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Abstract. We find the fusion rules for the quantum analogues of the complex reflection groups
H s

n D Zs o Sn. The irreducible representations can be indexed by the elements of the free
monoid N�s , and their tensor products are given by formulae which remind the Clebsch–Gordan
rules (which appear at s D 1).
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Introduction

The last two decades have seen a remarkable unification process in mathematics and
physics, with quantum groups playing a prominent role. The original discovery of
Drinfeld [12] and Jimbo [16] was that the enveloping algebra U.g/ of a classical Lie
algebra has a non-trivial deformation Uq.g/ in the category of Hopf algebras. Here
the parameter q can be complex, or formal.

Short after the constructions of Drinfeld and Jimbo, Woronowicz developed a
general theory of compact quantum groups [29], [30]. The algebras Uq.g/ with
q > 0 correspond to compact quantum groups, as shown by Rosso in [20].

Most of the study of compact quantum groups has focused on the extension and
application of various differential geometry techniques. The work here, heavily influ-
enced by Connes’ book [10], currently follows a number of independent directions,
belonging to noncommutative geometry. See [17], [18].

Another part of work has gone into the study of free quantum groups. These were
introduced in two papers of Wang [27], [28]. The idea is as follows: let G � Un be a
compact group. The n2 matrix coordinates uij satisfy certain relations R, and generate
the algebra C.G/. One can define then the universal algebra A D C �.uij jR/, and
for a suitable choice of the relations R we get a Hopf algebra. We have the heuristic
formula A D C.GC/, where GC is a compact quantum group, called free version
of G. Observe that we have G � GC.

This construction is not axiomatized, in the sense that GC depends on the relations
R, and it is not known in general what the good choice of R is. For instance any choice
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with R including the commutativity relations uij ukl D ukluij would be definitely a
bad one, because in this case we would get GC D G. Moreover, any choice with R

including certain relations which imply these commutativity relations would be a bad
one as well, and the problem comes from here.

There are a number of general methods, however, which can be used in order
to understand the correct formulation of the operation G ! GC. One of them,
heavily used in the context of quantum permutation groups [4], [5], consists in saying
that “GC should be the quantum symmetry group of the object X whose symmetry
group is G”. The axiomatization work here seems to evolve towards the quite general
situation where X is a spectral triple in the sense of Connes [10], thanks to the recent
work of Goswami [13].

For the known examples of free quantum groups, the main problem is to compute
certain representation theory invariants. As in the case of classical groups, the central
problem is that of classifying the irreducible representations, and finding their fusion
rules. The story here is as follows:

(1) The first two examples of free quantum groups are OC
n and U C

n . These quantum
groups were constructed in Wang’s thesis [27], and their fusion rules were found
in the first author’s thesis [1].

(2) The knowledge of the fusion rules for OC
n and U C

n allows the study of their
duals, and some preliminary results were obtained in [1]. The systematic study
in this sense has begun with the second author’s thesis [24].

(3) The third free quantum group is SC
n , constructed in Wang’s paper [28]. The

fusion rules for SC
n were found in [2], with the quite surprising result that these

are the same as those for SO3, independently of n � 4.

(4) The analytic study of the duals of OC
n and U C

n has been intensively developed
in the last 5 years, with a number of key results obtained by the second author,
Vaes, and their collaborators [22], [23], [25].

(5) In the meantime the construction of new free quantum groups, along with some
preliminary axiomatization work, has been pursued by the first author, Bichon,
Collins, and their collaborators [3], [4], [5].

The purpose of the present work is to make a bridge between (4) and (5), with an
explicit computation of fusion rules, in the spirit of [1], [2]. It is our hope that, as
it was the case with [1], [2], the present results will be of help for both approaches.
Some comments in this sense will be given in the end of the article.

The main object of interest will be the complex reflection group H s
n . This is the

group of monomial n � n matrices (i.e., one nonzero entry on each row and each
column), having as nonzero entries the s-th roots of unity.

The construction of H sC
n was done in several steps, by overcoming a series of

quite unexpected algebraic obstacles, the story being as follows:
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(1) At s D 1 we have the symmetric group Sn investigated by Wang in [28]. The
subtlety here comes from the fact that SC

n is not a finite quantum group. However,
SC

n makes sense as a compact quantum group.

(2) At s D 2 we have the hyperoctahedral group Hn studied in [5]. The surprise
here comes from the fact that H C

n is not the quantum symmetry group of the
hypercube (which can be shown to be O�1

n ).

(3) The general case s � 1 was worked out in [3]. Once again, there were several
candidates here for H sC

n , and a quite lengthy free probability computation had
to be done in order to find the good one.

(4) The general series of complex reflection groups is fH rs
n g, where H rs

n � H s
n

with r js consists of matrices whose product of nonzero entries is a r-th root of
unity. The existence of H rsC

n is an open, uncertain problem.

In this article we classify the irreducible representations of H sC
n , and we find their

fusion rules. The main result states that the irreducible representations can be indexed
by the words over Zs , and the fusion rules are of the following type:

rx ˝ ry D ∑
xDvz;yDNzw

rvw C rv�w :

We refer to Section 7 for the precise meaning of this formula, and to Section 8 for
some equivalent formulations.

The above formula can be thought of as being a “level s” generalization of the
Clebsch–Gordan formula for SO3, which appears at s D 1.

The proof is considerably more complicated than the one in [2] at s D 1 and uses
various techniques from [4], [5], and from the main paper [3].

The article is organized as follows. In Sections 1–3 we discuss the construction
and the basic algebraic properties of the quantum reflection groups. In Sections 4–7
we work out the fusion rules, and in 8–9 we discuss some related questions.

The final Section 10 contains a conjectural statement regarding the fusion rules of
arbitrary free quantum groups, along with a few concluding remarks.

1. Quantum reflection groups

A square matrix is called monomial if it has exactly one nonzero entry on each row
and on each column. The basic examples are the permutation matrices.

Definition 1.1. H s
n is the group of monomial n�n matrices having as nonzero entries

the s-th roots of unity.

In other words, an element of H s
n is a permutation matrix, with the 1 entries

replaced by certain s-th roots of unity. Observe that we have H s
n D Zs o Sn.
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We allow the value s D 1 in the above definition, with the convention that a root
of unity of infinite order is nothing but an element on the unit circle.

Of special interest among the groups H s
n are those corresponding to the values

s D 1; 2; 1. These groups will be used as key examples for all the considerations in
this article, and most definitions or theorems will be illustrated in this way.

Proposition 1.2. The groups H s
n with s D 1; 2; 1 are as follows.

(1) H 1
n D Sn is the symmetric group.

(2) H 2
n D Hn is the hyperoctahedral group.

(3) H 1
n D Kn is the group of unitary monomial matrices.

The groups H s
n are in fact part of a more general series. Indeed, for r js we can

consider the subgroup H rs
n � H s

n formed by the matrices whose product of nonzero
entries is a r-th root of unity. Observe that we have H ss

n D H s
n .

The groups H rs
n form the general series of complex reflection groups. We should

mention that the standard group theory notation for this series is G.d; de; n/ D H d;de
n ,

so in particular we have H s
n D G.s; s; n/.

The following key definition is from [3].

Definition 1.3. As
h
.n/ is the universal C*-algebra generated by n2 normal elements

uij subject to the following relations R:

(1) u D .uij / is unitary.

(2) ut D .uj i / is unitary.

(3) pij D uij u�
ij is a projection.

(4) us
ij D pij .

We use here the standard operator algebra terminology: an element a is called
normal if aa� D a�a, unitary if aa� D a�a D 1, and projection if a2 D a� D a.

We allow the value s D 1 in the above definition, with the convention that the
last axiom simply disappears in this case.

Observe that for s < 1 the normality condition is actually redundant. This is
because a partial isometry a subject to the relation aa� D as is normal.

It follows from definitions, and from standard operator algebra tricks, that As
h
.n/

is a Hopf algebra, with comultiplication, counit and antipode as follows:

�.uij / D
n∑

kD1

uik ˝ ukj ;

".uij / D ıij ;

S.uij / D u�
j i :
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More precisely, the above formulae show that As
h
.n/ is a Hopf C*-algebra in the

sense of Woronowicz’s fundamental paper [29].
The relation with the group H s

n is as follows.

