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1. Introduction

In the study of index theory of a transverse elliptic differential operator in the case of
a codimension one foliation, Connes and Moscovici discovered a Hopf algebra #¢;
which governs the local symmetry in computing the Chern character. In this article
we study deformation theory for this Hopf algebra. In particular, we prove that the
Hopf algebra #; has a universal deformation formula.

In [5], inspired from Rankin—Cohen brackets on modular forms, Connes and
Moscovici constructed a universal deformation formula for Hopf algebra actions of
J1 with a projective structure. By a universal deformation formula of a Hopf algebra
A, we mean an element R € A[[A]] ®cya)) Al[A]] satisfying

(AR DHR)R®1) = ((1®A)R)(1® R),
€ERDR) =1®1=(1®e)(R).

In [1], we together with Bieliavsky provided a geometric interpretation of a projec-
tive structure in the case of a codimension one foliation. And as a result, we (with
Bieliavsky) obtained a geometric way to reconstruct Connes—Moscovici’s universal
deformation formula. The argument is to construct an associative deformed product
on C2(R x RT) x T for an arbitrary pseudogroup I' which acts on the upper-half
plane, using Fedosov’s quantization procedure. Then we prove the full injectivity of
J1 actions on these algebras, thus enabling us to “pull” the associativity “back” to
the Hopf algebra level.
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A new and interesting result proved in [1], Prop. 6.1, is that even without any
projective structure, the first Rankin—Cohen bracket

RCI=SX)®Y +Y ® X € J; ® J

is a noncommutative Poisson structure, i.e., RCy is a Hochschild cocycle and
(1® A)RCi(1 ® RC1) — (A ® 1)RC1(RC; ® 1) is a Hochschild coboundary.
This inspires the question whether J¢; has a universal deformation formula without
any projectivity assumption on its action.

In this article we give a positive answer to the above question and introduce a
geometric construction of such a universal deformation formula of #;. The idea of
this construction goes back to Fedosov [6] in his study of deformation quantization of
a symplectic diffeomorphism. Fedosov developed in [6] a systematic way to quantize
a symplectic diffeomorphism to an endomorphism of the quantum algebra no matter
whether it preserves or not the chosen symplectic connection. Fedosov also observed
that the homomorphism (functoriality) property of his quantization of symplectic
diffeomorphisms fails, i.e., &,3 # (;B . Instead, it satisfies a weaker property that
a ,3 and o/zB are related by an inner endomorphism. This picture can be explained
using the language of “gerbes and stacks” as [2]. In any case, Fedosov’s construction
does give rise to a deformation quantization of the groupoid algebra associated with
a pseudogroup action on a symplectic manifold.

In this article we apply this idea to the special case where the symplectic manifold
is R x R and the Poisson structure is dx A 9y, with x the coordinate on R and y the
coordinate on R*. We consider symplectic diffeomorphisms on R x R of the form

Y
y:(x,y) —> (V(X), — )
V(%)
where y is a local diffeomorphism on R. In this case, Fedosov’s construction of
quantization of symplectic diffeomorphism can be computed explicitly. In partic-

ular, we are able to prove that the resulting star product on the groupoid algebra
C2(R x R™) x T can be expressed by

faxgh=mR(fa® gph)).

where m is the multiplication map on C>°(R x R*) x T, and R is an element in
H1[[7]] @cray #H1l[7]]. Animportant property is that the J; action on the collection
of all C°(R x R*) x I for all pseudogroups I" is fully injective because this action
is equivalent to the action used by Connes and Moscovici to define ;. With this
observation, we can derive all the property of R as a universal deformation formula
from the corresponding properties about the star product on C2°(R x R*) x T'[[7]].
The notion of universal deformation formula of a Hopf algebra is closely related
to the solution of the quantum Yang—Baxter equation. The results in this article can
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be used to construct a new Hopf algebra structure on J¢;[[#]]. We hope that our
construction will shed a light on the study of deformation theory of the Hopf algebra
J¢1 and also codimension one foliations.

This article is organized as follows. We review in Section 2 Fedosov’s theory of
deformation quantization of symplectic diffeomorphisms. We provide a detailed proof
of the fact that this defines a deformation of the groupoid algebra C°(Rx R*)xT". In
Section 3, we prove the main theorem of this paper that J¢; has a universal deformation
formula using Fedosov’s theory reviewed in Section 2. In Section 4, we compute
explicitly our universal deformation formula up to 2. We observe that when the #;
action is projective, the universal deformation formula obtained in this paper does
not agree with the one introduced by Connes and Moscovici in [5]. Instead, our
lower order term computation suggests that in the case of a projective action these
two universal deformation formulas should be related by an isomorphism expressed
by elements in 1 [[#1]] and the projective structure 2. In the appendix we discuss the
associativity of the Eholzer product on modular forms, which was used by Connes
and Moscovici in constructing their Rankin—Cohen deformation.

Acknowledgements. We would like to thank A. Connes and H. Moscovici for explain-
ing the Hopf algebra #¢; and Rankin—Cohen brackets. The first author would like to
thank A. Gorokhovsky, R. Nest, and B. Tsygan for explaining Fedosov’s quantization
of symplectic diffeomorphisms and their ideas of deformation of groupoid algebras.
The research of the first author is partially supported by NSF Grant 0703775.

2. Quantization of symplectic diffeomorphisms

In this section we briefly recall Fedosov’s construction of quantization of a symplectic
diffeomorphism. Moreover, we use this idea to define a deformation of a groupoid
algebra coming from a pseudogroup action on a symplectic manifold. We learned
this construction from A. Gorokhovsky, R. Nest, and B. Tsygan.

In Fedosov’s approach to deformation quantization of a symplectic manifold
(M, w) a flat connection D (also called Fedosov connection) on the Weyl algebra
bundle ‘W plays an essential role. The elements of each fiber (i.e., the Weyl Algebra)
W, are formal series

ay.h)= Y hagay®.

k,lo|>0

where 7 is the formal parameter, y = (y!, ..., y?") € T} M are coordinate functions
of TyM, and y* = (y1H)*1 ... (y2")%n fora = (@1, ...,00,) € Z>0 X +++ X Z>o.
Suppose that /\' are differential forms on M. A Fedosov connection is a derivation
D:T®(WRNA)—>T®°(W® A’ and D?a = 0 foranya € T®(W @ A").

The quantum algebra (i.e., a noncommutative deformation of the smooth function
algebra on M) is identified with the space of flat sections Wp := {a, Da = 0} of 'W.
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The idea is that the elements of Wp are some global sections of 'W. The existence
of that Fedosov connection guarantees that one can “transport” the Moyal product on
one fiber to the whole bundle. Here for a, b € Wy, their Moyal product is

ih ;0 0
axyb= exp(— ?a)/w@)a(y,h)b(z,hﬂz:y
. i (_ ih)k 1 Wi ik oka okb
B = 2/ k! dyit ... dyik dyJr .. dyJk’

The characteristic class Qp of the quantum algebra Wp is defined by
D?a = [Qp.a]. Let w be the symplectic form on M. Then Qp can be written
as —%“’ + wo + hwy + o(h). As D?a = 0 for any a € ‘W, one concludes that Qp is
in the center of ‘W, which implies that wg + hw; + --- € Q2(M)[[#]]. The Bianchi
identity of D implies that all w; are closed differential 2-forms. In general, the co-
homology class of Qp in —iw/h + H?(M)[[#]] determines the quantum algebra
Wp up to isomorphisms. In what follows we fix a Fedosov connection D and the
corresponding quantum algebra Wp with characteristic class Qp = —iw/h.

