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Noncommutative Riemannian geometry and diffusion on
ultrametric Cantor sets�

John Pearson and Jean Bellissard

Abstract. An analogue of the Riemannian Geometry for an ultrametric Cantor set .C; d/ is
described using the tools of Noncommutative Geometry. Associated with .C; d/ is a weighted
rooted tree, its Michon tree [29]. This tree allows to define a family of spectral triples
.CLip.C /;H ;D/ using the `2-space of its vertices, giving the Cantor set the structure of a
noncommutative Riemannian manifold. Here CLip.C / denotes the space of Lipschitz contin-
uous functions on .C; d/. The family of spectral triples is indexed by the space of choice
functions, which is shown to be the analogue of the sphere bundle of a Riemannian manifold.
The Connes metric coming from the family of these spectral triples allows to recover the metric
on C . The corresponding �-function is shown to have abscissa of convergence, s0, equal to the
upper box dimension of .C; d/. Taking the residue at this singularity leads to the definition of a
canonical probability measure on C , which in certain cases coincides with the Hausdorff mea-
sure at dimension s0. This measure in turn induces a measure on the space of choices. Given
a choice, the commutator of D with a Lipschitz continuous function can be interpreted as a
directional derivative. By integrating over all choices, this leads to the definition of an analogue
of the Laplace–Beltrami operator. This operator has compact resolvent and generates a Markov
semigroup which plays the role of a Brownian motion on C . This construction is applied to
the simplest case, the triadic Cantor set, where: (i) the spectrum and the eigenfunctions of the
Laplace–Beltrami operator are computed, (ii) the Weyl asymptotic formula is shown to hold
with the dimension s0, (iii) the corresponding Markov process is shown to have an anomalous
diffusion with E.d.Xt ; XtCıt /

2/ ' ıt ln .1=ıt/ as ıt # 0.

Mathematics Subject Classification (2000). 46L87, 47D07, 58B34, 53B21, 81R60.

Keywords. Cantor sets, ultrametric, quantized calculus, zeta-functions, fractal exponents,
Laplace–Beltrami operator.

1. Introduction

The present work aims to define a Noncommutative Riemannian structure on an
ultrametric Cantor set .C; d/. To this end, according to the theory developed by
Connes [11], a spectral triple .A;H ;D/ will be defined, namely A � C.C / is
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a dense �-subalgebra of the C*-algebras of complex-valued continuous functions
over C , H is a Hilbert space on which the algebra C.C / is represented andD, called
the Dirac operator, is a selfadjoint operator on H with compact resolvent such that
ŒD; a� 2 B.H / whenever a 2 A. In the present work, the spectral triple is even.
Namely there is an operator � on H such that � D �� and �2 D 1 and such that �
commutes with the representatives of A and anticommutes with the Dirac operator.

The predominant view of this article is that Cantor sets should be treated as the
boundary of a tree. Using an idea of Michon [29], an ultrametric Cantor set .C; d/
defines a weighted, rooted tree graph T D T .C; d/, with a boundary that is iso-
metrically equivalent to C . Moreover, there is a one-to-one correspondence between
a certain class of weighted, rooted trees and ultrametrics on a Cantor set. The tree
graph then allows to define a Hilbert space and a Dirac operator which in turn defines
a spectral triple for which A is the space of Lipschitz continuous functions on .C; d/.
Conversely, the ultrametric can be recovered from the spectral triple.

The �-function �.s/ D Tr .jDj�s/ of the Dirac operator is shown to be holo-
morphic in the domain Re.s/ > s0, where s0 is the upper box dimension of .C; d/.
Following Connes [11], [10], the map �.f / D lims#s0

Tr .f jDj�s/=Tr .jDj�s/ de-
fines a probability measure on C . When C is the attractor of a self-similar iterated
function system, this measure can be identified with the Hausdorff measure corre-
sponding to the box dimension s0. On the new Hilbert space L2.C; d�/ there is an
operator �s , s 2 R, defined via the Dirichlet form

h��sf; gi D 1

2

Z
‡.C /

Tr .jDj�sŒD; �� .f /�
�ŒD; �� .g/�/ d�.	/:

Here ‡.C/ is the space of choices on C and serves as the analogue for C of the unit
sphere bundle of a manifold. It will be shown that for all s 2 R, �s is the generator
of a Markovian semigroup on L2.C; d�/, which can be seen as the analogue of a
Brownian motion on .C; d/.

The present work grew out of the authors’ desire to create a spectral triple for
the transversal, „, of an aperiodic Delone set of finite type [3], [2], [4]. In this
case, the transversal is an ultrametric Cantor set, but it is not clear that „ should be
embeddable in Rd for any d 2 NC. Therefore, it was necessary to create a spectral
triple that was reliant on the intrinsic data of the Cantor set. The original idea came
from a proposal by Alain Connes [11] (Chap. IV.3.") for the triadic Cantor set. He
also used this formalism to describe some properties of the Julia set [11]. In [28],
Michel Lapidus proposed a program for applying the techniques of noncommutative
geometry to fractals. More specifically, he was interested in creating spectral triples
on fractals that would recapture both the geometric properties (i.e., fractal dimension,
Hausdorff measure, etc. [15]) and the analytic properties (i.e., Laplacian [25]) of the
fractal. Since Lapidus outlined his program, there have been spectral triples proposed
for many different types of fractals. In [9], Lapidus and his coauthors were able to
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perform much of his program for the Sierpinski gasket. For the Cantor set, most of the
work in this direction is based on the spectral triple proposed by Connes for the triadic
Cantor set. Connes’spectral triple as well as many others based on his (e.g., [21], [22])
require the Cantor set to be embedded in Rd for some d 2 NC. In another direction,
Christensen and Ivan [8] have proposed spectral triples for abstract compact metric
spaces by gluing together spectral triples associated with pairs of points. They are able
to recover an equivalent metric with one of their spectral triples but could not recover
precise geometric information about their original space. The spectral triple given in
the present article extends much of the previous work by recovering the appropriate
fractal geometric information intrinsically without the necessity of embedding in Rd .
More importantly, this spectral triple allows to construct an analogue of the Laplacian
on the Cantor set and therefore an analogue of Brownian motion.

Diffusion on Cantor sets is not entirely new and has been studied in various contexts
mostly as a non-Archimedean field [1], [14], [26]. Del Muto and Figà-Talamanca have
generalized this in [13], [18] for locally compact ultrametric spaces, where the group
of isometries is transitive and therefore allows to treat the Cantor set as an abelian
group. In both cases, the construction of the diffusion relies heavily on the algebraic
structure that is given to the space. A particular interest in these constructions has
been taken by physicists for its potential applications in creating a p-adic based
model of space-time based on p-adic differential operators [33]. One of the most
used and simplest of these operators is the Vladimirov operator [33], which has been
used as the analogue of the Laplacian. In the present article, it is shown that the
algebraic structure is unnecessary for the construction of an appropriate Laplacian.
In particular, the transversal of the Fibonacci tiling has only one nontrivial isometry
and therefore has no obvious algebraic structure. In the treatment of the example of
the triadic Cantor set in the present article, it is shown that the Vladimirov operator
is related to the phase of the Dirac operator and consequently forgets the information
provided by the metric. Moreover, an eigenbasis for �s is constructed and shown to
be the basis of Haar wavelets, thus recovering the result of [27] for the Vladimirov
operator. In another area, Favre and Jonsson [17] have used an ultrametric tree to
analyze singularities of algebraic varieties. They define a Laplacian, but the relation
to the present construction is unclear. The present article extends the work to date
by providing precise asymptotic estimates as t ! 0 for the Brownian motion on the
Cantor set. More examples, including the case of the transversal of an aperiodic,
repetitive Delone set of finite type, will be studied in future papers.

2. Statement of main results

This section presents a brief summary of the main results of this article. As stated in
the introduction, the main viewpoint here is that Cantor sets should be treated as the
boundary of a tree.
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A Cantor set C is a totally disconnected, compact, metrizable space without iso-
lated points. It is well known that such a set is homeomorphic to C0 D f0; 1gN

[7]. Therefore, up to homeomorphism, the Cantor set is unique. However, adding a
metric changes this prospect entirely. The structure of the tree allows to capture the
additional information provided by the metric.

Definition 1. Let C be a Cantor set. A metric on C will be called regular if it defines
a topology on C for which C is a Cantor set. A metric on C is an ultrametric if
d.x; y/ � maxfd.x; z/; d.z; y/g for all x; y; z 2 C .

In the remainder of the article, all metrics considered are regular.

Let now .C; d/ be a metric Cantor set such that d is a regular ultrametric. As men-
tioned previously, Michon was able to show that every ultrametric gives a weighted,
rooted tree such that the boundary of the tree, @T , is isometric to C . The set of
vertices and edges of its Michon tree T will be denoted by V;E. Any v 2 V defines
a clopen set Œv� � @T which is the set of all infinite paths starting at the root that
contain v. It is then possible to build an even spectral triple .A;H ;D/. The �-algebra
A will be chosen as the space A D CLip.C / of Lipschitz continuous complex-valued
functions defined on C . From the noncommutative standpoint, it is important to
note that this algebra is dense in the C*-algebra C.C / of continuous functions on C
and is invariant by the holomorphic functional calculus [5]. In particular, this im-
plies that the K-theory of A is the same as C.C /. The Hilbert space H is given by
H D `2.V/ ˝ C2 where V is the set of vertices of T . The grading operator is the
multiplication by � D 1 ˝ 
3 where 
3 D diagfC1;�1g is the third Pauli matrix.
The Dirac operatorD is the operator defined byD .v/ D .diamŒv�/�1
1 .v/where

1 is the first Pauli matrix (equal to C1 off the diagonal and 0 on the diagonal). To
define the representation of the algebra A the notion of choice is needed.