Proposition 1.4. C.H s
n/ is isomorphic to the universal commutative C*-algebra

generated by n2 abstract variables uij , subject to the relations R.

This assertion follows indeed from the Stone–Weierstrass theorem and from the
Gelfand theorem. See [3].

The comparison between Definition 1.3 and Proposition 1.4 leads to the conclusion
that we have a surjective morphism of C*-algebras � W As

h
.n/ ! C.H s

n/, whose kernel
is the commutator ideal of As

h
.n/.

The best interpretation, however, is in terms of quantum groups. It follows from
definitions that � is a Hopf algebra morphism, so if H sC

n is the compact quantum
group associated to As

h
.n/, then we have an embedding H s

n � H sC
n .

Proposition 1.5. The algebras As
h
.n/ with s D 1; 2; 1 and their presentation rela-

tions in terms of the entries of the matrix u D .uij / are as follows.

(1) For A1
h
.n/ D As.n/ the matrix u is magic: all its entries are projections,

summing up to 1 on each row and column.

(2) For A2
h
.n/ D Ah.n/ the matrix u is cubic: it is orthogonal and the products of

pairs of distinct entries on the same row or the same column vanish.

(3) For A1
h

.n/ D Ak.n/ the matrix u is unitary, its transpose is unitary, and all its
entries are normal partial isometries.

In this statement (1) and (2) follow from definitions and from standard operator
algebra tricks, and (3) is just a translation of the definition (a partial isometry is an
element a such that aa� and a�a are projections); see [3].

2. Finiteness considerations

In this section and in the next one we find the quantum analogues of some basic
properties of H s

n . We should mention that these results were proved in [5] in the case
s D 2, and were announced in [3] in the general case s � 1.

The most obvious property of H s
n is that this is a finite group.

The quantum analogue of this result, however, does not hold, even at s D 1, as
shown by the following result of Wang [28].

Theorem 2.1. For n D 2; 3 the canonical map As.n/ ! C.Sn/ is an isomorphism.
For n � 4 the algebra As.n/ is not commutative and infinite dimensional.
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In other words, the compact quantum group SC
n with n � 4 is a not a classical

group, nor a finite quantum group.
Now back to the general case s � 1, the correct approach to this quite mysterious

finiteness issue is as follows:

(1) First, we will prove that H sC
n is a quantum permutation group, in analogy with

the fact that H s
n is a permutation group.

(2) Then we will prove that we have a free wreath product decomposition H sC
n D

Zs o� SC
n , in analogy with the decomposition H s

n D Zs o Sn.

In Hopf algebra terms, we first have to prove that As
h
.n/ is a quantum permutation

algebra, i.e., is a quotient of a suitable Wang algebra As.N /. For this purpose, we
use the method of “sudoku matrices” from [5].

We recall from Proposition 1.5 that a magic unitary is a square matrix of projec-
tions, which sum up to 1 on each row and column.

Definition 2.2. An .s; n/-sudoku matrix is a magic unitary of size sn of the form

m D

⎛
⎜⎝

a0 a1 : : : as�1

as�1 a0 : : : as�2

: : : : : : : : : : : :

a1 a2 : : : a0

⎞
⎟⎠ ;

where a0; : : : ; as�1 are n � n matrices.

Observe that m is a circulant matrix. By using some standard tensor product
identifications and modulo s indices, we will write

m D (
a

q�p
ij

)
pi;qj

:

The basic example of such matrices is in relation with the group H s
n . With the

notation w D e2�i=s , each of the n2 matrix coordinates uij W H s
n ! C takes values

in the set f0g [ f1; w; : : : ; ws�1g, hence decomposes as

uij D
s�1∑
rD0

wrar
ij :

Here each ar
ij is by definition a function taking values in f0; 1g. We see that each

ar
ij is a projection in the C*-algebra sense, and it follows from definitions that these

projections form a sudoku matrix in the above sense.

Theorem 2.3. We have the following results.

(1) C.H s
n/ is isomorphic to the universal commutative C*-algebra generated by the

entries of a .s; n/-sudoku matrix.
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(2) As
h
.n/ is isomorphic to the universal C*-algebra generated by the entries of an

.s; n/-sudoku matrix.

Proof. (1) This assertion, which is included here for symmetry reasons and which
will not be used in what follows, can be proved either directly, or by using (2) and the
fact that C.H s

n/ is the maximal commutative quotient of As
h
.n/.

(2) We denote by A the universal algebra in the statement. According to Defini-
tion 2.1, we have the following presentation formula:

A D C �.a
p
ij j .a

q�p
ij /pi;qj D .s; n/-sudoku/:

Consider also the algebra As
h
.n/. According to Definition 1.3, it is presented by

certain relations R that we call here level s cubic conditions:

As
h.n/ D C �.uij j u D n � n level s cubic/:

We will construct a pair of inverse morphisms between these algebras.
Step 1. Consider the matrix

Uij D ∑
p

w�pa
p
ij :

We claim that this is a level s cubic unitary. Indeed, by using the sudoku condition,
the verification of (1)–(4) in Definition 1.3 goes as follows.

(1) The fact that we have U U � D 1 can be checked as follows:

.U U �/ij D ∑
kpq

w�pa
p
ik

wqa
q
jk

D ∑
pq

wq�p
∑
k

a
p
ik

a
q
jk

D ∑
pq

wq�pıpqıij

∑
k

a
p
ik

D ıij

∑
pk

a
p
ik

D ıij :

By symmetry reasons, the verification of U �U D 1 is similar.
(2) The verification of U t NU D 1 and NU U t D 1 is similar.
(3) We first compute the elements Pij D Uij U �

ij :

Pij D ∑
pq

w�pa
p
ij wqa

q
ij D ∑

pq

wq�pa
p
ij a

q
ij D ∑

p

a
p
ij :

This is a sum of pairwise orthogonal projections, so it is a projection.
(4) We compute now the s-th power of Uij :

U s
ij D (∑

p

w�pa
p
ij

)s D ∑
p

.w�pa
p
ij /s D ∑

p

a
p
ij D Pij :
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Summarizing, the elements Uij form a level s cubic matrix, so we can define a
morphism ˆ W As

h
.n/ ! A by the formula ˆ.uij / D Uij .

Step 2. Consider the following elements, with the convention u0
ij D pij :

A
p
ij D 1

s

∑
r

wrpur
ij :

It follows from the cubic condition that these elements form a level s sudoku
unitary, with the verification going as follows:

(1) First, these elements are self-adjoint:

.A
p
ij /� D 1

s

∑
r

w�rp.ur
ij /� D 1

s

∑
r

w�rpus�r
ij D 1

s

∑
r

w.s�r/pus�r
ij D A

p
ij :

(2) We check now that these elements are idempotents:

.A
p
ij /2 D 1

s2

∑
rt

wrpur
ij wtput

ij D 1
s2

∑
rt

w.rCt/purCt
ij D 1

s

∑
l

wlpul
ij D A

p
ij :

(3) We compute the sum on the rows of M D .A
q�p
ij /pi;qj :

∑
jp

A
p
ij D 1

s

∑
jpr

wrpur
ij D 1

s

∑
jr

ur
ij

∑
p wrp D ∑

j

u0
ij D 1:

(4) By symmetry reasons, the sum on the columns of M is 1 as well.
Summarizing, the elements A

p
ij form a sudoku unitary, so we can define a mor-

phism ‰ W A ! As
h
.n/ by the formula ‰.a

p
ij / D A

p
ij .

Step 3. We check now the fact that ˆ; ‰ are indeed inverse morphisms:

‰ˆ.uij / D ∑
p

w�pA
p
ij D 1

s

∑
p

w�p
∑
r

wrpur
ij D 1

s

∑
pr

w.r�1/pur
ij D uij :

As for the other composition, we have the following computation:

ˆ‰.a
p
ij / D 1

s

∑
r

wrpU r
ij D 1

s

∑
r

wrp
∑
q

w�rqa
q
ij D 1

s

∑
q

a
q
ij

∑
r

wr.p�q/ D a
p
ij :

This finishes the proof.

