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Localization over complex-analytic groupoids and conformal
renormalization

Denis Perrot

Abstract. We present a higher index theorem for actions of a discrete group on the complex
plane by local conformal mappings. The novelty is the use of the local anomaly formula
established in a previous paper, which represents the bivariant Chern character of a quasiho-
momorphism as the chiral anomaly associated to a renormalized noncommutative chiral field
theory. In the present situation the geometry is non-metric and the corresponding field theory
can be renormalized in a purely conformal way, exploiting the complex-analytic structure of
the groupoid only. The index formula is automatically localized at the automorphism subset
of the groupoid and involves a cap-product with the sum of two different cyclic cocycles over
the groupoid algebra. The first cocycle is a trace involving a generalization of the Lefschetz
numbers to higher-order fixed points. The second cocycle is a noncommutative Todd class,
constructed from the modular automorphism group of the algebra.

Mathematics Subject Classification (2000). 19D55, 19K56, 46L80, 46L87, 58H05, 81T40,
81T50.

Keywords. K-theory, cyclic cohomology, groupoids, conformal field theory.

1. Introduction

In the previous paper [14] we presented a general principle allowing to find local rep-
resentatives for the bivariant Chern character of quasihomomorphisms. The method
is based on a renormalized bivariant eta-cochain, whose boundary gives the desired
local formula. In fact when the quasihomomorphism has even parity this is completely
equivalent to the computation of the anomaly associated to a noncommutative chiral
gauge theory [12], and this explains why the representative of the Chern character is
local. The power of this method comes from the considerable freedom in the choice
of renormalization: changing the renormalization scheme just amounts to change
the local representative of the Chern character. The choice of scheme is however
dictated by the geometric situation at hand. In [14] we illustrated these principles
in the “metric” situation, i.e., when an abstract Dirac operator is available. In that
case the eta-cochain can be renormalized by zeta-function and the local formulas for
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the bivariant Chern character generalize the Connes–Moscovici formula [4]. There
exist however non-metric situations, for instance in conformal geometry, where the
introduction of a Dirac operator is quite unnatural and more adapted renormalization
schemes are needed. The aim of the present paper is to provide a relevant example.

We consider a smooth étale groupoid � associated to the action of a discrete group
G on the complex plane † by local conformal transformations. By this, we mean
that each g 2 G has a prescribed domain Dom.g/ � † and range Ran.g/ � †

which are open subsets, and g determines an invertible conformal transformation
Ran.g/! Dom.g/; see Section 2. A good example is a discrete subgroup of SL.2; C/

acting on the plane by homographic transformations. One may think that taking † as
the complex plane is a restrictive assumption, however we show in Example 2.3 how
to reduce the case of an arbitrary Riemann surface to a groupoid of the above form.
In general the action of G can be complicated, does not preserve any riemannian
metric and may have fixed points. We let N@ W C 1

c .†/ ! �
0;1
c .†/ be the Dolbeault

operator acting on compactly supported functions. N@ intertwines the action of G on
functions and on differential forms of bidegree .0; 1/. From the noncommutative
geometry viewpoint the groupoid � is described by the algebraic crossed product
A0 D C 1

c .†/ Ì G: it is the algebra generated by finite sums of symbols f U �
g

with g 2 G and f 2 C 1
c .Dom.g//. We represent A0 in the algebra of bounded

operators on the Hilbert space H˛ of square-integrable functions with respect to
the measure .1 C jzj/˛d 2z over †, and let B0 be the group ring of G. It turns
out that for an appropriate choice of weight ˛, the Dolbeault operator determines a
quasihomomorphism of even parity (see [13])

� W A! Es F Is y̋ B; (1)

where A and B are suitable Fréchet completions of A0 and B0, the algebra I is
the Schatten ideal of p-summable operators Lp.H˛/ for any choice of p > 2,
E D L.H˛/ y̋ B, and y̋ is the projective tensor product. The Riemann–Roch–
Grothendieck theorem stated in [13] establishes the compatibility between the push-
forward maps induced by � on various versions of K-theory and cyclic homology,
including secondary characteristic classes. We will focus on topological K-theory
and periodic cyclic homology only, i.e., the homotopy invariants of A and B. In that
case the theorem reduces to a commutative diagram

K
top
i .I y̋ A/

�Š ��

�� ��

K
top
i .I y̋ B/

��
HPi .A/

ch.�/
�� HPi .B/,

(2)

where i 2 Z2. The vertical arrow K
top
i .I y̋ � / ! HPi . � / is the Chern character

in periodic cyclic homology and �Š is the pushforward map in topological K-theory.
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The bottom arrow is the bivariant periodic Chern character ch.�/ 2 HP0.A; B/. We
are interested in the explicit calculation of the diagonal map (dashed arrow): from
cyclic homology invariants of B one thus gets K-theoretic invariants of A. This is
useful for example in the formulation of higher index theorems (see, e.g., [3], [11]).
Note that the methods developed for the equivariant index theorem of [11] cannot
be applied here because the action of G does not preserve any Riemannian metric
on †. For this reason heat kernel or zeta-function renormalizations are not suited
and in order to obtain local formulas we shall exploit the conformal geometry only,
i.e., the complex-analytic structure of � . Alternatively, in the odd case i D 1 the
diagonal map is exactly computed by a chiral anomaly [14] and the index theorem is
thus reduced to the renormalization of a chiral conformal field theory over � . The
even case i D 0 is then covered by Bott periodicity.

As stressed in [14] renormalization requires to work with the dense subalgebra
A0 � A. Indeed the cyclic cocycles obtained are distributions and make sense on the
algebra of smooth functions with compact support C 1

c .†/ÌG. We shall not address
here the question of extending these cocycles to the Fréchet algebra A. Hence let
us choose an even K-theory class Œe� 2 K

top
0 .I y̋ A/ represented by an idempotent

e 2 M1.A0/, and an odd class Œu� 2 K
top
1 .I y̋ A/ represented by an invertible

u 2 M1.A0/C such that u � 1 2 M1.A0/ (the symbol C denotes unitalization).
Their respective images under the canonical homomorphism Q� W A0 ! A0 ˝ B,
sending f U �

g to f U �
g ˝ U �

g , have Chern characters

ch. Q�.e// 2 HP0.A0 ˝B/; ch. Q�.u// 2 HP1.A0 ˝B/: (3)

(Here the algebraic tensor product A0 ˝ B is treated as a discrete algebra). The
diagonal map of (2) then corresponds to the cap-product of these Chern characters
with an appropriate cyclic cocycle ' of even degree over A0:

'\W HPi .A0 ˝B/! HPi .B/: (4)

The cocycle ' emerges from the anomaly formula. For this reason it is automatically
localized at the automorphism subset of the groupoid � , i.e., the pairs .g; z0/ 2 G�†

given by a fixed point z0 for an element g. The set of automorphisms is the union of the
discrete set �f of isolated automorphisms, and the 1-dimensional complex manifold
�1 of non-isolated automorphisms (which contains the set of units †). An isolated
automorphism .g; z0/ has an order n < 1 corresponding to the first non-vanishing
term of the Taylor expansion of the holomorphic function g.z/ � z around z0. The
non-isolated automorphisms have order n D 1 by definition (g.z/ D z around z0).
Hence ' splits as the sum of two cocycles. The first part is a cyclic cocycle of degree
zero, i.e., a trace ˆ.�/ W A0 ! C localized at isolated automorphisms:

ˆ.�/.a/ D
X

.g;z0/2�f

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/ a.g; z//zDz0
for all a 2 A0; (5)
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where H n
g;z0

.z/ is the holomorphic function .z � z0/n=.g.z/� z/ and n is the order
of .g; z0/. The second part is a cyclic cocycle of degree two localized at the manifold
of non-isolated automorphisms. Consider the crossed product algebra of differential
forms with compact support ��

c .†/ÌG. It contains A0 as subalgebra of degree zero
and is gifted with the de Rham differential d D @ C N@ acting on ��

c .†/ only and
commuting with G. There is also a noncommutative differential ı coming from the
modular derivative D over A0:

ı D Œ@; D�; ı2 D 0: (6)

D is the generator of the modular automorphism group of A0 associated to the smooth
euclidian volume form d Nz ^ dz=2i over † (see [10]). From these ingredients we
form the differentialr D d � 1

2
ı,r2 D 0 and define the Todd class of � as the cyclic

2-cocycle

Td.�/.a0; a1; a2/ D
Z

�1

a0ra1ra2 for all ai 2 A0: (7)

It was shown in [10] how the classical counterpart of the modular differential ı ac-
counts for the curvature of a Riemann surface endowed with a Kähler metric, and thus
explains why Td.�/ is the correct generalization of the usual Todd class. Note by the
way that ı was introduced in [10] as one of the generators of the Connes–Moscovici
Hopf algebra [5]. Using the anomaly formula one gets for free:

Theorem 1.1. Let Œe� 2 K
top
0 .I y̋ A/ and Œu� 2 K

top
1 .I y̋ A/ be topological

K-theory classes represented by an idempotent e 2 M1.A0/ and an invertible
element u 2 M1.A0/C respectively. Their images under the diagonal map of
the commutative diagram (2) are obtained by cap product of the Chern characters
ch. Q�.e// 2 HP0.A0 ˝ B/ and ch. Q�.u// 2 HP1.A0 ˝ B/ with the cyclic cocycle
over A0:

' D ˆ.�/C Td.�/: (8)

See Theorem 4.3 for an explicit formula. The cap-product with the Todd class is not
very surprising, since it is the general form expected in a noncommutative Riemann–
Roch–Grothendieck theorem (see the work of Brodzki, Mathai, Rosenberg and Szabo
[1]), but the trace ˆ is more exotic. It is not obvious from (5) but nevertheless true
that ˆ is invariantly defined, i.e., only depends on the complex-analytic structure of
� and not on the particular choice of complex coordinate system z (Lemma 4.1). The
contribution of an isolated automorphism .g; z0/ of order n can be computed in low
degrees,

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/a.g; z//zDz0

D 1

1 � g0.z0/
a.g; z0/ .n D 1/
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or

D 2

g00.z0/

�
1

3

g000.z0/

g00.z0/
a.g; z0/ � @za.g; z0/

�
.n D 2/

or

D 3

2g000.z0/

�
1

10

g.5/.z0/

g000.z0/
a.g; z0/ � 1

8

�
g.4/.z0/

g000.z0/

�2

a.g; z0/

C 1

2

g.4/.z0/

g000.z0/
@za.g; z0/ � @2

za.g; z0/

�
.n D 3/;

and depends on the jets of g up to order 2n � 1. For n D 1 one recognizes the
Lefschetz number 1=.1 � g0.z0// and it pairs non-trivially with the K-theory of A0.
For n � 2 one gets new traces over A0. They do not appear in usual fixed-point
theorems because the latter deal with isometries having only fixed points of order
one. However, it is not clear whether or not these new traces are relevant for the
index theorem above, because I do not know any example where their pairing with
K-theory is non-zero. Actually one may even suspect that these traces always vanish
in the cyclic 2-cohomology HC2.A0/, but a proof is missing. In any case, their
evaluation on K-theory classes in the range of an “assembly map” (whatever it is)
should vanish because a conformal transformation associated to a fixed point z0 of
order � 2 cannot generate a finite group. Nevertheless, these evanescent terms are
traces over A0 in their own right and may be of independent interest, for example in
the study of secondary characteristic classes (see [13], [14]).

