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Abstract. In this paper we consider C*-algebraic deformations by actions of Rd à la Rieffel and
show that every state of the undeformed algebra can be deformed into a state of the deformed
algebra in the sense of a continuous field of states. The construction is explicit and involves a
convolution operator with a particular Gauß function.
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1. Introduction

In deformation quantization [1] the transition from classical mechanics to quantum
mechanics is obtained as an associative deformation of the classical observable alge-
bra, modelled by a certain class of functions on the classical phase space. In formal
deformation quantization this is accomplished by constructing a new associative prod-
uct, the star product, as a formal power series with formal parameter „. While this
theory is by now very well understood, see [3], [13], [14], [16], [18], [24] for exis-
tence and classification results, and [29] for a gentle introduction, from a physicist’s
perspective the formal character of the star products is still not satisfying: „ is not a
formal parameter after all, whence at the end of the day, some sort of “convergence”
in „ is needed.

Attacking the convergence problem of the formal series seems to be complicated
though in examples this can be done [2]. More successful are approaches that are
intrinsically non-formal like the Berezin–Toeplitz inspired quantizations [4], [9], [10],
[11], [12] or Rieffel’s approach using oscillatory integrals based on group actions of
Rd . In this version [25], the starting point is a C*-algebra A endowed with an
isometric, strongly continuous action by �-automorphisms by some finite-dimensional
vector space V . Out of this and the choice of a symplectic form on V , Rieffel
constructs a deformation of A in the sense of a continuous field of C*-algebras, the
field parameter being „. While the construction is very general, there are yet many
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examples of Poisson manifolds which can be deformation quantized this way. In this
framework of strict deformations many results have been obtained, most notably [21],
[23].

While the above constructions deal with the observable algebra, for a physically
complete description of quantization also the states have to be taken into account. In
both approaches, the appropriate notion of states is that of positive linear functionals on
the observable algebras. While for C*-algebras this is of course a well-known concept,
also in the formal deformation quantization this leads to a physically reasonable
definition incorporating a reasonable representation theory; see, e.g., [5], [7], [28]
and references therein.

A fundamental question is whether a given classical state arises as the classical
limit of a quantum state. In formal deformation quantization there is a general and
affirmative answer to this question [6], [8]. In the strict approaches, Landsman dis-
cussed this in [20] for a certain class of examples: the appropriate notion of classical
limit and deformation of states is that of a continuous field of states with respect
to a given continuous field of C*-algebras. His construction is based on particular
�-representations and certain coherent states and their Wigner functions. More re-
cently, Landsman uses continuous fields of states in his discussion of the Born
rule [22].

In this article we consider Rieffel’s deformation by actions of Rd in general and
prove that every state of the undeformed algebra can be deformed into a continuous
field of states for the field of deformed algebras. Moreover, we give an explicit
construction including a detailed study of the asymptotics of the deformed states for
„ ! 0; see also [17]. It turns out that the asymptotic expansion coincides in a very
precise sense with the formal deformations obtained in [6].

The article is organized as follows: in Section 2 we recall Rieffel’s deformation
in the Fréchet algebraic framework and define an operator S„ being the “convolu-
tion” with a Gauß function. The precise form of S„ resembles the Wigner functions
Landsman used, however now S„ is defined directly on the algebra. The asymptotics
of S„ for „ ! 0C is studied in detail. In Section 3 we show that S„ maps squares
a� ?„ a of the deformed algebra to positive elements of the undeformed algebra. This
allows to define a positive functional !„ D ! B S„ of the deformed algebra for every
positive functional ! of the undeformed algebra. A detailed asymptotic expansion
is obtained as well. Section 4 is devoted to the more particular case of a C*-algebra
deformation. Here we show that the operator S„ is also continuous in the C*-topology
of the deformed algebra whence it extends to the C*-algebraic completion. Finally,
in Section 5 we show that the positive functionals f!„g„�0 indeed form a continuous
field of states.