3. Algebraic structure

We know from the previous section that H sC
n is a quantum permutation group, in

analogy with the fact that H s
n is a permutation group. In this section we discuss the

quantum analogue of the decomposition H s
n D Zs o Sn.
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Lemma 3.1. An sn � sn magic unitary commutes with the square matrix

† D

⎛
⎜⎜⎜⎝

0 In 0 : : : 0

0 0 In : : : 0

: : : : : : : : : : : : : : :

0 0 0 : : : In

In 0 0 : : : 0

⎞
⎟⎟⎟⎠

if and only if it is a sudoku matrix in the sense of Definition 2.2.

Proof. The commutation with † ensures indeed that the matrix is circulant.

Let Cs be the oriented cycle with s vertices, and consider the graph C n
s consisting

of n disjoint copies of it. Observe that, with a suitable labeling of the vertices, the
adjacency matrix of this graph is the above matrix †.

The quantum symmetry algebra of a finite graph is the quotient of the quantum
permutation algebra on the set of vertices by the relations making the fundamental
corepresentation commute with the adjacency matrix. See [4].

Theorem 3.2. We have the following results.

(1) H s
n is the symmetry group of C n

s .

(2) As
h
.n/ is the quantum symmetry algebra of C n

s .

Proof. (1) follows from definitions, and (2) follows from Theorem 2.3 and Lemma 3.1.
Indeed, As

h
.n/ is the quotient of As.sn/ by the relations making the fundamental

corepresentation commute with the adjacency matrix of C n
s .

According to the work of Bichon [9], the free analogue of the notion of wreath
product is that of free wreath product at the level of Hopf algebras.

Definition 3.3. The free wreath product of two quantum permutation algebras .A; u/

and .B; v/ is given by

A �w B D .A�n � B/=hŒu.i/
pq; vij � D 0i

where n is the size of v, with magic unitary matrix wpi;qj D u
.i/
pqvij .

This definition is justified by formulae of the following type, where G, A denote
classical symmetry groups, respectively quantum symmetry algebras:

G.X � Y / D G.X/ o G.Y /;

A.X � Y / D A.X/ �w A.Y /:
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There are several such formulae, depending on the types of graphs and products
considered. See [9], [4]. The formula we are interested in is

G.X : : : X/ D G.X/ o G.ı � � � ı/;

A.X : : : X/ D A.X/ �w A.ı � � � ı/:

Here X is a finite graph, ı is a point, and the dots mean n-fold disjoint union. For
the precise statement and proof of this result we refer to [4].

We are now in position of stating the main result in this section.

Theorem 3.4. We have the following results.

(1) H s
n D Zs o Sn.

(2) As
h
.n/ D C.Zs/ �w As.n/.

Proof. This follows from Theorem 3.2 and from the above formulae, first established
in [9] and later on refined in [4], by using the graph X D Cs .

Observe that (1) is in fact clear from definitions. We would like to present below
a self-contained proof of (2), by constructing a pair of inverse morphisms. This will
compress the above-mentioned combined arguments from [9], [4].

Step 1. First we have to fix some notations for the algebra on the right. We view
Zs as the group formed by the powers of the basic cyclic matrix

� D

⎛
⎜⎜⎜⎝

0 1 0 : : : 0

0 0 1 : : : 0

: : : : : : : : : : : : : : :

0 0 0 : : : 1

1 0 0 : : : 0

⎞
⎟⎟⎟⎠ :

Thus we have Zs � Ms.C/, and the magic unitary u corresponding to the quantum
permutation algebra C.Zs/ is the matrix of coordinates on Zs:

upq.� r/ D ıq�p;r :

Here, and in what follows, all the indices p; q; r; : : : are taken mod s. Observe
that u is a circulant matrix, and in particular we have

upq D u0;q�p:

Step 2. We construct a morphism ˆ W As
h
.n/ ! C.Zs/ �w As.n/.

Consider the standard generators wpi;qj D u
.i/
pqvij of the algebra on the right, as

in Definition 3.3. We claim that the following elements form a sudoku unitary:

A
p
ij D u

.i/
0pvij :
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Indeed, the corresponding matrix M as in Definition 2.2 is given by

Mpi;qj D A
q�p
ij D u

.i/
0;q�pvij D u.i/

pqvij D wpi;qj :

Since this latter matrix is known to be magic, the elements A
p
ij form indeed a

sudoku unitary, and we get a morphism ˆ as claimed.
Step 3. We construct a morphism ‰ W C.Zs/ �w As.n/ ! As

h
.n/.

Consider the standard sudoku generators a
p
ij of the algebra on the right, as in

Definition 2.2. We define elements U
.i/

pq and Vij as follows:

U .i/
pq D ∑

k

a
q�p
ik

; Vij D ∑
r

ar
ij :

It is routine to check that each of the matrices U .i/ produces a morphism C.Zs/ !
As

h
.n/, and that V produces a morphism As.n/ ! As

h
.n/. Moreover, we have the

following commutation relation:

ŒU .i/
pq ; Vij � D [∑

k

a
q�p
ik

;
∑
r

ar
ij

] D ∑
kr Œa

q�p
ik

; ar
ij � D 0:

Summarizing, the elements U
.i/

pq and Vij satisfy the defining relations for the free
wreath product, so we get a morphism ‰ as claimed.

Step 4. We check now the fact that ˆ, ‰ are indeed inverse morphisms. In one
direction, we have the following computation:

‰ˆ.a
p
ij / D U

.i/
0p Vij D ∑

kr

a
p
ik

ar
ij D a

p
ij :

As for the other composition, we have the following computation:

ˆ‰.wpi;qj / D ∑
kr

A
q�p
ik

Ar
ij D ∑

kr

u
.i/
0;q�pviku

.i/
0r vij

D ∑
kr

u
.i/
0;q�pu

.i/
0r vikvij D u

.i/
0;q�pvij D wpi;qj :

This finishes the proof.

We can use the above result in order to deduce the structure of As
h
.n/ in the cases

n D 2; 3, which are to be avoided in what follows.

Corollary 3.5. The algebras As
h
.n/ with n D 2; 3 are as follows:

(1) As
h
.2/ D C.Zs/ �w C.Z2/.

(2) As
h
.3/ D C.Zs/ �w C.S3/.

Proof. This follows from Theorem 2.1 and Theorem 3.4.
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4. Basic corepresentations

In this section and in the next few ones we discuss the classification of irreducible
corepresentations of As

h
.n/, and the computation of their fusion rules.

We recall that, according to Woronowicz’s fundamental paper [29], an analogue
of the Peter–Weyl theory is available for the compact quantum groups.

In Hopf algebra terms, the objects of interest are the finite dimensional irreducible
unitary corepresentations in the following sense.

Definition 4.1. A finite dimensional unitary corepresentation of a Hopf C*-algebra
A is a unitary matrix u 2 Mn.A/ satisfying the following conditions:

�.uij / D
n∑

kD1

uik ˝ ukj ; ".uij / D ıij ; S.uij / D u�
j i :

Such a corepresentation is called irreducible if the matrices T 2 Mn.C/ commuting
with it, T u D uT , reduce to the scalar multiples of the identity.

The sum and tensor product of two corepresentations u, v are by definition the
matrices u C v D diag.u; v/ and u ˝ v D .uij vab/ia;jb .

The basic examples of corepresentations are the fundamental one u D .uij /, and
its complex conjugate Nu D .u�

ij /. In this section we use u and Nu in order to construct
a whole family of “basic” corepresentations of As

h
.n/.

For this purpose, we go back to the elements uij , pij in Definition 1.3. We recall
that, as a consequence of Proposition 1.5, p is a magic unitary.

Lemma 4.2. The elements uij and pij satisfy

(1) pij uij D uij ,

(2) u�
ij D us�1

ij ,

(3) uij uik D 0 for j ¤ k.

Proof. We use the fact that in a C*-algebra, aa� D 0 implies a D 0.
(1) With a D .pij � 1/uij we have

aa� D .pij � 1/uij u�
ij .pij � 1/ D .pij � 1/pij .pij � 1/ D 0:

Thus we have a D 0, which gives the result.
(2) With a D u�

ij � us�1
ij we have aa� D 0, which gives the result.