The paper is organized as follows. In Section 2 we construct the quasihomomor-
phism associated to the action of G on † and recall from [14] how local representatives
of its bivariant Chern character are related to the chiral anomaly of a noncommutative
conformal field theory. Then in Section 3 we explicitly renormalize the conformal
field theory and compute the anomaly, spontaneously localized at the fixed points of
conformal mappings. These calculations are rather straightforward but involve dis-
tributions and have to be performed with care. Finally the index theorem is stated in
Section 4.

I am very indebted to the referees for important corrections concerning the use of
pseudogroups, and for their useful remarks helping to simplify greatly the proofs of
some results presented in this work.

2. Local anomaly formula

Let † D C be the complex plane. We regard † as a Riemann surface with its
canonical orientation given by the complex structure. In the following z denotes the
canonical complex coordinate system on †. Abusively z will sometimes also denote
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a point in †. Let ��
c .†/ be the differential graded algebra of smooth, complex-

valued differential forms with compact support. The degree zero subalgebra �0
c.†/

coincides with the algebra of smooth compactly supported functions C 1
c .†/. Any

one-form A 2 �1
c.†/ can be decomposed as a sum A D dzAz C d NzA Nz , and we

let �
1;0
c .†/ and �

0;1
c .†/ be the subspaces of one-forms proportional to dz and d Nz

respectively. The partial derivatives with respect to z and Nz will be denoted by @z

and @ Nz . The de Rham differential thus splits as the sum d D @ C N@ of @ D dz@z

and N@ D d Nz@ Nz . Let Q the restriction of the Dolbeault operator N@ to the space of
zero-forms:

Q W C 1
c .†/! �0;1

c .†/: (9)

We denote improperly by Q�1 the associated Green’s operator. Thus Q�1 is a linear
map from �

0;1
c .†/ to the (non-compactly supported) smooth functions C 1.†/, given

by the integral

.Q�1 � A/.w/ D
Z

†

d 2z
A Nz.z/

�.w � z/
(10)

for all A D d NzA Nz 2 �
0;1
c .†/ at any point w 2 †. Here d 2z D d Nz ^ dz=2i is the

euclidean volume form, and the Cauchy kernel 1=.w�z/ is a distribution over †�†

with singular support on the diagonal. The notation Q�1 is justified by the fact that
for any f 2 C 1

c .†/ and A 2 �
0;1
c .†/ one has Q�1Q � f D f and QQ�1 �A D A.

Indeed this can be easily verified using the distributional relation

@ Nz
1

z � w
D �ı2.z � w/;

where ı2.z/ is the Dirac mass at z D 0. We would like to complete C 1
c .†/ into a

Hilbert space of square-integrable functions with respect to some measure: for any
weight ˛ 2 R endow C 1

c .†/ with the norm

k�k˛ D
� Z

†

d 2z.1C jzj/˛j�.z/j2
�1=2

for all � 2 C 1
c .†/: (11)

Let H˛ be the Hilbert space completion of C 1
c .†/ with respect to this norm, and

observe that any one-form A 2 �
0;1
c .†/ acts by pointwise multiplication on the space

of smooth functions and thus defines a linear map C 1
c .†/! �

0;1
c .†/.

Lemma 2.1. For any one-form A 2 �
0;1
c .†/, whenever ˛ < �1 the composite

operator Q�1A W C 1
c .†/ ! C 1.†/ extends to a compact operator on H˛ , and

more precisely Q�1A is in the Schatten class Lp.H˛/ for any p > 2.

Proof. We will show that the formal adjoint of Q�1A extends to a compact operator.
The Hilbert norm k � k˛ comes from the inner product

h�; �i˛ D
Z

d 2z.1C jzj/˛�.z/�.z/
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for all �; � 2 C 1
c .†/. The adjoint .Q�1A/� with respect to this product reads

.Q�1A/��.z/ D .1C jzj/�˛A Nz.z/

Z
d 2w

.1C jwj/˛

�. xw � Nz/
�.w/:

Choose ˛ < �1 and let us show that .Q�1A/� extends to a bounded map from H˛

to the Sobolev space W1 gifted with the norm

k�kW D
� Z

d 2z.j�.z/j2 C j@z�.z/j2/
�1=2

:

Define the function with compact support f .z/ D .1 C jzj/�˛A Nz.z/. Using the
identity @z

1
Nz� xw D �ı2.z � w/ one gets

.k.Q�1A/��.z/kW /2

�
Z

d 2z
ˇ̌ˇf .z/

Z
d 2w

.1C jwj/˛

�. xw � Nz/
�.w/

ˇ̌ˇ2

C
Z

d 2z
ˇ̌ˇ@zf .z/

Z
d 2w

.1C jwj/˛

�. xw � Nz/
�.w/ � f .z/.1C jzj/˛�.z/

ˇ̌ˇ2

:

Since ˛ < 1, the function .1C jwj/˛=jw � zj is integrable with respect to w, for z

fixed. We estimate the first term of the right-hand side as follows:

Z
d 2z

ˇ̌ˇf .z/

Z
d 2w

.1C jwj/˛

�. xw � Nz/
�.w/

ˇ̌ˇ2

�
Z

d 2zd 2w1d 2w2 jf .z/j .1C jw1j/˛

�jw1 � zj j�.w1/jjf .z/j .1C jw2j/˛

�jw2 � zj j�.w2/j

�
Z

d 2zd 2w1d 2w2 jf .z/j2 .1C jw1j/˛

�jw1 � zj
.1C jw2j/˛

�jw2 � zj j�.w1/j2;

where the last step uses the Cauchy–Schwarz inequality. I.z/ D R
d 2w2

.1Cjw2j/˛

jw2�zj
is a continuous function of z, hence the integral

R
d 2zjf .z/j2 I.z/

jw1�zj is uniformly
bounded with respect to w1. Consequently there is a constant C˛.f / such that

Z
d 2z

ˇ̌ˇf .z/

Z
d 2w

.1C jwj/˛

�. xw � Nz/
�.w/

ˇ̌ˇ2 � C˛.f /

Z
d 2w1.1C jw1j/˛j�.w1/j2

� C˛.f / .k�k˛/2:
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To estimate the second term we developZ
d 2z

ˇ̌
ˇ@zf .z/

Z
d 2w

.1C jwj/˛

�. xw � Nz/
�.w/ � f .z/.1C jzj/˛�.z/

ˇ̌
ˇ2

�
Z

d 2z
ˇ̌
ˇ@zf .z/

Z
d 2w

.1C jwj/˛

�. xw � Nz/
�.w/

ˇ̌
ˇ2 C

Z
d 2zjf .z/.1C jzj/˛�.z/j2

C 2

Z
d 2zd 2w j@zf .z/j .1C jwj/

˛

�jw � zj j�.w/jjf .z/j.1C jzj/˛j�.z/j

� C˛.@zf /.k�k˛/2 C C 0
Z

d 2z .1C jzj/˛j�.z/j2

C 2

Z
d 2zd 2w j Qf .z/j.1C jzj/˛ .1C jwj/˛

�jw � zj j�.w/jj�.z/j;

where Qf .z/ is the compactly supported function @zf .z/f .z/ and C 0 is the supremum
of jf .z/j.1C jzj/˛ . The Cauchy–Schwarz inequality impliesZ

d 2zd 2w j Qf .z/j.1C jzj/˛ .1C jwj/˛

jw � zj j�.w/jj�.z/j

�
� Z

d 2zd 2w j Qf .z/j .1C jzj/
˛

jw � zj .1C jwj/˛j�.w/j2
�1=2

�
� Z

d 2zd 2w j Qf .z/j .1C jwj/
˛

jw � zj .1C jzj/˛j�.z/j2
�1=2

:

The integral
R

d 2zj Qf .z/j .1Cjzj/˛

jw�zj is uniformly bounded with respect to w, andR
d 2wj Qf .z/j .1Cjwj/˛

jw�zj is uniformly bounded with respect to z. We conclude that

k.Q�1A/��kW � C 00̨.f /k�k˛
for some constant C 00̨.f /, and the adjoint .Q�1A/� extends to a bounded map from
H˛ to the Sobolev space W1. Moreover its range is a set of functions with support
contained in the compact support of the one-form A. It follows from Rellich’s lemma
that .Q�1A/� is a compact operator on H˛ , and more precisely is p-summable for
any p > 2.

In [8] Haslinger and Helffer investigated the properties of the operator Q�1 on
weighted L2-spaces over the n-dimensional complex manifold Cn. Although the
compactness of Q�1 is a much stronger assumption than the compactness of Q�1A,
their work could help to generalise our constructions to the higher-dimensional case.

Let G be a discrete group acting by local conformal transformations on †. It
means that to any g 2 G we associate in a unique way a domain Dom.g/ and range
Ran.g/ which are (possibly empty) open subsets of †, and g determines an invertible
conformal mapping Dom.g/! Ran.g/ subject to the following conditions:
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� The unit 1 2 G acts by the identity on Dom.1/ � †.
� Dom.g�1/ D Ran.g/ for any g 2 G and g�1 determines the inverse mapping

of g.
� Dom.gh/ � h�1.Dom.g// \ Dom.h/ for any g; h 2 G.

In particular one necessarily has Dom.g/ � Dom.1/. We do not need to impose the
equality Dom.1/ D †. Observe that in general the conformal mapping Dom.g/ !
Ran.g/ induced by g does not specify g as an element of the group G: for example,
G is an arbitrary group acting by the identity on † with Dom.g/ D † for any
g 2 G. Nevertheless, for convenience we will often refer to “the conformal mapping
g W Dom.g/ ! Ran.g/” instead of “the conformal mapping Dom.g/ ! Ran.g/

induced by g 2 G”. This is abusive but should not create too much confusion. To
this data we associate the crossed product

A0 D C 1
c .†/ ÌG: (12)

It is the algebra linearly generated by finite sums of symbols f U �
g , with g 2 G and

f 2 C 1
c .Dom.g//. The product is given by convolution:

.f1U �
g1

/.f2U �
g2

/ D f1f
g1

2 U �
g2g1

;

where f
g1

2 denotes the pullback of the function f2 by the mapping induced by g1.
The conditions on the domains imply that the product is well defined and associative.
We also consider the group ring of G as the algebra B0 linearly generated by finite
sums of symbols U �

g , with product U �
g1

U �
g2
D U �

g2g1
.

Example 2.2. Let G be a discrete subgroup of SL.2; C/ acting on the plane by homo-
graphic transformations z 7! g.z/ D azCb

czCd
. In this case we may define Dom.g/ D †

if c D 0 and Dom.g/ D † n f�d
c
g otherwise.

Example 2.3. The requirement that † is the complex plane might seem an undesirable
restriction; one can, however, describe a more general Riemann surface †0 as follows.
Suppose that †0 is finitely covered by open subsets Ui with intersections Uij D
Ui \Uj , and that each Ui is a domain in the complex plane. Embed the disjoint union`

i Ui into † D C and let gij W Uij � Uj ! Ui be the conformal mapping induced
by the intersection for any i , j . We define G as the group generated by all the symbols
gij , with relations gi i D 1 and gij gjk D gik for any i , j , k. We set Dom.1/ D`

i Ui

for the unit, Dom.gij / D Uij � Uj whenever i ¤ j and Dom.g/ D ¿ if g 2 G

is not one of the gij ’s. Then the action of G on † by conformal transformations
fulfills the conditions above. Moreover, the crossed product A0 D C 1

c .†/ Ì G is
isomorphic to the convolution algebra of the groupoid associated to the covering fUig
of †0. Note that the group G itself depends only upon the number of open subsets Ui

and does not carry any information about the Riemann surface.
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Returning to the general case, the point is that the Dolbeault operator Q gives rise to
a quasihomomorphism between adequate Fréchet completions of the algebras A0 and
B0. First, A0 is canonically represented in the algebra of bounded operators L.H˛/.
Indeed, any element f U �

g 2 A0 acts as a linear operator f r.g/C W C 1
c .†/ !

