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Topological graph polynomials and quantum field theory
Part I: heat kernel theories
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Abstract. We investigate the relationship between the universal topological polynomials for
graphs in mathematics and the parametric representation of Feynman amplitudes in quan-
tum field theory. In this first article we consider translation invariant theories with the usual
heat-kernel-based propagator. We show how the Symanzik polynomials of quantum field
theory are particular multivariate versions of the Tutte polynomial, and how the new polyno-
mials of noncommutative quantum field theory are special versions of the Bollobás–Riordan
polynomials.
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1. Introduction

Quantum field theory lies at the root of modern physics. After the success of the
standard model in describing particle physics, one of the most pressing open question
is how to derive an extended version of field theory which encompasses the quantiza-
tion of gravity. There are several attempts for this, among which string theory, loop
gravity and noncommutative geometry are the best known. In each of these attempts
one of the key problems is to relax the constraints that formulate quantum field theory
on a particular space-time geometry.

What is certainly more fundamental than geometry is topology and in particular
discrete structures on finite sets such as the species of combinatorists [5]. The most
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prominent such species in field theory is the species of Feynman graphs. They were
introduced by Feynman to label quantum field perturbation theory and to automatize
the computation of connected functions. Feynman graphs also became an essential
tool in renormalization, the structure at the heart of quantum field theory.

There are two general canonical operations on graphs namely the deletion or con-
traction of edges. Accordingly perhaps the most important quantity to characterize
a graph is its Tutte polynomial [66], [19]. This polynomial obeys a simple recur-
sion rule under these two basic operations. It exists in many different variations, for
instance multivariate versions, with possible decorations at vertices. These polyno-
mials have many applications, in particular to statistical physics. For recent reviews
see [63], [24], [25].

In recent years the Tutte polynomial has been generalized to the category of ribbon
graphs, where it goes under the name of the Bollobás–Riordan polynomial [7], [8],
[25]. Around the same time physicists have increasingly turned their attention to
quantum field theory formulated on noncommutative spaces, in particular flat vector
spaces equipped with the Moyal–Weyl product [22]. This type of quantum field theory
is hereafter called NCQFT. It happens that perturbation theory for such NCQFT’s is
no longer labeled by ordinary graphs but by ribbon graphs, suggesting a possible
connection to the work of Bollobás–Riordan.

Quantum field perturbation theory can be expressed in several representations.
The momentum representation is the most common in the text books. The direct
space representation is closer to physical intuition. However it is the parametric
representation which is the most elegant and compact one. In this representation, after
the integration of internal position and/or momentum variables has been performed
explicitly, the result is expressed in terms of the Symanzik polynomials. There is an
extensive literature on these polynomials (see, e.g., [49], [38] for classical reviews).
These polynomials only depend on the Schwinger parameters. Space-time no longer
enters explicitly into that representation except through its dimension which appears
simply as a parameter.

This observation is crucial for several key applications in QFT which rely on
dimensional interpolation. Dimensional regularization and renormalization was a
crucial tool in the proof by ’t Hooft and Veltmann that non-Abelian gauge theories
are renormalizable [36]. The Wilson–Fisher � expansion [68] is our best theoretical
tool to understand three dimensional phase transitions. Dimensional regularization is
also used extensively in the works of Kreimer and Connes [44], [16] which recast the
recursive BPHZ forest formula of perturbative renormalization into a Hopf algebra
structure and relate it to a new class of Riemann–Hilbert problems [17].

Following these works, renormalizability has further attracted considerable inter-
est in the recent years as a pure mathematical structure. The renormalization group
ambiguity reminds mathematicians of the Galois group ambiguity for roots of al-
gebraic equations [11]. Hence the motivations to study quantum field theory and
renormalization come no longer solely from physics but also at least partly from
number theory.
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The fact that the parametric representation is relatively independent of the details
of space-time makes it also particularly appealing as a prototype for the tools we need
in order to quantize gravity. The point of view of loop gravity is essentially based on
the diffeomorphism invariance of general relativity. In the spin foam or group field
theory formalism amplitudes are expressed as discrete sums associated to combina-
toric structures which generalize Feynman graphs. They are in fact generalizations
of ribbon graphs. To extend the parametric representation and eventually the theory
of renormalization to this context is a major challenge, in which some preliminary
steps have been performed [47].

In this article we uncover the relationship between universal polynomials of the
Tutte and Bollobás–Riordan type and the parametric representation in quantum field
theory. The Symanzik polynomials that appear in ordinary commutative QFT are
special multivariate versions of Tutte polynomials. The relation between Bollobás–
Riordan polynomials and the noncommutative analogs of the Symanzik polynomials
uncovered in [48], [34], [57] is new. This establishes a relation between NCQFT, com-
binatorics and algebraic topology. Recently the relation between renormalization and
topological polynomials was explored in [42] and [3]. We intend also to investigate
in the future the relation between Feynman amplitudes and knot polynomials.

The plan of this article is as follows. In the next section we give a brief introduc-
tion to graph theory and to Tutte-like polynomials. In the third section we derive the
parametric representation of Feynman amplitudes of QFT and give a new method to
compute the corresponding Symanzik polynomials. The deletion/contraction prop-
erty (2.3) of these polynomials is certainly not entirely new [6], [9]. But our method,
which starts from the phase-space representation of Feynman amplitudes, is inspired
by earlier work on NCQFT [34], [57] and introduces two main technical improve-
ments. One is the use of Grassmann variables to exploit the quasi-Pfaffian structure
of Feynman amplitudes. This quasi-Pfaffian structure was discovered in [34] in the
context of NCQFT but to our knowledge was never applied to the simpler case of
ordinary QFT. The second improvement is that we do not factor out as usual the
delta functions expressing global momentum conservation, because this requires a
non-canonical choice of a root for every connected graph. Instead we introduce
an infrared regularization in the form of a small harmonic potential at each vertex,
which leads to more elegant and canonical formulas. The corresponding generalized
Symanzik polynomials obey a transparent deletion/contraction relation, which allows
to identify them with particular multivariate Tutte polynomials. These polynomials
are close but not identical to the polynomials of [63]; we show how they both derive
from a more general “categorified” polynomial. The usual Symanzik polynomials
are simply recovered as the leading terms when the small harmonic potentials tend
to zero.