(3) With a D uij uik we have aa� D 0, which gives the result.

In what follows, we make the convention u0
ij D pij .
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Theorem 4.3. The algebra As
h
.n/ has a unique family of n-dimensional corepresen-

tations fuk j k 2 Zg satisfying the following conditions:

(1) uk D .uk
ij / for any k � 0.

(2) uk D ukCs for any k 2 Z.

(3) Nuk D u�k for any k 2 Z.

Proof. We first prove that the matrix uk D .uk
ij / is a corepresentation for any k � 1.

By using the last assertion in the previous lemma, we get:

�.uk
ij / D .�.uij //k

D (∑
l

uil ˝ ulj

)k D ∑
l1:::lk

uil1
: : : uilk

˝ ul1j : : : ulkj D ∑
l

uk
il

˝ uk
lj

:

As for the formulae ".uk
ij / D ıij and S.uk

ij / D u�k
ji , these follow from ".uij / D

ıij and S.uij / D u�
j i by using the multiplicative properties of ", S .

We claim now that we have uk D ukCs , for any k � 1. Indeed, this follows from
the last assertion in the previous lemma:

ukCs
ij D uk

ij us
ij D uk

ij pij D uk
ij :

Summarizing, the conditions (1) and (2) in the statement define a unique family
of n-dimensional corepresentations fuk j k 2 Zg, and it remains to check that these
corepresentations satisfy the condition (3). But this latter condition follows from the
second assertion in the previous lemma, and we are done.

5. Noncrossing partitions

In this section and in the next one we compute the intertwiners between the various
tensor products between the basic corepresentations ui .

The idea is to use the canonical arrow As
h
.n/ ! As.n/. This maps all the corepre-

sentations ui into U , the fundamental corepresentation of As.n/, so by functoriality
we get embeddings as follows:

Hom.ui1 ˝ � � � ˝ uik ; uj1
˝ � � � ˝ ujl

/ � Hom.U ˝k; U ˝l/:

Our first task will be to present a detailed description of the spaces on the right.
Then a careful study will allow us to find the spaces on the left.

Recall from [21] the following definition of noncrossing partitions of an ordered
set S . A partition S D P1 t P2 t � � � t Pk is called noncrossing if, for any distinct
classes Pi D .s1 < s2 < � � � < sl/ and Pj D .t1 < t2 < � � � < tm/ of the partition
we have:

tk < s1 < tkC1 () tk < sl < tkC1:
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Such a partition can be pictorially represented by putting the elements of S on the real
line and joining together the elements of each Pi by strings in the upper half plane, in
such a way that the strings of the resulting picture do not intersect – see the example
after the Definition.

Definition 5.1. We denote by NC.k; l/ the set of noncrossing partitions of the set
with repetitions f1; : : : ; k; 1; : : : ; lg ordered as 1 < � � � < k < l < � � � < 1. These
will be pictured as

p D
⎧⎨
⎩

1 : : : k

P

1 : : : l

⎫⎬
⎭ ;

where P is a noncrossing diagram joining the elements in the same class of the
partition.

Observe that NC.k; l/ is in correspondence with the set NC.k C l/ of noncrossing
partitions of f1; : : : ; kClg. As an example, consider the following partition in NC.6/:

p D f1; 2; 5g [ f3; 4g [ f6g:
The corresponding element of NC.6; 0/ is pictured as follows:

p60 D
{

1 2 3 4 5 6

j
����

j t
�������

j j:
}

The corresponding element of NC.0; 6/ is pictured as follows:

p06 D
{j����j�������

u j j
1 2 3 4 5 6

}
:

As for the corresponding element of NC.5; 1/, this is pictured as follows:

p51 D

⎧⎪⎨
⎪⎩

1 2 3 4 5

j
����

j t
�������

j
j
1

⎫⎪⎬
⎪⎭ :

We fix now a number n 2 N. All indices will vary in the set f1; : : : ; ng.

Definition 5.2. Associated to any partition p 2 NC.k; l/ and any multi-indices i D
.i1; : : : ; ik/ and j D .j1; : : : ; jl/ is a number p.i; j / 2 f0; 1g as follows:

(1) We put the indices of i; j on the points of p, in the obvious way.

(2) If all the strings of p join equal indices, we set p.i; j / D 1.

(3) If some strings of p join different indices, we set p.i; j / D 0.
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Here is a series of basic examples, with the partitions represented by the corre-
sponding pictures, drawn according to the above conventions:⎧⎨

⎩
1

j
1

⎫⎬
⎭ .a; b/ D

⎧⎨
⎩ u

1 2

⎫⎬
⎭ .; ab/ D

⎧⎨
⎩

1 2

t
⎫⎬
⎭ .ab; / D ıab:

In this equality the ı symbol on the right is a usual Kronecker symbol.

Definition 5.3. Associated to any partition p 2 NC.k; l/ is the linear map

Tp.ei1 ˝ � � � ˝ eik / D ∑
j1:::jl

p.i; j / ej1
˝ � � � ˝ ejl

;

where e1; : : : ; en is the standard basis of Cn.

Here are a few examples that are of interest for the considerations to follow:

T
{∣∣ ∣∣} .ea ˝ eb/ D ea ˝ eb;

T
{∣∣�∣∣} .ea ˝ eb/ D ıab ea ˝ ea;

T

{j j
j j

}
.ea ˝ eb/ D ∑

cd

ec ˝ ed ;

T

{t
j j

}
.ea ˝ eb/ D ıab

∑
cd

ec ˝ ed ;

T

{t
u
}

.ea ˝ eb/ D ıab

∑
c

ec ˝ ec :

We introduce now a number of algebraic operations on partitions.

Definition 5.4. The tensor product, composition and involution of partitions are ob-
tained by horizontal and vertical concatenation and upside-down turning

p ˝ q D fP Qg;
pq D

{
Q

P

}
� fclosed blocksg;

p� D fP Õg;
where p D fP g and q D fQg are the pictorial representations of p, q.

The above three operations can of course be defined by certain explicit algebraic
formulae using the formalism of partitions, but we prefer to use their pictorial inter-
pretation, which is less heavier and far more suggestive.
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As an example, consider two partitions p 2 NC.k; l/ and q 2 NC.k0; l 0/. In order
to define their tensor product, we use the following identification:

f1; : : : ; k; 1; : : : ; lg t f1; : : : ; k0; 1; : : : ; l 0g ' f1; : : : ; k C k0; 1; : : : ; l C l 0g:
Here the elements of the first set on the left are identified with the corresponding
elements on the set on the right, and the elements of the second set on the left are
identified with the missing elements at right, in the following way:

f1; : : : ; k0; 1; : : : ; l 0g ' fk C 1; : : : ; k C k0; l C 1; : : : ; l C l 0g:
Now with the above identification, the disjoint union p t q is a partition of the

union of the two sets on the left, hence can be regarded as a partition of the big set on
the right. We denote this latter partition by p ˝ q 2 NC.k C k0; l C l 0/.

Observe that in pictorial terms, this partition p ˝ q is simply obtained by “hori-
zontal concatenation”, as stated in Definition 5.4.

The composition is similarly defined by “vertical concatenation” of the pictures.
Observed that it is only partially defined: the number of upper points of p must be
equal to the number of lower points of q. Moreover, when identifying the upper points
of p with the lower points of q, “closed blocks” might appear, i.e., strings which are
not connected to any of the new upper and lower points. These blocks are simply
discarded from the concatenated picture.

We are now in position of developing the method explained in the beginning of
this section. Let U be the fundamental corepresentation of As.n/.

Theorem 5.5. We have the equality

Hom.U ˝k; U ˝l/ D spanfTp j p 2 NC.k; l/g;
and if n � 4, the maps on the right are linearly independent.

Proof. This result is known since [2], a simplified proof being as follows. First, it is
routine to check that we have the following formulae, with b.p; q/ 2 N:

Tp˝q D Tp ˝ Tq;

Tpq D n�b.p;q/TpTq;

Tp� D T �
p ;

Tj D id:

This shows that the spaces on the right form a tensor category in the sense of
Woronowicz [30]. Moreover, since Tu implements the canonical “duality” map, this
category has duals, so by [30] it gives rise to a certain Hopf algebra .A; u/.



