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Abstract. This article is concerned with the study of the geometry of determinant line bundles
associated to families of spectral triples parametrized by the moduli space of gauge equivalence
classes of Hermitian connections on a Hermitian finite projective module. We illustrate our
results with some examples that arise in noncommutative geometry.
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Introduction

In the mid 1990s, Connes and Moscovici [4] formulated and proved a far-reaching
local index theorem for spectral triples and introduced the correct definition of di-
mension in the noncommutative setting, where it is no longer an integer, but rather a
subset of C which is called the dimension spectrum. This article aims to understand
the stability of the dimension spectrum for families of spectral triples, and its impli-
cations on the existence of geometric structures on the determinant line bundle, such
as the Quillen metric and the determinant section.

That is, we are concerned with the study of the geometry of determinant line bun-
dles associated to families of spectral triples .A;H ;D/ parametrized by the moduli
space of gauge equivalence classes of Hermitian connections on a Hermitian finite
projective module. Recall that spectral triples .A;H ;D/were introduced by Connes
[2], as the defining object for a noncommutative manifold, where A is a unital C �-
algebra acting on a separable Hilbert space H ,D an unbounded self-adjoint operator
on H with compact resolvent, and ŒD; a� is a bounded operator on H for all a 2 A.

Given a spectral triple .A;H ;D/, a finite projective module E over A, a Her-
mitian structure on E and any Hermitian connection r on E, a basic stability result
implies that .EndA.E/;E ˝A H ;DE;r/ is again a spectral triple. The space of all
Hermitian connections on E is an affine space CE , and the gauge group G is defined
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to be a Lie subgroup of the group AutA.E/ of invertible elements in EndA.E/, such
that G acts smoothly and freely on CE . Analogous to the classical case we define the
determinant line bundle L of the index bundle for this family of spectral triples. This
is a line bundle on the moduli space CE=G of gauge equivalent classes of Hermitian
connections on E.

In order to state the hypotheses required to define the Quillen metric [12] and
the determinant section of L, we need to utilise the notions of regularity and simple
dimension spectrum introduced in [4]. More precisely, we require the spectral triple
.A;H ;D/ to be regular with simple dimension spectrum and zero is not in the
dimension spectrum. These are precisely the same assumptions made by Connes and
Chamseddine [3] in their work on inner fluctuations of spectral actions, except that
we do not need the assumption that zero is not in the spectrum of D, cf. §4.3. In
this context, Higson [9] also treats the case when zero is in the spectrum of D, but
our approach differs from his. Another technical result proved here is the stability
property for regular spectral triples .A;H ;D/, which says that .EndA.E/;E ˝A

H ;DE;r/ is again a regular spectral triple with simple dimension spectrum for any
Hermitian structure onE and any Hermitian connection r onE. For the application
of these constructions to a mathematical understanding of anomalies, that is, the
nonpreservation of a symmetry of the classical action by the full quantum action in a
gauge field theory; see [1], [6].

The last section contains an explicit calculation of the Quillen metric and deter-
minant section of the determinant line bundle of the index bundle for the family of
spectral triples on the noncommutative torus parametrized by the moduli space of
flat Yang–Mills connections on a free module of rank one, which were studied by
Connes–Rieffel [5]. These are expressed in terms of the theta and eta functions on
the moduli space, which is a torus.

In [11], Perrot has studied a K-theoretic index theorem for families of spectral
triples parametrized by the moduli space of gauge equivalent classes of Hermitian
connections on E. He makes the restrictive assumption that the gauge group G is
contained in the unitary group of A, which is unnecessary in our context here, and
he also does not construct the determinant line bundle of the index bundle and its
geometry, which is the main study in this article.

1. Preliminaries

In this section, we recall the construction of the determinant line on the Banach
manifold of all bounded Fredholm operators acting between separable Hilbert spaces.
This motivates the constructions used later in the article.

Recall that a Fredholm operator T W H0 ! H1 between two infinite dimensional
Hilbert spaces H0, H1, is a bounded linear operator such that dim.ker.T // < 1
and dim.coker.T // < 1. This implies in particular that Im.T / is a closed subspace
of H1. Let F D F .H0;H1/ denote the space of all Fredholm operators between
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two infinite dimensional Hilbert spaces H0, H1. It follows from Atkinson’s theorem
that F is an open subset of the Banach space B.H0;H1/, of all bounded linear
operators between the two Hilbert spaces, which establishes in particular that F is a
Banach manifold modeled on the Banach space B.H0;H1/. It has countably many
connected components labeled by, index W �0.F / �!Š Z, where for T 2 F ,

index.T / D dim.ker.T // � dim.coker.T //:

We want to review the construction of a smooth line bundle DET ! F , called the
determinant line bundle, such that DETT D ƒmax.ker.T //� ˝ƒmax.coker.T //. The
obvious definition does not work since dim.ker.T // jumps as T varies smoothly.

This problem was essentially fixed in [12]. For the convenience of the reader
we elaborate on his solution. Let Grfin denote the space of all finite dimensional
subspaces of H1. Consider the open cover fUF g of F , where F 2 Grfin and UF D
fT 2 F j Im.T / C F D H1g. For T 2 UF , consider the exact sequence of finite
dimensional vector spaces

0 ! ker.T / ! T �1F
T�! F ! coker.T / ! 0: (1)

Since index is constant on smooth families, and the rank ofF is fixed onUF , therefore
the rank of T �1F is constant on smooth families in UF . So EF ! UF defined by
EF

T D T �1F , is a smooth vector bundle. The virtual vector bundle INDEXF ! UF

is defined to be the pair .EF ; F /, where F denotes the trivial vector bundle over UF

with fibre F .
Using the inner products on Hi ; i D 0; 1, the sequence in equation (1) splits,

ker.T /˚ F Š T �1F ˚ coker.T /, therefore

ƒmax.ker.T //� ˝ƒmax.coker.T // Š ƒmax.T �1F /� ˝ƒmaxF:

The determinant line bundle, DETF ! UF , is defined as the smooth line bundle,
DETF D det..INDEXF /�/, i.e., DETF D ƒmax.EF /� ˝ƒmaxF .