A question arises when one wants to quantize a symplectic diffeomorphism. Be-
cause a symplectic diffeomorphism may not preserve D, the canonical lifting of a
symplectic diffeomorphism to the Weyl algebra bundle ‘W may not act on the quan-
tum algebra Wp. How can we quantize a symplectic diffeomorphism in this case?
Fedosov studied this problem in [6]. The answer he came up with fits well the lan-
guage of “stack of algebras”. In the following we briefly review Fedosov’s results
[6], Section 4.

A symplectic diffeomorphism y: M — M naturally acts on the tangent bundle
y: TM — TM. Therefore y lifts to an endomorphism on the Weyl algebra bundle
y: W — W. Itis easy to check that if y(D) := y o D o y~! = D, then y defines
an algebra endomorphism on the quantum algebra Wp = ker(D), which is called a
quantization of the symplectic diffeomorphism y. We with Bieliavsky in [1] used this
idea to construct a universal deformation formula of J¢; with a projective structure.

The quantization of y when y(D) # D is more involved. In [6], Section 4,
Fedosov proposed the following construction of quantization. We start with extending
the standard Weyl algebra W to W :

(1) An element u of W can be written as

— k j i
u= Z h ak,il,...,i[yll "'yl[
2k+1>0

where (y!,...,y2") are coordinates on the standard symplectic vector space
(V, ). In the above sum, we allow k to be negative.

(2) There are a finite number of terms with a given total degree 2k + [ > 0.
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We remark that the Moyal product extends to a well-defined product on W . And we
consider the corresponding extension W™ of the Weyl algebra bundle ‘W associated
to WT. The Fedosov connection D lifts to an derivation on T®(W* ® /) with
D? = 0. We notice that if there are two ‘W-valued 1-forms A and A’ satisfying
i/h[A, -] =i/A[A", -]and Al,1—.y2n = A'|j1o..—y2n = 0, then A = A’ (the
first equation shows that A and A’ are different by a 1-form with value in the center
of ‘W, and the second equation shows that A — A’ has to be zero as the center of ‘W is
C°(M)[[#]]). Now given a symplectic diffeomorphism y on M, as y(D) is again a
connection on ‘W we can always write y(D) = D +i/h[A, - ], where A is a W-valued
1-form on M. By the above observation, we see that there is a unique choice (if exists)
of A such that A|y1=...=y2n=0 = 0. According to [7], Thm. 5.2.2, one can always
find a Fedosov connection D which can be locally written as D = d + i/A[r, -]
such that r | ylowmy2n—g = 0 and deg(r) > 2. Therefore, we have a canonical choice
A, = y(r) —r, a W-valued 1-form on M, with Ay|yl=...=y21‘l=0 = 0 satisfying
y(D) = D +i/A[A,, -] and deg(A,) > 2. In the following we will always work
with this choice of A,. We consider the equation

DU, Z_%AVOUV’ (1)

where U, is an invertible section of ‘W*. Fedosov [6], Thm. 4.3, proved that eqn. (1)
always has solutions. In general, these solutions are not unique. But the following
induction procedure

Up1 =1+ 8H(D + U, + (i/h)A, o Uy}, Upg =1

uniquely determines an invertible solution to eqn. (1). Here §: T®(W+ ® A) —
(Wt ® /\) is defined by

Sa:dxk/\a—a

ayk’
By this induction, we see that U is a solution to the equation
U=1+8YD+8U +i/tA, U}, )

which actually has a unique solution because §~{(D + §)U + i/hA, o U} raises
the total degree of U by 1. We will always work with this solution in this article. By
eqn. (1), for any symplectic diffeomorphism o, U, ! satisfies the equation

DU = —U; o DU, o U ! = %U‘;l o Ag.
Using eqn. (2), itis not difficult to check that U 1is the unique solution to the equation
V=14+8Y(D+8V —i/hV oAy} 3)

which can be constructed by the same induction as above.
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We have the following lemma on A,,.

Lemma 2.1. The mapping y +— A, defines a cocycle on the group of symplectic
diffeomorphisms (more precisely a discrete sub(pseudo)group of the symplectic dif-
Sfeomorphism group) with value in Q(M, W), the space of 1-forms on M with value
inW, and

(1) Ag +a(Ag) = Agg,

2) a(Ay—1) = —Ag.

Proof. (1)Wehave D +i/h[Ayg, -] = aB(D) = a(B(D)) = a(D +i/h[Ag, ‘]) =
a(D)+i/hla(Ag), ] = D+i/h[Aq, -]+i/hla(Ag), ] = D+i/h[Ag+a(Apg), -]
Therefore by the defining property of A,g and its uniqueness, we conclude that

Agp = Aq + a(Ap).
(2) Corollary of (1) by setting B = o™ 1. O

We will need the following properties of U, later in our construction.

Proposition 2.2. The assignment o — U, satisfies the following properties.
(1) D(a(Up)) = —i/h(Agp) o a(Up) + i /ha(Up) o Ag;
(2) a(Uy—1) =U L

Proof. (1) We can use eqn. (2) to prove a stronger statement. We compute

a(Up) = a(1 4+ 8 H(D + 8)Ug +i/hAg o Ug})
=148 Y (a(D) + §)a(Up) +i/ha(Ag) o a(Ug)}
=1+ 8{(D + 8§)a(Up) + i /h[Aq. a(Up)] + i /ha(Ap) o a(Up)}
=1+8Y(D + §)a(Up) +i/h(Aq + a(Ap)) o a(Upg) —i/ha(Ug) o Ay}

By applying identity (1) in Lemma 2.1 to the last line, we conclude that a(Ug) is the
unique solution of the equation

a(Ug) = 1+ 8 H(D + 8)a(Up) +i/hAgp o a(Ug) —i/ha(Ug) o Ag}.  (4)

We remark that the solution to eqn. (4) is unique because §'{(D + §)a(Up) +

i/hAqp o a(Ug) —i/ha(Ug) o Ay} raises the total degree of at(Ug) by 1. Taking §

on both sides of the above equation, we obtain the first identity of this proposition.
(2) Setting B = a~! in eqn. (4), we have that

A(Uy1) = 1+ 57D + 8)a(Uyr) +i/h(Ajg 0 a(Uy1) — i /ha(Uy-1) 0 Aa}
=148 (D + 8)a(Uy—1) — i /ha(Upy—1) o Ay},

which is same as the equation that defines U, !. By the uniqueness of the solution to

the above equation, we have o(U,—1) = U, L. O
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Fedosov [6] defined quantization of a symplectic diffeomorphism y on (M, w) as
7(@) = Ady-1(y(@) = Uy, oy(@) o Uy, a e T®(WH @ N),

which defines an algebra endomorphism of the quantum algebra Wp.
The “defect” of this quantization is that the homomorphism (functoriality) property
fails, i.e.,

ap # ap.
Instead, Fedosov proved the following property of the associator vy g := Uy ! o

OC(U I)OaIB(U( B)— 1)

Proposition 2.3. The associator v, g is a flat section of ‘W, and
GB@P)™! = Ady, -
Proof. Using DU, = i/hU; ! o Ay, we have

Dvgp = DUy ' oa(Ug") o a(BUpp 1))
= DU U5 < alhUighy-1) + Uy < DU U
+ U, © a(Uﬂ 1) o D(af( (aﬁ)—l))

= LU o Ag o a(uﬂ—l) 0 @B (U gp)-1)
; ) ) _
=3 Us ' o (Aaoa(Ug") —aUg") 0 Aap) 0 @B (U 1)
P ) _
—Ua ca(Us") o Aap o aP(Ugp 1)

=0.

