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Introduction

In recent years the study of the topological properties of C*-algebra bundles plays
a more and more prominent rôle in the field of operator algebras. The main reason
for this is two-fold: on one side there are many important examples of C*-algebras
which do come with a canonical bundle structure. On the other side, the study of
C*-algebra bundles over a locally compact Hausdorff base space X is the natural next
step in classification theory, after the far reaching results which have been obtained
in the classification of simple C*-algebras. To fix notation, by a C*-algebra bundle
A.X/ over X we shall simply mean a C0.X/-algebra in the sense of Kasparov (see
[17]): it is a C*-algebra A together with a non-degenerate �-homomorphism

ˆ W C0.X/ ! ZM.A/;
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where ZM.A/ denotes the center of the multiplier algebra M.A/ of A. For such
C0.X/-algebra A, the fibre over x 2 X is then Ax D A=Ix , where

Ix D fˆ.f / � a j a 2 A and f 2 C0.X/ such that f .x/ D 0g;
and the canonical quotient map qx W A ! Ax is called the evaluation map at x. We
shall often write A.X/ to indicate the given C0.X/-structure of A. We shall recall
the basic constructions and properties of C0.X/-algebras in the preliminary section
below. We refer to [10] for further notation concerning C0.X/-algebras.

The main problem when studying bundles from the topological point of view
is to provide good topological invariants which help to understand the local and
global structure of the bundles. A good example is given by the class of separable
continuous-trace C*-algebras, which are, up to Morita equivalence, just the section
algebras of locally trivial bundles over X with fibres the compact operators K Š
K.l2.N//. Using the standard classification of fibre bundles, these algebras (or
rather the underlying bundle structure) are classified up to Morita equivalence by
a corresponding Dixmier–Douady class in LH 3.X; Z/. Another interesting class of
examples are the noncommutative principle torus bundles, which have been studied
by the authors in [10]. A basic example of a noncommutative principal 2-torus bundle
is given by the C*-algebra C �.H/ of the discrete rank 3 Heisenberg group H , which
has a canonical structure of a C*-algebra bundle over the circle T where the fibre Az

over z 2 T is the noncommutative 2-torus A� if z D e2�i� . This shows in particular,
that such bundles are in general far away from being section algebras of locally trivial
C*-algebra bundles (but see [10], §2, for a classification based on classical methods).

The main purpose of [10] was the study of the K-theoretic properties of the princi-
ple noncommutative T n-bundles after forgetting the T n-actions. Using Kasparov’s
RKK.X I � ; � /-theory as the version of K-theory which is probably most adapted to
the study C*-algebra bundles, we show in [10], Corollary 3.4, that the noncommuta-
tive T n-bundles are always locally RKK-trivial, which means that for each x 2 X

there exists a neighbourhood U of x such that the restriction A.U / of A.X/ to U is
RKK.U I � ; � /-equivalent to C0.U � T n/. As usual, the global picture is much more
difficult. Using the local RKK-triviality we show in [10] that to each noncommuta-
tive torus bundle A.X/ we may associate a corresponding bundle of K-theory groups
which comes equipped with a canonical action of the fundamental group �1.X/ of
the base X . Using this associated group bundle allows us to obtain at least a partial
classification result up to RKK-equivalence (see [10], Theorem 7.5).

In this article we want to extend the studies of [10] from a more general perspective.
Indeed, we are interested in C*-algebra bundles which are noncommutative analogues
of classical fibrations in topology which satisfy certain weak versions of the homotopy
lifting property. Indeed, the important point implied by the homotopy lifting property
in classical topology is that for any fibration q W Y ! X with this property, the space
Y looks, in a topological sense, locally like a product space U � F . The phrase “in a
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topological sense” means that any homotopy invariant (co-)homology theory cannot
differentiate between p�1.U / and U � F .

Since it seems to be impossible to rephrase the homotopy lifting property in the
noncommutative setting, we shall give a definition of this property in dependence of a
given (co-)homology theory on the category of C*-algebras. For example, a (section
algebra of a) C*-algebra bundle A.X/ over X is called a K-fibration if for any positive
integer p, for any p-simplex �p and for any continuous map f W �p ! X the pull-
back f �A.�p/ of A.X/ via f is K-theoretically trivial in the sense that the evaluation
homomorphism

qv W f �A.�p/ ! Af .v/

induces an isomorphism of K-theory groups Ki .f
�A.�p// Š Ki .Af .v// for all

v 2 �p . In a similar way we can define KK-fibrations, RKK-fibrations or h-fibra-
tions, when .hn/n2Z (resp. .hn/n2Z) is any given (co-)homology theory on a suit-
able category of C*-algebras. In case of K-theory, the strongest notion will be that
of an RKK-fibration (which implies that such bundles are automatically KK- and
K-fibrations) and we shall indicate that there exist many natural examples of such
fibrations. For instance, the principle noncommutative torus bundles of [10] are al-
ways RKK-fibrations.

The main result of this article will be the proof of a noncommutative analogue
of the Leray–Serre spectral sequence for general h-fibrations. Indeed, if .hn/n2Z

(resp. .hn/n2Z) is any given (co-)homology theory on a suitable category of
C*-algebras, and if A.X/ is an h-fibration over the geometric realisation of a simplicial
complex X , we show that we can associate to A the group bundle H D fhq.Ax/ j x 2
Xg which carries a canonical action of �1.X/. The Leray–Serre spectral sequence
for A.X/ then converges to h.A.X// and has (co-)homology groups H p.X; Hq/ as
E2-terms.

Thus, at least in principle we can use the spectral sequence for computation of the
K-theory groups of any K-fibration A.X/. In particular this applies to the principal
noncommutative T n-bundles as studied in [10]. The spectral sequence also serves
as an obstruction for RKK-equivalence of two bundles A.X/ and B.X/ – any such
equivalence induces an isomorphism between the respective spectral sequences. It
is certainly an interesting question to what extend the converse might hold, at least
in case where A.X/ and B.X/ are RKK-fibrations (or locally RKK-trivial). In
a final section we apply the spectral sequence to the study of the noncommutative
torus bundles of [10] and show that it gives the missing tool for deciding which
noncommutative torus bundles are globally RKK-trivial. We further give an explicit
computation of the spectral sequences in the case of noncommutative 2-torus bundles
over T 2. The results show that there are noncommutative principle torus bundles
with isomorphic spectral sequences for which we do not know at this point whether
they are RKK-equivalent.
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1. Some preliminaries

1.1. Homology theories on C*-algebras. Let Call denote the category of all C*-
algebras with �-homomorphisms as morphisms. By a good subcategory of Call we
mean any subcategory C of Call with C 2 C and which is closed under taking ideals,
quotients, extensions and suspension in the sense that if A 2 Ob.C/, then SA ´
C0.R; A/ 2 Ob.C/. Moreover, for simplicity, we shall assume that MorC .A; B/ D
MorCall.A; B/ for all A; B 2 C and that if A Š B in Call and A 2 C , then B 2 C . In
many cases considered below, the above assumption on the morphisms could probably
be weakened to the assumptions given in [2], 21.1, but we do not want to bother with
this extra generality. Standard examples of good subcategories of Call are given by the
category Csep of separable C*-algebras or the category Cnuc of nuclear C*-algebras.
Following [2], 21.1, we define:

Definition 1.1. A homology theory on a good subcategory C of Call is a sequence
fhngn2Z of covariant functors hn from C to the category Ab of abelian groups satis-
fying the following axioms:

(H) If f0; f1 W A ! B are homotopic, then f0;� D f1;� W hn.A/ ! hn.B/ for all
n 2 Z.

(LX) If 0 ! J
i�! A

q�! B ! 0 is a short exact sequence in C , then for each
n 2 Z there are connecting maps @n W hn.B/ ! hn�1.J /, natural with re-
spect to morphisms of short exact sequences, making exact the following long
sequence

� � � @nC1���! hn.J /
i��! hn.A/

q��! hn.B/
@n�! hn�1.J /

i��! � � � :

Similarly, we define a cohomology theory on a good subcategory as a sequence
fhngn2Z of contravariant functors hn W C ! Ab which satisfy the obvious reversed
axioms (e.g., see [2], 21.1).

Remark 1.2. (1) It follows from these axioms that all hn W C ! Ab are additive in
the sense that

hn.A1 ˚ A2/ D hn.A1/ ˚ hn.A2/

and that hn.A/ D f0g if A is a contractible C*-algebra. Since CA ´ C
�
.�1; 1�; A

�
is contractible, it follows from (LX) applied to the short exact sequence

0 ! SA ! CA ! A ! 0

that hnC1.A/ D hn.SA/ (resp. hn�1.A/ D hn.SA/) for all A 2 C .
(2) A covariant (resp. contravariant) functor F W Csep ! Ab is called stable if

ip W A ! A ˝ K; ip.a/ D a ˝ p;
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induces an isomorphism ip;� W F.A/ ��!Š F.A˝K/ (resp. i�
p W F.A˝K/ ��!Š F.A/)

for every one-dimensional projection p 2 K . It is shown in [2], Corollary 22.3.1,
(the result is originally due to Cuntz [5]) that every stable (co-)homology theory
fhng (resp. fhng) on Csep satisfies Bott-periodicity hnC2.A/ D hn.S2A/ Š hn.A/

(resp. hnC2.A/ Š hn.A/). Hence, every stable (co-)homology theory on Csep is
Z=2Z-graded and the long exact sequence (LX) then becomes a cyclic six-term exact
sequence.

(3) A homology theory fhng is called � -additive (resp. � -multiplicative) if
hn.A/ D L

i2I hn.Ai / (resp. hn.A/ D Q
i2I hn.Ai /) whenever A 2 C is a countable

direct sum of objects Ai 2 C , i 2 I , and similarly for cohomology theories.

(4) The main example of a homology theory on Call (or any good subcategory
C of Call) is given by K-theory, and K-homology serves as the main example for
a cohomology theory on Call. Note that K-theory is � -additive and K-homology is
� -multiplicative.

Assume now that C is a good subcategory of Call and suppose that A.X/ 2 C is
a C0.X/-algebra. In what follows we write �p D <v0; : : : ; vp> for the standard p-
simplex with vertices v0; : : : ; vp . It follows from the properties of a good subcategory
of Call that if A 2 C and f W �p ! X is any continuous map, then f �A D .C.�p/˝
A/=If , with If is a suitable ideal in C.�p/˝A, is again an object in C . In particular,
all fibers Ax for x 2 X are in C . The following definition is motivated by the notation
and results presented in [8], Chapter I:

Definition 1.3. Suppose that C is a good subcategory of Call and that fhng is a
homology theory on C (resp. fhng is a cohomology theory on C ). Suppose further
that A D A.X/ is a C0.X/-algebra in C . Then

(i) A.X/ is called an h-fibration if for all continuous maps f W �p ! X and for ev-
ery point v 2 �p , the quotient map qv W f �A ! Af .v/ induces an isomorphism
qv;� W hn.f �A/ ! hn.Af .v// (resp. q�

v W hn.Af .v// ! hn.f �A/).

(ii) If C D Csep, then A.X/ is called a KK-fibration, if for all continuous maps
f W �p ! X and for every element v 2 �p the quotient map qv W f �A ! Af .v/

is a KK-equivalence.

(iii) If C D Csep, then A.X/ is called an RKK-fibration, if f �A is RKK.�pI � ; � /-
equivalent to C.�p; Af .v// for any continuous map f W �p ! X and for any
element v of �p .

Remark 1.4. (1) Any RKK-fibration is a KK-fibration. This follows from the fact
that if x 2 RKK.�pI C.�p; Af .v//; f �A/ is an RKK-equivalence, then we get the
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following commutative diagram in KK:

C.�p; Af .v//

qv Š
��

x

Š
�� f �A

qv

��
Af .v/

Š
x.v/

�� Af .v/,

where all arrows except of the right vertical one are known to be isomorphisms in
KK. But then all arrows are KK-equivalences. We shall formulate below a partial
converse of this easy observation, which follows from a result of Dadarlat.

(2) It is a direct consequence of [2], Corollary 22.3.1, that if A.X/ is a KK-fibration,
then A.X/ is an h-fibration for any stable (co-)homology theory fhng (resp. fhng) on
Csep.

(3) Every locally trivial C*-algebra bundle A.X/ is an RKK-fibration. This
follows from the fact that a pull-back of a locally trivial C*-algebra bundle is again
locally trivial, and that any locally trivial bundle over a contractible space is trivial
(e.g., see [16]).

(4) All noncommutative principal n-tori as considered in [10] are RKK-fibrations.
This follows from [10], Proposition 3.1.

(5) Being an h-fibration (resp. KK-fibration, resp. RKK-fibration) is preserved by
taking pull-backs inside C . This follows from the fact that if A is a C0.X/-algebra in
C and g W Y ! X is any continuous map such that g�.A/ 2 C , and if f W �p ! Y

is any continuous map, then f �.g�.A// D .g B f /�.A/, and hence evaluation at any
vertex induces isomorphisms in h-theory.

(6) Being a KK-fibration is preserved under taking maximal tensor products with
arbitrary separable C*-algebras and by minimal tensor products with separable ex-
act C*-algebras. This follows from the fact that taking maximal or minimal tensor
products of a KK-equivalence x 2 KK0.C; D/ with a fixed C*-algebra B gives a
KK-equivalence

x ˝ B 2 KK0.C ˝.max/ B; D ˝.max/ B/:

Similar statements hold for RKK-fibrations.

