongs to B iso

q if any object N in Bq such that NyK is isomor-

phic to MyK in yBq is already isomorphic to M in Bq .
This means that restriction of the functor

� ˝K yK W Bq ! yBq; M 7! MyK;

to B iso
q is an equivalence of category between B iso

q and its image. We will come back

in Section 4 to the characterization of B iso
q ˝K yK inside yBq . A counterexample of

the fact that the functor � ˝K yK is not an equivalence of categories in general is
considered in Section 3.3.

The category B iso
q is related to the notion of admissibility introduced in the previous

section.

5For more details on the rank 1 case see [26], Proposition 3.6, where the Picard group of q-difference
modules over O.C�/ satisfying a convenient diophantine assumption is studied.
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Definition 3.4. We say that a q-difference module M over K is admissible (resp.
almost admissible; resp. pure (of slope �)) if there exists an operator L 2 CfxgŒ�q�

such that M Š KŒ�q�=.L/ and that L is admissible (resp. almost admissible; resp.
pure (of slope �)).

Remark 3.5. The considerations in the previous section imply that the notion of
(almost) admissible q-difference module is well defined and invariant up to isomor-
phism.

Our main result is:

Theorem 3.6. The category B iso
q is the full subcategory of Bq whose objects are

almost admissible q-difference modules.

We introduce some notation that will be useful in the proof of Theorem 3.6. We will
denote q-Diffa

K (resp. q-Diffaa
K ) the category of admissible (resp. almost admissible)

q-difference modules over K, whose objects are the admissible (resp. almost ad-
missible) q-difference modules over K and whose morphisms are the morphisms of
q-difference modules over K.

Remark 3.7. We know that Bq and yBq are abelian categories. Therefore, kernel and
cokernel of morphisms in q-Diffa

K (resp. q-Diffaa
K ) are q-difference modules over K.

To prove that they are objects of q-Diffa
K (resp. q-Diffaa

K ) we have only to point out
that the operator associated to a sub-q-difference module (resp. a quotient module) is
a right (resp. left) factor of a convenient operator associated to the module itself. In
fact the slopes and the classes modulo qZ of the exponents associated to each slope
are invariants of q-difference modules.

The proof of Theorem 3.6 consists in proving that B iso
q D q-Diffaa

K , which requires
the following steps: first we will make a list of simple and indecomposable objects
of q-Diffaa

K ; then we prove a structure theorem for almost admissible q-difference
modules. We deduce that the formal isomorphism class of an object of Bq correspond
to more than one analytic isomorphism class if and only if the slopes of the Newton
polygon are not admissible, which means that B iso

q and q-Diffaa
K coincide.

3.3. A crucial example. Consider the q-difference operator (cf. Example 2.14)

L D .�q � 1/ B Œ��q � ..q � 1/x C 1/�

and its associated q-difference module M D .M D KŒ�q ;��1
q �

KŒ�q ;��1
q �L

; †q/. If � 2 qZ, the

module is admissible, and we are done. So let us suppose that � 62 qZ.
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In yBq , the q-difference module yM D MyK is isomorphic to the rank 2 module yK2

equipped with the semi-linear operator:

†q W yK2 ! yK2;

�
f1.x/

f2.x/

	
7!

�
1 0

0 ��1

	 �
f1.qx/

f2.qx/

	
:

In fact, L has a right factor ��q � ..q � 1/x C 1/: this corresponds to the existence
of an element f 2 M such that †qf D ��1..q � 1/x C 1/f . Since eq.x/ DP

n�0
.1�q/nxn

.qIq/n
is a solution of the equation y.qx/ D ..q �1/x C1/y.x/, we deduce

that Qf D eq.x/f satisfies †q
Qf D ��1 Qf . On the other hand, we saw that there

always exists ˆ 2 CŒŒx�� such that .�q � 1/ˆ is a right factor of L, which means
that there exists e 2 M such that †qe D ˆ.x/ˆ.qx/�1e and therefore that there is
Qe 2 MyK such that †q Qe D Qe. A priori this last base change is only formal: the series
ˆ converges if and only if the module is admissible; cf. Example 2.14.