Suppose that T 2 UE \ UF . Then we have the exact sequences

0 �� ker.T /

D
��

�1 �� T �1F ˚ .E n F /
'

��

T ˚1 �� F CE

D
��

�� coker.T /

D
��

�� 0

0 �� ker.T /
�2 �� T �1E ˚ .F nE/ T ˚1 �� F CE �� coker.T / �� 0,

where ' is uniquely defined so as to make the diagram commute. Here by .E nF /we
mean the quotientE=.E\F /, etc. By the Five Lemma, the map ' is an isomorphism,
and therefore, DETF D ƒmax.EF /� ˝ƒmax.E nF /� ˝ƒmax.F CE/ and DETE D
ƒmax.EE /� ˝ƒmax.F nE/� ˝ƒmax.F CE/ are naturally isomorphic viaƒmax'˝1
over UE \UF . Here we have used the fact thatƒmax.V /� ˝ƒmax.V / is canonically
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trivial for any vector bundle V . By the clutching construction, it follows that DET
defines a smooth line bundle over the union UE [ UF .

To prove that DET defines a smooth line bundle over the whole of F , we need to
show that on triple overlaps UE \UF \UG , there are natural isomorphisms between
the determinant line bundles DETE , DETF and DETG . The proof is similar to the
case of double overlaps. Suppose that T 2 UE \UF \UG . Then we have the exact
sequences

0 �� ker.T /

D
��

�1 �� T �1G ˚ .E C F nG/
'1

��

T ˚1�� E C F CG

D
��

�� coker.T /

D
��

�� 0

0 �� ker.T /

D
��

�1 �� T �1F ˚ .E CG n F /
'2

��

T ˚1�� E C F CG

D
��

�� coker.T /

D
��

�� 0

0 �� ker.T /
�2 �� T �1E ˚ .F CG nE/ T ˚1�� E C F CG �� coker.T / �� 0,

where 'j , j D 1; 2, is uniquely defined so as to make the diagram commute. By the
Five Lemma, the map 'j , j D 1; 2, is an isomorphism, and therefore,

DETG D ƒmax.EG/� ˝ƒmax.E C F nG/� ˝ƒmax.E C F CG/

and

DETF D ƒmax.EF /� ˝ƒmax.E CG n F /� ˝ƒmax.E C F CG/

are naturally isomorphic via ƒmax'1 ˝ 1 over UE \ UF \ UG , where we have used
the fact that ƒmax.V /� ˝ ƒmax.V / is canonically trivial for any vector bundle V .
Similarly,

DETF D ƒmax.EF /� ˝ƒmax.E CG n F /� ˝ƒmax.E C F CG/

and

DETE D ƒmax.EE /� ˝ƒmax.F CG nE/� ˝ƒmax.E C F CG/

are naturally isomorphic via ƒmax'2 ˝ 1 over UE \ UF \ UG . Therefore DETG ,
DETF and DETE are canonically identified on the overlaps UE \UF \UG . By the
clutching construction, it follows that DET defines a consistent smooth line bundle
over the union UE [ UF [ UG . Since E, F and G are arbitrary finite dimensional
subspaces of H1, it follows that DET defines a smooth line bundle on the Banach
manifold F .

It is a fact that F is homotopy equivalent to Z � BU.1/, so that by Bott perio-
dicity, �2j .F / Š Z and �2j C1.F / D f0g for j � 0. So by Hurewicz’s theorem,
H 2.F0;Z/ Š Z, where F0 is the connected component of F consisting of Fredholm
operators of index equal to zero. It is a fact that the first Chern class, c1.DET/ is the
generator of H 2.F0;Z/ Š Z.
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2. Stability of spectral triples coupled to a Hermitian finite projective module
with Hermitian connection

The notion of a spectral triple was introduced by Connes [2] as the criteria defining
a noncommutative spin geometry. A slightly weakened version, dropping the pos-
tulate of the existence of a real structure, was given by Moscovici [10] which was
suited to describe more general Poincaré dual pairs of algebras, and in particular
noncommutative spinc geometries.

LetA be a separable, unitalC �-algebra acting on a separable Hilbert space H . Let
D be an unbounded self-adjoint operator on H . Let A be a smooth unital subalgebra
of A. Then .A;H ;D/ is said to be a spectral triple if D has compact resolvent and
ŒD; a� is a bounded operator on H for all a 2 A, and .A;H ;D/ is said to be even if
there is a self-adjoint involution on H with respect to which the action of A is even
and D is an odd operator. Otherwise the spectral triple is said to be odd. We begin
by considering the even case.

Let E be a finite projective (right-)module over A. A Hermitian structure on E
is a sesquilinear map . � ; � / W E �E ! A satisfying the following conditions:

(1) .�a; �b/ D a�.�; �/b for all �; � 2 E and a; b 2 A;

(2) .�; �/ � 0;

(3) E is self-dual with respect to . � ; � /.
Consider the special case of the free A-module E0 D Aq which has a canon-

ical Hermitian structure given by .�; �/ D Pq
1 �

�
j �j for all � D .�1; : : : ; �q/, � D

.�1; : : : ; �q/ 2 E0.
Let E be a finite projective (right) module over A. If we write E as a direct

summand E D eAq of a free module E0, where e 2 Mq.A/ is a self-adjoint
projection. Then E has a Hermitian structure, which is obtained by restricting to E
the Hermitian structure on E0 defined above. That is, every finite projective module
E over A has a Hermitian structure.

Consider the A-bimodule of 1-forms on A, �1
D.A/ ´ fP aj ŒD; bj � j aj ; bj 2

Ag. A Hermitian connection on E is a C-linear map r W E ! E ˝A �1
D.A/

satisfying the following:

(1) r.�a/ D r.�/aC � ˝ da for all � 2 E, a 2 A (Leibniz property).

(2) .�;r�/ � .r�; �/ D d.�; �/ for all �; � 2 E, where da D ŒD; a� for all a 2 A

(Hermitian property).

