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Noncommutative tori and the Riemann–Hilbert correspondence

Snigdhayan Mahanta and Walter D. van Suijlekom

Abstract. We study the interplay between noncommutative tori and noncommutative elliptic
curves through a category of equivariant differential modules on C�. We functorially relate this
category to the category of holomorphic vector bundles on noncommutative tori as introduced
by Polishchuk and Schwarz and study the induced map between the corresponding K-theories.
In addition, there is a forgetful functor to the category of noncommutative elliptic curves of
Soibelman and Vologodsky, as well as the forgetful functor to the category of vector bundles
on C� with regular singular connections.

The category that we consider has the nice property of being a Tannakian category, hence
it is equivalent to the category of representations of an affine group scheme. Via an equivariant
version of the Riemann–Hilbert correspondence we determine this group scheme to be (the
algebraic hull of) Z2. We also obtain a full subcategory of the holomorphic vector bundles on
the noncommutative torus which is equivalent to the category of representations of Z. This
group is the proposed topological fundamental group of the noncommutative torus (understood
as a degenerate elliptic curve) and we study Nori’s notion of étale fundamental group in this
context.
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Introduction

Noncommutative geometry in its various forms has come to the forefront of mathemat-
ical research lately and noncommutative tori constitute perhaps the most extensively
studied class of examples of noncommutative differentiable manifolds. They were
introduced by Connes during the early 1980s [3] and were systematically studied by
Connes [3], Rieffel [27], [28] and others. Recently Polishchuk and Schwarz have pro-
vided a new perspective on them which is quite amenable to techniques in algebraic
geometry [23], [21]. At the same time Soibelman and Vologodsky have introduced
noncommutative elliptic curves as certain equivariant categories of coherent sheaves
[31]. The guiding principle behind both constructions is replacing a mathematical
object by its category of appropriately defined representations, viz., vector bundles
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with connections in the former case, denoted by Vect.T �
�
/, and coherent sheaves in

the latter, denoted by Bq , where q D e2�i� and � is an irrational number.
In this article we try to connect the above two constructions by introducing an

intermediate category B�
q . Besides the existence of a forgetful functor from B�

q to
Bq (as the notation might suggest), we construct a faithful and exact functor from B�

q

to Vect.T �
�
/. One may view B�

q as a sort of categorical ‘correspondence’ between
Vect.T �

�
/ and Bq . The category B�

q turns out to be a Tannakian category. Via
an equivariant version of the Riemann–Hilbert correspondence we show that it is
equivalent to the category of finite dimensional representations of (the algebraic hull
of) Z2 (see Theorem 19). This allows us to describe the K-theory of B�

q as the free
abelian group generated by two copies of C� (see Corollary 21).

The final part of the paper is a little speculative in nature, in which we propose a
fundamental group for the noncommutative torus, both topological and étale. For the
latter, Nori’s approach [16], [17] to étale fundamental groups of smooth quasiprojec-
tive curves involving Tannakian categories plays a central motivating role.

This paper is organized as follows. In the first section we briefly review the main
results of [23], including the basic definitions and examples. We also discuss the
rudiments of noncommutative tori, which are relevant for our purposes as it is known
that there are several ways of looking at them. We also show that there is a certain
modularity property satisfied by the categories Vect.T �

�
/ (see Proposition 1).

In the second section we first provide a motivation for the definition of the cate-
gories B�

q and then construct a faithful and exact functor from B�
q into Vect.T �

�
/. We

also give a description of the image of our functor and discuss the induced map on
the K-theories of the corresponding categories.

In the third section we start by briefly recalling some preliminaries of Tannakian
categories. We explain the structure of a Tannakian category on the category B�

q and
prove an equivariant version of the Riemann–Hilbert correspondence on C�. Via this
correspondence, we find that B�

q is equivalent to the category of finite dimensional
representations of Z2. As a consequence we are able to compute the K-theory of B�

q .
We conclude with the proposal for the fundamental group of the noncommutative

torus as alluded to before. After a short discussion on Nori finite bundles involving
stability conditions, we establish a full subcategory B� of Vect.T �

�
/ which is a Tan-

nakian category, and equivalent to Rep.Z/. We define a Tannakian subcategory of
B� , whose associated group scheme is our proposal for the étale fundamental group
of the noncommutative torus.

Convention. In this article, unless otherwise stated, � is always assumed to be
irrational and � in the lower half plane as in [23]. The ground field is also assumed
to be C.
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1. Preliminaries

We recall some basic facts about the structure of the category of holomorphic bundles
over noncommutative tori.

1.1. Holomorphic bundles on noncommutative tori. The noncommutative torus is
a particular case of a transformation groupC �-algebra, with Z acting continuously on
the C �-algebra C.S1/ of continuous functions on the circle. Pimsner and Voiculescu
[18] and separately Rieffel [27] studied their K-theory, while Connes analysed their
differential structure [3]. We will work with the smooth noncommutative torus, which
is a dense Fréchet subalgebra of this transformation group C �-algebra.

Let � be an irrational real number. The algebra of smooth functions A� on the non-
commutative torus T� consists of elements of the form

P
.n1;n2/2Z2 an1;n2

U
n1

1 U
n2

2

with .n1; n2/ ! an1;n2
rapidly decreasing and U1; U2 are unitaries satisfying the

commutation relation
U2U1 D exp.2�i�/U1U2: (1)

A less ad hoc definition of A� is given as the smooth crossed product C1.S1/ Ì� Z
with Z acting on S1 by rotation over � ; this is the smooth analogue of the aforemen-
tioned transformation group C �-algebra. The Fourier transform then establishes the
isomorphism A� ' C1.S1/ Ì� Z.

The two basic derivations ı1 and ı2 acting on A� are as follows:

ıj
� P
.n1;n2/2Z2

an1;n2
U
n1

1 U
n2

2

� D 2�i
P

.n1;n2/2Z2

njan1;n2
U
n1

1 U
n2

2 .j D 1; 2/:

Equivalently, one can define ı1 and ı2 by ıj .Ui / D 2�iıijUi which is then extended
to the whole of A� by applying the Leibniz rule.

The derivations ı1 and ı2 are the infinitesimal generators of the action of a com-
mutative torus T 2 on A� by automorphisms. Inside the complexified Lie algebra
generated by ı1 and ı2, we are interested in the vector parametrized by two complex
numbers !1 and !2. We denote

ı! D !1ı1 C !2ı2:
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If ! D .�; 1/ we also set ı� D ı! , which is the so-called complex structure on A� as
in [5].

1.1.1. The category of holomorphic bundles on T� . The Serre–Swan Theorem
establishes an equivalence between the category of vector bundles over a topological
spaceM and finitely generated projective modules (henceforth, for brevity, referred to
as finite projective modules) over C.M/. In this spirit, it makes sense to define vector
bundles over the noncommutative torus T� as finite projective right A� -modules.

In [3], Connes has constructed finite projective modules over A� that are labelled
by a tuple .m; n/ 2 Z2. Later, in [27] Rieffel has shown that this set, in fact, exhausts
the complete set of finite projective modules over A� (up to isomorphism).

We generalize the category considered by Polishchuk and Schwarz slightly by
defining the objects of the category Vect.T!

�
/ to be finite projective right A� -modules

carrying a holomorphic structure which is a lifting of ı! . More precisely, a holomor-
phic structure on a finite projective A� -module E is given by a C-linear connection
r W E ! E satisfying the Leibniz rule

r.ea/ D r.e/aC eı!.a/ .for all e 2 E; a 2 A� /: (2)

A morphism h W E ! E 0 is said to be holomorphic if it commutes with the connection,
i.e., rE 0.he/ D hrE .e/. These are the morphisms of the category.

One defines the cohomology groupsH 0 (resp.H 1) of A� with respect to a holo-
morphic bundleE, equipped with a connection r, as the kernel (resp. cokernel) of r.

If ! D .�; 1/, then Vect.T!
�
/ reduces to the category of holomorphic bundles

Vect.T �
�
/ as introduced in [23].

Proposition 1. (a) If g is an element in SL.2;Z/, then Vect.T g!

�
/ ' Vect.T!

�
/.

(b) If !2 ¤ 0 and � D !1

!2
, then Vect.T!

�
/ ' Vect.T �

�
/.

Proof. (a) Given a g 2 SL.2;Z/, we construct a �-automorphism � of A� such that
��1ı!� D ıg! . Evidently, it is enough to do this for the generators of SL.2;Z/,
i.e., g1 D �

1 1
0 1

�
and g2 D �

0 �1
1 0

�
. For g1, ıg1! D .!1 C !2/ı1 C ı2. We define

�1 W A� ! A� as �1.U1/ D U1U2, �1.U2/ D U2. One may easily check that �1.U1/
and �1.U2/ satisfy the commutation relation of A� as in eqn. (1) and also that

��1
1 ı!�1.U1/ D ıg1!.U1/:

Similarly, for U2 one may check that the actions of ı! and ıg1! agree. For g2,
ıg2! D �!2ı1 C !1ı2 and we define �2.U1/ D U�1

2 , �2.U2/ D U1. Once again
one can easily check that the new generators satisfy eqn. (1) and that the actions of ı!
and ıg2! agree on U1 and U2. Explicitly, the functor sends .A� ; ı!/ to .A� ; ıgi!/,
i D 1; 2, and twists the module structure by �i , i D 1; 2, i.e., e �a ´ e�i .a/, i D 1; 2



Noncommutative tori and the Riemann–Hilbert correspondence 265

and e 2 E. One verifies that r on E is compatible with ıgi! , i D 1; 2, with respect
to the twisted module structure. Indeed,

r.e � a/ D r.e�i .a// D r.e/ � aC e � ıgi!.a/

where e 2 E, a 2 A� and i D 1; 2.
(b) In our notation, ı� D ı!