The calculations above say more: the formal isomorphism class of M corresponds
to a single analytic isomorphism class if and only if M is admissible, which happens
if and only if the series

P
n�0

xn

.qIq/n
and

P
n�0;qn¤�

xn

qn��
converge.

3.4. Simple and indecomposable objects. In differential and difference equation
theory simple objects are called irreducible. They are those objects M D .M; †q/

over K such that any m 2 M is a cyclic vector: this is equivalent to the property
of not having a proper q-difference sub-module, or to the fact that any q-difference
operator associated to M cannot be factorized in KŒ�q�.

Corollary 3.8. The only irreducible objects in the category q-Diffa
K are the rank 1

modules described in Example 3.3.

Proof. This is a consequence of Proposition 2.9.

Before the irreducible objects of the category q-Diffaa
K are described, we need to

introduce a functor of restriction of scalars going from q-Diffa
Kn

to q-Diffaa
K . In

fact, the set f1; x1=n; : : : ; xn�1=ng is a basis of Kn=K such that �qxi=n D qi=nxi=n.
Therefore Kn can be identified with the admissible q-difference module
M0;1 ˚ M0;q1=n ˚ � � � ˚ M0;qn�1=n (in the notation of Example 3.3).

In the same way, we can associate to any (almost) admissible q1=n-difference
module M of rank � over Kn an almost admissible difference module Resn.M/ of
rank n� over K by restriction of scalars. The functor Resn “stretches” the
Newton polygon horizontally, meaning that if the Newton polygon of M over Kn

is f.�1; r1/; : : : ; .�k; rk/g, then the Newton polygon of Resn.M/ over K is
f.�1=n; nr1/; : : : ; .�k=n; nrk/g.

Example 3.9. Consider, for some � 2 C�, the q1=2-module over K2 associated to
the equation x1=2y.qx/ D �y.x/. This means that we consider a rank 1 module
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K2e over K2 such that †qe D �

x1=2 e. Notice that its Newton polygon over K2 has

only one single slope equal to 1. Since K2e D Ke C Kx1=2e, the module K2e is a
q-difference module of rank 2 over K whose q-difference structure is defined by

†q.e; x1=2e/ D .e; x1=2e/

�
0 q1=2�

�=x 0

	
:

Consider the vector m D e C x1=2e. We have †q.m/ D q1=2�e C �
x

.x1=2e/ and

†2
q.m/ D q1=2�2

qx
e C q1=2�2

x
.x1=2e/. Since m and †q.m/ are linearly independent,

m is a cyclic vector for K2e over K. Moreover, for

P.x/ D ��2.q3=2x � 1/; Q.x/ D �.q � 1/x; R.x/ D �q1=2x.q1=2x � 1/

we have P.x/mCQ.x/†q.m/ D R.x/†2
q.m/. In other words, the Newton polygon

of the rank 2 q-difference module K2e over K has only one slope equal to 1=2.

Let n 2 Z>0, let � be an integer prime to n and M�;�;n be the rank one module over
Kn associated to the equation x�=ny.qx/ D �y.x/. In [26], Lemma 3.9, Soibelman
and Vologodsky show that N�=n;� D Resn.M�;�;n/ is a simple object over O.C�/.
We show that all the simple objects of the category q-Diffaa

K are of this form (for
the case jqj ¤ 1 see [21]). Observe that M�;� D M�;�;1 D N�;� as q-difference
modules over K.

We start by proving a lemma.

Lemma 3.10. Let M be a q-difference module associated to a q-difference operator
L 2 CfxgŒ�q�. Suppose that the operator L has a right factor in Cfx1=ngŒ�q� of
the form .x�=n�q � �/ B h.x1=n/, with n 2 Z>1, � 2 Z, .n; �/ D 1, � 2 C� and
h.x/ 2 Cfx1=ng.

Then M has a submodule isomorphic to N�=n;�.