Definition 2. Let C be a Cantor set with a regular ultrametric d . A choice function
is a map 	 W V 7! C � C such that, if v 2 V and if 	.v/ D .x; y/, then both x; y are
in Œv� and d.x; y/ D diamŒv�. The set of choice functions on C is denoted by ‡.C/.

In what follows 	.v/ D .x; y/ will be written x D 	C.v/; y D 	�.v/. Then the
�-representation �� of A is given by �� .f / .v/ D diagff .	C.v//; f .	�.v//g .v/.
It is important to note that the Dirac operator is independent of the choice function. In
the Noncommutative Riemannian structure, the space of choices ‡.C/ will play the
role of the unit sphere subbundle of the tangent bundle. In particular the basic element
of intuition is that a choice function is the analogue of a vector field of unit vectors
on a manifold. With this intuition in mind, then ŒD; �� .f /� represents the directional
derivative of f in the direction of 	 . On Rd , a function f 2 C1.Rd / is such that
the gradient krf k1 < 1 if and only if the directional derivative k@Evf k1 < 1 for
every Ev 2 R. Therefore, by this reasoning it is natural to expect that the metric
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can be recovered by using the Connes distance on functions f 2 C.C / such that
kŒD; �� .f /�k < 1 for every 	 2 ‡.C/. This is shown in the following result.

Theorem 1. Let C be a Cantor set with a regular ultrametric d . Then d coincides
with the Connes distance � defined by

�.x; y/ ´ supfjf .x/ � f .y/j W f 2 CLip.C /; sup�2‡.C / kŒD; �� .f /�k � 1g:
This result indicates that the spectral triple defined above is sufficient to recover

the metric d on C whenever d is a regular ultrametric and when all possible choice
functions are taken into account. In fact, � is the typical Connes distance with respect
to the spectral triple obtained by summing over all possible choice functions.

Following the idea of Connes [10], [11], let �.s/ ´ Tr.jDj�s/ be the �-function
associated with the Dirac operator. It is known that there is s0 > 0 (possibly infinite)
such that � is holomorphic with respect to s in a half-plane of the form Re.s/ > s0
and that � is singular at s0. Then s0 is called its abscissa of convergence.

Let T be the tree corresponding to .C; d/. Let f�kg1
kD1

be the set of all distinct
diam.Œv�/ for v 2 V , labeled in decreasing order. LetMn be the maximum number of
children for vertices with diameter at least �n. Then the next result is the following:

Theorem 2. If .logMn/=.� log�n/ ! 0 as n ! 1, then s0 coincides with the
upper box dimension dimB.C / of .C; d/.

A special case of Theorem 2 is when there is a uniform bound on the number of
children – this happens for the attractor of a self-similar iterated function system and
the transversal of the Fibonacci tiling. In any case, the hypothesis says intuitively that
the number of children can grow but it must be compensated for by a decrease in the
size of the children.

At last, .C; d/ will be called �-regular whenever the abscissa of convergence of
the �-function is finite, if lims#s0

.s � s0/Tr .jDj�s/ > 0 and if, for any f 2 A, the
following limit exists:

�.f / D lim
s#s0

Tr.jDj�s�� .f //

Tr.jDj�s/
(1)

Theorem 3. Let C be a �-regular Cantor set with a regular ultrametric d . Then the
limit (1) is independent of the choice function 	 and defines a probability measure
on C .

In the simplest cases, the authors have checked that� coincides with the Hausdorff
measure associated with the upper box dimension. In particular this is true when C
is the attractor of a self-similar iterated function system satisfying the strong separa-
bility condition. Given the measure � it is possible to construct various operators on
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L2.C; �/. In order to do so, it is necessary to use� to define a measure � on the space
of choices ‡.C/. It is then interesting to try to find the analogue of the Laplace–
Beltrami operator on a Riemannian manifold. Locally, the Laplace–Beltrami operator
on a Riemannian manifold can be defined as the average of the square of the direc-
tional derivatives, jrEvf j2, over the unit sphere of the tangent space. In the case of the
Cantor set, the local basis is infinite and is given by choice functions. Therefore since
there is no local Euclidean structure on ‡.C/, it is natural to define the analogue of
the Laplace–Beltrami operator by the following.

Theorem 4. Let C be a �-regular Cantor set with a regular ultrametric d . Then the
measure � coming from the �-function induces a measure � on the space of choices
‡.C/. Moreover, for all s 2 R there is a closable Dirichlet form on the Hilbert space
L2.C; �/ defined by

Qs.f; g/ ´ 1

2

Z
‡.C /

Tr.jDj�sŒD; �� .f /�
�ŒD; �� .g/�/ d�.	/;

with Dom.Qs/ a dense subspace of the real Hilbert space L2.C; �/.

When Supp.�/ D C then the classical theory of Dirichlet forms [19] associates
toQs a non-positive definite self-adjoint operator�s onL2.C; �/, which generates a
Markovian semigroup. It will be shown in the case of the triadic Cantor setC3 that for
s D s0,�s0

plays the role of a Laplacian on C3 in the sense that the Weyl asymptotic
formula gives N .�/ � c0�

s0=2. The Markovian semigroup associated to�s0
defines

a stochastic process .Xt /t�0 with values in C3. However, somewhat unexpectedly
this Brownian motion onC3 satisfies E.d.Xt0 ; Xt0Ct /

2/ � c1t ln.1=t/ as t # 0. This
surprising subdominant contribution by ln.1=t/ needs further investigation.

3. Rooted trees

3.1. Basic definitions. This section is a reminder about rooted trees (see [6]). A
graph is a triple G D fV;E;  g where V is a non-empty countable set with elements
called vertices and E is a countable set with elements called edges. The function
 W E ! V � V is called the incidence function, which assigns to each edge a pair of
not necessarily distinct vertices. If  .e/ D .v; w/ or  .e/ D .w; v/ then e is said to
link v and w or, equivalently, v and w are called incident. The degree jvj of a vertex
v 2 V is the number of edges e 2 E linking it to another vertex. A graph G is simple
whenever (i) there are no edges e such that  .e/ D .v; v/ for some v 2 V and (ii) if
e, e0 are two edges linking the same vertices then e D e0. In what follows only simple
graphs will be considered.

A walk on a graphG is a double sequence f.v0; v1; : : : ; vn�1; vn/I .e1; e2; : : : ; en/g
(where n is finite or infinite) of incident vertices and edges linking them such that
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 .ei / D .vi�1; vi / for all i > 0. For a simple graph it is sufficient to specify the
sequence of vertices. A step of the walk is a triple of the form .vi�1; vi ; ei /. The
length of the walk is the number n of steps making this walk. If the walk is finite, the
first and the last vertices of the sequence are said to be linked by the walk. If v is one
of the vertices of the walk, then the latter is said to pass through v. A path is a walk
with pairwise distinct vertices. The graph G is connected if given any two vertices
there is a finite path linking them.

A cycle is a finite walk with at least three steps, such that the first and the last
vertices coincide and all other vertices are pairwise distinct. A tree is a connected
graph with no cycle. A rooted tree is a pair .T ; 0/ where T is a tree and 0 is a vertex
of T called the root. By abuse of notation, T will denote a rooted tree, and the root
will be implicit. Since T is a tree, given any pair of distinct vertices there is one and
only one path linking them. In particular, there is a unique path linking the root to a
given vertex. So there is a one-to-one correspondence between the set of vertices and
the set of finite paths starting at the root.

On a rooted tree there is a partial order defined by v � w if the path from the root
to w necessarily passes through v. Then w is called a descendant of v and this will
also be written asw � v, while v will be called an ancestor ofw. If, in addition, v,w
are incident, then v is called the father of w and w is called a child of v. The height,
ht.v/, of a vertex v is the length of the unique path linking the root to v. Hence the
root has height 0, its children have height 1 and so on.

3.2. The boundary of a rooted tree. In this section T will denote an infinite rooted
tree with root 0. The set V of its vertices is endowed with the discrete topology. Since
it is infinite it is certainly not compact. A compactification of the tree can be defined
by considering the boundary @T of this tree defined as follows:

Definition 3. If T is a rooted tree, its boundary @T is the set of infinite paths starting
at the root.

A vertex is dangling if it has no child. Hence the boundary ignores dangling
vertices. In what follows, only trees with no dangling vertices will be considered.
This implies among other things that every finite path can be extended to an infinite
path.

Example 1. Let T2 be the infinite binary rooted tree. That is T2 is the tree with a
root and such that every vertex has exactly two children. Since every vertex has two
children, the edge linking it to one child will labeled by 0 and the other by 1. Hence
any finite path starting at the root, and therefore any vertex, is labeled by a finite
sequence of 0’s and 1’s. The root is given by the empty sequence. Thus T2 can be
seen as the set of finite sequences of 0’s and 1’s. Consequently, @T2 D f0; 1gN. The
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map ‚ W ."n/n2N 7! P1
iD0 2"i 3

�.iC1/ defines a one-to-one map from @T2 onto the
classical triadic Cantor set.

Definition 4. Let T be a rooted tree. If v is a vertex, Œv� � @T denotes the set of
infinite paths starting at the root and passing through v.

Proposition 1. Let T be a rooted tree with no dangling vertex. Then the set
fŒv� W v 2 Vg is a basis of open sets for a topology on the boundary of T for
which @T is totally disconnected. For this topology @T is compact if and only if each
vertex has at most a finite number of children. It has no isolated points if and only if
each vertex has one descendant with at least two children.

The proof of this result is standard and will therefore be omitted and left to the
reader.

Definition 5. A tree will be called Cantorian if it has a root, no dangling vertex and
if each vertex has a finite number of children as well as a descendant with more than
one child.

Remark 1. By Proposition 1 this definition is equivalent to @T is a Cantor set.