!2
. Sending each r to r 0 ´ r

!2
makes r 0 automatically

compatible with ı� . More precisely, the functor sends .A� ; ı!/ to .A� ; ı� / and .E;r/
to .E;r 0/.

We end this section with a technical result that we will need later on. Let us define
wd.�/ ´ N��=jRe.�/j as the ‘real width’ of a transversal to �Z or, equivalently, the
(interval) length of the intersection of a transversal to �Z with the reals R � C. Before
we explain how this can be achieved, recall that a transversal to �Z in C is the image
of a section of the projection map C ! C=�Z (e.g., the strip 0 � Re.z=�/ < 1).

Lemma 2. For any � 2 C there is an element g in SL.2;Z/ such that wd.g�/ < 1.

Proof. One simply computes that for �.� C N/�1 (obtained as translation by an
integer N composed with inversion) we have

wd.�.� CN/�1/ D 1

Re.�/CN
:

Thus, for any � there exists an integer N > 0 such that wd.�.� CN/�1/ < 1.

1.1.2. The derived category. The derived category of holomorphic bundles is de-
fined as the homotopy category of a DG category (or a differential graded category),
which is a category with the Hom sets carrying a structure of a differential graded
complex of C-vector spaces (see [11] for more details). The corresponding homotopy
category is obtained by replacing the Hom complexes by their zeroth cohomologies.
Henceforth, by T �

�
we shall mean the noncommutative torus T� equipped with the

derivation ı� . The DG category in consideration, denoted by C.�; �/, consists of ob-
jects of Vect.T �

�
/, labelled by an integer indicating its translation degree. The Hom’s

in C.�; �/ are given by a differential complex made up from the connections on the
Hom sets in Vect.T �

�
/. Note that the Hom sets in Vect.T �

�
/ also carry a module

structure over some noncommutative torus (not necessarily T� ).
Polishchuk and Schwarz constructed a functor from the DG category C.�; �/

to Db.X� / and showed that the induced functor on the cohomology category is
fully faithful and that the image of Vect.T �

�
/ lies in the heart of the t -structure
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.D�;60;D�;>/, where

D�;60 D fK• 2 Db.X� / j H>0.K•/ D 0;

all ss factors of H 0.K•/ have slope > �g
D�;>0 D fK• 2 Db.X� / j H<�1.K•/ D 0;

all ss factors of H�1.K•/ have slope 6 �g;

(3)

with ss denoting semistable (see for the definition of slope Section 1.2 below).
Then Polishchuk showed that this functor actually induces an equivalence between

Vect.T �
�
/ and the heart C�;� of the above t -structure [20], whose derived category is

again equivalent toDb.X� / [21]. This implies that Vect.T �
�
/ is abelian and its derived

category is equivalent to Db.X� / via the Polishchuk–Schwarz functor, denoted by
S W H 0C.�; �/ ! Db.X� /.

Remark 3. The functor S� actually induces an equivalence between Vect.T �
�
/ and

C���1;� . Observe that
�
0 1�1 0

�
� D ���1 says thatA���1 is Morita equivalent to A� .

Summarising, one has the following equivalences of categories

Vect.T �
� / Š Vect.T �

���1/ Š C�;� and Db.C�;� / Š Db.X� /: (4)

1.2. Standard bundles over T �
�

. In Vect.T �
�
/ there are certain distinguished objects

called standard holomorphic bundles whose images under the Polishchuk–Schwarz
functor S� are stable objects inside Db.X� /, i.e., objects of the form F Œn� where
F is a stable bundle on X� or the structure sheaf of a point [23]. The underlying
A� -module of a standard holomorphic bundle is of the formEm;n withm; n coprime
as constructed in [3]. One defines its degree and rank as

deg.Em;n/ ´ m; rk.Em;n/ ´ m� C n;

whereas the slope of the bundle is defined as �.Em;n/ ´ m
m�Cn .

If m ¤ 0, given any z 2 C one endows Em;n with a connection of the form

rz.f / D @f

@x
C 2�i.��.Em;n/x C z/f:

If m D 0, for a given z 2 C one equips E0;1 D A� with the connection rz.a/ D
ı� .a/C2�iz �a. A standard holomorphic bundle is a moduleEm;n withm�Cn > 0

and equipped with this special connection rz . They are labelled by two coprime
integers and a complex parameter. We set Ezm;n D .Em;n;rz/; the modules Ez0;1 D
.A� ;rz/ will be abbreviated to Ez1 .
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2. Equivariant coherent sheaves and Vect.T �
�

/

We observe that there is an honest action of �Z onX� and hence on Coh.X� /. Indeed,
the point � mod .Z C �Z/ on X� lies on the real axis of the fundamental domain of
the torus and its action is restricted to the circle obtained by folding this axis. In fact,
the action given by translations of � on X� transforms to the action of multiplication
by powers of q D e2�i� under the Jacobi uniformization, i.e., z 7! qz on C�= QqZ,
Qq D e2�i� . So we are confronted with a double quotient problem, where the actions
commute. Namely, it is the improper action of the group qZ on X� , which is itself
obtained by the free and proper action of the group QqZ on C� (both actions are
by multiplication). Soibelman and Vologodsky have described the quotient space
C�=qZ in terms of their noncommutative elliptic curves Bq in [31]. The category Bq

is nothing but the category of qZ-equivariant (analytic) coherent sheaves on C� (or
equivalently, the category of modules over the crossed product algebra O.C�/Ìq Z,
which are finitely presentable over O.C�/). It follows from Lemma 3.2 of [31] that
for anyM 2 Bq the underlying O.C�/-module is free. However, there are interesting
actions of �Z or qZ on the free modules with respect to which they are equivariant.
Let us denote by ˛ the induced action by automorphisms of �Z on O.C�/:

˛.f /.z/ D f .qz/ .z 2 C�; q D e2�i� /:

Here we have understood the notation ˛ ´ ˛.1/ for the generator of Z, so that
˛.n/ D ˛n. What is lacking in this picture is an infinitesimal action in terms of ı�
and compatible connections, which accounts for the remaining �Z quotient operation.
To this end, we define a derivation on O.C�/ by ı D �z d

dz
. It is this infinitesimal

action by ı that will turn out to be the appropriate replacement for the infinitesimal
action of the group �Z.

2.1. The category B�
q . Our goal in this section is to define a category alluded

to before, which is somehow ‘in between’ the categories Vect.T �
�
/ introduced by

Polishchuk and Schwarz and Bq by Soibelman and Vologodsky. More precisely, we
would like to construct a category B�

q that is functorially related to both of these
categories. At the same time, we would like to stay as close as possible to the setting
of the Riemann–Hilbert correspondence. The discussion above motivates us to define
the following category as a description of the quotient of Bq by the infinitesimal
action of �Z.

Definition 4. The category B�
q consists of triples .M; �;r/, where

� M is a finitely presentable O.C�/-module, i.e., there is an exact sequence,

O.C�/m ! O.C�/n ! M ! 0I
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� � is a representation of �Z on M covering the action ˛ of �Z on O.C�/, i.e.,

�.m � f / D �.m/ � ˛.f / .m 2 M;f 2 O.C�//I
� r is a �Z-equivariant connection on M covering the derivation ı D �z d

dz
on

O.C�/, i.e., it satisfies

r.m � f / D r.m/ � f Cm � ı.f /;
r.�.m// D �.r.m//

for all m 2 M;f 2 O.C�/.
In addition, we impose that the connection r is a regular singular connection on
M , that is, there exists a module basis fe1; : : : ; eng of M for which the holomorphic
functions (on C�) z�1Aij (i; j D 1; : : : ; n) defined by Aij ej D r.ei / have simple
poles at 0. We callA D .Aij / the matrix of the connection with respect to that module
basis.

The morphisms in this category are equivariant O.C�/-module maps that are com-
patible with the connections. We will also write M D .M; �;r/ when no confusion
can arise. For two objects M and N we denote by Hom�Z;ı

O.C�/
.M;N / the C-linear

vector space of morphisms between them.

The uniqueness of the matrix A D Aij (after the choice of a module basis feig for
M ) is due to the fact that the modulesM in B�

q turn out to be free as O.C�/-modules.
This was observed in [31], Lemma 2, and used the fact that the sheaf M ˝C OC�

must be torsion-free due to �Z-equivariance. Hence it is locally free on C� and thus
a trivial vector bundle. It also follows from the fact that a coherent sheaf admitting a
connection is automatically locally free. As a consequence the O.C�/-module of its
global sections is free. This freeness as O.C�/-modules can be translated into freeness
as �Z-equivariant O.C�/-modules as follows. Suppose that M ' V ˝C O.C�/ as
O.C�/-modules with V a complex vector space. Via this identification there is an
induced action of �Z on V ˝C O.C�/making this an isomorphism of �Z-equivariant
O.C�/-modules.

Remark 5. The � -dependence in the above construction might seem artificial, since
all categories B�

q are equivalent for all � . Our notation is motivated by the relation
of B�

q with Vect.T �
�
/ which is established below. An equivalent construction could

be obtained by translating the � -dependence from the category B�
q to the functor to

 � W B�
q ! Vect.T �

�
/ of Proposition 8 below.