In what follows next we want to show that in many situations being a KK-fibration
is actually equivalent to being an RKK-fibration. Recall that a C*-algebra bundle (i.e.,
a C0.X/-algebra) A.X/ is called a continuous C*-algebra bundle if for all a 2 A the
map x 7! kaxk is a continuous function on X . We need the following deep theorem
of Dadarlat (see [6], Theorem 1.1).

Theorem 1.5. Let X be a compact metrizable finite dimensional space and let A.X/

and B.X/ be separable nuclear continuous C*-algebra bundles over X . Suppose
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further that � 2 RKK.X I A.X/; B.X// is such that �.x/ 2 KK.Ax; Bx/ is invertible
for all x 2 X . Then � is invertible in RKK.X I A.X/; B.X//.

As a direct corollary we get the partial converse to the observation made in item (2)
of Remark 1.4:

Corollary 1.6. Suppose that A.X/ is a separable nuclear continuous C*-algebra
bundle over some locally compact space X . Then A.X/ is a KK-fibration if and only
if it is an RKK-fibration.

Proof. Since every RKK-fibration is a KK-fibration by item (1) of Remark 1.4 we
only have to show the converse. Write � ´ �p and let f W � ! X be any continuous
map. Since A is a KK-fibration, there exists the inverse q�1

v 2 KK.Af .v/; f �A/ of
the evaluation map qv . Consider the image of q�1

v under the composition of maps

KK.Af .v/; f �A/
��;C.�/�����! RKK.�I C.�/ ˝ Af .v/; C.�/ ˝ f �A/

�����! RKK.�I C.�; Af .v//; f �A/;

where � W C.�/ ˝ f �A ! f �AI �.g ˝ a/ D g � a is the multiplication ho-
momorphism. If we evaluate this class at a point w 2 �, we obtain the class
.q�1

v / ˝ qw 2 KK.Af .v/; Af .w//, which is invertible since A is a KK-fibration.
Hence the result follows from Dadarlat’s theorem.

Another interesting problem is the relation between locally RKK-triviality, which
was discussed in [10] in connection with noncommutative torus bundles and the
RKK-fibrations considered here. Let us recall that a C*-algebra bundle A.X/ is
called locally RKK-trivial, if for every x 2 X there exists a neighbourhood V of x

such that the restriction A.V / of A to V is RKK.V I � ; � /-equivalent to C0.V; Ax/.
We have seen in [10] that all principal noncommutative torus bundles are locally
RKK-trivial. The proof of the following proposition is then straightforward.

Proposition 1.7. Suppose that X is locally euclidean, i.e., every x 2 X has a neigh-
bourhood U which is homeomorphic to an open ball in some Rn. Then, if A.X/ is
an RKK-fibration it follows that A.X/ is locally RKK-trivial.

A bit surprisingly, the converse of the above proposition seems to be much more
complicated. We shall obtain it later as a corollary of another remarkable the-
orem of Dadarlat (see [6], Theorem 2.5), which states that every separable and
nuclear continuous C*-algebra bundle over some compact metrizable space X is
RKK.X I � ; � /-equivalent to a continuous bundle of simple Kirchberg algebras, i.e.,
each fibre is a separable nuclear purely infinite C*-algebra. As a direct consequence
we obtain
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Proposition 1.8. Suppose that A.X/ is a separable nuclear continuous C*-algebra
bundle over the compact metrizable finite dimensional space X such that A.X/ is
locally RKK-trivial. Then A.X/ is RKK-equivalent to a locally trivial bundle of
stable Kirchberg algebras.

Proof. By Dadarlat’s theorem, we may assume that A.X/ is a C*-algebra bundle
of simple Kirchberg algebras, and by stabilizing this bundle, we may assume that all
fibers are stable. If A.X/ is locally RKK-trivial, we can find for each x 2 X a compact
neighbourhood Vx such that A.Vx/ �RKK C.Vx; Ax/. It is then a consequence
of [6], Theorem 2.7, that this equivalence is actually realized by an isomorphism
A.Vx/ Š C.Vx; Ax/ of C*-algebra bundles over Vx .

As a corollary we get

Corollary 1.9. If A.X/ is a separable nuclear continuous field of C*-algebras over
a locally compact space X . If A.X/ is locally RKK-trivial, then A.X/ is an RKK-
fibration.

Proof. If f W �p ! A.X/ is any continuous map, the pull-back f �A.�p/ satisfies
all requirements of the above proposition. Since �p is contractible, every locally
trivial bundle over �p is trivial. Thus it follows from the proposition that f �A.�p/

is RKK-equivalent to a trivial bundle.

2. Examples

In this section we want to show that K-fibrations and KK-fibrations do appear quite
often in nature. We already mentioned above that all locally trivial C*-algebra bun-
dles are RKK-fibrations. Since being an RKK-fibration is stable under C0.X/-linear
Morita equivalence, this implies also that all continuous-trace C*-algebras with spec-
trum X are RKK-fibrations. Although these classes of C*-algebra bundles are cer-
tainly interesting, it would probably not give enough motivation for a general study
of fibrations as we do in this article.

A class of interesting algebras which are, in general, far away from being locally
trivial bundles of C*-algebras are the noncommutative principal torus bundles as
studied in [10], and we already pointed out that all of them are RKK-fibrations.
Recall that the principal noncommutative torus bundles are, by definition, crossed
products of the form C0.X; K/ Ì Zn, where Zn acts fibrewise on the trivial bundle
C0.X; K/. We shall now see that, with the help of the Baum–Connes conjecture,
one can construct many other examples of RKK-, KK-, or K-fibrations via a similar
crossed product construction.
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Suppose that A is a C*-algebra bundle and ˛ W G ! Aut.A/ is any C0.X/-linear
action of the locally compact group G on A, i.e., we have

˛s.f � a/ D f � ˛s.a/ for all s 2 G; f 2 C0.X/ and a 2 A:

(We simply write f � a for ˆ.f /a if ˆ W C0.X/ ! ZM.A/ is the C0.X/-structure
map of the bundle.) Then ˛ induces actions ˛x W G ! Aut.Ax/ on the fibres Ax via
˛x

s .aCIx/ D ˛s.a/CIx . The full and reduced crossed products AÌ.r/G have canon-
ical structures as C0.X/-algebras via the composition of the given C0.X/-structure
ˆ W C0.X/ ! ZM.A/ of A with the canonical embedding M.A/ ! M.A Ì.r/ G/.
For the full crossed product A Ì G, the fibre over x 2 X is then given by the full
crossed product Ax Ì G, which follows from the exactness of full crossed with re-
spect to short exact sequences of G-algebras. For the reduced crossed products the
situation can be more complicated. However, if G is exact in the sense of Kirchberg
and Wassermann (which is true for a large class of groups – see [18]), then the fibre
of A Ìr G over x 2 X is Ax Ìr G.

Note also that if f W Y ! X is any continuous map, and if ˛ W G ! Aut.A/

is a C0.X/-linear action of G on A, then we get a C0.Y /-linear pull-back action
f �.˛/ W G ! Aut.f �A/ given on elementary tensors g˝a 2 f �A D C0.Y /˝C0.X/

A by the formula
f �.˛/s.g ˝ a/ ´ g ˝ ˛s.a/:

It is then easily checked (e.g., see [11]), that f �A Ì G Š f �.A Ì G/ as C0.Y /-
algebras and f �A Ìr G Š f �.A Ìr G/ if G is exact.

In what follows next, we want to give some conditions which imply that the
C0.X/-algebras A Ì G and A Ìr G are either K�-fibrations, KK-fibrations, or even
RKK-fibrations. As the basic tool for this we shall use the Baum–Connes conjecture
for G. Recall that for any G-algebra A, the topological K-theory of G with coefficient
A is defined as

Ktop� .GI A/ D lim
Z

KKG� .C0.Z/; A/;

where Z runs through the G-compact subspaces of a universal proper G-space E.G/.
In [1], Baum, Connes and Higson constructed an assembly map

�A W Ktop� .GI A/ ! K�.A Ìr G/

and they conjectured that this map should always be an isomorphism of groups.
Although this conjecture turned out to be false in general (e.g., see [15]), the conjecture
has been shown to be true for very large classes of groups including all amenable and,
more generally, a-T-menable groups (see [14]). In what follows, if A is a fixed G-
algebra, we shall say that G satisfies BC for A if the map is an isomorphism for this
special G-algebra A.

A-T-menable groups satisfy in fact a stronger version of the Baum–Connes conjec-
ture, which can be stated as follows. Recall that a G-algebra D is said to be a proper
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G-algebra if D is a C0.Z/-algebra for some proper G-space Z in such a way that
the structure map ˆ W C0.Z/ ! ZM.D/ is G-equivariant. A group G is said to have
a � -element if there exists an element �G 2 KKG

0 .C; C/ and a proper G-algebra D

such that �G can be written as a Kasparov product ˇ ˝D ı for some ˇ 2 KKG
0 .C; D/

and ı 2 KKG
0 .D; C/, and such that the restriction resG

K.�/ D 1 2 KKK
0 .C; C/ for

all compact subgroups K of G. If G has a � -element as above, then, by work of
Kasparov [17] and Tu [21] (extended in [4], Theorem 1.11, to the weaker notion of a
� -element used here) the Baum–Connes assembly map is known to be split injective
with image �A.Ktop� .GI A// D �G � K�.A Ìr G/. We say that G satisfies the strong
Baum–Connes conjecture if �G D 1G in KKG

0 .C; C/. By the results of Higson and
Kasparov in [14], every a-T-menable group satisfies the strong Baum–Connes con-
jecture. It is clear from the above discussion that every group G which satisfies the
strong Baum–Connes conjecture satisfies BC for all G-algebras A.

Proposition 2.1. Suppose that A and B are G-algebras and that q 2 KKG.A; B/. Let
j

.r/
G .q/ 2 KK0.AÌ.r/G; B Ì.r/G/ denote the descent of q for the full (resp. reduced )

crossed products. For every compact subgroup K of G let

'K W K�.A Ì K/ ! K�.B Ì K/I 'K.x/ D x ˝ jK.resG
K.Œq�//:

Then the following is true:

(i) If G satisfies BC for A and B and if 'K is an isomorphism for every com-
pact subgroup K of G, then � ˝j r

G.q/ W K�.A Ìr G/ ! K�.B Ìr G/ is an
isomorphism.

(ii) If G satisfies the strong Baum–Connes conjecture and if 'K is an isomorphism
for every compact subgroup K of G, then

� ˝j
.r/
G .q/ W K�.A Ì.r/ G/ ! K�.B Ì.r/ G/

is an isomorphism for the full and reduced crossed products.

(iii) If G satisfies the strong Baum–Connes conjecture and if jK.resG
K.q// is a

KK-equivalence between A Ì K and B Ì K for all compact subgroups K of G,
then j

.r/
G .q/ is a KK-equivalence between A Ì.r/ G and B Ì.r/ G, for the full

and reduced crossed products.

Proof. Since G satisfies BC for A and B item (i) follows if we can show that taking
Kasparov product with q induces an isomorphism from Ktop� .GI A/ to Ktop� .GI B/.
But since all 'K are isomorphisms, this follows from [9], Proposition 1.6.

The proof of (ii) is a consequence of (i) and the fact that the strong Baum–Connes
conjecture implies the Baum–Connes conjecture for all G-algebras and it implies
also that G is K-amenable, from which it follows that the regular representation
L W A Ì G ! A Ìr G induces an isomorphism in K-theory [22].
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Finally, the proof of (iii) follows from the second part of [20], Proposition 8.5, since
under the assumption of the strong Baum–Connes conjecture, the derived crossed
products A ÌL G and B ÌL G of [20], Proposition 8.5, are KK-equivalent to the full
and reduced crossed products A Ì.r/ G and B Ì.r/ G, respectively.

The above proposition now implies the following result.

Proposition 2.2. Suppose that A D A.X/ is a separable C*-algebra bundle over X

and let ˛ W G ! Aut.A/ be a C0.X/-linear action of the second countable locally
compact group G on A.X/. Assume that for each compact subgroup K of G the
C0.X/-algebra A.X/ Ì K is a K�-fibration. Then the following holds:

(i) If G is exact and satisfies BC for f �A for all continuous f W �p ! X ,
p D 0; 1; 2; : : : (in particular, if G satisfies BC for all G-algebras B), then
the reduced crossed product A.X/ Ìr G is a K�-fibration.

(ii) If G satisfies the strong Baum–Connes conjecture, then the full crossed product
A.X/ Ì G is a K�-fibration. If, in addition, G is exact, the same is true for the
reduced crossed product A.X/ Ìr G.

(iii) If G satisfies the strong Baum–Connes conjecture and if A.X/ Ì K is a KK-
fibration for every compact subgroup K � G, then A.X/ÌG is a KK-fibration.
If, in addition, G is exact, then A.X/ Ìr G is a KK-fibration, too.

Proof. If G is exact, then AÌr G is a C0.X/-algebra with fibres Ax Ìr G and we have
f �A Ìr G Š f �.A Ìr G/ for all continuous f W �p ! X . By the assumption on
the compact subgroups of G we see that the quotient map qv W f �A ! Af .v/ induces
an isomorphism

K�.f �A Ì K/ ��!Š K�.Af .v/ Ì K/

for all compact subgroups K of G. Item (i) then follows from part (i) of Proposi-
tion 2.1.