Acknowledgements. We would like to thank Klaas Landsman for pointing out ref-
erence [22] as well as Marc Rieffel and the referee for valuable comments.
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2. The operator S on A1

In this section A denotes a Fréchet �-algebra endowed with a strongly continuous
action ˛ by �-homomorphisms of a finite-dimensional vector space V which we
assume without restriction to be even dimensional. Moreover, one requires that there
is a system of seminorms k � kk defining the topology of A such that with respect
to these seminorms the action is isometric. By A1 � A we denote the subspace
of smooth vectors in A with respect to ˛. It is well known that A1 is a dense
�-subalgebra of A. Moreover, A1 carries a finer topology making it into a Fréchet
algebra, too. A system of seminorms defining the topology is explicitly given by

kakk;� D sup
jˇ j��

k@ˇ akk;

where using multi-index notation @ˇ a denotes the derivative of ˛u.a/ with respect to
u at u D 0; see, e.g., [27] for more background on smooth vectors.

In a next step one chooses a non-degenerate bilinear anti-symmetric form � on V

and „ > 0. Then Rieffel showed in [25] that

a ?„ b D 1

.�„/2n

Z
V �V

˛u.a/˛v.b/e
2i
„

�.u;v/ d.u; v/; (2.1)

which is defined for a; b 2 A1, yields a well-defined associative product such
that ?„ is still continuous with respect to the A1-topology. Moreover, the original
�-involution of A1 is still a �-involution with respect to ?„. The precise definition
of the integral in an oscillatory sense is sophisticated and can be found in Rieffel’s
booklet [25]. Note that we have to choose a normalization for the Haar measure on
V in (2.1). We shall also make use of linear coordinates denoted by v D uiei in the
sequel.

Definition 2.1 (The operator Sg ). Let g W V � V ! R be a positive definite inner
product on V . Then the linear operator Sg W A ! A is defined by

Sg.a/ D
Z

V

e�g.u;u/˛u.a/ du: (2.2)

Thanks to the fast decay of the Gauß function and the fact that the action ˛ is
isometric, the definition of Sg in (2.2) as an improper Riemann integral is possible.
More general, we need the following construction: let B.V; A/ denote the A-valued
functions on V such that supv2V kf .v/kk < 1 for all k, i.e., the bounded functions
with respect to the seminorms k � kk of A. Then we define

zSgf D
Z

V

e�g.u;u/f .u/ du
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for f 2 B.V; A/. Again, a naive definition of the integral is possible. Finally, let
C 0

u .V; A/ be the uniformly continuous functions in B.V; A/ and let C 1
u .V; A/ be

the smooth functions with all partial derivatives in C 0
u .V; A/. Clearly, the spaces

C 0
u .V; A/ as well as C 1

u .V; A/ are equipped with a natural Fréchet topology by
taking the sup-norm over V of seminorms of the values of the (derivatives of the)
functions. Then the following Proposition lists some properties of Sg and zSg :

Proposition 2.2 (Continuity of Sg ).

(1) The operator Sg W A ! A is continuous.

(2) We have Sg.A1/ � A1 and Sg W A1 ! A1 is continuous, too.

(3) The restriction of zSg to C 0
u .V; A/ and C 1

u .V; A/ is continuous in the respective
topologies.

(4) The restriction of zSg to C 0
u .V; A1/ and C 1

u .V; A1/ takes values in A1 and
is again continuous.

Proof. The first two statements can be recovered from the third and fourth by consid-
ering the function f .u/ D ˛u.a/ for a 2 A or a 2 A1, respectively: as the action
is isometric we have f 2 C 0

u .V; A/ and C 1
u .V; A1/, respectively. The continuity

statements in the third and fourth part are then a straightforward estimate.