Proof. Note that any operator L 2 CfxgŒ�q� divisible by .x�=n�q � �/ B h.x1=n/ has
order � n. Let L�=n;� 2 CfxgŒ�q� be a q-difference operator (of order n) associated
to N�=n;�. Since the ring CfxgŒ�q� is euclidean there exist Q; R 2 CfxgŒ�q� such
that

L D Q B L�=n;� C R;

with R D 0 or R of order strictly smaller than n and divisible on the right by
.x�=n�q � �/ B h.x1=n/. Of course, if R ¤ 0 we obtain a contradiction. Therefore
L�=n;� divides L, and the lemma follows.

Remark 3.11. The same statement holds for a formal operator L 2 CŒŒx��Œ�q� having
a formal right factor .x�=n�q � �/ B h.x1=n/ with h.x/ 2 CŒŒx1=n��.
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We have a complete description of the isomorphism classes of almost admissible
irreducible q-difference modules over K:

Proposition 3.12. A system of representatives of the isomorphism classes of the
irreducible objects of q-Diffaa

K (resp. yBq) is given by:
� rank 1 q-difference modules M�;� with � 2 Z and c 2 C�=qZ, i.e., the irre-

ducible objects of q-Diffa
K up to isomorphism (cf. Example 3.3);

� q-difference modules N�=n;� D Resn.M�;�;n/, where n 2 Z>0, � 2 Z,
.n; �/ D 1 and � 2 C�=.q1=n/Z.

Proof. The corollary is well known for yBq . We prove the statement for the category
q-Diffaa

K . Rank 1 irreducible objects of q-Diffaa
K are necessarily admissible, therefore

they are of the form M�;� for some � 2 Z and � 2 C�=qZ. Consider an irreducible
object M in q-Diffaa

K of higher rank. Because of the previous lemma and Corollary 2.13
it must contain an object of the form N�;�;n for convenient �, �, n. The irreducibility
implies that M Š N�;�;n.

Remark 3.13. Consider the rank 1 modules N�;�;n and Nr�;�;rn over Kn and Krn,
respectively, for some �; r; n 2 Z, r > 1, n > 0, .�; n/ D 1 and � 2 C�. Then
Resn.N�;�;n/ is a rank n q-difference module over K, while Resrn.Nr�;�;rn/ has
rank rn, although N�;�;n and Nr�;�;rn are associated to the same rank 1 operator.

Writing explicitly the basis of Krn over Kn and K, it follows that Resrn.Nr�;�;rn/

is a direct sum of r copies of Resn.N�;�;n/.

3.5. Structure theorem for almost admissible q-difference modules. Now we are
ready to state a structure theorem for almost admissible q-difference modules.

Theorem 3.14. Suppose that the q-difference module M D .M; †q/ over K is almost
admissible, with Newton polygon f.�1; r1/; : : : ; .�k; rk/g. Then

M D M1 ˚ M2 ˚ � � � ˚ Mk;

where the q-difference modules Mi D .Mi ; †q jMi
/ are defined over K, and are

almost admissible and pure of slope �i and rank ri .
Each Mi is a direct sum of almost admissible indecomposable q-difference mod-

ules, i.e., an iterated non-trivial extension of a simple almost admissible q-difference
module by itself.

Remark 3.15. More precisely, consider the rank � unipotent q-difference module
U� D .U� ; †q/ defined by the property of having a basis e such that the action of †q

on e is described by a matrix composed by a single Jordan block with eigenvalue 1.
Then the indecomposable modules N in the previous theorem are isomorphic to
N ˝K U� for some irreducible module N of q-Diffaa

K and some �.
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The theorem above is equivalent to a stronger version of Theorem 2.7 for almost
admissible q-difference operators:

Theorem 3.16. Suppose that the q-difference operator L is almost admissible, with
Newton polygon f.�1; r1/; : : : ; .�k; rk/g. Then for any permutation $ on the set
f1; : : : ; kg there exists a factorization of L,

L D L$;1 B L$;2 B � � � B L$;k;

such that L$;i 2 CfxgŒ�q� is almost admissible and pure of slope �$.i/ and order
r$.i/.