Let B� denote the category of pairs .V;r/ with V a vector bundle on C� and r
a regular singular connection on V associated to ı D �z d

dz
. By the above remarks

on the modules M in B�
q , there is a functor from B�

q to B� which forgets the action
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of �Z. Due to Deligne [6] (see also, for instance, Theorem 1.1 and the paragraph after
Remark 1.2 of [14]), we know that the category B� is equivalent to the category of
finite dimensional representations of the fundamental group �1.C�; z0/ ' Z with a
base point z0. This result motivates the regular singularity condition we have imposed
on the connections in Definition 4.

In Section 3 we will enhance this Riemann–Hilbert correspondence to an equiv-
ariant version and show that a similar statement holds for B�

q . Let us first proceed to
examine some of the properties of B�

q and its relation with the other two categories,
viz., Bq and Vect.T �

�
/.

Proposition 6. The category B�
q is an abelian category.

Proof. It is proven in Proposition 3.3 of [31] that the category Bq is abelian. One
observes readily that there is a faithful functor (forgetting the connection) from B�

q

to Bq . Suppose that f W M ! N is a morphism in B�
q . Since it is also a morphism

in Bq , both ker f and coker f are equivariant O.C�/-modules. Moreover, the mapf
intertwines the connections on M and N and hence induces compatible connections
on ker f and coker f making them objects in B�

q .

We now view A� as a module over O.C�/ via the homomorphism

 W O.C�/ ! A� ;
P
n2Z

fnz
n 7! P

n2Z

fnU
n
1 :

This is well defined since a sequence fn of exponential decay is certainly a Schwartz
sequence.

Remark 7. The map is essentially restricting a holomorphic function on C� to the
unit circle. In fact, it is injective since, if a holomorphic function vanishes on the unit
circle, it must vanish on the whole of C�. Note that A� is not finitely generated over
O.C�/ and hence not an element of Bq or B�

q .

Proposition 8. The following association defines a right exact functor, denoted  �,
from B�

q to Vect.T �
�
/. For an object .M; �;r/ in B�

q we define an object . zM; zr/ in
Vect.T �

�
/ by

zM D M ˝O.C�/ A�
zr D 2�ir ˝ 1C 1˝ .�ı1 C ı2/ D 2�ir ˝ 1C 1˝ ı� :

Proof. Observe that  .2�iıf / D �ı1. .f // as follows from the definitions of ı
and ı1. Moreover, the image of O.C�/ under the map  lies in the kernel of the
derivation ı2 on the noncommutative torus (since ı2.U1/ is vanishing). Hence one
can add ı2 to �ı1 making zr a connection on zM covering ı� .

Note that by a simple adjustment one can actually define a right exact functor from
B
!1
q to Vect.T!

�
/. We also claim that, in fact,
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Proposition 9. The map  endows A� with a flat module structure over O.C�/.

Proof. The algebra O.C�/ is a commutative integral domain, since holomorphic
functions cannot have disjoint support. Further, from Corollary 3.2 of [19] one con-
cludes that the global Ext dimension of O.C�/ is 1. Hence it is a Prüfer domain,
i.e., a domain in which all finitely generated non-zero ideals are invertible. Indeed,
Theorem 6.1 of [10] says that a (fractional) ideal in a domain is invertible if and only
if it is projective and, since O.C�/ has Ext dimension 1, given any finitely generated
ideal I , applying Hom.�;M/ to the exact sequence 0 ! I ! R ! R=I ! 0

for an arbitrary M , one finds that Ext1.I;M/ D 0, i.e., I is projective. It is known
that a module over a Prüfer domain is flat if and only if it is torsion-free (see, e.g.,
Theorem 1.4 in [10]). So we only need to check torsion-freeness. We identify A� as
a module over O.C�/ with S.Z; C1.S1// and represent each element as a sequence
fgngn2Z, gn 2 C1.S1/, refer to the discussion in Section 1.1. The image of the
map  clearly lies in C1.S1/, which is identified with the functions supported at
the identity element of Z. In other words, for all f 2 O.C�/,  .f / is of the form
ffng, where fn D 0 unless n D 0. Now consider any g D fgng 2 A� and suppose
that some non-zero f 2 Ann.fgng/, i.e., g � .f / D fgn˛n.f0/g D 0. This implies
that gn.z/f0.qnz/ D 0 for all n, jzj D 1. Being the restriction of a holomorphic
function on C�, f0.qnz/ has a discrete zero set on the unit circle. A smooth function
on S1 cannot have a discrete set of points as support and hence each gn.z/ must be
identically zero. Thus, whenever an element in A� has a non-zero element in its
annihilator ideal, the element is itself zero. Hence A� is torsion-free from which the
result follows.

Corollary 10. The base change functor � induced by the homomorphism is exact
and faithful.

Proof. From the previous proposition we conclude that the functor sends an exact
sequence of O.C�/-modules to an exact sequence of A� -modules and clearly the
induced morphisms respect the connections. For the faithfulness, identify each object
M 2 B�

q with V ˝O.C�/with V a vector space; similarly writeM 0 D V 0 ˝O.C�/.
A morphism in B�

q from M to M 0 is then given by an element in HomC.V; V
0/˝C

O.C�/, whereas a morphism in Vect.T �
�
/ between zM and zM 0 is given by an element

in HomC.V; V
0/˝C A� . The functor  � acts on these element by 1˝  and since

 is injective, it follows that  � is injective on morphisms.

Remark 11. However, the functor is not full. It is certainly not essentially surjective
as the underlying A� -modules of the objects in the image are all free, whilst Vect.T �

�
/

has modules which are not free. It is also not injective on objects.



Noncommutative tori and the Riemann–Hilbert correspondence 271

Remark 12. Before Proposition 6 we introduced the category B� ' Rep.Z/ as the
category of bundles on C� with regular singular connections compatible with �z d

dz
.

The functor  � can actually be regarded as a functor between B� and Vect.T �
�
/

and we may precompose it with the forgetful functor B�
q ! B� to get our desired

 � W B�
q ! Vect.T �

�
/.

The main theorem of [20] says that the category generated by successive extensions
of all standard holomorphic bundles over T �

�
is already all of Vect.T �

�
/ (refer to

Section 1.2 for the definition of standard bundles). Let us denote the full subcategory
of Vect.T �

�
/ generated by successive extensions of standard modules of the formEz

0

1 ,
z0 2 C by FrVect.T �

�
/. Since the extension of two free modules is again free, it is

clear that the underlying A� -module of all objects of FrVect.T �
�
/ is free.

Lemma 13. With respect to a suitable basis each object of FrVect.T �
�
/ is of the form

.An
�
; ı� CA/, where A is an n�n upper triangular matrix inMn.A� / with diagonal

entries in C.

Proof. It is known that given any finitely generated projective module M over A�

and a fixed connection r compatible with ı� , all other compatible connections are
of the form r C �, � 2 EndA�

.M/. This follows easily from the Leibniz rule (2).
Since M is of the form An

�
, � is determined by a matrix A 2 Mn.A� /. Let

0 ! .A� ;rz0/
��! .A2

� ; ı� C A/
��! .A� ;rz00/ ! 0

be a holomorphic extension in Vect.T �
�
/. Write A D �

a b
c d

�
with entries a; b; c; d 2

A� and 	.a/ D .a; 0/, �.a1; a2/ D a2. One checks easily that the holomorphicity of
	 and � (the fact that they commute with the connections) forces c D 0; a D z0 and
d D z00. Now by induction it follows that the connections obtained by successive
extensions are of the desired form.

Conversely, by induction suppose that every connection of the desired form on
An�1
�

can be obtained as an iterated extension of modules of the form Ez
0

1 . Let A be
an upper triangular matrix in Mn.A� / whose diagonal entries are in C, i.e., A is of
the form 0

BBB@
z0 b2 � � � bn
0
::: A0
0

1
CCCA ;

whereA0 2 Mn�1.A� / is also of the prescribed type and b2; : : : ; bn 2 A� . A routine
calculation then shows that

0 ! .A� ;rz0/
��! .An

� ; ı� C A/
��! .An�1

� ; ı� C A0/ ! 0;
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with 	.a/ D .a; 0; : : : ; 0/ and �.a1; a2; : : : ; an/ D .a2; : : : ; an/ is a holomorphic
extension in Vect.T �

�
/. Hence .An

�
; ı� C A/ belongs to FrVect.T �

�
/.

Remark 14. Given any matrix A 2 Mn.C/, with respect to a suitable basis one can
reduce it to its Jordan canonical form (it is also upper triangular with diagonal entries
in C). Therefore, FrVect.T �

�
/ contains all objects of the form .An

�
; ı C A/, where

A 2 Mn.C/ with respect to a basis.

As we will see later (Proposition 18), each object .M; �;r/ in B�
q is isomorphic

to an object, whose matrix of the connection is a constant matrix. This can be ac-
complished via a change of basis of M . Combining this with the above remark, we
conclude that the image of  � is a subcategory FrVect.T �

�
/.

