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A noncommutative Bohnenblust-Spitzer identity for
Rota—Baxter algebras solves Bogoliubov’s recursion
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Abstract. The Bogoliubov recursion is a particular procedure appearing in the process of
renormalization in perturbative quantum field theory. It provides convergent expressions for
otherwise divergent integrals. We develop here a theory of functional identities for noncom-
mutative Rota—Baxter algebras which is shown to encode, among others, this process in the
context of Connes—Kreimer’s Hopf algebra of renormalization. Our results generalize the
seminal Cartier—Rota theory of classical Spitzer-type identities for commutative Rota—Baxter
algebras. In the classical, commutative, case these identities can be understood as deriving
from the theory of symmetric functions. Here we show that an analogous property holds for
noncommutative Rota—Baxter algebras. That is, we show that functional identities in the non-
commutative setting can be derived from the theory of noncommutative symmetric functions.
Lie idempotents, and particularly the Dynkin idempotent, play a crucial role in the process.
Their action on the pro-unipotent groups such as those of perturbative renormalization is de-
scribed in detail along the way.
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1. Introduction

Spitzer identities first appeared in fluctuation theory, together with the notion of Baxter
relations — now called Rota—Baxter (RB) relations [49], [3], [2]. It was soon realized
by Rota, Cartier, and others, that the theory could be founded on purely algebraic
grounds and had many other applications [45], [6], [46] — appearing retrospectively
as one of the many striking successes of Rota’s approach to algebra, combinatorics
and their applications.

The purpose of the present article is to extend the theory to the noncommutative
setting. Indeed, the classical Spitzer identities involve commutative Rota—Baxter
operators and algebras. However, to consider the noncommutative case is natural.
For example, the integration operator acting on matrix algebras is an RB operator (in
that particular case, the Rota—Baxter relation identifies with the integration by parts
rule), so that the Magnus or Strichartz identities for the solutions of first order linear
differential equations can be viewed as particular examples of RB-type identities (see
[5], [32], [50] and our account in Section 8 of the present article).

Actually, a striking application of the RB formalism in the noncommutative setting
emerged very recently in the context of the Connes—Kreimer Hopf algebra approach
to renormalization in perturbative quantum field theory (pQFT) [11], [17], [18], [22],
[34], [35] and motivated the present article. The Bogoliubov recursion is a purely
combinatorial recursive process that allows to give a meaning to the divergent inte-
grals appearing in pQFT [9]. Using the RB point of view, the process finds a very
compact and simple formulation. Abstractly, the recursion takes place in a particular
noncommutative RB algebra and writes

X =1-R(X a),

where X is the quantity to be computed recursively, R is the RB operator, * is
the algebra product, and a is a divergent series naturally associated to the physical
quantities to be computed (the regularized Feynman rules in, say, the dimensional
regularization scheme [9]). We refer the reader to the last section of the present
article for definitions and further details.

The above functional identity lies in fact at the heart of Baxter’s original work
and, for a commutative RB algebra, its solution is given by nothing but Spitzer’s
classical identity [49]. However, as we mentioned, in renormalization the very RB
structure one has to deal with is noncommutative, so that these results do not apply.
In [17] it was shown that one can prove a first noncommutative Spitzer (also known as
Pollaczeck—Spitzer) identity, and that this identity was related to a so-called Baker—
Campbell-Hausdorff (BCH) recursion, which is another way, besides Bogoliubov’s,
to perform recursively the renormalization process [18], [19].

Here we show that one can actually prove more. That is, we derive noncommu-
tative generalizations of the Bohnenblust—Spitzer identity (Theorems 6.1, 6.2, and
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Theorem 7.1). They allow us to solve completely the renormalization problem, in the
sense that they lead to a closed formula for X —as opposed to the BCH or Bogoliubov
recursions — and also to the Pollaczeck—Spitzer identity. The new formula is also
completely different from the celebrated Zimmermann forest formula [53] that relies
on particular combinatorial properties of Feynman diagrams.

However, although our first motivation was renormalization theory in the Connes—
Kreimer approach, one should be aware that the existence of noncommutative Bohnen-
blust—Spitzer identities, as well as the ideas developed to prove the identities, are of
general interest and should lead to a noncommutative approach in the many fields
where commutative Rota—Baxter algebras have been a useful tool.

To understand our approach, recall one of the main events in the study of RB
algebras. In their seminal 1972 article [46], Rota and Smith showed that Spitzer-type
identities for commutative Rota—Baxter algebras could be understood as deriving from
the theory of symmetric functions. Here we actually show that the same is true for
noncommutative RB algebras. That is, we show that functional identities for these
algebras can be derived from the theory of noncommutative symmetric functions [25]
or, equivalently, from the theory of descent algebras of bialgebras — a cornerstone of
the modern approach to the theory of free Lie algebras [43], [40]. In the process, we
establish a connection between noncommutative RB algebras and quasi-symmetric
functions in noncommutative variables.

Eventually, as already pointed out, our findings lead to noncommutative general-
izations of the classical Bohnenblust—Spitzer identity. Moreover, these new identities
are derived from a functional equation (Theorem 2.1) for the classical Dynkin operator
(the iteration of the Lie bracket in the theory of free Lie algebras). As an application
we present a closed formula for the Bogoliubov recursion in the context of Connes—
Kreimer’s Hopf algebra approach to perturbative renormalization. This last finding is
complementary to the main result of the recent article [20], where two of the present
authors together with J. M. Gracia-Bondia proved that the mathematical properties of
locality and the so-called beta-function in pQFT could be derived from the properties
of the Dynkin operator. Our new findings reinforce the idea that the Dynkin operator
and its algebraic properties have to be considered as one of the building blocks of the
modern mathematical theory of renormalization.

Some partial results were announced in the Letter [21]. We give here their complete
proofs and develop the general theory of noncommutative functional identities for
Rota—Baxter algebras as well as their applications to perturbative renormalization
which were alluded to also in [21].

Let us briefly outline the organization of this paper. The second section devel-
ops the theory of pro-unipotent groups and pro-unipotent Lie algebras from the point
of view of Lie idempotents. The properties of the Dynkin idempotent are recalled.
The next section surveys the classical Bogoliubov recursion, emphasizing the Rota—
Baxter approach and the connections with Atkinson’s recursion and Spitzer identities.
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Definition and basic properties of Rota—Baxter algebras are recalled in the process,
i.e., the Rota—Baxter double and pre-Lie product. We then extend in the fourth sec-
tion Rota—Smith’s construction of the free commutative Rota—Baxter algebra (in an
arbitrary number of generators) to the noncommutative case. This leads naturally
to the link between free Rota—Baxter algebras and noncommutative symmetric and
quasi-symmetric functions that are explored afterwards. Section 6 concentrates on the
Bohnenblust—Spitzer identity in the noncommutative setting, whereas the following
one features an extension of the Magnus recursion and of Strichartz’ solution thereof
to arbitrary noncommutative RB algebras. Applications to perturbative renormali-
zation are considered in the last section; the relevance of our general results in this
setting is emphasized, since they provide a non recursive solution to the computation
of counterterms in pQFT together with new theoretical and computational insights on
the subject.

2. Lie idempotents actions on pro-unipotent groups

The ground field K over which all algebraic structures are defined is of characteristic
Zero.

Lie idempotents are well known to be one of the building blocks of the modern the-
ory of free Lie algebras. This includes the modern approaches to the Baker—Campbell—
Hausdorff formula, the Dynkin formula for the Hausdorff series, the Zassenhaus for-
mula, and continuous versions of the same formulas such as Magnus’ continuous
Baker—Campbell-Hausdorff formula [43], Chap. 3.

One of the purposes of the present article is to show that the same result holds for
general Rota—Baxter algebras. That is, functional identities for Rota—Baxter algebras
can be derived from the theory of Lie idempotents. In a certain sense, the resultis not so
surprising: after all, in their seminal work, Rota and Smith [46] explained the classical
Spitzer identities for commutative RB algebras by means of the Waring formula, which
holds in the algebra of symmetric functions. Lie idempotents appear (very generally)
as soon as one moves from the commutative algebra setting to the noncommutative
one, where phenomena such as the Baker—Campbell-Hausdorff formula require, for
their solution and combinatorial expansion, free Lie algebraic tools. For that purpose,
the algebra of symmetric functions, which encodes many of the main functional
identities for commutative algebras, has to be replaced by the descent algebra, which
is the algebra in which Lie idempotents live naturally. We refer to Reutenauer’s
standard reference [43] for further details on the subject and a general picture of
Lie idempotents, descent algebras, and their applications to the study of Lie and
noncommutative algebras. The definitions which are necessary for our purposes are
given below.

To start with, let us first recall from [43], [25], [41] and [20] some definitions and
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properties relating the classical Dynkin operator to the fine structure theory of Hopf
algebras. Some details are needed, since the results gathered in the literature are not
necessarily stated in a form convenient for our purposes.

Recall first the classical definition of the Dynkin operator D. The Dynkin operator
is the linear map from A := T (X), the tensor algebra over a countable set X, into
itself defined as the left-to-right iteration of the associated Lie bracket, so that, for
any sequence )i, ..., y, of elements of X,

D(y1...yn) == [ .. [[y1, y2], y3] .- - yn]

where [x, y] := xy — yx. We also write D, for the action of D on T, (X), the
component of degree n of the tensor algebra (the linear span of words y; ...y,
yi € X,i =1,...,n). Notice, for further use, the iterated structure of the definition
of D; it will appear below that the Dynkin operator is a natural object to understand
advanced properties of the Spitzer algebra [21]. The Dynkin operator can be shown
to be a quasi-idempotent. That is, its action on an homogeneous element of degree n
of the tensor algebra satisfies D? = n - D and, moreover, the associated projector g
is a projection from 7, (X) onto the component of degree n, Lie, (X), of the free Lie
algebra over X; see [43].

The tensor algebra is a graded cocommutative connected Hopf algebra: the coal-
gebra structure is entirely specified by the requirement that the elements x € X
are primitive elements in 7'(X). It is therefore naturally provided with an antipode
S and with a grading operation Y — the map Y acting as the multiplication by n
on T,(X). One can then show that the Dynkin operator can be rewritten in purely
Hopf algebraic terms as D = S » Y, where x stands for the convolution product in
End(7T'(X)). Recall, for further use, that, writing A and 7 for the coproduct and the
product, respectively, in an arbitrary Hopf algebra H the convolution product of two
endomorphisms f and g of H is defined by

frgi=mo(f®g)oA.