We remark that in the above formula we have used the property D (o (U 5 ) =
i/ha(Uﬂ_l) o Agp —i/hAy o a(Ug)~ L. Therefore, by [6], Lemma 4.2, we conclude
that vy g is a flat section of 'W.

The property of the associator is a straightforward computation. O

Weuse f +— f to represent the bijective map between C °° (M) and the quantum
algebra Wp. We know that «(@) is a flat section of the connection (D). Therefore,
a(g) satisfies the equation

D@(®) = 5 [Ba- ()]
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Hence U, ! o a(g) o Uy satisfies the equation

DU, o () o Uy)
= DUz oa()oUy+ Uy' o D(@(8)) o Uy + Uy ' o a(8) o D(Ua)

i R i N n
= ;ZUaloAaoot(g)an—£Ua1o(Aaoa(g)—a(g)oAa)an

— 2 U o a(@) 0 Ag o U
=0.

In the following, we apply the above idea to quantize the groupoid algebra of a
pseudogroup I' on a symplectic manifold M. We define the following product on
CZ (M) x T[[A]]:

foxghi=(foUys" oa(@) o Uaovap)ly=oap
= (f o U; ' oa(@) o Uz o af(Ugh —1))ly=0 0B,

where the y’s are coordinate functions along the fiber direction of 7*M. We remark
that because f, U, ' oa(§)o Uy, and vy g are all flat with respect to the connection D,
the product f o U o () o oz(Uﬁ_l) o aﬂ(U(;l)_l) is also flat with respect to the

connection D. Therefore, f oU oa(g)o oz(Uﬂ_l) o a,B(U(;[lj)_l) is a flat section
of ‘W with respect to D.
We check the associativity of x on C°(M) x I'[[A]]:

(fo*gB)*hy
= (f o Uy oa(@) oa(Ug") o aB(Usppy-1)ly=o @ * hy
= (foU; oa(@) ca(Us") o aB(Upy 1) o Ugs o aP(h)
o aB(Uy; ) 0 aBy(Upp,-1))ly=00By
= (fo Uy ca(@) ca(Us") o a(h) o aB(U; ) o aBy(Up,y1))ly=0 @By,

where we have used a,B(U(;;})_l) = Ugg,

fax (gB *hy)
= fax (goUg" o B(h)o B(U,™) o By(Ughy—1)ly=0 By
= (foUs ea(@oUy" o k) o B, o By(Uigy 1) o a(Up))
o aBy(Ugp,y—1)ly=o0 @By
= (foU; ea(@)oa(Uy") o aB(h) o af(Uy ) o ay(Ugp1))ly=0a By,
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where we have used ,BV(U(;},)—J = Ugy.
We conclude that * defines an associative product on the algebra C° (M) x I'[[#]].

3. A universal deformation formula

In this section we apply the construction described in the previous section to construct
a universal deformation formula of Connes—Moscovici’s Hopf algebra J¢;. We start
by recalling briefly the definition of #;.

Let us consider the defining representation of #; on C°(Rx RT) x . Let (x, y)
with y > 0 be coordinates on R x R*. Define y: R x Rt — R x R by

yen = (v, s

We remark that the above expression of y action does not agree with the formulas in
[4], but the two actions are isomorphic under the transformation y + 1/y.
Consider X = 1/ydy, and Y = —yd, acting on CZ°(R x RT) x I as follows

X(fa) = % fea. Y(fa) = —yfya.
Then

a(Y(@ ' (1)) = a(Y (f (@), 755)))
a(~ 15 (@), o)) = —vfr(x,¥) = Y ()

and
a(X@ () = a(X(f(¢x), 37%5)))
= (3o (0) fe(@(0), ) — EEH f(@(), 7))

—1 o -1’y
=L fe+ S fy = Xf -y = (X = Si(@)Y) f,
where §; (fa) = log(a™")/yf.

We define () = X(81(@)) = 3dx(logla™")/y) = 5 *
8n (o) = X(8,—1()) by induction for n > 2.

On R x Rt we consider the Poisson structure dx A dy, which can be expressed by
—X®Y +Y ®X. Our main goal is to use the method reviewed in the previous section
to construct a star product on C2°(R x R*) x'[[#]]. We prove that this star product as a
bilinear operator actually can be expressed by an element R of #1 [[A]] ®cix)) #1 [[#]]-
The associativity of the star product is equivalent to the property that R is a universal

" ’ ”
—1 a—l _(a—l )2

1) and
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deformation formula. We start by fixing a symplectic connection V on the tangent
bundle of R x R*, which was introduced in [1], Section 3:

Vi 0x =0, V5.0, = %ax, Vayax = %ax, Vy. 0

L3,

yO0y = T2y
Using X and Y, we can express the above connection by

VxX =0, VxY¥ =—3X, VyX=31XVyY=-1Y.
We compute a(V) by aVa ™!

"’ 7 4
—17 1 _%(w—l )2

a(v)axax = - (a_l/)z yay’ a(v)axay = %ax’
“(V)Byax = %8)0 Ol(V)ayay = _%aw

and
a(V)xX =8(@)Y, a(V)x¥Y =—1X, a(V)yX =1X, a(V)yY =-17,

where 8, = &, — %8% Note that both V and «(V) are flat and torsion-free.

We consider the lifting of V and «(V) onto the Fedosov connection D and (D)
the Weyl algebra bundle. Use u, v to denote the generators along the fiber direction
of the Weyl algebra bundle ‘W. We have for any section a of ‘W,

da da i 22 1
Da —da—dxa——dyav h[2y dx+2—2uvdy a]
da Ba i , 1
a(D)a = da — dxa —dy— . h [(y 82(oz)u2 + 51)2)01)6 + 52uvdy,a].

Therefore, using the notation of the previous section, we can fix Ay = y38£ (o)u?dx
satisfying deg(Ay) = 3 and Ag|y=y=0 = 0.
In the following, we solve the expression for f, a(g), U, (x(Uﬁ_ 1), and

aﬂ( (Olﬂ) 1)'

3.1. f . The section f of ‘W is a unique solution of

Df =0, flu=v=0=/.
Set f = Y mn Jmatt0". Then the above equation can be written as

> (dx3x frnnt™ 0" 4 dydy frnatt™v" — dx frn pmu™ 0" — dy frp pu™nv" !

m,n

+dxﬂ_212vfm amu™ " +dy2y2(2vfm 2uny" —2ufm,nmum_1v”))

= Z dx(axfm,n —(m + 1)fm-‘rl,n - E(m + l)fm-l—l,n—l)umvn
m,n

+ Z dy(ayfm,n - (I’l + 1)fm,n-i—l + %(n - m)fm,n)umvn
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Therefore, we obtain that f is the unique solution to the following family of equations

Ox fmn — (M + 1) frnt1n — %(m + 1) fntin—1 =0,

) 5)
ayfmn - (” + 1)fmn+1 + E(” _m)fmn =0

with f()() = f
Solving eqn. (5), we get

o = L(ay—w)...(ay—%)a;"f

~ min! 2y
_ %ym—"xm(y + %’H) (Y n %)(f).