2.2. The effect on K-theory. We infer from eqn. (4) that the K-theory (by that we
mean the Grothendieck group, i.e., the free abelian group generated by the isomor-
phism classes of objects modulo the relations coming from all exact sequences) of
Vect.T �

�
/ is isomorphic to that of Db.X� / via the Polishchuk–Schwarz equivalence

S� . One knows thatK0.Db.X� // Š K0.Coh.X� // D K0.X� / D Pic.X� /˚ Z. The
composition of the functors  � followed by S� induces a homomorphism between
K0.B

�
q/ andK0.Vect.T �

�
// D Pic.X� /˚ Z. One observes that applying  � one ob-

tains only elements in Vect.T �
�
/ whose underlying A� -modules are free. It is known

that for E 2 Vect.T �
�
/, rk S� .E/ D � deg.E/ and deg S� .E/ D rk.E/. The degree

of the modules, which are free, is known to be zero. Hence the composition of the two
functors sends every element in B�

q , whose image under  � is a standard bundle, to a
torsion sheaf onX� . One can check that O.C�/ equipped with the connection ıC z0,
where z0 2 C, gets mapped to the standard holomorphic bundleEz

0

1 as explained after
Remark 12. From part (c) of Proposition 3.7 of [23] we know that S� .E

z0

1 / is O�z0 (up
to a shift in the derived category), which is the structure sheaf of the point �z0 mod
.ZC�Z/ inX� . All modules of the form .O.C�/; �; ıCz0/with z0 2 C are endomor-
phism simple, i.e., End.O.C�/; �; ı C z0/ D C. Indeed, ignoring the equivariance
condition and the connection, End.O.C�// D O.C�/ and the equivariance condition
says that �.mf / D �.m/f . However, by definition �.mf / D �.m/˛.f / whence
˛.f / D f implying f 2 C. This module is mapped to .A� ; ı� C 2�iz0/ D Ez

0

1 ,
which in turn is mapped to the endomorphism simple object O�z0 in C�;� . It is
known that, in fact, the Grothendieck group of any nonsingular curve C is isomor-
phic to Pic.C /˚ Z. In this identification the contribution to Z comes from the rank
of the coherent sheaf, whereas Pic.C / can be regarded as the contribution from the
torsion part (actually from the determinant bundle of the sheaf, which may be iden-
tified with a torsion sheaf via a Fourier–Mukai transform). Since we shall see later
on (Corollary 21) that the classes of .O.C�/; �; ıC z0/ generate the K-theory of B�

q ,
the image of the induced map on K-theory lies inside Pic.X� /.
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Proposition 15. The map induced by S� B  � between the K-theories of B�
q and

Vect.T �
�
/ gives a surjection from K0.B

�
q/ to Pic.X� /.

Proof. The divisor class group ofX� is the free abelian group generated by the points
of X� modulo the principal divisors, which is also isomorphic to Pic.X� /. The class
of each point z0 2 X� of the divisor class group can be identified with the class of
the torsion sheaf Oz0 corresponding to the line bundle O.z0/ 2 Pic1.X� / and they
generate Pic.X� / as a group. By the above argument Oz0 is obtained by applying the
functor S� B � to the element .O.C�/; �; ı�z0/ of B�

q . Thus one obtains a surjection
onto the generating set of Pic.X� / from which the assertion follows.

Remark 16. From Proposition 2.1 of [23] we know that the images of
.O.C�/; �; ı C z0

1/ and .O.C�/; �; ı C z0
2/ under  � are isomorphic if and only if

z0
1 � z0

2 mod .ZC�Z/. More generally, abbreviating the module .O.C�/; �; ıCz0/
byMz0 , one can also rephrase the linear equivalence relation of the divisor class group
to conclude that an element of the form

P
ni ŒM�z0

i
� maps to zero at the level of K-

theory whenever
P
ni D 0 and

P
niz

0
i 2 .ZC�Z/. However, some of them actually

represent the trivial class in the K-theory of B�
q , as we will see in the next section (see

Corollary 21).

Although the image of B�
q gives only the free modules in Vect.T �

�
/, it has the

interesting property of being a Tannakian category, as we will explore in the next
section. Let us end this section by summarising the relations between B�

q and the
categories B� , Bq , Vect.T �

�
/:

B�
q

�����
��

��
��

�
 �

�� ����
��

��
��

��

Bq Vect.T �
�
/ B�

where the two diagonal arrows are the forgetful functors discussed before. All of
these functors are faithful and exact.

3. The Tannakian formalism and the equivariant Riemann–Hilbert
correspondence

We will now analyse further the structure of B�
q and define a tensor product on it.

Our main result is that this – together with a fibre functor – makes B�
q a Tannakian

category. Via an equivariant version of the Riemann–Hilbert correspondence on C�,
we determine the corresponding affine group scheme.



274 S. Mahanta and W. D. van Suijlekom

3.1. Preliminaries on Tannakian categories. We briefly recall the notion of a Tan-
nakian category. For more details, we refer the reader to the original works [29], [7],
[8] (see also Appendix B of [25]).

Let C be an k-linear abelian category, for a field k. Then C is a neutral Tannakian
category over k if the following holds:

(1) The category C is a tensor category. In other words, there is a tensor product:
for every pair of objects X , Y there is an object X ˝ Y . The tensor product is
commutative X ˝ Y ' Y ˝X and associative X ˝ .Y ˝Z/ ' .X ˝ Y /˝Z

and there is a unit object 1 (such that X ˝ 1 ' 1 ˝ X ' X ). The above
isomorphisms are supposed to be functorial.

(2) C is a rigid tensor category: there exists a duality _W C ! Cop such that:

� For any object X in C , the functor � ˝ X_ is left adjoint to � ˝ X , and
the functor X_˝� is right adjoint to X˝�.

� There is an evaluation morphism 
 W X ˝ X_ ! 1 and a unit morphism
� W 1 ! X_˝X such that .
˝1/B.1˝�/ D 1X and .1˝
/B.�˝1/ D 1X_ .

(3) An isomorphism between End.1/ and k is given.

(4) There is a fibre functor ! W C ! Vectk to the category of k-vector spaces: this
is a k-linear, faithful, exact functor that commutes with tensor products.

In general, the fibre functor could be L-valued, where L is a field extension of k.
Henceforth, unless otherwise stated, we shall consider only neutral Tannakian cat-
egories, i.e., those with a k-valued fibre functor. An important result is that every
Tannakian category is equivalent to the category of finite dimensional linear repre-
sentations of an affine group schemeG over k. Abstractly, it is given by the automor-
phism group scheme of the fibre functor. However, in most examples in the literature,
a concrete equivalence with Rep.G/ for some G is established, and we will do so as
well.

3.2. The Tannakian category structure on B�
q . Let us generalize a little and let

.R; ı/ be a differential (commutative) ring that carries an action ˛ of a group G.
Let ModG;ı.R/ denote the category consisting of free G-equivariant differential R-
modules. Recall that a differential R-module is an R-module equipped with a map
r W M ! M – a connection – that satisfies the Leibniz rule

r.m � r/ D r.m/ � r Cm � ı.r/:
Moreover, G-equivariance means that there is an action � of G such that

�g.m � r/ D �g.m/ � ˛g.r/;
r.�g.m// D �g.r.m//:
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We will group the objects in the category ModG;ı.R/ into a triple .M; �;r/ and denote
the morphisms that respect all the structures by HomG;ı

R .M;N /.

Proposition 17. The category ModG;ı.R/ is a rigid tensor category with the tensor
product given by

.M; �;r/˝ .N; � 0;r 0/ D .M ˝O.C�/ N; � ˝ � 0;r ˝ 1C 1˝ r 0/

for any two objects .M; �;r/ and .N; � 0;r 0/ in ModG;ı.R/.

Proof. We start by checking that the tensor product is commutative. First of all, since
R is a commutative ring, the ‘tensor flip’ that mapsM ˝CN ! N ˝CM factorizes
to a bijective map of R-modules from M ˝R N to N ˝R M . One also checks that
it intertwines the actions � ˝ � 0 and � 0 ˝ � and the two connections.

The duality is given as follows, for an object .M D V ˝ R; �;r/, V a vector
space, we define its dual object .M_; �_;r_/ as follows. Define an R-module by

M_ ´ HomR.M;R/;

with r 2 R acting on f 2 M_ by .f � r/.m/ D f .m/ � r D f .m � r/. It can be
equipped with a dual action �_ of G by setting for f 2 M_,

�_.f / D ˛ B f B ��1:

One can check that �_.f / is again R-linear:

�_.f /.m � r/ D ˛ B f .��1.m/ � ˛�1.r// D ˛ B f B ��1.m/ � r D .�_.f / � r/.m/:
Moreover, the action of R on M_ is equivariant with respect to �_:

�_.f � r/.m/ D ˛ B .f � r/.��1.m// D ˛.f .��1.m// � r/ D ˛ B f B ��1.m/ � ˛.r/:
A dual connection r_ is defined by

r_.f / D ı B f � f B r;
which indeed satisfies the Leibniz rule

r_.f � r/.m/ D ı.f .m// � r C f .m/ � ı.r/ � f .r.m// � r
D .r_.f / � r/.m/C .f � ı.r//.m/;

and is �_-invariant:

�_.r_.f // D ˛B.ıBf /B��1�˛B.f Br/B��1 D ıB.˛Bf B��1/�.˛Bf B��1/Br;
since ˛ and � commute with ı and r, respectively.
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Note that since M D V ˝R, we can identify,

M_ ' HomR.V ˝R;R/ ' HomC.V;C/˝R ' V � ˝R;

from which it follows that M__ ' M . Indeed, one checks that the induced map
respects the extra .G; ı/-structure:

�__.m/.f / D ˛ Bm B .�_/�1.f / D ˛ Bm B .˛�1 B f B �/ D f .�.m//;

r__.m/.f / D .ı Bm/.f / �m B r_.f /
D ı.f .m// �m B .ı B f /C f .r.m// D f .r.m//

for all m 2 M , f 2 M_. In addition, it allows one to prove that the association

� 2 HomG;ı
R .N1;M

_ ˝R N2/ 7! Q� 2 HomG;ı
R .M ˝R N1; N2/;

Q�.m˝ n1/ ´ �.n1/.m/ 2 N2:
induces an isomorphism. Again, it is enough to show that this map is both G-
equivariant and ı-invariant, which is left as an exercise.