Moreover, for any i D 1; : : : ; k, write �i D di=si with di ; si 2 Z, si > 0 and
.di ; si / D 1. We have

L$;i D L
d$.i/;�

$.i/

l
;s$.i/

B � � � B L
d$.i/;�

$.i/
1

;s$.i/
;

where �
$.i/
1 ; : : : ; �

$.i/

l
are exponents of the slope �$.i/, ordered so that if

�
$.i/
j .�

$.i/
j 0 /�1 2 qZ>0 then j < j 0, and the operator L

d$.i/;�
$.i/

j
;s$.i/

is associ-

ated to the module N
d$.i/;�

$.i/

j
;s$.i/

.

Proof. Suppose that the operator has at least one non-integral slope. A priori the
operators L$;i are defined over Cfx1=ng for some n > 1. But it follows from
Lemma 3.10 that they are the product of operators associated to q-difference modules
defined over K of the form N�;�;n for some �; n 2 Z, n > 0 and � 2 C�.

3.6. Analytic versus formal classification. The formal classification of q-difference
modules with jqj D 1 is studied in [26] by different techniques. It can also be
deduced by the results of the previous section, dropping the diophantine assumptions
and establishing a formal factorization theorem for q-difference operators:

Theorem 3.17. Consider a q-difference module M D .M; †q/ over yK, with Newton
polygon f.�1; r1/; : : : ; .�k; rk/g. Then

M D M1 ˚ M2 ˚ � � � ˚ Mk ;

where the q-difference modules Mi D .Mi ; †q jMi
/ are defined over yK and are pure

of slope �i and rank ri .
Each Mi is a direct sum of almost admissible indecomposable q-difference mod-

ules, i.e., an iterated non-trivial extension of a simple almost admissible q-difference
module by itself.

Remark 3.18. Irreducible objects are q-difference modules over yK obtained by rank
1 modules associated to q-difference equations of the form x�y.qx/ D �y.x/, with
� 2 Q and � 2 C�, by restriction of scalars.
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Hence the first part of Theorem 3.6 can now be proved.

Proposition 3.19. Let M D .M; †M
q / and N D .N; †N

q / be two almost admissible
q-difference modules over K. Then M is isomorphic to N over K if and only if MyK
is isomorphic to NyK over yK.

Proof. It follows from the analytic (resp. formal) factorizations of q-difference mod-
ules over K (resp. yK) that

M Š N () MKn
Š NKn

and MyK Š NyK () MyKn
Š NyKn

for an integer n � 1 such that the slopes of the two modules become integral over
Kn. So we can suppose that the two modules are actually admissible.

If M and N are isomorphic over K, then they are necessarily isomorphic over yK.
On the other hand suppose that MyK Š NyK. Then the claims follow from the fact that
any formal factorization must actually be analytic (cf. Corollary 2.11).

For further reference we point out that we have proved the following statement:

Corollary 3.20. Let M D .M; †q/ be a pure q-difference module over yK (resp. a
pure almost admissible q-difference module over K) of slope � and rank �. Then for
any n 2 Z�1 such that n� 2 Z, there exists a C-vector space V contained in MyKn

(resp. MKn
) of dimension � such that x�†q.V / � V .

3.7. End of the proof of Theorem 3.6. Theorem 3.6 states that B iso
q D q-Diffaa

K .
Proposition 3.19 implies that q-Diffaa

K is a subcategory of B iso
q . To conclude it is

enough to prove the following lemma.

Lemma 3.21. Let M 2 Bq . Suppose that any N 2 Bq with MyK Š NyK in yBq is
already isomorphic to M in Bq . Then M is almost admissible.

Proof. With no loss of generality, we may suppose that the slope of the Newton
polygon of M are integral. We know that the lemma is true for rank one modules. In
the general case we prove the lemma by steps:

Step 1. Pure rank 2 modules of slope zero.
Let us suppose that M is pure with Newton polygon f.0; 2/g. Then there exists

a basis e of MyK such that †qe D eA with A 2 Gl2.C/ in the Jordan normal form.
The assumptions of the lemma actually say that the basis e can chosen to be a basis
of M over K. If M has only one exponent modulo qZ, then M is admissible. So
let us suppose that M has at least two different exponents modulo qZ: ˛; ˇ 2 C.
An elementary manipulation on the exponents (cf. Remark 2.4) allows to assume that
ˇ D 1. This means that A is a diagonal matrix of eigenvalues 1, ˛. We are in the
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case of Section 3.3, so we already know that there exists only one isoformal analytic
isomorphism class if and only if the module is admissible.