In a next step we want to understand the asymptotics of the operator Sg . To this
end we rescale the inner product by „ > 0 and consider the normalized Gauß function

G„.u/ D
p

det G

.�„/n
e� g.u;u/

„ ; (2.3)

where det G > 0 is the determinant of g with respect to the Haar measure on V and
2n D dim V . The normalization constant is chosen such that the integral of G„ is 1.
For a fixed choice of g we consider the operator

S„.a/ D
Z

V

G„.u/˛u.a/ du: (2.4)

Lemma 2.3. For every a 2 A we have lim„&0 S„.a/ D a in the topology of A.
Moreover, for every a 2 A1 we have

lim
„&0

S„.a/ D a (2.5)

and
d

d„ .S„a/ D S„
�

1
4
�ga

�
; (2.6)
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both with respect to the topology of A1 where

�ga D
X
i;j

.G�1/ij @2

@ui@uj

˛u.a/
ˇ̌
ˇ
uD0

is the Laplacian with respect to the inner product g and the action ˛ viewed as
continuous operator on A1. The operator �g does not depend on the choice of
linear coordinates.

Proof. By substitution u ! p„u we have

S„.a/ D
p

det G

�n

Z
V

e�g.u;u/˛p„u
.a/ du:

To exchange the order of integration and lim
„&0

we consider

���
Z

V

e�g.u;u/.˛p„u
.a/ � a/ du

���
k;�

�
Z

K

e�g.u;u/k˛p„u
.a/ � akk;� du C

Z
V nK

e�g.u;u/k˛p„u
.a/ � akk;� du;

where K denotes a compact set in V . For „ & 0 the function ˛„.a/ W u 7! ˛p„u
.a/

converges uniformly to the constant function u 7! a on every compact set in V .
Furthermore, since ˛ is isometric, the estimate k˛p„u

.a/ � akk;� � 2kakk;� holds
for all u 2 V . Thus, choosing K large enough makes the second term small, inde-
pendently of „. Afterwards, choosing „ small brings the first term for the fixed K

below every positive bound. By the choice of the normalization constant in front of
the Gauß function this shows (2.5). The case for a 2 A is analogous. For the last
statement we first note that for a fixed a the differentiation in V -directions is a limit
in C 1

u .V; A1/. By the linearity and continuity of zSg as in Proposition 2.2 we can
thus exchange differentiation and the integral. This gives

d

d„S„a D d

d„
Z

V

p
det G

�n
e�g.u;u/˛p„u

.a/ du

D
p

det G

�n

Z
V

e�g.u;u/
X

i

ui

2
p„

@

@ui

˛u.a/
ˇ̌ˇp„u

du

D � 1

4
p„

p
det G

�n

Z
V

X
i;j

.G�1/ij @

@uj

e�g.u;u/ @

@ui

˛u.a/
ˇ̌ˇp„u

du

D 1

4

p
det G

�n
e�g.u;u/.G�1/ij @2

@ui@uj

˛u.a/
ˇ̌ˇp„u

du

D 1

4

p
det G

�n
e�g.u;u/˛p„u

�
.G�1/ij @2

@vi@vj

˛v.a/
ˇ̌ˇ
vD0

�
du;
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where we have used an integration by parts as well as the fact that ˛ is an action. Note
that the operator �g is well defined on A1. This completes the proof.

Since with a 2 A1 we also have �ga 2 A1, the iteration of (2.6) immediately
yields the following statement:

Theorem 2.4 (Asymptotic expansion of S„). The operator S„ W A1 ! A1 has the
formal asymptotic expansion

S„ '„&0 e
„
4 �g

with respect to the topology of A1.

This means that the asymptotic expansion of S„ corresponds to the formal equiv-
alence transformation leading from the Weyl star product to the Wick product; see,
e.g., [29], eq. (5.84).

3. Deformation of positive functionals

Recall that a functional ! W A ! C is called positive if for all a 2 A we have

!.a�a/ � 0:

While this is a purely algebraic definition, for a topological algebra A we require
furthermore that ! is continuous. An algebra element a 2 A is called positive if
!.a/ � 0 for all (continuous) positive functionals !. The positive algebra elements
will be denoted by AC. Note that for general �-algebras a definition of positivity
like a D b�b will not lead to a reasonable notion of positive elements due to the
lack of a functional calculus. Note also that the above definition coincides with the
usual definition of positive elements in the case of a C*-algebra. There are even more
sophisticated notions of positivity, e.g., for O�-algebras; see the discussion in [26].
However, for our purposes the above definition will be sufficient as for C*-algebras
positive functionals are always continuous.