In a similar way, one proves that

HomG;ı
R .N1 ˝RM

_; N2/ ' HomG;ı
R .N1; N2 ˝RM/:

Finally, there is an evaluation morphism and a unit morphism given in terms of a basis
feig of V and its dual f Oeig of V � by


.m˝ f / D f .m/; �.1R/ D Oei ˝ ei ;

which satisfy the required properties.

Let us now return to the category B�
q of Definition 4. It is not difficult to see that

the above tensor product respects the regular singularity condition in the definition
of B�

q . Hence this becomes a rigid tensor category as well. We would like to show
that it is in fact a Tannakian category by constructing a fibre functor to VectC. The
following observations turn out to be essential in what follows.

Via a series of changes of basis, it is possible to bring the matrix A in the form of
a constant matrix with all eigenvalues in the same transversal of �Z. In other words,
its eigenvalues never differ by an integer multiple of � . We follow the argument of
Section 17 in [32]. LetA.z/ D A0CA1zC� � � be a matrix with holomorphic entries.
We first bring the constant term A0 in Jordan canonical form via a constant change
of basis matrix. Subsequently, we can bring all the eigenvalues of A0 in the same
transversal of �Z by the so-called shearing transformations. Let us consider the case
of a 2 � 2 matrix A.z/ and write

A.z/ D
�
�1 0

0 �2

�
C

�
a.z/ b.z/

c.z/ d.z/

�
;
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with a D a1zCa2z2C� � � and similarly b, c and d . Let us suppose that�1��2 D k�

for some positive integer k. The change of basis is given by the matrixD D diagf1; zg
and transforms A to

A0 D D�1AD CD�1ıD D
�
�1 0

c1 �2 C �

�
C

�
a.z/ zb.z/

c2z C c3z
2 C � � � d.z/

�
;

and one readily observes that the constant term A0
0 of this matrix has eigenvalues that

differ by .k � 1/� . Proceeding in this way, one can transform A to a matrix that
has constant term with eigenvalues in the same transversal. The generalization to
arbitrary dimensions is straightforward and can be found in Section 17.1 of [32].

Proposition 18. For each object in B�
q , there exists an isomorphic object

.M D V ˝ O.C�/; �;r/ in B�
q with V a vector space and

(1) r D ıCAwithA a constant matrix with all eigenvalues in the same transversal
of �Z,

(2) � is given by �.v ˝ f / D Bv ˝ ˛.f / for an invertible constant matrix B .

Proof. Since M is a free O.C�/-module, there is a vector space V such that M '
V ˝ O.C�/. We show (1) by adopting an argument from Section 5 of [32]. By the
above observations, we can write the matrix of the connection asA D A0CA1zC� � � ,
with A0 having eigenvalues that never differ by an element of �Z. We construct a
matrixP D ICP1zC� � � (Pk inMn.C/) which solvesPA0 D AP �ıP . Comparing
the powers of z, we find that

A0Pk � Pk.A0 C �kI/ D �.Ak C Ak�1P1 C � � � C A1Pk�1/;

which can be solved recursively by our assumption on the eigenvalues of A0. This
gives a formal power series expansion and we would like to show that the entries ofP
are in fact holomorphic functions on C�.

Now by Theorem 5.4 of [32] one knows that the radius of convergence of the entries
ofP is the same as that of the entries ofA, which is infinity. Hence,P 2 Mn.O.C�//.

Next, the action of � can be written as �.v˝f / D Bv˝˛.f / for some invertible
matrix B 2 Mn.O.C�// with n the dimension of V . Expressed in terms of A and B ,
the equivariance condition � B r D r B � reads

ıB C ŒA; B� D 0; (5)

and as observed above, we may assume that A has constant entries and with eigen-
values that are all in the same transversal. We adopt the argument from the proof of
Theorem 4.4 in [14] to show that B is in fact constant. Writing B as a Laurent series
B D P

k2ZBkz
k we obtain the relations

.A � �kIn/Bk D BkA; k 2 Z:
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This implies ([32], Theorem 4.1; see also Lemma 4.6 in [14]) that .A � �kIn/ and
A have at least one common eigenvalue. But since the eigenvalues of A are all in a
transversal of �Z in C, this is impossible unless k D 0, and we conclude thatBk D 0

for all k ¤ 0.

Our next task is to show that B�
q is in fact a Tannakian category and compute the

corresponding affine group scheme. For this, we use an equivariant version of the
Riemann–Hilbert correspondence.

Theorem 19. (1) The category B�
q is a Tannakian category with the fibre functor

given by
! W B�

q ! VectC; .M; �;r/ 7! .ker r/z;
mapping an object in B�

q to the germs at a fixed point z 2 C� of local solutions to
the differential equation ıf C Af D 0, where r D ı C A with respect to a suitable
basis of M .

(2) The category B�
q is equivalent to the category Rep.Z C �Z/ of finite dimen-

sional representations of Z C �Z ' Z2.

Proof. By the existence and uniqueness of local solutions of linear differential equa-
tions, there are n local solutions to the system of differential equations ıU D �AU
once we have fixed the initial conditions, so that .ker r/z is an n-dimensional com-
plex vector space. That the functor ! is faithful can be seen as follows. Suppose
� is a morphism between two objects .M; �;r/ and .M 0; � 0;r 0/ and suppose that
these objects are of the form as in Proposition 18, with the eigenvalues of A;A0 in
the same transversal. We claim that � is given by a constant matrix so that !.�/
mapping .ker r/z to .ker r 0/z coincides with �. The argument is very similar to that
used in the second part of the proof of Proposition 18 since compatibility of � with
the connections implies that

.A0 � �kIn/�k D �kA; k 2 Z;

where we have written � D P
k2Z �kz

k . An application of Theorem 4.1 in [32] then
implies that A and A0 � �kIn have a common eigenvalue. This is impossible unless
k D 0 since by assumption A and A0 have eigenvalues in the same transversal. We
conclude that �k D 0 for all k ¤ 0 so � is given by a constant matrix, intertwining
A and A0.

The general case follows by observing that Proposition 18 implies that a morphism
between two objects in B�

q can always be written asD2 B� BD�1
1 with � constant as

above and with Di certain (invertible) change of basis matrices.
As regards (2), fix a transversal T to �Z in C. We construct a tensor functor

FT W Rep.Z2/ ! B�
q that is full, faithful and essentially surjective. Let 
1, 
2 be

two mutually commuting representations of Z on a vector space V . Then we define
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A 2 End.V / via 
1.1/ D e2�iA=� andB as 
2.1/. By Lemma 4.5 in [14], there exists
a unique matrixA such that 
1.1/ D e2�iA=� with its eigenvalues in the transversal T

and a unique matrix B 0 such that B D e2�iB
0

. We set FT .V / D .M; �;r/ in B�
q

by putting M D V ˝ O.C�/, �.v ˝ f / D Bv ˝ ˛.f / and finally r.v ˝ f / D
Av˝ f C v˝ ıf ; for a morphism � 2 Hom.V; V 0/ we simply set FT .�/ D � ˝ 1.
Once again by Lemma 4.5 in [14], the matrices A and B 0 commute, whence A and
B D e2�iB

0

commute. Thus the compatibility condition between � and r given
by eqn. (5) is satisfied. Moreover, FT .�/ is compatible with � and r and thus a
morphism in B�

q .
We infer from Proposition 18 that the functor FT is essentially surjective, since

any object in B�
q is isomorphic to an object obtained from an element in Rep.Z2/ by

the above procedure.
Fullness and faithfulness of this functor can be seen as follows. Let V , V 0 be two

vector spaces with the action of Z2 given by e2�iA=� ; B and e2�iA
0=� ; B 0, respectively.

We can choose the square matrices A and A0 such that their eigenvalues lie in the
transversal T . It then follows by the same reasoning as before that an element 
 2
Hom�Z;ı

O.C�/
.M;M 0/ is given by a constant matrix that intertwines A, B and A0, B 0,

respectively. Hence, it is given by an element in Hom.V; V 0/ that commutes with 
1
and 
2 (i.e., a morphism in Rep.Z2/).

Finally we show that FT is a tensor functor. Suppose that .V; 
1; 
2/, .V 0; 
0
1; 


0
2/

are two objects in Rep.Z2/; we need to show that there are natural isomorphisms
cV;V 0 W F.V /˝F.V 0/ ! F.V ˝V 0/. As before, we define the connection matrix A
by setting e2�iA=� D 
1.1/ and B D 
2.1/; in the same manner we define A0 and B 0
from 
0

1 and 
0
2. We then have

F.V; 
1; 
2/˝ F.V 0; 
0
1; 


0
2/

D ..V ˝ O.C�//˝O.C�/ .V
0 ˝ O.C�//; � ˝ � 0; ı C A˝ 1C 1˝ A0/:

One observes that the eigenvalues of the matrix A˝ 1C 1˝ A0 lie possibly outside
the transversal T . However, there is a unique matrix QA with all its eigenvalues in T

such that

e2�i
QA=� ´ e2�i.A˝1C1˝A0/=� D e2�iA=� ˝ e2�iA

0=� � 
1.1/˝ 
0
1.1/: (6)

The procedure of associating toA˝1C1˝A0 the matrix QA defines the required map
cV;V 0 since QA is the connection matrix that one would have obtained (via FT ) from

1˝
0

1. In fact, it follows that ifA˝1C1˝A0 commutes withB˝B 0 � 
2.1/˝
0
2.1/

then so does QA. This map is natural in V and V 0 and the usual diagrams expressing
associativity and commutativity (cf. for instance [8], Definition 1.8) are satisfied.
Moreover, it is bijective since an inverse can be constructed from eqn. (6) by using
the identification EndC.V ˝ V 0/ D EndC.V /˝ EndC.V

0/ to obtain A and A0 back
from QA.
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Note that the choice of the transversal T is irrelevant since two functors FT and
FT 0 associated to two different transversals T and T 0 to �Z are related via a natural
transformation that is given explicitly by a shearing transformation as discussed before
Proposition 18.