Similarly, (ii) and (iii) follow from parts (ii) and (iii) of Proposition 2.1 together
with the fact that the C0.X/-algebra A.X/ Ì G has fibres Ax Ì G. If G is exact, the
same argument works for A.X/ Ìr G.

Remark 2.3. (1) If G has no compact subgroups (e.g., G D Rn, G D Zn or
G D Fn, the free group with n generators), then the requirement that A.X/ÌK being a
K�-fibration (resp. KK-fibration) in the above proposition reduces to the requirement
that A.X/ is a K�-fibration (resp. KK-fibration). Therefore, if any of the groups
G D Rn, Zn, Fn acts fibrewise on a K�-fibration (resp. KK-fibration) A.X/, then
A.X/ Ì.r/ G is also a K�-fibration (resp. KK-fibration), since all of these groups are
exact and satisfy the strong Baum–Connes conjecture. Of course, there are many
other examples of such groups.
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(2) It follows from [3], Proposition 3.1, that if G is exact and has a � -element
in the sense of Kasparov [17], and if A.X/ is a continuous C*-algebra bundle over
X , then G satisfies BC for f �A for all f W �p ! X if (and only if) G satisfies
BC for Ax for every fibre Ax of A. (The only if direction follows from taking the
constant map f W �p ! X I f .v/ D x and using the fact that f �A D C.�p; Ax/ is
KKG-equivalent to Ax).

If we specialize to continuous-trace algebras A with base X , we can improve the
results. For notation, we let K D K.l2.N// denote the compact operators on the
infinite dimensional separable Hilbert space. Recall that if A.X/ is any separable
continuous-trace algebra with spectrum X , then A.X/ ˝ K is a locally trivial C*-
algebra bundle with fibre K . Using this we obtain

Corollary 2.4. Suppose that G is a second countable locally compact group acting
fibrewise on a separable continuous-trace C*-algebra A.X/ with spectrum X . Then
the following holds:

(i) If G satisfies the strong Baum–Connes conjecture (e.g., if G is a-T-menable),
then A.X/ Ì G is a KK-fibration. If, in addition, G is exact, the same holds for
A Ìr G.

(ii) If G is exact and satisfies BC for C.�p; K/ for all fibrewise actions on
C.�p; K/, p � 0, then A Ìr G is a K�-fibration.

(iii) If G is exact and has a � -element, and G satisfies BC for K , for all actions of
G on K , then A Ìr G is a K�-fibration.

Notice that by the results of [3] condition (iii) is satisfied for all almost connected
groups and for all linear algebraic groups over Qp .

Proof of Corollary 2.4. The corollary follows from Proposition 2.2 and Remark 2.3
if we can show that .f �A Ì K/ ˝ K is a trivial C.�p/-algebra for all continuous
maps f W �p ! X , since this implies that A Ì K is a KK-fibration.

For this we first note that .f �A Ì K/ ˝ K Š .f �A ˝ K/ Ì K, where K acts
trivially on K . Using this we may simply assume that f �A D C.�p; K/. But it
then follows from [9], Proposition 1.5, that any fibrewise action of a compact group
K on C.�p; K/ D C.�p/ ˝ K is exterior equivalent to a diagonal action id ˝ ˛v ,
with ˛v the action on the fibre K D C.�p; K/v . Thus C.�p; K/ÌK is isomorphic
to C.�p; K Ì˛v K/ as bundle over �p .

So far we have only considered K�- or KK-fibrations, but we promised at the
beginning of this section that we will provide also examples of RKK-fibrations.
Indeed, combining the above results with Corollary 1.6 gives
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Corollary 2.5. Suppose that A.X/ is a separable nuclear and locally trivial C*-
algebra bundle and let G be a second countable amenable group acting fibrewise on
A.X/. Then the following holds:

(i) If G has no compact subgroups then A.X/ Ì G is an RKK-fibration.

(ii) If A.X/ is a continuous-trace algebra with spectrum X , then A.X/ Ì G is an
RKK-fibration.

Proof. Since G is amenable, it satisfies the strong Baum–Connes conjecture by [14].
Moreover, a crossed product of a continuous C*-algebra bundle by a fibrewise group
action of an amenable group G is again a continuous C*-algebra bundle by [23].
Since nuclearity is also preserved under taking crossed products by amenable groups,
it follows that A.X/ Ì G is a nuclear separable and continuous C*-algebra bundle.
Hence Corollary 1.6 implies that A.X/ Ì G is an RKK-fibration if and only if it is a
KK-fibration. Thus the result follows from Remark 2.3 and Corollary 2.4.

Of course, as an example of the above corollary we get a new proof of the fact
that the noncommutative principal torus bundles of [10] are RKK-fibrations, since,
by definition, they are crossed products of the form C0.X; K/ Ì Zn by C0.X/-linear
actions of Zn on C0.X; K/.

3. The group bundle corresponding to an h-fibration

Let X be a locally compact space. By an (abelian) group bundle G ´ fGx j x 2 Xg
we understand a functor from the homotopy groupoid of X to the category of (abelian)
groups. It is given by a family of groups Gx , x 2 X , together with group isomor-
phisms c� W Gx ! Gy for each continuous path � W Œ0; 1� ! X which starts at x and
ends at y, such that the following additional requirements are satisfied:

(i) If � and � 0 are homotopic paths from x to y, then c� D c� 0 .

(ii) If �1 W Œ0; 1� ! X and �2 W Œ0; 1� ! X are paths from x to y and from y to z,
respectively, then

c�1B�2
D c�1

B c�2
;

where �1 B �2 W Œ0; 1� ! X is the usual composition of paths.

It follows from the above requirements that if X is path connected, then all groups Gx

are isomorphic and that we get a canonical action of the fundamental group �1.X/

on each fibre Gx .
A morphism between two group bundles G D fGx j x 2 Xg and G 0 D fG0

x j x 2
Xg is a family of group homomorphisms �x W Gx ! G0

x which commutes with the
maps c� . The trivial group bundle is the bundle with every Gx equal to a fixed group
G and all maps c� being the identity. We then write X � G for this bundle. If X is
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path connected, then a given group bundle G on X can be trivialized if and only if
the action of �1.X/ on the fibres Gx are trivial. In that case every path � from base
points x to y induces the same morphism cx;y W Gx ! Gy and if we choose a fixed
base point x0, the family of maps fcx;x0

j x 2 Xg is a group bundle isomorphism
between the trivial group bundle X � Gx0

and the given bundle G D fGx j x 2 Xg.
It is now easy to check that every h�-fibration A.X/ gives rise to a group bundle
H� ´ fh�.Ax/ j x 2 Xg:

Proposition 3.1. Suppose that A.X/ is an h�-fibration. For any path � W Œ0; 1� ! X

with starting point x and endpoint y let c� W h�.Ax/ ! h�.Ay/ denote the composi-
tion

h�.Ay/
ev�1

1;����!Š h�.��A/
ev0;����!Š h�.Ax/ (3.1)

Then H�.A/ ´ fh�.Ax/ j x 2 Xg together with the above defined maps c� is a
group bundle over X . A similar result holds for a cohomology theory h� if A.X/ is
an h�-fibration (with arrows in (3.1) reversed ).

Proof. It is clear that constant paths induce the identity maps and that c�B� 0 D c� Bc� 0 ,
where � B � 0 denotes composition of paths. Moreover, if 	 W Œ0; 1� � Œ0; 1� ! X is a
homotopy between the paths �0 and �1 with equal starting and endpoints, then c�0

and
c�1

both coincide with the composition ev.0;0/;� B ev�1
.1;1/;�, where ev.0;0/ and ev.1;1/

denote evaluations of 	�A at the respective corners of Œ0; 1�2. Hence we see that c�

only depends on the homotopy class of � .

Definition 3.2. Suppose that h is a (co)homology theory on a good category C of
C*-algebras and let A.X/ be an h-fibration. Then H� ´ fh�.Ax/ j x 2 Xg
(resp. H �.A/ ´ fh�.Ax/ j x 2 Xg if h is a cohomolgy theory) together with the
maps c� W h�.Ay/ ! h�.Ax/ is called the h�-group bundle associated to A.X/.

Remark 3.3. If A.X/ is a KK-fibration, then it is in particular a K�- and a K�-
fibration, where K� and K� denote ordinary K-theory and K-homology. We shall
denote the resulting group bundles by K�.A/ and K�.A/, respectively.

4. The Leray–Serre spectral sequence

In this section we want to prove an analogue of the classical Leray–Serre spectral
sequence for topological Serre fibrations. From the last remark of the previous section
we know that if A.X/ is a h-fibration for a (co-)homology theory h, then we get the
group bundle H�.A/ over X . It is well known in topology that one can use such
bundles as coefficients for singular or simplicial (co-)homology on X . It is our
aim to show that every h-fibration over a finite dimensional simplicial complex X
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admits a spectral sequence with E2-terms isomorphic to the (co-)homology of X

with coefficient in H� (resp. H �).
Assume that X is a locally compact CW-complex and that A is any C0.X/-algebra.

For p � 0 let Xp denote the p-skeleton of X and we set Xp D ; for a negative
integer p < 0. We will always assume that X is finite dimensional so that there exists
a smallest integer d (the dimension of X ) such that Xp D X for all p � d . For all
p we write Ap ´ AjXp

and Ap;p�1 ´ AjXpnXp�1
, where we use Aj; ´ f0g. We

then obtain short exact sequences

0 ! Ap;p�1 ! Ap ! Ap�1 ! 0:

If h� is any homology theory on a good subcategory C of Call such that all algebras
Ap and Ap;p�1 are in C , naturality of the long exact sequences

� � � @nC1�! hn.J /
i��! hn.A/

q��! hn.B/
@n�! hn�1.J /

i��! � � � (4.1)

gives the following commutative diagram:

q�

��
q�

��
�� hqC1.ApC1/

q�

��

@ �� hq.ApC2;pC1/
�� �� hq.ApC2/

q�

��

@ �� hq�1.ApC3;pC2/
�� ��

�� hqC1.Ap/

q�

��

@ �� hq.ApC1;p/
�� �� hq.ApC1/

q�

��

@ �� hq�1.ApC2;pC1/
�� ��

�� hqC1.Ap�1/

q�

��

@ �� hq.Ap;p�1/
�� �� hq.Ap/

q�

��

@ �� hq�1.ApC1;p/
�� ��

Here the vertical arrows are induced by the quotient maps q W Ap ! Ap�1, the
maps 
� W hq.Ap;p�1/ ! hq.Ap/ are induced by the inclusions 
 W Ap;p�1 ! Ap

and the maps @ W hqC1.Ap�1/ ! hq.Ap;p�1/ denote the boundary maps in the long
exact sequence (4.1). Hence, the upper staircase of this diagram forms the sequence
(4.1). Now writing H p;q ´ hq.Ap/, E

p;q
1 ´ hq.Ap;p�1/, H ´ L

p;q H p;q and
E ´ L

E
p;q
1 we obtain an exact couple

H
q�

�� H

E

��

���������� �� @

��������
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from which we get by the general procedure (explained, for instance, in [19]) a spectral
sequence fEp;q

r ; drg with E1-terms E
p;q1 D F

q
p =F

q
pC1 with F

q
p ´ ker

�
hq.A/ !

hq.Ap/
�
. Since F

q
p D hq.A/ for p < 0 and F

q
p D f0g for p � d , the dimension

of X , it follows that the spectral sequence converges to hq.A/. This means that we
obtain a filtration

f0g D F
q

d
� F

q

d�1
� � � � � F

q
�1 D hq.A/

of subgroups F
q

p of hq.A/ such that the sub-quotients can be computed (at least in
principle) by our spectral sequence.

Similarly, if we start with a cohomology theory h� on C , we consider the diagram

q�

��
q�

��
hqC1.Ap�1/��

q�

��

hq.Ap;p�1/
@�� hq.Ap/

q�

��

���� hq�1.ApC1;p/
@�� ����

hqC1.Ap/��

q�

��

hq.ApC1;p/
@�� hq.ApC1/

q�

��

���� hq�1.ApC2;pC1/
@�� ����

hqC1.ApC1/��

q�

��

@�� hq.ApC2;pC1/
@�� hq.ApC2/

q�

��

���� hq�1.ApC3;pC2/
@�� ����

which provides a spectral sequence fEr
p;q; d rg with E1-terms E1

p;q ´ F
p
q =F

p�1
q

where F
p
q ´ im.hq.Ap/ ! hq.A//. Again, since X is finite dimensional, the

spectral sequence converges to hq.A/. Hence, at this stage we arrive at

Proposition 4.1. Suppose that X is a finite dimensional CW-complex and let A.X/

be a C*-algebra bundle over X . Suppose that C is a good subcategory of Call so
that Ap ´ A.Xp/ 2 C for every p-skeleton of X . Then if h� is a homology theory
(resp. h� is a cohomology theory) on X , there exists a spectral sequence fEp;q

r ; drg
(resp. fEr

p;q; d rg) which converges to h�.A/ (resp. h�.A/) as described above.