Various surgical operations on a tree lead to similar boundaries. The first operation
is edge reduction. Namely if there is a path  linking v to one of its descendantw such
that each vertex of this path distinct from v, w has only one child, then the graph can
be reduced by suppressing these vertices and replacing the path by one edge. Hence
if x 2 @T is any path passing through v and w, it also automatically passes through
all of the vertices of  . Then it can also be reduced and the reduction operation gives
a one-to-one mapping between the boundary of the initial tree and the boundary of
the reduced one. In addition Œu� D Œw� whenever v � u � w and u ¤ w, so that this
mapping is actually an homeomorphism.

The opposite of edge reduction will be called edge extension. Namely any edge
can be replaced by a finite path with same end points so that each internal vertex of
the path has only one child.

There is also the notion of vertex extension. Namely if v is a vertex with at least
three children then one child will be called v0 and the others v1; : : : ; vr . Then a
new vertex u is created as a child of v having v1; : : : ; vr as children. As before,
this vertex extension does define also an homeomorphism between the corresponding
boundaries. In particular this implies the following proposition which is one of many
ways of showing that every Cantor set is homeomorphic to f0; 1gN.

Proposition 2. Let T be a Cantorian tree. Then there is a map made of the product
of a possibly infinite family of edge reductions, edge extensions and vertex extensions,
mapping T onto the binary tree T2 and defining a homeomorphism of their boundaries.
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Definition 6. Let T be a Cantorian tree. If A � @T then a vertex v is a common
ancestor of A if A � Œv�. If A has more than one point, its least common prefix (or
l.c.p.) is the smallest of its ancestors. If A D fx; yg the least common prefix will be
denoted by x ^ y.

Proposition 3. Let T be a Cantorian tree. The l.c.p. of a subset A � @T with more
than one point always exists and is unique.

The proof of this result is elementary and will be left to the reader.

4. Michon’s correspondence

For the sake of the reader, this section recalls Michon’s correspondence between
regular ultrametrics on a Cantor setC , profinite structures onC , and weighted, rooted
trees.

4.1. Ultrametrics and profinite structures. This section shows the correspondence
between ultrametrics and profinite structures on C [29]. Let C be a Cantor set with
regular metric d . Following [23], given " > 0 and x; y 2 C let an "-chain be a
sequence x0 D x; x1; : : : xn�1; xn D y of points in C such that d.xi ; xiC1/ < ".
This gives rise to an equivalence relation �" by defining x �" y if there is an "-chain
between them. In such a case, Œx�" will denote the equivalence class of x 2 C . It is
then possible to define the separation of x and y by ı.x; y/ ´ inff" W x �" yg.

Proposition 4. Let C be a Cantor set with regular metric d . Then the separation ı
is a regular ultrametric on C and is the largest dominated by d .

Proof. By [23] (Ch. 29.3), ı induces an ultrametric on the set of connected compo-
nents. Since C is totally disconnected, ı is an ultrametric on C . If d.x; y/ D " then
x �" y. Therefore, ı.x; y/ � d.x; y/. Now let d 0 be another ultrametric on C such
that d 0.x; y/ � d.x; y/ for x; y 2 C . Then for any "-chain x0 D x; : : : ; xn D y,

d 0.x; y/ � maxfd 0.xi ; xiC1/ W 0 � i � n � 1g
� maxfd.xi ; xiC1/ W 0 � i � n � 1g < ":

Thus, d 0 � ı. For a proof that ı is regular see [23].

It follows at once from the proposition that if d is an ultrametric then d D ı.
From now on, it will be assumed that C is a Cantor set with regular ultrametric d .

Definition 7. A profinite structure on a Cantor set C is given by an increasing family
fR" W " 2 RCg of equivalence relations on C that satisfy the following properties:
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(i) Each relation R" is open in C � C , and R" D C � C for a certain ".

(ii) The family is continuous on the left:
S

"0<"R"0 D R".

(iii)
T

"2RC R" D � (the diagonal of C � C ).

Proposition 5. On a Cantor set C , there is a one-to-one correspondence between
profinite structures and regular ultrametrics.

A proof of this result is given in the appendix.

4.2. Weighted, rooted trees. Using the results of the last section, it is now possible
to show the connection between Cantorian trees and ultrametrics on a Cantor set.

Definition 8. Let T be an infinite rooted tree with no dangling vertex. A weight on
T is a function � W V ! RC that satisfies the following:

(i) If v 	 v0 then �.v/ > �.v0/.
(ii) For an infinite path v0v1 
 
 
 2 @T , limn!1 �.v/ D 0.

A rooted tree along with its weight function will be called a weighted, rooted tree.

As mentioned previously, there are various surgical operations on trees that lead
to the same boundary. Given a tree T , any vertex with only one child can be reduced
by the process of edge reduction. The weight function is then the restriction of the
original weight function. A tree for which every vertex has at least two children will
be called reduced.

Proposition 6. On a Cantor set C , there is a one-to-one correspondence between
regular ultrametrics and reduced, weighted, rooted Cantorian trees. Moreover given
a regular ultrametric d , the boundary @T of the corresponding weighted, rooted
Cantorian tree is isometric to .C; d/. The weight function � for T is such that
�.v/ D diamd .Œv�/.

A proof of this result is given in the appendix.

4.3. Embedding of ultrametric Cantor sets. A simple application of Michon’s
correspondence is given by the following.

Theorem 5. Let C be a Cantor set with regular ultrametric d . Let T with weight
� be the corresponding reduced, weighted, rooted Cantorian tree. If V� denotes all
the vertices of T except for the root, then there exists an isometric embedding of C
into the real Hilbert space `2

R.V
�/.
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Proof. Let x 2 C and let v0v1 : : : be the infinite path corresponding to x. Let

ˆ.x/ ´
1P

nD0

q
�.vn/2��.vnC1/2

2
jvnC1i;

where fjvi W v 2 V�g denotes the canonical basis of `2
R.V

�/. If v ¤ v0, then
hv; v0i D 0. Therefore,

kˆ.x/k2 D
1P

nD0

�.vn/2��.vnC1/2

2
D �.v0/2

2

and ˆ.x/ 2 `2
R.V

�/. Thus, ˆ is well defined. Let y 2 C with y ¤ x. If w0w1 : : :

is the infinite path corresponding to y then there exists an n0 � 0 such that wn ¤ vn

for n > n0 and wn D vn for n � n0. Then x ^ y D vn0
and d.x; y/ D �.vn0

/.
Moreover,

ˆ.x/ �ˆ.y/ D
1P

nDn0

q
�.vn/2��.vnC1/2

2
jvnC1i �

1P
nDn0

q
�.wn/2��.wnC1/2

2
jwnC1i

and consequently

kˆ.x/ �ˆ.y/k2 D
1P

nDn0

�.vn/2��.vnC1/2

2
C

1P
nDn0

�.wn/2��.wnC1/2

2
D �.vn0

/2:

Since �.vn0
/ D d.x; y/, it follows that ˆ is indeed an isometry.

5. A spectral triple

Given Michon’s correspondence, it is now possible to construct a spectral triple on a
Cantor set C with regular ultrametric d .

5.1. Construction of the spectral triple

Definition 9. An odd spectral triple for an involutive algebra A is a triple .A;H ;D/,
where H is a Hilbert space on which A has a representation � by bounded operators.
D is a self-adjoint operator on H with compact resolvent such that ŒD; �.a/� is a
bounded operator for all a 2 A.

An even spectral triple is an odd spectral triple along with a grading operator
� W H ! H . � is required to satisfy �� D � , �2 D 1, �D D �D� , and
��.a/ D �.a/� for all a 2 A

The algebra will be CLip.C /. Let T be the reduced, weighted, rooted Cantorian
tree corresponding to the regular ultrametric d . Since T is Cantorian, the set of
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vertices V is countable. Let H ´ `2.V/ ˝ C2. D is the operator on H given
by D .v/ ´ .diam.v//�1
1 .v/ where 
1 is the first Pauli matrix. The grading
operator is the multiplication by � ´ 1 ˝ 
3 where 
3 D diagfC1;�1g is the
third Pauli matrix. As mentioned earlier, to define a representation on A a choice
function is required (see Definition 2). Let 	 2 ‡.C/ be a choice function. Then the
�-representation �� of A is given by �� .f / .v/ D diagff .	C.v//; f .	�.v//g .v/.

Proposition 7. �� is a faithful �-representation of C.C / for all 	 2 ‡.C/.

Proof. That �� is a �-representation is obvious. It is bounded since f is continuous
and C is compact. Let f; g 2 C.C / be such that �� .f / D �� .g/. Then f .	C.v// D
g.	C.v// for all v 2 V . For x 2 C , there exists v0; v1; : : : 2 V such that x 2 Œvj � and
diam.Œvj �/ ! 0. Hence f .x/ D limj !1 f .	C.vj // D limj !1 g.	C.vj // D g.x/.
Thus �� is faithful.

Based on this proposition, �� is also a faithful representation on CLip.C /.

Proposition 8. .CLip.C /;H ;D; �/ is an even spectral triple for all 	 2 ‡.C/.

Proof. To show that D is self-adjoint, let  ; 0 2 H . First D is defined on the set
D of  2 H such that

P
v2V.diam.Œv�//�2h .v/;  .v/iC2 < 1. This is a dense

subspace of H and by Riesz’ theorem, the domain of the adjoint coincides with D .
Since D is obviously symmetric, it is self-adjoint indeed. The definition of D shows
that the eigenvalues of its inverse are ˙ diam.Œv�/ so that, since the diameters are
decreasing along the tree, each eigenvalue has finite multiplicity and the only point
of accumulation is 0. So D has compact resolvent.