We observe that it is also possible to prove the above equivalence directly by
means of the fibre functor !. For this we consider the full subcategory of B�

q such
that the connection matrices have all eigenvalues in the same transversal T . It follows
from Proposition 18 that this category is equivalent to B�

q . By constructing the maps
cM;M 0 very similar to those appearing in the above proof, one can show that this is an
equivalence of rigid tensor categories. Moreover, the restriction of the fibre functor
gives it the structure of a Tannakian category. The fibre functor induces an equivalence
with Rep.Z2/ by defining the action of Z2 on .ker r/z to be given by the matrices
e2�iA=� and B . Clearly, the functor FT from the proof of Theorem 19 is the inverse
to this fibre functor.

Remark 20. For any group H the category of its finite dimensional representations
over C forms a neutral Tannakian category, which should be equivalent to the category
of representations of some affine group scheme, say yH . The group scheme yH is called
the algebraic hull of H . Strictly speaking, the affine group scheme underlying B�

q

is the algebraic hull of Z2. We refer the readers to Proposition 10.1 of [24] for an
explicit computation of the algebraic hull of Z.

As a consequence we are able to conclude that the K-theory of B�
q is the same as

that of Rep.Z2/. An object of Rep.Z2/ is a vector space V equipped with two com-
muting linear invertible endomorphisms. Using the fact that the two endomorphisms
commute, i.e., respect each others eigenspaces, one can always find a common eigen-
vector w. This gives an exact sequence 0 ! hwi ! V ! V=hwi ! 0 in Rep.Z2/.
Therefore, the K-theory of Rep.Z2/ is the free abelian group generated by the simple
objects, which are one dimensional representations with two actions a and b, with
a; b 2 C� (the actions are given by multiplication by a and b respectively). The
fibre functor sends the isomorphism class of .O.C�/; b˛; ı C z0/ with z0 2 C to
the simple object .C; b; e2�iz

0=� / in Rep.Z2/. Note that .O.C�/; b˛; ı C z0/ and
.O.C�/; b˛; ı C .z0 C n�// are isomorphic via the shearing transformation by zn.
Indeed,

.ı C z0/znf D n�znf C znıf C z0znf D zn.ı C .z0 C n�//f;

and their images also get identified via the exponentiation. Summarising, we obtain

Corollary 21. The K-theory of B�
q is the free abelian group generated by the isomor-

phism classes of the objects .O.C�/; b; ı C z0/ with b 2 C� and z0 2 C=�Z. Under
this identification, one finds that the map on K-theory induced by the functor S� B �
sends the class of .O.C�/; b; ı C z0/ to the divisor class of the point �z0 2 X� and
their linear combinations accordingly.
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4. Étale fundamental group of T �
�

In the context of noncommutative algebraic geometry typically one treats a small
triangulated category with some geometric conditions (like finite total homological
dimension) as a noncommutative space (see e.g., [12]). One views a classical smooth
and proper algebraic variety in this setting via its bounded derived category of coherent
sheaves. Roughly, Nori’s notion of an étale fundamental group of a smooth and proper
variety relies on realizing a Tannakian category structure on the subcategory of Nori
finite bundles of the category of degree 0 semistable bundles [16], [17]. We intend to
formulate a similar subcategory in Vect.T �

�
/ as a proposal for an étale fundamental

group of the noncommutative torus. Let us briefly recall the (classical) algebraic
setup.

A bundle F on a smooth and proper algebraic variety X is called finite if its class
ŒF � 2 K.X/, whereK.X/ is the Grothendieck group of the additive monoid of vector
bundles on X , is integral over Z. The Nori finite bundles are subquotients of finite
directs sums of finite bundles. However, in characteristic 0Nori finite bundles are the
same as finite bundles.

Bridgeland’s notion of a stability condition on an abstract triangulated category
provides an axiomatic characterization of the subcategory of semistable bundles,
which are sliced by their phases, a notion closely related to the degree of a bundle
(in fact analogous to its slope) [2]. A stability condition on an abstract triangulated
category C is a family of full additive subcategories P .�/ parametrized by � 2 R and
group homomorphism from Z W K0.C/ ! C satisfying a few conditions that can be
found in [2]. It turns out that specifying a stability condition is equivalent to specifying
a bounded t -structure and a group homomorphism from the Grothendieck group of its
heart to the complex numbers, sending the effective cone of the Grothendieck group
to the upper half plane and satisfying the so-called Harder–Narasimhan property
(Proposition 5.3 in [2]).

The objects of P .�/ are called semistable objects of phase � . This definition
was motivated by an attempt to understand the “stringy Kähler moduli” space of a
Calabi–Yau manifold and so it is expected that a triangulated category equipped with
a stability condition should behave like a noncommutative Kähler manifold. As a
by-product we get hold of the subcategory of semistable objects PC ´ S

�2R P .�/,
which comes with its natural slicing given by � 2 R. It follows that each subcategory
P .�/ is abelian (Lemma 5.2 in [2]).

Example 1. Let us look at the bounded derived category of coherent sheaves on a
smooth projective curve X denoted byDb.X/, which Bridgeland used as an instruc-
tive example. We choose the standard t -structure onDb.X/ and for any F 2 Db.X/

denote by ŒF � its class in K0.Db.X//. Define Z.ŒF �/ D � deg.F / C i rk.F / for
any F ¤ 0. This defines a stability condition and writing Z.ŒF �/ D re�i� , we find
that � D 1

�
arctan.rk.F /=.� deg.F /// D � 1

�
arctan.1=.�.F //. The subcategory
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P .�/ corresponds to the abelian subcategory consisting of semistable bundles of slope
�1= tan.��/. It turns out that the set of stability conditions on Db.X/ (with some
additional finiteness assumptions which we ignore here) admits a natural action of�GLC

2 .R/, which is free and transitive. For the case of higher genus, we refer to [13].

4.1. Semistable holomorphic bundles of degree 0. There is an intrinsic defini-
tion of semistable bundles over T �

�
(exactly mimicking slope stability) with a notion

of Harder–Narasimhan filtration [22]. As observed before, a stability condition on
Db.X� / can be constructed by specifying a bounded t -structure and group homomor-
phism from the K-theory of its heart to the complex numbers mapping the effective
cone to the upper half plane and having Harder–Narasimhan property. Let us consider
the t -structure of eqn. (3). It follows from the main result of [20] that the K-theory of
the heart of this t -structure, which is equivalent to Vect.T �

�
/, is generated by the classes

of the standard bundles ŒEzm;n� such that its rank rk.Ezm;n/ D m� C n is positive. In
fact, similar to Example 1 we obtain a stability condition onDb.Vect.T �

�
// ŠDb.X� /

given by Z.ŒEzm;n�/ D � deg.Ezm;n/C i rk.Ezm;n/ D �mC i.m� Cn/. The Harder–
Narasimhan property follows from the existence of such a filtration for holomorphic
bundles (see Proposition 2.8.3 of [22]). This specifies the subcategory of semistable
bundles of degree 0, i.e., m D 0, which in terms of phase (with respect to this sta-
bility condition) is given by P .1=2/. Let us denote this category by SSZ.0;T

�
�
/;

it is abelian. Recall that the category FrVect.T �
�
/ introduced before Lemma 13 was

defined as the extension closed subcategory of Vect.T �
�
/ generated by the standard

modulesEz1 . It follows from Proposition 2.1 part (b) of [23] that the classes ŒEz1 � and
ŒEz

0

1 � are equivalent in K0.Vect.T �
�
// if and only if z and z0 denote the same point

in X� D C=.Z C �Z/. So the classes ŒEz1 � account for the Pic0.X� / Š X� part of
K0.Vect.T �

�
// and their extensions account for the full Picard group Pic.X� /.

Lemma 22. The category FrVect.T �
�
/ is a full subcategory of SSZ.0;T

�
�
/.

Proof. Since Ez1 are indecomposable objects, the Calabi–Yau property of Db.X� /

shows that they must be semistable with respect to any stability condition (e.g., The-
orem 9.1 of [2]). Moreover, being degree 0 objects with respect to the above stability
condition they belong to SSZ.0;T

�
�
/. Consequently, the objects obtained by exten-

sions from them are also in SSZ.0;T
�
�
/, which proves our assertion.

Remark 23. The action of �GLC
2 .R/ on the stability manifold of an elliptic curve

is transitive and it simply relabels the phases of semistable objects without altering
them. So given any other choice of a stability condition on Db.X� / one may apply
an element of �GLC

2 .R/ to bring it to the form of our chosen stability condition Z.