C 1
c .†/, with r.g/C the action of the conformal mapping g on smooth functions by

pullback:
.f r.g/C � �/.z/ D f .z/�.g.z// for all � 2 C 1

c .†/: (13)

This makes sense because supp.f / � Dom.g/. Moreover, since f has compact
support, f r.g/C extends to a bounded operator on H˛ , and one easily checks that it
yields an algebra homomorphism A0 ! L.H˛/. In the same manner, f U �

g defines

a linear operator f r.g/� W �
0;1
c .†/ ! �

0;1
c .†/, where r.g/� is the action of the

conformal mapping g on one-forms by pullback. It turns out that conjugation with
Q also gives a bounded operator Q�1f r.g/�Q on H˛ , provided that ˛ < �1. It
suffices to note that the Dolbeault operator commutes with conformal transformations
(this is not true for its “inverse” Q�1), hence

Q�1f r.g/�Q D Q�1fQr.g/C D f r.g/C �Q�1ŒQ; f �r.g/C:

The commutator ŒQ; f � coincides with multiplication by the one-form Q � f D
d Nz@ Nzf 2 �

0;1
c .†/. Therefore Q�1ŒQ; f �r.g/C is compact by Lemma 2.1. Hence

Q�1f r.g/�Q yields another representation A0 ! L.H˛/, which differs from the
former by compact operators. Consequently, we obtain two algebra homomorphisms
.�C; ��/ W A0 ! L.H˛/˝B0 by setting

�.f U �
g /C D f r.g/C ˝ U �

g ; �.f U �
g /� D Q�1f r.g/�Q˝ U �

g : (14)

The difference �C��� is a linear map from A0 to the two-sided ideal Lp.H˛/˝B0

for any p > 2. To get a quasihomomorphism we need to complete: choose a Fréchet
m-algebra B that contains B0 as a dense subalgebra. By viewing L.H˛/ as a Banach
algebra with operator norm, the completed projective tensor product E D L.H˛/ y̋B

is a Fréchet m-algebra completion of L.H˛/ ˝ B0. Let I be the Banach algebra
Lp.H˛/ endowed with the Schatten norm k � kp . The completed projective tensor
product I y̋ B is a Fréchet m-algebra completion of Lp.H˛/˝B0. The continuous
inclusion I ! L.H˛/ induces a continuous homomorphism I y̋ B ! E . In the
sequel we assume that the latter is injective, which promotes I y̋ B to a (non-
closed) two-sided ideal in E . This assumption is not really crucial but it simplifies
the discussion. Following [13] we introduce the semi-direct sum

EsC D E Ë I y̋ B: (15)

It is E ˚ I y̋ B as a locally convex vector space, and the product puts as many terms
as possible in I y̋ B. Then EsC is a Fréchet m-algebra containing I y̋ B as a closed
two-sided ideal. This situation is depicted by E FI y̋ B. The algebra EsC is endowed
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with a canonical action of the group Z2 by automorphisms, and we define Es as the
Z2-graded crossed product algebra EsCÌZ2. It contains Is y̋ B as a (not necessarily
closed) two-sided ideal, where Is is the Z2-graded algebra of 2 � 2 matrices over I,
and one has Es F Is y̋ B. We refer to [13] for details.

Now the pair .�C; ��/ W A0 ! E induces a homomorphism � W A0 ! EsC by
setting � D �� ˚ .�C � ��/. In fact � is injective, hence we may complete A0 into
a Fréchet m-algebra by taking its closure in EsC. We should keep in mind that A

depends on the choice of completion B and of weight ˛ for the Hilbert space H˛ ,
but the renormalization calculations performed afterwards will entirely deal with A0

and hence are completely independent of these choices. To summarize, one gets a
p-summable quasihomomorphism of even parity

� W A! Es F Is y̋ B (16)

for any p > 2, according to Definition 3.1 of [13]. Moreover, � has a Chern character
ch.�/ 2 HP0.A; B/ in bivariant periodic cyclic cohomology of even degree. Its
compatibility with the pushforward map �Š in topological K-theory is expressed by
the Riemann–Roch–Grothendieck theorem of [13], through the commutative diagram

K
top
i .I y̋ A/

�Š ��

��

K
top
i .I y̋ B/

��
HPi .A/

ch.�/ �� HPi .B/

(17)

where K
top
i .I y̋ � / ! HPi . � / is the Chern character in periodic cyclic homology

and i 2 Z2. Since the quasihomomorphism is p-summable for any p > 2, ch.�/

is represented by a hierarchy of non-periodic bivariant Chern characters chn.�/ 2
HCn.A; B/ in all even degrees n � 2. They are related by the S -operation in
bivariant cyclic cohomology: chnC2.�/ 	 S chn.�/ 2 HCnC2.A; B/. Hence all the
chn.�/’s induce the same map HPi .A/ ! HPi .B/. The construction of bivariant
Chern characters requires the choice of quasi-free extensions; in the present situation
we work with the universal free extensions

0! JA! TA! A! 0; 0! JB ! TB ! B ! 0;

where TA is the tensor m-algebra over A and its ideal JA is the kernel of the multipli-
cation map TA! A. According to the Cuntz–Quillen formalism [6], the pro-algebra
yTA D lim �k

TA=.JA/k calculates the periodic cyclic homology of A as the homology
of the X -complex

X. yTA/ W yTA
\d

�
Nb

�1 yTA\; (18)
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where �1 yTA\ is the universal yTA-bimodule of noncommutative one-forms over yTA

quotiented by the commutator subspace Œ yTA; �1 yTA�. The map \d is the universal
derivation d followed by the quotient map \, and Nb is the Hochschild boundary
\xdy ! Œx; y�. The bivariant Chern character chn.�/ is realized as a bivariant
cocycle in the Hom-complex Hom.X. yTA/; X. yTB//, i.e., a chain map. We first lift
the quasihomomorphism � W A! Es F Is y̋ B to a quasihomomorphism

�� W TA!Ms F Is y̋ TB;

where M D L.H˛/ y̋ TB (again we have to suppose that I y̋ TB ! M is
injective). The homomorphism �� is constructed from a pair of homomorphisms
.��C; ���/ W TA! M defined on a chain x D f1U �

g1
˝ � � � ˝ fkU �

gk
2 TA by the

formulas

��.x/C D .f1f
g1

2 : : : f
gk�1:::g1

k
r.gk : : : g1/C/˝ .U �

g1
˝ � � � ˝ U �

gk
/;

��.x/� D Q�1.f1f
g1

2 : : : f
gk�1:::g1

k
r.gk : : : g1/�/Q˝ .U �

g1
˝ � � � ˝ U �

gk
/:

We use the convenient representation of the Z2-graded algebra Ms in terms of
2 � 2 matrices [13], and introduce the odd multiplier F D �

0 1
1 0

�
. Then we can

write ��.x/ D � ��.x/C 0

0 ��.x/�

� 2 MsC for all x 2 TA. Since the difference

��.x/C � ��.x/� is compact one has ŒF; MsC� � Is y̋ TB. The homomorphism ��
is compatible with the adic filtrations induced by the ideals JA, JB and thus extends
to a homomorphism of pro-algebras �� W yTA! yMsC. The bivariant Chern character
of degree n is given by the composition of chain maps

chn.�/ W X. yTA/
��! y� yTA

���! y� yMsC
O�n

�! X. yTB/; (19)

where 	 is the homotopy equivalence between the X -complex and the completion
of Connes’ .b C B/-complex [2] of noncommutative differential forms y� (see for
example [13]), and O
n has only two non-zero components O
n

0 W �n yMsC ! yTB and

O
n
1 W �nC1 yMsC ! �1 yTB\ given by

O
n
0.x0dx1 : : : dxn/ D .�/n

�.1C n
2
/

.nC 1/Š

X
�2ƒnC1

".�/�.x�.0/ŒF; x�.1/� : : : ŒF; x�.n/�/

O
n
1.x0dx1 : : : dxnC1/ D .�/n

�.1C n
2
/

.nC 1/Š

nC1X
iD1

�\.x0ŒF; x1� : : : dxi : : : ŒF; xnC1�/:

Here ƒnC1 is the cyclic permutation group of n C 1 elements, " is the signature of
permutations (here it is always 1 since n is even), and � is the operator supertrace.
For n D 2 it is necessary to replace � by � 0 D 1

2
�.F ŒF; �/ in order to ensure

traceability. The relation chnC2.�/ 	 S chn.�/ is a consequence of the fact that
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the difference between the cocycles O
n and O
nC2 is a coboundary in the Z2-graded
complex Hom. y� yMsC; X. yTB//:

O
n � O
nC2 D .\d ˚ Nb/ B O�nC1 C O�nC1 B .b C B/:

The eta-cochain O�nC1 is an odd element of the above Hom-complex and has only two
non-zero components O�nC1

0 W �nC1 yMsC ! yTB and O�nC1
1 W �nC2 yMsC ! �1 yTB\

given by

O�nC1
0 .x0dx1 : : : dxnC1/

D �.n
2
C 1/

.nC 2/Š

1

2
�
�
F x0ŒF; x1� : : : ŒF; xnC1�;

C
nC1X
iD1

.�/.nC1/i ŒF; xi � : : : ŒF; xnC1�F x0ŒF; x1� : : : ŒF; xi�1�
�

O�nC1
1 .x0dx1 : : : dxnC2/

D �.n
2
C 1/

.nC 3/Š

nC2X
iD1

1

2
�\.ix0F C .nC 3 � i/F x0/ŒF; x1� : : : dxi : : : ŒF; xnC2�:

Define =chnC1.�/ as the composition X. yTA/
�! y� yTA

��! y� yMsC
O�nC1

! X. yTB/.
Hence the transgression relation chn.�/ � chnC2.�/ D Œ@; =chnC1.�/� holds in the
complex Hom.X. yTA/; X. yTB//, where @ denotes the X -complex boundary and Œ ; �

is the graded commutator.
These formulas are not really efficient for computations because taking the trace

of products of operators involving the Green function Q�1 are non-local. In [14]
we presented a general method giving local representatives of the bivariant Chern
character, by renormalization of the eta-cochain. Let us recall how this can be used
to calculate the diagonal of the commutative diagram (17) in odd degree:

K
top
1 .I y̋ A/

�Š ��

��

�

��

K
top
1 .I y̋ B/

��
HP1.A/

ch.�/
�� HP1.B/.