Let v 2 V . Because diam .Œv�/ D d.	C.v/; 	�.v// and 	 is a choice function, we
have

.ŒD; �� .f /� /.v/ D f .	C.v// � f .	�.v//
d.	C.v/; 	�.v//

�
0 �1
1 0

�
 .v/:

Since f is Lipschitz, kŒD; �� .f /� kH � kk kH , where k is the Lipschitz constant
of f and ŒD; �� .f /� 2 B.H /.

The proof that �� D � , �2 D � , �D D �D� and ��� .f / D �� .f /� for all
f 2 CLip.C / is straightforward.

5.2. The Connes distance: proof of Theorem 1. The spectral triple should be able
to recover some of the structure of the original space C . Theorem 1 shows that it can
recover the metric when all possible choice functions are taken into account.

Proof of Theorem 1. Letx; y 2 C and letdx W C ! C be given bydx.y/ D d.x; y/.
Then dx is Lipschitz continuous. Let 	 2 ‡.C/ and recall that this implies that
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d.	C.v/; 	�.v// D diam.v/. Then

kŒD; �� .dx/�kB.H/ D supv2V

˚ jd.x;�C.v//�d.x;��.v//j
d.�C.v/;��.v//

�
� supv2V

˚d.�C.v/;��.v//

d.�C.v/;��.v//

� D 1;

where the inequality follows from the triangle inequality. Consequently,

sup
�2‡.C /

fkŒD; �� .dx/�kB.H/g � 1

and �.x; y/ � jdx.x/ � dx.y/j D d.x; y/.
For x; y 2 C , let v 2 V be such that v D x ^ y, so that d.x; y/ D diam.v/. Let

	 be such that 	C.v/ D x and 	�.v/ D y. Then

jf .	C.v// � f .	�.v//j
diam.v/

D jf .	C.v// � f .	�.v//j
d.	C.v/; d.	�.v//

� 1

for any f 2 CLip.C / such that kŒD; �� .f /�kB.H/g � 1. From this it follows that
jf .x/ � f .y/j � d.x; y/ and so �.x; y/ � d.x; y/.

6. �-functions

In this section the Dirac operator D is used to create a �-function as formulated by
Connes [11]. Since the Dirac operator is independent of choice, this �-function will
also be independent of choice.

6.1. The �-function for D. Let H be the Hilbert space from the previously created
spectral triple. Then for  2 H , .jDj /.v/ D diam�1.v/ .v/. Since diam.v/ > 0
for all v 2 V , it follows that jDj is invertible and .jDj�1 /.v/ D diam.v/ .v/. Let

�.s/ ´ 1
2

Tr.jDj�s/ D P
v2V

diam.v/s:

Then � is a Dirichlet series. By [24] (Ch. 2), as a function of the complex variable
s, � either converges everywhere, nowhere, or in a half-plane given by Re.s/ > s0.
In the last case, s0 is called the abscissa of convergence. Since the eigenvalues of
jDj�1 are discrete, put �.s/ D P

ak�
s
k

, where �1 D diam.C / > �2 > 
 
 
 and ak is
the multiplicity of �k , that is, the number of v 2 V with diameter �k .

The following classical lemma on Dirichlet series will be useful.

Lemma 1 (Dirichlet). Let �.s/ D P
ak�

s
k

be a Dirichlet series with abscissa of
convergence s0. Suppose further that all the �k are positive, �1 > �2 > 
 
 
 , and that
ak > 0 for all k. Then

lim sup
k!1

log
Pj Dk

j D1 aj

� log�k

D s0:
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A proof of this can be found in [24] (Ch. 2.6). Note that the form of the Dirichlet
series used there is slightly different than the one used here.

6.2. The upper box dimension. This section is a reminder about the upper box
dimension of a fractal. For a treatment of the many fractal dimensions, the reader can
consult [15]. Let X be a metric space with metric d . Let Nı.X/ be the least number
of sets of diameter at most ı that cover X .

Definition 10. The upper box dimension is defined as

dimB.C / D lim sup
ı#0

logNı.C /

� log ı

As shown in [15] (Ch. 2.1), the upper box dimension satisfies the following di-
mension properties: monotonicity, zero on finite sets, and it gives dimension n to
open sets in Rn . Most importantly, it is invariant under bi-Lipschitz transformations.
Therefore, if two different metrics on X are metrically equivalent, then they have the
same upper box dimension. The upper box dimension is also the largest of the typical
fractal dimensions. In particular, it is greater than or equal to the Hausdorff dimension
of X .

6.3. Proof of Theorem 2. As already defined, let f�kg1
kD1

be the set of all distinct
diam.Œv�/ for v 2 V , labeled in decreasing order. Mn be the maximum number of
children for vertices with diameter at least �n. In particular MnC1 � Mn.

For any ı > 0 such that �n > ı � �nC1, we have Nı.C / D N�nC1
.C / because

there are no vertices with ı � diam.Œv�/ > �nC1. Thus,

logN�nC1
.C /

� log�nC1

� logNı.C /

� log ı
<

logN�nC1
.C /

� log�n

:

A minimal cover of C with sets of diameter at most �n must use every vertex of
diameter �n. Thus, a cover of C with sets of diameter at most �nC1 can be obtained
from this cover by taking the children of each set of diameter �n and keeping the
other sets the same. This cover, O, is in fact minimal since no O 2 O can cover two
children of a vertex of diameter �n. Since every vertex of diameter at least �n has at
least 2 children and at most Mn children, this gives

N�n
C an � N�nC1

� N�n
C .Mn � 1/an:

After iterating the procedure,

1C
nX

kD1

ak � N�nC1
� 1C

nX
kD1

.Mk � 1/ak � 1C .Mn � 1/
nX

kD1

ak;
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where the 1 comes from the fact that N�1
D 1. For the binary tree, it is easy to

check that these inequalities are in fact equalities and therefore that this estimate is in
some sense optimal. Since every cover of C with sets of diameter at most �nC1 must
use every vertex of diameter �nC1, it follows that N�nC1

� anC1. Consequently,
N�nC1

� 1=2.anC1 C 1C Pn
kD1 ak/. Thus,

log 1=2.
PkDnC1

kD1 ak/

� log�nC1

� logNı.C /

� log ı
<

log.1C .Mn � 1/PkDn
kD1 ak/

� log�n

:

Therefore, since .log.Mn � 1//=.� log�n/ ! 0 as n ! 1, we have

lim sup
n!1

log
PkDnC1

kD1 ak

� log�nC1

� lim sup
ı!0

logNı.C /

� log ı
� lim sup

n!1
log

PkDn
kD1 ak

� log�n

:

Due to the Dirichlet Lemma 1, it follows that dimB.C / D s0.

7. Measure theory on C

This section extends the study of the noncommutative geometry of a Cantor set C by
studying a measure � that is naturally defined on C .

7.1. �-regularity: proof of Theorem 3. In order to study more deeply the geometry
of C it is necessary to make some assumptions on C .

Definition 11. A Cantor set C with regular ultrametric d is �-regular if the abscissa
of convergence, s0, of its �-function is finite and if, for any f 2 C.C / and any
	 2 ‡.C/,

lim
s#s0

.s � s0/Tr.jDj�s�� .f // (2)

exists.

Given a �-regular Cantor set and a choice function 	 2 ‡.C/, it is then possible
to define a measure �� on C given by

�� .f / D
Z

C

fd�� D lim
s#s0

Tr.jDj�s�� .f //

Tr.jDj�s/

Proof of Theorem 3. Let 	; 	 0 2 ‡.C/ and f 2 CLip.C / with Lipschitz constant k.
For Re.s/ > s0, since jDj�s and �� .f / is bounded, it follows that jDj�s�� .f / is
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trace class and similarly jDj�s�� 0.f / is trace class. Therefore,

j Tr.jDj�s.�� .f / � �� 0.f ///j � P
v2V

jf .	C.v// � f .	 0C.v//j diam.v/Re.s/

C P
v2V

jf .	�.v// � f .	 0�.v//j diam.v/Re.s/

� 2
P

v2V

k diam.v/Re.s/C1:

Consequently,

j�� .f / � �� 0.f /j D
ˇ̌̌

lim
s#s0

Tr.jDj�s�� .f // � Tr.jDj�s�� 0.f //

Tr.jDj�s/

ˇ̌̌
D 0

since Tr.jDj�s0�1/ < 1. Because CLip.C / is dense in C.C / and �� is continuous
for all 	 2 ‡.C/, we have that �� and �� 0 are equal on C.C /. Since �� is faithful
for all 	 2 ‡.C/, it follows that �� is a probability measure for each 	 .

7.2. The measure on the space of choices. In what follows, it will be necessary to
have a measure on the spaces of choices, ‡.C/. Recall that ‡.C/ was the set of all
functions 	 W V ! C �C such that 	.v/ 2 Œv�� Œv� and d.	C.v/; 	�.v// D diam.v/.
Let G � V � V be defined to be the set of all brothers. That is, .u; v/ 2 G if u and v
have the same parent and u ¤ v. Let Gv be the set of all brothers whose parent is v.
Now x; y 2 Œv� are such that d.x; y/ D diam.Œv�/ if and only if there is a unique pair
.w;w0/ 2 Gv of distinct children of v such that x 2 Œw� and y 2 Œw0�. Consequently

‡.C/ D Q
v2V

F
.w;w0/2Gv

Œw� � Œw0�:

Therefore, define a measure �v on ‡v.C / ´ F
.w;w0/2Gv

Œw� � Œw0� by

�v D � � �P
.w;w0/2Gv

�.Œw�/�.Œw0�/
:

This is then a probability measure on ‡v.C /. Using the Kolmogorov Consistency
Theorem [30] (V.5), there is an extension of these measures to a probability measure
� on ‡.C/. This measure � is such that �..

Q
w¤v ‡w.C // � Uv/ D �v.Uv/ for any

�v-measurable set Uv .