Fusion rules for quantum reflection groups 343

Now since the one-block partitions 1k 2 NC.k/ produce via the operations in
Definition 5.4 all the noncrossing partitions, our tensor category is generated by
the maps T1k

. This means that the algebra A is presented by the relations T1k
2

Hom.1; u˝k/, and a routine computation shows that these conditions are equivalent
to the fact that u is magic. Thus we have A D As.n/.

The last assertion, also proved in [2], follows by using a number of standard tricks.
First, by Frobenius duality, the validity of the statement depends only on the value of
k C l . Moreover, once again by a standard representation theory argument, coming
from 1 2 U , we can assume that k C l is even. Thus it is enough to do the check in
the case k D l . But here the vector spaces in the statement are actually algebras, and
the result follows by using a suitable positive trace.

The above result is not surprising, because for C.Sn/ the corresponding spaces of
intertwiners are given by the same formula, but with all the partitions instead of just
the noncrossing ones. Thus we are in tune with the general principle “the passage
from classical to free is obtained by restricting attention to the noncrossing partitions”,
which goes back to Speicher’s paper [21].

6. Tannakian duality

We are now in position of investigating the spaces of intertwiners between the various
tensor products of basic corepresentations of As

h
.n/.

Definition 6.1. We make the assumption n � 4.

This assumption, to be kept until the end of the article, guarantees that the linear
maps Tp in Theorem 5.5 are linearly independent. We will use this fact in order to
identify the partitions with the corresponding linear maps.

In the cases n D 2; 3, not to be investigated in what follows, As
h
.n/ collapses to a

quite simple algebra, as shown by Corollary 3.5.

Definition 6.2. For i1; : : : ; ik 2 Z we use the notation

ui1:::ik D ui1 ˝ � � � ˝ uik

where fui j i 2 Zg are the corepresentations in Theorem 4.3.

Observe that in the particular case i1; : : : ; ik 2 f˙1g we obtain in this way all the
possible tensor products between u D u1 and Nu D u�1, known by the general results
in [29] to contain any irreducible corepresentation of As

h
.n/.
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Theorem 6.3. We have the equality

Hom.ui1:::ik ; uj1:::jl
/ D spanfTp j p 2 NCs.i1 : : : ik; j1 : : : jl/g;

where the set on the right consists of elements of NC.k; l/ having the property that
in each block the sum of i indices equals the sum of j indices modulo s.

Proof. The idea will be to expand, suitably modify, and unify the proof of the follow-
ing key particular cases:

(1) Theorem 5.5 from the previous section, which gives the result at s D 1, for any
choice of indices i1; : : : ; ik; j1; : : : ; jl 2 Z.

(2) The main technical result in [3], p. 37 on top, which gives the result for any
s 2 N, for indices of type i1; : : : ; ik; j1; : : : ; jl 2 f˙1g.

Step 1. Our first claim is that in order to prove �, we may restrict our attention to
the case k D 0. Indeed, it is known that for any two corepresentations v, w we have
a Frobenius duality isomorphism

Hom.v; w/ ' Hom.1; v ˝ Nw/:

In the case v D ui1:::ik and w D uj1:::jl
we can use the formulae in Theorem 4.3

in order to compute v ˝ Nw, and the Frobenius isomorphism reads

Hom.ui1:::ik ; uj1:::jl
/ ' Hom.1; ui1:::ik.�jl /:::.�j1//:

On the other hand, we have the canonical identification

NC.k; l/ ' NC.0; k C l/:

Now it follows from definitions and from Theorem 5.5 that at s D 1 these two
isomorphisms are compatible in the obvious sense. Together with the functorial-
ity considerations regarding the canonical map As

h
.n/ ! As.n/, explained at the

beginning of the previous section, this justifies our claim.
Step 2. Our second claim is that in order to prove � in the case k D 0, we may

restrict attention to the one-block partitions. Indeed, this follows once again from a
standard trick. Consider the following disjoint union:

NCs D
1⋃

kD0

⋃
i1:::ik

NCs.0; i1 : : : ik/:

This is a set of labeled partitions, having the following properties:

(1) Each p 2 NCs is noncrossing.

(2) For p 2 NCs , any block of p is in NCs .
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It is well known that under these assumptions the global algebraic properties of
NCs can be checked on blocks, and this justifies our claim.

Step 3. We finish the proof of �. According to the above considerations, we just
have to prove that the vector associated to the one-block partition in NC.l/ is fixed
by uj1:::jl

, for any choice of j1; : : : ; jl satisfying

s jj1 C � � � C jl :

Consider the standard generators eab 2 Mn.C/, acting on the basis vectors by
eab.ec/ D ıbcea. The corepresentation uj1:::jl

is given by

uj1:::jl
D uj1

˝ � � � ˝ ujl

D .u
j1

a1b1
/ ˝ � � � ˝ .u

jl

al bl
/

D ∑
a1:::al

∑
b1:::bl

u
j1

a1b1
: : : u

jl

al bl
˝ ea1b1

˝ � � � ˝ eal bl
:

As for the vector associated to the one-block partition, this is

�l D ∑
b

e˝l
b

:

By using several times the relations in Lemma 4.2, we get as claimed:

uj1:::jl
.1 ˝ �l/ D ∑

a1:::al

∑
b

u
j1

a1b
: : : u

jl

al b
˝ ea1

˝ � � � ˝ eal

D ∑
ab

u
j1C���Cjl

ab
˝ e˝l

a

D ∑
ab

pab ˝ e˝l
a

D ∑
a

1 ˝ e˝l
a D 1 ˝ �l :

Step 4. We begin the proof of �. The first remark, which can be justified as in the
proof of Theorem 5.5, is that the spaces on the right in the statement form a tensor
category with duals in the sense of Woronowicz [30]. Thus by Tannakian duality they
correspond to a certain Hopf algebra A.

This algebra is by definition the maximal model for the tensor category. In other
words, it comes with a family of corepresentations fvig such that

Hom.vi1:::ik ; vj1:::jl
/ D spanfTp j p 2 NCs.i1 : : : ik; j1 : : : jl/g:

Here and in what follows we use the notation vi1:::ik D vi1 ˝ � � � ˝ vik .
On the other hand, the inclusion � that we just proved shows that As

h
.n/ is a model

for the tensor category. Thus by [30] we have a surjective arrow A ! As
h
, mapping

vi ! ui for any i . We have to prove that this is an isomorphism.
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Step 5. We finish the proof of �. This can be done in a straightforward way, by
suitably adapting the proof of Theorem 5.5. In what follows we present a shorter
argument, based on some previous work in [3]. The main technical result there (p. 37
on top) is that the equality in the statement holds in the case where both ui1:::ik and
uj1:::jl

are tensor products between u and Nu.
With the present notations we have u D u1 and Nu D u�1, so what we know from

[3] is that the result holds for any choice of indices ir ; jr 2 f˙1g.
Now by using the definition of A, we get that for such indices we have

Hom.ui1:::ik ; uj1:::jl
/ D Hom.vi1:::ik ; vj1:::jl

/:

In other words, the map A ! As
h
.n/ induces isomorphisms at the level of inter-

twining spaces between the various tensor products between v and Nv. It is well known
that such a map must be an isomorphism, and this finishes the proof.

As an illustration for the above result, we present below two corollaries, both of
them with very detailed proofs.

First is a key statement about the basic corepresentations ui . As usual, we use
indices modulo s, with the convention u0

ij D pij .

Corollary 6.4. The basic corepresentations u0; : : : ; us�1 are as follows:

(1) u1; : : : ; us�1 are irreducible.

(2) u0 D 1 C r0, with r0 irreducible.

(3) r0; u1; : : : ; us�1 are distinct.