4.2. Nori finite bundles over T �
�

. The aim of this section is to identify the Nori
finite bundles over T �

�
and construct a Tannakian category structure on them.
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Let us begin by motivating our choice of Z as a proposed topological fundamental
group of T� . It was shown in [15], [4] that noncommutative tori appear at the boundary
P1.R/=SL.2;Z/ of the moduli space of elliptic curves. At the rational points, which
form to a single orbit under SL.2;Z/-action, one has a degenerate elliptic curve, which
is topologically equivalent to C�. It is natural to put the degenerate elliptic curves and
the noncommutative tori homotopically on the same footing. Let us consider more
closely the case of rational � , say � D p=q. Then the action of Z factors through
the finite group Zq and the crossed product C1.S1/Ìp=q Zq is Morita equivalent to
C1.S1=Zq/ ' C1.S1/ [26]. We consider the degenerate case with � an irrational
real number as homotopically equivalent to the finite group case. Therefore, the
topological fundamental group of T� is expected to be Z, and we thus look for a
Tannakian subcategory of Vect.T �

�
/ that is equivalent to Rep.Z/.

Theorem 24. The category B� is a full subcategory of Vect.T �
�
/.

Proof. Since, by Proposition 1, Vect.T �
�
/ and Vect.T g�

�
/ are equivalent for any g 2

SL.2;Z/, we can assume by Lemma 2 that � satisfies wd.�/ < 1. As observed in
Remark 12, Proposition 8 actually defines a functor from B� to Vect.T �

�
/. We also

denote it by �. For B� there is an analogue of Proposition 18: for each object .M;r/
in B� there is an isomorphic object .V ˝O.C�/; ıCA/with V a vector space andA a
constant matrix with all eigenvalues in the same transversal to �Z. In fact, B� can be
identified with the full subcategory of B�

q consisting of those objects with trivial Z-
action so that the argument in the proof of Proposition 18 applies directly. The proof
of Theorem 19 then implies that HomB� ..V ˝O.C�/; ıCA/; .V 0 ˝O.C�/; ıCA0//
can be identified with the space of linear maps � W V ! V 0 that intertwine A and A0,
i.e., so that �A D A0�.

Next consider morphisms in the image (under  �) of B� inside Vect.T �
�
/. The

image of the object .V ˝ O.C�/; ı C A/ is clearly .V ˝ A� ; ı� C 2�iA/ (note
the factor of 2�i ). A morphism between the objects .V ˝ A� ; ı� C 2�iA/ and
.V 0 ˝ A� ; ı� C 2�iA0/ is then given as a map � W V ! V 0 ˝ A� that satisfies

� B .ı� C 2�iA/ D .ı� C 2�iA0/ B �:
We can decompose � as follows: � D P

n1;n22Z �n1n2
U
n1

1 U
n2

2 and comparing
powers of Ui on both sides of the previous equation yields

�n1n2
A D ..� n1 C n2/C A0/�n1n2

;

where we factored out a factor of 2�i (cf. the definition of ı� ).
As before, this equation implies that .� n1 C n2/ C A0 and A have at least one

eigenvalue in common. However, this is impossible (unless n1 D n2 D 0) since the
eigenvalues of A and A0 lie in the same transversal: adding � n1 C n2 will translate
every eigenvalue out of the transversal by our assumption wd.�/ < 1. Therefore,
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�n1n2
D 0 unless n1 D n2 D 0, so that also a morphism in the image of B� in

Vect.T �
�
/ is given by a constant matrix � 2 HomC .V; V

0/ satisfying �A D A0�.

This shows that  � W B� ! Vect.T �
�
/ is a full embedding. Moreover, the choice

of a transversal T to �Z yields a functor from Rep.Z/ to B� , which – according to the
Riemann–Hilbert correspondence – is an equivalence of tensor categories. We denote
this functor again byFT and via the composed functor �BFT W Rep.Z/ ! Vect.T �

�
/

we obtain some holomorphic bundles over T �
�

. These bundles are of degree 0, since
the image of��BFT is contained in FrVect.T �

�
/which is a subcategory of SSZ.0;T

�
�
/.

This is our sought-after Tannakian subcategory in Vect.T �
�
/, which is equivalent to

Rep.Z/.
This leads us to a proposal for the étale fundamental group of the noncommutative

torus as follows. Recall that a holomorphic bundleE over a smooth projective variety
is called finite if there are two distinct polynomials f and g with non-negative integral
coefficients such that f .V / and g.V / are isomorphic. In characteristic zero the Nori
finite bundles are equivalent to finite bundles in the above sense. Over a smooth
quasiprojective variety a holomorphic vector bundle obtained from a representation
of its topological fundamental group that factors through a finite group is Nori finite
[17]. The converse is also true, with some additional assumptions, over smooth
quasiprojective varieties (see Theorem 3.3 in [1] for the precise statement). For
a more elaborate treatment of Nori finite bundles over quasiprojective varieties in
characteristic zero we refer the reader to [9]. Motivated by this result we call the
objects in the image of  � B FT which factor through a finite group representation
Nori finite over T �

�
and denote the full subcategory of Vect.T �

�
/ that they comprise

by NF.T �
�
/. As a result of a theorem proved by Nori in [17], the category NF.T �

�
/ is

Tannakian.

Remark 25. That NF.T �
�
/ is Tannakian can also be seen directly. Let f be a mor-

phism in NF.T �
�
/ and, up to isomorphism, we may assume that it is of the form

f W .An1

�
; ı� C A1/ ! .A

n2

�
; ı� C A2/, where Ai , i D 1; 2, are complex upper tri-

angular matrices of appropriate sizes. The fact that they are in NF.T �
�
/ means that

all the entries are a rational numbers with all eigenvalues in the same transversal. It
can be checked that the kernel and the cokernel of f defined in Vect.T �

�
/ will also

have connection matrices with rational entries, which can be brought to the desired
form up to isomorphism by suitable base changes. The rigid tensor structure on B�

induces a rigid tensor structure on NF.T �
�
/ with identity object .A� ; ı� /. Moreover,

that End.A� ; ı� / D C can be seen from the fact that its image in Db.X� / under the
Polishchuk–Schwarz equivalence is the stable object OzD0. Finally, the fibre functor
on B� restricts to NF.T �

�
/ turning the latter into a Tannakian category.

Since NF.T �
�
/ is a subcategory of FrVect.T �

�
/ its image under the functor S� B �

lies inside the category of torsion sheaves over X� . On the other hand the category
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of Nori finite bundles of the complex elliptic curve X� , denoted by NF.X� /, is also
a subcategory of its category of semistable bundles of degree zero. For any � 2 Q
it is known that the category of semistable bundles of slope � over X� is equivalent
to the category of torsion sheaves over X� by some Fourier–Mukai transform. In
this specific case the category of semistable bundles of degree 0 (hence slope 0) can
be made equivalent to the category of torsion sheaves by applying a specific Seidel–
Thomas twist functor (for the details see [30]). The effect of this functor on .deg rk/t ,
viewed as a column vector, is simply left multiplication by the matrix

�
0 1�1 0

�
, i.e,

degree 0 bundles become rank 0 torsion sheaves. Therefore, NF.T �
�
/ and NF.X� /

can both be viewed as subcategories of the category of torsion sheaves ofX� . The set
of complex points of the Tannakian group of NF.X� / is isomorphic to yZ � yZ, while
that of NF.T �

�
/ is simply yZ. This is not very surprising since over an algebraically

closed field of characteristic zero, Nori’s fundamental group scheme is the same as
Grothendieck’s étale fundamental group (ignoring the difference that the former is a
pro-group scheme and the latter is only an abstract group). The pinching of one of
the homology cycles at the rational boundary of the modular curve (and possibly its
deformation for noncommutative tori) accounts for the lack of one copy of yZ in the
étale fundamental group of T �

�
.

References

[1] I. Biswas, Y. I. Holla, and G. Schumacher, On a characterization of finite vector bundles
as vector bundles admitting a flat connection with finite monodromy group. Proc. Amer.
Math. Soc. 128 (2000), 3661–3669. Zbl 0977.53023 MR 1695096

[2] T. Bridgeland, Stability conditions on triangulated categories. Ann. of Math. (2) 166
(2007), 317–345. Zbl 1137.18008 MR 2373143

[3] A. Connes, C� algèbres et géométrie différentielle. C. R. Acad. Sci. Paris Sér. A 290
(1980), 599–604. Zbl 0433.46057 MR 572645

[4] A. Connes, M. R. Douglas, and A. Schwarz, Noncommutative geometry and matrix the-
ory: compactification on tori. J. High Energy Phys. 02 (1998), 003. Zbl 1018.81052
MR 1613978

[5] A. Connes and M. A. Rieffel, Yang-Mills for non-commutative two-tori. In Operator
algebras and mathematical physics (Iowa City, Iowa, 1985), Contemp. Math. 62, Amer.
Math. Soc., Providence, RI, 1987, 237–266. Zbl 0633.46069 MR 0878383

[6] P. Deligne, Équations différentielles à points singuliers réguliers. Lecture Notes in Math.
163, Springer-Verlag, Berlin 1970. Zbl 0244.14004 MR 0417174

[7] P. Deligne, Catégories tannakiennes. In The Grothendieck Festschrift, Vol. II, Progr.
Math. 87, Birkhäuser, Boston 1990, 111–195. Zbl 0727.14010 MR 1106898