3.2. a(g). We know that a(g) is the unique solution of the equation

D@(®) = ~; [Ba- ()]

with (&) |u=v=0 = ®(g). Recall that Ay = y38,(a)u?dx.
Similar to f , a(g) satisfies the equation

0= Z dx(axa(g)m,n —(m+ l)a(g)m+1,n

- %(m + Da(@mr1,0-1 + 3800 + Da(@m—1,n+1)u"v"
+ Z dy(aya(g)m,n —(n+ l)a(g)m,n-l—l + %(” - m)oz(g)m,n)umv”

with a(g)o,0 = a(g). Therefore, a(g) is the unique solution to the following family
of equations

0= 3x(&)mn — (M + D(&m+1,n — 55 + D(m+1,0-1
+y35/2(l’l + 1)a(g)m—1,n+1, (6)
0=0ya(g)mn— (n + Da(Qmn+1 + %(" —m)a(g)m.n

with &(g)o,0 = ().
By the second equation of (6), we have

1 n—1—m
a(g)m,n = ;(8y + T)a(g)mn—l

= %(ay + n_zl—y_m> . (ay - %)a(g)m,o-
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Setting n = 0 in the first equation of (6), we obtain that

1 /
O‘(g)m-i-l,O = — (axa(g)m,o + y382a(g)m—1,1)
m+1

1 1—m
= m—_H(axOl(g)m,O + y38;<8y + )Ol(g)m—l,O)-
By induction, we can solve the above equation as
(=Drtym—n n+m-—1 m
W@ = A (Y + 22 (Y + D) (@(o),
m!n! 2 2

where A,, € #; is defined inductively by
—1
Amer = XAy —m8}(¥ — mT>Am_1, Ao = 1.

33. U, 1. We compute U, ! using the equation

DU '=U 1o

o o

Aq

S|~

with Ay = 85(a)y3u?dx.
Write U, ' = )", u% u™v", where ug, , takes values in C°(M)[h™", 7]].
Then uy, , satisfies the family of equations

1 i
0 = 0xupy, , — (M + Dug g, — E(m + Dty 101 — £y35/2”?n—2,n

ih
+ 7385 (n + Dy oy + Zy35/2(” +2)(n + Dty 42, @)
1
0= ayu;xn,n —(n+ 1)”?}1,n+1 + E(n _m)u;xn,n

with Ug,0 = 1.
The second equation of (7) implies that

1 n—1—m
uOt = ;(ay =+ T)u%’n_l

= ... = %(ay +n_21—y_m>...(8y +%)u;¥n,0‘

We use the n = 0 version of the first equation of eqn. (7) to solve u;, o:

1 i m—1
Umi1,0 = m—_H(ax”%,o - gJ’SS;“‘fn—z,o + y35/z(8y - T)”ﬁln—l,o
ih

-t 5
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By induction, we have the following expression of u:

(—1)rym=—n n—m-—1 m

o — R

U, = (Y+ : )(Y 2)3,,,1, )

where B, is defined by

ih 1 m , m—1 i,

Bl = (X+—82(Y—T)(Y—5))Bm—SZ(Y—T)Bm_I—ESZBm_z,
9

with By = 1.

Remark 3.1. We need to prove that the above obtained solution U . 1 — > u%’ Lumo"
is the unique solution to the defining eqn. (3) of U, !, which implies that (707 =yt

Using (8) and (9) for uy, ,, we notice that uy, , may contain negative power of 7.
From (9) we see that if assume that the negative power of  in B; is less than or equal to
[i/3] for0 < i < m ([] means the Gauss integer function), then the negative power of
# contained in By, isless than orequal tomax([m/3], [(m—1)/3], [(m—2)/3]+1) =
[(m + 1)/3] for m > 2. Therefore, by induction and eqn. (8), we can conclude that
the negative power of 7 contained in uy, , is less than or equal to [m/3].

This shows that once m + n > 0, the lowest degree term contained in u% , u™v"
has degree greater than or equal to 1. Therefore the degree 0 term of the solutlon

= > up, ,u™v" is equal to 1. Accordingly, using DU VU oi/hAg =0,

we obtam that

=5 U 45780 1= 1467180,
=1+818U "+ DU =T 0ifhAy)

=14+ YD +8)T =T oi/hAy).

This remark applies also to the solutions o (U 5 1) and aB(U (;)13), -

34. a(Uﬂ_l) and af(U
the equation

( ﬂ) ). By Proposition 2.2, we know that o(Ug) satisfies

D@(Up)) = 5 (Aug o a(Up) —a(Up) o Ag).
Accordingly, oz(Uﬂ_l) = (a(Up))~! satisfies
D((U;") = —(@Up)) ™" o D(a(Up)) o (@(Up))™"
= —(@(Up)) ™" o (= 7 Aup ° a(Up) + 2 (Up) © Aa) o ((Up))

= ~(@(Us") © Aag = Aq oa(Us ™).
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If we write a/(Up’ Dy =3 up! B umu” then we have

0 =0, u“’ﬁ (m + l)um_Hn——(m—{— 1)um+1n 2 ACACA (ﬂ))um 2

+ 32 (n + 1)(283(e) + a(8 (ﬂ)))um L1+ BB,
0= 8yu%’ﬂ (n+ 1)um o+l + 2y (il m)“m:n

(10)
We can solve eqn. (10) of ua B as follows:
wf (—1)”ym_”( n—m-—1 _ﬁ)
Ui =~ Y + > )... (Y 5 Cnl,
where C,,, € # is defined inductively by
ih m— 1 m
G = (X + Fa@@B) (Y = 5=) (Y - F))Cn
1 i
— 285(@) + a@ BN (Y = 5= )Gt = 2 (B2, Co = 1.
We know that a8 (U (;/13), 1) is equal to U, g, which satisfies
i
DUyp = _EA"“? oUyg.
We can solve oz,B(U( ‘13) 1) as Uyg. Write ozﬂ(U( £)- ) = vaﬂ uo".
Then 1y |
jab D oy (y-n
b = m!n! (Y + 2 ) Y 2 )D L,
where D, € # is defined by
ih m—1 m
D1 = (X - Z52(0513)(1/ - T) (Y - 5))1),"
m—1 i
85(@B) (Y = “5— ) Dt + +85(@B) Do
with Dy = 1.
We point out that since there is 1/# in the induction formula of C,, and D, u%[i,

o . . . . . .
and vmﬁj » ay contain terms with negative powers of . Howeyver, as is explained in

Remark 3.1, we have the following proposition about negative powers of # contained

in u‘,xné, and vf‘nﬂ »» the proof of which is explained in Remark 3.1.