Proof. We apply Theorem 6.3 with k D l D 1 and i1 D i , j1 D j . This gives

dim.Hom.ui ; uj // D # NCs.i; j /:

We have two candidates for the elements of NCs.i; j /, namely the two partitions
in NC.1; 1/. So consider these two partitions, with the points labeled by i; j :

p D

⎧⎪⎨
⎪⎩

i∣∣∣
j

⎫⎪⎬
⎪⎭ ; q D

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i

j

j
j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

:

We have to check for each of these partitions if the sum of i indices equals or not
the sum of j indices, modulo s, in each block. The answer is as follows:

p 2 NCs.i; j / () i D j;

q 2 NCs.i; j / () i D j D 0:
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By collecting together these two answers we get

# NCs.i; j / D

⎧⎪⎨
⎪⎩

0 if i ¤ j;

1 if i D j ¤ 0;

2 if i D j D 0:

This gives all the results. Indeed, (1) follows from the second equality, (2) follows
from the third equality and from the fact that we have 1 2 us (this is because us D p

is magic), and (3) follows from the first equality.
As a last remark, the ingredient 1 2 u0 can be deduced as well from Theorem 6.3.

Indeed, with k D 0, l D 1 and j1 D 0 we get dim.Hom.1; u0// D 1.

The second corollary is a key statement to be used in what follows for the com-
putation of the fusion rules.

It is convenient at this point to switch back to the old notation for the tensor
products between the basic corepresentations by ignoring Definition 6.2, which was
temporary. Also, we use the notation #.1 2 v/ D dim.Hom.1; v//.

Corollary 6.5. We have the formula

#.1 2 ui1 ˝ � � � ˝ uik / D # NCs.i1 : : : ik/;

where the set on the right consists of noncrossing partitions of f1; : : : ; kg having the
property that the sum of indices in each block is a multiple of s.

Proof. This is clear from Theorem 6.3.

7. The main result

It is known from Woronowicz’s analogue of Peter–Weyl theory in [29] that each
corepresentation decomposes as a direct sum of irreducible corepresentations.

In particular any tensor product of irreducible corepresentations decomposes as a
direct sum of irreducible corepresentations.

The formulae describing these decompositions are called fusion rules.

Definition 7.1. The fusion semiring .RC; �; C; ˝/ is defined as follows:

(1) RC is the set of equivalence classes of corepresentations.

(2) �, C, ˝ are the usual involution, sum and tensor product.

It follows from the Peter–Weyl type results that .RC; C/ is the free additive monoid
on the set of irreducible corepresentations. Thus the fusion semiring .RC; �; C; ˝/

encodes the collection of fusion rules.
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Definition 7.2. Let F D hZsi be the monoid formed by the words over Zs . We
endow F with the following operations:

(1) Involution: .i1 : : : ik/� D .�ik/ : : : .�i1/.

(2) Fusion: .i1 : : : ik/ � .j1 : : : jl/ D i1 : : : ik�1.ik C j1/j2 : : : jl .

Note that v � w is not defined when v or w is the empty word. We make the
convention that the corresponding terms disappear from the fusion rules below.

We are now in position of stating the main result in this article. We recall from
Corollary 6.4 that the basic corepresentations u1; : : : ; us are all irreducible, except
for the last one, which is of the form 1 C rs with rs irreducible.

Theorem 7.3. The irreducible corepresentations of As
h
.n/ can be labeled rx with

x 2 F such that the involution and fusion rules are Nrx D r Nx and

rx ˝ ry D ∑
xDvz;yDNzw

rvw C rv�w

and such that we have ri D ui � ıi01 for any i 2 Zs .

Proof. We use the results in the previous section and a standard method from [1], [2].
Consider the set of irreducible corepresentations of As

h
.n/, its fusion semiring, and

its fusion ring, and denote them as follows:

Rirr � RC � R:

Observe that by Corollary 6.4 we have ri 2 Rirr for any i .
Step 1. We first construct an abstract fusion semiring, with fusion rules as in the

statement. Consider indeed the monoid A D fax j x 2 F g, with multiplication
axay D axy . We denote by NA the set of linear combinations of elements in A, with
coefficients in N, and we endow it with fusion rules as in the statement:

ax ˝ ay D ∑
xDvz;yDNzw

avw C av�w :

With these notations, .NA; C; ˝/ is a semiring. We will use as well the set ZA

formed by the linear combinations of elements of A with coefficients in Z. The above
tensor product operation extends to ZA and .ZA; C; ˝/ is a ring.

Step 2. We claim that the fusion rules on ZA can be uniquely described by
conversion formulae as follows:

ai1 ˝ � � � ˝ aik D ∑
l

∑
j1:::jl

C
j1:::jl

i1:::ik
aj1:::jl

;

ai1:::ik D ∑
l

∑
j1:::jl

D
j1:::jl

i1:::ik
aj1

˝ � � � ˝ ajl
:
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Here the C coefficients are certain positive integers and the D coefficients are
certain integers. The existence and uniqueness of such decompositions follow indeed
from the definition of the tensor product operation, and by induction over k for the
D coefficients.

Step 3. We claim that there is a unique morphism of rings ˆ W ZA ! R such that
ˆ.ai / D ri for any i . Indeed, consider the following elements of R:

ri1:::ik D ∑
l

∑
j1:::jl

D
j1:::jl

i1:::ik
rj1

˝ � � � ˝ rjl
:

In case we have a morphism as claimed, by linearity and multiplicativity we must
have ˆ.ax/ D rx for any x 2 F . Thus our morphism is uniquely determined on A,
so by linearity it is uniquely determined on ZA.

In order to prove the existence, we can set ˆ.ax/ D rx for any x 2 F , then
extend ˆ by linearity to the whole ZA. Since ˆ commutes with the above conversion
formulae, which describe the fusion rules, it is indeed a morphism.

Step 4. We claim that ˆ commutes with the linear forms x ! #.1 2 x/. Indeed,
by linearity we just have to check the equality

#.1 2 ai1 ˝ � � � ˝ aik / D #.1 2 ri1 ˝ � � � ˝ rik /:

Now remember that the elements ri are defined as ri D ui � ıi01. So consider
the elements ci D ai C ıi01. Since the operations ri ! ui and ai ! ci are of the
same nature, by linearity the above formula is equivalent to

#.1 2 ci1 ˝ � � � ˝ cik / D #.1 2 ui1 ˝ � � � ˝ uik /:

Now by using Corollary 6.5, what we have to prove is

#.1 2 ci1 ˝ � � � ˝ cik / D # NCs.i1 : : : ik/:

In order to show this formula, consider the product on the left:

P D .ai1 C ıi101/ ˝ .ai2 C ıi201/ ˝ � � � ˝ .aik C ıik01/:

This quantity can be computed by using the fusion rules on A. An induction
on k shows that the final components of type ax will come from the different ways
of grouping and summing the consecutive terms of the sequence .i1; : : : ; ik/, and
simultaneously removing some of the sums which vanish modulo s, so as to obtain
the sequence x. This can be encoded by families of noncrossing partitions, and in
particular the 1 components will come from the partitions in NCs.i1 : : : ik/. Thus we
have #.1 2 P / D # NCs.i1 : : : ik/, as claimed.
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Step 5. We claim that ˆ is injective. Indeed, this follows from the result in the
previous step, by using a standard positivity argument:

ˆ.˛/ D 0 H) ˆ.˛˛�/ D 0;

H) #.1 2 ˆ.˛˛�// D 0;

H) #.1 2 ˛˛�/ D 0;

H) ˛ D 0:

Here ˛ is arbitrary in the domain of ˆ, we use the notation a�
x D a Nx , where x ! Nx

is the involution of Definition 7.2, and a ! #.1; a/ is the unique linear extension of
the operation consisting of counting the number of 1’s. Observe that this latter linear
form is indeed positive definite, according to the identity #.1; axa�

y / D ıxy , which is
clear from the definition of the product of ZA.

Step 6. We claim that we have ˆ.A/ � Rirr. This is the same as saying that
rx 2 Rirr for any x 2 F , and we will prove it by recurrence on the length of x.

For the words of length 1 the assertion is true because of Corollary 6.4, as pointed
out in the beginning of the proof.