[8] P. Deligne and J. Milne, Tannakian categories. In Hodge cycles, motives and Shimura
varieties, Lecture Notes in Math. 900, Springer-Verlag, Berlin 1982, 101–228.
Zbl 0477.14004 MR 0654325

http://www.emis.de/MATH-item?0977.53023
http://www.ams.org/mathscinet-getitem?mr=1695096
http://www.emis.de/MATH-item?1137.18008
http://www.ams.org/mathscinet-getitem?mr=2373143
http://www.emis.de/MATH-item?0433.46057
http://www.ams.org/mathscinet-getitem?mr=572645
http://www.emis.de/MATH-item?1018.81052
http://www.ams.org/mathscinet-getitem?mr=1613978
http://www.emis.de/MATH-item?0633.46069
http://www.ams.org/mathscinet-getitem?mr=0878383
http://www.emis.de/MATH-item?0244.14004
http://www.ams.org/mathscinet-getitem?mr=0417174
http://www.emis.de/MATH-item?0727.14010
http://www.ams.org/mathscinet-getitem?mr=1106898
http://www.emis.de/MATH-item?0477.14004
http://www.ams.org/mathscinet-getitem?mr=0654325


286 S. Mahanta and W. D. van Suijlekom

[9] H. Esnault and P. H. Hai, The fundamental groupoid scheme and applications. Ann. Inst.
Fourier (Grenoble) 58 (2008), 2381–2412. Zbl 05505487

[10] L. Fuchs and L. Salce, Modules over valuation domains. Lecture Notes Pure Appl. Math.
97, Marcel Dekker, New York 1985. Zbl 0578.13004 MR 0786121

[11] B. Keller, Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27 (1994), 63–102.
Zbl 0799.18007 MR 1258406

[12] M. Kontsevich, XI Solomon Lefschetz Memorial Lecture Series: Hodge structures in
non-commutative geometry. In Non-commutative geometry in mathematics and physics
(Mexico City, 2005), Contemp. Math. 462,Amer. Math. Soc., Providence, RI, 2008, 1–21.
Zbl 05343346 MR 2444365

[13] E. Macrì, Stability conditions on curves. Math. Res. Lett. 14 (2007), 657–672.
Zbl 1151.14015 MR 2335991

[14] B. Malgrange, Regular connections, after Deligne. In Algebraic D-modules. Perspect.
Math. 2, Academic Press, Boston 1987, 151–172. Zbl 0642.32001 MR 0882000

[15] Yu. I. Manin and M. Marcolli, Continued fractions, modular symbols, and noncommuta-
tive geometry. Selecta Math. (N.S.) 8 (2002), 475–521. Zbl 1116.11033 MR 1931172

[16] M.V. Nori, On the representations of the fundamental group. Compositio Math. 33 (1976),
29–41. Zbl 0337.14016 MR 0417179

[17] M. V. Nori, The fundamental group-scheme. Proc. Indian Acad. Sci. Math. Sci. 91 (1982),
73–122. Zbl 0586.14006 MR 682517

[18] M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C�-algebra into an
AF-algebra. J. Operator Theory 4 (1980), 201–210. Zbl 0525.46031 MR 595412

[19] A. Y. Pirkovskii, On certain homological properties of Stein algebras. J. Math. Sci. 95
(1999), 2690–2702. Zbl 0944.46048 MR 1712995

[20] A. Polishchuk, Classification of holomorphic vector bundles on noncommutative two-tori.
Doc. Math. 9 (2004), 163–181. Zbl 1048.32012 MR 2054986

[21] A. Polishchuk, Noncommutative two-tori with real multiplication as noncommutative
projective varieties. J. Geom. Phys. 50 (2004), 162–187. Zbl 1085.14003 MR 2078224

[22] A. Polishchuk, Quasicoherent sheaves on complex noncommutative two-tori. Selecta
Math. (N.S.) 13 (2007), 137–173. Zbl 1135.32011 MR 2330589

[23] A. Polishchuk and A. Schwarz, Categories of holomorphic vector bundles on noncommu-
tative two-tori. Comm. Math. Phys. 236 (2003), 135–159. Zbl 1033.58009 MR 1977884

[24] M. van der Put, Differential Galois theory, universal rings and universal groups. In Dif-
ferential algebra and related topics, World Scientific Publ., Singapore 2002, 171–189.
Zbl 1070.12003 MR 1921699

[25] M. van der Put and M. F. Singer, Galois theory of linear differential equations.
Grundlehren Math. Wiss. 328, Springer-Verlag, Berlin 2003. Zbl 1036.12008
MR 1960772

[26] M. A. Rieffel, Morita equivalence for C�-algebras andW �-algebras. J. Pure Appl. Alge-
bra 5 (1974), 51–96. Zbl 0295.46099 MR 0367670

http://www.emis.de/MATH-item?05505487
http://www.emis.de/MATH-item?0578.13004
http://www.ams.org/mathscinet-getitem?mr=0786121
http://www.emis.de/MATH-item?0799.18007
http://www.ams.org/mathscinet-getitem?mr=1258406
http://www.emis.de/MATH-item?05343346
http://www.ams.org/mathscinet-getitem?mr=2444365
http://www.emis.de/MATH-item?1151.14015
http://www.ams.org/mathscinet-getitem?mr=2335991
http://www.emis.de/MATH-item?0642.32001
http://www.ams.org/mathscinet-getitem?mr=0882000
http://www.emis.de/MATH-item?1116.11033
http://www.ams.org/mathscinet-getitem?mr=1931172
http://www.emis.de/MATH-item?0337.14016
http://www.ams.org/mathscinet-getitem?mr=0417179
http://www.emis.de/MATH-item?0586.14006
http://www.ams.org/mathscinet-getitem?mr=682517
http://www.emis.de/MATH-item?0525.46031
http://www.ams.org/mathscinet-getitem?mr=595412
http://www.emis.de/MATH-item?0944.46048
http://www.ams.org/mathscinet-getitem?mr=1712995
http://www.emis.de/MATH-item?1048.32012
http://www.ams.org/mathscinet-getitem?mr=2054986
http://www.emis.de/MATH-item?1085.14003
http://www.ams.org/mathscinet-getitem?mr=2078224
http://www.emis.de/MATH-item?1135.32011
http://www.ams.org/mathscinet-getitem?mr=2330589
http://www.emis.de/MATH-item?1033.58009
http://www.ams.org/mathscinet-getitem?mr=1977884
http://www.emis.de/MATH-item?1070.12003
http://www.ams.org/mathscinet-getitem?mr=1921699
http://www.emis.de/MATH-item?1036.12008
http://www.ams.org/mathscinet-getitem?mr=1960772
http://www.emis.de/MATH-item?0295.46099
http://www.ams.org/mathscinet-getitem?mr=0367670


Noncommutative tori and the Riemann–Hilbert correspondence 287

[27] M.A. Rieffel,C�-algebras associated with irrational rotations. Pacific J. Math. 93 (1981),
415–429. Zbl 0499.46039 MR 623572

[28] M. A. Rieffel, Non-commutative tori – a case study of non-commutative differentiable
manifolds. In Geometric and topological invariants of elliptic operators, Contemp. Math.
105, Amer. Math. Soc., Providence, RI, 1990, 191–211. Zbl 0713.46046 MR 1047281

[29] N. Saavedra Rivano, Catégories Tannakiennes. Lecture Notes in Math. 265, Springer-
Verlag, Berlin 1972. Zbl 0241.14008 MR 0338002

[30] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves.
Duke Math. J. 108 (2001), 37–108. Zbl 1092.14025 MR 1831820

[31] Y. Soibelman and V. Vologodsky, Noncommutative compactifications and elliptic curves.
Internat. Math. Res. Notices 2003 (2003), 1549–1569. Zbl 1052.14004 MR 1976601

[32] W. Wasow, Asymptotic expansions for ordinary differential equations. Robert E. Krieger
Publishing Co., Huntington, N.Y., 1976. Zbl 0644.34003 MR 0460820

Received April 21, 2008; revised September 11, 2008

S. Mahanta, Department of Mathematics, University of Toronto, 40 St George Street,
Toronto, ON M5S 2E4, Canada, and Institut des Hautes Études Scientifiques,
Le Bois-Marie 35, route de Chartres, 91440 Bures-sur-Yvette, France

E-mail: smahanta@ihes.fr

W. D. van Suijlekom, Institute for Mathematics, Astrophysics and Particle Physics, Faculty
of Science, Radboud Universiteit Nijmegen, Toernooiveld 1, 6525 ED Nijmegen,
The Netherlands

E-mail: waltervs@math.ru.nl

http://www.emis.de/MATH-item?0499.46039
http://www.ams.org/mathscinet-getitem?mr=623572
http://www.emis.de/MATH-item?0713.46046
http://www.ams.org/mathscinet-getitem?mr=1047281
http://www.emis.de/MATH-item?0241.14008
http://www.ams.org/mathscinet-getitem?mr=0338002
http://www.emis.de/MATH-item?1092.14025
http://www.ams.org/mathscinet-getitem?mr=1831820
http://www.emis.de/MATH-item?1052.14004
http://www.ams.org/mathscinet-getitem?mr=1976601
http://www.emis.de/MATH-item?0644.34003
http://www.ams.org/mathscinet-getitem?mr=0460820

	Introduction
	Preliminaries
	Holomorphic bundles on noncommutative tori
	The category of holomorphic bundles on T_
	The derived category

	Standard bundles over T_

	Equivariant coherent sheaves and Vect(T_\theta^\tau)
	The category B_q^\tau
	The effect on K-theory

	The Tannakian formalism and the equivariant Riemann–Hilbert correspondence
	Preliminaries on Tannakian categories
	The Tannakian category structure on B_q^\tau

	Étale fundamental group of T_\theta^\tau 
	Semistable holomorphic bundles of degree 0
	Nori finite bundles over T_

	References