Step 2. Proof of the lemma in the case of a pure module of slope zero.
Let us suppose that M is pure with Newton polygon f.0; r/g. Then there exists a

basis e of M over K such that †qe D eA with A 2 Glr.C/ in the Jordan normal form.
If M has only one exponent modulo qZ, then M is admissible. So let us suppose
that M has at least two different exponents modulo qZ. For any pair of exponents
˛, ˇ distinct modulo qZ, the module M has a rank two submodule isomorphic to the
module considered in step 1. This implies that �q;˛ˇ�1 is convergent, and hence that
M is admissible.

Step 3. General case.
Let f.ri ; �i / W i D 1; : : : ; kg be the Newton polygon of M. The formal module

MyK admits a basis e such that the matrix of †q with respect to e is a block diagonal
matrix of the form (cf. Corollary 3.20)

†qe D e diag
�

A1

x�1
: : : Ak

x�k

�
;

where A1; : : : ; Ak are constant square matrices that we can suppose to be in Jordan
normal form. The assumption says that M is isomorphic in Bq to the q-difference
module N over K generated by the basis e. Since the slopes and the classes modulo
qZ of the exponents are both analytic and formal invariants, it is enough to prove the
statement for pure modules. If M is pure, this follows from step 2 by elementary
manipulation of the slopes (cf. Remark 2.4).

This finishes the proof of the lemma and therefore the proof of Theorem 3.6.

4. Structure of the category B iso
q . Comparison with the results in [3] and [26]

The formal results above give another proof of the following:

Theorem 4.1 ([26], Theorems 3.12 and 3.14). The subcategory yBf
q of yBq of pure

q-difference modules of slope zero is equivalent to the category of C�=qZ-graded
finite dimensional C-vector spaces equipped with a nilpotent operator that preserves
the grading.

The category yBq is equivalent to the category of Q-graded objects of yBf
q .

Let B
iso;f
q be the full subcategory of B iso

q of pure q-difference modules of slope
zero. We have an analytic version of the result above:

Theorem 4.2. The category B iso
q is equivalent to the category of Q-graded objects

of B
iso;f
q , i.e., each object of B iso

q is a direct sum indexed on Q of objects of B
iso;f
q

and the morphisms of q-difference modules respect the grading.
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Proof. For any � 2 Q, the component of degree � of an object of B iso
q is its maximal

pure submodule of slope �. The theorem follows from the remark that there are no
non-trivial morphisms between two pure modules of different slope.

As far the structure of the category B
iso;f
q is concerned, we have an analytic analog

of [26], Theorem 3.14, and [3], Theorem 1.60:

Theorem 4.3. The category B
iso;f
q is equivalent to the category of finite dimensional

C�=qZ-graded complex vector spaces V , endowed with nilpotent operators which
preserve the grading, with the following property:

Let �1; : : : ; �n 2 C� be a set of representatives of the classes of C�=qZ cor-
responding to non-zero homogeneous components of V . The series ˆ.qIƒ/.x/,
where ƒ D f�i�

�1
j j i; j D 1; : : : ; r I �i�

�1
j 62 qZ�0g, is convergent.

Proof. We saw that a module M D .M; †q/ in B
iso;f
q contains a C-vector space V

invariant under †q such that M Š V ˝ K. Hence there exists a basis e such
that †qe D eB , with B 2 Gl�.C/ in the Jordan normal form. This means that
B D D C N , where D is a diagonal constant matrix and N a nilpotent one. The
operator †q � D is nilpotent on V .

Since any eigenvalue � of D is uniquely determined modulo qZ, we obtain the
C�=qZ-grading by considering the kernel of the operators .†q � �/n for n 2 Z large
enough.
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