Remark 4.2. Let us denote by fU p
i j i 2 Ipg the open p-cells of X . We then have

Ap;p�1 D
M
i2Ip

A.U
p
i /:

If X is a finite simplicial complex this sum is finite and it follows from additivity of
h� (resp. h�) that

E
p;q
1 D

M
i2Ip

hq.A.U
p
i // .resp. E1

p;q D
M
i2Ip

hq.A.U
p
i ///:
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Of course, if h� (resp. h�) is � -additive or � -multiplicative we get similar infinite
direct sum or product decompositions in case where X is � -finite (i.e., X has countably
many cells). In any case we shall assume that X is locally finite. The d1-differential
is then determined by the maps

d
.p;i/;.pC1;j /
1;q W hq.A.U

p
i // ! hq�1.A.U

pC1
j //

given by the composition

hq.A.U
p
i //

I
p;i
q���! hq.Ap;p�1/

i��! hq.Ap/

@�! hq�1.ApC1;p/
Q

pC1;j
q�1�����! hq�1.A.U

pC1
j //;

where I p;i W A.U
p
i / ! Ap;p�1 denotes the inclusion and Qp;i W Ap;p�1 ! A.U

p
i /

denotes the quotient map. Similarly, for a cohomology theory h� we get maps

d
1;q

.p;i/;.p�1;j /
W hq.A.U

p
i // ! hqC1.A.U

p�1
j //;

which are given by the compositions

hq.A.U
p
i //

Q
q

p;i���! hq.Ap;p�1/
@�! hqC1.Ap�1/

i�

�! hqC1.Ap�1;p�2/
I

qC1

p�1;j����! hqC1.A.U
p�1

j //

with similar meanings for Qp;i and Ip;i . It follows then that E
p;q
2 (resp. E2

p;q) is the
cohomology (resp. homology) of the complex build out of the above given data.

We now want to study the groups h�.A.U
p
i // and the maps d

.p;i/;.pC1;j /
1;q more

closely in case where A.X/ is an h�-fibration and X is a (finite) simplicial complex.
In particular, we want to give a better computation of the E2-terms. We shall restrict
to the case of a homology theory on a good category C of C*-algebras throughout,
noting that similar arguments work for a cohomology theory as well.

We start with introducing some notation: As before, we let

�p ´ <v0; : : : ; vp>

denote the oriented closed n-simplex with vertices v0; : : : ; vp , we let V�p denote its
interior and we let @�p denote its boundary. If 0 � k � p we shall consider
�k D <v0; : : : ; vk> as a subset of �p and for i 2 f0; : : : ; ng we write �

p�1
i ´

<v0; : : : ; vi�1; viC1; : : : ; vp> for the oriented i th face of �p . If X is our given
simplicial complex we write f�p.j / j j 2 Ipg for the set of closed p-simplexes in
X , and we let

�p.j / W �p ! �p.j / � X
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denote an explicit affine homeomorphism between the standard simplex �p and
�p.j /.

To study the differential d W E1
p;q ! E2

pC1;q�1 in the above remark, we first
need to study the simple case where X D �p itself. Recall that if A D A.X/ is
an h�-fibration with X simply connected, then for each x; y 2 X there are unique
isomorphisms ˆx;y W h�.Ax/ ! h�.Ay/, which, for any chosen path � W Œ0; 1� ! X

with �.0/ D y, �.1/ D x, satisfy the equations

ˆx;y B ev1;� D ev0;� W h�.��AŒ0; 1�/ ! h�.Ay/:

Lemma 4.3. Suppose that A D A.�P / is an h�-fibration (resp. h�-fibration) with
p � 1. Then for every x 2 �p evaluation at x induces an isomorphism

evx;� W h�.A.�p// ! h�.Ax/:

Moreover, if y is any other point in �p , then evy;� D ˆx;y B evx;� (and similar
statements for h�-fibrations).

Proof. The first statement holds by definition of an h�-fibration. So we only have
to check that evy;� D ˆx;y B evx;� for any pair x; y 2 �p . Let � W Œ0; 1� ! �p

denote any path connecting y D �.0/ with x D �.1/. Since � is a proper map, [10],
Lemma 1.3, provides a �-homomorphism ˆ� W A.�p/ ! ��A.Œ0; 1�/, and it is clear
from the construction of ˆ� that evx D ev1 B ˆ� and evy D ev0 B ˆ� . The result
now follows from the definition of ˆx;y .

Lemma 4.4. Let 1 � p and suppose that the C.�p/-algebra A is an h�-fibration.
Let W � �p be any set which is obtained from �p by removing a union of k faces
of dimension p � 1 from �p with 1 � k � p. Then h�.A.W // D 0.

Proof. The proof is by induction on p and k. If p D 1 then k D 1 and W is
homeomorphic to Œ0; 1/. Since evaluation A.Œ0; 1�/ ! A1 induces an isomorphism of
h�-groups, it follows from the long exact sequence corresponding to 0 ! A.Œ0; 1// !
A.Œ0; 1�/ ! A1 ! 0 that h�.A.W // D 0.

Suppose now that p > 1. If �
p�1
i is any closed face of �p , then it follows from the

properties of h�-fibrations that the quotient map qi W A.�p/ ! A.�
p�1
i / induces an

isomorphism hn.A.�p//
qi;���! hn.A.�

p�1
i //, since composition with evaluation at

any vertex v of �
p�1
i induces isomorphisms hn.A.�p// Š hn.A.�

p�1
i // Š hn.Av/.

Hence, if W D �p n �
p�1
i , the long exact sequence of h�-groups corresponding to

the short exact sequence 0 ! A.W / ! A.�p/ ! A.�
p�1
i / ! 0 implies that

h�.A.W // D 0.
Suppose now that k > 1 and let F ´ �p n W . Then we can write F as a

union F 0 [ �
p�1
i , where F 0 is a union of k � 1 faces. By the induction assumption
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we know that h�.A.W 0// D 0 for W 0 ´ �p n F 0. Moreover, W 0 n W is equal to
W 00 ´ �

p�1
i n F 00, where F 00 is some union of l .p � 2/-dimensional faces with

1 � l � p � 1. Hence, by induction assumption, we have h�.A.W 00// D 0 and then
all terms in the exact sequence hq.A.W 0// ! hq.A.W // ! hq.A.W 00// must be
zero.

Definition and Remark 4.5. For the p-simplex �p D <v0; : : : ; vp> we denote

Wi ´ V�p [ V�p�1
i . If the C.�p/-algebra A is an h�-fibration, then it follows

from the above lemma that h�.A.Wi // D 0, which then implies that the boundary
map @i W hq.A. V�p�1

i // ! hq�1.A. V�p// corresponding to the short exact sequence

0 ! A. V�p/ ! A.Wi / ! A. V�p�1
i / ! 0 is an isomorphism for all q.

In particular, there is a chain of isomorphisms

hq.A.�p//
evv0;�����! hq.Av0

/
@1�! hq�1.A. V�1//

@2�! : : :
@p�! hq�p.A. V�p//;

which we shall call the canonical oriented isomorphism

ˆp
q W hq.A.�p// ��!Š hq�p.A. V�p//:

It is important for us to understand how the canonical isomorphisms depends on the
orientation of the simplex �p . We start this investigation with two basic observations.
The first considers the case �1 D Œ0; 1�:

Lemma 4.6. Suppose that A.Œ0; 1�/ is a C*-algebra bundle which is an h�-fibration.
Let

@0 W hq.A0/ ! hq�1.A.0; 1// and @1 W hq.A1/ ! hq�1.A.0; 1//

denote the isomorphisms given by the connecting maps in the long exact sequences re-
lated to evaluation of A.Œ0; 1// and A..0; 1�/ at 0 and 1, respectively. Then
@0 D �@1 B ˆ0;1.

Proof. Consider the long exact sequence

� � � ! hq.A.0; 1// ! hq.AŒ0; 1�/ ! hq.A0 ˚ A1/
@�! hq�1.A.0; 1// ! � � �

corresponding to

0 ! A..0; 1// ! A.Œ0; 1�/ ! A0 ˚ A1 ! 0:

The connecting map in this sequence equals @0 C @1, which follows from naturality
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of the long exact sequence together with the diagram

0 �� A..0; 1// ��

D
��

A.Œ0; 1// ��

�

��

A0
��

�

��

0

0 �� A..0; 1// �� A.Œ0; 1�/ �� A0 ˚ A1
�� 0

0 �� A..0; 1// ��

D
��

A..0; 1�/ ��

�

��

A1
��

�

��

0.

Exactness then gives
0 D @0 B ev0;� C @1 B ev1;�;

where evi;� W hq.A.Œ0; 1�// ! hq.Ai /, i D 0; 1, denotes the evaluation isomorphism.
Thus we get @0 B ev0;� D �@1 B ev1;� and composing both sides with ev�1

0;� on the
right gives the lemma.

In the next lemma we compare the isomorphisms

hq.A. V�p�1
p�1 // Š hq�1.A. V�p//

and

hq.A. V�p�1
p // Š hq�1.A. V�p//;

as defined in 4.5 for the p-th and the .p � 1/-st face of �p:

Lemma 4.7. Suppose that p > 1. Then the compositions

hr.A. V�p�2// Š hr�1.A. V�p�1
p // Š hr�2.A. V�p//

and

hr.A. V�p�2// Š hr�1.A. V�p�1
p�1 // Š hr�2.A. V�p//

differ by the factor �1.

Proof. Let

W D V�p�2 [ V�p�1
p [ V�p�1

p�1 [ V�p; W0 D V�p�2 [ V�p�1
p ;

W1 D V�p�2 [ V�p�1
p�1 ; W0;1 D V�p�1

p [ V�p�1
p�1 [ V�p�2:

Then it follows from Lemma 4.4 that all groups

h�.A.W // D h�.A.W1// D h�.A.W0// D h�. V�p [ V�p�1
p / D h�. V�p [ V�p�1

p�1 /
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vanish. Since h�.A.W // D 0, the boundary map in the long exact sequence for

0 ! A. V�p/ ! A.W / ! A.W0;1/ ! 0

induces an isomorphism

@0;1 W hl.A.W0;1// ! hl�1.A. V�p//:

Naturality of the long exact sequences and the diagram

0 �� A. V�p/ ��

D
��

A. V�p [ V�p�1
p / ��

�

��

A. V�p�1
p / ��

�

��

0

0 �� A. V�p/ �� A.W // �� A.W0;1/ �� 0

0 �� A. V�p/ ��

D
��

A. V�p [ V�p�1
p�1 / ��

�

��

A. V�p�1
p�1 / ��

�

��

0

together with the Five-Lemma shows that the inclusions of V�p�1
p and V�p�1

p�1 into W0;1

induce isomorphisms


p W hl.A. V�p�1
p // ��!Š hl.A.W0;1//

and


p�1 W hl.A. V�p�1
p�1 // ��!Š hl.A.W0;1//

such that
@0;1 B 
p D @p and @0;1 B 
p�1 D @p�1; (4.2)

where, as before, @i W hl.A. V�p
i // ! hl�1.A. V�p// denotes the isomorphism for the

i th face of �p . We now look at the diagram

0 �� A. V�p�1
p / �� A.W0/ �� A. V�p�2/ �� 0

0 �� A. V�p�1
p [ V�p�1

p�1 /

q

��

q

��

�� A.W0;1/

q

��

q

��

�� A. V�p�2/

D
��

D
��

�� 0

0 �� A. V�p�1
p�1 / �� A.W1/ �� A. V�p�2/ �� 0.

(4.3)

It implies that the composition of the boundary map

hr.A. V�p�2// ! hr�1.A. V�p�1
p [ V�p�1

p�1 //
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followed by the projections onto hr�1.A. V�p�1
p // and hr�1.A. V�p�1

p�1 //, respectively,
coincide with the boundary maps

@p�2
p W hr.A. V�p�2// Š hr�1.A. V�p�1

p //

and
@

p�2
p�1 W hr.A. V�p�2// Š hr�1.A. V�p�1

p�1 //;

respectively. On the other hand, it is clear that the isomorphisms


p W hr�1.A. V�p�1
p // Š hr�1.A.W0;1//

and

p�1 W hr�1.A. V�p�1

p�1 // Š hr�1.A.W0;1//

factorise via the inclusions of hr�1.A. V�p�1
p // and hr�1.A. V�p�1

p�1 // as direct sum-

mands of hr�1.A. V�p�1
p [ V�p�1

p�1 //, and that these inclusions invert the projections on
the summands which are induced from the quotient maps in the first vertical row of
diagram (4.3). This implies exactness of the sequence

hr.A. V�p�2//
@

p�2
p ˚@

p�2
p�1��������! hr�1.A. V�p�1

p // ˚ hr�1.A. V�p�1
p�1 //

�pC�p�1�����! hr�1.A.W0;1//:

Combining this with eq. (4.2) gives

0 D @0;1 B .ip B @p�2
p C ip�1 B @

p�2
p�1 / D @p B @p�2

p C @p�1 B @
p�2
p�1 ;

which finally finishes the proof.

We now want to consider an arbitrary permutation ' W f0; : : : ; pg ! f0; : : : ; pg.

We shall denote by the same letter the unique affine isomorphism �p Š�! �p which
is induced by applying ' on the vertices. Let

‰' W A.�p/ ! '�A.�p/

be the isomorphism of [10], Lemma 1.3. It clearly restricts to an isomorphism, also
denoted ‰' , between the ideals A. V�p/ and '�A. V�p/. We then get

Proposition 4.8. Let sign.'/ denote the sign of the permutation ' W f0; : : : ; pg !
f0; : : : ; pg. Then the following diagram commutes:

hq.A.�p//

ˆ
q
p

��

‰';� �� hq.'�A.�p//

sign.'/ˆ
q
p

��

hq�p.A. V�p//
‰';� �� hq�p.'�A. V�p//.