8. Dirichlet forms and the operator �

In this section let L2
C.C; d�/ denote the Hilbert space completion of C.C;C/ with

respect to hf; gi D R
C

Nf g d� and let L2.C; d�/ denote the Hilbert space completion
of C.C;R/with respect to the same inner product. It is of interest to study Markovian
semigroups of operators on L2.C; d�/. As shown in [19], the study of Markovian
semigroups is equivalent to studying the Dirichlet forms on L2.C; d�/.
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8.1. Dirichlet forms: proof of Theorem 4. Given a real Hilbert space H , a non-
negative definite symmetric bilinear form densely defined on H is called a symmetric
form on H . Let Q be a symmetric form on a Hilbert space H . If Dom.Q/ is
complete with respect to the metric given by hf; gi1 D hf; giH C Q.f; g/, where
h 
 ; 
 iH is the inner product on H , then Q is called a closed form. Given a closed
symmetric formQ on L2.C; d�/, thenQ is called Markovian ifQ. Qf ; Qf / � Q.f; f /

where Qf D min.max.0; f /; 1/. If Q is not closed, the condition to be Markovian is
more complicated; however, the previous condition is sufficient. A closed symmetric
Markovian form is called a (symmetric) Dirichlet form. Given the formalism of the
previous sections, it is possible to define a form Qs on L2

C.C; d�/ by

Qs.f; g/ ´ 1

2

Z
‡.C /

Tr.jDj�sŒD; �� .f /�
�ŒD; �� .g/�/ d�.	/:

It is now necessary to specify a domain for the form. Let E � L2.C; d�/ be the
real linear space spanned by f�v W v 2 Vg, where �v is the characteristic function of
Œv� � C .

Lemma 2. E is dense in L2.C; d�/.

Proof. Let f 2 C.C /. Since f is continuous and C is compact, f is uniformly
continuous. Consequently, for " > 0 there is a ı > 0 such that if d.x; y/ < ı then
jf .x/� f .y/j < ". Let v1; : : : ; vN be a partition of C such that diam.Œvi �/ < ı. Let
	 2 ‡.C/. Let g be defined by g.x/ ´ f .	C.vj //, where vj is the unique vertex of
the partition such that x 2 Œvj �. Then kf �gk1 < " and consequently kf �gk2 < ".
Thus E is dense in C.C /. Then since C.C / is dense in L2.C; d�/, so is E .

Let Dom.Qs/ D E .

Proof of Theorem 4. It is clear that Qs must be bilinear. It is symmetric because of
the trace and because jDj�s commutes with ŒD; �� .f /� for all f 2 CLip.C /. Now

ŒD; �� .f /�
�ŒD; �� .g/� .v/ D f .	C.v// � f .	�.v//

diam.v/

g.	C.v// � g.	�.v//
diam.v/

 .v/

and thus

Tr.jDj�sŒD; �� .f /�
�ŒD; �� .f /�/ D 2

P
v2V

diam.v/s�2.f .	C.v// � f .	�.v///2:

Consequently, Qs is non-negative definite. Since �v.	C.w// � �v.	�.w// D 0 if
w Ÿ v, it follows that ŒD; �� .�v/� is of finite rank for each characteristic function �v

with v 2 V . Thus, for f 2 E , ŒD; �� .f /� is of finite rank and Qs.f; g/ < 1 for all
g 2 L2.C; d�/.
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Let now .fn/n2N be a sequence of functions in E such that limn!1 kfnkL2 D 0

and limn;m!1Qs.fn � fm; fn � fm/ D 0. To show that Qs is closable, it is
then necessary to show that limn!1Qs.fn; fn/ D 0. Since limn!1 kfnkL2 D 0,
there is a subsequence fni

that converges pointwise �-a.e. to 0 [31] (Thm. 3.12). In
particular, due to the definition of the measure � on the set of choices, fni

.	C.v// ! 0

for �-a.e. choice and for all v 2 V . Similarly for 	�.v/. So, given " > 0 let N be
such that Qs.fn � fm; fn � fm/ < " for n;m > N . Then for m > N ,

Qs.fm; fm/ D
Z

‡.C /

PK
j D1 diam.vj /

s�2.fm.	C.vj // � fm.	�.vj ///
2 d�:

Since

.fm.	C.vj // � fm.	�.vj ///
2

D lim inf
i!1 .fm.	C.vj // � fni

.	C.vj // � fm.	�.vj //C fni
.	�.vj ///

2;

it follows from Fatou’s lemma that

Qs.fm; fm/ � lim inf
i!1 Qs.fm � fni

; fm � fni
/ < ":

Thus limm!1Qs.fm; fm/ D 0 and Qs is closable.
The proof that Qs is Markovian is by inspection: Let C�, C0, CC denote the

closed subsets of C for which f � 0, 0 � f � 1, 1 � f . If 	C.v/ 2 Ci and
	�.v/ 2 Cj then j Qf .	C.v// � Qf .	�.v//j � jf .	C.v// � f .	�.v//j for each i , j .
Thus Qs. Qf ; Qf / � Qs.f; f /.

It is now possible to get a closed Dirichlet form using the following result.

Theorem 6 ([19] Thm. 2.1.1). Suppose that Q is a closable Markovian symmetric
form on L2.X;m/, where X is a locally compact separable Hausdorff space and m
is a positive Radon measure on X such that Supp.m/ D X . Then its smallest closed
extension is a Dirichlet form.

8.2. Self-adjoint operators and operator semigroups. This section follows [19]
(Ch. 1.3). Let H be a real Hilbert space.

Definition 12. A family fTt W t > 0g of linear operators is called a strongly continu-
ous, symmetric, contraction semigroup if the following holds:

(i) Each Tt is a self-adjoint contraction on H (namely kTtk � 1).

(ii) Semigroup property: TtTs D TtCs for t; s > 0.

(iii) Strong continuity: kTtf � f k ! 0 as t # 0 for all f 2 H .
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Let fTt W t > 0g be such a semigroup. Then the generator A is an operator on H
defined by

Af ´ lim
t#0

Ttf � f
t

; Dom.A/ ´ ff 2 H W Af exists as a strong limitg:

In fact, there is a one-to-one correspondence between non-positive definite self-adjoint
operators on H and the family of strongly continuous, symmetric, contraction semi-
groups. The correspondence from A to fTtg is given by Tt D exp.tA/.

Given a non-positive definite self-adjoint operator, letQ.u; v/ ´ h�Au; ui with
Dom.Q/ ´ Dom.

p�A/. It turns out thatQ is a closed symmetric form onH . This
correspondence is also one-to-one. Starting with a closed, symmetric formQ onH the
construction of A is slightly more involved. Since Q is closed, Dom.Q/ is a Hilbert
space with norm kgk1 D kgkL2 CQ.g; g/. Fix f 2 H . Then h 
 ; f i is a bounded
linear functional on Dom.Q/. Therefore, let Bf be the unique vector in Dom.Q/
corresponding to this linear functional by the Riesz Representation Theorem. Let
A ´ I�B�1. ThenA is the non-positive definite self-adjoint operator corresponding
to Q.

Now letH D L2.X;m/ whereX is a locally compact separable Hausdorff space
and m is a positive Radon measure on X such that Supp.m/ D X . A bounded linear
operator S on L2.X;m/ is called Markovian if 0 � Sf � 1, m-a.e. whenever f 2
L2.X;m/ is such that 0 � f � 1. A strongly continuous, symmetric, contraction
semigroup fTtg such that Tt is Markovian for each t > 0 is called a Markovian
semigroup.

Theorem 7 ([19] Thm. 1.4.1). Let X be a locally compact separable Hausdorff
space and m a positive Radon measure on X such that Supp.m/ D X . Then there is
a one-to-one correspondence between Dirichlet forms on L2.X;m/ and Markovian
semigroups on L2.X;m/.

8.3. The operators �s. Let C be a �-regular Cantor set with regular ultramet-
ric d . Let � be the measure constructed via the �-function. Suppose � is such that
Supp.�/ D C . Then for s 2 R, the previous results give a non-positive definite
self-adjoint operator �s such that Tt ´ exp.t�s/ is a Markovian semigroup. The
operator �s is such that

h��sf; gi D 1

2

Z
‡.C /

Tr.jDj�sŒD; �� .f /�
�ŒD; �� .g/�/ d�.	/

for f; g 2 Dom.�s/. It is important to note that E � Dom.�s/ � Dom. xQs/, where
xQs is the smallest closed extension of Qs .

It is possible to calculate�s�v for v 2 V . Since �v.	C.w//� �v.	�.w// D 0 if
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w Ÿ v, it follows that, for g 2 Dom.Qs/,

h��s�v; gi
D P

w�v

diam.w/s�2

Z
‡.C /

.�v.	C.w// � �v.	�.w///.g.	C.w// � g.	�.w///d�.	/:

Since 	 is only applied to w, by the very definition of �w we may continue

D P
w�v

diam.w/s�2P
.u;u0/2Gw

�.Œu�/�.Œu0�/

P
.u;u0/2Gw

Z
Œu��Œu0�

.�v.x/ � �v.y//.g.x/ � g.y// d�d�:

For w an ancestor of v let uv be its child that is also an ancestor of v. Then for any
other child u ofw, �u.x/ D 0 for x 2 Œu�. Thus, since

S
.uv ;u0/2Gw

Œu0� D Œw�\Œuv�
c ,

we have

D P
w�v

diam.w/s�2P
.u;u0/2Gw

�.Œu�/�.Œu0�/
2

Z
Œv�

d�.x/

Z
Œw�\Œuv�c

g.x/ � g.y/ d�.y/:

Consequently,

�s�v D � P
w�v

diam.w/s�2P
.u;u0/2Gw

�.Œu�/�.Œu0�/
2.�.Œw�\ Œuv�

c/�v ��.Œv�/�Œw�\Œuv�c /: (3)

An application of this formula is given by the following:

Proposition 9. The spectrum of �s is pure point.