Now we can use the operator S„ to deform a positive functional of A into a positive
functional with respect to ?„. To this end we observe the following lemma:

Lemma 3.1. For a 2 A1 we have

S„.a� ?„ a/

D 1

.�„/2n

Z
V �V

e� 1
„

g.v;v/˛v.a�/e� 1
„

g.w;w/˛w.a/e
2
„

.g.v;w/Ci�.v;w// dv dw:
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Proof. The proof is a straightforward computation using the fact that ˛ is an action as
well as a linear change of coordinates and a Fourier transform of the Gauß function.

In the particular case that g and � are compatible, i.e., g.u; v/ D �.u; J v/ with
a complex structure J , the combination h.u; v/ D g.u; v/ C i�.u; v/ is known to be
a Hermitian metric on the complex vector space .V; J /. In this case there exists a
symplectic basis fe1; : : : ; en; f1; : : : ; fng of V with coordinates qi and pi and there
exist complex coordinates zi D qi C ipi and Nzi D qi � ipi such that

g.u; u/ D P
i

zi
u Nzi

u D kzuk2 and h.v; w/ D P
i

Nzi
vzi

w :

From now on we assume that g is compatible with � . Using these coordinates, the
above integral can be rewritten as

S„.a�?„a/ D 1

.�„/2n

Z
V �V

e� 1
„

kzvk2

˛v.a�/e� 1
„

kzwk2

˛w.a/e
2
„

Nzv �zw dv dw: (3.1)

Lemma 3.2. For a 2 A1 we have

S„.a� ?„ a/ D
X
L�0

2jLj

LŠ
a�

LaL (3.2)

with respect to the A1-topology, where for a multi-index L D .l1; : : : ; ln/ one defines

aL D 1

�n

Z
V

e�kzvk2

zL
v ˛p„v

.a/ dv:

Proof. First note that rescaling the variables in (3.1) by
p„ allows to get rid of the

negative powers of „. Then (3.2) is obtained from expanding the exponential function
e2 Nzv �zw into the Taylor series and exchanging summation and integration. The fact
that the latter exchange of limits is allowed follows from a similar argument as in the
proof of Lemma 2.3: First we split the integration into two parts, one over a compact
subset K � V and the other over V n K. On K the Taylor expansion converges
uniformly including all derivatives. Outside K, the Gauß function decays fast enough
to over-compensate the exponential increase. Thus first choosing K large enough to
make the second integral small then using the uniform convergence gives the result.
Note that the convergence is in the sense of A1.

Theorem 3.3 (Positive deformation of !). Let g be a compatible positive definite
inner product and S„ the corresponding operator as in (2.4).
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(1) For every continuous positive linear functional ! W A ! C the functional

!„ D ! B S„ W A1 ! C

is positive and continuous in the A1-topology.

(2) For every a 2 A1 we have

S„.a� ?„ a/ 2 AC:

Proof. Let ! W A ! C be positive and continuous. Since the topology of A1 is
finer than the original one, it follows that ! W A1 ! C is still continuous. There-
fore !.S„.a� ?„ a// � 0 follows immediately from (3.2) and the continuity of !.
Moreover, since S„ is continuous the first part follows. Thus the second part is clear.

Corollary 3.4. Let ! W A ! C be a positive and continuous linear functional. Then
on A1, !„ D ! B S„ has the asymptotic expansion

!„ '„&0

1X
rD0

1

rŠ

�„
4

�r

! B �r
g

in the A1-topology.

Remark 3.5. This kind of formal positive deformation of a positive functional was
discussed in [6] based on the formal equivalence between the Weyl and Wick star
product.