(4.4)
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Proof. Since every permutation is a product of transpositions which interchange two
neighbours in f0; : : : ; pg, we may assume without loss of generality that ' inter-
changes l with l C 1.

If we identify A.�p/ with '�A.�p/ via ‰' and write �l
' for the l-dimensional

face <'.v0/; : : : ; '.vl/> � �p , the above diagram restricts to showing that the
isomorphism given by the composition

hq.A.�p//
evv'.0/;�������! hq.A'.v0// ! hq�1.A. V�1

'//

! hq�2.A. V�2
'// ! � � � ! hq�p.A. V�p//

differs from the canonical isomorphism ˆ
p
q W hq.A.�p// ! hqCp.A. V�p// by

sign.'/. For this we first remark that by Lemma 4.3 we have the equality

ˆv0;'.v0/ B evv0;� D ev'.v0/;� W hq.A.�p// ! hq.A'.v0//;

which then implies that we have to prove that the isomorphisms

‚ W hq.Av0
/ Š hq�1.A. V�1// Š hq�2.A. V�2// Š � � � Š hq�p.A. V�p//

and

‚' W hq.A'.v0// Š hq�1.A. V�1
'// Š hq�2.A. V�2

'// Š � � � Š hq�p.A. V�p//

are related via
‚ D sign.'/‚' B ˆv0;'.v0/:

If ' permutes 0 with 1, then we have �
j
' D �j for all j � 1, so the above

equation reduces to the case p D 1. This case is taken care for by Lemma 4.6 above.
If ' permutes l with l C 1 for some l > 0, then we have �

j
' D �j for all j � l C 1,

so we may assume without loss of generality that l D p � 1. We then also have
�

p�2
' D �p�2 and all we have to show is that the compositions

hr.A. V�p�2// Š hr�1.A. V�p�1
p // Š hr�2. V�p//

and

hr.A. V�p�2// Š hr�1.A. V�p�1
p�1 // Š hr�2. V�p//

differ by the factor �1. But this is shown in Lemma 4.7. This completes the proof.

In order to state the following important corollary, let us note that if A.�p/ is an
h�-fibration and if �

p�1

l
is a face of �p , then the quotient map A.�p/ ! A.�

p�1

l
/

induces an isomorphism

resl W h�.A.�p// ! h�.A.�
p�1

l
//; (4.5)

which follows from the simple fact that evaluation at any common vertex induces an
isomorphism in h�-theory for both algebras. With this notation we now get
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Corollary 4.9. Suppose that A.�p/ is an h�-fibration and let

@l W hq�pC1.A. V�p�1

l
// ! hq�p.A. V�p//

denote the isomorphism of Definition 4.5. Let ˆ
q
p W hq.A.�p// ! hq�p.A. V�p//

denote the canonical isomorphism and let

ˆ
q
p�1 W hq.A.�

p�1

l
// ! hq�pC1.A. V�p�1

l
//

be the canonical isomorphism for A.�
p�1

l
/ with respect to the orientation of �

p�1

l

inherited from �p . Then

@l B ˆ
q
p�1 B resl D .�1/p�lˆq

p:

Proof. Consider the permutation ' W f0; : : : ; pg ! f0; : : : ; pg defined by

� '.k/ D k for k D 0; : : : ; l � 1;

� '.k/ D k C 1 for k D l; : : : ; p � 1;

� '.p/ D l .

Then sign.'/ D .�1/p�l . If we identify '�A with A via ˆ' , as done in the proof
of Proposition 4.8, then the isomorphism ˆ

q
p for the fibration '�A.�p/ just becomes

@l B ˆ
q
p�1. By Proposition 4.8 this differs from the isomorphism ˆ

q
p for A.�p/ by

the factor sign.'/ D .�1/p�l .

The Leray–Serre spectral theorem. We are now going back to the situation of
Proposition 4.1 in the special case where X is a finite dimensional simplicial complex.
In what follows, we write Cp for the set of oriented closed p-simplexes in X . To
be more precise, let us consider any element � 2 Cp as a given affine realization
� W �p ! �

p
� � X of the closed p-cell �

p
� of X , which then induces an orientation

on �
p
� . If � 2 Cp , we write �l W �

p�1

l
! �

p�1

�;l
� X for the l-th face of � . Then

there exists a unique element � 2 Cp�1 such that �.�p�1/ D �l.�
p�1

l
/ and then a

unique affine transformation 'l
�;� W �p�1 ! �p�1Š�

p�1

l
such that

� D �l B 'l
�;� : (4.6)

These give precisely the gluing data for our simplicial complex X .
As outlined in Remark 4.2, under suitable finiteness conditions explained there,

the E1-terms are then given by

E
p;q
1 D

M
�2Cp

hq.A. V�p
� //
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and, applied to the direct summand hqC1.A. V�p�1
� // of E

p�1;qC1
1 , the differential

d W E
p�1;qC1
1 ! E

p;q
1 projects to the direct summand hq.A. V�p

� // of E
p;q
1 via the

chain of maps

hqC1.A. V�p�1
� //

I
p�1
qC1

.�/

�����! hqC1.Ap�1;p�2/

���! hqC1.Ap�1/
@�! hq.Ap;p�1/

Q
p
q .�/����! hq.A. V�p

� //;

(4.7)

where as before, Ap D A.Xp/, Ap;p�1 D A.Xp n Xp�1/ Š L
�2Cp

A. V�p
� /,

I p�1.�/ W A. V�p�1
� / ! Ap�1;p�2 is the inclusion map corresponding to the open

cell V�p
� and Qp.�/ W Ap;p�1 ! A. V�p

� / is the quotient map. We now apply the
inverses of the canonical isomorphisms

ˆ
p
pCq W hpCq.A.�p

� // ! hq.A. V�p
� //

(see Definition 4.5) to each simplex � 2 Cp (and similarly for � 2 Cp�1), which
gives us isomorphisms

E
p;q
1 Š

M
�2Cp

hpCq.A.�p
� // and E

p�1;qC1
1 Š

M
�2Cp�1

hpCq.A.�p�1
� //:

In this picture, the differential is described on the summands via

d �
� W hpCq.A.�p�1

� //
ˆ

p�1
pCq����! hqC1.A. V�p�1

� //

I
p�1
qC1

.�/

�����! hqC1.Ap�1;p�2/
���! hqC1.Ap�1/

@�! hq.Ap;p�1/

Q
p
q .�/����! hq.A. V�p

� //
.ˆ

p
qCp

/�1

�������! hpCq.A.�p
� //: (4.8)

We then show

Proposition 4.10. Suppose that A.X/ is an h�-fibration over the finite dimensional
simplicial complex X . Then the map d �

� in (4.8) is zero if �
p�1
� is not a face of �

p
� ,

and we have
d �

� D .�1/p�l sign.'l
�;� /.res�

� /�1

if �
p�1
� D �

p�1

�;l
, where we denote by res�

� W h�.A.�
p
� // ��!Š h�.A.�

p�1
� // the

isomorphism induced by the quotient map A.�
p
� / ! A.�

p
� /.

For the proof of the proposition, we need the following lemma:
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Lemma 4.11. Suppose that � 2 Cp and � 2 Cp�1 are as above. Suppose further that
Z is any closed simplicial subcomplex of Xp such that �

p�1
� and �

p
� are contained

in Z. Then the differential d �
� of (4.8) coincides with the same map if we replace X

by Z.

Proof. Apply the quotient map q W A.X/ ! A.Z/ to all ingredients of the compo-
sition of maps in (4.7) and use naturality of the long exact sequences in h�-theory.
Since the quotient map induces the identity in the first and in the last place of that
chain, and since, by naturality, all other maps are linked by commutative diagrams
(note that all maps in the chain are maps taken from appropriate long exact sequences
linked by factorizations of the quotient map A.X/ ! A.Z/), the result follows.

Proof of Proposition 4.10. Suppose first that �
p�1
� is not a face of �

p
� . To see that

d �
� is then the zero map, we actually show that the chain of maps of (4.7) relative

to the subcomplex Z D �
p�1
� [ �

p
� is the zero map. We then have A.Zp�1/ D

A.�
p�1
� / ˚ A.�

p
� n V�p

� /, and the chain of maps in (4.7) becomes the composition

hqC1.A. V�p�1
� //

���! hqC1.A.�p�1
� // ˚ hqC1.A.�p

� n V�p
� //

@�! hq.A. V�p
� //:

But the first map takes its image in the first summand of the middle term, which lies
in the kernel of the second map.

So we can now restrict to the case where �
p
� coincides with the l-th face of �

p
� .

By Lemma 4.11, we may also assume without loss of generality that X D �
p
� . Using

once again naturality of long exact sequences in h�-theory, and applying this to the
inclusion of the ideal A. V�p�1

�;l
[ V�p

� / into A.�
p
� n Xp�2/ (which is the restriction to

the complement of the .p � 2/-skeleton of �
p
� ) shows that in this situation the chain

of maps in (4.7) reduces to the boundary map @l in the long exact sequence

! hqC1.A. V�p�1

�;l
[ V�p

� // ! hqC1.A. V�p�1

�;l
//

@l�! hq.A. V�p
� // ! :

Moreover, it follows from Proposition 4.8, that replacing the orientation of �
p�1
� D

�
p�1

�;l
given by � to that given by �l results to the factor sign.'l

�;� / in the canonical

oriented isomorphism ˆ
p�1
pCq W hpCq.A.�

p�1
� // ! hq.A. V�p�1

� //. Taking this into

account, the map d �
� becomes sign.'l

�;� /-times the composition

hpCq.A.�
p�1

�;l
//

ˆ
p�1
pCq����! hqC1.A. V�p�1

�;l
//

@l�! hq.A. V�p
� //

.ˆ
p
pCq

/�1

�������! hpCq.A.�p
� //:

But it follows from Corollary 4.9 that this composition coincides with .�1/l.res�
� /�1

(which plays the role of resl in that corollary). Hence we arrived at the equation

d �
� D sign.'l

�;� /.�1/p�l.res�
� /�1;

which finishes the proof.
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We now recall the definition of the simplicial cohomology of a finite dimensional
and locally finite simplicial complex X with coefficients in a group bundle G DSfGx j x 2 Xg. We refer to Section 3 for the definition of a group bundle and for
the notion of the group bundle H� associated to an h�-fibration.

If Y is any simply connected subset of X , a section g 2 	.Y; G / is said to be
constant if g becomes constant in any trivialization of the bundle over Y , which is
equivalent to saying that

g.y/ D ˆx;yg.x/ for all x; y 2 Y:

We denote by 	const.Y; G / the group of constant sections of Y . It is clear that if Y is
simply connected and Z � Y is any (simply connected) subset, then the restriction
map

resY
Z W 	const.Y; G / ! 	const.Z; G /

is an isomorphism. In particular, 	const.Y; G / is isomorphic to Gx for every x 2 Y .
We now define the p-cochains for simplicial cohomology on X with coefficient

G as

C p.X I G / ´ fCp 3 � 7! f .�/ 2 	const.�
p
� I G /g;

i.e., as the set of all maps which assign a p-simplex � 2 Cp to a constant section on
�

p
� . Moreover, we define C

p
fin.X I G / as the subgroup of C p.X I G / consisting of all

finitely supported functions. The boundary map

@ W C p�1.X I G / ! C p.X I G /

is defined by

@f .�/ D
pP

lD0

.�1/l.res�
�l

/�1.f .�l//;

where we put f .�l/ D sign.'l
�;� /f .�/, � 2 Cp�1 is the unique element with �

p�1
� D

�
p�1

�;l
, and 'l

�;� is defined as in (4.6). It restricts to a boundary map on C
p
fin.X I G /. We

define H p.X I G / as the p-th cohomology of the chain complex .C p.X I G /; @/ and
H

p
fin.X I G / as the p-th cohomology of .C

p
fin.X I G /; @/. Of course, both cohomology

groups coincide on finite complexes. The computations in Proposition 4.10 now
immediately give

Theorem 4.12 (Leray–Serre spectral sequence for h�-fibrations). Let h� be a ho-
mology theory on a good category of C*-algebras and suppose that X is a finite
dimensional � -finite and locally finite simplicial complex. Suppose that A D A.X/

is an h�-fibration with associated group bundle H�. If h� is � -additive or if X is
finite, the E2-term in the spectral sequence of Proposition 4.1 is given by

E
p;q
2 D H

p
fin.X I HpCq/:
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If h� is � -multiplicative, then

E
p;q
2 D H p.X I HpCq/:

Remark 4.13. (1) As mentioned earlier, the main example we have in mind for the
above theorem is the case where h� is the K-theory functor. But the result applies also
to other interesting functors such as the functor KK.B; � / for a fixed C*-algebra B .
In general, these functors are only finitely additive, so we should restrict to finite
simplicial complexes in these situations.

(2) We should note that the cohomology groups H p.X I G / we defined above
coincide with the usual singular cohomology with local coefficients as defined in
many standard text books (e.g., see [7]), while the groups H

p
fin.X I G / are known as

the simplicial cohomology with local coefficients with finite supports.

Although we do not want to go through all the details for the proof of the Leray–
Serre spectral sequence for cohomology theories on C*-algebras (the steps are similar
as for homology theory with all arrows reversed) we want at least give a proper
statement of the result. As mentioned earlier, K-homology serves as a main example
of such theory, but other examples are given by the functors KK.�; B/ for a fixed
C*-algebra B .