Proof. Let Ln � L2.C; d�/ be the space spanned by all �v such that ht.v/ � n.
Since T is Cantorian, it follows that dim.Ln/ < 1. Moreover, Ln � LnC1 andS

n Ln is dense in L2.C; d�/. Equation (3) then gives that �s leaves each Ln

invariant. Since �s restricted to each finite dimensional Ln is pure point, �s is pure
point.

9. The triadic Cantor set

9.1. Eigenvalues and eigenstates for �s on C3. This section will apply much of
the previous machinery to the triadic Cantor set. Let C3 denote the triadic Cantor set
seen as a subset of the interval Œ0; 1�. As seen in Example 1, C3 is the boundary of
the infinite binary tree @T2 and has a natural homeomorphism with f0; 1gN by

�.!/ D
1X

nD0

2!n

3nC1
; ! D f!ngn2N 2 f0; 1gN:
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Let d be the regular ultrametric corresponding to the weight �.v/ D 3� ht.v/. Then
for x; y 2 C3,

d.x; y/

3
� jx � yj � d.x; y/;

and thus d is metrically equivalent to the Euclidean metric. Then

�.s/ D
1X

nD0

�
2

3s

�n

and therefore has abscissa of convergence s0 D ln 2= ln 3. This pole is clearly a
simple pole. For any v 2 V ,

1
2

Tr.jDj�s�� .�v// D P
w�v

diam.w/s D diam.v/s�.s/

since the subtree starting at v is identical to the tree starting at the root. Consequently,
�.�v/ D diam.v/s0 . Thus �.f / is defined on all characteristic functions and can be
extended to all continuous functions. Therefore, C3 is �-regular and

�.Œv�/ D diam.v/s0 D 1

3s0 ht.v/
D 1

2ht.v/
:

Since Supp.�/ D C3, �s can be defined on L2.C3; d�/. Equation (3) then gives
that for v D v0 : : : vn 2 V with n � 1,

�s�v D �
n�1X
j D0

3j.2�s/

2�.2j C1/
2.2�.j C1/�v � 2�n�Œw�\Œuv�c /:

Letting Na D 1 � a for a 2 f0; 1g, this becomes

�s�v D �2
n�1X
j D0

�
2

3s�2

�j

�v C 4

2n

n�1X
j D0

�
4

3s�2

�j

�v0:::vj Nvj C1
: (4)

This formula can be used to find the eigenstates of �s .

Definition 13. Let W be the set of infinite sequences ! D !1!2 
 
 
 2 f0; 1gNC
such

that all but a finite number of !k’s are 0. Let j!j be the maximum integer k such that
!k D 1, with the convention that j!j D 0 if ! D 00 : : : . The Haar function �! is
defined by

�! D
X

v2f0;1gn

.�1/!�v�v; ! 
 v D
nX

kD1

!kvk :

for any n � j!j.
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Clearly �v1:::vN 0 C�v1:::vN 1 D �v1:::vN
. Moreover, ifN D j!j then !N Cm D 0

for m > 0, soP
v2f0;1gN C1

.�1/!�v�v D P
v2f0;1gN

.�1/!�v.�v1:::vN 0 C �v1:::vN 1/ D P
v2f0;1gn

.�1/!�v�v:

Therefore, �! does not depend on the choice of n and �! is well defined. Moreover,
it is straightforward to check that the Haar functions are orthonormal in the sense that
h�! ; �� i D ı!;� for !; 
 2 W . In addition,

�v D 1

2n

X
u2f0;1gn

.�1/v�u�u00:::

for v 2 V and thus the Haar functions are an orthonormal basis for L2.C3; d�/. The
importance of the Haar functions comes from the following theorem.

Theorem 8. Let C3 be the triadic Cantor set with the regular ultrametric d given
above. Let � be its associated measure. Then the following is true:

(i) The eigenstates of �s are given by the Haar functions �! with ! 2 W .

(ii) The eigenvalues of �s are given by �0 D 0 and for n � 1,

��n D �2.1C 3s0C2�s C 
 
 
 C .3s0C2�s/n�2 C 2.3s0C2�s/n�1/:

(iii) The degeneracy of �n is 2n�1 for n � 1 whereas �0 is simple.

(iv) For s > s0 C 2, �s is bounded and is a compact perturbation of a multiple of
the identity.

(v) For s � s0 C 2, �s has compact resolvent.

(vi) For s < s0 C2, the density of states N .�/ given by the dimension of the spectral
space corresponding to eigenvalues whose magnitude is less than or equal to �
satisfies

N .�/
�"1� 2

�
�

2k

�s0=.2Cs0�s/

.1C o.1//

where k D 1=.1 � 3s�2�s0/C 1.

Remark 2. On a compact Riemannian manifold M , the Laplacian is an unbounded
operator with compact resolvent. Moreover, Weyl’s theorem says that if m is the
dimension of M , then N .�/ � c0�

m=2 as � ! 1 for an appropriate constant c0.
The constant c0 is not arbitrary and actually gives the volume of the unit ball in
the cotangent bundle over the manifold. In any case, the previous theorem shows
that if �s is interpreted as the Laplacian on a compact Riemannian manifold, then
m D 2s0=.2 C s0 � s/ gives the Riemannian dimension of this noncommutative
manifold. By analogy, this suggests that�s0

is the appropriate Laplacian onC3 since
it gives Riemannian dimension s0.
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Proof. Using Equation (4) and the definition of the Haar function, for ! 2 W with
j!j D n > 0, we obtain that

��s�! D
X

v2f0;1gn

.�1/!�v
�
2

n�1X
j D0

�
2

3s�2

�j

�v � 4

2n

n�1X
j D0

�
4

3s�2

�j

�v0:::vj Nvj C1

�

D 2

n�1X
j D0

�
2

3s�2

�j

�! � 4

2n

n�1X
j D0

�
4

3s�2

�j X
v2f0;1gn

.�1/!�v�v0:::vj Nvj C1
:

For j < n� 1 the last sum on the right-hand side vanishes and for j D n� 1 we getX
v2f0;1gn

.�1/!�v�v0:::vj Nvj C1
D ��!

since .�1/vn D �.�1/ Nvn . Consequently,

�s�! D �
�
2

n�1X
j D0

.3s0C2�s/j C 2.3s0C2�s/n�1
�
�! :

Therefore, the Haar basis is an eigenbasis for �s and the corresponding eigenvalues
are precisely the ��n’s given in the statement of the theorem. Since there are exactly
2n�1 sequences ! 2 W with j!j D n for n > 0, the degeneracy of ��n is 2n�1.

If 3s0C2�s < 1, that is, if s > s0 C 2 then, as n ! 1,

��n D �2
n�1X
j D0

.3s0C2�s/j C 2.3s0C2�s/n�1 ! � 2

1 � 3s0C2�s
μ ��1:

Hence, �s is bounded and �s C �11 is compact.
If s D s0 C 2, then 3s0C2�s D 1 and ��n D �2.nC 1/. Therefore, .�2

s C 1/�1

is compact and �s has compact resolvent. If s < s0 C 2, then 3s0C2�s > 1 and

��n D �2.3s0C2�s/n�1

�
1 � .3s�2�s0/n

1 � 3s�2�s0
C 1

�
:

Therefore, .�2
s C 1/�1 is compact and�s has compact resolvent. Moreover, ifN.�/

is such that

� D 2.3s0C2�s/N.�/�1

�
1 � .3s�2�s0/N.�/

1 � 3s�2�s0
C 1

�
;

then if k ´ 1=.1 � 3s�2�s0/C 1, it follows that

N.�/ D 1C ln.�C 2.3s0C2�s � 1/�1/ � ln 2k

ln 2 � .s � 2/ ln 3
:
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Now

lim
�!1

�
N.�/ � ln.�=.2k//

ln 2 � .s � 2/ ln 3

�
D 0:

Thus, since
N .�/ D 1C P

n�1;�n	�

2n�1 D 2N.�/;

we obtain that

N .�/ � 2

�
�

2k

�s0=.2Cs0�s/

.1C o.1//

as � ! 1, as desired.

9.2. Diffusion on C3. Having computed the eigenstates and eigenvalues of �s , it
is now possible to get an explicit description of its associated Markovian semigroup
fexp.t�s/gt>0. In order to do so, let

�n.x; y/ ´
´
1 if d.x; y/ D 3�n;

0 otherwise:

Theorem 9. Under the assumptions of Theorem 8 and for s < s0 C 2, the following
holds:

(i) Let the heat kernel Kt .x; y/ be defined by

hf; et�sgi D
Z

C3�C3

f .x/Kt .x; y/g.y/ d�.x/d�.y/

for f; g 2 L2.C3; d�/. Then Kt .x; y/ D P1
nD0 �n.x; y/an.t; s/ where

an.t; s/ D 1 � 2ne�t�nC1 C
nP

mD1

2m�1e�t�m

for n � 1 and a0 D 1� e�t�1 . Moreover,Kt .x; y/ is positive for all x; y 2 C3

and t > 0. In addition, Kt 2 L1.C3 � C3; � � �/ for t > 0.