Proposition 3.2. The negative power of h contained in um - uf‘né, and vfﬁ,ﬁ n 1S less

than or equal to [m/3].
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Terms surviving in the product f oU oa(g)o oz(Uﬂ_l) o aﬁ(U(aé)_1)|u=U=o
are sums of terms of the form

le seeesM53A ] ,...,5

_ [ a,B af mi,,nq ms ns
—fml,nlumz’nza(g)m3,n3um4,n4vm5,n5u v*lo.. . ou™v"|—y=0,

Withml +"'+m5 =ni —i—..._i_ns‘

Theorem 3.3. There exists an element R € 1 ® H1[[h]] such that the star product
on CX®(R x RY) x T can be expressed by fa x g8 = m(R(fa ® gB)), where
m: CPRXRYY)NTRCP(RxRT) X — CX(Rx RT) x T is the multiplication
map. Furthermore, R is a universal deformation formula of #.

Proof. We start by rewriting uy, ,, u‘,"n’?,, v,‘;‘fn, and a(g).

(1) As X and Y vanish on 1, uy; , can be written as y”*~" times a sum of terms
of powers of X and Y acting on powers of 8, (). If we rewrite 85(a) as 8, —
1/282, we can express a term of powers of X and Y acting on powers of §,(c) as a
sum of products 8{11 () ... Sijj (). According to Proposition 3.2, we know that the
negative power of 7 contained in uy, ,, is no more than [m/3]. Therefore, we can write
Upy @S h_[%]ym_”,um,n (61(c), 82(), ... ), where (i, , is a polynomial of variables
h, 81,02, ... independent of «.

(2) Analogous to the above analysis, ufﬁ,a can be written as " times a sum
of terms of powers of X and Y acting on products of powers of 8, () and «(85(B)).
When X and Y act on &} («), we can express the resulting terms as polynomials of
§1(@),...,8p(c),.... To compute the action by X and Y on «(85(B)), we look at
the following properties of X and Y for any function f:

X(@(f)) = al@™ (X(@(f))
= a(X(f) =81 HY(f))
= a(X(f)) —a@i(@ )Y (f))
= a(X(f)) + (@) (Y(f)),
Y(a(f)) = el (Y(@()) = a(Y(f)).

Here we have used the commutation relation between X, ¥ and «. This implies that

powers of X, ¥ acting on (85 (8)) give asum of terms o (81 (ct), ... ) (§(81(B), ...))

with o, & polynomials in #, 81, 82, . .. independent of &, 8. We summarize that uf‘,,é,

can be written as

AT S 61(@). . Ja(E a1 (B, ),

where v’, £ are polynomials in #, 81, 85, . .. independent of «, 8.
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(3) Similar to u‘,"n’n, vﬁ,ﬂ » can be expressed as a sum of terms of powers of X,
Y acting on 85 (af). For our purpose, we need to rewrite 8, () as a sum like

85 () + (85(B)). Therefore the situation is similar to u%’i We can write v,‘f{g . as

AL S i a(61(@). . )i B1(B). ).

with 1y,.», A .» polynomials independent of o, B.

(4) From the inductive relations, we see that a(g),,» can be written as a sum of
terms of a product of two parts. One part is powers of X and Y acting on 65 («), the
other is powers of X and Y acting on «(g). We can write the part involving 65 (c)
as polynomials of 6; (), 82(«), ..., the part with «(g) like the above «(85(8)) as a
sum of terms

9(81(a), ... )a(p(X.Y)(g)).

Therefore, we can write «(g)m,» as

V" Dl (B1(@). - DYy (X Y)(9)).

Summarizing the above consideration, we can write the term Cy, | .. ms:ny,....ns a8

mp my ms
mi+my—[Z=14+m3+ma—[=5*[+ms—[5>]
le,...,m5;n1,..‘,n5 . h 3 3 3 5 3

: .zk Ty (X Y ) ()i (1@, - )by s B1(@) . (Wl i (X, Y)(8))
1,7,
Vi ema 1), . DD, B1(B). o Nk p B1(@), . DAk, (B1(B)....)).

where ¢, ... ms:n,,...,ns 1 @ constant.

Now f oU; ' oa(g) oa(Uﬁ_l) ooz,B(U(;;)_, )|u=v=0cB can be written in the form
S Cmyomsiny. nshml+m2—[%]+m3+m4—[%]+rn5—[?]

my...., msing..... ns
myt-tms=ny+-tns

: 'Z'k Tmy,ng (Xv Y)(f)/’l“mz,nz (51((1), s )p;fng,ng (81(“), .- )
1,7,
QY s XYY@V, B1(@), . D(EL, , ($1(B)...))
s B(@), D (81(B). ... ))ap

_ Z Cmy,...msn nShml+m2—[%]+m3+m4—[%]+m5_[%]

mi,....msny,...,n5

: 'Z'k Moy B1(@). - )Py s (5100, Iigny (B1(00). )
L7

: nfns,ns(gl (Ol)9 e )TM] A (Xv Y)(f)a(g:rjn4,n4(81(ﬂ)7 .. )
A B1(B). . DV L (XY )())eB
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_ S Coyomsins nshml+mz—[%l+m3+m4—[%]+ms—[”’%]

mi,....mMs5nq,..., ns
. 'Zk Pimzins (81(0), .. )by s (B1(@), - iy ny (1), ..)
l’]a

s G1(@) . )Ty (XYL, B1(B), - ..)
A 1B Y (XL Y)(9)B.
Define le,...,mS;nl,...,nS € [h] QC[#] H1 [h] as

le,...,ms;nl,...,nS Z I'Lmz,nz (81’ e )P£n3’n3 (81» e )vr]n4,n4 (819 .. )
i,j.k

Mosns 1o )Ty (X Y) ® Efy p B1a o DA (S DYy, (XY,
Furthermore, we define

R = > hml+m2—[”’%]+m3+m4—[%1+m5—[%1le
mi+--+ms=ni+--+ns

We conclude that R € #[[%]] ®cizy) H1l[7]] satisfies
SoaxgB =m(R(fa® gp)).
To check that R is a universal deformation formula, we need to make sure that

(AR DR)(R®1) = ((1®A)R)(1® R),
(€®DR=1®1=(1®¢)R.

..,ms5iny,....,n5-

The first identity follows from the fact that x is associative and the #;-action on the
collection of C2°(R x R™) x I over all pseudogroups I is fully injective.

The second identity is equivalent to show that 1 is a unit respect to the x product
on C°(R x R*) x I'. (We adjoin an identity element, the constant function 1, to the
algebra C2°(R x R*) x I and all the quantization constructions in this and previous
sections on C2°(R x R1) x I naturally extend to the unital algebra.)

When f is 1 and « is identity, wehavethatf =1,U35! = 1,and Uﬂ_IO,B(Uﬂ__ll) =
1. This implies that 1 x g8 = gB.