For completeness we also include a more standard way to compute the Symanzik
polynomials through x-space representation and the tree matrix theorem.

In the fourth section we introduce ribbon graphs and Bollobás–Riordan polynomi-
als. In the fifth and last section we define the first and second Symanzik polynomials
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of NCQFT and relate them to the Bollobás–Riordan polynomials, using again the
Pfaffian variables. Formulas for such polynomials were first sketched in [48], but
without proofs, nor relation to the Bollobás–Riordan polynomials.

In a companion paper we shall discuss generalizations of the Tutte and Bollobás–
Riordan polynomials that occur for non-translation invariant theories with propagators
based on the Mehler rather than the heat kernel. These theories appeared as the first
examples of renormalizable NCQFT’s [30], [29], [59], [33], [55] and they are the
most promising candidates for a fully non-perturbative construction of a field theory
in four dimensions [28], [21], [20], [56]. In this case the harmonic potentials on the
vertices are no longer needed since the Mehler kernel already contains a harmonic
potential for the propagators of the graphs.

2. Tutte polynomial

2.1. Graph theory, notations. A graph G is defined as a set of vertices V and of
edgesE together with an incidence relation between them. The number of vertices and
edges in a graph will be noted also V and E for simplicity, since our context always
prevents any confusion. Graph theorists and field theorists usually have different
words for the same objects so a little dictionary may be in order. We shall mostly
use in this review the graph theorists language. In Section 2.4 we introduce also
some enlarged notion of graphs, with decorations called flags which are attached
to the vertices of the graph to treat the external variables of physicists, plus other
decorations also attached to vertices called (harmonic) weights to regularize infrared
divergences. Generalizations to ribbon graphs will be described in Section 4.

edge flag self−loop

Figure 1. Basic building blocks of a graph.

Edges in physics are called lines (or propagators). Edges which start and end at
the same vertex are definitely allowed, and are called (self)-loops in graph theory and
tadpoles in physics. A proper graph, i.e., a graphG without such self-loops, together
with an arrow orienting each edge, can be fully characterized through its incidence
matrix �ve . It is the rectangular E by V matrix with indices running over vertices
and edges respectively such that

� �ve is C1 if e starts at v,

� �ve is �1 if e ends at v,

� �ve is 0 otherwise.
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It is also useful to introduce the absolute value �ve D j�vej These quantities can
be then generalized to graphs with self-loops by defining �ev D 0 for any self-loop e
and vertex v but �ev D 2 for a self-loop attached at vertex v and �ev D 0 otherwise.
The number of half-edges at a vertex v is called the degree of v in graph theory, noted
d.v/. Physicists usually call it the coordination number at v. A self-loop counts for
2 in the degree of its vertex so that d.v/ D P

e �ev .
An edge whose removal increases (by one) the number of connected parts of the

graph is called a bridge in graph theory and a one-particle-reducible line in physics.
A forest is an acyclic graph and a tree is a connected forest. A cycle in graph

theory is a connected subset of n edges and n vertices which cannot be disconnected
by removing any edge. It is called a loop in field theory.

Physicists understood earlier than graph theorists that half-edges (also called flags
in graph theory [40]) are more fundamental than edges. This is because they corre-
spond to integrated fields through the rule of Gaußian integration, which physicists
call Wick’s theorem. Feynman graphs form a category of graphs with external flags
decorating the vertices. They occur with particular weights, in physics called ampli-
tudes. These weights depend on the detail of the theory, for instance the space-time
dimension. A quantum field theory can be viewed the generating functional for the
species of such weighted Feynman graphs. In this article we shall reserve the conve-
nient word flag exclusively for the “external fields” decorations and always use the
word half-edge for the “internal half-edges”.

An edge which is neither a bridge nor a self-loop is called regular. We shall call
semi-regular an edge which is not a self-loop, hence which joins two distinct vertices.

There are two natural operations associated to an edge e of a graph G, pictured
in Figure 2:

� the deletion, which leads to a graph noted G � e,

� the contraction, which leads to a graph noted G=e. If e is not a self-loop, it
identifies the two vertices v1and v2 at the ends of e into a new vertex v12,
attributing all the flags (half-edges) attached to v1 and v2 to v12, and then it
removes e. If e is a self-loop, G=e is by definition the same as G � e.

A subgraphG0 ofG is a subset of edges ofG, together with the attached vertices.
A spanning forest of G is an acyclic subgraph of G that contains all the vertices of
G. If G is connected a spanning forest is in fact a tree of G and any such spanning
tree has jV j � 1 vertices.

As explained in the introduction a topological graph polynomial is an algebraic
or combinatoric object associated with a graph that is usually invariant under at
least graph homeomorphism. It encodes information of the graph and so enables
combinatoric and algebraic method to deal with graphs.

The Tutte polynomial [66] is one of the most general polynomial to characterize a
graph. It is defined under a simple rule through the deletion and contraction of edges.
It can be generalized to the larger theory of matroids [67].
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Figure 2. The contraction/deletion of a graph.

The original Tutte polynomial which is a function of two variables can be general-
ized in various ways to multi-variable polynomials which have many applications, in
particular in statistical mechanics where it evaluates the Potts model on graphs [63],
[24], [25]. These applications shall not be reviewed here.