The definition of the Dynkin map as a convolution product can be extended to any
graded connected cocommutative or commutative Hopf algebra [41], as a particular
case of a more general phenomenon, namely the possibility to define an action of X,
the classical Solomon algebra of type A, (resp. the opposite algebra) on any graded
connected commutative (resp. cocommutative) Hopf algebra [40]. In particular, if we
call descent algebra and write D := @, o) D» for the convolution subalgebra of
End(T'(X)) generated by the graded projections p,: T(X) — T, (X), then Z;7, the
opposite algebra to Solomon’s algebra of type A, identifies naturally with O, which
inherits an associative algebra structure from the composition product in End(7' (X)
[43], [40].

In the present article we call Lie idempotents the projectors from 7,, (X)) to Lie, (X)
that belong to Solomon’s algebra X, (one sometimes calls Lie idempotents the
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more general projectors belonging to the symmetric group algebra Q[S,], in which
Solomon’s algebra is naturally embedded, however the latter idempotents cannot be
generalized naturally to idempotents acting on bialgebras and are therefore not rele-
vant for our purposes).

A Lie idempotent series is a sequence of Lie idempotents or, equivalently, a pro-
jection map y from T(X) to Lie(X) belonging to the descent algebra, the graded
components y, of which are Lie idempotents. Besides the Dynkin idempotent series,
%, the list of Lie idempotents series include Solomon’s Eulerian idempotent series,
the Klyachko idempotent series, the Zassenhaus idempotent series, etc. We refer to
[43], [25] for further details on the subject.

Proposition 2.1. The descent algebra is a free graded associative algebra freely
generated by the p,. Any Lie idempotent series generates freely the descent algebra.

The first part of the proposition is Corollary 9.14 of [43]. The second part follows,
e.g., from Theorem 5.15 in [25].

As already mentioned, it follows from [40] that all these idempotent series act
naturally on any graded connected commutative or cocommutative bialgebra. Here we
will restrict our attention to the cocommutative case, we refer to [20] for applications
of the Dynkin operator formalism to the commutative but noncocommutative Hopf
algebras appearing in the Connes—Kreimer Hopf algebraic theory of renormalization
in pQFT, see [10], [11], [12], [22].

Theorem 2.1. Let H = @, .\ Hn be an arbitrary graded connected cocommutative
Hopf algebra over a field of characteristic zero. Any Lie idempotent series induces
an isomorphism between the pro-unipotent group G(H) of group-like elements of
H:= [1,,en Hn and the pro-nilpotent Lie algebra Prim(H ) of primitive elements in
H.

When the Lie series is the Eulerian idempotent series, the isomorphism is simply
the exponential/logarithm isomorphism between a pro-unipotent group and its pro-
nilpotent Lie algebra. When the Lie series is the Dynkin series, the inverse morphism
is given by I': Prim(H) — G(H), mapping h = _ hn to

n>0

hi, ... h;
I'(h) = a k .
W=2 2 aTm .Gt
n= l]+-:~+lé(—n
lj>

This is a result dual to Theorem 4.1 in [20], which established the same formula
for characters and infinitesimal characters of graded connected commutative Hopf
algebras when the Lie series was the Dynkin series. The assertion on pro-unipotency
and pro-nilpotency follows, for instance, from the classical equivalence between group
schemes and commutative Hopf algebras. It is simply a way to recall that the group
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and Lie algebra we consider come from graded connected Hopf algebras, and inherit
from them the usual nilpotence and completeness properties of graded connected
algebras (see e.g. [10], [11], [12], [15], [14], where the pro-unipotent group schemes
point of view is put to use systematically instead of the Hopf algebraic one to deal
with similar questions).

We sketch the proof. The descent algebra carries naturally a Hopf algebra structure
[25], [33]. Since D is freely generated by the p,, the coproduct A is entirely defined
by the requirement that the p, form a sequence of divided powers (that is, A(p,) =
Yoit j=n Pi ® pj) or, equivalently, that any Lie idempotent is a primitive element,
see e.g. Corollary 5.17 in [25] or Corollary 3 in [41].

It follows from [41] that there is a compatibility relation between this coproduct and
the descent algebra natural action on an arbitrary graded connected cocommutative
Hopf algebra H. Namely, for any element f in the descent algebra, we have

A(f)ed=2éof

where § stands for the coproduct in H, and where the action of f on H is induced by
the convolution algebra morphism that maps p,, viewed as an element of D, to the
graded projection (also written abusively p,) from H to H,. In particular, for any
Lie idempotent /,, acting on H, and any h € H,, we have

8(In(h)) = A(ln)(3(h))
=L, Re+eRLHMR1+1Qh+h Qh")
=Li(h)®1+1®I,(h)

where € stands for the counit of H (the natural projection from H to Hy with kernel
HY :=@,., Hn) and h’ ® h” belongs to H* ® H*; the identity follows from /,,
being primitive in the descent algebra. In particular, /,,(h) € Prim(H ). This implies
that the action of any Lie series on H and, in particular, on G(H ), the set of group-like
elements in H, induces a map to Lie(H).

The particular example of the Eulerian idempotent is interesting. The Eulerian
idempotent e is the logarithm of the identity in the endomorphism algebra of T'(X)
and belongs to the descent algebra. It acts on H as the logarithm of the identity of
H in the convolution algebra End(H ); see [48], [43], [39], [40]. Forany h € G(H),
we get

_1\yn—1
e = tog(idm ) = 3 Ty )

nelN

(_l)n_l n
= —, (h—e()" = log(h).

neN
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since, h being group-like, (f + g)(h) = f(h)g(h) for any f,g € End(H), so that
(idg —€)**(h) = (h —e(h))™. This proves the assertion on the Eulerian idempotent
in Theorem 2.1.

Now, according to Proposition 2.1, the graded components of any Lie series [
generate freely the descent algebra as an associative algebra. It follows in particular
that the identity of 7'(X) can be written as a noncommutative polynomial in the /,,.
That is, for any Lie series / there exist a unique family of coefficients ay,, ... », such
that

o0

idT(X) = Z Z an],...,nklnl * ook l”k‘

n=0ny+-+nx=n

In particular, for any g € G(H), we get, since the element id7(y) of the descent
algebra acts as the identity on H [40],

00

g= 2, > Un g Iny (8) %+ x Iy, ()

n=0 ni+-+nig=n

so that the map from Lie(H) to G(H),

o) o)
Lie(H) = @ Lien(H) 3 3,20 An > 20 30 npeemehny %% Ay,
n=0

n=0ny+-+nx=n

is a right inverse (and in fact also a left inverse) to /. The particular formula for the
Dynkin idempotent follows from [25] or from Lemma 2.1 in [20].

Two particular applications of the theorem are well known. Consider first the case
where H is the Hopf algebra of noncommutative symmetric functions. Then, H is
generated as a free associative algebra by the complete homogeneous noncommutative
symmetric functions Sy, k € N, which form a sequence of divided powers, that is,
their sum is a group-like element in H. The graded components of the corresponding
primitive elements under the action of the Dynkin operator are known as the power
sums noncommutative symmetric functions of the first kind [25]. Second, consider
the classical descent algebra viewed as a Hopf algebra. Then the Dynkin operator
(viewed as the convolution product S » Y acting on the Hopf algebra D) sends the
identity of 7'(X), which is a group-like element of the descent algebra to the classical
Dynkin operator. This property was put to use in Reutenauer’s monograph to rederive
all the classical functional Lie-type identities in the tensor algebra — for example the
various identities related to the Baker—Campbell-Hausdorff formula.

As it will appear, a surprising conclusion of the present article is that the same
machinery can be used to derive the already known formulas for commutative Rota—
Baxter algebras but, moreover, can be used to prove new formulas in the noncommu-
tative setting.
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3. Rota-Baxter algebras and Bogoliubov’s recursion

In this section we first briefly recall the definition of Rota—Baxter (RB) algebra and
its most important properties. For more details we refer the reader to the classical
papers [2], [3], [6], [45], [46], as well as for instance to the references [22], [19].

Let A be an associative not necessarily unital nor commutative algebra with R €
End(A). The product of @ and b in A is written @ - b or simply ab when no confusion
can arise. We call a tuple (A, R) a Rota—Baxter algebra of weight 6 € K if R satisfies
the Rota—Baxter relation

R(X)R(y) = R(R(x)y + xR(y) + Oxy). (1)

Changing R to R’ := uR, u € K, gives rise to an RB algebra of weight 6 := 16,
so that a change in the 6 parameter can always be achieved, at least as long as weight
non-zero RB algebras are considered.

The definition generalizes to other types of algebras than associative algebras: for
example one may want to consider RB Lie algebra structures. Further below we will
encounter examples of such structures.

In the following we denote the particular argument of the map R on the right-hand
side of (1) by

X *g y = R(x)y + xR(y) + Oxy

and will come back to it further below.

Let us recall some classical examples of RB algebras. First, consider the integra-
tion by parts rule for the Riemann integral map. Let A := C(R) be the ring of real
continuous functions with pointwise product. The indefinite Riemann integral can be
seen as a linear map on A4

i A=A, I(f)(x) ::/O f(@)dt.

Then integration by parts for the Riemann integral can be written compactly as

() I()(x) = T ()R (x) + I(f1()(x).

dually to the classical Leibniz rule for derivations. Hence we found our first example
of a weight zero Rota—Baxter map. Correspondingly, on a suitable class of functions,
we define the following Riemann summation operators

[x/60]—1

/6]
> 0f(0)

n=

[x/6]
Ro(f)(x) := Zlef(”e) and  Rj(f)(x):=
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We observe readily that

([251] 0/(10)) (iﬁ Ogm0))

[x/6] [x/6] [x/6]
(X + % + % )e2fmo)gmd)

n>m=1 m>n=1 m=n=1

[x/6] m [x/6] n
= 3 62X 1k0))gmd) + X 02( 3 g(k0)) f(n6)
m=1 k=1 n=1 k=1

[x/6]
- ; 0% f(n0)g(no)

= Rg(Ro(/)&)(x) + Rg(fRg(g))(x) + ORa(f2)(x).

Similarly for the map Rj,. Hence, the Riemann summation maps Ry and R}, satisfy
the weight —6 and the weight 6 Rota—Baxter relation, respectively.