If r.�/ D P
�j ˝ !j , with �j 2 E, !j 2 �1

D.A/, then .r�; �/ D P
!�

j .�j ; �/.
An example of a Hermitian connection is the Grassmannian connection r0 on

E D eAq given by r0.�/ D ed�, where d� D .d�1; : : : ; d�q/. Also, any two
Hermitian connections differ by a self-adjoint element of EndA.E/ ˝A �1

D.A/.
That is, the space of all Hermitian connections on E is an affine space CE with
associated vector space EndA.E/˝A �

1
D.A/.
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Given a Hermitian finite projective module E over A, we can form the Hilbert
space E ˝A H by completing the algebraic tensor product with respect to the inner
product h�1 ˝ �1; �2 ˝ �2i D h�1; .�1; �2/�2i for all �j 2 E, �j 2 H .

Given such a pair .E;r/, one can define a twisted operator DE;r on the Hilbert
space E ˝A H by settingDE;r.� ˝ �/ D � ˝D.�/C r.�/� for all � 2 E, � 2 H .
Here, if r.�/ D P

�j ˝ !j , then r.�/� D P
�j ˝ !j .�/ 2 E ˝A H .

We have the following result.

Lemma 2.1. Let T be an unbounded self-adjoint operator on a Hilbert space H

and suppose that there is an operator S 2 �, where � denotes either the ideal of all
compact operators on H or a Schatten ideal on H , such that .iI C T /S � I 2 �.
Then .iICT /�1 2 �. Moreover, .iICRCT /S�I 2 � for any bounded self-adjoint
operator R, and therefore .iI CRC T /�1 2 �.

Proof. To prove this, note that

.iI C T /�1 D S �K.iI C T /�1;

where K D .iI C T /S � I 2 �. Therefore the right-hand side is in the ideal �,
as claimed. Since RS 2 � for any bounded self-adjoint operator R, it follows that
.iI CRC T /S � I 2 �, and therefore .iI CRC T /�1 2 �, as claimed.

Proposition 2.2 (Stability of spectral triples I). Let .A;H ;D/ be a spectral triple,E
be a finite projective A-module with Hermitian structure and Hermitian connection r.
Then .EndA.E/;E ˝A H ;DE;r/ is also a spectral triple. Moreover, if .A;H ;D/

is p-summable, then so is .EndA.E/;E ˝A H ;DE;r/.

Proof. First observe that .MN .C/˝ A;CN ˝ H ; 1˝D/ is a spectral triple for all
natural numbers N , where CN ˝ H Š AN ˝A H . So the result is true when E
is a free module and with the trivial connection. For simplicity of notation, denote
by D the operator I ˝ D. An arbitrary connection on the free module E is of the
form D C P

i ai ŒD; a
0
i �, where the term

P
i ai ŒD; a

0
i �, ai ; a

0
i 2 A, is a bounded

operator which we denote by R. Such perturbations of D will be referred as inner
fluctuations. The condition that the connection is Hermitian implies that R is self-
adjoint. By Lemma 2.1, it follows that .A;H ;D C R/ is again a spectral triple,
which is just the statement that spectral triples are stable under inner fluctuations.

Next we observe that there exists a projection e 2 MN .A/ for some natural
numberN such thatE D eAN . We want to show that .EndA.E/;E˝A H ;DE;r0

/

is a spectral triple, where r0 D eŒD; e� is the Grassmann connection and we have
used the simplified notation. Consider the compact operator S D e.iI C D/�1e.
Then

e.iI CD/eS D e.iI CD/e.iI CD/�1e D eŒ.iI CD/; e�e.iI CD/�1e C e
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so that e.iI C D/eS � e 2 K . By Lemma 2.1, it follows that e.iI C D/�1e D
.ieCeDe/�1 is a compact operator, that is, .EndA.E/;E˝AH ;DE;r0

/ is a spectral
triple. This along with the stability of spectral triples under inner fluctuations as
proved above implies the result for arbitrary connections on E. Replacing the ideal
of compact operators K by Schatten ideals we obtain the summability result.

3. Universal families of spectral triples and determinant line bundles

We follow a setup that is analogous to that of Freed [6], where it was done in the
classical case of families of Dirac operators on a smooth manifold. This noncommu-
tative geometry data will enable us to define the determinant line bundle associated
to a natural family of spectral triples.

3.1. Noncommutative geometry data for determinant line bundles:

(1) a spectral triple, .A;H ;D/;

(2) a Hermitian finite projective module E over A;

(3) a gauge group G , which is a Lie subgroup of the group AutA.E/ of automor-
phisms of E such that G acts smoothly and freely on CE as follows: for � 2 E,
r 2 CE and g 2 G , define g � r.�/ ´ .g�1 ˝ 1/r.g � �/.

Remarks 3.1. 1. There is an associated Z2-graded Hilbertian bundle E ˝A H over
CE=G .

2. Therefore one obtains a family of spectral triples .EndA.E/;E˝AH ;DE;ry /,
y 2 CE=G . For ease of notation, denote Dy D DE;ry

. Then D can be viewed as
an odd degree bundle map D W E ˝A H ! E ˝A H .

3. Under our assumptions, the quotient CE=G is a smooth manifold. If B is a
compact smooth finite dimensional submanifold of CE=G , then all of the noncom-
mutative data restrict to B .

4. In the case of the spectral triple for a spin manifold this is just the data for a
family of twisted Dirac operators.

The construction of the determinant line bundle due to Quillen [12] is briefly
adapted to our context in the remainder of the section. Consider the G -equivariant
family of spectral triples f.EndA.E/;E˝AH ;DE;r/ j r 2 CE g. The G -equivariant
family of finite-dimensional spaces kerDC

E;r � E ˝A H C and kerD�
E;r � E ˝A

H � defines a virtual bundle Index.DE;rE / over B , which is the index bundle for the
family whose fibre at r is the virtual vector space Index.DE;rE /r D kerDC

E;r �
kerD�

E;r .