When g is 1 and B is identity, we have that (1) = 1, Uﬂ_1 = land U;' o
a(Ua__ll) = 1. Therefore, fa x 1 = fa. O

From the computation in the next section, we know that R can be written as
1 ® 1 +AR’, where R’ is an element in #;[[%]] ®cyrzyy H1[[]]. Therefore, R is
invertible with R™1 = 1+, (— 1) (hR’)". By the property of universal deformation
formula, we can introduce a new Hopf algebra structure on #[[%]] by twisting the
coproduct A by

A(a) = R™'A(a)R,
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and the antipode by
S(a) = v 'S(a)v,

with v = m(S ® 1)(R).

4. Formulae of lower order terms

‘We must say that the formula for R constructed in the previous section (Theorem 3.3)
could be very complicated, and we do not know an easy way to write it down explicitly.
In this section R will be computed up to the second order of .

It is not difficult to check that if m, + mo — [my /3] + m3 + mg — [m4/3] + ms —
[ms/3] = 0 for nonnegative integers m;, i = 1,...,5,thenm; = --- = ms = 0.
Therefore, the #° component of the  product fo * gB is equal to fa(g)aB. This
implies that Ry, 0.0,...0 =1land R =1 1 + O(h).

Consider Ry, ,....ms:ny,...ns Withmy +mo —[my /3] +m3 +ms—[ms/3] +ms—

[ms/3] = 1. It is not difficult to see that one of the m;,i = 1,...,5, takes value 1,
and all others vanish. We also check that u;, = ug, = uf, = u‘f’lﬂ = u‘f(’)ﬂ =
u%"f’ = Utle = v‘{‘é’ = vf,“f = 0. Therefore, Ri,....,0:0,0,1,0,0 and Ro,0,1,0,0;1,0....,0

are the only nonzero terms among all Ry, . ms:ny,...,ns With
my +my —[ma/3] + m3 + mg —[ma/3] + ms — [ms/3] = 1.

We compute Rio,...0:0,0,1,00 = 2X ® Y, and Ro,0,1,0,0:1,0,...0 = —2(6:Y ® Y +
Y ® X). Therefore, the # component of R is

it _ih
%(—X®Y+81Y®Y+Y®X)=%(S(X)®Y+Y®X).

Consider le ..... Mms5iny,...,n5 with m +m2_[m2/3]+m3 +M4—[M4/3]—|—Wt5—
[ms/3] = 2. There are three classes of possibilities:

i) one of my, ma, ms is equal to 3,
ii) oneofm; (i =1,...,5)1is equal to 2,
iii) twoof m; (i = 1,...,5) are both equal to 1.
We notice that u§, = u§. = u‘f.’ﬂ = ug.’ﬂ = v(lxﬂ = v;"g = 0. This implies that
the terms contributing to my + mo — [my /3] +m3 +mg—[m4 /3] +ms—[ms/3] =2
are from the following three types:

(1) Ro,3,0,0,0;1,0,2,0,05 R0,3,0,0,0:2,0,1,0,0, R0,0,0,3,0;1,0,2,0,0>
R0,0,0,3,0:2,0,1,0,0- R0,0,0,0,3;1,0,2,0,0> R0,0,0,0,3:2,0,1,0,05

(2) Ro,3,0,0,0:3,0,...,0, R0,3,0,0,0:0,0,3,0,0> K0,0,0,3,0:3,0,...,0
Ro,0,0,3,0;0,0,3,0,0> R0,0,0,0,3;3,0....,0» R0,0,0,0,3;0,0,3,0,0;
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(3) R2,....,0;0,0,2,0,0» R0,0,2,0,0;2,0,0,0,0> R1,0,1,0,0:1,0,1,0,0-

We compute the above terms separately.

R0,3,0,0,0;1,0,2,00 = (5+ )31 ZHY QY + DY =—(F )ZIS,Y ® (Y 4 3)7.

R0.3,0,0,02.0,1,00 = (2P L85V + Hy @V = (F22 )215/ Y +Hrev,

7

R0,0,0,3,0;1,0,2,0,0 = —(_7)3%%1/ ®8,(Y +3)Y =—(F éh)zlY ® 85(Y + 3)Y,
1i
2

Ro,0,0,3,0:2,0,1,0,0 = —(%h) h(Y + DY ®8Y =—(F2) Ly + DY ®65Y,

R0,0,0,0,3;1,0,2,0,0 = (_Th) %h[5/ Y@@ +3)Y +Y ®@8(Y + 1)Y]
= (FZ2LEY @ (Y + Hy + ¥ @ 8(Y + D],
B3 LISy + DY @Y + (Y + )Y ®68,Y]
LB + DY QY + (Y + 3)Y ®68,Y],

R0,0,0,0,3:2,0,1,0,0 = (—_

Ro,3,0,0,03,0,0,0,0 = —(Th) ZEY + DY +HY el
—(F L8 + )Y + DY ®1,

R0,3,0,0,0:0,0,3,0,0 = h)3 i F65 X +1)(Y + 2)Y
= (Z)’ 58 ® (Y + DY + DY,

Ro,0,0,3,0:3,0,0,0,0 = —( éh)3 LY + (Y + )Y ® &)
—(F2 L + DY + Dy ®8,

R0,0,0,3,0;0,0,3,0,0 = — (5~ )3 L1®8(Y + (Y + 1Y
()21®@w+nw+gy
R0,0,0,0,3;3,0,0,0,0 = %h) LB+ DY +Hr el
+ X + )Y + 2)Y®5 ]
= (FZE?2 LB + )Y + DY ®1
+O D+ LY es)
R0,0,0,0,3;0,0,3,0,0 = h)3 L 7105 ® (Y + D(Y + 2)Y
+1@8(Y + )Y + by
= (T2 L8 @ (Y + (Y + by
+1®8(Y + (Y + Y],

R2...0:002.00 = (Z)*1X? @ (Y + 1)V,
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R0,02,0,0:2,0,..00 = (2 LY + HY @ X2+ 8,(Y + DY @ Y
+26(Y + )Y ® XY
HY +HY X +8Y +HY ®Y?
+1y +Hrey-syy +Hev),
Ri0.100:1.0100 = ()XY + 5 @ X(Y + })
+HX(Y + ) @Y (Y + 7).

Taking the sum of all the above terms, we have that the #2 component of R is
equal to

(%)2(%83(1/4_%))/@1/+15/2®(Y+1)(Y+%)Y+%X2®(Y+%)y
+%(Y+%)Y®X2—X(Y+ )®X(Y+;>—81X(Y+ )®y(Y+;>
(e x(y g+ ()i s g)ren)

- (%7’)2(%5()()2 ® (¥ + ;)Y +S0(Y + ) ® X (¥ + ;)
n %Y(Y + %) ® X2+ %5’2(1’ + %)Y Y + 85’2 ® (Y + 1)(Y + %)Y
+ %S’ZY ® (v + %)Y)

Remark 4.1. The expression of R, agrees w1th the computation in [1], Prop. 6.1, up
to a term 12( zh)28’ ® Y. We notice that 5 éh)zzg’z ® Y is Hochschild closed.
For the purpose of [1], Prop. 6.1, a change of a closed Hochschild 2-cochain on #?
component does not change the answer. This explains the difference.

We remark that when &} is an inner derivation, we can replace &, by [©2, -] in the
expression of R. But it turns out that the above computed #2-term R, does not agree
with RC, defined by Connes and Moscovici [5], i.e.,

Rolgjia,) — RC2 = QY @ YQ2Y + )+ QYQY + ) ® Y
1 1
+328 ( + DY+ DY @ QY + DY + Y.