Another classical example, and the reason why RB algebras first appeared in fluc-
tuation theory, comes from the operation that associates to the characteristic function
of a real valued random variable X the characteristic function of the random vari-
able max(0, X). It is worth pointing out that all these classical examples involve
commutative RB algebras.

One readily verifies that R := —fid4 — R is a Rota—Baxter operator. Note that

R(a)R(b) = R(R(a)b) + R(aR(b)),

and similarly exchanging R and R. In the following we denote the image of R and
R by A_ and A, respectively.

Proposition 3.1. Let (A, R) be a Rota—Baxter algebra. Then A+ C A are subalge-
bras in A.

We omit the proof since it follows directly from the Rota—Baxter relation. A Rota—
Baxter ideal of a Rota—Baxter algebra (A4, R) is an ideal I C A such that R(/) C [I.
The Rota—Baxter relation extends to the Lie algebra L 4 corresponding to A4,

[R(x), R(y)] = R([R(x), y] + [x, R(Y)]) + OR([x, y]),

making (L4, R) into a Rota—Baxter Lie algebra of weight 6. Let us come back to the
product we defined after equation (1).

Proposition 3.2. The vector space underlying A equipped with the product
x %9 y = R(x)y + xR(y) + Oxy (2

is again a Rota—Baxter algebra of weight 0 with Rota—Baxter map R. We denote it
by (Ag, R) and call it double Rota—Baxter algebra.
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Proof. Let x,y,z € A. We first show associativity

x *g (¥ %9 z) = XR(YR(z) + R(y)z + 0yz) + R(x)(yR(z) + R(y)z + 0yz)
+ O0x(yR(z) + R(y)z + 0y=z)
= xR(y)R(z) + R(x)yR(z) + OxyR(z) + R(x)R(y)z
+ OxR(y)z + OR(x)yz + 0°xyz
= (x %9 ¥) %0 2.

Now we show that the original Rota—Baxter map R € End(A) also fulfills the Rota—
Baxter relation with respect to the *g-product:

R(x) *g R(y) — OR(x x4 y)
= R*(x)R(y) + R(x)R*(y) + OR(x)R(y) — OR(x)R(y)
= R(x *g R(y) + R(x) *¢ y). O

We used the following homomorphism property of the Rota—Baxter map between
the algebras Ag and A.

Lemma 3.1. Let (A, R) be a Rota—Baxter algebra of weight 6. The Rota—Baxter
map R becomes a (not necessarily unital even if A is unital) algebra homomorphism
from the algebra Ag to A

R(a x¢ b) = R(a)R(D).
For R := —#id4 — R we find

R(a x¢ b) = —R(a)R(b).

We remark here that if R is supposed to be idempotent, then (4, R) must be a
Rota—Baxter algebra of unital weight 8 = —1. Now we introduce the notion of an
associator for x, y,z € B, where B is an arbitrary algebra:

a(x,y,z)i=x-y)-z—x-(y-2).

Recall that a left pre-Lie algebra P is a vector space, together with a bilinear pre-Lie
product>: P ® P — P, satisfying the left pre-Lie relation

as(x,y,z) = ap(y,x,2).

With an obvious analog notion of a right pre-Lie product <: P ® P — P and right
pre-Lie relation

aq(x,y,z) = aq(x,z,y).
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See [8] for more details. Let P be a left (or right) pre-Lie algebra. The commutator
[a,b]s :=av>b—brafora,b e P satisfies the Jacobi identity. Hence the vector
space P together with this commutator is a Lie algebra, denoted by Lp. Of course,
every associative algebra is also pre-Lie.

Lemma 3.2. Let (A, R) be an associative Rota—Baxter algebra of weight 6. The
binary compositions

avg b= R(a)b —bR(a) — Oba = [R(a),b] — Oba = R(a)b — (~bR(a)), (3)
a <9 b= aR(b) — R(b)a — 8ba = [a, R(b)] — Oba = aR(b) — (—R(b)a) (4)

define a left respectively right pre-Lie structure on A.

Proof. The lemma follows by direct inspection. It may also be deduced from deeper
properties of Rota—Baxter algebras related to dendriform and tridendriform algebras
[1], [16], [30], [31]. That is, the identification a < b := aR(b), a « b = Hab and
a > b := R(a)b in a Rota—Baxter algebra (B, R) defines a tridendriform algebra,
hence also a dendriform algebra structure. We refer the reader to [23] for more. [

Recall that anti-symmetrization of a pre-Lie product gives a Lie bracket. In the
case of the Rota—Baxter pre-Lie compositions (3), (4), we find

[a,bloy, :=avgb—brga=a<gb—b<ga=1la bl
= [R(a),b] + [a, R(b)] + Oa,b] = [a, b]«,.

Hence, the double Rota—Baxter product and the left as well as right Rota—Baxter
pre-Lie products define the same Lie bracket on (A4, R).

Lemma 3.3. Let (A, R) be an associative Rota—Baxter algebra of weight 6. The
left pre-Lie algebra (A, >g) is a Rota—Baxter left pre-Lie algebra of weight 8, with
Rota—Baxter map R. Similarly for (A, <g) being a Rota—Baxter right pre-Lie algebra
of weight 6.

Proof. We prove only the statement for the left RB pre-Lie algebra. Let x,y € A.
Then

R(x) >¢ R(y) = R(R(x))R(y) — R(y)R(R(x)) — OR(y)R(x)
= R(R(R(x))y + R(x)R(y) + 6R(x)y)
— R(YR(R(x)) + R(y)R(x) + 0yR(x))
—OR(R(y)x + yR(x) + Oyx)
= R(R(x)>py +x>g R(y) + 0x>p y). g



A noncommutative Bohnenblust-Spitzer identity 193

Let us now turn to the Bogoliubov recursion. Briefly, this recursion provides
an elaborate procedure to give a sense (or to renormalize, that is, to associate a fi-
nite quantity, called the renormalized amplitude) to divergent integrals appearing in
perturbative high-energy physics calculations. The renormalization process and in
particular the Bogoliubov recursion can be reformulated in purely algebraic terms
inside the Connes—Kreimer paradigmatic Hopf algebraic approach to perturbative re-
normalization. We follow this point of view and refer the reader to Collins’ monograph
[9] and the by now standard references [10], [11], [12], [24], [34], [35] for further
information on the subject. Further details on the physical meaning of the recursion
will be given in the last section of the article, we concentrate for the time being on its
mathematical significance.

Let us outlay the general setting, following [21]. Let H be a graded connected
commutative Hopf algebra (in the physical setting H would be a Hopf algebra of
Feynman diagrams), and let A be a commutative unital algebra. Assume further
that A splits into a direct sum of subalgebras, A = Ay @ A_, with 1 € A4. The
projectors to AL are written Ry respectively. The pair (A4, R_) is then a weight
6 = —1 commutative Rota—Baxter algebra, whereas the algebra Lin(H, A) with the
idempotent operator defined by R_(f) := R_ o f for f € Lin(H, A) is a (in
general noncommutative) unital Rota—Baxter algebra. Here the algebra structure on
Lin(H, A) is induced by the convolution product, that is, for any f, g € Lin(H, 4)
andany h € H,

f gy = f(hM)g(h®),
w(itil Sweedler’s notation for the action of the coproduct § of H on h: §(h) = hV @
h®.

The essence of renormalization is contained in the existence of a decomposition
of the group G(A) of algebra maps from H to A into a (set theoretic) product of the
groups G_(A) and G (A) of algebra maps from H ™ to A_, respectively from H to
A4. We view G_(A) as a subgroup of G(A) by extending maps y from H™ to A_
to maps from H to A by requiring that y(1) = 1. In concrete terms, any element y
of G(A) can be rewritten uniquely as a product y~! % y, where y— € G_(A) and
Y+ € G4(A).

The Bogoliubov recursion is a process allowing the inductive construction of the
elements y_ and y4 of the aforementioned decomposition. Writing e4 for the unit of
G(A) (the counit map of H composed with the unit map of A, e4 = 14 o €), y— and
¥+ solve the equations

v+ =eq £ Ri(y- * (¥ —eq)). 5)

The recursion process is by induction on the degree n components of y_ and yy
viewed as elements of the (suitably completed) graded algebra Lin(H, A). The fact
that the recursion defines elements of G_(A) and G4 (A) is not obvious from the
definition: since the recursion takes place in Lin(H, A4), one would expect y_— — e4
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and y4+ to belong to Lin(H, A-) and Lin(H, A4), respectively. The fact that y_
and y4 do belong to G_(A) and G4 (A), respectively, follows from the Rota—Baxter
algebra structure of A, as has been shown by Kreimer and Connes-Kreimer; see, e.g.,
[27], [11] and the references therein. The map

yi=y-*(y—ea)

is called Bogoliubov’s preparation or R-operation. Hence, on Ht we see that y4+ =
TRL(Y).

Setting a := —(y — ey4), the recursion can be rewritten

Y+ =ea F Ri(y-xa) (6)

and can be viewed as an instance of results due to F. V. Atkinson, who, following Bax-
ter’s work [3], has made an important observation [2] when he found a multiplicative
decomposition for associative unital Rota—Baxter algebras. We will state his result for
the ring of power series B[[t]], (B, R) an arbitrary Rota—Baxter algebra. Inductively
define in a general RB algebra (B, R),

(Ra)" .= R((Ra)™a) and (Ra)"tY := R(a(Ra)™™), (7

with the convention that (Ra)[!! := R(a) =: (Ra)!" and (Ra)! = 15 =:
(Ra)i%,

Theorem 3.1. Let (B, R) be an associative unital Rota-Baxter algebra. Fix a € B
and let F and G be defined by F := ", .\ t"(Ra)" and G := 3", _\ 1" (Ra)'™.
Then they solve the equations
F =1 +tR(Fa) and G =15+ tR(aG), (8)
in B[[t]] and we have the following factorization
F(lp 4+ at0)G = 1p, sothat 13 +at0 = F'G™".

For an idempotent Rota—Baxter map this factorization is unique.