Recall that the simplicial homology Hp.X I G / with coefficient in a group bundle
G is defined as the homology of the chain complex .Cp.X I G /; d/, where

Cp.X I G / ´ ˚ P
�2Cp

a�� j a� 2 	const.�
p
� I G /

�
;

with boundary map d W Cp.X I G / ! Cp�1.X I G / given by

d.a��/ D
pP

lD0

.�1/l sign.'l
�;� /res�

�i
.a� /�l ;

where for each 0 � l � p, �l is the unique element in Cp�1 with image �
p�1

�;l
and

sign.'l
�;� / is as before. Again, if we restrict to finite sums, we obtain the theory

H fin
p .X I G / with finite supports. The Leray–Serre theorem then reads as follows.

Theorem 4.14 (Leray–Serre spectral sequence for h�-fibrations). Let h� be a coho-
mology theory on a good category of C*-algebras and let X be as in Theorem 4.12.
Suppose that A D A.X/ is an h�-fibration with associated group bundle H �. If h�
is � -additive or if X is finite, the E2-term in the spectral sequence of Proposition 4.1
is given by

E2
p;q D H fin

p .X I HpCq/:

If h� is � -multiplicative, then

E2
p;q D Hp.X I HpCq/:
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We want to close this section with a discussion how the spectral sequences con-
sidered here give new invariants for RKK-equivalence of C*-algebra bundles.

The following lemma might be well known to the experts, but since we rely heavily
on it, we give the argument here. For notation, we let KK denote the category whose
objects are separable C*-algebras and the morphisms between two objects A and B

are the elements in KK.A; B/. Recall that for any pair of bundles A.X/ and B.X/

and any continuous inclusion map f W Y ,!X there exists a canonical pull-back map

f � W RKK.X I A.X/; B.X// ! RKK.Y I f �A.Y /; f �B.Y //:

If Y � X , then we obtain restrictions x 7! resX
Y .x/ from RKK.X; A.X/; B.X// !

RKK.Y I A.Y /; B.Y // given via the inclusion of Y into X (see [17], Proposition 2.2).

Recall also that a short exact extension 0 ! J ! A
q�! A=J ! 0 of C*-algebras is

semi-split if there exists a completely positive section s W A=J ! A. Note that this
is always true if A=J is nuclear (which follows if A is nuclear).

Lemma 4.15. Suppose that A.X/ and B.X/ are C*-algebra bundles over X and
suppose that U 	 X is open. Let x 2 RKK.X I A; B/ and let iA W A.U / ! A.X/

and qA W A.X/ ! A.X n U / denote the inclusion and quotient maps (and similarly
for B.X/), respectively. Then the diagram

A.U /

resX
U

.x/

��

iA �� A.X/

x

��

qA �� A.X n U /

resX
XnU

.x/

��
B.U /

iB �� B.X/
qB �� B.X n U /

commutes in the category KK . Moreover, if both extensions in the above diagram are
semi-split (we do not require that the completely positive sections are C0.X/-linear),
then the diagram

SA.X n U /

resX
XnU

.x/

��

@A �� A.U /

resX
U

.x/

��
SB.X n U /

@B �� B.U /

also commutes in KK , where SA and SB denote the suspensions of A and B , re-
spectively.

Proof. Let .E.X/; T / be a Kasparov cycle representing x. We may assume that A.X/

acts nondegenerately on E.X/. If f W Y ! X is a continuous map, then f �.x/ is
represented by the cycle

.C0.Y / ˝C0.X/ E.X/; 1 ˝ T / Š .E.X/ ˝C0.X/ C0.Y /; T ˝ 1/;
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depending on whether we want to tensor C0.Y / from the left or from the right. The first
square of the first diagram follows from an obvious isomorphism of KK.A.U /; B.X//-
cycles

.A.U / ˝A.X/ E.X/; 1 ˝ T / Š .C0.U / ˝C0.X/ E.X/; 1 ˝ T /:

The left cycle represents ŒiA�˝A.X/x and the right cycle represents resX
U .x/˝B.U / ŒiB �.

Similarly, the second square of the first diagram follows from the observation
that both products ŒqA� ˝A.XnU / resX

XnU
.x/ and x ˝B.X/ ŒqB � are represented by the

module .E.X/ ˝C0.X/ C0.X n U /; T ˝ 1/ with the canonical module actions.
So let us now assume that both extensions are semi-split. Then the bound-

ary map @A in the second diagram is given by Kasparov product with an element
Œ@A� 2 KK1.A.X n U /; A.U // constructed as follows: Let

Z D ..0; 1� � .X n U // [ .f1g � U / � .0; 1� � X:

Let p W Z ! X denote the canonical projection and write A.Z/ for the pull-back
p�A.Z/. Note that, as an algebra, A.Z/ is just the mapping cone CqA

of the ho-
momorphism qA. Let eA W A.U / ! A.Z/ be the inclusion map given by iden-
tifying U with the open set f1g � U � Z. It is shown in [2], Theorem 19.5.5,
that eA is a KK-equivalence. Let uA denote its inverse and let jA W SA.X n U / D
A

�
.0; 1/ � .X n U /

� ! A.Z/ denote the inclusion. Then it is shown in [2], Theo-
rem 19.5.7, that Œ@A� D ŒjA� ˝A.Z/ uA. The same construction applies to B.X/. Let
p�.x/ be the pull-back of x in RKK.ZI A.Z/; B.Z//. Then the commutativity of
the second diagram follows from the commutativity of

A..0; 1/ � .X n U //

resZ
.0;1/�.XnU /

.p�.x//

��

jA �� A.Z/

p�.x/

��

A.U /
eA��

resZ
U

.p�.x//

��
B..0; 1/ � .X n U //

jB �� B.Z/ B.U /,
eB��

which is a consequence of the commutativity of the first diagram in the lemma.

We say that a (co-)homology theory on Csep is KK-representable if there exists
a C*-algebra B such that the (co-)homology theory is given by A 7! KK�.B; A/

(resp. A 7! KK.A; B/). Of course K-theory and K-homology are important ex-
amples, but also K-theory with coefficients in Z=nZ is an example of such theory.
Note that every KK-fibration is automatically an h�-fibration (resp. h�-fibration) if
h� (resp. h�) is KK-representable.

Corollary 4.16. Let h� be a KK-representable homology theory on Csep. Assume
that A.X/ and B.X/ are h�-fibrations. Then any class x 2 RKK.X I A; B/ induces
a morphism between the associated group bundles H�.A/ and H�.B/. If X is a
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CW-complex and A.X/ and B.X/ are nuclear, then X induces a morphism between
the associated exact couples for the Leray–Serre spectral sequence.

In particular, if x is an RKK-equivalence, then it induces an isomorphism between
the Leray–Serre spectral sequences for h�.A/ and h�.B/. A similar statement holds
for KK-representable cohomology theories.

Remark 4.17. Note that in the case of K-theory one can omit the nuclearity assump-
tion on A.X/ and B.X/ in the above lemma. The reason is that for U � X open,

and Z as in the proof of Lemma 4.15, we always have an isomorphism K�.A.U //
e�Š

K�.A.Z// such that the boundary map @A W K�C1.A.X n U // ! K�.A.U // is given
via the composition @A D .e�/�1 B jA;�, with eA and jA as in the proof of the lemma.
Thus the same argument as in the lemma shows that for each such U the transformation
given by Kasparov product with the appropriate restrictions of x gives a transforma-
tion between the K-theory long exact sequences for A and B corresponding to U .
This is all we need to obtain a well-defined morphism between the exact couples.

5. Applications to noncommutative torus bundles

Recall from [10] that a noncommutative principal T n-bundle (or NCP T n-bundle for
short) is defined as a C*-algebra bundle A.X/ equipped with a fibrewise action of T n

such that A.X/ Ì T n is isomorphic to C0.X; K/. By Takesaki–Takai duality, every
such bundle can be realized up to stabilization by a crossed product C0.X; K/ÌZn for
some fibrewise action of Zn on C0.X; K/. Using results from [11], [12] we showed
in [10], §2, that the T n-equivariant stable isomorphism classes of NCP T n-bundles
over a given space X can be classified by the pairs .ŒY �; f /, where ŒY � denotes the

isomorphism class of a classical principal T n-bundle Y
q�! X and f W X ! T

n.n�1/
2

is a continuous map. The NCP T n-bundle corresponding to the pair .ŒY �; f / is then
given by

Y 
 .f �.C �.Hn/// D .C0.Y / ˝C0.X/ f �.C �.Hn///T n

:

Let us recall the ingredients of this construction: C �.Hn/ is the group C*-algebra of
the group

Hn D hg1; : : : ; gn; fij W 1 � i < j � ni
with relations gigj D fij gj gi and fij central for all 1 � i < j � n. This group

has center Zn D hfij W 1 � i < j � ni Š Z
n.n�1/

2 and, therefore, C �.Hn/ is a

continuous C*-algebra bundle over T
n.n�1/

2 Š �Zn via the inclusion

ˆ W C.T
n.n�1/

2 / Š C �.Zn/ ! Z.C �.Hn//:
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Moreover, if we equip C �.Hn/ with the dual action of T n Š 2Hn=Zn it becomes

an NCP T n-bundle over T
n.n�1/

2 . We shall denote by U1; : : : ; Un the unitaries of
C �.Hn/ corresponding to g1; : : : ; gn, respectively, and by Wi;j the unitaries corre-

sponding to fi;j for 1 � i < j � n. If f W X ! T
n.n�1/

2 is a continuous map,
then the pull-back f �.C �.Hn// becomes an NCP T n-bundle over X . By taking the
C0.X/-balanced tensor product of f �.C �.Hn// with C0.Y / (with C0.X/-action on
C0.Y / induced by q W Y ! X in the obvious way), and then taking the algebra of fixed
points with respect to the diagonal action (with action by the inverse automorphism
on one factor) provides the NCP T n-bundle Y 
 .f �.C �.Hn///. The T n-action is
induced by the given T n-action on Y .

In [10] we studied the topological nature of the C*-algebra bundles A.X/ after
“forgetting” the underlying T n-actions. In particular, we were interested in the ques-
tion under what conditions two such bundles are K-theoretically equivalent fibrations,
i.e., when are two such bundles RKK-equivalent. We arrived at the following result:

Theorem 5.1 ([10], Theorem 7.2). Let A.X/ be a NCP T n-bundle over the path

connected space X and let f W X ! T
n.n�1/

2 be the continuous map associated to
A.X/ as above. Then the following statements are equivalent:

(i) f is homotopic to a constant map.

(ii) The K-theory bundle K�.A.X// is trivial.

(iii) A.X/ is RKK-equivalent to C0.Y / for some (commutative) principal T n-bundle
q W Y ! X .

In this section we will use the Leray–Serre spectral sequence to obtain the follow-
ing triviality result.

Theorem 5.2. Let A.X/ be the NCP T n-bundle corresponding to the pair .ŒY �; f /

as explained above such that X is a finite dimensional locally finite and � -finite
simplicial complex. Then the following statements are equivalent:

(i) A.X/ is RKK-equivalent to C0.X � T n/.

(ii) The K-theory bundle K�.A/ is trivial and all d2-differentials in the Leray–Serre
spectral theorem for A.X/ vanish.

(iii) f is homotopic to a constant map and Y Š X � T n as T n-bundles.

The proof depends on explicit calculations of the d2 maps in the spectral sequence
of a commutative principal T n-bundle q W Y ! X , and then transporting this result
to the spectral sequence for the K�-fibration A.X/. In what follows we shall always
denote by Yx the fibre of a given principal T n-bundle over a point x 2 X and we
write fEp;q

r .Y /; drg for the spectral sequence corresponding to a fixed triangulation
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of the base X . We always assume that X is finite dimensional and � -finite. The
following proposition is certainly well known to the experts, but since we did not find
an appropriate reference we give a proof.

Proposition 5.3. Let Y
q�! X be a principal T -bundle. Then the .0; 1/-degree

component of the differential

d
0;1
2 W H 0.X; K1.Yx// ! H 2.X; K0.Yx//

on E
�;�
2 .Y / vanishes if and only if Y

q�! X is trivial.

The proof of this proposition will require some preliminary work. Let X�1 D
; 	 X0 	 � � � 	 Xn D X be the skeleton decomposition of X and let us set
Yk D q�1.Xk/. For � a simplex of X , let us denote by V� the closure of the

-neighbourhood of � . We may assume that

� for all simplices � there exist continuous maps ‰� W q�1.V� / ! T ,

� for all pairs of simplices � and � 0 which are faces of a common simplex there
exists a continuous map h�;� 0 W V� \ V� 0 ! R,

such that

(i) q�1.V� / ! V� � T I y 7! .q.y/; ‰� .y// is a T -equivariant homeomorphism,

(ii) ‰� 0 D ‰� � e2i�h�;�0 on V� \ V� 0 for all pairs of simplices � and � 0 which are
faces of a common simplex.

We denote by V the corresponding atlas. Notice that this atlas provides an identifica-
tion K1.Yx/ Š K1.T / induced by Yx ! T , y 7! ‰� .y/, for any x in the simplex � .
Although the identification Yx Š T depends on � , it follows from (ii) that the induced
map K1.Yx/ Š K1.T / does not.