We do not know the explicit relation between these two universal deformation
formulas R2|5£=[Q,.] and RC,, and have only a heuristic and geometric explanation
for their difference. The geometric constructions in [1] and in this article are not
exactly the same. In [1], we used a projective structure to redefine a symplectic
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connection and a Fedosov connection D’ on the Weyl algebra bundle ‘W, and therefore
a symplectic diffeomorphism preserving this new Fedosov connection naturally lifts
to an endomorphism of the quantum algebra Wp. In this article we do not change the
symplectic connection because of lack of data, but change the quantization process of a
symplectic diffeomorphism by introducing sections suchas Uy, Ug, . . . . Furthermore,
we notice that the difference R;| 8,=[Q,] — RC; is actually a Hochschild coboundary
of a 1-Hochschild cochain —1/3Q(Y 4 1)(2Y + 1)Y . This suggests that if we define
an isomorphism 7 = 1+ 1/3#2Q(Y + 1)(2Y + 1)Y on C2(R x R*) x T'[[#]], then
I7'(m(R(I(a)®I1(b)))) = m+hRCy +h?>RCy+o0(h?). In general, we expect that
if 1 acts on A with a projective structure €2, there is an isomorphism / on A[[#]]
that can be expressed using elements in #¢;[[#]] and the projective structure £ such
that
I7Ym(R(I(a) @ I(b)))) = m(RC(a @ b)).

5. Appendix: Associativity of the Eholzer product

In this appendix we study associativity of the Eholzer product, which was used in
Connes and Moscovici’s approach [5] to obtain the general associativity at the Hopf
algebra level. This associativity theorem was first proved by Cohen, Manin, and Za-
gier in [3]. In the first part of this appendix, we give a new proof of the associativity
using the method developed by the second author [9]. In the second part, we study an
important combinatorial identity used by Cohen, Manin, and Zagier in [3]. This in-
teresting identity was obtained by Zagier [12], but its complete proof is missing in the
literature. We prove this identity in the special case corresponding to the Eholzer
product.

5.1. Proof of associativity. First we follow the argument developed in [9] according
to which the associativity of the product

oo

fxg= Y [fghh"
n=0
is equivalent to prove the identity (with the notation X, = l’:& (X +1))

n—r\An—r 2k + 21 + 2r,2m)A, (2k,2[)
;,( p ) 2k + 20 + 25 pr 2m) (2K),
_ n—s\An—s(2k,2l +2m + 25)As(21,2m)
- ZO (n - p) R)u—p @l + 2m + 28)p—s2m);

for p =0,1,...,n and

An(2k,21) = %(21(),,(21),,.
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The above identity is equivalent to

n—r\ %Qk) (2, G2k + 20 + 21— (2m)n—
(")

r=0 p (zk)r (2k + 2[ 4+ 2r)n_p_r(2m)p
Y

-y (n — ) L21)s2m)s Giteyr CK)n—s 2L +2m + 25)n—
B s—o \'— P (2m)s (21 +2m + 28)p—s (2k)n—p

Our proof is based on manipulation of combinatorial identities. We have, for the
left-hand side,

n—r\ 52k, QD) Gk + 20 + 25— (2m)p—
r;) ( p ) (2k), 2k +21 4+ 2r)p—p—r(2m)p

(n—r)! 1 2k),2h, 1  QCk+2l+2r),—Cm)y—,
- Z(:) pln—r—plrl k), (m—r)!Qk+2+ 2r)p—p—r(2m)p
i 2D,  Qk+21 4+ 2r)y— (2m)p—r
N Z rl 2k +21 +2r)p—p—rp! Cm),(n —r — p)!

r=
_2(21+r—1)(2k+2l+n+r—1)(2m+n—r—1)
. .

r=0 4 nepr

12)

Once n, p are fixed, what needs to be verified is an identity about polynomials in
2k, 2l,2m. When 2/ is a negative integer, we can use the two combinatorial relations

(x +: - 1) _ (_l)n(_nx)’ n oo,

(6=

and

to get

20 +r—1 —21
— (=1)
( r ) ( )(r )
2k +2l+n+r—1 _Z 2k +21 +n—1 r
( P )_ u( p+2l+u )(—21—u)’

2m+n—r—1 _Z 2l +2m+n—1 =21 —r
( n—p-—r )_ - (n—p+2[+v)(—2[—r—v)'
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Then (12) becomes
-2/ 2k +2l +n—1 r
= -1
(GO, S )]
[2(21+2m+n—1)( =2l —r )]
—~\n—p+2l+v =2l —r—v
_Z(2k+21+n—1)(21+2m+n—1)
= pt2tu n—p+2l+v
-2 r =2l —r
_lr .
[Xr:( ) ( r )(—ZZ—M)(—Zl—r—v)]
We then simplify the quantity inside the above brackets by
21 r =2l —r
—1y
2,:( ) ( r )(—ZZ—u)(—Zl—r—v)

B . (=2D)! r! (=20 —r)!
- Z(_l) P (=20 =)' (=2l =)' (r + 2] +u)! (2] —r —v)!v!

(=2 e 1
(=20 —u)l! Xr:( D (r+2 +uw)!(-2[ —r —v)!
(=20 1 - (u —v)!

T (=2l —u)! (u—v)! 2. (r + 21 +u)!(=2] —r — v)!

r

o  u—v
T (=20 —uw)! (u —v)! zr:(_l) (—21 —r— v)

— (_21)' 1 U1\ 2l—v _ (_21)'
(=20 —u)! (u — v)!(1 DT ED (=20 —u)!

(_1)_21_v8u,v s

where 8y, is the Kronecker symbol (8x,, = 1 if x = y, and 65, = 0if x # y).
Finally we get

n—r %!(Zk)r(Zl)r ﬁ(Zk + 21+ 2r)n—r (2m)p—y
=(",))

r=0 " P (2k)r 2k + 21 4 2r)u—p—r(2m),
_ Z (2k+2l+n—1)(2l+2m+n—l) (=20 (_1)_21_v
vt P H2+u n—p+2l+v ) (=2l —u)l!

-y (2k +2l+n-— 1)(2] -;2_mp+_nt— 1)(_1)t(_,21)'

¢ p—t
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On the right-hand side of (11), we have

5 (n - s) L@y @2m)s Gy 2Kk)n—s (2 +2m + 25),—

c\n—p 2m); 2l +2m + 25)p—s(2k)n—p
_ Z (n—s)! 1 2h)s@2m)s 1 (2k)p—sl +2m + 25),—s
= mn—=—p)lp—9s)s! 2m)s (n—5)Q2k)p—p(2l +2m +25)p_

_Z(Zl+s—1)(2k+n—s—1)(21+2m+s+n—1)
s .

5=0 p=s nep

By the same method as before, we compute the above quantity as follows,
=21 2k +2l+n—1 21—
-2 (R0, )]
= s - p+2+v =2l —s—v
[2(21+2m+n—1)( s )]
—\n—p+2l+u -2l —u
_Z(2k+21+n—1)(21+2m+n—1)
_u’v p+2+v n—p+2l+u
=21 =2l —s s
_15
[SZ(;( )( S )(—21—s—v)(—2l—u)]

- ¥ (2k+2l+n—1)(21+2m+n—1) (—20)!
_u=v=—21—t p+2+v n—p+2l+u /(=2 —u)l!