(20)

A topological K-theory class Œu� 2 K
top
1 .I y̋ A/ is represented by an invertible

element u 2 .I y̋ A/C such that u � 1 2 I y̋ A (as usual C denotes unitalization
of algebras). The diagonal of the diagram thus carries Œu� to the periodic Chern
character ch.�Š.u// 2 HP1.B/. If one wants to use the non-local formulas, the
diagonal is equivalently calculated by a cup-product between the Chern character
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ch.u/ 2 HP1.A/ and the bivariant Chern character of the quasihomomorphism:

ch.�Š.u// D ch.�/ � ch.u/: (21)

In order to renormalize and get local formulas it will be necessary to impose that u�1

belongs to the dense subalgebra of finite size matrices M1.A0/ � I y̋ A. Indeed,
the algebra I y̋ A is too complete in general and the renormalization procedure used
in the sequel works only with appropriate “smooth” elements. By [6], the Chern
character ch.u/ 2 HP1.A/ is represented by the cycle of odd degree in the complex
X. yTA/,

ch1. Ou/ D 1p
2�i

Tr \ Ou�1d Ou 2 �1 yTA\; (22)

where Ou is any lifting of u to the unitalized (matrices over the) tensor algebra
M1. yTA/C. If one chooses the canonical lifting Ou D u induced by the linear
inclusion A ,! yTA, then the image of ch1. Ou/ under the homotopy equivalence
	 W X. yTA/! y� yTA is the .b C B/-cycle [13]

	 ch1. Ou/ D 1p
2�i

X
n�0

.�/nnŠ Tr. Ou�1d Ou.d Ou�1d Ou/n/:

For any choice of integer n � 1, the evaluation of this differential form under the
chain map O
2n�� W y� yTA ! X. yTB/ yields the representative ch2n.�/ � ch1. Ou/ of
the class ch.�Š.u//. Let us define V D �� Ou�1ŒF; �� Ou� as an element of the ideal
Is y̋ yTB � yMs , and the Maurer–Cartan form ! D �� Ou�1d.�� Ou/. Here we identify
L.H˛/ with MN .C/˝L.H˛/ for N large enough in order to get rid of matrices. A
straightforward computation gives

ch2n.�/ � ch1. Ou/ D 1p
2�i

.nŠ/2

.2n/Š

1

2
�\.V 2nC2! � F V 2ndV / 2 �1 yTB\

for any n � 1. For n > 1 one has 1
2
�\.V 2nC2! � F V 2ndV / D �\.V 2n!/, but

this simplification does not hold in degree n D 1 because the supertrace � is defined
only when V is raised to a power � 3. Two consecutive degrees are related by the
transgression relation

ch2n.�/ � ch1. Ou/ � ch2nC2.�/ � ch1. Ou/ D \d. =ch2nC1.�/ � ch1. Ou//: (23)

Since the boundary map \d W yTB ! �1 yTB\ factors through the commutator quo-
tient space yTB\ D yTB=Œ ; � it is enough to compute =ch2nC1.�/ � ch1. Ou/ modulo
commutators and one finds that

\ =ch2nC1.�/ � ch1. Ou/ D 1p
2�i

.nŠ/2

.2nC 1/Š

1

2
�\.F V 2nC1/ 2 yTB\
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for n � 1. Of course the chain =ch1.�/ � ch1. Ou/ corresponding to n D 0 does not exist
because F V 2 Is y̋ yTB is not trace class. The trick used in [14] is to renormalize this
quantity by any method, and write the Chern character as the boundary of a formal

power series. Let us denote in the form of a 2� 2 matrix �� Ou D
� OuC 0

0 Q�1 Ou�Q

�
, with

OuC and Q�1 Ou�Q in L.H˛/ y̋ yTB. Then V reads

V D
�

0 .1CQ�1A/�1 � 1

Q�1A 0

�
with A´ Ou�1� Q OuC �Q:

One has Q�1A 2 I y̋ yTB by Lemma 2.1. A simple calculation yields

\ =ch2nC1.�/ � ch1. Ou/ D .�/n

p
2�i

.nŠ/2

.2nC 1/Š
Tr \

��
Q�1A

1CQ�1A

�2nC1
.1CQ�1A=2/

�
;

where Tr is the operator trace on H˛ . This quantity may be viewed as a formal power
series in A by taking the Neumann expansion .1CQ�1A/�1 D P

k�0.�Q�1A/k .
Of course the series is divergent in general but it contains all the information we need.
Writing the corresponding series for n D 0, without taking care of traceability we
would get

\ =ch1.�/ � ch1. Ou/ D 1p
2�i

.Tr \.Q�1A/ � 1
2

Tr \.Q�1AQ�1A/C degree � 3/:

The terms of degree � 3 are well defined because the trace is finite. Thus only the
first two terms need renormalization. This will be done explicitly in the next section,
and this point uses the fact that u � 1 2 M1.A0/. Once this renormalization is
performed, we denote by \ =ch2nC1

R .�/ � ch1. Ou/ the formal power series obtained for
any values of n � 0. The first term of this series has degree 2n C 1 in A and thus
increases with n. As a consequence, the infinite sum

WR.A/´p2�i
P
n�0

\ =ch2nC1
R .�/ � ch1. Ou/ (24)

makes perfectly sense as a formal power series in A. It is not convergent in general.
Proceeding as in [13] Lemma 4.2, one finds that the term of degree k in this expansion

is simply W k.A/ D .�/kC1

k
Tr \..Q�1A/k/ for k � 3, and in lower degrees

W 1
R.A/ D Tr \.Q�1A/ and W 2

R.A/ D �1

2
Tr \.Q�1AQ�1A/

are renormalized quantities. Note that renormalization is not unique, and in general
WR.A/ is defined modulo addition of a “local” polynomial P.A/ of degree 2. The
series WR.A/ can be depicted in terms of Feynman graphs as follows. We represent
the Green operator by an arrow Q�1 D �� and the insertion of potential A D 
 by
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a point. The products Q�1AQ�1A : : : are represented by chains, which are closed
by taking the trace Tr \. Hence WR.A/ is given by a formal series of loops

WR.A/ D 
 �� � 1

2



��



�� C 1

3



��

��
��

��
��



������

����


��

� 1

4


 �� 

��



��


��

C 1

5



�����

�

���
�



		����

����





��
�

��
�



�����

���


��

C � � � :

Each term of this series lies in yTB\. Its universal derivative under the boundary map
d W yTB\ ! �1 yTB\ may be computed by means of the BRS transformations [9]. We
make the convention that the operators A and Q have odd parity, which means that
d anticommutes with Q, and the derivative of A D Ou�1� Q OuC �Q reads

dA D �.QC A/!C � !�.QC A/; (25)

with the 2� 2 matrix notation ! D � !C 0

0 Q�1!�Q

�
. A simple computation (see [14])

shows that in the sense of formal power series the derivatives of graphs of order
k � 3 cancel each other, whereas the low degree graphs yield an anomaly 
.!; A/

polynomial in A and linear in !. The anomaly is necessarily a cycle in �1 yTB\ and
thus defines a class of odd degree 
.!; A/ 2 HP1.B/. Diagramatically:

WR.A/

d ��

D W 1
R.A/

�����
�

��	
			
C W 2

R.A/

�����
�

��	
			
C W 3.A/

����
��

��	
		

		
C W 4.A/

����
��

�
��	

		
	
C : : :


.!; A/ D 
0.!; A/ C 
1.!; A/ C 
2.!; A/ C 0 C 0C � � � .
(26)

Each component of the anomaly 
k.!; A/ is a homogeneous polynomial of degree
k in A. At the same time, taking the boundary of the series (24) and using the
transgression relation (23) valid for n � 1 yields

dWR.A/ D p2�i .\d. =ch1
R.�/ � ch1. Ou//C ch2.�/ � ch1. Ou//

and shows that the anomaly 
.!; A/ defines the same cyclic homology class asp
2�i ch.�/ � ch.u/ in HP1.B/. Thus we have proved

Proposition 2.4. Let u 2 M1.A0/C be an invertible element representing a class

in K
top
1 .A/. Denote by �� Ou D

� OuC 0

0 Q�1 Ou�Q

�
the image of its canonical lifting

Ou under the homomorphism �� W yTA ! yMsC. For any renormalization of the
low-order graphs of the formal series WR.A/ associated to the “gauge potential”
A D Ou�1� Q OuC �Q, the anomaly


.!; A/ 	 p2�i ch.�Š.u// 2 HP1.B/ (27)

is a polynomial of degree at most 2 in A which computes the diagonal of the commu-
tative diagram (20) up to a factor

p
2�i .
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Let us write explicitly the elements A and ! in terms of the given invertible
u 2M1.A0/C. By hypothesis, the difference u � 1 lies in M1.A0/ and hence is a
finite sum

u � 1 D P
g2G

u.g/U �
g ;

with components u.g/ in the matrix algebra over C 1
c .†/. Since u.g/ is represented

by a bounded operator on H˛ by pointwise multiplication, the canonical lifting OuC D
��. Ou/C reads

OuC � 1 D P
g2G

u.g/r.g/C ˝ U �
g 2 L.H˛/ y̋ yTB;

where r.g/C is the representation of G by pullback. Recall also that we have a
“minus” representation r.g/� acting on the space of one-forms over †, and the lifting
Ou� D Q��. Ou/�Q�1 is given by an analogous formula. We may rewrite this as

Ou˙ � 1 D P
g2G

Ou.g/r.g/˙ with Ou.g/´ u.g/˝ U �
g 2M1.C 1

c .†//˝ yTB;

and the algebraic tensor product C 1
c .†/ ˝ yTB D lim �k

C 1
c .†/ ˝ TB=.JB/k is

defined in the sense of pro-algebras. The explicit formulas for the inverses Ou�1˙ are
more complicated. Setting u�1 � 1 DP

g2G u�1.g/U �
g one finds a series

Ou�1˙ � 1 D P
g2G

u�1.g/r.g/˙ ˝ U �
g C

P
n�1

�
1C P

g2G

u�1.g/r.g/˙ ˝ U �
g

�

� � P
h;i2G

u.h/u�1.i/hr.ih/˙ ˝ .U �
ih
� U �

h
˝ U �

i /
�n

;

where u�1.i/h is the pullback of the function u�1.i/ 2M1.C 1
c .†// by the confor-

mal mapping h. Since U �
ih
� U �

h
˝ U �

i is in the ideal JB the sum over n converges

for the JB-adic topology of yTB. As before we can decompose

Ou�1˙ � 1 D P
g2G

Ou�1.g/r.g/˙; Ou�1.g/ 2M1.C 1
c .†//˝ yTB;

but now the components Ou�1.g/ are given by complicated expressions and the sum
over g 2 G is profinite. Let us compute, taking the equivariance relation Qr.g/C D
r.g/�Q into account,

Q OuC � Ou�Q D P
g2G

.Q Ou.g/r.g/C � Ou.g/r.g/�Q/ D P
g2G

Q � Ou.g/r.g/C:

One has Q� Ou.g/ D .Q�u.g//˝U �
g 2M1.�

0;1
c .†//˝yTB and Q�u.g/ D d Nz@ Nzu.g/

is a matrix-valued one-form viewed as an operator. This allows to write explicitly the
gauge potential A D Ou�1� Q OuC �Q as

A D P
g2G

A.g/r.g/C; A.g/ D P
h2G

Ou�1.h/.Q � Ou.gh�1//h 2M1.�
0;1
c .†//˝ yTB;
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where h denotes the pullback of differential forms by the conformal mapping h.
The fact that A.g/ is a (matrix of) smooth compactly supported differential form
with values in yTB enables to view the k-linear functionals W k.A/ as distributions.
Finally, the Maurer–Cartan form may also be decomposed,

!˙ D P
g2G

!.g/r.g/˙; !.g/ D P
h2G

Ou�1.h/.d Ou.gh�1//h 2M1.C 1
c .†//˝�1 yTB;

and the BRS transformation dA D �.QC A/!C � !�.QC A/ explicitly reads

dA D � P
g2G

Q � !.g/ r.g/C � P
g;h2G

�
A.h/!.g/h C !.h/A.g/h

�
r.gh/C: (28)

3. Conformal renormalization

In this section we renormalize the low-order terms of the formal power series WR.A/

associated to a given gauge potential

A D P
g2G

A.g/r.g/C; A.g/ 2M1.�
0;1
c .†//˝ yTB;

and calculate the corresponding anomaly. We write A.g/ D d NzA Nz.g/ and view the
component A Nz.g/ 2M1.C 1

c .†//˝ yTB as a matrix of smooth compactly supported
functions with values in the pro-algebra yTB. As before we denote by Tr the operator
trace on L.H˛/ and by \ W yTB ! yTB\ the projection onto the commutator quotient
space. The k-th term of the series