Let X0 D fx0; x1; x2; x3; : : : g be the set of vertices of X . If xi and xj are
connected by an edge, we denote by ei;j the oriented edge starting at xi and ending
at xj . For t 2 Œ0; 1�, we define xi;j .t/ D .1 � t /xi C txj in ei;j . Let UV W Y0 ! T
be the continuous map such that UV and ‰xi

coincide on q�1.xi /. We extend UV to
a continuous map WV W Y1 ! T in the following way: If xi and xj are connected by
the oriented edge ei;j , we define WV on q�1.ei;j / by

WV .z/ D e
2i�thxi ;xj

.q.z//
‰xi

.z/

for q.z/ D xi;j .t/. We have

E
0;1
1 .Y / D K1.Y0 n Y�1/ D K1.Y0/;

E
1;2
1 .Y / D K0.Y1 n Y0/;
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and d
0;1
1 W K1.Y0/ ! K0.Y1 n Y0/ is the boundary map @ associated to the pair

.Y0; Y1/. Since UV is the restriction of WV to Y0, the class ŒUV � of UV in K1.Y0/

satisfies @ŒUV � D 0 and ŒUV � defines a class !V in E
0;1
2 .Y / Š H 0.X; K1.Yx// Š Z,

which is thereby a generator.

Lemma 5.4. With the notation above and up to the canonical identification
K0.Yx/ Š Z (which sends Œ1� to 1), d

1;0
2 !V 2 H 2.X; K0.Yx// Š H 2.X; Z/ is

the first Chern class of Y .

Proof. We extend WV W Y 1 ! T to a continuous map �V W Y2 ! C given on
Y� D q�1.�/ Š � � T for a 2-simplex � in X with boundary @� and center x�

by �V .tx C .1 � t /x� ; z/ D tWV .x; z/ for t in Œ0; 1�, x in @� and z 2 T . Then

VV ´
�

�V �.1 � �V
N�V /1=2

.1 � �V
N�V /1=2 N�V

�

is a lift in U2.C.Y2// for
�

WV 0

0 xWV

	
and thus @ŒWV � D ŒPV � � 
�

1 0
0 0

��
, where

PV D VV �
�

1 0

0 0

�
� V �

V D
�

�V
N�V �V .1 � �V

N�V /1=2

N�V .1 � �V
N�V /1=2 1 � �V

N�V

�

is a projection in M2.C.Y2//. Then, up to Bott periodicity, d
1;0
2 ! is the class in

H 2.X; K0.Yx// D E
2;0
2 .Y / of the simplicial 2-cocycle c, with value on a 2-simplex

� oriented by its boundary @�

c.�/ D i�
� B @ŒWV � 2 K0.q�1. V�// Š K0. V� � T /;

where V� D � n @� and i� is the inclusion map i� W V� ,! Y2 n Y1. Finally, we get

c.�/ D ŒPV j�� � 
�
1 0
0 0

�� 2 K0.q�1. V�//;

where PV j� 2 M2.C.q�1.�// is the restriction of PV to q�1.�/. Let us denote by
ˆ� the inverse of the trivialisation map q�1.�/ ! � � T , y 7! .q.y/; ‰� .y//. We
then get isomorphisms

K0.q�1. V�// Š K0. V�/ Š Z; (5.1)

where

� the first isomorphism is induced by V� ! q�1. V�/, x 7! ˆ� .x; 1/ (if we identify
q�1. V�/ with V� � T via ‰� , this simply becomes V� ! V� � T , x 7! .x; 1/);

� the second map is the Bott periodicity for the interior V� Š R2 of the oriented
simplex � .
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Let us define for a continuous map f W � ! C with jf j � 1 and jf j D 1 on @� the
projector

Pf D
� jf j2 f .1 � jf j2/1=2

Nf .1 � jf j2/1=2 1 � jf j2
�

:

Then ŒPf � � 
�
1 0
0 0

��
is the image of Œf j@� � 2 K1.@�/ under the boundary map in

K-theory associated to the exact sequence

0 ! C0. V�/ ! C.�/ ! C.@�/ ! 0:

In particular ŒPf � � 
�
1 0
0 0

��
only depends on the winding number of f j@� on @�

and this winding number is precisely the image of ŒPf � � 
�
1 0
0 0

��
under the second

isomorphism of eq. (5.1). Consequently, if we set

fV ;� W � ! C; x 7! �V B ˆ� .x; 1/;

then the image of c.�/ under the chain of isomorphism of eq. (5.1) is the winding
number of the restriction of fV ;� to the oriented boundary @� .

If � has vertices xi , xj and xk connected by oriented edges ei;j , ej;k and ek;i ,
then since h�;xi

C hxi ;xj
� h�;xj

and h�;xj
C hxj ;xk

� h�;xk
are integers, we have

fV ;� D e2i�h�;xi � gV ;� , where

gV ;� .xi;j .t// D exp.2i�thxi ;xj
.xi;j .t///;

gV ;� .xj;k.t// D exp.2i�.hxi ;xj
.xj;k.t// C thxj ;xk

.xj;k.t////;

gV ;� .xk;i .t// D exp.2i�.hxi ;xj
.xk;i .t// C hxj ;xk

.xk;i .t// C thxk ;xi
.xk;i .t////:

But e2i�h�;xi has winding number 0, and hxi ;xj
and hxj ;xk

can be pushed forward
homotopically to the edge ek;i , and thus the restriction of gV ;� to @� is a unitary
homotopic to

xi;j .t/ 7! 1;

xj;k.t/ 7! 1;

xk;i .t/ 7! exp.2i�t.hxi ;xj
.xk;i .t// C hxj ;xk

.xk;i .t// C hxk ;xi
.xk;i .t////:

Since hxi ;xj
Chxj ;xk

Chxk ;xi
is an integer m� , the restriction to @� of gV ;� and hence

of fV ;� has winding number m� . Up to the composition of the two isomorphisms of
eq. (5.1), we finally get that c.�/ D m� , which is precisely the cocycle defining the
first Chern class of Y .

Proof of Proposition 5.3. Since !V is a generator for E
0;1
2 .Y / Š Z, we see from

Lemma 5.4 that d
0;1
2 W E

0;1
2 .Y / ! E

2;0
2 .Y / is vanishing if and only if the first Chern

class of Y vanishes, i.e., if and only if Y is trivial.
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Let us now generalise this result to T n-principal bundles. For this, we define

T n
i D f.z1; : : : ; zn/ 2 T such that zi D 1g

and we let Yi D Y=T n
i denote the quotient space for the action of T n

i on a principal
T n-bundle Y ! X . Then Yi is a T -principal bundle with action induced by the
inclusion ˛i W T ,! T n of the i -th factor and with base space X . Moreover Y is
isomorphic as a T n-bundle to ˛�

1 Y1 
 � � � ˛�
nYn, where ˛�

i Yi is the T n-bundle induced
from Yi by ˛i . Consequently Y is completely determined (up to isomorphism of
T n-bundle) by the first Chern classes of the principal T -bundles Yi , and Y is a trivial
T n-bundle if and only if all the Yi are trivial.

Proposition 5.5. Let Y
q�! X be a principal T n-bundle. Then the .0; 1/-degree

component of the differential

d
0;1
2 W H 0.X; K1.Yx// ! H 2.X; K0.Yx//

on E
�;�
2 .Y / vanishes if and only if Y

q�! X is trivial.

Proof. Since K�.Y / is equipped with an algebra structure, d2 is a map of differential
algebra. The unital algebra K�.Yx/ being generated by the image of K�.Yi;x/ under
the morphism induced by the projection map Y ! Yi , the map d

0;1
2 is completely

determined by the image of elements coming from K�.Yi;x/. The projection map
Y ! Yi provides a morphism of spectral sequences .E

p;q
r .Yi /; dr/ ! .E

p;q
r .Y /; dr/.

In particular, we obtain a commutative diagram

H 0.X; K1.Yx;i //

��

d
0;1
2 �� H 2.X; K0.Yx;i //

��
H 0.X; K1.Yx//

d
0;1
2 �� H 2.X; K0.Yx//,

where the vertical arrows are induced by the projection of the fiber �i W Yx ! Yi;x .
Since the inclusion K0.Yi;x/ ! K0.Yx/ is injective (since it sends Œ1� to Œ1�) the right
vertical map is injective, too. Thus it follows from Proposition 5.3 that the range of
the left vertical map of the diagram lies in the kernel of d

0;1
2 W H 0.X; K1.Yx// !

H 2.X; K0.Yx// if and only if Yi is trivial.

Remark 5.6. (1) If Y Š X � T n is the trivial T n-bundle over X , then
d2 W E

�;�
2 ! E

�;�
2 vanishes completely. To see this, we can use the Künneth for-

mula in K-theory to show that it is enough to prove the result for the Leray–Serre
spectral sequence associated with C0.X/, i.e., the Hirzebruch spectral sequence for
the K-theory of X . Then E

p;q
2 .X/ D H p.X; Z/ if p � q is even and E

p;q
2 .X/ D 0
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if p � q is odd. Since d2 maps E
p;q
2 .X/ to E

pC2;qC1
2 .X/, it follows that either the

source or the target of this map must be zero. Thus d2 D 0. As a direct consequence
of this observation and of Proposition 5.5 we now see that a principal T n-bundle

Y
q�! X is trivial if and only if all d2-differentials in the associated spectral sequence

vanish.
(2) More generally, if Y

q�! X is a principal T n-bundle, then K�.Y / is endowed
with a K�.X/-module structure. Therefore

L
E

p;q
2 .Y / D L

H p.X; Kp�q.Yx//

has a
L

H p.X; Kp�q.f
g//-module structure provided by the cup product. Thus,L
H 0.X; Kp�q.Yx// being a generating set and since the differential d2 isL
H p.X; Kp�q.f
g//-linear, d2 is completely determined by the Chern classes ci .

Proof of Theorem 5.2. Using the fact that RKK-equivalence induces an equivalence
of spectral sequences, the result is now a direct consequence of Theorem 5.1 and the
above remark.

A natural question is then: Let A.X/ be a NCP T n-bundle with classifying data
.ŒY �; f /. Can we recover any information concerning Y from the spectral sequence
fE�;�

r .A/; drg derived from the K�-fibration A.X/? As we shall see below, this is
not always the case.

With the above notation, let qi W Y ! Yi D Y=T n
i denote the quotient map.

Let us denote by Ui , Wij the images of the generators gi ; fij 2 Hn in the group C*-
algebra C �.Hn/. There are canonical C0.X/-linear �-homomorphisms ƒi W C.Yi / !
A.X/ D Y 
 f �.C �.H//.X/ given in the following way: First let us define a �-
homomorphism Qƒi W C0.Yi / ! �

C0.Y / ˝ C.T //T n
by

� Qƒi .�/
�
.y; t/ D �.tqi .y//,

where T is acted upon by T n using the projection on the i -th component. Next
we identify C.Ti / with C �.Ui / via functional calculus to obtain from this a well-
defined C0.X/-linear �-homomorphism (also called Qƒi ) from C0.Yi / to .C0.Y / ˝
C �.Ui //

T n
. Because Ui commutes with all Wkj , the C*-algebra C �hUi ; Wkj I 1 �

k < j � ni is a C.T n.n�1/=2/-subalgebra of C �.Hn/ isomorphic to C.T n.n�1/=2/˝
C �.Ui / and hence, as C0.X/-algebras, we can identify .C0.Y / ˝ C �.Ui //

T n Š
.C0.Y /˝C0.X/C.T n.n�1/=2/˝C �.Ui ///

T n
with a subalgebra of Y 
f �.C �.Hn// D

.C0.Y / ˝C0.X/ f �C �.Hn//T n
. The map ƒi is then given by the composition of Qƒi

with this inclusion.
The morphism ƒi W C0.Yi / ! A.X/ induces a morphism

fƒp;q
i;r W Ep;q

r .Yi / ! Ep;q
r .A/g

of spectral sequences. At the E2-term, the morphism

ƒ
p;q
i;2 W H p.X; Kp�q.T // ! H p.X; Kp�q.A//

is induced by the morphism of group bundles

.ƒi;x;�/x2X W X � K�.T / ! K�.A/:
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In particular, if ci 2 H 2.X; Z/ is the Chern class of Yi , then using the notation of
Lemma 5.4 we get

d
0;1
2 .ƒ

0;1
i;2 .Œ!	 �/ D ƒ

2;0
i;2 .ci /: (5.2)

According to [7], if X is path connected with base point x, then the cohomol-
ogy group H �.X; K�.A// can be described in the following way: Fix a simplicial
decomposition of X and lift it to a �1.X/-invariant simplicial decomposition of zX .
Let ��. zX/ be the simplicial complex obtained from this simplicial decomposition of
zX . Then ��. zX/ is endowed with an action of 	 D �1.X/ by automorphisms and

H �.X; K�.A// is then the cohomology of the complex Hom
.��. zX/; K�.Ax// of
	-equivariant homomorphisms from ��. zX/ to K�.Ax/. In particular, in degree zero
we get

H 0.X; K�.A// D Inv
 K�.Ax/;

where for an abelian group N equipped with an action of 	 , Inv
 N stands for the
set of 	-invariant elements of N . Since we will need it later on, we can also define at
this point the coinvariant for N to be Coinv
 N D N=hx � �xI x 2 N and � 2 	i.