We present first the two main equivalent definitions of the Tutte polynomial.
One direct way is to specify its linear recursion form under contraction of regular
edges (which are neither loops nor bridges), together with an evaluation on terminal
forms solely made of bridges and self-loops. Another definition is as a rank-nullity
generating function. By induction these definitions can be proved equivalent.

2.2. Tutte polynomial. The definition through a recursion relation is a reduction rule
on edges together with an evaluation for the terminal forms. The Tutte polynomial
may be defined by such a linear recursion relation under deleting and contracting
regular edges. The terminal forms, i.e., the graphs without regular edges are forests
(i.e., graphs made of bridges) decorated with an additional arbitrary number of self-
loops at any vertex. The Tutte polynomial evaluated on these terminal forms simply
counts separately the number of bridges and loops:

Definition 2.1 (Deletion/contraction). If G D .V;E/ is a graph, and e is a regular
edge, then

TG.x; y/ D TG=e.x; y/C TG�e.x; y/:
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For a terminal form G with m bridges and n self-loops the polynomial is defined by

TG.x; y/ D xmyn:

It is not obvious that Definition 2.1 is a definition at all since the result might de-
pend on the ordering in which different edges are suppressed through deletion/contrac-
tion, leading to a terminal form. The best proof that TG is unique and well defined
is in fact through a second definition of the Tutte polynomial as a global sum over
subgraphs. It gives a concrete solution to the linear deletion/contraction recursion,
which is clearly independent on the order in which edges are suppressed:

Definition 2.2 (Sum overs subsets). If G D .V;E/ is a graph, then the Tutte poly-
nomial of G, TG.x; y/ has the expansion

TG.x; y/ D P
A�E

.x � 1/r.E/�r.A/.y � 1/n.A/;

where r.A/ D jV j�k.A/ is the rank of the subgraphA and n.A/ D jAjCk.A/�jV j
is its nullity or cyclomatic number. In physicists language n.A/ is the number of
independent loops in A.

Observe that r.A/ is the number of edges in any spanning forest of A, and n.A/
is the number of remaining edges in A when a spanning forest is suppressed, so it is
the number of independent cycles in A.

Theorem 2.1. These two definitions are equivalent.

One can show that the polynomial defined by the sum over subsets obeys the
deletion/contraction recursion. One can also evaluate it directly and show that it
coincides with the first definition on the terminal forms with only loops and bridges.

There is a third definition of the Tutte polynomial through spanning trees (see,
e.g., [24]). This third definition involves ordering the edges of the graph. We think
that it may be also relevant in the context of field theory, in particular in relation with
the ordered trees or forests formulas of constructive theory [10], [2], [31], but this
point of view will not be developed here.

2.3. Multivariate Tutte polynomials. Multivariate Tutte polynomials can also be
defined through linear recursion or global formulas.

The ordinary multivariate Tutte polynomial ZG.q; fˇg/ has a different variable
ˇe for each edge e, plus another variable q to count vertices. We also write it most of
the time as ZG.q; ˇ/ for simplicity. It is defined through a completely general linear
deletion/contraction relation:

Definition 2.3 (Deletion/contraction). For any edge e (not necessarily regular),

ZG.q; fˇg/ D ˇeZG=e.q; fˇ � fˇegg/CZG�e.q; fˇ � fˇegg/: (2.1)
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This relation together with the evaluation on terminal forms completely defines
ZG.q; ˇ/, since the result is again independent of the order of suppression of edges.
The terminal forms are graphs without edges, and with v vertices; for such graphs,
ZG.q; ˇ/ D qv .

We can also define ZG.q; ˇ/ as a sum over subsets of edges.

Definition 2.4 (Sum over subsets).

ZG.q; ˇ/ D P
A�E

qk.A/
Q
e2A

ˇe;

where k.A/ is the number of connected components in the subgraph .V; A/.

One can prove as for the two variables Tutte polynomial that this definition is
equivalent to the first. In [63] this multivariate polynomial is discussed in detail.

To understand the relation between this multivariate and the ordinary Tutte poly-
nomial with two variables we multiply ZG by q�V , we set ˇe D y � 1 and
q D .x � 1/.y � 1/ and get

Œq�VZG.q; ˇ/�jˇeDy�1;qD.x�1/.y�1/ D .x � 1/k.E/�jV jTG.x; y/:

We consider also
q�k.G/ZG.q; ˇ/:

Taking the limit q ! 0 that is retaining only the constant term in q we obtain a sum
over maximally spanning subgraphs A, that is subgraphs with k.A/ D k.G/:

SG.ˇ/ D P
A maximally
spanning E

Q
e2A

ˇe:

If we now retain only the lowest degree of homogeneity in ˇ we obtain a sum
over maximally spanning graphs with lowest number of edges, ie maximally spanning
acyclic graphs or spanning forests of G.

FG.ˇ/ D P
F maximally

spanning forest of G

Q
e2F

ˇe:

Finally if we divide FG.ˇ/ by
Q
e2E ˇe and change variables to ˛e D ˇ�1

e ,
we obtain the “(Kirchoff–Tutte)–Symanzik” polynomial. This polynomial is usually
defined for connected graphs, in which case the sum runs over spanning trees T ofG.

UG.˛/ D P
T spanning

tree of G

Q
e 62T

˛e: (2.2)

This polynomial satisfies the deletion/contraction recursion

UG.˛/ D UG=e.˛/C ˛eUG�e.˛/ (2.3)
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for any regular edge e, together with the terminal form evaluation

UG.˛/ D Q
e self-loop

˛e; (2.4)

for any G solely made of self-loops and bridges. The deletion/contraction (2.3) can
be extended to general edges if we define U for disconnected graphs as the product
over the connected components of the corresponding U ’s and put the contraction of
any self-loop to 0.