Proof. The proof follows simply from calculating the product F'G. Uniqueness for
idempotent Rota—Baxter maps is easy to show; see, for instance, [19]. O

One may well ask what equations are solved by the inverses F~! and G~!. We
answer this question, the solution of which will be important in forthcoming devel-
opments, in the following corollary.
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Corollary 3.1. Let (B, R) be an associative unital Rota—Baxter algebra. Fixa € B
and assume F and G to solve the equations in the preceding theorem. The inverses
F~' and G™! solve the equations

F'=13—tRaG) and G~ ' =1p —tR(Fa), )
in B[[t]].
Proof. Let us check this for F and F~!. Recall that G = 1 + tﬁ(a G). Then

FF™' =15 —tR(aG) + tR(Fa) —t?R(Fa)R(aG)
=1 —tR(aG) + tR(Fa)
—t?R(R(Fa)aG) —t?R(FaR(aG)) — t?6R(Fa*G)
=13 —tR((1g + tR(Fa))aG) + tR(Fa) + t?R(FaR(aG))
=13 —tR((1g + tR(Fa))aG) + tR(Fa(1g + tR(aG)))
= 1p 4+ tR(FaG) —tR(FaG) = 1p. O

Going back to Bogoliubov’s recursions (5) we see that y_ corresponds to the first
equation in (8), whereas y4 corresponds to the inverse of the second equation in (8);
see (9).

The solution to Atkinson’s recursion can be simply expressed as follows: the
coefficient of 7" in the expansion of F is (Ra)"™. When the Rota—Baxter algebra
(A, R) is commutative, the classical Spitzer formulas allow to reexpress and expand
these terms, giving rise to non-recursive expansions. The first Spitzer identity, or
Pollaczeck—Spitzer identity reads

S " (Ra)™ = exp(~' Rlog(1 + ath)),

meN

where a is an arbitrary element in a weight 6 Rota—Baxter algebra A [3], [49]. In the
framework of the Rota—Smith presentation [46] of the free commutative RB algebra
on one generator (the “standard” RB algebra), this becomes the Waring formula
relating elementary and power sum symmetric functions [47]. In fact, comparing the
coefficient of ¢ on both sides, Spitzer’s identity says that

nl(Ra)!" = Y (—0)y"F@O Ry .. R(aw@l),

where the sumis over all permutations on [n] and 0 = 17 ... T () is the decomposition
of ¢ into disjoint cycles [46]. We denote by |7;| the number of elements in ;. The
second Spitzer formula, or Bohnenblust—Spitzer formula, follows by polarization [46]:

S R(R(... (R(ag,)ag, - - )ag,)) = > (=" [T (mi = D'R([]jer, /)

TEPy ;€T
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for an arbitrary sequence of elements ay,...,a, in A. Here, & runs over unordered
set partitions &, of [n]; by || we denote the number of blocks in 7; and m; := |m;|
is the size of the particular block ;.

In the sequel of the article, we will show how these identities can be generalized to
arbitrary (i.e. noncommutative) Rota—Baxter algebras, giving rise to closed formulas
for the terms in the Bogoliubov, i.e., Atkinson recursion.

4. Free Rota—-Baxter algebras and NCQSym

In the present section we introduce a model for noncommutative (NC) weight one
free RB algebras that extends to the noncommutative setting the notion of standard
Baxter algebra [46].

Let X = (x1,...,Xy,...)beanordered set of variables or alphabet, and let T (X)
be once again the tensor algebra or free associative algebra over X. Recall that the
elements of 7'(X) are linear combinations of noncommutative products x;, ... x;, of
elements of X, or words over X. We shall also consider finite ordered families of
alphabets X!, ..., X" and write xf, for the elements in X! = (xi, el xﬁl, ...). The
tensor algebra over X! J]---J] X" is written T(X!,..., X™).

Let A (resp. A™) be the algebra of countable sequences Y = (y1,..., Vn,...)
of elements of T(X) (resp. T(X!,..., X™)) equipped with pointwise addition and
products: (y1,...,Vn,...) + (Z1s.vosZps...) = (V1 + Z10-. V0 + Zn,...) and
1see s Vnse) (21 szn, o) i= (V1 215+ s Y * Zny ... ). We also write Y;
for the i-th component of the sequence Y. By a slight abuse of notation, we view X
(resp. X i i<n)asa sequence and thus also as an element of 4 (resp. of A(”)).

Lemma 4.1. The operator R € End(A) (resp. R € End(4™)),
R(yi,..ooynso ) =0,y 01 +y2, ooy + 4 yneen),
defines a weight one RB algebra structure on A (resp. A™).

Proof. Let us check the formula — in the sequel we will omit some analogous straight-
forward verifications.

R((»y1,-..»Ynr-o) R(z1, vz . ) +FRRY1, oo Vo) - (21,0 o s 20y . 0)
= (0,0, y221,. ... iy yizi + oo F Zimg)on L)
(0,0, y122, ., 0 1 o Yis)Zi )
=(0,y1z1 — y1z1, (V1 + y2)(z1 + 22) — (V121 + y222), - ..
et )@ o Zpm) — Oz o Yn—1Zn-1)s - )
=R(»1,.- s Ynr---) RCz1,...izZny . )= R((V1s+ - s Vns o) - (21,0 2y o).
O



A noncommutative Bohnenblust-Spitzer identity 197

Recall the notation introduced in (7), where we defined inductively (Ra)[”] and
(Ra)™ . Let us recall also Hivert’s notion of quasi-symmetric functions over a set
of noncommutative variables from [4], [37]. Let f be a surjective map from [n] to
[k], and let X be a countable set of variables, as above. Then the quasi-symmetric
function over X associated to f, written My is, by definition,

Mf = %:X(ﬁ—lof(l) . .X¢—lof(n),

where ¢ runs over the set of increasing bijections between subsets of N of cardinality
k and [k]. It is often convenient to represent f as the sequence of its values, f =
(f(1),..., f(m))or f = f(1),..., f(n) in the notation My. The definition is best
understood by means of an example:

Mi1332 = X1X3X3X2 + X1 X4X4X2 + X1X4XaX3 + XpX4XgX3 + -+ .

The linear span NCQSym of the My’s is a subalgebra of the algebra of noncommu-
tative polynomials over X (up to classical completion arguments that we omit, and
that allow to deal with infinite series such as the My as if they were usual noncommu-
tative polynomials). It is related to various fundamental objects such as the Coxeter
complex of type A, or the corresponding Solomon-Tits and twisted descent algebras.
We refer to [42], [4], [37] for further details on the subject.

We also introduce, for further use, the notation M7 for the image of My under
the map sending x; to O for i > n and x; to itself else. For the above example for
instance we find

M13,3,3,2 = X1X3X3X2,

M14’3’3’2 = X1X3X3X2 + X1X4X4X2 + X1X4X4X3 + X2X4X4X3.
Finally, we write [n] for the identity map on [r] and w, for the endofunction of [r]
reversing the ordering, so that w, (i) :=n —i + 1 and M, = My p—1,..1.

Proposition 4.1. In the RB algebra A, we have
R = (0. M)y MEy. ... . ME' ... n>1,
where M, [’;]—1 is at the k-th position in the sequence, and

(RX)™ = (0, ML M2 ... . ME-Y ) n>1,

(]

where M a’fn_l is at the k-th position in the sequence.

Indeed, let us assume that M[’fl]_l is at the kth position in the sequence (RX )",
Then the k-th component of (R X ). X reads D 20<iy <<y <k Xiy - - - Xi, Xg, and the k-
th component of R((RX ). X) reads Zf:ll D 0<jy < i X1 e+ Xj Xi = M[’,‘;Lll].
The identity for (RX )"} follows by symmetry.
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Corollary 4.1. The elements (RX "] generate freely an associative subalgebra of A.
Similarly, the elements (RX")" generate freely an associative subalgebra of A™.

Let us sketch the proof. Noncommutative monomials over X such as the ones
appearing in the expansion of M, 3 3, are naturally ordered by the lexicographical
ordering <y, so that, for example, X, x¢Xx¢ X4 < X2X7X7X5. For any noncommutative
polynomial P in T'(X), letus write Sup( P) for the highest noncommutative monomial
for the lexicographical ordering appearing in the expansion of P, so that, for example,
for k > n, Sup(M[];]) = Xk—n+1--- Xk, OF SUP(X2X6X7 + X2X7X5) = X2X7X5. For
two such polynomials P and Q, we write P <7 Q when Sup(P) <z, Sup(Q).

Let us consider now a noncommutative polynomial Q in the (RX )[”] with non-
trivial coefficients, and let us prove that it is not equal to O in A. For degree reasons,
we may first assume that Q is homogeneous, that is, that Q can be written

0= o RO (RX)I,

k nit+-+ng=p

The corollary follows from the observation that, for [ > p, Sup(M[lnl] oM [Ink]) >

Sup(M[lml] M[Imj]) Wlth ni —+ oo+ nEy = mq —+ oo+ mj if and Only if the
sequence (71, ..., ng) is less than the sequence (m, ..., m;) in the lexicographical

ordering. Indeed, let us assume that the two sequences are distinct, and let j be
the lowest index such that m; # n;, then Sup(M[lnj]) = X/—pn;+1-.-X; Whereas
Sup(M[lmj]) = Xi—m;+1--- X[, s0 that, in particular / —n; +1 > 1 —m; + 1 if
and only if m; > n;. We can then conclude using the following obvious but useful
lemma.

Lemma 4.2. For any x, y homogeneous noncommutative polynomials in T(X) and
z,t in T(X), due to the properties of the lexicographical ordering, we have:

X<py=x-z<py-z and z<pt=x-z<p Xx-t.

The proof goes over to AW, provided one chooses a suitable ordering on the
elements of X! J]---J] X", for example the order extending the order on the X’ and

such that x!, < x; wheneveri < j.

Corollary 4.2. The elements (RX)"! generate freely an associative subalgebra of A
for the double Rota—Baxter product .

Here we abbreviate the notation for the weight one double product *; to *. The
same assertion (and its proof) holds mutatis mutandis for the (RX")"! and A®™.

The corollary follows from the previous lemma and the observation that, for any
sequence (11, ...,nx), Sup(J(RX). ... (RX)P,1 )y = Sup({(RX)M1] % ...
(RX)[7x1};), where the lower / indicates the order of the component in the sequences.



A noncommutative Bohnenblust-Spitzer identity 199

Let us, once again, sketch the proof that relies on the usual properties of the
lexicographical ordering and the definition of (RX ). Notice first that, for k > n,
Sup(R((RX)™);) < Sup((RX)Y). Indeed, (RX)Y) = M7, whereas

RURX)M)e = RXOM 4 4 (RO, = M)y + -+ M2
so that

Sup(R(RX)!");) = Sup(Mf7?)