Now D�
E;rD

C
E;r and DC

E;rD�
E;r are self-adjoint operators, with discrete spec-

trum, and spec.D�
E;rD

C
E;r/ D spec.DC

E;rD�
E;r/. The simple argument to show
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this goes as follows. If e is an eigenvector of D�
E;rDE;r with eigenvalue �, then

DE;re is an eigenvector ofDE;rD�
E;r with eigenvalue �. Also if f is an eigenvec-

tor of DE;rD�
E;r with eigenvalue �, then D�

E;rf is an eigenvector of D�
E;rDE;r

with eigenvalue �. This shows that for � ¤ 0, DE;r is an isomorphism from the
�-eigenspace of D�

E;rDE;r to the �-eigenspace of DE;rD�
E;r (with inverse given

by 1
�
D�

E;r).

Let HC
r;�

denote the span of eigenvectors of D�
E;rD

C
E;r with eigenvalue < �,

and H�
r;�

denote the span of eigenvectors of DC
E;rD�

E;r with eigenvalue < �.
These are smooth vector bundles over the open subset U� D fr 2 B j � 62
spec.D�

E;rD
C
E;r/ D spec.DC

E;rD�
E;r/g.

It is easy to show that there is an exact sequence

0 ! ker.DC
E;r/ ! HC

r;�
! H�

r;� ! ker.D�
E;r/ ! 0:

This gives rise to a canonical isomorphism

ƒmax.ker.DC
E;r/

�/˝ƒmax.ker.D�
E;r// Š ƒmax.HC

r;�

�
/˝ƒmax.H�

r;�/

Therefore we obtain a smooth line bundle L� ´ ƒmax.HC
r;�

�
/˝ƒmax.H�

r;�
/ over

the open set U�. If � > �, then Hṙ;� D H˙
r;�

˚ H˙
r;�;�

, where HC
r;�;�

denotes

the span of the eigenvectors of D�
E;rD

C
E;r with eigenvalues lying in the open in-

terval .�; �/ and H�
r;�;�

denotes the span of the eigenvectors of DC
E;rD�

E;r with

eigenvalues lying in the open interval .�; �/. Therefore ƒmaxHṙ;� Š ƒmaxH˙
r;�

˝
ƒmaxH˙

r;�;�
. Since the restriction DC

E;r j
H

C

r;�;�

: HC
r;�;�

! H�
r;�;�

is an iso-

morphism as observed earlier, we deduce that det.DC
E;r j

H
C

r;�;�

/: ƒmaxHC
r;�;�

!
ƒmaxH�

r;�;�
is also an isomorphism. Therefore on the overlaps U� \ U�, there

is a canonical identification of the determinant line bundles L� and L� given by
s 7! s ˝ det.DC

E;r j
H

C

r;�;�

/. Since fU� j � 2 Qg is an open cover of B , we obtain

a global determinant line bundle L over B associated to the G -equivariant family of
spectral triples f.A; E ˝A H ;DE;r/ j r 2 CE g. We state this as a proposition.

Proposition 3.2 (Determinant line bundle). Let .A;H ;D/ be a spectral triple satisfy-
ing the assumptions in Sec. 3.1, andB a smooth compact submanifold of CE=G . Then
there is a smooth determinant line bundle L over B associated to the G -equivariant
family of spectral triples f.EndA.E/;E ˝A H ;DE;r/ j r 2 CE g, whose fibre at
r 2 B is naturally isomorphic to ƒmax.ker.DC

E;r/�/˝ƒmax.ker.D�
E;r//.
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4. Stability of regular spectral triples, the Quillen metric and determinant
section

The Quillen metric on the determinant line bundle is obtained by patching metrics
constructed on the open sets U�. As in the classical case this patching requires a
zeta regularization of the metrics on U�. This in turn requires further assumptions on
the spectral triple similar to the ones that Connes and Moscovici used. Let H 1 DT

n�1 DomjDjn; in this section we will assume that every a 2 A maps H 1 to itself.

Definition 4.1. 1. A spectral triple .A;H ;D/ is said to be regular if A and ŒD;A�
is contained in the domain of ık for all k. Here ı is the derivation a 7! ŒjDj; a�.

2. For a regular spectral triple .A;H ;D/ let B0 denote the algebra generated
by 	 , Sign.D/, ık.a/, ık.ŒD; a�/, a 2 A, k � 0. The dimension spectrum of a
p-summable regular spectral triple .A;H ;D/ is the smallest discrete subset † � C
with the property that all the zeta functions


.s; a/ D Tr.ajD C P j�s/; a 2 B0; s 2 C; Re.s/ > p

have meromorphic continuations to C with poles contained in †, where P denotes
the orthogonal projection onto the nullspace of D.

.A;H ;D/ is said to have simple dimension spectrum if the associated zeta func-
tions 
.s; a/ have only simple poles, for all a 2 B0.

Our next stability result is the following.

Proposition 4.2 (Stability of regular spectral triples). Let .A;H ;D/ be a regu-
lar spectral triple with simple dimension spectrum †, and let E be a finite pro-
jective A-module with Hermitian structure and Hermitian connection r. Then
.EndA.E/;E ˝A H ;DE;r/ is also a regular spectral triple with simple dimension
spectrum †0 contained in † � N. Moreover, if 0 … †, then 0 … †0.

We defer the proof of this proposition to §4.2 and §4.3.