(ii) The Markovian semigroup fet�s g defines a Markov process .Xt /t�0 with values
in C3 defined by

E.f1.Xt1/ : : : fn.Xtn// D h1; Ofne
.tn�tn�1/�s : : : Of1e

t1�s1i;
where fk 2 C.C /, Of denotes the operator on L2.C3; d�/ given by multiplica-
tion by f , and where tn > 
 
 
 > t1 > 0. This Markov process is stationary and
satisfies the following for s fixed:

E.d.Xt0 ;Xt0Ct /
ˇ /

t#0�
�

�1

2
C 1

2

1P
nD1

�
1

2�3ˇ

�n�
2n�nC1 �

nP
mD1

2m�1�m

��
t .1C o.1//
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for ˇ > s0 C 2 � s and

E.d.Xt0 ; Xt0Ct /
ˇ /

t#0� 1
2ˇ ln 3

�
1

1�3�ˇ C 1
��
1 � 1

3ˇCs0 �1

�
t ln.1=t/.1C o.1//

for ˇ D s0 C 2 � s. For ˇ < s0 C 2 � s, we have

E.d.Xt0 ; Xt0Ct /
ˇ / D O.tˇ=.s0C2�s/ ln.1=t//:

Remark 3. The previous section had suggested that�s0
is the proper generalization

of the Laplacian to the Cantor set. Classical Brownian motion on the real line is
generated by the Laplacian and satisfies E.jXt0 � XtCt0 j2/ D jt j. For s D s0,
E.d.Xt0 ; Xt0Ct /

2/ � t ln.1=t/ and so there is a subdominant contribution by a term
of order ln.1=t/. For ˇ D 2 this subdominant contribution only appears for s � s0
and therefore suggests that on the Cantor set something special is happening at s D s0
as the subdominant term t ln.1=t/ takes over from the term t , which dominates for
s > s0. A further understanding of this phenomenon needs to be investigated, although
presumably this logarithmic singularity comes from the fact thatXt describes a jump
process across the gaps of the Cantor set.

Proof. Because of the spectral decomposition of �s given in Theorem 8, we have

et�s D
1P

nD0

e�t�n…n;

where �s is the spectral projection onto the eigenspace of �s corresponding to the
eigenvalue ��n. For n D 0, …0 D j�00:::ih�00:::j D j1ih1j. For n � 1,

…n D P
�1;:::;�n�12f0;1g

j��1:::�n�1100:::ih��1:::�n�1100:::j

since ��1:::�n�1100::: generate the eigenspace of Haar functions �! with j!j D n. By
the definition of the Haar function,

…n D P
uk;vk2f0;1g

kD1;:::;n

.�1/un�vn j�uih�vj P
�1;:::;�n�12f0;1g

n�1Q
kD1

.�1/.uk�vk/�k

D 2n�1
P

u2f0;1gn�1

j�u0ih�u0j � j�u0ih�u1j � j�u1ih�u0j C j�u1ih�u1j:

Now j�uih�vj is the operator with functional kernel �u.x/�v.y/. Because

P
u2¹0;1ºn�1

�u0.x/�u0.y/C �u1.x/�u1.y/ D
´
1 if d.x; y/ � 3�n;

0 otherwise;
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and

P
u2¹0;1ºn�1

�u0.x/�u1.y/C �u1.x/�u0.y/ D
´
1 if d.x; y/ D 3�nC1;

0 otherwise;

it follows that

…n.x; y/ D

8̂<
:̂
2n�1 if d.x; y/ � 3�n;

�2n�1 if d.x; y/ D 3�nC1;

0 otherwise;

where …n.x; y/ is the functional kernel of the operator …n. Using the functions �n,
this becomes

…n.x; y/ D 2n�1.��n�1.x; y/C P
m�n

�m.x; y//:

Therefore,

Kt .x; y/ D
1P

nD0

e�t�n…n.x; y/

D �0.x; y/.1 � e�t�1/C
1P

nD1

�n.x; y/.1 � 2ne�t�nC1 C
nP

mD1

2m�1e�t�m/:

The convergence of Kt .x; y/ in L2.C3 � C3; � � �/ is shown as follows. To begin,

�n.x; y/ D
X

v2f0;1gn

�v0.x/�v1.y/C �v1.x/�v0.y/

gives that Z
C3�C3

�n.x; y/
2d�.x/d�.y/ D

X
v2f0;1gn

2

22nC2
D 1

2nC1
:

Therefore, the corresponding norm in L2.C3 � C3; � � �/ is k�nk2 D 2�.nC1/=2.
The coefficients of the �n’s in Kt are positive for t > 0 since

an.t; s/ D 2n.1 � e�t�nC1/ �
nX

mD1

2m�1.1 � e�t�m/ > 1 � e�t�nC1 > 0:

It is straightforward to show that for t > 0,

1C
1X

mD1

2m�1e�t�m D Ms.t/ < 1
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for all s < s0 C2 and thus 0 < an.t; s/ < Ms.t/: Since the �n’s have disjoint support,
Kt is bounded and Kt 2 L1.C3 � C3; � � �/.

The definition of the stochastic process .Xt /t�0 is standard and results from the
Chapman–Kolmogorov equations. It gives a way to evaluate E.d.Xt0 ; Xt0Ct /

ˇ / by

E.d.Xt0 ; Xt0Ct /
ˇ / D

Z
C3�C3

Kt .x; y/d.x; y/
ˇ d�.x/d�.y/:

Thus

E.d.Xt0 ; Xt0Ct /
ˇ / D 1

2

1X
nD0

�
1

2 
 3ˇ

�n

an.t; s/:

Now for t > 0 and ˇ > s0 C 2 � s,
1

t
E.d.Xt0 ; Xt0Ct /

ˇ / � 1

2t

1X
nD0

1

3ˇn
.1 � e�t�nC1/ � 1

2

1X
nD0

1

3ˇn
�nC1 < 1

and therefore by dominated convergence,

lim
t!0

E.d.Xt0 ; Xt0Ct /
ˇ /

t
D �1

2
C 1

2

1X
nD1

�
1

2 
 3ˇ

�n�
2n�nC1 �

nX
mD1

2m�1�m

�
;

and this limit is positive and finite. For ˇ D s0 C 2 � s, let Nt D ln.1=t/=.ˇ ln 3/.
First of all,

1

2

1X
nDNt C1

�
1

2 
 3ˇ

�n

an.t; s/ <
1

2

1X
nDNt C1

�
1

3ˇ

�n

D t

2 
 3ˇ

1

1 � 3�ˇ

and

1

2

1X
nDNt C1

�
1

2 
 3ˇ

�n

an.t; s/ >
1

2
.1 � e�t�Nt C2/

1X
nDNt C1

�
1

2 
 3ˇ

�n

> .1 � e�t�1/
t1Cs0=ˇ

4 
 3ˇ

1

1 � 2�13�ˇ
:

By taking a Taylor expansion,

2nt�nC1 � 2n
t2�2

nC1

2
� t

nX
mD1

2m�1�m � an.t; s/

and

an.t; s/ � 2nt�nC1 � t
nX

mD1

2m�1�m � t2

2

nX
mD1

2m�1�2
m:



474 J. Pearson and J. Bellissard

Now

1

2

NtX
nD1

�
1

2 
 3ˇ

�n

2nt2�2
nC1 < t

2

�
1

1 � 3�ˇ
C 1

� NtX
nD1

3nˇ < c0t
23ˇNt D c0t

for some constant c0 > 0. Similarly, there exists c1 > 0 such that

NtX
nD1

�
1

2 
 3ˇ

�n
t2

2

nX
mD1

2m�1�2
m < c1t:

Since �
1

2 
 3ˇ

�n�
2n�nC1 �

nX
mD1

2m�1�m

�

D
�

1

1 � 3�ˇ
C 1

��
1 �

nX
mD1

.2 
 3ˇ /�m
�

� 3�ˇ

1 � 3�ˇ

�
1

2 
 3ˇ

�n

it follows that

t

2

NtX
nD1

�
1

2 
 3ˇ

�n�
2n�nC1 �

nX
mD1

2m�1�m

�

D 1

2

�
1

1 � 3�ˇ
C 1

��
1 � 1

3ˇCs0 � 1
�
tNt C c2t .1 � t1Cs0=ˇ /;

where c2 > 0 is a constant. Consequently,

E.d.Xt0 ; Xt0Ct /
ˇ /

t#0� 1
2ˇ ln 3

�
1

1�3�ˇ C 1
��
1 � 1

3ˇCs0 �1

�
t ln.1=t/.1C o.1//

for ˇ D s0 C 2 � s. The proof that E.d.Xt0 ; Xt0Ct /
ˇ / D O.tˇ=.s0C2�s/ ln.1=t// is

the same as above using the fact that 1 � e�x � x˛ for 0 � ˛ � 1.

9.3. Relationship with the Vladimirov operator. Let p be a prime number. It is a
basic fact (see [32]) that the Cantor set is homeomorphic to the p-adic integers, Zp .
In fact, Zp is the boundary of the tree Tp where every vertex has exactly p children
and the weight function is �.v/ D p� ht.v/ for v 2 V . The p-adic numbers are the
completion of Q with respect to this ultrametric j 
 jp and Zp is then the closed unit
disc in Qp . The Vladimirov operator [33] is constructed using the field structure of
Qp . It is defined by

.D /.x/ D p2

p C 1

Z
Qp

 .x/ �  .y/
jx � yj2p

dy;

where  W Qp ! R is a locally constant function with compact support and the
measure dy is the Haar measure on Qp .
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Proposition 10. For z D v0v1 
 
 
 2 @T2 and f 2 E ,

.Df /.z/ D 1

3
lim

n!1
1

�.Œvn�/
h�vn

;��2f i:

Proof. From Section 8.3 it follows that

h�vn
;��2f i D

Z
Œvn�

d�.x/

n�1X
j D0

4

�.Œv0 : : : vj �1�/2

Z
Œv0:::vj �1 Nvj �

f .x/ � f .y/ d�.y/:

But for x 2 Œv0 : : : vj � and y 2 Œv0 : : : vj �1 Nvj �, we have jx � yj2 D �.Œv0 : : : vj �1�/.
Therefore,

h�vn
;��2f i D 4

Z
Œvn�

d�.x/

Z
Œvn�c

f .x/ � f .y/
jx � yj22

d�.y/

and the result follows.

Because jDj�1D D F is the phase of the operator D, this result shows that the
Vladimirov operator does not take the metric on C3 into account. This makes sense
because the Vladimirov operator was created using the 2-adic metric which comes
from the measure and not from the metric on C3.