= Xk—n—1---Xk-2

The same argument shows that for any element ¥ = (y1,..., ¥n,...) in A sat-
isfying the lexicographical growth condition Sup(y;) <z Sup(y;+1) foralli € N*,
we have Sup(y;—1) = Sup(R(Y);) <z Sup(Y;) = Sup(y;) for all i € N*. This
property is therefore stable under the map R and is (up to neglecting the zero entries
in the sequences) common to all the elements we are going to consider. It applies in
particular to (RX)"11 .. (RX)[x) and (RX)"1] % ... s (RX)"«]; the verification
follows from the same line of arguments and is left to the reader.

In the end, we have

(RX)P) s (RX)IPH = (RX)MT L (RX)2) - s (RX) T

+ R((RX)[”I]) . ((RX)[”2] * ek (RX)[nk])
+ (R R((RX)P2) s 5 (RX) 14T,

from which we deduce by recursion on k and for / > 0 that
Sup(RX)!" - (RX)]) )

= Sup((RX)I")- (RX)I"2 .« (RX)[")) )
= Sup((RX)I"1] ... (RX)[md)),

Let us conclude by proving that these constructions give rise to a model for free
Rota—Baxter algebras.

Theorem 4.1. The RB subalgebra R of A generated by X is a free RB algebra on one
generator. More generally, the RB subalgebra R™ of A™ generated by X1, ..., X"
is a free RB algebra on n generators.

Our proof is inspired by the one in Rota—Smith [46], but the adaptation to the
noncommutative setting requires some care.
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Let us write ¥ for the free noncommutative RB algebra on one generator Y, so
that, by the universal properties of free algebras, the map sending ¥ to X induces a
surjective RB map from ¥ to R (recall that the latter is generated by X).

Let us call End-algebra any associative algebra V' provided with a linear endo-
morphism Ty € End(V'), with the obvious notion of morphisms of End-algebras, so
that a End-algebra morphism f from V to W satisfies f o Ty = Tw o f. Letus write
&£ for the free End-algebra on one generator. We now write Z for the generator: the
elements of £ are linear combinations of all the symbols obtained from Z by iterative
applications of the endomorphism 7" and of the associative product. The elements
look like ZT?(T(Z)T3(Z)), and so on. We write M for the set of these symbols
and call them £-monomials.

An RB algebra B is an End-algebra together with extra (Rota—Baxter) relations
on Tp = R. In particular, there is a unique natural End-algebra map from £ to an
arbitrary RB algebra on one generator (mapping Z to that generator) and in particular
a unique map to ¥ and R sending Z to Y, resp. Z to X. The map to F factorizes
the map to R.

Proving that ¥ and (R are isomorphic as RB algebras, that is, that R is a free RB
algebra on one generator amounts to prove that the kernel — say Ker(F') — of the map
from £ to ¥ is equal to the kernel — say Ker(U) — of the map from £ to R.

For any [ € £, which can be written uniquely as a linear combination of £-
monomials, Max(/) denotes the maximal number of 7’s occurring in the monomials
(with the obvious conventions for the powers of T, so that, e.g., Max(ZT?(Z T (Z)) +
Z3T*(2)Z) = 3).

We say that an element o of M is elementary if and only if it can be written either
Z',i >0, oras aproduct Z1 - T(by) - Z2 ... T(by) - Z'k+1, where the b;’s are
elementary and iy, ..., i are strictly positive integers (i; and ix4; may be equal to
zero); the definition of elementariness makes sense by induction on Max (o).

Lemma 4.3. Every [ € £ is of the form | = r + s, where F(s) = 0 and r is a sum
of elementary monomials.

It is enough to prove the lemma for / = ¢ € M. If ¢ is not elementary, then ¢ has
at least in its expansion a product of two consecutive factors of the form T'(c) - T'(d).
However, since £ is a Rota—Baxter algebra, the relation

T(c-T(d)+T(c)-d+c-d)—T(c)-T(d) € Ker(L)

holds, and ¢ can be rewritten, up to an element in Ker(L), by substituting
T(c-Td)+T(c)-d+c-d)toT(c)-T(d) in its expansion. Notice that
Max(c - T(d) + T(c)-d + ¢ -d) < Max(T(c) - T(d)). The proof follows by a
joint induction on the number of such consecutive factors and on Max(7'(¢) - T(d)).
In other words, products 7'(c) - T (d) can be iteratively cancelled from the expression
of ¢ using the RB fundamental relation.
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Let us show now that, with the notation of the lemma, U(r) = 0 implies F(r) = 0,
from which, since we already know that Ker(F) C Ker(U), the freeness property
will follow.

We actually claim the stronger property that, for p large enough and for u # ©’
elementary, Sup(U(i),) # Sup(U(u')p), from which the previous assertion will
follow. Indeed, if u = (Zt - T'(by) - Z2 ... T (by) - Z'k+1) with the b; elementary,
then

Sup(U(w)p) = X2 (Sup(U(T (b1))p)x2 . .. xik (Sup(U(T (by)))p)xp !
= X} (Sup(R(U(h1))p)x2 ... xIk (Sup(R(U(br)))p)xp .

The last identity follows since U is an End-algebra map. Since U(7) for T elementary
satisfies the lexicographical growth condition (as may be checked by induction), we
have Sup(R(U(7));) = Sup(U(t);-1), so that

Sup(U (1)) = x3} (Sup(U(b1)))p—1)xf? ... xjf (Sup((U (b)) p-1)5p .

The proof follows by induction on Max(u).

The proof goes over to an arbitrary number of generators, provided one defines the
suitable notion of elementary monomials in the free End-algebra £™ onn generators
Zi, ..., Zn: these are the elements of £ that can be written either as noncommu-
tative monomials in the Z;, or as a product a1 T (b1)as ... T (b,)an+1, Where the b;
are elementary and the a; noncommutative monomials in the Z; (nontrivial whenever
l<i<n+4+1).

Notice the following interesting corollary of our previous computations.

Corollary 4.3. The images of the elementary monomials of £ in R form a basis (as
a vector space) of the free Rota—Baxter algebra on one generator.

The same assertion holds for the free Rota—Baxter algebra on n generators.

5. Rota-Baxter algebras and NCSF

In the present section we associate to the free RB algebra on one generator a Hopf
algebra naturally isomorphic to the Hopf algebra of noncommutative symmetric func-
tions or, equivalently, to the descent algebra. The reasons for the introduction of this
Hopf algebra will become clear in the next section. Let us simply mention at this stage
that these notions will provide the right framework to extend to noncommutative RB
algebras and noncommutative symmetric functions the classical results of Rota and
Smith relating commutative RB algebras and symmetric functions [46].

Recall that the algebra NCQSym of quasi-symmetric functions in noncommutative
variables introduced in the previous section is naturally provided with a Hopf algebra
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structure [4]. On the elementary quasi-symmetric functions M[,], the coproduct A
acts as on a sequence of divided powers

n
A(Mpp)) = > Mpjp ® M.
i=0

The same argument as in the previous section shows that the M[,; generate a free
subalgebra of NCQSym. In the end, the M[,;s form a sequence of divided powers
in a free associative sub-algebra of NCQSym, and this algebra is isomorphic to the
algebra of NCSF (which is, by its very definition a Hopf algebra freely generated as
an associative algebra by a sequence of divided powers [25], and therefore is naturally
isomorphic to the descent algebra: see Proposition 2.1 and the description of the Hopf
algebra structure on the descent algebra in the same section).

The same construction of a Hopf algebra structure goes over to the algebras in-
troduced in the previous section, that is, to the free algebras over the (RX )™ for the
- and * products. As a free algebra over the (RX )", the first algebra is naturally
provided with a cocommutative Hopf algebra structure for which the (RX )[”]s form
a sequence of divided powers, that is

ARX)M) = 3 (RX)M @ (RX)—,
0<m=<n
This is the structure inherited from the Hopf algebra structure on NCQSym. We will
be particularly interested in this Hopf algebra, that is the algebra freely generated by
the (RX )[”] for the - product, viewed as a subalgebra of A and as a Hopf algebra.
We call it the free noncommutative Spitzer (Hopf ) algebra on one generator or, for
short, the Spitzer algebra, and write §.

When dealing with the Rota—Baxter double product, *, the right subalgebra to
consider, as will appear below, is not the free algebra generated by the (RX )[”] but
the free algebra freely generated by the (RX)[") . X. We may also consider this
algebra as a Hopf algebra by requiring the free generators to form a sequence of
divided powers, that is by defining the coproduct by

AR Xy = (RO . x @14+ Y (RX)M.
m<n—2
X QRX) 2 x 1@ RX)PU . X
We will also investigate briefly this second structure, strongly related with the Hopf
algebra structure on free dendriform dialgebras of [7], [44]. We call it the double
Spitzer algebra and write €.

To understami first the structure of tlle Spitzer algebra, &8, recall that we write R for
—fid — R and (Ra)™ respectively (Ra)™ for the corresponding iterated operator.

Lemma 5.1. The action of the antipode S in the Spitzer algebra, 8, is given by
S((RX)!My = —R(X - (RXx)"~1).
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Indeed, the Spitzer algebra is naturally a graded Hopf algebra. The series F' :=
Y nso(RX )"l is a group-like element in the Hopf algebra. The inverse series follows
from Atkinson’s formula 3.1, and gives the action of the antipode on the terms of the
series. Since
F7'=1-R(X-( X (RX)I)),
n>0

the corollary follows.

Corollary 5.1. The action of the antipode S in the double Spitzer algebra, €, is given
by
S(RX)M - X) = ~(X - (RX)™).

The proof will illustrate the links between the two Hopf algebras, § and €. Recall
that, on any RB algebra, we have, by the very definition of the xg product

R(x)-R(y) = R(x*gy) and R(x)-R(y) = —R(x % y).

Recall also that, in the algebra of series A (in which the Spitzer algebra and the double
Spitzer algebra can be embedded), the operator R can be inverted on the left — that is,
ifY =(0,y1.y2,....¥n,...) = R(U), thenU = (y1.y2 — y1,¥3 — y2,...).

It follows from this observation that the RB operator R induces an isomorphism
of free graded algebras between the double Spitzer algebra and the Spitzer algebra.
That is, for any sequence of integers iy, . .., iy, we have

RI((RX)M . x) x (RX)2). X) % % (RX)VA). X))
= (RX)+1 . (Rx)l2H1] | (Rx)lik+1],

The isomorphism is extended by the identity to the scalar (that is to the zero degree
components of the two Hopf algebras).