4.1. Noncommutative geometry data for the Quillen metric and the determinant
section. We next modify the noncommutative geometry data given in Section 3.1,
which will enable us to define the Quillen metric on the determinant line bundle and
also to define the determinant section:

(1) a regular spectral triple, .A;H ;D/ such that zero is not in the simple dimension
spectrum;

(2) a Hermitian finite projective module E over A;

(3) a gauge group G , which is a Lie subgroup of the group AutA.E/ of automor-
phisms of E such that G acts smoothly and freely on CE as follows: for � 2 E,
r 2 CE and g 2 G , define g � r.�/ ´ .g�1 ˝ 1/r.g � �/.
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To simplify notation, we will denote 
.s/ ´ 
.s; 1/. Since by the hypotheses
above 0 is not in the dimension spectrum † of our regular spectral triple .A;H ;D/,
it enables us to define the derivative at zero 
0.0/. In particular, the regularized
determinant det.D�D/ D e�� 0.0/ makes sense and is defined to be zero if 0 2
spec.D/. Also, if 
u.s/ D Tr.�Œu;1�.jDj/jD0j�s/ for u > 0 and u … spec.jDj/,
where �Œu;1�.jDj/ denotes the spectral projection of jDj, then there is a simple
relationship between the two zeta functions


.s/ D
X

0<�<u

1

�s
C 
u.s/; � 2 spec.jDj/:

Since
P

0<�<u
1

�s , � 2 spec.jDj/, is an entire function, it follows that 
u.s/ also has
an analytic continuation to C n†, so that in particular the derivative at zero 
0

u.0/ is
defined. Moreover, Proposition 4.2, we see that the 
0.0;r/ and 
0

u.0;r/ are defined,
where 
u.s;r/ D Tr.�Œu;1�.jDE;r j/jD0

E;r j�s/ for u … spec.jDE;r j/ and where
�Œu;1�.jDE;r j/ denotes the spectral projection of jDE;r j and 
.s;r/ D 
0.s;r/.

With the geometric data as given above we will proceed to first construct the
Quillen metric on the determinant line bundle L. Using the notation of Section 3.1,
we are given a Hermitian inner product onE˝A H , which induces Hermitian metrics
on the vector bundles H�, since H�;r is a finite dimensional subspace of the Hilbert
space E ˝A H for each r 2 CE . Let g0

� denote the induced Hermitian metric
on the determinant line bundle L� over the open set U�. Due to the canonical
identification of the determinant line bundles L� and L� over U� \ U� given by
s 7! s ˝ det.DC

E;r j
H

C

r;�;�

/, where � > �, we see that

g0
�.s; s/ D g0

�.s; s/ � � Q
�<�<�

�2spec.DE /

�
�2
:

Therefore the induced Hermitian metric g0
�

does not define a smooth Hermitian
metric on L but can, however, be modified as in [12] to give a smooth Hermitian
metric g on L, called the Quillen metric, in the following way. At r 2 U�, define
g� D g0

�
:e�� 0

�
.0;r/. Then for r 2 U� \ U�, since

e�� 0
�

.0;r/ D e�� 0
�.0;r/

� Q
�<�<�

�2spec.DE;r /

�
�
;

we see that g� D g� on the overlapU� \U�, showing that gL ´ g defines a smooth
Hermitian metric on the determinant line bundle L.

Proposition 4.3 (Quillen metric on the determinant line bundle). Let .A;H ;D/ be
a regular spectral triple with dimension spectrum not containing zero. Let B be a
compact submanifold of CE=G . Then there is a smooth Hermitian metric gL (the
Quillen metric) on the determinant line bundle L over B associated to the G -equi-
variant family of spectral triples f.EndA.E/;E ˝A H ;DE;r/ j r 2 CE g.
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We next describe the determinant section of L over the open set U� \ U0. Let
f 1; : : : ;  ng be a basis of eigenvectors in H C

�
and let f �

1 ; : : : ;  
�
n g be the dual basis.

Then the determinant section is det.DC
E;r;�

/ D . �
1 ^� � �^ �

N /˝.D 1^� � �^D N /.
On the overlap U� \ U� \ U0, it is easy to see that

det.DC
E;r;�/ D det.DC

E;r;�
/
� Q

�<�<�
�2spec.DE /

�
�
:

It follows that on the open setU0 there is a smooth section det.DE / of the determinant
line bundle L.

Proposition 4.4 (Determinant section of the determinant line bundle). Let .A;H ;D/

be a regular spectral triple with dimension spectrum not containing zero. Let B be a
compact submanifold of CE=G . Then there is a smooth determinant section det.DE /

of the determinant line bundle L over B \U0 associated to the G -equivariant family
of spectral triples f.EndA.E/;E ˝A H ;DE;r/ j r 2 CE g.

4.2. Proof of Proposition 4.2. We begin by proving the following special case of
Proposition 4.2.

Proposition 4.5 (Stability of regular spectral triples). Let .A;H ;D/ be a regu-
lar spectral triple with simple dimension spectrum †, let E be a finite projective
A-module with Hermitian structure and Hermitian connection r. In addition, we
assume that 0 … spec.D/ and 0 … spec.DE;r/. Then .EndA.E/;E˝A H ;DE;r/ is
also a regular spectral triple with simple dimension spectrum†0 contained in†�N.
Moreover, if 0 … † then 0 … †0.

To prove regularity we will use Higson’s characterization of regularity. For that
we recall the following definition.

Definition 4.6. Let .A;H ;D/ be a spectral triple such that A maps H 1 to itself.
The algebra of differential operators D.A; 
/ is the smallest algebra of operators
on H 1 closed under the operation T 7! Œ
; T � containing A and ŒD;A�. Here 

denotes D2.

This algebra is filtered as follows. The elements of A and ŒD;A� have order zero
and the operation Œ
; � � raises order at most by one. Thus Dk , the space of operators
of order at most k, is defined inductively as follows:

D0 D algebra generated by A and ŒD;A�,
D1 D D0 C Œ
;D0�C D0Œ
;D0�,
Dk D D0 C Œ
;Dk�1�C D0Œ
;Dk�1�C

Pk�1
j D1 Dj Dk�j .

Definition 4.7. A spectral triple .A;H ;D/ satisfies the basic estimate if for every
differential operator X 2 Dk there is an � > 0 such that for all v 2 H 1,

kDkvk C kvk � �kXvk:
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Theorem 4.8 (Higson, Theorem 4.26, [9]). Let .A;H ;D/ be a spectral triple such
that every a 2 A maps H 1 to itself. Then this spectral triple is regular iff it satisfies
the basic estimate.