4. The operator S in the C*-case

In a next step we want to apply Theorem 3.3 to the more particular case of a C*-
algebraic deformation. Let A be a unital C*-algebra endowed with an isometric and
strongly continuous action of V by �-automorphisms. Then Rieffel has shown how
to construct a C*-norm on the Fréchet �-algebra A.„/ D .A1; ?„;� /. In general,
A.„/ is not complete. The norm completion of A.„/ will then be denoted by A.„/.

We briefly recall the construction of the C*-norm on A.„/. Let �.V; A/ �
C 1

u .V; A/ be the subset of functions which are still in C 1
u .V; A/ when multiplied

by arbitrary polynomials on V . For f; g 2 �.V; A/ one defines the A-valued inner
product

hf; gi D
Z

V

f .v/�g.v/ dv;
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which makes �.V; A/ into a pre-Hilbert right A-module; see, e.g., [19] for details on
Hilbert modules. In particular, by

kf k� D
p

khf; f ik

one obtains a norm on �.V; A/, where the norm on the right-hand side is the C*-norm
of A. Using this norm, Rieffel showed that for every F 2 C 1

u .V; A/ the operator

F ?„ � W �.V; A/ 3 f 7! F ?„ f 2 �.V; A/

is continuous with respect to k � k� and adjointable with adjoint given by F � ?„ � .
Since for a 2 A1 the function u 7! ˛u.a/ is in C 1

u .V; A/ we obtain an induced
operator on the pre-Hilbert module ˛.a/ ?„ � which is continuous and adjointable. A
final computation then shows that a 7! ˛.a/ ?„ � is a �-homomorphism with respect
to the deformed product ?„ of A1. This allows to define

kak„ D k˛.a/ ?„ � k;

where on the right-hand side we use the operator norm. Since it is well known
that the continuous and adjointable operators on a (pre-)Hilbert module constitute a
C*-algebra, Rieffel arrives at a C*-norm k � k„ for A.„/.

We want to show that the operator S„ being defined only on A.„/ is also continuous
in the C*-norm and thus extends to A.„/. To show the continuity of S„ we will need
the following lemma that shows that there is a star root of the Gauß function.

Lemma 4.1. Let G„ be the normalized Gauß function as in (2.3) used to define the
operator S„. Then we have

G„ ? G„ D 1

.2�„/n

1p
det G

G„:

Proof. The proof is a straightforward and well-known computation; see, e.g., [16],
Prop. 3.3.1.

From equation (3.2) and the trivial fact that
p

det GaLD0 D S„.a/ we obtain the
following statement:

Lemma 4.2 (Leading order of S„.a� ?„ a/). For a 2 A1 we have

S„.a� ?„ a/ D 1

det G
S„.a�/S„.a/ C b;

where b 2 AC is positive.
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Theorem 4.3. Let .A; �; k � k/ be a C*-algebra with isometric and strongly continuous
action ˛ of V and let A.„/ D .A1; ?„; k � k„/ be the Rieffel deformed pre-C*-
algebra. Then the operator

S„ W A.„/ ! A

is a continuous operator in the C*-norms of A.„/ and A.

Proof. Since A is a C*-algebra, we have kS„ak2 D k.S„a/�.S„a/k. From Lemma 4.2
it follows that .S„a/�.S„a/ � det.G/S„.a� ?„ a/ in the sense of positive elements
in A. From this it follows that the same holds for the norms, i.e., k.S„a/�.S„a/k �
det.G/kS„.a� ?„ a/k. In order to compute the last norm we need the following fact
that Z