Since this isomorphism maps the generators of € to the generators of &, and since
both families of generators form a sequence of divided powers in their respective Hopf
algebras, we obtain, writing again S for the antipode in €, that

R(S( ZO(RX)[”_” X)) = R(( ZO(RX)[”‘” x)7h

= (S RN)M) ™ = 3 —R(X - (Rx)tn—1)

n>0 n>0

and so N
S(RX)M. X) = —X - (RX)".

Corollary 5.2. The free % subalgebras of A generated by the (RX)™ - X and by
the X - (RX)"™ identify canonically. The antipode exchanges the two families of
generators. In particular, the X - (RX)™ also form a sequence of divided powers in
the double Spitzer algebra.
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6. The Bohnenblust-Spitzer formula and the Dynkin idempotent

As already alluded to, one surprising conclusion of the present article is that the same
machinery that one uses to derive fundamental identities in the theory of free Lie
algebras can be employed to recover the already known formulas for commutative
Rota—Baxter algebras, and, moreover, can be applied to prove new formulas in the
noncommutative setting. These results rely on the computation of the action of the
Dynkin operator on the generators of the Spitzer and of the double Spitzer Hopf
algebras.

Let us now introduce the definition of the iterated Rota—Baxter left and right
pre-Lie brackets in an RB algebra (B, R) of weight 6:

(7 @1, an) = (.. (@19 @) P az) -+ >g An1) Pg an,  (10)
rén)(al, co.sap)i=ay <g (a2 <g (a3 <9 ...(an—1 <9 an))...) (11)

forn > 0 and Igl)(a) =a =: r(gl)(a). For fixed a € B we can write compactly
17 @) = (Y @)rga and V(@) = a < P (a))

for n > 0. We call those expressions left respectively right RB pre-Lie words. Let us
now define

)Eg’H)(a) = R([g’“)(a)) and .‘R((,"H)(a) = R(rénﬂ)(a)). (12)

For B commutative, Sé")(a) = (=6)"'R(a") and .‘Ré")(a) = (=6)" 'R(a").
For (B, R) being of weight § = 0 the left (right) pre-Lie product (3) reduces to
a>ob =adp)(b) (and a <9 b = —adgp)(a)), so that

£ (@) = R(R(...[R([R(a).al).a]...).a]) = —R(ada (£ (a)))

for n > 0 and analogously for the right RB pre-Lie words. Now, in the context of the
weight 6 = 1 Rota—Baxter algebra (A, R) we find the following proposition.

Proposition 6.1. The action of the Dynkin operator on the generators (RX)"™ of the
Spitzer algebra 8 (respectively on the generators of the double Spitzer algebra €) is
given by

D(RX)M) = 2" (X) = R (X))

(respectively by D(RX)" - X) = Ignﬂ)(X)).

Due to the existence of the Hopf algebra isomorphism induced by the map R
between the Spitzer algebra and the double Spitzer algebra, the two assertions are
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equivalent. Let us prove the proposition by induction on n for the double Spitzer
algebra. We denote by 7, the product on €. Using Y (1) = 0 we find

DX)=S+Y)X)=mo(SR®Y)X®1+10X)=X=1"x).

for n = 0. Recall that Y(X) = X and Y(RX)*"1X) = n (RX)"1x =
Y((RX)"=1y. X 4+ (RX)[*~1. X. Let us also introduce a useful notation and write
(RX)I1. x =1 w®™, sothat w®tD = R(w™)- X, w™ =1and w® = 1. We
obtain that

D(w("))
— D(RX)" 1. X) = (S % V)(w™)

n n—1
=T o(S®Y) Y w® @ wr—r = > S(w(l’)) * Y(R(w(”_l_p)) - X)
p=0 p=0

= nil SwP) * (Y(Rw™1=P)) - X) + nf SW®) * (Rw"=1=2)) . X)
p=0 p=0

= nz_:l S(w(P)) " (Y(R(w(”_l_l’))) X))+ Y S(w(P)) x w®@—p) _ S(w(”))
p=0 p=0

= "2—21 S(w(p)) * (Y(R(w(n—l—p))) - X) + Y(R(w(n—l))) X — S(w(”)),
p=1

where, since the antipode S is the convolution inverse of the identity, the term
(S * id)(w™) on the right-hand side cancels. Hence, using the general RB iden-
tity

a* (R(b)c) = R(a)R(b)c —aR(R(b)c) = R(a xb)c —aR(R(b)c)

we find immediately that
n—1 n—1
D™) = 32 RS@®) x Y(O=1=7)) - X = 37 S(w®)
pr=1 p=1

CRRY " '77)) - X) + V(R ™)) - X — S(w™)
=S RES®) x Y(01P)) X
p=0

=S S@) - RRw1-7)) - X) = Sw)
p=1

= R((S «* Y)W V) - X — Sw™)
_ nil X. ,R.(S(w(p_l))) . E(R(Y(w(n—l—p))) -X)
=1
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where we used that
Sw®) = S(rRX)P7M. X)
=-X- (EX){p_l} =-X. ﬁ(X . (ﬁX){P—Z}) = X. R'(S(w(p—l)))'

Recall that R is a Rota—Baxter operator as well, such that R(a g b) = —R(a)R(D).
This leads to

D(w™) = R(DW™ V) - X — S(w™)
+ nX_II X - R(S®=Y) % (Y(Rw™17P)) - X))
p=1
=RITV) X — X - RES@®Y)

N nX—:I x. ﬁ(S(w(p_l)) % (Y(R(w(n—l—P)) . X))
p=1

=5 X RSD) « (R 1=P) . ¥ (x)
p=1

p=0
_ nil X - ﬁ(s(w(p)) % w(n—l—p))
p=0
= R([gn—l)(X)) X + nil X - 'R'(S(w(P)) * Y(w(n—l—p)))
p=0
— X - R((S »id)(w™"™V))
=R . X + X R(S *Y)(w? D))
= RI" V(X)) - X + X - R(Dw® D))

= ROV 00) - X + X - RAPT00) = (P00 01 X = 17 (0.
We used once again that the antipode S is the convolution inverse of the identity,

implying that —X - R((S  id)(w®~D)) = 0. All this immediately implies the
following important theorem.

Theorem 6.1. We have the following identity in the Spitzer algebra §:

@i1) (ix)
RO =3 X)L 2P ) "
i1 +-tig=n il(il + 12) e (ll + o+ lk)
[N ik>()
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The theorems follows readily from Theorem 2.1 by applying the formula for the
inverse of the Dynkin operator in Proposition 6.1. We obtain the equivalent expansion
in the double Spitzer algebra €.

Corollary 6.1. We have, in the double Spitzer algebra €:

- i1y +i2)... (1 + - +ix)

[ i}>0

(RX)IP1. x =

The reader should have no problem to verify the following statements.

Corollary 6.2. We have

RO = 3 R (x)... R (x)
iyt =n i1(iy +i2) ... (i1 + - +ig)’
I]seees ik>0
X-(RX)" Y= Y P00 (X) x5 (X)
i1+ tig=n il(il + 12) e (ll + cen _.I_ lk) ’
i1, if>0

with rgi)(X) and ERY)(X) defined in (11) and (12), respectively.

At this point we may assume the Rota—Baxter algebra to be of weight 0, i.e.,
we replace the left-to-right bracketed Rota—Baxter pre-Lie words R(Iglk)(X )) by
R(Ig")(X )). C.S. Lam discovered in [29], see also [38], the weight zero case of

identity (13), that is, for 5%

Let us continue to follow closely Rota—Smith’s work [46] implying the natu-
ral extension to the free Rota—Baxter algebra &R in n generators, i.e., sequences
X1,..., X,. Now, working in the power series ring R|[t1, . .., t;] with n commuting
parameters f1, . . ., t,, and replacing X by X1#; +--- 4+ Xpty € R|[t1,...,t,] iniden-
tity (13) of Theorem 6.1 we obtain a noncommutative generalization of the classical
Bohnenblust—Spitzer identity by comparing the coefficients of the monomial ¢4 . . . #,
on both sides. We arrive at the following identity for arbitrary RB algebras:

Theorem 6.2. Let R be a Rota—Baxter operator on a Rota—Baxter algebra A and
X1,...,Xn € A. Then

> R(R(...R(Xg))Xq, .. )Xg,) = Y. (mw)Lg(my)...Lo(mk).

geSy neOPy
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The sum on the left-hand side is over all permutations in S,,. The sum on the
right-hand side is over all ordered partitions, w = [r1]. .. [7x], that is, sequences of
its disjoint subsets whose union is [n]. We denote by O, = >_/_, (9!/”,2 the set of
all ordered partitions and by (9!P§ the set of ordered partitions of [n] with k blocks.
We denote by m; := |m;| the number of elements in the block 7; of partition 7. The
coefficient function w(sr) is simply defined to be

o(r) := (my(my +ma)...(my + - +my)) ™"
Finally, we define Lg(7;), [7;] = [j1 ... jm,], using the left-to-right bracketed RB
pre-Lie words of weight 6 (10) in (R, R) by

Lo(m;) := Z R([gmi)(XjO_l,...,Xjami)).

TESm;

We recover identity (13), that is, for X = X; = .- = X,,, from the fact that the
number of ordered partitions of type mq + - - - + my = n is given by the multinomial
coefficient n!(m!...mg!)~! and from the fact that in that case we have

Lo(m;) = m; 180 (X).