The polynomial U appears in a key computation of QFT, namely that of the
parametric representation of the Feynman amplitude associated to the graph G. We
give a proof of this fact based on a new Pfaffian representation of Feynman amplitudes
together with harmonic weights at vertices so as to make the deletion/contraction rule
(2.3)–(2.4) particularly transparent.

But to define the second (Kirchoff–Tutte)–Symanzik polynomial as well as to
make the computation of the first Symanzik polynomial more canonical, we need
first to enlarge slightly our category of graphs to include some decorations at the
vertices.

2.4. Decorated graphs. Decorations are essential in physics to represent the con-
cept of external variables, which are ultimately those connected to actual experiments
and observations.

Graphs with integers attached to each vertex and their corresponding multivariate
polynomials WG.˛e; Nv/ have been considered in [50]. But to represent external
variables we need to replace the integerNv by a set ofNv disjoint objects,1 hereafter
called flags (see Section 2.1).

Each flag is attached to a single vertex. A momentum variable pf in Rd is asso-
ciated to each such flag. The incidence matrix can be extended to the flags, that is we
define �f v as C1 if the flag f is associated to the vertex v and 0 otherwise. The total
momentum incident to a subset S of the graph is then defined as

P
f

P
v2S �f vpf .

Observe that this momentum is defined for subgraphsS which may contain connected
components reduced to single vertices. For translation invariant QFT’s, global mo-
mentum conservation means that the condition pG D 0 must be fulfilled.

Similarly we attach to each vertex a number qv > 0 called the (harmonic) weight
of the vertex. The total weight of a subgraph S is

P
v2S qv .

The deletion/contraction relation is then extended to this category of graphs. The
deletion is easy but the contraction is a bit non-trivial. For a semi-regular edge joining
vertices v1 and v2 it collapses the two vertices into a single one v12, attaching to v12
all half-edges of v1 and v2. But it also attaches to v12 the union of all the flags attached
to v1 and v2, so that the total momentum incoming to v12 is the sum of the momenta
incoming to v1 and to v2. Finally the new weight of v12 is the sum qv1

C qv2
of the

weights of v1 and v2.

1In mathematics such a replacement is called a categorification of the integersNv .
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These decorated graphs are the natural objects on which to define generalized
Symanzik polynomials in field theory.

Remaining for the moment in the context of graph theory we can define the second
(Kirchoff–Tutte)–Symanzik polynomial for a connected graph as

Definition 2.5. Put

VG.˛; p/ D �1
2

P
v¤v0

pv � pv0

P
T2 2-tree

separating v and v0

Q
e 62T2

˛e; (2.5)

where a two tree T2 means a tree minus one edge, hence a forest with two disjoint
connected componentsG1 andG2; the separation condition means that v and v0 must
belong one to G1 the other to G2.

For any pair of distinct vertices v and v0 we can build a canonical graph G.v; v0/
first by joining vertices v and v0 inG with a new edge and then contracting that edge.
This operation could be called the contraction of the pair of vertices v and v0. The
following result goes back to Kirchhoff [41].

Proposition 2.1. The second Symanzik polynomial is a quadratic form in the total
momenta pv at each vertex, whose coefficients are the UG.v;v0/ polynomials

VG.˛; p/ D �1
2

P
v¤v0

pv � pv0UG.v;v0/:

Proof. The graph G.v; v0/ has V � 1 vertices, hence its spanning trees have V � 2

edges. They cannot make cycles in G because they would make cycles in G.v; v0/.
They are therefore two-trees in G, which must separate v and v0, otherwise they
would make a cycle in G.v; v0/.

On the submanifold of flag variables satisfying the momentum conservation con-
dition pG D P

f pf D 0 there is an alternate less symmetric definition of a similar
polynomial:

Definition 2.6. Put
xVG.˛; p/ D P

T2 2-tree
p2G1

Q
e 62T2

˛e; (2.6)

where T2 is again a two-tree with two disjoint connected components G1 and G2.

Indeed this is an unambiguous definition. On the submanifold pG D 0 we have
pG1

D �pG2
, hence equation (2.6) does not depend of the choice of G1 nor of G2.

Proposition 2.2. On the manifold of flag variables satisfying the momentum conser-
vation condition pG D P

f pf D 0 one has VG.˛; p/ D xVG.˛; p/.
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Proof. We simply commute the sums over v, v0 and T2 in (2.5). For a given T2 the
condition that v and v0 are separated allows to separate the pv with v 2 G1 from the
pv0 with v0 2 G2; one gets therefore �1

2
2pG1

�pG2
, which is nothing but p2G1

or p2G2

on the manifold pG D 0.

We shall give in Section 3.4 a definition of generalized first and second Symanzik
polynomials for any graph, connected or not, from whichUG , VG or xVG can be easily
derived in certain limits. Before actually performing these computations we include
a brief interlude on Grassmann representation of determinants and Pfaffians. The
reader familiar with this topic can jump directly to the next section.