V

f ?„ g D
Z

V

fg (4.1)

for all f; g 2 �.V; A/; see [25], Lemma 3.8. Moreover, due to the fast decay of
functions in �.V; A/, eq. (4.1) still holds if one of them is in C 1

u .V; A/. Using this
and Lemma 4.1 we find

kS„.a� ?„ a/k D det.G/
���

Z
V

.G„ ?„ ˛.a� ?„ a//.u/ du
���

D .2�„/n.det.G//
3
2

���
Z

V

.G„ ?„ G„ ?„ ˛.a� ?„ a//.u/ du
���

D .2�„/n.det.G//
3
2

���
Z

V

.G„ ?„ ˛.a/� ?„ ˛.a/ ?„ G„/.u/ du
���

D .2�„/n.det.G//
3
2 kh˛.a/ ?„ G„; ˛.a/ ?„ G„ik

� .2�„/n.det.G//
3
2 kG„k2

�kak2
„;

by observing that G„ is central for the undeformed pointwise product of C 1
u .V; A/.

Thus we have the desired continuity

kS„ak2 � .2�„/n.det.G//
3
2 kG„k2

�kak2
„: (4.2)

Corollary 4.4. Let ! W A ! C be a positive linear functional of the undeformed
C*-algebra. Then !„ D ! B S„ W A.„/ ! C is continuous with respect to k � k„ and
extends to a positive linear functional !„ W A.„/ ! C.

Thus we have constructed for every classical state ! a corresponding quantum
state using the operator S„. We shall also use the symbol

S„ W A.„/ ! A
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for the extension of the operator S„ to the completions in the corresponding C*-
topologies.

5. Continuous fields of states

In a last step we want to discuss in which sense !„ can be considered as a deformation
of !: clearly we have !.a/ D lim„&0 !„.a/ pointwise for every a 2 A1 but we
want to show some continuity properties beyond that trivial observation.

One of the main results in Rieffel’s work [25] is that the deformed C*-algebras
fA.„/g„�0 actually yield a continuous field in the sense of Dixmier [15]: Recall that
a continuous field structure on a collection fA.„/g„�0 of C*-algebras consists in the
choice of continuous sections � � Q

„�0 A.„/ subject to the following technical
conditions: � is a �-algebra with respect to the pointwise product of the sections
and for each fixed „ the set of possible values fa.„/ga2� � A.„/ is dense. For
unital C*-algebras, we require that the unit section „ 7! 1.„/ D 1A.„/ be always
in � . Moreover, the function „ 7! ka.„/k„ is continuous for all a 2 � . Finally,
if an arbitrary section b 2 Q

„�0 A.„/ can locally be approximated uniformly by
continuous sections, it is already continuous itself, i.e., if b is a section such that for
all " > 0 and all „0 there exists an open neighborhood U � Œ0; 1/ of „0 and a
continuous section a 2 � such that ka.„/ � b.„/k„ � " uniformly for all „ 2 U ,
then b 2 � . It follows that � necessarily contains C 0.RC

0 /.
In the case of the Rieffel deformation the �-algebra of continuous sections � can

be obtained from the “constant” sections a.„/ D a 2 A1. In detail, one has the
following (technical) characterization:

Proposition 5.1. Let A.„/ D .A1; ?„; k � k„/ be the Rieffel deformed pre-C*-
algebras and let fA.„/g„�0 be the corresponding field of C*-algebras. Moreover,
let

� D fb 2 Q
„�0 A.„/ j 8" > 08„0 � 09U.„0/9a 2 �08„ 2 U.„0/ W

kb.„/ � a.„/k„ � "g
be the set of sections generated by the set �0 of sections. Then for all three choices,

(1) �0 D A1,

(2) �0 D C 0.RC
0 / ˝ A1,

(3) �0 is the �-algebra generated by the vector space C 0.RC
0 / ˝ A1 with respect

to ?„,

the set � is the same and defines the structure of a continuous field.
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In other words, the �-algebra � of continuous sections yields the smallest con-
tinuous field built on the collection fA.„/g„�0 which contains the constant sections
a W „ 7! a.„/ D a 2 A1. The second choice of �0 is the smallest C 0.RC

0 /-
module, while the last choice corresponds to the smallest �-algebra containing A1
and C 0.RC

0 /. In the following we shall always refer to this continuous field struc-
ture � .