W k.A/ D .�/kC1

k
Tr \.Q�1A/k 2 yTB\

should be defined as a k-linear functional of the test functions A Nz.g/, i.e., a distri-
bution, with values in yTB\. For k � 3 we know that the operator trace is finite
and W k.A/ is indeed a distribution. For k D 1; 2 the task is therefore to give a
distributional meaning to the ill-defined quantities

W 1
R.A/ D Tr \.Q�1A/; W 2

R.A/ D �1

2
Tr \.Q�1AQ�1A/:

The operators Q�1 and A.g/r.g/C have distribution kernels whose evaluation at two
complex points .z; w/ 2 † �† reads

Q�1.z; w/ D 1

�.z � w/
; .A.g/r.g/C/.z; w/ D A Nz.g; z/ı2.g.z/ � w/:

Here A Nz.g; z/ 2 yTB denotes the evaluation of the function A Nz.g/ on point z 2 † and
ı2.g.z/�w/ is the Dirac current associated to the submanifold w D g.z/ of †�†.
Also recall that g is viewed as a holomorphic function of z, and supp A.g/ 2 Dom.g/.
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The renormalization procedure will be based on the following fundamental result.
Fix a point z0 2 † and for some integer n � 1 consider the meromorphic function

f .z/ D 1

.z � z0/n
:

Then f is smooth over † n fz0g and has an isolated singularity at z D z0. Our task
is to extend f to a distribution over the entire plane †. This can be done as follows.
For n D 1, the Cauchy kernel 1=.z � z0/ is a locally integrable function over †,
hence it canonically defines a distribution. According to the terminology of Epstein
and Glaser [7], its singularity order at z0 is �1. There is no ambiguity in that case.
For n D 2 unfortunately, the function 1=.z � z0/2 is not a distribution. However one
has, for z ¤ z0, the equality of functions

1

.z � z0/2
D �@z

�
1

z � z0

�
;

and the right-hand-side makes sense as a distribution over the entire plane. Thus
we can define the distributional extension of f accordingly. Note that its singularity
order is 0. Now this extension is not unique. Indeed if Qf denotes another extension,
the difference Qf � f is a distribution with support localized at fz0g and hence is
necessarily proportional to a finite sum of derivatives of the Dirac measure ı2.z�z0/.
If moreover one requires to preserve the singularity order, one finds that all the possible
distributional extensions are given by

1

.z � z0/2
 �@z

1

z � z0

C aı2.z � z0/ (29)

for some parameter a. Among all these possibilities only the choice a D 0 is confor-
mally invariant. Indeed if w D h.z/ is any other complex coordinate system around
the singularity, with h a holomorphic function and w0 D h.z0/, one has the equality
of distributions

@z

�
1

z � z0

��
z � z0

w � w0

�2

D @w

�
1

w � w0

�
:

This shows that for a D 0 the extension only depends on the complex structure of
†. The situation for n > 2 is analogous: all the possible distributional extensions of
1=.z � z0/n with singularity order n � 2 are given by

1

.z � z0/n
 .�/n�1

.n � 1/Š
@n�1

z

�
1

z � z0

�
C P.@z; @ Nz/ı2.z � z0/; (30)

where P.@z; @ Nz/ is a polynomial of degree n � 2 in the derivatives. Only the choice
P D 0 yields a conformally invariant distribution: for any complex coordinate system
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w one has the equality of distributions

@n�1
z

�
1

z � z0

��
z � z0

w � w0

�n

D @n�1
w

�
1

w � w0

�
:

This kind of renormalization scheme is well known in conformal field theory models.
In our case the simple formulas (29) and (30) are sufficient to renormalize the formal
power series WR.A/. The general theory of renormalization by distributional exten-
sion (or distributional splitting in the Minkowskian framework) is due to Epstein and
Glaser [7].

Let us start with the tadpole graph W 1
R.A/. The operator trace of Q�1A is obtained

by integrating its distribution kernel along the diagonal. Disregarding traceability, one
gets formally

W 1
R.A/ D

X
g2G

“
d 2z d 2w

\A Nz.g; z/

�.w � z/
ı2.g.z/ � w/ D

X
g2G

Z
d 2z

\A Nz.g; z/

�.g.z/ � z/
:

This expression will make sense once we interpret the function z 7! 1=.g.z/� z/ as
a distribution. We see that the ambiguity comes from the singular points where the
function g.z/�z vanishes, i.e., at the fixed point set of the mapping g. Renormalizing
W 1

R.A/ thus amounts to extend the function 1=.g.z/ � z/ to a distribution in the
neighborhood of all fixed points. The Taylor expansion of the holomorphic function
g around a given fixed point z0 D g.z0/ 2 Dom.g/ leads to

g.z/�z D .z�z0/.g0.z0/�1/C .z � z0/2

2
g00.z0/C� � �C .z � z0/n

nŠ
g.n/.z0/C� � � :

We say that the fixed point z0 is of order n (with 1 � n � 1) if g.z/� z behaves like
.z�z0/n when z ! z0, that is, if the first non-vanishing term in the Taylor expansion
is .z � z0/n. Hence a fixed point of order 1 verifies g0.z0/ ¤ 1; in other words its
tangent space is not fixed by the tangent map. A fixed point of order � 2 has a fixed
tangent space (g0.z0/ D 1), and g differs from the identity only by the higher order
jets. A fixed point has order n D 1 if and only if g is the identity mapping in a
neighborhood of z0. Note that for a fixed point z0 of order n <1, the function

H n
g;z0

.z/´ .z � z0/n

g.z/ � z
(31)

is holomorphic in a neighborhood of z0. Now the distributional extension of the
function 1=.g.z/ � z/ depends on the order n. Three distinct cases can occur:

i) n D 1: Then z0 is necessarily an isolated fixed point and one has the equality
of functions

1

g.z/ � z
D 1

z � z0

H 1
g;z0

.z/
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for z ¤ z0. We know that 1=.z � z0/ is already a well-defined distribution on a
neighborhood of z0, hence also 1=.g.z/ � z/ and the quantity W 1

R.A/ does not need
any renormalization in this case.

ii) 2 � n < 1: Then z0 is necessarily an isolated fixed point and one has the
equality of functions

1

g.z/ � z
D 1

.z � z0/n
H n

g;z0
.z/

for z ¤ z0. According to the discussion above we perform the distributional extension

1

g.z/ � z
 .�/n�1

.n � 1/Š
@n�1

z

�
1

z � z0

�
H n

g;z0
.z/: (32)

It is not unique and one could also add a linear combination of the Dirac measure
ı2.z � z0/ and its derivatives up to order n � 2. However, we know that (32) is the
unique conformally invariant extension. It means that if w D h.z/ is a change of
complex coordinate, then w0 D h.z0/ is a fixed point of order n for the conformal
mapping hgh�1 and one has the equality of distributions

1

hgh�1.w/ � w
D 1

g.z/ � z

�
g.z/ � z

hg.z/ � h.z/

�
D 1

g.z/ � z

�
@w

@z

��1

CR.z/; (33)

where the remainder R.z/ is a holomorphic function in a neighborhood of z0. In
other words, the singular part of the distribution transforms according to the correct
conformal weight .@w=@z/�1.

iii) n D 1: Then g.z/ D z in a neighborhood of z0, hence all the points are
fixed. In this case the function 1=.g.z/�z/ has no meaning at all, and renormalization
consists in replacing the function by any quantity, for example zero:

1

g.z/ � z
 0: (34)

Of course any other numerical value would work as well.
Observe that the distributional extension ii) also gives the correct answer when

the order is n D 1. We now deal with the second graph W 2
R.A/. Integrating the dis-

tribution kernel of the operator Q�1AQ�1A along the diagonal one formally obtains
that

W 2
R.A/ D �1

2

X
g;h2G

Z
d 2v d 2z d 2w \

A Nz.g; z/

�.v � z/

A xw.h; w/

�.g.z/ � w/
ı2.h.w/ � v/

D �1

2

X
g;h2G

Z
d 2z d 2w

\A Nz.g; z/A xw.h; w/

�2.h.w/ � z/.g.z/ � w/
:
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Again, this expression will make sense once we extend the function of two variables
.z; w/ 7! 1=..h.w/� z/.g.z/�w// to a distribution in the neighborhood of singular
points. Since h is a diffeomorphism, the function 1=.h.w/ � z/ actually defines
unambiguously a distribution of two variables, with singular support restricted to the
diagonal h.w/ D z. The same is true for 1=.g.z/ � w/. Hence only the product
of these two distributions may be ill-defined on their common singular support, i.e.,
at points .z0; w0/ such that h.w0/ D z0 and g.z0/ D w0. This implies that z0 D
hg.z0/ and w0 D gh.w0/ must be fixed points, and the task is to extend the function
1=..h.w/�z/.g.z/�w// to a distribution in the neighborhood of .z0; w0/. As before
this depends on the order n of the fixed point z0 (or equivalently w0):

iv) n D 1: Then z0 is an isolated fixed point of hg, and w0 an isolated fixed point
of gh. We perform the change of variable w D g.v/ around w0 and write

1

.h.w/ � z/.g.z/ � w/
D 1

.hg.v/ � z/.g.z/ � g.v//

D 1

.hg.v/ � z/.z � v/

�
z � v

g.z/ � g.v/

�

D 1

.hg.v/ � v/

�
1

hg.v/ � z
C 1

z � v

�
z � v

g.z/ � g.v/
:

Since g is a diffeomorphism, the quotient .z � v/=.g.z/ � g.v// is a holomorphic
function of z and v. By hypothesis the fixed point v0 D z0 is of order 1, hence
the function hg.v/ � v is equivalent to .v � v0/..hg/0.v0/ � 1/ when v ! v0,
and the inverse function 1=.hg.v/ � v/ unambiguously extends to a distribution in
a neighborhood of v0. Moreover, the complex variables hg.v/ � v and z � v are
independent, so the product of distributions 1=.hg.v/ � v/ and 1=.z � v/ is well
defined. Similarly for the product of 1=.hg.v/ � v/ and 1=.hg.v/ � z/.

v) 2 � n <1: Then z0 and w0 are isolated, and by the same change of variable
w D g.v/ one still has

1

.h.w/ � z/.g.z/ � w/
D 1

.hg.v/ � v/

�
1

hg.v/ � z
C 1

z � v

�
z � v

g.z/ � g.v/
:

Now the function 1=.hg.v/ � v/ does not extend canonically to a distribution at the
fixed point v0 D z0. Proceeding as before we renormalize

1

.hg.v/ � v/
 .�/n�1

.n � 1/Š
@n�1

v

�
1

v � v0

�
H n

hg;v0
.v/; (35)

and the right-hand side makes sense as a distribution in the variable v. For the same
reason as in case iv) taking products with 1=.z � v/ or 1=.hg.v/ � z/ also yields
well-defined distributions. Let us investigate the unicity of this extension. We know
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that the distributional extension of 1=.hg.v/ � v/ is not unique and we can add a
linear combination of ı2.v� v0/ and its derivatives up to order n� 2. But these local
terms will not contribute to the final result because

@k
v@lNvı2.v � v0/

�
1

hg.v/ � z
C 1

z � v

�
D 0

in the sense of distributions whenever k C l � n � 1 (indeed .hg/0.v0/ D 1 and the
higher derivatives of hg vanish at v0 up to order n � 1). Hence the renormalization
of W 2

R.A/ is unique in the case of isolated fixed points.

vi) n D1: This means that hg.z/ D z in a neighborhood of z0, or, equivalently,
gh.w/ D w in a neighborhood of w0. As usual use the change of variables w D g.v/:

1

.h.w/ � z/.g.z/ � w/
D 1

.v � z/.g.z/ � g.v//
D �1

.z � v/2

�
z � v

g.z/ � g.v/

�
:

The quotient .z � v/=.g.z/ � g.v// is a holomorphic function of z and v, but the
function 1=.z � v/2 does not extend canonically to a distribution on the diagonal
z D v. We renormalize

�1

.z � v/2
 @z

1

z � v
; (36)

so that everything makes sense. In this case the renormalization is not unique, because
it is always possible to add a term proportional to the Dirac measure aı2.z � v/.
However, only the choice a D 0 yields a conformally invariant renormalization.