Let us turn now to the classical, commutative case and show how the classical
Spitzer identity can be recovered from the noncommutative one. Recall first that, in
the commutative case, a >g b = —6ab, so that, for 7; as above, we have

Lo(i) = mil(=0)" " R(TTjen, X7)

and we get
> RR(...R(X))Xo, ...)Xs,)
g€eSy,
B (m)! ... (my)! T |
_HEZO;., ml(m1+m2)---(m1+---+mk)( % ER(H‘ieﬂi Xp)-

Lemma 6.1. We have

1 1

gES) Mg (Mgy + Mg,) ... (Mgy + -+ + Mgy =1 M

for any sequence (my, ..., mg).
Indeed, let us consider the integral expression

1 . 1 k 1
/ xp kT dxk.../ XMy = H—
0 0 m;

i=1
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Recall that

1 1 1 X 1 y
/ xpdx/ y4dy =/ xp/ yqdydx—i—/ yq/ xPdxdy.
0 0 0 0 0 0

The formula (a weight zero RB relation for the Riemann integral map) follows from
the geometric decomposition of the square into two triangles and generalizes to higher
products of integrals. In the general case, the hypercube in dimension # is divided
into n! simplices. We get

1 1
/ g . / xi"l_ldxl
0

X
mgl—l 1 me,—1 k=1 mg, —
= g Xoy Xy abc(,k_l .dXxg,
0

geSy
1

mo’1 (m0'1 +m0'2)"'(m01 + .- +m0'k)’

oSk

which gives the expected formula.
This leads to the classical Bohnenblust—Spitzer formula [46] of weight 6

S R(R(...R(Xg)) X0y .. )X5,) = > (=0 TT (mi = D! R([Tjer, X

o€eS, TeEPy T ET
Here 7 now runs through all unordered set partitions $, of [r]; by || we denote
the number of blocks in 7; and m; was the size of the particular block ;. In the
commutative case with weight § = 0 we get the generalized integration by parts
formula .
> R(R(...R(X4))Xo, .. )X5,) = [] R(X)).

j=1

o€eSy,

Also, forn > 0and X; = --- = X,, = X we find that

R(R(...R(X)X ..)X) :i' ST (=0 =TT (my — D! R(X™).

T TEPy T ET

7. A new identity for Rota—Baxter algebras

In this section we provide a detailed proof of a theorem announced in [5], [21].
First, recall that in an RB algebra (A4, R) we find R(a %9 b) = R(a)R(b) for
the RB double product (2), which is just a reformulation of the Rota—Baxter relation.
Next we introduce some notation.
Let (A4, R) be an RB algebra and a;, ..., a, be a collection of elements in A. For
any permutation o € S, we define the element 7, (a1, . .., a,) as follows: define first
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the subset E; C {1,...,n} by k € E; if and only if oy, > o; forany j < k. We
write E, in the increasing order 1 < ky < --- <k, <n — 1. Then we set

Ts(ay,....an) = (...((ag, >g ag,) > ...) >g a(,kl)*g

(14)
kg (o ((Aoy g D0 Aoy, y0) 0 ---) B0 day)-

There are p + 1 packets separated by p double RB products on the right-hand side of
the expression (14) above, and the parentheses are set to the left inside each packet.
Quite symmetrically we define the element U, (aq,...,a,) by considering first the
subset F; C {1,...,n} defined by / € Fy if and only if 0; < o; forany j > [ + 1.
We write Fy in the increasing order: 1 <[y <--- <[, <n — 1. Then we put

Us(ai,....an) = (as, <9 (...(agllfl <9 agll))...) *g ...

(15)
s kg (a01q+1 <o (.- (@,_; 99 ag,)) -.)-

There are g 4 1 packets separated by ¢ double RB products on the right-hand side of
the expression (15) above, and the parentheses are set to the right inside each packet.
The pre-Lie operations >y and <g involved in the right-hand side of equality (14) and
(15) are given by (3) and (4), respectively.

Following [29] it is convenient to write a permutation by putting a vertical bar after
each element of E, or F, according to the case. For example, for the permutation
o = (3261457) inside S7 we have E, = {2,6} and F, = {4,5,6}. Putting the
vertical bars

o = (32|6145|7), o = (3261|4|5|7)

we see that the corresponding elements in A will then be

Ts(ay,...,a7) = (az>g az) x¢ (((as >¢ a1) > as) >g as) *g az,
Us(ai,...,a7) = (az <g (a2 <9 (ae <9 a1))) *¢ as *g as *q as.

Theorem 7.1 (New noncommutative Spitzer formula). We have

Z R(...R(R(X5))Xo,) ... Xo,) = E R(To (X1, ..., Xn)), (16)

geSy 0€SH
5 ROy R(Xg, R ) = 2 RWUs(Xrooo X)) (1)

In the weight 6 = 0 case, the pre-Lie operations involved on the right-hand side
of the above identities reduce to a >9 b = [R(a),b] = —b <p a. This case, in the
form (17), has been handled by C. S. Lam in [29], in the concrete situation when 4 is
a function space on the real line, and when R( f') is the primitive of f which vanishes
atafixed T € R. In the case of a commutative RB algebra both identities agree since
both the left and right RB pre-Lie products (3), (4), respectively, agree. See [23] for
analogous statements in the context of dendriform algebras.
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Proof. The proof of (16) proceeds by induction on the number n of arguments, and
(17) follows easily by analogy. The case n = 2 reduces to the identity

R(R(X1)X2) + R(R(X2)X1) = R(X1)R(X2) + R(X2>¢ X1),

which immediately follows from the definitions. The case n = 3 is already not
obvious and relies on considering the six permutations in S3,

(1123),  (132), (2[3D, (21)3), (321, (312),
so that

> R(R(R(Xq,) Xo,) Xo3)

geSs3
= R(X1)R(X2)R(X3) + R(X1)R(X3>9 X2) + R(X2)R(X3 >9 X1)
+ R(X2>9 X1)R(X3) + R((X3>g X2) g X1) + R((X3>g X1) >y X2).

To prove the identity, we consider the following partition of the group S, :

n—1 ik
T (18)
J.k=1

where S7 is the stabilizer of n in S, and where Sn.’k is the subset of those o € S,

suchthato; =nandojy; = k. Fork € {1,...,n — 1} we set
X n—1 ik
Sy= 1] Sa”.
j=1

This is the subset of permutations in S, in which the two-terms subsequence (n, k)
appears in some place. We have

n
S, = [ Sk.
k=1

Each S,’f is in bijective correspondence with S,_1, in an obvious way for k = n,
and by considering the two-term subsequence (n, k) as a single letter for k # n.
Precisely, in that case, in the expansion of ¢ € S, as a sequence (01, ...,05,), We
replace the pair (n,k) by n — 1 and any j, k < j < n by j — 1, so that, for
example, (2,1,5,3,4) S;”3 is sentto (2, 1, 4, 3) by the bijection. For each o € S,’f
we denote by ¢ its counterpart in S,—;. Notice that for any k # n and for any
j €{l,...,n — 1}, the correspondence ¢ + & sends S,{’k onto the subset of S;,_;
formed by the permutations 7 such that 7; = n — 1. The following lemma is almost
immediate.



212 K. Ebrahimi-Fard, D. Manchon, and F. Patras

Lemma 7.1. For o € S]} we have
To(ai,...,ay) = Ts(ay,...,an—1) *g an,
and for o € S,lf, k < n, we have
To(ay,....an) = Ts(ay,....dx,...,ay—1,0n > af),

where ayj, under the hat has been omitted.

Let us rewrite the n — 1-term sequence (ai,...,dk,...,dpn—1,0dn >g Ak) aS
(c’l‘, e clf_l). We are now ready to compute, using the last lemma and the induction
hypothesis:

> R(Ts(ai,....an))
geSy,

— Zn: > R(Ts(ar,...,an))

k=1gesk
= 3 RORC.R(R(@n)as) . )as, ) %6 0
+Z SE R(R(...R(R(ck)ck) .. )k )
=171€S,-1
= SZ R(R(R(...R(R(ay,)ax,) ... )ax,_,)an)

— Y R(R(...R(R(ag,)ay,)...)as,  R(ay))

‘[GSn 1
+ Z > R(R(... R(R(cF)er,) ... (an g a) ... )ck ).
=17€8,—1
where a, bg ax = R(an)ag + ax R(ay) = c = c 1 lies in position j. Recall that

X*xgy =R(x)y— xR (»). Using the deﬁnitlon of the pre-Lle operation >¢ and the
RB relation we get

> R(Ty(ay,...,an))

o€eS),
= SZ R(R(R(...R(R(az )az,) ...)az,_,)an)
- gj R(R(...R(R(ay,)ax,) ... )as,_, R(ay))

+Z > R(R(...R(R(R(@n)ar)ck)...)ck )
1reS 1
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+ 5 % RRGRR@eR@)EE) e, )
=1 Tt€S;—1

3% % RRC.RRRC.. R anar . )ek, )

— i > R(R(...R(R(...R(cfl)cfz) .R(an))ag . . )fn )

k=1j=2 t€Sy—1
+ 55 5 RRC.RRRC.REE)E) . DagR@n) .. ek,

where a, lies in position j (resp. j + 1) in lines 6 and 7 (resp. in the last line) in
the above computation, and where ay lies in position j 4 1 (resp. j) in lines 6 and 7
(resp. in the last line). We can rewrite this going back to the permutation group S,
and using the partition (18):

> R(Ts(ay,. .. an))

geSy,

- Z R(R(R(...R(R(do,)ds,) ... )as,_,)ds,)

JESUEZS: R(R(... R(R(dg,)as,) - . . Yo, , R(ao,))

n Zg Ue%!kR(R(R(. - R(R(4g,)day) - - gy 1)dey)

n Zg UG%J(R((R(. .- R(ag, R(as))) .. )ag,_,)

n 2"31:’21 %:, RR(.. ROR(R(.... R(ag, g, .- )0, )aoy ) - )doy)

M:

2 S R(R(... R(R(.... R(ao,)ac, . .. R(ag,))as, ) .. )ac,)

1 oeS,{‘k

+Z

k

R(R(. .. R(R(...R(do,))ac, - .. (a5, R(aq,))) ... )aa,).

-||M|

es;

ﬁ\.