2.5. Grassmann representations of determinants and Pfaffians. Independent
Grassmann variables �1; : : : ; �n satisfy complete anticommutation relations

�i�j D ��j�i for all i; j;

so that any function of these variables is a polynomial with highest degree one in each
variable. The rules of Grassmann integrations are then simplyZ

d� D 0;

Z
�d� D 1:

The determinant of any n by n matrix can be then expressed as a Grassmann
Gaußian integral over 2n independent Grassmann variables which it is convenient to
name as x 1; : : : ; x n,  1; : : : ;  n, although the bars have nothing yet at this stage to
do with complex conjugation. The formula is

detM D
Z Q

d x id ie� P
ij

x iMij j :

The Pfaffian Pf.A/ of an antisymmetric matrix A is defined by

detA D ŒPf.A/�2:

Proposition 2.3. We can express the Pfaffian as

Pf.A/ D
Z
d�1 : : : d�ne

� P
i<j �iAij�j D

Z
d�1 : : : d�ne

� 1
2

P
i;j �iAij�j :

Proof. Indeed we write

detA D
Z Q

i d
x id ie� P

ij
x iAij j :

Performing the change of variables (which a posteriori justifies the complex notation)

x i D 1p
2
.�i � i!i /;  i D 1p

2
.�i C i!i /; (2.8)
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whose Jacobian is i�n, the new variables � and ! are again independent Grassmann
variables. Now a short computation using Aij D �Aj i gives

detA D i�n
Z Q

i d�id!ie
� P

i<j �iAij�j �P
i<j !iAij!j

D
Z Q

i d�ie
� P

i<j �iAij�j
Q
i d!ie

� P
i<j !iAij!j ;

(2.9)

where we used that n D 2p has to be even and that a factor .�1/p is generated
when changing

Q
i d�id!i into

Q
i d�i

Q
i d!i . Equation (2.9) shows why detA is

a perfect square and proves (2.7).

Lemma 2.1. The determinant of a matrix D C A where D is diagonal and A anti-
symmetric has a “quasi-Pfaffian” representation

det.D C A/ D
Z Q

i d�id!ie
� P

i �iDii!i �P
i<j �iAij�j CP

i<j !iAij!j :

Proof. The proof consists in performing the change of variables (2.8) and canceling
carefully the i factors.

2.5.1. Tree-matrix theorem. Let A be an n � n matrix such that

nP
iD1

Aij D 0 for all j: (2.10)

Obviously detA D 0. The interesting quantities are eg the diagonal minors detAi i

obtained by deleting the i -th row and the i -th column inA. The “Kirchoff–Maxwell”
matrix tree theorem expresses these minors as sums over trees:

Theorem 2.2 (Tree-matrix theorem).

detAi i D P
T spanning

tree of A

Q
e2T

.�Ae/; (2.11)

where the sum is over spanning trees on f1; : : : ng oriented away from root i .

Proof. We give here a sketch of the Grassmann proof given in [1]. We can assume
without loss of generality that i D 1. For any matrix A we have

detA11 D
Z � Qn

iD1 d x id i
�
 1 x 1e� P

i;j
x iAij j :

The trick is to use (2.10) to write

x A D
nP

i;jD1
. x i � x j /Aij j ;
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hence

detA11 D
Z

d x d . 1 x 1/ exp
� �

nP
i;jD1

Aij . x i � x j / j
�

D
Z

d x d . 1 x 1/
� nQ
i;jD1

.1 � Aij . x i � x j / j /
�

by the Grassmann rules. We now expand to get

detA11 D P
G

� Q
`D.i;j /2G

.�Aij /
�
�G ;

where G is any subset of Œn� � Œn�, and we used the notation

�G �
Z

d x d . 1 x 1/
� Q
.i;j /2G

Œ. x i � x j / j �
�
:

Then the theorem follows from the following

Lemma 2.2. �G D 0 unless the graph G is a tree directed away from 1 in which
case �G D 1.

Proof. Trivially, if .i; i/ belongs to G , then the integrand of �G contains a factor
x i � x i D 0 and therefore �G vanishes.

But the crucial observation is that if there is a loop in G then again�G D 0. This
is because then the integrand of �F ;R contains the factor

x �.k/ � x �.1/ D . x �.k/ � x �.k�1//C � � � C . x �.2/ � x �.1//:

Inserting this telescoping expansion of the factor x �.k/ � x �.1/ into the integrand of
�F ;R, the latter breaks into a sum of .k � 1/ products. For each of these products,
there exists an ˛ 2 Z=kZ such that the factor . x �.˛/� x �.˛�1// appears twice: once
with the C sign from the telescopic expansion of . x �.k/� x �.1//, and once more with
a C (resp. �) sign if .�.˛/; �.˛ � 1// (resp. .�.˛ � 1/; �.˛//) belongs to F . Again,
the Grassmann rules entail that �G D 0.

To complete the proof of (2.11) every connected component of G must contain 1,
otherwise there is no way to saturate the d 1 integration.

This means that G has to be a directed tree on f1; : : : ng. It remains only to see
that G has to be directed away from 1, which is not too difficult.

The interlude is over and we now turn to perturbative QFT and to the parametric
representation of Feynman amplitudes.
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3. Parametric representation of Feynman amplitudes

In this section we will give a brief introduction to the parametric representation of
ordinary QFT on a commutative vector space Rd . We may take the example of �4

bosonic theory, but the formalism is completely general.

3.1. Green and Schwinger functions in QFT. In particle physics the most im-
portant quantity is the diffusion matrix S whose elements or cross sections can be
measured in particle experiments. The S matrix can be expressed from the Green
functions through the reduction formulas. Hence they contain all the relevant infor-
mation for that QFT.

These Green functions are time ordered vacuum expectation values of the fields
�, which are operator-valued and act on the Fock space:

GN .z1; : : : ; zN / D h 0; T Œ�.z1/ : : : �.zN /� 0i:
Here  0 is the vacuum state and the T -product orders �.z1/ : : : �.zN / according to
increasing times.