Turning back to the states we want to show that the set of states !„ D ! B S„,
where ! W A ! C is a classical state, form a continuous field of states in the following
sense; see, e.g., [21], Def. 1.3.1:

Definition 5.2 (Continuous field of states). A continuous field of states on a continuous
field of C*-algebras .fA.„/g„�0; �/ is a family of states !„ on A.„/ such that

„ 7! !„.a.„//

is continuous for every continuous section a 2 � .

Lemma 5.3. If a 2 � is a continuous section, then the map RC
0 3 „ 7! S„a.„/ 2 A

is continuous in the (undeformed ) C*-norm of A.

Proof. Note that here we use the extension of S„ to the completion A.„/. Moreover,
by Proposition 5.1 we can approximate a by sections in �0 D C 0.RC

0 / ˝ A1. First,
we show the continuity at „ ¤ 0:

kS„a.„/ � S„0a.„0/k � kS„a.„/ � S„a.„0/k C kS„a.„0/ � S„0a.„0/k
D kS„.a.„/ � a�„.„//k C k.S„ � S„0/.a.„0//k
� c.„/ka.„/ � a�„.„/k„ C k.S„ � S„0/.a.„0//k:

Here a�„.„/ D a.„ C �„/ with �„ D „0 � „ and c.„/ is the constant from the
estimate (4.2). It is now easy to see that the section a�„ is approximated by sections
of the form

P
n ��„fnan, where .��„fn/.„/ D fn.„ C �„/. Thus a�„ is still in �

and approximates a for �„ ! 0. Hence the first term becomes small for „0 ! „.
The second term requires more attention. We can approximate a by sections of the
form

P
n fnan 2 �0 with a finite sum and fn 2 C 0.RC

0 / and an 2 A1. Then we
have

k.S„ � S„0/.a.„0//k � kS„.a.„0/ � P
fn.„0/an/k

C k.S„ � S„0/.
P

fn.„0/an/k C kS„0.a.„0/ � P
fn.„0/an/k

� c.„/ka�„.„/ � P
��„fn.„/ank„

C kP
fn.„0/ank

Z
jG„.u/ � G„0.u/j du

C c.„0/ka.„0/ � P
fn.„0/ank„0 :
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The constants c.„/ and c.„0/ are bounded in a small neighborhood of „ ¤ 0. Since
the functions fn are continuous, k P

fn.„0/ank is bounded on a neighborhood. The
other factors become smaller than any " > 0 for „0 ! „. This shows the continuity
at „ ¤ 0. For the continuity at 0 we have with S0 D id:

kS„.a.„// � S0.a.0//k � kS„.a.„/ � S„.a.0///k C kS„.a.0// � a.0/k:

The first term gives

���
Z

G„.u/˛u.a.„/ � a.0// du
��� � ka.„/ � a.0/k

Z
G„.u/ du

D ka.„/ � a.0/k;

since the Gauß function is normalized and ˛ is isometric. Now a.„/ D a„.0/ approx-
imates a.0/ in a neighborhood of zero whence this contribution becomes small for
„ & 0. The second term becomes small thanks to the asymptotics from Lemma 2.3
in the topology of A. This shows the continuity at 0, too.

From this lemma we immediately obtain the main result:

Theorem 5.4. For every classical state ! W A ! C and for every continuous section
a 2 � the map

„ 7! !.S„.a.„/// D !„.a.„//

is continuous. Hence f!„g„�0 is a continuous field of states with !0 D !.

Remark 5.5 (Completely positive deformation). Since with A also the matrices
Mn.A/ carry an induced action of V , we can repeat the whole deformation pro-
cess for Mn.A/. Then it is easy to see that the deformations of .Mn.A//.„/ are just
Mn.A.„//. Thus the above statement on the deformation of states applies to Mn.A/,
too. In [8], such deformations were called completely positive deformations. Of
course, here we obtain this statement in a strict framework and not for formal power
series in „.
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