Hence even if the renormalization performed in iv)–vi) happens to be non-unique,
there is always a unique conformal extension of 1=.h.w/ � z/.g.z/ � w/ to a dis-
tribution. This allows to show the non-obvious property that this extension is in-
variant under the symmetry .g; z/ $ .h; w/. Indeed if we renormalize the function
1=.g.z/�w/.h.w/� z/ according to iv)–vi), we obtain another distributional exten-
sion of 1=.h.w/ � z/.g.z/ � w/ and both have to coincide. Hence we can write

1

.h.w/ � z/.g.z/ � w/
D 1

.g.z/ � w/.h.w/ � z/
:

The higher order graphs W k.A/ for k � 3 are unambiguously defined because the
operator trace converges. For example the triangle graph may be evaluated as

W 3.A/ D 1

3

X
g;h;i2G

Z
d 2z d 2w d 2v

\A Nz.g; z/A xw.h; w/A Nv.i; v/

�3.i.v/ � z/.g.z/ � w/.h.w/ � v/
;

and the function .z; w; v/ 7! 1=.i.v/� z/.g.z/�w/.h.w/� v/ extends to a unique
distribution with the same singularity order on the diagonal. This can be seen as



312 D. Perrot

follows. Perform the change of variables w D g.s/, v D hg.u/ and write outside the
diagonal

1

.i.v/ � z/.g.z/ � w/.h.w/ � v/

D 1

.ihg.u/ � z/.g.z/ � g.s//.hg.s/ � hg.u//

D 1

.ihg.u/ � z/.z � s/

z � s

g.z/ � g.s/

1

hg.s/ � hg.u/

D
�

1

ihg.u/ � z
C 1

z � s

�
1

.ihg.u/ � s/.s � u/

s � u

hg.s/ � hg.u/

z � s

g.z/ � g.s/
:

Here .s�u/=.hg.s/�hg.u// and .z�s/=.g.z/�g.s// are holomorphic functions, and
1=.ihg.u/� z/ and 1=.z � s/ are well-defined distributions. It is therefore sufficient
to find a distributional extension to the function 1=..ihg.u/ � s/.s � u//. This was
already done in items iv)–vi) above and depends on the nature of the fixed points
u0 of the mapping ihg. If u0 is isolated then we know that the extension is unique.
Otherwise if ihg.u/ D u in the neighborhood of u0 then all possible extensions (with
the same singularity degree) are of the form

�1

.u � s/2
 @u

1

u � s
C aı2.u � s/;

for some parameter a. But the ambiguity carried by the Dirac measure does not affect
the final result, because

�
1

u � z
C 1

z � s

�
ı2.u � s/ D 0:

Hence W 3.A/ is uniquely defined as a distribution.
Let us now calculate the anomaly, i.e., the image of the formal power series

WR.A/ D W 1
R.A/CW 2

R.A/CW 3.A/C � � �

under the boundary map d W yTB\ ! �1 yTB\. It amounts to derive each functional
W k

R .A/ according to the BRS transformation dA D �.QCA/!C �!�.QCA/. In
terms of the components A.g/ 2M1.�

0;1
c .†//˝ yTB and !.g/ 2M1.C 1

c .†//˝
�1 yTB equation (28) yields that

dA Nz.g; z/

D @ Nz!.g; z/C P
h2G

.A Nz.h; z/!.gh�1; h.z// � !.h; z/@ Nzh.z/A Nh.gh�1; h.z//
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at any point z 2 †. From Proposition 2.4 we know that the anomaly 
.!; A/ D

0.!; A/C
1.!; A/C
2.!; A/ is a polynomial of degree at most 2 in A. Because
the ambiguities of renormalization are localized at the fixed points of the conformal
mappings, the anomaly itself is necessarily given by a formula localized at fixed
points.

Proposition 3.1. For the conformal renormalization chosen above the anomaly is a
polynomial of degree one in A. Its component of degree zero 
0.!; A/ is a sum over
the isolated fixed points for all mappings g 2 G:


0.!; A/ D
X
g2G

X
z0Dg.z0/

isolated

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/\!.g; z//zDz0
; (37)

where n denotes the order of the fixed point z0. The component of degree one 
1.!; A/

is an integral over the manifold of non-isolated fixed points:


1.!; A/ D 1

�

X
g;h2G

Z
zDhg.z/

d 2z \.@z � 1
2
@z ln g0.z//A Nz.g; z/ !.h; g.z//: (38)

Proof. Let us calculate the variation of the tadpole graph W 1
R.A/ under the BRS

transformation. It is the sum of a degree zero term and a degree one term with respect
to A,

dW 1
R.A/ D

X
g2G

Z
d 2z

1

�.g.z/ � z/
\@ Nz!.g; z/C

X
g;h2G

Z
d 2z

1

�.hg.z/ � z/

� \.A Nz.g; z/!.h; g.z// � !.g; z/@ Nzg.z/A Ng.h; g.z///;

and the function 1=.g.z/�z/ is extended to a distribution at singular points by i)–iii).
The degree zero part of the anomaly comes entirely from the first term. Hence


0.!; A/ D
X
g2G

Z
d 2z

1

�.g.z/ � z/
\@ Nz!.g; z/;

and we can integrate by parts because this integral is the evaluation of a distribution
on the test function @ Nz!.g; z/. Since 1=.g.z/ � z/ is a holomorphic function when
g.z/ ¤ z, its @ Nz derivative vanishes, but the singular points may contribute. Hence
we can suppose that the support of !.g/ is concentrated in the neighborhood of an
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isolated fixed point z0 of order n <1 and calculate

�
Z

d 2z @ Nz
�

.�/n�1

.n � 1/Š
@n�1

z

1

�.z � z0/
H n

g;z0
.z/

�
\!.g; z/

D
Z

d 2z
�1

.n � 1/Š
@ Nz

1

�.z � z0/
@n�1

z .H n
g;z0

.z/\!.g; z//

D
Z

d 2z
�1

.n � 1/Š
ı2.z � z0/ @n�1

z .H n
g;z0

.z/\!.g; z//

D �1

.n � 1/Š
@n�1

z .H n
g;z0

.z/\!.g; z//zDz0
:

There is no contribution from the non-isolated fixed points because 1=.g.z/ � z/ is
renormalized to zero in that case. Hence summing over all g 2 G and all isolated
fixed points one obtains that


0.!; A/ D
X
g2G

X
z0Dg.z0/

isolated

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/\!.g; z//zDz0
:

The second term of dW 1
R.A/, linear in A, will contribute to the degree one of the

anomaly 
1.!; A/, but there is also another contribution from the BRS variation
of W 2

R.A/ according to diagram (26). Using the symmetry .g; z/ $ .h; w/ of the
distributional extension 1=.h.w/� z/.g.z/�w/ performed in iv)–vi), one finds that
dW 2

R.A/ is the sum of a linear term and a quadratic term in A:

dW 2
R.A/ D � 1

�2

X
g;h2G

Z
d 2z d 2w

\A Nz.g; z/.@ xw!.h; w/C ŒA; !� xw.h; w//

.h.w/ � z/.g.z/ � w/
:

Let us integrate by parts the contribution to 
1.!; A/. This yields the integral

1

�2

X
g;h2G

Z
d 2z d 2w @ xw

�
1

.h.w/ � z/.g.z/ � w/

�
\A Nz.g; z/!.h; w/:

The @ xw derivative localizes the support of the distribution kernel on the diagonals
h.w/ D z or g.z/ D w. One thus obtains an integral over a single variable, with
conformally invariant kernel. It should at least formally cancel with the corresponding
term coming from dW 1

R.A/, except maybe at the fixed points z0 D hg.z0/ because of
the renormalization ambiguities. However when z0 is isolated, we know from i)–ii)
that there is a unique conformally invariant distributional extension of the kernels
involved. Thus they have to cancel exactly and do not contribute to the anomaly

1.!; A/. The case of non-isolated fixed points is different, because renormaliza-
tion iii) cannot compensate the linear term of dW 2

R.A/. Let us evaluate the latter
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explicitly. One has hg.z/ D z in a neighborhood of z0. Renomalization vi) yields

1

.h.w/ � z/.g.z/ � w/
D @z

1

z � v

�
z � v

g.z/ � g.v/

�

with the change of variable w D g.v/. Since hg.v/ D v one has v D h.w/, thus

1

�2

Z
d 2z d 2w @ xw

�
1

.h.w/ � z/.g.z/ � w/

�
\A Nz.g; z/!.h; w/

D
Z

d 2z d 2w

�2
@z

�
@ Nv

1

z � v

�
z � v

g.z/ � g.v/
\A Nz.g; z/

@ Nv
@ xw !.h; w/

D
Z

d 2z d 2w

�
ı2.z � v/ @z

�
z � v

g.z/ � g.v/
\A Nz.g; z/

@ Nv
@ xw !.h; w/

�
:

We expand g.z/ � g.v/ in a Taylor series around the diagonal z � v D 0:
z � v

g.z/ � g.v/
D .g0.v/C z�v

2
g00.v/C � � � /�1:

Then perform the integral over z and recall that g0.v/ D @w=@v and h0.w/ D @v=@w:

1

�2

Z
d 2z d 2w @ xw

�
1

.h.w/ � z/.g.z/ � w/

�
\A Nz.g; z/!.h; w/

D
Z

d 2w

�

�
�

1
2
g00.v/

g0.v/2
\A Nv.g; v/

@ Nv
@ xw !.h; w/C 1

g0.v/
\@vA Nv.g; v/

@ Nv
@ xw !.h; w/

�

D
Z

d 2w

�

ˇ̌ˇ @v

@w

ˇ̌ˇ2

.�1
2
@v ln g0.v/ \A Nv.g; v/!.h; w/C \@vA Nv.g; v/!.h; w//

D
Z

d 2v

�
.�1

2
@v ln g0.v/ \A Nv.g; v/!.h; w/C \@vA Nv.g; v/!.h; w//

D
Z

d 2v

�
\.@v � 1

2
@v ln g0.v//A Nv.g; v/!.h; g.v//:

Hence summing over g; h 2 G we get the desired expression for the anomaly:


1.!; A/ D 1

�

X
g;h2G

Z
zDhg.z/

d 2z \.@z � 1
2
@z ln g0.z//A Nz.g; z/ !.h; g.z//:

It remains to show that the degree two component of the anomaly 
2.!; A/ vanishes.
We first rewrite the contribution of dW 2

R.A/ as

� 1

�2

X
g;h2G

Z
d 2z d 2w

\A Nz.g; z/ŒA; !� xw.h; w/

.h.w/ � z/.g.z/ � w/

D
X

g;h;i2G

Z
d 2z d 2w

��2

\A Nz.g; z/.A xw.i; w/!.h; i.w// � !.i; w/@i.w/
@ xw ANi .h; i.w///

.hi.w/ � z/.g.z/ � w/
:



316 D. Perrot

On the other hand, 
2.!; A/ gets also a contribution from the variation of W 3.A/:

dW 3.A/ D
X

g;h;i2G

Z
d 2z d 2w d 2v

�3

\@ Nz!.g; z/A xw.h; w/A Nv.i; v/

.i.v/ � z/.g.z/ � w/.h.w/ � v/
CO.A3/:

Integrating by parts, the @ Nz derivative localizes the support of the distribution
1=.i.v/ � z/.g.z/ � w/.h.w/ � v/ to the diagonals i.v/ D z or g.z/ D w. The
resulting integral with two variables should cancel formally with the contribution of
dW 2

R.A/, except maybe at the fixed points of the composite mapping ihg. But we
know from renormalization iv)-vi) that there is a unique conformally invariant exten-
sion of the distribution kernels, so they have to cancel exactly. Hence there can be no
anomaly and 
2.!; A/ D 0.