In the functional integral formalism the Green functions can be written as

GN .z1; : : : ; zN / D
R QN

jD1 �.zj /ei
R

L.�.x//dxD�R
ei

R
L.�.x//dxD�

:

Here L D L0 C Lint is the full Lagrangian of the theory. The Green functions
continued to Euclidean points are called the Schwinger functions and are given by
the Euclidean Feynman–Kac formula:

SN .z1; : : : ; zN / D Z�1
Z QN

jD1 �.zj /e� R
L.�.x//dxD�;

Z D
Z
e� R

L.�.x//dxD�:

For instance for the �4 theory, Lint D �
4Š
�.x/4 and we have

L.�/ D 1

2
@��.x/@

��.x/C 1

2
m�.x/2 C 	

4Š
�.x/4; (3.1)

where

� 	 is the (bare) coupling constant, which characterizes the strength of the in-
teraction, the traditional factor 1/4! is inessential but slightly simplifies some
computations,

� m is the (bare) mass,

� Z is the normalization factor,
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� D� is an ill-defined “flat” product of Lebesgue measures
Q
x d�.x/ at each

space time point.

The coefficient of the Laplacian is set to 1 in (3.1) for simplicity. Although this
coefficient actually in four dimensions flows through renormalization, it is possible
to exchange this flow for a rescaling of the field �.

To progress towards mathematical respectability and to prepare for perturba-
tion theory, we combine the e� R

L0.�.x//dxD� and the free normalization factor
Z0 D R

e� R
L0.�.x//dxD� into a normalized Gaußian measure d
C .�/, which is

well defined on some subspace of the Schwartz space of distributions S 0.Rd / [27].
The covariance of this measure is then the (free) translation invariant propagator
C.x; y/ D R

�.x/�.y/d
C .�/, which, by slight abuse of notation, we also write as
C.x � y/ and whose Fourier transform is

C.p/ D 1

.2�/d
1

p2 Cm2
:

In this way the Schwinger functions are rewritten as

SN .z1; : : : ; zN / D Z�1
Z

Rd

QN
jD1 �.zj /e

� R
Rd Lint.�/d
C .�/;

Z D
Z
e� R

Rd Lint.�.x//dxd
C .�/:

However this expression is still formal for two reasons; for typical fields the in-
teraction factor is not integrable over Rd so that

R
Rd Lint.�/ is ill defined (infrared

or thermodynamic problem) and in dimension more than 2 even when the interaction
factor is restricted to a finite volume it is still ill defined because for typical distri-
butions �, products such as �4.x/ are also ill defined. This is the famous ultraviolet
problem, which requires renormalization (see [54]), but this problem is not addressed
here, as we discuss solely the structure of the integrands in Feynman parametric rep-
resentations, not the convergence of the integrals. The reader worried by ill-defined
integrals in the rest of this article for space-time dimension d larger than 2 should
impose an ultraviolet regulator. This means that C.p/ should be replaced by a better
behaved C�.p/, such as

C�.p/ D 1

.2�/d
e��.p2Cm2/

p2 Cm2
D

Z 1

�

e�˛.m2Cp2/d˛;

so that

C�.x; y/ D
Z 1

�

e�˛m2�.x�y/2=4˛ d˛

˛D=2
:

We now turn to perturbation theory in which the factor e� R
Rd Lint.�/ is expanded

as a power series. This solves the thermodynamic problem, at the cost of introducing
another problem, the divergence of that perturbation expansion. This divergence,
which in the good cases can be tackled by constructive field theory [27], [51], [52],
[53], will not be treated in this article.
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3.2. Perturbation theory, Feynman graphs. Wick’s theorem is nothing but the
rule of pairing which computes the moments of a Gaußian measure. It allows to
integrate monomials of fields

Z
�.x1/ : : : �.xn/d
C .�/ D P

G

Q
e2G

C.xie ; xje
/;

where the sum overG is over all contraction schemes (i.e., pairings of the fields) and
C.xie ; xje

/ is the propagator kernel joining the arguments of the two fields �.xie /
and �.xje

/ paired into the edge e by the contraction scheme G.
It was Feynman’s master stroke to represent each such contraction scheme by a

particular graph in which edges represent pairs of contracted fields and vertices stand
for the interaction.

In the case of a �4 theory, remark that these interaction vertices have degree 4.
Indeed the Schwinger functions after perturbative expansion are

SN .z1 : : : zN / D 1

Z

1X
nD0

.�	/n
4nnŠ

Z h Z Qn
vD1 �4.xv/dxv

i
�.z1/ : : : �.zN /d
.�/:

The pairings of Wick’s theorem therefore occur between n internal vertices each
equipped with four fields and N external vertices or sources corresponding to the
single fields �.z1/, …, �.zN /.

Schwinger functions are therefore expressed as sums over Feynman graphs of
associated quantities or weights called the Feynman amplitudes. In this position
space representation the Feynman graphs have both n internal vertices corresponding
to the Lint factors, plus N external vertices of degree 1 corresponding to the fields
�.z1/, …, �.zN /. In the case of the �4 theory each internal vertex has degree 4.

. .
.

f1

f2

f3

f4

e1

e2

e3 e4

Figure 3. A �4 graph.

The Feynman amplitudes are obtained by integrating over all positions of internal
vertices the product of the propagator kernels for all the edges of the graphs

AG.z1; : : : ; zN / D
Z Q

v dxv
Q
e2G C.xie ; xje

/; (3.2)
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where the product
Q
v runs over the internal vertices v.

The quantities that are relevant to physical experiments are the connected
Schwinger functions, which can be written as

�N .z1; : : : ; zN / D
X

�4 connected graphs G

with N.G/DN

.�	/n.G/
S.G/

A.G/.z1; : : : ; zN /;

where S.G/ is a combinatoric factor (symmetry factor).
The momentum space representation corresponds to a Fourier transform to mo-

menta variables called p1; : : : ; pN ,

�N .p1; : : : ; pN / D
Z
dz1 : : : dzN e

2i
P
pf zf �N .z1; : : : ; zN /;

where the factor 2 is convenient and we forget inessential normalization factors.
This is a distribution, proportional to a global momentum conservation ı.