10. Conclusion and open problems

In the present article the appropriate machinery has been constructed from Non-
commutative Geometry to investigate various examples of ultrametric Cantor sets as
Noncommutative Riemannian spaces. The study of such examples will be covered
in a subsequent paper by the authors. Many of the results on the triadic Cantor set
hold for a much larger class of examples. In particular, it can be shown that every
attractor of a self-similar iterated function system that satisfies the strong separability
condition is such that its natural metric coming from the attractor is equivalent to a
regular ultrametric. This result also holds for cookie-cutter systems, which is a class
of Cantor sets that includes many Julia sets. Basic definitions of these two classes of
Cantor sets can be found in [16]. An important generalization by the authors of some
of the results for the triadic Cantor set is the following.

Theorem 10. Let C be the attractor of a self-similar iterated function system that
satisfies the strong separability condition. Then the following is true:

(i) C is a �-regular Cantor set with respect to a regular ultrametric that is metrically
equivalent to the natural metric coming from the iterated function system.
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(ii) Up to a constant,� is equal to the s0-Hausdorff measure where s0 is the similarity
dimension of C .

It is unclear whether �-regularity is enough of a constraint in general to guarantee
that the Hausdorff dimension and upper box dimension coincide. Moreover, it is an
open problem to find conditions under which the measure � of a �-regular Cantor set
is actually the Hausdorff measure.

Another important class of examples is given by the transversal„ of an aperiodic,
repetitive Delone set of finite type [4]. Such an example can be given a natural
tree structure coming from its patches. The Voronoi metric is then a natural regular
ultrametric on„. The special case of the Fibonacci tiling has been investigated by the
authors. It can be shown that it is a �-regular Cantor set with �-function equal to the
Riemann �-function plus a small perturbation. Because the Riemann �-function has
an isolated pole at z D 1, the Fibonacci tiling has upper box dimension equal to 1.
The algorithmic complexity of the Fibonacci tiling is also 1 and it seems that the upper
box dimension and algorithmic complexity should agree for more general tilings. In
[28], Lapidus proposes a new definition of fractality as a set whose �-function has
non-real singularities in the positive half-plane. The Fibonacci tiling then provides a
counterexample to this definition since it has only a singularity at z D 1 in the positive
half-plane. The Fibonacci tiling also has a natural construction as a cut-and-project
tiling. The transversal space of the cut-and-project tiling gives a natural embedding
(but not an isometry) of the transversal of the Fibonacci tiling into R. The authors
have shown that the measure � associated to the �-function of„ is then the Lebesgue
measure coming from this embedding. For this reason one can argue whether the
transversal of the Fibonacci tiling is really a fractal. A generalization of this fact to
the transversal of a cut-and-project tiling is a subject of future research.

A. Proof of Michon’s correspondence

A.1. Proof of Proposition 5. Given a regular ultrametric d , the equivalence rela-
tion �" given by "-chains are shown to be a profinite structure.

(i) For y 2 Œx�", B".y/ ´ fz 2 C W d.z; y/ < "g � Œx�". Thus Œx�" is open.
ThereforeR" D S

x2C Œx�" � Œx�" is open. A compact metric space is totally bounded,
so there exists " such that R" D C � C .

(ii) Let x �" y. Then there exists x0 D x; x1; : : : ; xn D y with d.xi ; xiC1/ < ".
If � D .maxfd.xi ; xiC1/ W 0 � i < ng/=2, then x �	 y with � < ".

(iii) Suppose that Œx�0 ´ T
"2RC Œx�" is the disjoint union of two closed sets U

and V . Since C is compact, if both U and V are nonempty, there exists u 2 U and
v 2 V such that dist.U; V / D d.u; v/ > 0. But if � D d.u; v/=2, then u œ	 v. So
Œx�0 must be connected. Thus sinceC is totally disconnected, Œx�0 D fxg. Therefore,T

"2RC R" D �.
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(iv) Finally, given another regular ultrametric d 0 ¤ d then there exists x; y 2 C
with d.x; y/ ¤ d 0.x; y/. Suppose that d.x; y/ D " > d 0.x; y/ D "0. If � D
." C "0/=2, then x �	d 0 y but x œ	d y, and therefore they give different profinite
structures.

Conversely, given a profinite structure fR" W " 2 RCg on C let d.x; y/ ´
inff" W x �" yg. That d.x; y/ D 0 if and only if x D y follows from the fact thatT

"2RC R" D �. For x; y; z 2 C , if x �"1 y and y �"2 z and if " D maxf"1; "2g, then
x �" z. Thus d.x; z/ � maxfd.x; y/; d.y; z/g and d is an ultrametric. In order to
show that d is regular, let id W C ! C be the identity map from C with the original
topology to C with the metric topology. First of all, if x �a y then by (ii) x �a�ıy

for some ı > 0 and d.x; y/ < a. Thus, d.x; y/ < " if and only if x �" y. This
gives that Ba.x/ D Œx�a. In fact, Œx�" is open in the original topology. This can be
seen as follows. Let .x; y/ 2 C � C . Since R" is open, there exists an open set
V � C � C such that .x; y/ 2 V � R". But C � C has the product topology and
therefore there exists open sets Ux; Uy � C such that .x; y/ 2 Ux � Uy � V . For
any y 2 Uy , .x; y/ 2 R" and consequently Uy � Œx�" and Œx�" is open. Therefore, id
is a continuous, bijective map from a compact space to a Hausdorff space and hence
a homeomorphism. Thus, d is regular.

Given two different profinite structures fR"g and fR0
"g, then without loss of gen-

erality there exist " > 0 and .x; y/ 2 R" such that .x; y/ … R0
". Suppose that fR"g

gives ultrametric d and fR0
"g gives an ultrametric d 0. Then by (ii), .x; y/ 2 R"�ı for

some ı > 0 and d.x; y/ < " � d 0.x; y/. Consequently, d ¤ d 0.

A.2. Proof of Proposition 6. Let d be a regular ultrametric on C and let fR"g
be the profinite structure corresponding to d . The tree T is built as follows. Let
"0 D inff" W R" D C � C g. Then R"0

¤ C � C since R"0
D S

"0<"0
R". Similarly,

let "iC1 D inff" W R" D R"i
g. Then f"ig1

iD0 is such that R"i
¤ R"iC1

. Let the root
of T correspond to C and let the vertices of height n correspond to the equivalence
classes ofR"n�1

. Let the edges be defined by Œx�"j
� Œy�"k

if and only if Œx�"j
� Œy�"k

.
Then T is a rooted tree with no dangling vertex. As seen in the proof of the previous
proposition, every equivalence class is clopen. Thus each vertex has a finite number
of children and has a descendant with more than one children. So, T is a Cantorian
tree. In general, T is not reduced. However, since each vertex has a descendant with
more than one child, edge reduction can be applied to each vertex with only one child
without altering @T . This will give a reduced tree T 0 with vertices V 0 � V such that
@T 0 D @T as topological spaces.

Let ˆ W @T 0 ! C be defined by ˆ.v0v1 : : : / D T1
iD1Œxi �"i

where vi D Œxi �"i
.

This map is bijective andˆ�1.Œx�"i
/ D Œv�wherev D Œx�"i

. Thusˆ is continuous and
since @T 0 is compact,ˆ is a homeomorphism. By abuse of notation, let Œv� D Œx�"i

if
v D Œx�"i

.
If v D Œx�"k

let �.v/ ´ "kC1. Since "k > 0 for all k, we have � W V 0 ! RC.
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The condition (i) in Definition 8 follows immediately. For (ii), since �.Œx�"k
/ � "k

and "k ! 0, it follows that limk"1 �.Œx�"k
/ � limk!1 "k D 0. So T 0 is a reduced,

weighted, rooted Cantorian tree.
Let T be a reduced, rooted Cantorian tree with weight function �. For x; y 2

@T μ C , let d.x; y/ D �.x^y/ for x ¤ y and d.x; x/ D 0. It is straightforward to
show that d is an ultrametric on C . Given r > 0 and x 2 C , let Br.x/ ´ fy 2 C W
d.x; y/ < rg. By (ii), Br.x/ has more than one point, so let v D l.c.p..Br.x//. By
the definition of v, for y 2 Œv� there exists z 2 Br.x/ such that x ^ y � x ^ z. Thus
d.x; y/ � d.x; z/ < r and therefore Œv� D Br.x/. Consequently, Br.x/ is open in
@T and d is regular.

For x; y 2 Œv� then x^y � v and d.x; y/ D �.x^y/ � �.v/. Thus, diam.Œv�/ �
�.v/. Conversely, since v has more than one child, there exists x; y 2 Œv� such that
v D x ^ y. Therefore, �.v/ D d.x; y/ � diam.v/ and �.v/ D diam.Œv�/.

Starting with a regular ultrametricd onC , letd" be the regular ultrametric obtained
from the Cantorian tree T corresponding to d . Let x; y 2 C . Then d".x; y/ D
�.x ^ y/ D "kC1 if x ^ y D Œx�"k

. So x
"kC1œ y but x

"kC1Cı� y for ı > 0. Since d
is an ultrametric, d.x; y/ D "kC1. Thus d D d" and @T is isometric to C .

Starting with a reduced, weighted, rooted Cantorian tree T , let Td be the tree
obtained from the regular ultrametric d corresponding to T . Let ˆ be the homeo-
morphism from @T ! @Td . Let ‰ W V ! Vd be defined by ‰.v/ D l.c.p.ˆ.Œv�//.
Because each tree is reduced there is a one-to-one correspondence between clopen
sets in the boundary and vertices, thus‰ is a bijection. Therefore the correspondence
between reduced, weighted, rooted Cantorian trees and regular ultrametrics is indeed
a bijection. �
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