Lines 2, 4 and 6 together give the left-hand side of (16) whereas lines 3, 5, 7
and 8 cancel. More precisely, line 3 cancels with the partial sum corresponding to
j = n —1inline &, line 5 cancels with the partial sum corresponding to j = 2 in
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line 7, and (for n > 4), the partial sum corresponding to some fixed j € {3,...,n—1}
in line 7 cancels with the partial sum corresponding to j — 1 in line 8. This proves
equality (16). O

8. On the Magnus’ and Atkinson’s recursions

Now we return to Atkinson’s recursions in Theorem 3.1. We will focus only on the
first equation in (8). Recall that the Spitzer algebra is naturally a graded Hopf algebra.
Moreover, we will assume the — free — Rota—Baxter algebra to be of weight 6. For
computational convenience, we consider the embedding of the Spitzer algebra & into
&[[¢t]] defined on homogeneous elements z of degree n in § by z — " - z. We agree
to identify & with its image in §[[¢]], so that this image is naturally provided with a
graded Hopf algebra structure and that the grading operation Y now is naturally given
by td,. Itis then obvious that the equation (a generalized integral equation if we view
the Rota—Baxter operation R as a generalized integral operator)

F =1+ R(F-Xt)

is solved by the series F = F(t) := ano " (RX)", which is a group-like element
in the Hopf algebra. The operation of the Dynkin map on F' is given by

D(F(t) = F()™ 13, F(t) = £(1) == ¥ &P (X)),
n>0

which, of course, implies the linear differential equation ¢, F(t) = F(t) - £(¢) and
hence, by comparing coefficients on both sides, the recursion

n—1

n(RX) = S (RX)H . g (x),

k=0
which is a way to relate our Theorem 6.1 to the classical problem of finding explicit
solutions to the first order linear differential equations 9; X = XA. Now the lin-
ear differential equation ¢9; F(t) = F(¢)£(¢) is a classical differential equation in
noncommutative variables with associated integral operator P (the weight zero RB
operator P = f Ot ) so that the equation can be solved with the usual techniques for solv-
ing matricial or functional first order differential equations. Actually, it is well known
that in the noncommutative setting the differential equation d; F'(¢) = F(¢) - %S(t)
respectively the integral equation

F@)=1 +/ F(t')- %E(z’) dt’
0

can be solved via the exponential function. Notice that this equation is a particular
case of Atkinson’s recursion with F = 1+ P(F - &), £(t) = @ Recall Magnus’
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seminal work [32]. He proposed the exponential Ansatz
F(1) = exp(Q[L](2)).

where Q[ﬁ] (0) = 0. Following [25], the series for Q[Q]
QRI() = 3 Qut”,
n>0

can be expressed in terms of multiple integrals of nested commutators. Magnus
provided a differential equation which in turn can be easily solved recursively for the
terms €2,

d —ad Q[€]
jg[g]( ) = SRl |

which leads to the Magnus recursion

QIR = P (L + 20— 1)"balad (UL (2)) (0).

@),

The coefficients are b,, := B, /n! with B, the Bernoulli numbers. Forn = 1,2,4
we find by = —1/2,b, = 1/12 and by = —1/720. We have b3 = b5 = --- = 0.

Strichartz succeeded in giving a closed solution to Magnus’ expansion [50]; see
also [36], [25]. He found

Q[g (t)_zz( 1)d(a)//

n>0 oeSn d(a)
t— R
. / [[-.. [53(tgn), S(tg”_l)] L Re))de, . dtadt.
0

Here d (o) denotes the number of descents in the permutation o € S, thatis, d(c) =
[{i <n, o(i) > o(i + 1)}|. In fact, more detail can be provided. In [25] we find the
following result for Q(¢) := Q[S] ().

Theorem 8.1 ([25]). The expansion of 2(t) in terms of the ﬁ(i)s writes

QL] (z)_zz( l)d(a) / / / L(toy) - .- L1or) &Ly, )dly . .. dt2dly.

n>00eSy, d(o)

The coefficient of the term Sgl) . f‘,g’") in the above expansion of €2 was also
given in [25]:

t 131 tim— ( 1)d(0‘) ‘ ‘
k/ dtl/ dlz.../ dtm Z lm_1 't(lyll_l-
0 0 0 oeSm d(o))

In other terms, the Magnus expansion solves the Atkinson recursion. We summarize
our results in the following theorem.
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Theorem 8.2. For an arbitrary weight 6 RB algebra A, the Atkinson recursion F =
1+ R(F -Xt), X € A, is solved by the Strichartz expansion:

F(t)—exp(z Z /dtl/ dt, ..

m>0 iy t-+in=m

i1.0s in>0
In—1 1)4©) .
/ dtnz( i1 (x) sg")(X)).
0ESH (d(o))

9. Solving Bogoliubov’s counterterm recursion

Let us return to the Bogoliubov recursion (6), as described in Section 3. As already
noticed, its original setting is perturbative quantum field theory (pQFT). Connes and
Kreimer associated to a renormalizable quantum field theory the Hopf algebra H =
@Zo:() H,, of ultraviolet (UV) superficially divergent one-particle irreducible (1PI)
Feynman graphs [11], [12]; see [24], [22], [34], [35] for reviews. This Hopf algebra
is polynomially generated by UV superficially divergent 1PI Feynman graphs, graded
by the number of loops and non-cocommutative. It is connected with the base field
being, say, the complex numbers C. We exclude from considerations theories with
gauge symmetries, for which the Hopf algebra is still commutative but, in general, is
not polynomially generated anymore [28], [51], [52].

The relevant quantities for the theory such as the Green functions can be deduced
in principle from Feynman rules — a prescription associating to each (1PI) Feynman
graph an integral. If the integrals were convergent, Feynman rules would be imbedded
into the group G(C) C Lin(H, C) of algebra maps from H to C with the Hopf algebra
counit ¢ as the group unit. Here, Lin(H, C) denotes as usual the associative algebra
of linear maps from H to C equipped with the usual convolution product, f * g :=
mc(f ® g)A. Then there would be no obvious need for a renormalization process.
However, these integrals are most often divergent, hence cannot be interpreted as
elements of G(C), and require to be renormalized to make sense.

The process of regularization, one of the most common ways to proceed, is en-
coded in the change of the target space from C to a commutative algebra A which
is supposed to be equipped with an idempotent operator (called the renormalization
scheme operator) denoted by R € End(A). Feynman rules have, after regulariza-
tion, a rigorous meaning as elements of G(A4), see e.g. [9]. We denote the projec-
tions R(A) := A_ and ﬁ(A) = (1 — R)(A) = A4 corresponding to the vector
space splittingof A = R(A) & R (A). In the dimensional regularization and minimal
substraction scheme, for example, 4 = Cle™!,€]], A = ¢ 'C[e™!], A4+ = C[[€]].
As already pointed out, one can show that for (4, R) an idempotent Rota—Baxter
algebra such as C[e™!, €]], Lin(H, A) with the idempotent operator R defined by
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R(f) = Ro f forany f € Lin(H, A), is a noncommutative complete filtered unital
Rota—Baxter algebra.

The Bogoliubov/Atkinson recursion allows then to decompose G(A) as the set-
theoretic product of its subgroups G_(A) and G4 (A): for all y € G(A), there exists
exactly one y_ € G_(A), y+ € G4 (A) such that y = y=' * y,, where we use the
notations of Section 3. Moreover y4 is a multiplicative map from the Hopf algebra
of Feynman diagrams H to C[[¢]], and y™" := lim¢_,¢ Y+ is therefore a well-defined
element of G(C), the “renormalized Feynman rule” one was looking for to compute
the relevant properties of the theory.

Now our results allow to give closed form expansions for y_, y4+ and y™". Recall
indeed from Section 3 that y_ solves Atkinson’s recursion:

y-=es+ Y (Ra)l"

n>0

fora :=e4q —y,eq := ny o &, and analogously for y4 in terms of R. In conclusion,
we get, in the weight 6 := —1 RB algebra (Lin(H, A), R) the following result.

Theorem 9.1. Fora = egq — y we have

y-=eaty (Rt

n>0

PR DD Lt
i1y +1i2) ... (11 + -+ ir)

19)

n>0 iy +-+ig=n
i1ss ik>0

Here Igm)(a) = (Igm_l)(a) >1 a) and ﬁgnﬂ)(a) = R([(I"H)(a)) was defined
in (12). It is important to underline that the expression given here applies in prin-
ciple, besides the minimal substraction and dimensional regularization scheme, to
any renormalization procedure which can be formulated in terms of a Rota—Baxter
structure.

The reader should notice the formal similarity of this solution for y_ (the “coun-
terterm character””) with Connes—Marcolli’s formula for the universal singular frame;
see [15], [13], [14] and also [20], [34], [35]. In fact, in the context of dimensional
regularization together with the minimal subtraction scheme, there exists a linear map
from the Connes—Kreimer Hopf algebra of Feynman graphs to the complex numbers
B = > _,-0 Bn, naturally associated to the counterterm y_ (see [20] for details and a
Lie theoretic construction of ) and such that

ﬂkl*"'*lBk 1
_ " B 20
e ; k1+-;m—n kiki +k2) ... (k1 + -+ km) €" .

3 km>0
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However, in spite of the similarity of formulas (19) and (20) together with the tech-
niques to obtain them, the By £L’°s do not coincide with the 2( )(a) s. In fact, both are
obtained from the action of the Dynkin operator D = § x Y. They are the homoge-
neous components of D(y_), but with respect to two different graded Hopf algebra
structures: f—,’ is simply the homogeneous component of D(y_) in the completed Hopf
algebra Lin(H, A), whereas ﬁgi)(a) is the image in Lin(H, A) of the homogeneous
component of D(y_) in the completed Spitzer algebra & built on one generator (still
written abusively @), with its associated Hopf structure as described in Section 5.
From Theorem 8.2 we conclude immediately:

Theorem 9.2. We have

y_ —exp Z /dtl/ dty ..

m>0
11+ +ln m

In— d(o) .
/ diy Zm( D it i1 ) - 2" (@).

oeS, (d((r))

Returning to [25] we may give a more combinatorial expression for the formula in
Theorem 9.2, omitting the dummy integrations. Recall the notion of a composition /
of an integer m, i.e., a vector of positive integers, its parts, I := (i, ..., ix), of length
L(I) := k and weight || := Zk_l i; = m. For instance, all compositions of weight
3are C3 := {(111),(21),(12), (3)}. The set of all compositions C := ;- Cm is
partially ordered by reversed refinement, that is, / < J iff each part of [ is a sum of
parts of J. We call J finer than /. For instance, (1234) < (11112211). Recall

o(1) = (il +i2) - 1+ -+ ix)

Let J be a composition finer than /. Define J = (J1,...,Jm) to be the unique
decomposition of the composition J such that |Jx| = iy fork = 1,...,m. Now
define
m
o/, 1) := kH o(Jx).
=1

We then deduce from [25] (paragraphs 4.2 and 4.3) the following expression for the
exponent 2[L] := > ._, ©2;[£] in the formula of Theorem 9.2:
(_ I)Z(J )—1

Q, = Z n 0 Z o(K, J)ii(lk')(a) * oo *Egk”)(a).

|J‘=I’l JﬁK={(kl7’kP)}

i>0
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