_ Xt: (2k +20+n- 1)(21 Zz_mptn[— 1)(_1),(—121)’

p—t

(_1)—21—1)

which gives out the same quantity. We the obtain the following result.

Proposition 5.1. The Eholzer product is associative.

Remark 5.2. We have proved that the following combinatorial identity holds for
every triple of indices (1, [2, [3):

Lh I I3

ZZZ(_I),]Hz_S(EJrll +l:irt13—t—1)(E+rs+s—1)f

r=0s5=01¢=0

t r
(E—I—ll—r+12—s—|—l3—1)(E+13+12—s—1)h
11—r

(E+lz+r+t—1)(E+r+s—1)
g

lz—S
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:lzllzzi(_l)ll_l_lz_s(E—i‘ll+S+l3—[—1)(E+ll —I—s—l)f

r=05=01=0 Iy —1 s
E4+L—s+t—I\N/E+L+t+r—1
)T T )
(E+11—r+lz—s+l3—1)(E+t+lz—s—l)h

ll—r lz—S

where E is the Euler operator. This equality identifies the coefficients of ¥ fd?gd"
in(f*xg)xhand f x (g *h).

5.2. Zagier’sidentity. In this part we turn to the original proof by Cohen, Manin and
Zagier [3] of the Eholzer product. Their proof relies on the following combinatorial

identity:
DO
J J J

x—3\ (y—4\ z—3
(52052 5)
where n > 0 and the variables a, x, y, z satisfy x +y +z =n — 1.

Here we give a proof of this identity when a = % We start with some transfor-

mations. Our aim is to eliminate the binomial coefficients in the denominator of both
sides. Using the identity

4" 5~ OO 5 n
(Zx) Z (2y) (22) - Z (2] ) ’ (13)

n r+s=n r s

1 G e —r)
GG o

we rewrite the left-hand side of (13) as

Co" - OGS GC)ETT oy

(2nx) r=0 (Zny) (an) (n|)2
Using the identity
(2Y) (Y =3\ [Y\un*4
2j J j) et

we rewrite the right-hand side of (13) in the form

S (2)(H)(* () G e o

)0 ) GHeht Ghent e
[

J
e e
G OGZ) OGZ)

() B 0 B ¢4

N

Il
~
I
(=]

NI
—
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By combining (14) and (15) we can then multiply both sides of (13) by the common
denominator (>*)(%”)(%?). We obtain a polynomial P,(y, z, a) on the left-hand side

of (13), "
noa=cor () () ())

r=0

(n ir)(itj)(zz _rn +r)(r!(n — ),

and a polynomial Q,(y, z,a) on the right-hand side of (13), (we replace x by n —
y—z—1)

[5] AN2( 51696/ ;1 1 1
(m=2j)H*(jN%2% r—>\Nfa—5\(—a—5
0u(y.z.0) = Y WHIII (72 (472 (7 72)
= 2! J J J
(n—y—z—l)(Zn—2y—22—2—2j)
J n—2j
(G500
jI\n=2j )\j)\n-2j)
In summary, identity (13) is equivalent to the identity P,(y,z,a) = Qn(y,z,a)

for n > 0. In order to have the associativity of the Eholzer product, we shall prove
this identity when a = % Explicitly, we want to prove the following:

1y i (2y)(2y - r)( 22 + 1 )(22 —n+ r) 2112 — r)!
r=0 2r n—r 2(n—r) r (n!)?
_ (2n—2y—2z—2)(2y 2z
- TGG)
5.2.1. Simplification. We apply the following identities to the left-hand side of (16):

M _ (2y)(2y—r) r!

(16)

n! n r)Jm—r)
2z+1\ (2z—n+r
(Z(n—r))( rn! )(2(” —r)! _ (2’12)[(2211—11:- r) n z(znz__:j_lr)] (n :!r)!'

Taking the quotients on both sides of (16) by (*”)(%?), we have the equivalent
identity

1y Xn: (2yr—r)[(22n—il:—r) +2(2nz_—;1_—1—1r)] _ (Zn —Zyn— 22—2)'

r=0
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We can rewrite the above identity as

3Gt [ PE GRS | G R

2n—2y—22—2) — (_1)n (2y+2z—n+1)‘

using ( § Z

5.2.2. The sums Sy(n; A, B) and S(n; X). Consider the sum

So(n; A, B) = Xn: (it?)(n_iJrB)'

k=0
We have So(0; 4, B) = 1, and by (X,;H) = (f) + (n}fl)
n+1
k+ A n+1—-k+ B
s tam=3 (1))

=So(n;A—1,B+ 1)+ Se(n +1;4A—1, B).
In the same way, So(n + 1; 4, B) = So(n; A+ 1,B—1)+ So(n + 1; A, B —1).
Moreover, we define
[5]

S(n;X):Z(X+n_1_2p).

v n—2p

It is clear that So(0; X) =land S(n + 1; X) = S(n + 1; X — 1) 4+ S(n; X) for the
same reason as above.
Another useful relation is that

S(n,X—1)+2S(n—1,X)=(X:n), (18)

because

S, X—-1)+285n—-1,X)
=Sm;X)+ S —-1;X)

n n—1

) X+n—-1-2p () X+n—-2-2p
:Z( n—2 )+Z( n—1-2 )
p=0 p p=0 p

S

() ()0

The following lemma holds:

i=0
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Lemma 5.3. So(n; A, B) = S(n; A+ B).

Proof. We use induction on n. For n = 0 the assertion obviously holds. If the claim
is valid for O, 1, .. ., n, then by the above two induction relations we have

Som+1;A,B)—S(n+1;A+ B)
=(Son+1;A,B—1)+ So(n; A+1,B—1))
—(Sn+1;A+B—-1)4+Sn; A+ B))
=Son+1;4,B-1)—Sn+1;A+ B—-1))
+ (So(n;A+1,B—1)—S(n; A+ B))
=Son+1;4,B—1)—Sn+1;A4+ B —1).

Using the same method, we can prove that this difference is also equal to
So(n +1;A—1,B) —S(n + 1; A+ B — 1). Hence it follows that the difference
So(n + 1; A, B) — S(n + 1; A + B) has the same value for all pairs (4, B) € N2,
But by definition we know that

0—0=0 ifnisodd,

S 1;0,0)— S 1;0) =
(n + ) (n +1,0) {1_1:0 if n is even.

We conclude that the identity holds for all n and all pairs (4, B) € N2. But since
what we want to prove is a polynomial identity in 4 and B (for fixed n), the identity
for all natural numbers imply its correctness for arbitrary (A, B). O

5.2.3. Resummation
Theorem 5.4. The identity (17) is valid.

Proof. In fact, by using (18), we have

i(2y—r)[(22—n+r)+2(22—n+r)]
r n—r n—r—1
r=0
= [So(n;2z —n,2y —n) +2So(n — 1,2z —n,2y —n + 1)]
=[S(n;2y +2z—-2n)+2S(n —1;2y + 2z —2n + 1)]
2 2z — 1
(), :
n
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