Thus assume that the assertion is true for all the words of length < k, and consider
an arbitrary length k word, x D i1 : : : ik . We have

ai1 ˝ ai2:::ik D ax C ai1Ci2;i3:::ik C ıi1Ci2;0ai3:::ik :

By applying ˆ to this decomposition, we obtain that

ri1 ˝ ri2:::ik D rx C ri1Ci2;i3:::ik C ıi1Ci2;0ri3:::ik :

For u irreducible, we use the notation #.u 2 v/ D dim.Hom.u; v//. We have
the following computation, which is valid for y D i1 C i2; i3 : : : ik as well as for
y D i3 : : : ik in the case i1 C i2 D 0:

#.ry 2 ri1 ˝ ri2:::ik / D #.1; r Ny ˝ ri1 ˝ ri2:::ik /

D #.1; a Ny ˝ ai1 ˝ ai2:::ik /

D #.ay 2 ai1 ˝ ai2:::ik /

D 1:

Moreover, we know from the previous step that we have ri1Ci2;i3:::ik ¤ ri3:::ik , so
we conclude that the following formula defines an element of RC:

˛ D ri1 ˝ ri2:::ik � ri1Ci2;i3:::ik � ıi1Ci2;0ri3:::ik :

On the other hand, we have ˛ D rx , so we conclude that we have rx 2 RC.
Finally, the irreducibility of rx follows from the computation

#.1 2 rx ˝ Nrx/ D #.1 2 rx ˝ r Nx/ D #.1 2 ax ˝ a Nx/ D #.1 2 ax ˝ Nax/ D 1:
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Step 7. Summarizing, we have constructed an injective ring morphism
ˆ W ZA ! R, with the property ˆ.A/ � Rirr. The remaining fact to be proved,
namely that we have ˆ.A/ D Rirr, is clear from the general results in [29]. Indeed,
since each element of NA is a sum of elements in A, by applying ˆ we get that
each element in ˆ.NA/ is a sum of irreducible corepresentations in ˆ.A/. But since
ˆ.NA/ contains all the tensor powers between the fundamental corepresentation and
its conjugate, it follows from [29] that ˆ.A/ D Rirr, and we are done.

As an illustration for the above result, we would like to work out the case s D 1.
We get a new proof for the following result from [2].

Corollary 7.4. The fusion rules for As.n/ are the same as the Clebsch–Gordan rules
for the irreducible representations of SO3.

Proof. We first examine Definition 7.2 in the case s D 1. We have a canonical
isomorphism F ' N, mapping the words to their lengths. With this identification,
the involution is Nk D k, and the fusion is k � l D k C l � 1.

We apply now Theorem 7.3. The conclusion is that the irreducible corepresenta-
tions can be labeled frk j k 2 Ng, and that we have

(1) Nrk D rk ,

(2) rk ˝ rl D rkCl C rkCl�1 C � � � C rjk�lj,

(3) r1 D u � 1.

In other words, we have arrived at the Clebsch–Gordan rules for SO3, with u � 1

corresponding to the 3-dimensional representation of SO3.

8. Alternative formulation

In this section we present an alternative formulation of Theorem 7.3 that we will once
again illustrate with a complete computation at s D 1.

We begin with a slight modification of Theorem 7.3.

Theorem 8.1. Consider the free monoid A D hai j i 2 Zsi with the involution
a�

i D a�i , and define inductively the following fusion rules on it:

pai ˝ aj q D paiaj q C paiCj q C ıiCj;0p ˝ q:

Then the irreducible corepresentations of As
h
.n/ can be indexed by the elements

of A, and the fusion rules and involution are the above ones.
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Proof. We claim that this follows from Theorem 7.3 by performing the following
relabeling of the irreducible corepresentations:

ri1:::ik ! ai1 : : : aik :

Indeed, with the notations in Theorem 7.3 we have the following computation,
valid for any two elements i; j 2 Zs and any two words x; y 2 F :

rxi ˝ rjy D ∑
xiDvz;jyDNzw

rvw C rv�w

D rxijy C rx;iCj;y C ıiCj;0

∑
xDvz;yDNzw

rvw C rv�w

D rxijy C rx;iCj;y C ıiCj;0rx ˝ ry :

With the above relabeling ri1:::ik ! ai1 : : : aik , this gives the formula in the
statement (with rx ! p and ry ! q), and we are done.

Our alternative reformulation of Theorem 7.3 is based on the idea of embedding
RC into a bigger fusion semiring. In this bigger semiring the fusion rules will appear
to be actually simpler, due to a Fourier transform type situation.

Given a fusion monoid M and an element b 2 M , we denote by hbi the fusion
monoid generated by b. In other words, hbi is the smallest subset of M containing
b, and which is stable by composition, involution and fusion rules.

Theorem 8.2. Consider the monoid M D ha; z j zs D 1i with the involution a� D a,
z� D z�1, and define inductively the following fusion rules on it:

vazi ˝ zj aw D vaziCj aw C ısjiCj v ˝ w:

Then the irreducible corepresentations of As
h
.n/ can be indexed by the elements

of N D hazai, and the fusion rules and involution are the above ones.

Proof. It is routine to check that the elements azia with i D 1; : : : ; s are free inside
M . In other words, the submonoid N 0 D haziai is free on s generators, so it can be
identified with the free monoid A in Theorem 8.1 via ai D azia.

We have .azia/� D az�ia, so this identification is involution-preserving.
Consider now two arbitrary elements p; q 2 N 0. By using twice the formula in

the statement, we obtain the formula in Theorem 8.1:

pai ˝ aj q D pazia ˝ azj aq

D paziaazj aq C pazi ˝ zj aq

D paziaazj aq C paziCj aq C ıiCj;0p ˝ q

D paiaj q C paiCj q C ıiCj;0p ˝ q:
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Thus our identification N 0 ' A is fusion rule-preserving.
In order to conclude, it remains to prove that the inclusion N � N 0 is actually

an equality. But this follows from the fact that A is generated as a fusion monoid by
a1. Indeed, by using the identification N 0 ' A this shows that N 0 is generated as a
fusion monoid by aza, and we are done.

As in illustration for the above result, we work out the case s D 1, leading to a
supplementary proof for the main result in [2].

Corollary 8.3. At s D 1 we have the Clebsch–Gordan rules for SO3.

Proof. Indeed, at s D 1 we have a canonical isomorphism M ' N, and with this
identification, the fusion rules are given inductively by

k ˝ l D .k C l/ C .k � 1/ ˝ .l � 1/:

This gives the following explicit formula, which is nothing but the Clebsch–Gordan
formula for the fusion rules of irreducible representations of SU2:

k ˝ l D .k C l/ C .k C l � 2/ C � � � C jk � l j:

As for the submonoid N � M , this corresponds via the above identifications to the
submonoid 2N � N. Thus when performing a division by 2 we get an isomorphism
N ' N, and we have the following fusion rules on N :

k ˝ l D .k C l/ C .k C l � 1/ C � � � C jk � l j:

We recognize here the Clebsch–Gordan formula for SO3.

Let us also work out the case s D 1.

Corollary 8.4. Consider the monoid M D ha; z; z�1i with the involution a� D a,
z� D z�1, and define inductively the following fusion rules on it:

vazi ˝ zj aw D vaziCj aw C ıiCj;0v ˝ w:

Then the irreducible corepresentations of A1
h

.n/ can be indexed by the elements
of N D hazai, and the fusion rules and involution are the above ones.

Proof. This is a reformulation of Theorem 8.2 in the case s D 1 using the various
conventions and notations specific to this case.
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9. Dimension formula

In this section we compute the dimension of the irreducible corepresentations of
As

h
.n/. Besides of being of independent theoretical interest, this computation can

be regarded as being first ingredient towards a fine study of the growth invariants of
As

h
.n/ in the spirit of [24], [25], [6].
The main result will be best expressed in terms of the alternative formalism from

the previous section. Thus consider the free monoids N � M in Theorem 8.2, with
N D hazai labelling the irreducible corepresentations of Ah.n/.

We have seen in the proof of Corollary 8.3 that, at s D 1, the inclusion N � M

ultimately comes from double cover map SU2 ! SO3. So our first task will be to
introduce a certain sequence of numbers dk , which appear as “versions with 2 replaced
by

p
n” of the dimensions of the irreducible representations of SU2.

Definition 9.1. Associated to any n � 4 is the sequence of numbers given by

dkC1 C dk�1 D p
ndk

with the initial values d0 D 1 and d1 D p
n.