Proof of Proposition 4.5. For notational convenience let us denoteDE;r byD0. Let

0 D D02 and D.EndA.E/;


0/ be the associated differential algebra with the fil-
tration D 0. Then note that D 0

k
� Dk . Therefore .EndA.E/;E ˝A H ;D0/ satisfies

the basic estimate hence regularity.
Now we proceed to the stability of the dimension spectrum. This is the final part

of Proposition 4.5. We will divide this in two cases. First let us tackle the case of free
modules. Then if necessary by considering matrices with entries from A we may
assume that E D A.

Lemma 4.9. Let T 2 B and 0 < Re.�/ < minfd 2 �.
/g. Then:

(a) .� �
/�1T D Pn
kD1

Pk
j D0 TjkjDjj .� �
/�1�k C Rn.�; T / where Tjk D�

k
j

�
2j ı2k�j .T /.

(b) kRn.�; T /k1 < C max.jIm�j; 1/�n=2.

(c) The function z 7!
Z C Ci1

C �i1 ��zRn.�; T /D.� �
/�1d� is holomorphic for

large enough n where C is a real number separating zero from the spectrum
of 
.

Proof. (a) To prove (a) note that

.� �
/�1T D T .� �
/�1 C Œ.� �
/�1; T �

D T .� �
/�1 C .� �
/�1Œ
; T �.� �
/�1

D P
0�k�n

T .k/.� �
/�1�k C .� �
/�1T .nC1/.� �
/�n:

Here the last equality is obtained by iterating the previous one k times, and the T .k/’s
are defined inductively by T .0/ D T and T .k/ D Œ
; T .k�1/�. For b 2 B we also
have the following relations:

Œ
; b� D jDjı.b/C ı.b/jDj;
jDjb D bjDj C ı.b/:

Combining these two we get for T 2 B,

T .k/ D 2ı.T .k�1//jDj C ı2.T .k�1//:

Applying this repeatedly we obtain that

T .k/ D P
0�j �k

�
k
j

�
2j ı2k�j .T /jDjj D TjkjDjj :
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(b) To prove (b) note that

kjDj.� �
/�1=2k � sup
d2�.jDj/

d

j� � d2j

D sup
d2�.jDj/

s
d2

.Re.�/ � d2/2 C Im.�/2

� sup
d2�.jDj/

s
d2

.Im.�/2.Re.�/ � d2/2/
if Im.�/ > 1

� 1

j Re.�/j1=4j.1 � p
Re.�/j/

and is less than or equal to a constant when Im.�/ � 1. Also, for the trace norm we
have

k.� �
/�˛k1 � C

max .jIm.�/j; 1/˛=2
:

Therefore kjDj.� � 
/�1=2k � C
max .jIm.�/j;1/

. Hence, for j � n one gets the trace
norm estimate

kjDjj .� �
/�nk1 � kjDjj .� �
/�j=2kk.� �
/�.n�j=2/k1

� C1

max .jIm.�/j; 1/n=2
:

Therefore the trace norm estimate for the remainder follows.
(c) The proof of (c) immediately follows from part (b).

LetD0 D DCB for some B 2 B. Then
0 D .DCB/2 D D2 CR D 
CR,
where R D DB C BD C B2. By the resolvent identity one has

.� �
0/�1 D .1 � .� �
/�1R/�1.� �
/�1

D .1 �X/�1.� �
/�1

D P
0�k�n

Xk.� �
/�1 CXnC1.1 �X/�1.� �
/�1;

(2)

where X D .� �
/�1R and we have used the identity

.1 �X/�1 D P
k�n

Xk CXnC1.1 �X/�1:

By hypothesis, for b 2 B, the function

Tr bjDj�2s W s ! Tr
�
b

Z C Ci1
C �i1 ��s.� �
/�1d�

�
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is well defined on the half plane Re.s/ > p, is analytic there, and has a meromorphic
continuation to C with poles contained in †. Here C is a real number separating
zero from the spectrum of 
 and 
0. We want to prove the same is true when 
 is
replaced by 
0 and that is achieved by analyzing the meromorphic continuation of
the difference Tr bjD0j�2z � Tr bjDj�2z . For that observe that by (2),

Tr bjD0j�2z � Tr bjDj�2z

D Tr b
� Z C Ci1

C �i1 ��z..� �
0/�1 � .� �
/�1/d�
�

D Tr b
� Z C Ci1

C �i1 ��z
� P

1�k�n

Xk.� �
/�1 CXnC1.1 �X/�1.� �
/�1
�
d�

�

Lemma 4.10. On any given right half plane, for large enough n the function

z 7! Tr
�
b

Z C Ci1
C �i1 ��zXnC1.1 �X/�1.� �
/�1d�

�
is holomorphic.

Proof. For a compact operator T let �n.T / be the nth largest singular value of T .
Let dn D �n.D

�1/. Then we have the following bounds

�n.X/ < Cdn; kXk D �1.X/ < C.jyj C 1/�1;

where y D Im.�/. We know
P
d

pC1
n is finite. Therefore by Hölder’s inequality

it follows that, for n large enough, the trace norm of XnC1.1 � X/�1.� � 
/�1 is
bounded by .j Im.�/j C 1/�k , which implies the result.

Lemma 4.11. For every k � 1,

z 7! Tr b
� Z C Ci1

C �i1 ��zXk.� �
/�1d�
�

defines a meromorphic function on C with poles contained in the set†�N ´ fs�n j
s 2 †; n � 0g. Furthermore, this function is regular at zero.