The contribution of an isolated fixed point of order n in the degree zero part of the
anomaly 
0.!; A/ involves only the derivatives of the mapping g up to order 2n� 1.
For example in low orders one finds

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/\!.g; z//zDz0

D 1

1 � g0.z0/
\!.g; z0/ .n D 1/

or

D 2

g00.z0/

�
1

3

g000.z0/

g00.z0/
\!.g; z0/ � \@z!.g; z0/

�
.n D 2/

or

D 3

2g000.z0/

�
1

10

g.5/.z0/

g000.z0/
\!.g; z0/ � 1

8

�
g.4/.z0/

g000.z0/

�2

\!.g; z0/

C 1

2

g.4/.z0/

g000.z0/
\@z!.g; z0/ � \@2

z!.g; z0/

�
.n D 3/:

One recovers the well-known Lefschetz numbers in the case n D 1, whereas for
n > 1 the higher order jets of g are involved.

4. Index theorem

In this section we shall use the anomaly formula established in Proposition 3.1 to
calculate the diagonal of the commutative diagram (17). Thus as before we let † be
the complex plane and G be a discrete group acting by conformal transformations
on †. Consider the disjoint union

� D `
g2G

Dom.g/ D f.g; z/ 2 G �† j z 2 Dom.g/g: (39)
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It is a smooth étale groupoid for the composition law .g; z/ � .h; w/ D .gh; w/

whenever z D h.w/, and its set of units corresponds to �0 D Dom.1/ � †. The
crossed product A0 D C 1

c .†/ÌG coincides with the convolution algebra of smooth,
compactly supported functions over �: to an element a D P

g2G a.g/U �
g of A0

corresponds the function .g; z/ 7! a.g; z/ D a.g/.z/ over the groupoid.
We say that a morphism 	0 D .g; z0/ 2 � is an automorphism if z0 D g.z0/ is a

fixed point. The order of 	0 is the integer n 2 N[f1g corresponding to the order of
the fixed point. According to the discussion of Section 3, an automorphism of order
n <1 is necessarily isolated, whereas for n D1 all morphisms are automorphisms
in the vicinity of 	0. Hence the set of automorphisms is the union of a discrete set
�f (for n < 1) and a one-dimensional complex manifold �1 (for n D 1). �1
contains the set of units �0. Proposition 2.4 precisely shows that the anomaly splits
as the sum of 
0.!; A/ localized at �f , and of 
1.!; A/ localized at �1. Let us
describe these terms in a more intrinsic way.

The component of degree zero in the anomaly (37) is a sum over all isolated
automorphisms 	0 D .g; z0/ of the numbers

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/\!.g; z//zDz0
; H n

g;z0
.z/ D .z � z0/n

g.z/ � z
;

where n <1 is the order of 	0. Observe that replacing n by any integer m � n does
not affect the result. The above quantity a priori depends on the complex coordinate
system z, and one may wonder if it can be defined intrinsically, i.e., by means of the
complex structure on † only.

Lemma 4.1. Let 	0 D .g; z0/ 2 �f be an isolated automorphism of order n. The
linear functional A0 ! C given by

a 7! @n�1
z .H n

g;z0
.z/a.g; z//zDz0

is intrinsically defined, i.e., independent of the complex coordinate system z. We
write 	 D .g; z/ 2 � in a neighborhood of 	0 endowed with its complex struc-
ture, H n

g;z0
.z/ D H n

�0
.	/, and identify @z with @� . Then summing over all isolated

automorphisms the linear functional ˆ.�/ W A0 ! C

ˆ.�/.a/ D
X

�02�f

�1

.n � 1/Š
@n�1

� .H n
�0

.	/a.	//�D�0

is a trace on A0.

Proof. Let .g; z0/ be an isolated automorphism of order n, and let f 2 C 1
c .†/ be a

test function with support sufficiently localized near z0. In the proof of Proposition 3.1
we obtained the equality

@n�1
z .H n

g;z0
.z/f .z//zDz0

D �.n � 1/Š

Z
d 2z

�

@ Nzf .z/

g.z/ � z
;
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where 1=.g.z/�z/ has a unique conformal extension to a distribution. Let w D h.z/

be a change of complex coordinate. Hence h is a holomorphic function with h0 D
@w=@z ¤ 0, and w0 D h.z0/ is a fixed point of order n for the conformal mapping
hgh�1. Thus

@n�1
w .H n

hgh�1;w0
.w/f .h�1.w///wDw0

D �.n � 1/Š

Z
d 2w

�

@ xwf .h�1.w//

hgh�1.w/ � w
:

But from the uniqueness of conformal renormalization we know the distributional
identity (33):

1

hgh�1.w/ � w
D 1

g.z/ � z

�
@w

@z

��1

CR.z/:

Since R.z/ is holomorphic, it vanishes under the above integral and one gets

@n�1
z .H n

g;z0
.z/f .z//zDz0

D @n�1
w .H n

hgh�1;w0
.w/f .h�1.w///wDw0

:

Hence this quantity does not depend on the choice of complex coordinate system.
Now take a; b 2 A0 and compute

ˆ.ab/ D
X
g2G

z0Dg.z0/

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/ab.g; z//zDz0

D
X

g;h2G
z0Dg.z0/

�1

.n � 1/Š
@n�1

z .H n
g;z0

.z/a.h; z/b.gh�1; h.z///zDz0
:

Change g to gh and rewrite this as

ˆ.ab/ D
X

g;h2G
z0Dgh.z0/

�1

.n � 1/Š
@n�1

z .H n
gh;z0

.z/a.h; z/b.g; h.z///zDz0
:

Make the change of variables w D h.z/, so w0 D h.z0/ is fixed by hg. The formula
established above gives

@n�1
z .H n

gh;z0
.z/a.h; z/b.g; h.z///zDz0

D @n�1
w .H n

hg;w0
.w/a.h; h�1.w//b.g; w//wDw0

D @n�1
w .H n

hg;w0
.w/b.g; w/a.h; g.hg/�1.w///wDw0

:

By hypothesis w0 is a fixed point of order n for hg, hence g.hg/�1.w/ differs from
g.w/ by a term of order .w�w0/n which will disappear after taking n�1 derivatives
at w D w0. Thus one has

ˆ.ab/ D
X

g;h2G
w0Dhg.w0/

�1

.n � 1/Š
@n�1

w .H n
hg;w0

.w/b.g; w/a.h; g.w///wDw0
D ˆ.ba/;
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showing that ˆ is a trace on A0.

Recall that we decomposed the Maurer–Cartan form !˙ DP
g2G !.g/r.g/˙ by

means of the components !.g/ 2 M1.C 1
c .†//˝�1 yTB. Replacing the represen-

tations r.g/˙ by the universal symbol U �
g , we may view the Maurer–Cartan form as

an element
z! D P

g2G

!.g/U �
g 2M1.A0/˝�1 yTB; (40)

where the space M1.A0/ ˝ �1 yTB is naturally a bimodule over the pro-algebra
M1.A0/ ˝ yTB. Thus tensoring ˆ.�/ W M1.A0/ ! C with the quotient map
\ W �1 yTB ! �1 yTB\ yields a trace ˆ.�/\ on the bimodule M1.A0/˝�1 yTB. The
degree zero component of the anomaly is therefore


0.!; A/ D ˆ.�/\.z!/: (41)

The degree one component of the anomaly 
1.!; A/ is localized at the manifold
of non-isolated automorphisms, so we have to introduce the convolution algebra of
differential forms over the groupoid � . Let ��

c .†/ be the (bi)graded algebra of
compactly supported differential forms over †. Since G acts on † by conformal
mappings, it acts on ��

c .†/ by pullback, and the crossed product ��
c .†/ÌG defines a

(bi)graded algebra. The crossed product A0 corresponds to its degree zero subalgebra.
Moreover, the differentials @ D dz@z and N@ D d Nz@ Nz on ��

c .†/ commute with
conformal transformations and hence extend to differentials on ��

c .†/ Ì G of bi-
degree .1; 0/ and .0; 1/, respectively. Of course @N@ C N@@ D 0, and the de Rham
operator d D @ C N@ is another differential. Finally, there is a fourth differential
coming from the action of G on †: define the modular derivative on ��

c .†/ ÌG as

D.f U �
g / D ln jg0j2f U �

g for all f 2 ��
c .†/; g 2 G; (42)

where the scalar function z 7! jg0.z/j2 measures the volume dilatation induced by
the conformal mapping g. The chain rule immediately implies that D is a derivation
of degree zero on the algebra ��

c .†/ Ì G. Hence by taking the commutator with @

one obtains a differential
ı D Œ@; D�; ı2 D 0; (43)

anticommuting with @, N@ and d . It reads explicitly ı.f U �
g / D .@ ln g0/f U �

g . The
manifold �1 has a complex structure, therefore may be considered as an oriented
two-dimensional real manifold. It thus defines a fundamental class on which genuine
two-forms can be integrated.

Lemma 4.2. The trilinear functional Œ�� W A0 �A0 �A0 ! C defined by

Œ��.a0; a1; a2/ D
Z

�1

a0da1da2
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is a cyclic 2-cocycle over A0 called the fundamental class of the groupoid � . The
trilinear functional c1.�/ W A0 �A0 �A0 ! C defined by

c1.�/.a0; a1; a2/ D
Z

�1

a0.da1ıa2 C ıa1da2/

is a cyclic 2-cocycle over A0 called the first Chern class of the groupoid � . We define
the Todd class as the cyclic 2-cocycle

Td.�/´ Œ�� � 1

2
c1.�/: (44)

Proof. See [10]. The fundamental class and the first Chern class are cyclic cocycles
because integration over the manifold �1 is a graded trace over the algebra ��

c .†/ÌG,
and is closed for the differentials d and ı (the modular derivative vanishes when the
integration domain is localized at automorphisms).

The Todd class has a simple expression using the differentialr D d� 1
2
ı,r2 D 0.

Since ıa1ıa2 D 0 for dimensional reasons, one obtains that

Td.�/.a0; a1; a2/ D
Z

�1

a0ra1ra2: (45)

In fact this expression is not a conformal invariant on † because the modular derivative
D measures the dilatation jg0j2 of the euclidean volume d Nz^dz=2i , and thus depends
on the choice of a volume form besides the complex structure. There is a priori no
reason to prefer the euclidean volume and we could as well choose any smooth volume
form �. The complex structure plus the volume form is equivalent to fixing a Kähler
metric on †. As shown in [10], the new modular derivative D	 associated to �

modifies the differential ı	 D Œ@; D	 �, so that the square of r	 D d � 1
2
ı	 does no

longer vanish but is proportional to the curvature of the Kähler metric. Consequently
the cyclic cocycle representing the first Chern class must be modified by adding a term
proportional to the curvature, while its cyclic cohomology class remains unchanged.
This establishes the link with the Todd class of ordinary (commutative) Riemann
surfaces.