These numbers can be of course computed in terms of the roots of the polynomial
X2 � p

nX C 1 D 0, but the explicit formula is not very enlightening. Instead, let
us just indicate the first few values of these numbers:

d0 D 1;

d1 D p
n;

d2 D n � 1;

d3 D .n � 2/
p

n;

d4 D n2 � 3n C 1:

Observe that at n D 4 the recurrence relation is dkC1 C dk�1 D 2dk , with initial
values d0 D 1 and d1 D 2, so we have dk D k C 1 for any k. These numbers are
indeed the dimensions of the irreducible representations of SU2.

In the general case, the numbers dk appear as dimensions of the irreducible corep-
resentations of the Wang algebra Ao.

p
n/. Without getting into details here (see [27]),

let us just record the following useful fact.

Proposition 9.2. The sequence of numbers dk can be defined alternatively by the
Clebsch–Gordan type formula

dkdl D dkCl C dk�1dl�1;

with the initial values d0 D 1 and d1 D p
n.
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Proof. Let M ' N be endowed with the Clebsch–Gordan rules, as in the proof of
Corollary 8.3. It follows from definitions that associated to any � 2 R is a unique
morphism of fusion semirings d W NM ! .N; C; � /, having the property d1 D �.
According to the Clebsch–Gordan rules, we must have

dkdl D dkCl C dkCl�2 C � � � C djk�lj:

This shows that the numbers dk satisfy the recurrence formula in the statement,
so if we set � D p

n we get indeed the numbers in the statement.
On the other hand, with l D 1, the above formula reads:

dk

p
n D dkC1 C dk�1:

Together with d0 D 1 and d1 D p
n, this shows that our sequence of numbers dk

coincides with the one in Definition 9.1, and we are done.

Theorem 9.3. The dimensions of the irreducible corepresentations of As
h
.n/, as la-

belled by the monoid N D hazai in Theorem 8.2, are given by

dim.ai1zj1ai2zj2 : : : aik / D di1 : : : dik ;

where fdkg is the sequence of numbers in Definition 9.1.

Proof. First, it follows from definitions that the elements of N D hazai are indeed
as those in the statement, i.e., with i1 ¤ 0, ik ¤ 0.

We define a function d W N ! R by the formula in the statement.
Step 1. Our first claim is that d is indeed the dimension, for any of the basic

corepresentations rj D azj a. Indeed, for j 2 f1; : : : ; s � 1g we have

d.azj a/ D d 2
1 D n D dim.rj / D dim.azj a/:

Also, in the remaining case j D 0, we have

d.a2/ D d2 D n � 1 D dim.r0/ D dim.a2/:

Step 2. Our second claim is that d is a fusion semiring morphism.
Indeed, we can prove this by using the recurrence relation for the fusion rules on

N from Theorem 8.2. It is enough to check that the morphism property holds when
applying d to both terms, and we can do this by using a recurrence on †ip . Indeed,
we have

d.ai1zj1 : : : aik ˝ aI1zJ1 : : : aIK / D d.ai1zj1 : : : zjk�1aikCI1zJ1 : : : zJK�1aIK /

C d.ai1zj1 : : : aik�1 ˝ aI1�1zJ1 : : : aIK /

D di1 : : : dik�1
dikCI1

dI2
: : : dIK

C di1 : : : dik�1
dik�1 � dI1�1dI2

: : : dIK
:
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Now by using the Clebsch–Gordan type formula in Proposition 9.2, we can com-
plete the proof of the recurrence step:

d.ai1zj1 : : : aik ˝ aI1zJ1 : : : aIK / D di1 : : : dik�1
.dikCI1

C dik�1dI1�1/dI2
: : : dIK

D di1 : : : dik�1
.dik dI1

/dI2
: : : dIK

D .di1 : : : dik�1
dik /.dI1

dI2
: : : dIK

/

D d.ai1zj1 : : : aik /d.aI1zJ1 : : : aIK /:

Step 3. We finish the proof. Since both d and the usual dimension are morphisms
of semirings NN ! .RC; C; � /, which coincide on the basic generators rj D azj a,
these two morphisms are equal, and we are done.

10. Concluding remarks

The fusion rules for the algebra As
h
.n/, computed in this article, appear to be quite

similar to the fusion rules for the algebras Ao.n/, Au.n/ previously computed in [1].
In what follows we present an attempt of unification.

First, we have the following quite technical definition from [5].

Definition 10.1. A free quantum algebra is a Hopf algebra A satisfying

Au.n/ ! A ! As.n/

and having the property that its tensor category is spanned by partitions.

We should mention that this axiomatization is not fully satisfactory in the sense
that, while being quite restrictive, it still allows too many algebras. The correct axioms,
not known so far, should include some conditions which guarantee the compatibility
with the Bercovici–Pata bijection [8]; see [3].

Now regarding the fusion rules, a possible axiomatization is as follows. Let R be
a set, given with two maps as follows:

(1) A map R ! R, denoted r ! Nr and called involution.

(2) A map R � R ! R [ f;g, denoted .r; s/ ! r � s and called fusion.

The involution and fusion operation extend to the free monoid hRi formed by the
words in elements of R in the following way:

.r1 : : : rk/� D Nrk : : : Nr1;

.r1 : : : rk/ � .s1 : : : sl/ D r1 : : : rk�1.rk � s1/s2 : : : sl :

In the case rk � s1 D ;, or when k or l vanishes, the convention is that the whole
word disappears.
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Definition 10.2. A free fusion semiring is a free monoid hRi with fusion rules of the
form

x ˝ y D ∑
xDvz;yDNzw

vw C v � w;

where R is a set, with involution r ! Nr and fusion .r; s/ ! r � s.

The fusion semirings computed so far are all free, the results in [1] and in the
present article are as follows:

(1) For Ao.n/ we have R D f1g, with Nr D r and r � s D ;.

(2) For Au.n/ we have R D Z2, with Nr D 1 � r and r � s D ;.

(3) For As
h
.n/ we have R D Zs , with Nr D �r and r � s D r C s.

We did as well some extra computations – in preparation for certain free quantum
algebras – and the conclusion is as follows: (1) the fusion semiring is always free,
and (2) the data .R; �; � / does not seem to be further axiomatizable.

Summarizing, the question that we would like to raise is as follows.

Conjecture 10.3. If A is free, then RC.A/ is free.

It is our hope that further advances on this question will ultimately lead to the
technical ingredients needed in order to extend the various analytic results in [1], [6],
[11], [22], [23], [24], [25], [26] to the arbitrary free quantum algebras.

We would like to end by recalling an important statement in this direction.
Let A be a Hopf C*-algebra in the sense of Woronowicz. It is known from [29]

that A has a unique Haar functional, which is not necessarily faithful. By dividing
A by the null ideal of the Haar functional we obtain the reduced algebra Ared. The
map A ! Ared is an isomorphism when A is amenable in the discrete quantum group
sense, and all the standard amenability statements for discrete groups extend to this
situation. See Bédos, Conti and Tuset [7].

We recall also that a C*-algebra A has the Dixmier property if any element can
be averaged with unitaries to get arbitrarily close to the scalars. When A has a trace
(and this is the case with Ared), this is the same as saying that A is simple and its trace
is unique; see Haagerup and Zsido [14].

Conjecture 10.4. If A is free, then Ared has the Dixmier property.

The first piece of evidence comes from the verification in [1] for the Wang algebra
Au.n/. The proof there follows Powers’ method in [19], modified by de la Harpe and
Skandalis in [15], and heavily relies on the fusion rules.

The other piece of evidence comes from the verification in [23] for the Wang
algebra Ao.n/. The proof there, which is much more technical, makes use of the
notion of Wenzl projection, which ultimately comes from the freeness of RC.
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Summarizing, the results in this article provide a strong evidence for Conjec-
ture 10.3, which in turn would be an important step towards proving Conjecture 10.4.

Let us also mention that a global approach to these problems seems to emerge
from the recent work of De Rijdt, Vaes and Vander Vennet [11], [22]. So our first
question would be if the methods there can be applied to As

h
.n/.
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