Proof. We will prove it for k D 1, in the general case the proof is similar. In this
case,

Tr b
� Z C Ci1

C �i1 ��zX.� �
/�1d�
�

D Tr b
� Z C Ci1

C �i1 ��z.� �
/�1DB.� �
/�1d�
�

C Tr b
� Z C Ci1

C �i1 ��z.� �
/�1BD.� �
/�1d�
�

C Tr b
� Z C Ci1

C �i1 ��z.� �
/�1B2.� �
/�1d�
�
:
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We want to show that each term admits a meromorphic continuation to the complex
plane with poles in † � N. The first two terms are similar and we will only tackle
the second term. From the analysis for the second term the result for the third term
will follow. By Lemma 4.9,

Tr b
� Z C Ci1

C �i1 ��z.� �
/�1BD.� �
/�1d�
�

D P
0�k�n

P
0�j �k

Tr b
� Z C Ci1

C �i1 ��zBjkjDjjD.� �
/�2�kd�
�

C Tr b
� Z C Ci1

C �i1 ��zRn.�; B/D.� �
/�1d�
�

D P
0�k�n

Tr b
P

0�j �k

Bjk Sign.D/
� �z

kC1

�jDj�z�kCj

C a holomorphic function on a right half plane

D P
0�k�n

� �z
kC1

� P
0�j �k


.z C k � j; b/P
0�j �k Bjk Sign.D/

C a holomorphic function on a right half plane;

where the first equality follows from Lemma 4.9 (a). Clearly poles of this function are
contained in†�N. The poles of this function are simple provided the zeta functions
involved have simple poles. Note that if we assume that 
.z; b/ has simple poles for
all b 2 B then we also get the regularity at zero.

These lemmas give an alternative proof of the following result in [3].

Corollary 4.12. Let .A;H ;D/ be a regular spectral triple with simple dimension
spectrum †. Suppose that 0 … spec.D/ and 0 … spec.D C T / for T 2 B0. Then
.A;H ;D C T / is also a regular spectral triple with simple dimension spectrum †0
contained in † � N. Moreover, if 0 … † then 0 … †0.

This proves Proposition 4.5 for the case when E is a finite free module. Let E D
pA, wherep is a projection in A, and q D .1�p/. ThenT D D�pDp�qDq 2 B0

andDCT D pDpCqDq. By the corollary above, we know that .A;H ; pDpCqDq/
is also a regular spectral triple with simple dimension spectrum†0 contained in†�N.
Now


.z; b/ D Tr.pbpjpDp C qDqj�z/ D Tr.pbpjpDpj�z/;

since pq D 0. Therefore, by Corollary 4.12, .pAp; pH ; pDp/ is also a regular
spectral triple with simple dimension spectrum †0 contained in † � N, where we
observe that EndA.E/ D pAp. This completes the proof of Proposition 4.5.

4.3. Removing the hypothesis “zero not in the spectrum”. We will now remove
the hypotheses 0 … spec.D/ and 0 … spec.D C T / in Corollary 4.12. The difficulty
lies in the fact that the orthogonal projection onto the nullspace of D C T , namely
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P0.D C T /, is not in any obvious way in the algebra B0 whenever T 2 B0. So we
will suitably enlarge the algebra B0 to accommodate these projections in such a way
that the enlarged algebra does not alter the meromorphic continuation properties of
the zeta functions.

Define the space of all smoothing operators

‰�1 ´ fa 2 B.H / j jDjkajDjl is bounded for all k; l � 0g:
Then ‰�1 is an ideal in the algebra fa 2 B.H / j a.H 1/ � H 1 and a 2T

n�1 Dom ıng.

Definition 4.13. Let B denote the algebra generated by B0 and ‰�1.

Proposition 4.14. The zeta functions z 7! 
.z; b/ D Tr.bjD C P0.D/j�z/, b 2 B

have the same meromorphic continuation properties as that of z 7! 
.z; b/, b 2 B0.

Proof. We begin by proving that z 7! 
.z; b/ is an entire function for b 2 ‰�1.
This follows from the fact that 
.z; b/ D Tr.bjD C P0.D/jkjD C P0.D/j�.kCz//

is holomorphic for Re.z/ > p � k for all k � 0. Here we have also used that
bjD C P0.D/jk is bounded whenever bjDjk is bounded for all k � 0.

Notice that ‰�1 is an ideal in B, therefore the proposition follows.

Lemma 4.15. The projections onto the nullspace of the operators of the formDCT

are smoothing operators for all T 2 B0.

Proof. Since P0.D/ is smoothing and DmP0.D/ D 0. To show that P0.D C T / is
smoothing it is enough to show that Dm .P0.D C T / � P0.D//D

l is bounded for
allm; l � 0. LetD0 D DCT for some T 2 B. Then
0 D .DCT /2 D D2 CR D

CR, where R D DT C TD C T 2. Note that by the Cauchy formula we have

Dm.P0.D
0/ � P0.D//D

l

D
I

Cr

d�Dm
�
.� �
0/�1 � .� �
/�1

�
Dl

D
I

Cr

d�Dm
� P

1�k�n

Xk.� �
/�1 CXnC1.1 �X/�1.� �
/�1
�
Dl ;

where X D .� �
/�1R and we have used the identity

.1 �X/�1 D P
k�n

Xk CXnC1.1 �X/�1:

Here Cr is a circle of radius r centered at the origin in C, where r > is small.
We analyse the expression when k D 1 as well as the remainder term (the other

terms can be analysed similarly):I
Cr

d�Dm.� �
/�1.DT C TD C T 2/.� �
/�1Dl
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is equal to I
Cr

d�Dm.� �
/�1.ŒD; T �C 2TD C T 2/.� �
/�1Dl :

We analyse the TD-termI
Cr

d�Dm.� �
/�1TD.� �
/�1Dl :

Applying part (a) of Lemma 4.9, we obtain

X
0�k�n

X
0�j �k

I
Cr

DmTjkjDjjD.� �
/�2�kDld�

C
I

Cr

DmRn.�; B/D.� �
/�1Dld�:

Upon commutingDm and Tjk , at the expense of adding more commutator terms, we
get terms of the form

Tjk

I
Cr

DmClCj C1Sign.D/.� �
/�2�kd�;

which clearly vanish, together with a remainder termI
Cr

DmRn.�; B/D.� �
/�1Dld�:

The remainder is bounded since it contains .� � 
/�1�n, which dominates Dm

whenever mC l � nC 1.

Lemma 4.16. The projections onto the nullspace of the operatorsDE;r are smooth-
ing operators.