Turning to the gauge potential, we decomposed A DP
g2G A.g/r.g/C by means

of the one-forms A.g/ D d NzA Nz.g/ 2M1.�
0;1
c .M//˝ yTB. Hence replacing r.g/C

with the universal symbol U �
g , we may view the potential as an element

QA D P
g2G

A.g/U �
g 2M1.��

c .†/ ÌG/˝ yTB: (46)

Since A0 � ��
c .†/ Ì G we interpret also z! as an element of M1.��

c .†/ Ì G/˝
�1 yTB, viewed as a bimodule over the DG pro-algebra M1.��

c .†/ÌG/˝ yTB. The
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degree one component of the anomaly (38) then reads


1.!; A/ D �1

2�i

Z
�1

\r QA z!: (47)

These very simple expressions for 
.!; A/ allow to calculate explicitly the diagonal
of diagram (17)

K
top
i .I y̋ A/

�Š ��

�� ��

K
top
i .I y̋ B/

��
HPi .A/

ch.�/
�� HPi .B/,

i 2 Z2, acting on a class Œu� 2 K
top
1 .I y̋ A/ of odd degree represented by an

invertible u 2 M1.A0/C, or a class Œe� 2 K
top
0 .I y̋ A/ of even degree represented

by an idempotent e 2 M1.A0/. First define a homomorphism Q� W A0 ! A0 ˝ B

by Q�.f U �
g / D f U �

g ˝ U �
g . Its lifting is a homomorphism Q�� W TA0 ! A0 ˝ TB:

Q��.f1U �
g1
˝ � � � ˝ fkU �

gk
/ D .f1f

g1

2 : : : f
gk�1:::g1

k
U �

gk :::g1
/˝ .U �

g1
˝ � � � ˝ U �

gk
/:

The map Q�� extends to a homomorphism of pro-algebras yTA0 ! A0 ˝ yTB. In the
odd case, take the canonical invertible lifting Ou 2M1. yTA0/C of u and set

Qu D Q�� Ou 2M1.A0/˝ yTB: (48)

Then taking z! D Qu�1d Qu 2 M1.A0/ ˝ �1 yTB as Maurer–Cartan form and QA D
Qu�1 N@ Qu 2 M1.��

c .M/ ÌG/˝ yTB as gauge potential, the Chern character of �Š.u/

in periodic cyclic homology HP1.B/ is represented by the anomaly 
.!; A/ up to
a factor

p
2�i (Proposition 2.4). The result can be formulated nicely in terms of

the Chern character of Qu in the noncommutative de Rham homology of the algebra
A0 ˝ yTB:

chdR. Qu/ D
X
n�0

nŠ

.2nC 1/Š
Tr \

� Qu�1d Qup
2
i

�2nC1 2 y�.A0 ˝ yTB/\:

This is a cycle of odd degree in the complex y�.A0 ˝ yTB/\ D y�.A0 ˝ yTB/=Œ ; �

gifted with the boundary d . In the even case, take the canonical idempotent lifting
Oe 2M1. yTA0/ of e and set

Qe D Q�� Oe 2M1.A0/˝ yTB: (49)

The Chern character of �Š.e/ in periodic cyclic homology HP0.B/ can also be reduced
to an anomaly, using Bott periodicity. Again this can be expressed via the Chern
character of Qe in noncommutative de Rham homology:

chdR. Qe/ D
X
n�0

.�/n

nŠ
Tr \

� Qed Qed Qe
2
i

�n 2 y�.A0 ˝ yTB/\:
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In fact chdR. Qu/ and chdR. Qe/ represent the Chern characters of Q�.u/ and Q�.e/ in the
cyclic homology of the discrete algebra A0˝B. Now if ' is any cyclic cocycle over
A0, it induces a cap-product

' Z W HP�.A0 ˝B/! HP�.B/ (50)

by composing the natural morphism of differential complexes y�.A0 ˝ yTB/\ !
. y�A0/\ ˝ . y� yTB/\ with the cyclic cocycle ' W y�A0 ! C. The anomaly formula
then shows that the diagonal map is nothing else but the cap-product of the Chern
characters ch. Q�.u// 2 HP1.A0˝B/ and ch. Q�.e// 2 HP0.A0˝B/ with the cyclic
cocycle ' D ˆ.�/C Td.�/:

Theorem 4.3. For any class Œu� 2 K
top
1 .I y̋ A/ represented by an invertible u 2

M1.A0/C, the Chern character of its pushforward �Š.u/ 2 K
top
1 .I y̋ B/ is the

periodic cyclic homology class of odd degree given by a cap-product

ch.�Š.u// D .ˆ.�/C Td.�//Z ch. Q�.u//

D ˆ.�/\
� Qu�1d Qup

2
i

� �
Z

�1

\
Qu�1r Qur Qu�1d Qu

2.2�i/3=2
2 �1 yTB\:

(51)

For any class Œe� 2 K
top
0 .I y̋ A/ represented by an idempotent e 2 M1.A0/,

the Chern character of its pushforward �Š.e/ 2 K
top
0 .I y̋ B/ is the periodic cyclic

homology class of even degree given by a cap-product

ch.�Š.e// D .ˆ.�/C Td.�//Z ch. Q�.e//

D ˆ.�/\. Qe/ �
Z

�1

\
Qer Qer Qe

2�i
2 yTB\:

(52)

Proof. For notational convenience suppose u 2 AC
0 . One has z! D Qu�1d Qu and

QA D Qu�1 N@ Qu. Let us rewrite the anomaly r QA z! D r. Qu�1 N@ Qu/ Qu�1d Qu in two different
ways:

r. Qu�1 N@ Qu/ Qu�1d Qu D r. Qu�1 N@ Qu Qu�1/d QuC Qu�1 N@ Qur Qu�1d Qu
D �r N@ Qu�1d QuC Qu�1 N@ Qur Qu�1d Qu;

r. Qu�1 N@ Qu/ Qu�1d Qu D r Qu�1 N@ Qu Qu�1d QuC Qu�1r N@ Qu Qu�1d Qu
D Qu�1r QuN@ Qu�1d QuC Qu�1r N@ Qu Qu�1d Qu:

We sum these two equalities and apply the trace
R

�1
\ W .��

c .M/ÌG/˝ yTB ! yTB\,
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which is closed for the differentials r and N@:

2

Z
�1

\r. Qu�1 N@ Qu/ Qu�1d Qu

D
Z

�1

\.�r N@ Qu�1d QuCrN@ Qu Qu�1d Qu Qu�1/C
Z

�1

\. Qu�1 N@ Qur Qu�1d QuC Qu�1r QuN@ Qu�1d Qu/

D
Z

�1

\.�Qu�1dr N@ Qu � r N@ Qud Qu�1/C
Z

�1

\. Qu�1.N@ Qur Qu�1 Cr QuN@ Qu�1/d Qu/

D �\d

Z
�1

Qu�1r N@ QuC
Z

�1

\ Qu�1r Qur Qu�1d Qu:

Hence modulo coboundaries \d. � /, the cyclic homology class of the anomaly is
represented by


.!; A/ D ˆ\.z!/ � 1

2�i

Z
�1

\r QA z!

	 ˆ\. Qu�1d Qu/ � 1

4�i

Z
�1

\ Qu�1r Qur Qu�1d Qu mod \d

and coincides with
p

2�i ch.�Š.u// by Proposition 2.4. Hence ch.�Š.u// appears as
a cap-product of the Chern character chdR. Qu/ with the trace ˆ and the Todd class.

Now let e 2 M1.A0/ be an idempotent. To calculate the pushforward of Œe� 2
K

top
0 .I y̋ A/ we use Bott periodicity [13]. For notational simplicity suppose that

e 2 A0. Let SA ´ A y̋ C 1.0; 1/ be the smooth suspension of A. Under the
Bott isomorphism K

top
0 .I y̋ A/ Š K

top
1 .I y̋ SA/ the class Œe� is represented by the

invertible
u D 1C e ˝ .ˇ � 1/ 2 .A0 ˝ C 1.0; 1//C;

where ˇ 2 1C C 1.0; 1/ is an invertible function with winding number 1 (the Bott
generator). The direct image �Š.e/ 2 K

top
0 .I y̋ B/ then corresponds to �Š.u/ 2

K
top
1 .I y̋ SB/ under the Bott isomorphism. From [13], §4, the Chern character

ch.�Š.e// 2 HP0.B/ is related to ch.�Š.u// 2 HP1.SB/ by the formula

ch.�Š.e// 	 1p
2�i

Z 1

0

ch.�Š.u// 2 yTB\;

where
R 1

0
W �1 yT .SB/\ ! yTB\ is the natural morphism �1 yT .B y̋ C 1.0; 1// !

�1. yTB y̋ C 1.0; 1//! yTB y̋ �1.0; 1/ followed by integration of one-forms over
the interval Œ0; 1�. By construction one has Qu � 1 2 A0 ˝ yT .B ˝ C 1.0; 1//.
Let us still denote abusively by Qu � 1 its image in A0 ˝ yTB ˝ C 1.0; 1/. Let
s W C 1.0; 1/! �1.0; 1/ be the ordinary differential. Then we can write

ch.�Š.e// 	 1

2�i

Z 1

0

�
ˆ\. Qu�1s Qu/ � 1

4�i

Z
�1

\ Qu�1r Qur Qu�1s Qu
�
2 yTB\:
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Since it appears as a cap-product of chdR. Qu/ with the cyclic cocycles ˆ and Td, the
class of the right-hand side is homotopy invariant with respect to Qu. Then observe
that Qu is homotopic to the invertible

v D 1C Qe ˝ .ˇ � 1/ 2 .A0 ˝ yTB ˝ C 1.0; 1//C;

because both Qu and v project to the same invertible in .A0 ˝ B ˝ C 1.0; 1//C.
Consequently the Chern character of �Š.e/ is represented by

ch.�Š.e// 	 1

2�i

Z 1

0

�
ˆ\.v�1sv/ � 1

4�i

Z
�1

\v�1rvrv�1sv
�
:

Let us calculate in the space .��
c .†/ ÌG ˝ yTB/˝�1.0; 1/:

v�1sv D .1C Qe.ˇ�1 � 1// Qesˇ D Qe ˝ ˇ�1sˇ;

v�1rvrv�1sv D .1C Qe.ˇ�1 � 1//r Qe.ˇ � 1/r Qe.ˇ�1 � 1/ Qesˇ

D Qer Qer Qe ˝ ˇ�1.ˇ � 1/.ˇ�1 � 1/sˇ:

Finally, we obtain the desired formula for the Chern character

ch.�Š.e// 	 ˆ\. Qe/ � 1

2�i

Z
�1

\ Qer Qer Qe

from the integrals
R 1

0
ˇ�1sˇ D 2�i and

R 1

0
ˇ�1.ˇ � 1/.ˇ�1 � 1/sˇ D 4�i .

Remark 4.4. If G acts without fixed points except for g D 1, one has �f D ¿ and
�1 D �0 � †. Hence the trace ˆ.�/ vanishes and the index theorem reduces to a
cap-product with the Todd class

Td.�/.a0; a1; a2/ D
Z

†

a0ra1ra2: (53)

In [10] we already obtained this formula using the Hopf algebra of diffeomorphisms
introduced by Connes and Moscovici [4]. In the latter situation G is a pseudogroup of
conformal transformations whose action can be lifted to the bundle of Kähler metrics
over †, and the horizontal Dolbeault operator is combined with the vertical signature
operator. Using characteristic classes for Hopf algebras as in [5] we precisely obtained
(53), up to an overall factor of 2 accounting for the contribution of the vertical signature
operator. Note that the modular differential ı D Œ@; D� is one of the generators of the
Connes–Moscovici Hopf algebra.
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