PN
fD1 pf /.

From now on we use an index f to label external momenta to remember that they
are associated to corresponding graph-theoretic flags. Usually one factors out this
distribution together with the external propagators, to obtain the expansion in terms
of truncated amputated graphs:

�TN .p1; : : : ; pN /

D
X

�4 truncated graphs G

with N.G/DN

.�	/n.G/
S.G/

ı
� NX
fD1

pf

� NY
fD1

1

p2
f

Cm2
ATG.p1; : : : ; pN /:

(3.3)

In this sum we have to describe in more detail the truncated graphsG withN external
flags. Such truncated graphs are connected, but they may contain bridges and self-

. .
.

e1

e2

e3 e4

Figure 4. A truncated �4 graph.

loops. They no longer have external vertices of degree 1. Instead, they still have N
external variables pf , no longer associated to edges but to flags (N in total), which
decorate the former internal vertices. For instance for the �4 theory the degree of a
truncated graph G is no longer 4 at each internal vertex. It is the total degree, that is,
the number of half-edges plus flags, which remains 4 at every vertex.
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Ordinary Schwinger functions can be expressed as sums over partitions of the
arguments of products of the corresponding truncated functions. We now give the
explicit form of the corresponding truncated amplitudes ATG.p1; : : : ; pN /.

3.3. Parametric representation. We shall first consider a fixed truncated oriented
diagramG and compute the corresponding contribution or amplitudeATG as given by
Feynman rules.

We denote again by E and V the number of edges and vertices, respectively, and
byN the number of flags. SinceG is connected its incidence matrix has rank V � 1.

Now consider a Feynman graph G contributing to some truncated Schwinger
function �T .p1; : : : ; pN /. The usual way to take into account the global ı function
in (3.3) is to restrict to configurations such that

P
f pf D 0. Extraction of this global

delta function in (3.3) for the amplitude of a particular graph can be done, provided
that we do not integrate the position of one of the vertices in (3.2) but rather fix it at
an arbitrary point, e.g., the origin. From now on we suppose that this vertex is xV ,
the one with last index. It provides a root in the graph G. However this standard
procedure requires the non-canonical choice of that root vertex, and the final result
does not depend on that choice.

Another possibility is to modify the interaction 	�4.x/ into 	e�qx2
�4.x/, in

which case there is no longer global momentum conservation. One can compute
modified amplitudesBTG .p1; : : : pN I q/without factoring out the global ı.

PN
fD1 pf /

factor, so that

�TN .p1; : : : ; pN I q/

D
X

�4 truncated graphs G

with N.G/DN

.�	/n.G/
S.G/

NY
fD1

1

p2
f

Cm2
BTG .p1; : : : ; pN I q/:

The momentum conserving usual amplitudes are recovered when q ! 0:

lim
q!0

BTG .p1; : : : ; pN I q/ D ı.
NP
fD1

pf /A
T
G.p1; : : : ; pN /: (3.4)

This is the procedure we shall follow in Section 3.4, because it avoids the choice of
a non-canonical root. But for the moment let us complete the standard presentation
of ATG.p1; : : : ; pN /.

The momentum representation of ATG , forgetting from now on inessential factors
of 2� , is

ATG.p1; : : : ; pN / D
Z EY

eD1
ddke

1

k2e Cm2

V�1Y
vD1

ı.�f vpf C �evke/:

Here we use the convention that repeated indices are summed up so that �f vpf C�evke
stands for the total momentum

P
f �f vpf C P

e �evke incoming at vertex v.
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To obtain the parametric representation we have first to rewrite the propagators as

1

k2 Cm2
D

Z 1

0

d˛e�˛.k2Cm2/:

We obtain the momentum parametric representation

ATG.p1; : : : ; pN / D
Z EY

eD1
d˛ed

dkee
�˛e.k

2
e Cm2/

V�1Y
vD1

ı.�f vpf C �evke/: (3.5)

Fourier transforming the V � 1 Dirac distributions into oscillating integrals we
obtain, up to some inessential global factors, the phase-space parametric representa-
tion

ATG.p1; : : : ; pN / D
Z EY
eD1

�
d˛ee

�˛em
2

ddke
� V�1Y
vD1

ddxve
�˛ek

2
e C2i.pf �f vxvCke�evxv/;

(3.6)
where againke�evxv means

PE
eD1

PV�1
vD1 ke�evxv , etc., and the factor2 is convenient.

Finally integrating out the edge momenta whose dependence is Gaußian leads to
the x or direct space parametric representation

ATG.p1; : : : ; pN / D
Z EY

eD1
d˛e

e�˛em
2

˛
d=2
e

V�1Y
vD1

ddxve
2ipf �f vxv�xv �xv0�ve�v0e=˛e :

(3.7)
Observe that this amplitude is only defined on the submanifold pG D 0 because it
is only there that the formula gives a result independent of the choice of the root not
integrated out in (3.7).

The parametric representation consists in integrating out fully the x or p variables
in (3.5), (3.6) or (3.7). One obtains the parametric representation, which is an integral
on ˛ parameters only:

ATG.p1; : : : ; pN / D
Z EY

eD1

�
d˛ee

�˛em
2�e�VG.p;˛/=UG.˛/

UG.˛/d=2
: (3.8)

Here UG and VG are called the first and second Symanzik polynomials.

Theorem 3.1. The first Symanzik polynomial UG in (3.8) is the multivariate Tutte
polynomial (2.2). On the submanifoldpG D 0, the only onewhere it is unambiguously
defined, the second polynomial VG of (3.8) coincides with (2.5) and (2.6).