Proof. Let E D pA, where p is a projection in A and let r0 D pdp be the
Grassmanian connection. We need to show that the projection onto the nullspace of
DE;r0

D pDp is a smoothing operator. If q D .1�p/, thenT D pDpCqDq�D 2
B0. It follows that pDp C qDq is an operator of the form as in Lemma 4.15.
Therefore the projection onto the nullspace of pDp C qDq is a smoothing operator.
But P0.pDp/ is just pP0.D/, which is smoothing since p 2 B0 and smoothing
operators form an ideal. A general connection r on E is of the form r0 C T and so
DE;r is of the formDE;r0

CT . Applying Lemma 4.15, we deduce the lemma.

Proposition 4.14 and Lemmas 4.15, 4.16 imply Proposition 4.2, which is just
Proposition 4.5 with the hypotheses “zero not in the spectrum” removed.
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5. An example

Here we study the case of the noncommutative torus, for which the family of spectral
triples is regular, and therefore the determinant line bundle L has a Quillen metric
and determinant section over the moduli space of flat rank 1 connections, which we
calculate explicitly in terms of theta and eta functions on the moduli space which is
a torus.

Recall that the noncommutative torusA� is the universal C�-algebra generated by
two unitariesU ,V satisfying theWeyl commutation relationsUV D ei�V U for fixed
� 2 R. There is a natural smooth subalgebra A1

�
called the smooth noncommutative

torus, which is defined as those elements in A� that can be represented by infinite
power series f D P

.m;n/2Z2 a.n;m/ U
mV n; with .a.m;n// 2 �.Z2/, the Schwartz

space of rapidly decreasing sequences on Z2.
We next briefly recall the space of differential forms on A1

�
, which is defined

by �j .A1
�
/ D A1

�
˝ƒj .C2/. We remark that there are two notions of differential

forms ([2], [5]) and in the context of the noncommutative torus one knows [7] through
explicit computations that they agree. The differential d is defined as d.a ˝ ˛/ ´
ı1.a/˝e1 ^˛Cı2.a/˝e2 ^˛ where a 2 A1

�
, ˛ 2 ƒ�.C2/, and ej , j D 1; 2, is the

canonical basis of C2. Here the standard derivations are defined on the generators by
ı1.U / D 2�U , ı2.V / D 2�V , ı1.V / D ı2.U / D 0.

We now consider the space of all flat Hermitian connections on the trivial rank
one free module over A1

�
. The space of all such connections is an affine space CA1

�

with associated vector space Z1.A1
�
/, which is the vector space of closed 1-forms

on A1
�

. Let U.A1
�
/ denote the space of all unitary elements in A1

�
. Then by [5],

Proposition 5.7, we know that the quotient space CA1
�
=U.A1

�
/ is homeomorphic to

the torus T 2. This is the analogue of the Jacobian variety for the noncommutative
torus A1

�
.

We next recall the spectral triple on A1
�

; cf. [8], Section 4. Let H D H C ˚ H �,
where H ˙ are both copies ofL2.A� ; tr/with tr the canonical trace onA� . Fix � 2 C
such that Im.�/ > 0, and define @ D @	 D ı1 C �ı2 so that @� D �ı1 � N�ı2. Finally,
let D D �

0 @�

@ 0

�
. Then a spectral triple for A1

�
is .A1

�
;H ;D/. From what follows,

this is a regular spectral triple.
The flat Hermitian connections are r D r	 D .ı1 C u/˝ e1 C �.ı2 C v/˝ e2,

where u; v 2 Œ0; 1/, being thought of as parametrizing the Jacobian variety. Then
setting @r D .ı1 C u/ C �.ı2 C v/, we see that @�r D �.ı1 C u/ � N�.ı2 C v/

and Dr D
�

0 @�
r

@r 0

�
. Moreover, D2 D

�
@�

r
@r 0

0 @r@�
r

�
and the vectors UmV n form

an orthonormal basis of eigenvectors for both @�r@r and @r@�r . We compute the
eigenvalues

@�r@r.UmV n/ D @r@�r.UmV n/

D �..ı1 C u/C �.ı2 C v//..ı1 C u/C N�.ı2 C v//.UmV n/



The geometry of determinant line bundles in noncommutative geometry 577

D � 4�2

Im.�/2
j.mC u/ � �.nC v/j2:

The associated zeta function


.s/ D
X
m;n

Im.�/2s

4s�2s
j.mC u/ � �.nC v/j�2s

is holomorphic for Re.s/ 	 0 and is precisely the 
-function considered in the proof
of Theorem 4.1 of [13], where it arose in a completely different context. Using the
results from there, it follows that 
.s/ has a meromorphic continuation to C, with no
pole at s D 0, showing in particular that the spectral triple that we started out with
on the noncommutative torus is a regular spectral triple such that zero is not in the
dimension spectrum. Moreover, the Quillen norm of the determinant section of the
determinant line bundle L over the Jacobian variety is

T 2 3 .u; v/ 7! kdet.D/kL.u; v/ D e�� 0.0/ D
ˇ̌̌
e
iv2	 �1.u � �v; �/

�.�/

ˇ̌̌
2 R�0;

where the theta function is defined as

�1.w; �/ D ��.�/e
i.wC	=6/
1Q

kD�1
.1 � e2
i.jkj	��kw/;

where �k D Sign.k C 1
2
/, and the Dedekind eta function is defined by

�.�/ D e
i	=12
1Q

kD1

.1 � e2
ik	 /:

From these formulae, one immediately recovers the determinant section as in the text
of the paper. Also by the explicit knowledge of the eigenvalues and the determinant,

e�� 0
�

.0/ D
ˇ̌̌
e
iv2	 �1.u � �v; �/

�.�/

ˇ̌̌� Q
0<q<�

4
2

Im.	/2 j.mC u/ � �.nC v/j2��1

where q D 4
2

Im.	/2 j.mCu/� �.nC v/j2, determining the Quillen metric on L in this
case over the open subsets U� of the Jacobian torus.
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