Using this, and noticing that the classes fŒU1;x�; : : : ; ŒUn;x�g of K1.Ax/ are invari-
ant, we get that ƒ

0;1
i;2 .Œ!	 �/ D ŒUi;x� and thus according to eq. (5.2) we finally obtain

that d
0;1
2 .ŒUi;x�/ D ƒ

2;0
i;2 .ci /. Hence we can find the first Chern classes of the Yi in

our spectral sequence if and only if ƒ
2;0
i;2 .ci / does not vanish. However, as we shall

see below, the map ƒ
2;0
i;2 is not injective in general.

The end of the section is devoted to the study of the spectral sequences of NCP
T 2-bundles with base T 2. In case where the underlying function f W T 2 ! T is
homotopic to a constant, we get a complete description by Remark 5.6. If f is not
homotopic to a constant, then the only part of the differential d2 which does not vanish
automatically is

d
0;1
2 W H 0.T 2; K1.T 2// ! H 2.T 2; K0.A//;

since we shall see below that H 0.T 2; K0.A// is given by the invariants in K0.T 2/

under the action of Z2 Š �.T 2/, and hence is generated by the class Œ1� of the unit.
Since this class trivially extends to a class in K0.A.X//, it must vanish under any
differential in the spectral sequence.

To proceed let us first remark that if F W Œ0; 1� � X ! T n.n�1/=2 is a homotopy
between f0 W X ! T n.n�1/=2 and f1 W X ! T n.n�1/=2 and if q W Y ! X is any
T n-bundle, then .Y � Œ0; 1�/ 
 F �.C �.Hn// is a homotopy of NCP T n-bundles and
thus according to [10], Proposition 3.2, Y 
 f �

0 .C �.Hn// and Y 
 f �
1 .C �.Hn// are

RKK-equivalent.

For X D T 2, the classifying data are .ŒY
q�! T 2�; f /, where f W T 2 ! T is

a continuous function. According to the previous remark, we can replace f by a
homotopic function and thus we can assume that there exist integers k and l such that
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f .z1; z2/ D zk
1 zl

2 for every .z1; z2/ in T 2. Let us compute H �.T 2; K0.A//. We
have �1.T 2/ Š Z2 with action of the generators .1; 0/ and .0; 1/ of Z2 on K0.T 2/

in the base .Œ1�; ˇ/ given by the matrices
�

1 k
0 1

�
and

�
1 l
0 1

�
, respectively (see [10],

Proposition 5.2).
Let us fix a simplicial decomposition of T 2. Then since R2 ! T 2 is the classify-

ing covering for Z2, the simplicial complex �.R2/ is a free resolution for ZŒZ2� and
hence for any abelian group M equipped with an action of Z2, the cohomology of
the complex HomZ2.�.R2/; M/ is naturally isomorphic to H �.Z2; M/. Recall from
[13] that for an abelian group M equipped with an action of Zn, the cohomology
group H �.Zn; M/ can be computed recursively in the following way:

� For n D 0 we have that H 0.Zn; M/ Š M and H k.Zn; M/ D f0g for k � 1.

� Let us consider the action of Zn�1 on M using the n�1 last factors of Zn. Then
the action of the first factor of Zn induces an action of Z on H k.Zn�1; M/ and
there is an natural exact sequence

0 ! CoinvZ H k.Zn�1; M / ! H k.Zn; M/ ! InvZ H k�1.Zn�1; M// ! 0:

From this, it is straightforward to check that H n.Zn; M/ is naturally isomorphic
to CoinvZn M . In the case M D Z equipped with the trivial action of Zn, the
corresponding identification H n.Zn; Z/ Š CoinvZn Z Š Z is given by pairing with
the fundamental class of Hn.Zn; Z/. Under the natural identification H�.Zn; Z/ Š
H�.T n; Z/, this class can be viewed as the fundamental class ŒT n� of Hn.T n; Z/.

Combining all this, we are now in the position to describe the d2 map of the spectral

sequence derived from a NCP T 2-bundle A.T 2/ with classifying data .ŒY
q�! T 2�; f /.

Let k be the greatest common divisor of the winding numbers of the two components
of f . We can assume that k ¤ 0, otherwise f is homotopic to a constant map and
thus A.T 2/ is RKK-equivalent to C.Y /. Then we have:

� H 2.T 2; K0.A// Š CoinvZ2 K0.T 2/ Š Z=kZ ˚ Z, where the image in
CoinvZ2 K0.T 2/ of the class Œ1� 2 K0.T 2/ is a generator for Z=kZ, and where
the image of the Bott element ˇ 2 K0.T 2/ is a generator for Z.

� Up to this identification, d
0;1
2 has range in Z=kZ and

d
0;1
2 .ŒUi;z�/ D hci ; ŒT 2�i mod k

for z D f .1; 1/, i D 1; 2, and where ci is the Chern class of the T -bundle
Y=T 2

i ! X .

Remark 5.7. (1) In particular, for the function f .z1; z2/ D z1, the d2 map vanishes
for any principal T 2-bundle Y ! T 2. We actually do not know at this stage whether
all bundles corresponding to the function f .z1; z2/ D z1 are RKK-equivalent, so
we cannot answer the general question whether two NCP bundles with isomorphic
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spectral sequences must be RKK-equivalent. We plan to investigate this question in
future work.

(2) The above computation can be carried out for any compact oriented surface
X . The reason is that the fundamental group

	 D hai ; bi W i D 1; : : : nI Q
iD1;:::;nŒai ; bi � D 1i

(where n is the genus of X ) of such surface satisfies Poincaré duality and thus

H 2.X; K0.A// Š Coinv
 K0.Ax/ Š Z=kZ ˚ Z;

where k is the greatest common divisor of hf; ai i, hf; bi i, i D 1; : : : ; n, and for any
� in 	 , the integer hf; �i is the winding number of f B h for a map h W T ! X

representing the element � .

References

[1] P. Baum, A. Connes, and N. Higson, Classifying space for proper actions and K-theory
of group C �-algebras. In C �-algebras: 1943–1993 (San Antonio, TX, 1993), Con-
temp. Math. 167, Amer. Math. Soc., Providence, RI, 1994, 240–291. Zbl 0830.46061
MR 1292018

[2] B. Blackadar, K-theory for operator algebras. Math. Sci. Res. Inst. Publ. 5, 2nd ed.,
Cambridge University Press, Cambridge 1998. Zbl 0913.46054 MR 1656031

[3] J. Chabert, S. Echterhoff, and R. Nest, The Connes-Kasparov conjecture for almost con-
nected groups and for linear p-adic groups. Publ. Math. Inst. Hautes Études Sci. (2003),
239–278. Zbl 1048.46057 MR 2010742

[4] J. Chabert, S. Echterhoff, and H. Oyono-Oyono, Going-down functors, the Künneth
formula, and the Baum–Connes conjecture. Geom. Funct. Anal. 14 (2004), 491–528.
Zbl 1063.46056 MR 2100669

[5] J. Cuntz, K-theory and C �-algebras. In Algebraic K-theory, number theory, geometry and
analysis (Bielefeld, 1982), Lecture Notes in Math. 1046, Springer, Berlin 1984, 55–79.
Zbl 0548.46056 MR 0750677

[6] M. Dadarlat, Fiberwise KK-equivalence of continuous fields of C*-algebras. J. K-theory
3 (2009), 205–219.

[7] J. F. Davis and P. Kirk, Lecture notes in algebraic topology. Grad. Stud. Math. 35, Amer.
Math. Soc., Providence, RI, 2001. Zbl 1018.55001 MR 1841974

[8] E. Dyer, Cohomology theories. Mathematics Lecture Note Series, W. A. Benjamin, Inc.,
New York 1969. Zbl 0182.57002 MR 0268883

[9] S. Echterhoff, W. Lück, C. Phillips, and S. Walters. The structure of crossed products of
irrational rotation algebras by finite subgroups of SL2.Z/. To appear in J. Reine Angew.
Math.

http://www.emis.de/MATH-item?0830.46061
http://www.ams.org/mathscinet-getitem?mr=1292018
http://www.emis.de/MATH-item?0913.46054
http://www.ams.org/mathscinet-getitem?mr=1656031
http://www.emis.de/MATH-item?1048.46057
http://www.ams.org/mathscinet-getitem?mr=2010742
http://www.emis.de/MATH-item?1063.46056
http://www.ams.org/mathscinet-getitem?mr=2100669
http://www.emis.de/MATH-item?0548.46056
http://www.ams.org/mathscinet-getitem?mr=0750677
http://www.emis.de/MATH-item?1018.55001
http://www.ams.org/mathscinet-getitem?mr=1841974
http://www.emis.de/MATH-item?0182.57002
http://www.ams.org/mathscinet-getitem?mr=0268883


Fibrations with noncommutative fibers 417

[10] S. Echterhoff, R. Nest, and H. Oyono-Oyono, Principal noncommutative torus bun-
dles. Proc. London Math. Soc., Advance Access published November 25, 2008,
doi:10.1112/plms/pdn050.

[11] S. Echterhoff and D. P. Williams, Crossed products by C0.X/-actions. J. Funct. Anal.
158 (1998), 113–151. Zbl 0909.46055 MR 1641562

[12] S. Echterhoff and D. P. Williams, Locally inner actions on C0.X/-algebras. J. Operator
Theory 45 (2001), 131–160. Zbl 0994.46023 MR 1823065

[13] A. H. Forrest and J. Hunton, The cohomology and K-theory of commuting homeo-
morphisms of the Cantor set. Ergodic Theory Dynam. Systems 19 (1999), 611–625.
Zbl 0954.54020 MR 1695911

[14] N. Higson and G. Kasparov, E-theory and KK-theory for groups which act properly
and isometrically on Hilbert space. Invent. Math. 144 (2001), 23–74. Zbl 0988.19003
MR 1821144

[15] N. Higson, V. Lafforgue, and G. Skandalis, Counterexamples to the Baum–Connes con-
jecture. Geom. Funct. Anal. 12 (2002), 330–354. Zbl 1014.46043 MR 1911663

[16] D. Husemoller, Fibre bundles. Grad. Texts in Math. 20, 3rd ed., Springer-Verlag, New
York 1994. Zbl 0794.55001 MR 1249482

[17] G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91
(1988), 147–201. Zbl 0647.46053 MR 918241

[18] E. Kirchberg and S. Wassermann, Permanence properties of C �-exact groups. Doc. Math.
4 (1999), 513–558. Zbl 0958.46036 MR 1725812

[19] J. McCleary, A user’s guide to spectral sequences. Cambridge Stud. Adv. Math. 58, 2nd
ed., Cambridge University Press, Cambridge 2001. Zbl 0959.55001 MR 1793722

[20] R. Meyer and R. Nest, The Baum-Connes conjecture via localisation of categories. Topol-
ogy 45 (2006), 209–259. Zbl 1092.19004 MR 2193334

[21] J. L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques. K-Theory 16
(1999), 129–184. Zbl 0932.19005 MR 1671260

[22] J.-L. Tu, La conjecture de Baum–Connes pour les feuilletages moyennables. K-Theory
17 (1999), 215–264. Zbl 0939.19001 MR 1703305

[23] D. P. Williams, The structure of crossed products by smooth actions. J. Austral. Math.
Soc. Ser. A 47 (1989), 226–235. Zbl 0687.46044 MR 1008836

Received October 1, 2008

S. Echterhoff, Westfälische Wilhelms-Universität Münster, Mathematisches Institut,
Einsteinstr. 62, 48149 Münster, Germany

E-mail: echters@uni-muenster.de

R. Nest, Department of Mathematics, University of Copenhagen, Universitetsparken 5,
2100 Copenhagen, Denmark

E-mail: rnest@math.ku.dk

H. Oyono-Oyono, Université Blaise Pascal de Clermont-Ferrand, Laboratoire de Mathé-
matiques, Plateau des Cézeaux, 63177 Aubière Cedex, France

E-mail: oyono@math.cnrs.fr

http://www.emis.de/MATH-item?0909.46055
http://www.ams.org/mathscinet-getitem?mr=1641562
http://www.emis.de/MATH-item?0994.46023
http://www.ams.org/mathscinet-getitem?mr=1823065
http://www.emis.de/MATH-item?0954.54020
http://www.ams.org/mathscinet-getitem?mr=1695911
http://www.emis.de/MATH-item?0988.19003
http://www.ams.org/mathscinet-getitem?mr=1821144
http://www.emis.de/MATH-item?1014.46043
http://www.ams.org/mathscinet-getitem?mr=1911663
http://www.emis.de/MATH-item?0794.55001
http://www.ams.org/mathscinet-getitem?mr=1249482
http://www.emis.de/MATH-item?0647.46053
http://www.ams.org/mathscinet-getitem?mr=918241
http://www.emis.de/MATH-item?0958.46036
http://www.ams.org/mathscinet-getitem?mr=1725812
http://www.emis.de/MATH-item?0959.55001
http://www.ams.org/mathscinet-getitem?mr=1793722
http://www.emis.de/MATH-item?1092.19004
http://www.ams.org/mathscinet-getitem?mr=2193334
http://www.emis.de/MATH-item?0932.19005
http://www.ams.org/mathscinet-getitem?mr=1671260
http://www.emis.de/MATH-item?0939.19001
http://www.ams.org/mathscinet-getitem?mr=1703305
http://www.emis.de/MATH-item?0687.46044
http://www.ams.org/mathscinet-getitem?mr=1008836

	Introduction
	Some preliminaries
	Examples
	The group bundle corresponding to an h-fibration
	The Leray–Serre spectral sequence
	Applications to noncommutative torus bundles
	References