We are going to give two proofs of this classic theorem of quantum field theory,
one relying directly on contraction/deletion and on the phase-space representation
(3.6), the other more standard and relying on the direct representation (3.7) and on
the tree-matrix theorem.
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Indeed in order to compute the Symanzik polynomials, let us remark first that
the momentum representation mostly used in textbooks is not very convenient. To
use (3.5) we should “solve” the ı functions, that is, to rewrite each edge momentum
in terms of independent momenta for cycles. In physics this is called a momentum
routing. But such a momentum routing is linked to the choice of a particular spanning
tree ofG. The momenta of the edges not in this tree are kept as independent variables,
and the tree edges momenta are recursively computed in terms of those by progressing
from the leaves of the tree towards the root which is the fixed vertex vn. This is not
a canonical prescription, as it depends on the choice of the tree.

The representations (3.6) or (3.7) are more convenient to integrate the space or
momentum variables because the dependence in variables x and k is Gaußian so
that the result is a determinant to a certain power times a Gaußian in the external
variables. In fact (3.6) is the best as we shall argue below. However there is still a
small non-canonical choice, the one of the root. This is why we prefer to compute
the regularized amplitudes

BTG .p1; : : : ; pN I q/
D

Z QE
eD1Œd˛ee�˛em

2
ddke�

QV
vD1 ddxve�˛ek

2
e �qPV

vD1 x
2
vC2i.pf �f vxvCke�evxv/;

and to deduce the ordinary amplitudes from a limit q ! 0.
The last modification we perform is to attribute a different weight qv to each vertex

regulator. This is more natural from the point of view of universal polynomials. So
we define

BTG .p1; : : : ; pN I fqvg/
D

Z QE
eD1Œd˛ee�˛em

2
ddke�

QV
vD1 ddxve�˛ek

2
e �qvx

2
vC2i.pf �f vxvCke�evxv/:

(3.9)

These amplitudes are Gaußian in the external variables pf and no longer involve any
non-canonical choice. We shall now compute their generalized Symanzik polynomi-
als and deduce the ordinary Symanzik polynomials from these as leading terms when
all qv’s are sent to 0.

3.4. Generalized Symanzik polynomials. We consider the phase-space represen-
tation (3.9). We have to perform a Gaußian integral in E C V variables (each of
which is d -dimensional). We consider these momentum and position variables as a
single vector. We also forget the label T for truncation as it is no longer needed in
this section. The graph we consider may be connected or not.

We introduce the condensed notation

BG.pf ; qv/ D
Z Q

e d˛ee
�˛em

2
ddke

Z Q
v d

dxve
�YXGY

t
; (3.10)
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where XG is a d.E C V CN/ by d.E C V CN/ square matrix, namely

XG D
0
@ ˛e �i�ev 0

�i�ev qv �i�f v
0 �i�f v 0

1
A : (3.11)

Here ˛e and qv are short notations for diagonal matrices ˛eıe;e0 and qvıv;v0 , and Y
is an E C V CN by 1 line, namely Y D �

ke xv pf
�
.

We can further decompose XG as

XG D
�
QG �iRtG�iRG 0

	
; (3.12)

where QG D
�

˛e �i�ev�i�ev qv

�
is a d.E C V / by d.E C V / square matrix and RG is

the real rectangularN byECV matrix made of a dN by dE zero block and the dN
by dV “incidence flag” matrix ��

f v
. The dimensional indices 
 being quite trivial we

no longer write them down from now on.
Note P the line pf , hence the last part of the line Y . Gaußian integrations can be

performed explicitly and the result is a Gaußian in external variables. Therefore, up
to inessential constants,

BG.pf ; qv/ D
Z Y

e

d˛ee
�˛em

2 1

detQd=2
G

e�PRGQ
�1
G
Rt

G
P t

D
Z Y

e

d˛ee
�˛em

2

ddke
e�V=U

Ud=2

(3.13)

for some polynomial UG in ˛’s and q’s and a quadratic form in the p variable VG
with polynomial coefficients in ˛’s and q’s.

Definition 3.1. The generalized Symanzik polynomials with harmonic regulators are
the polynomials appearing in (3.13), namely

UG.˛e; qv/ D detQG ;

VG.˛e; qv; pf /=UG.˛e; qv/ D PRGQ
�1
G RtGP

t : (3.14)

These polynomials can be computed explicitly:

Theorem 3.2.

UG.˛e; qv/ D P
F

Q
e 62F

˛e
Q
C

qC ;

VG.˛e; qv; pf / D P
F

Q
e 62F

˛e
P
C

p2
C

Q
C 0¤C

qC 0 ;

where the sum over F runs over all forests of the graph, and the indices C and C 0
mean any connected component of that forest (including isolated vertices, if any). The
variables pC and qC are the natural sums associated to these connected components.
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In order to prove this theorem we introduce now the quasi-Grassmann represen-
tations of UG and VG of Lemma 2.1.

Let us calculate first U, hence the determinant of QG . Factoring out powers of i
we get

detQG D det

�
˛e ��ev
�ev qv

	
;

which can be written as the sum of a diagonal matrixDwith coefficientsDee D ˛e and
Dvv D qv , and of an antisymmetric matrixAwith elements �ev , that is,Q D DCA.

By Lemma 2.1,

UG.˛e; qv/ D
Z Q

v;e d�vd!vd�ed!ee
�˛e�e!ee�qv�v!ve��e�ev�vC!e�ev!v :

Similarly V which is a minor related to the QG matrix is given by a Grassmann
integral but with sources

VG.˛e; qv; pf / D
Z Q

v;e d�vd!vd�ed!ee
�˛e�e!ee�qv�v!ve��e�ev�vC!e�ev!v

� pf pf 0�f v�f 0v0.�v!v0 C �v0!v/;

where we have expanded x v v0 as 1
2
Œ�v�v0C!v!v0Ci.�v!v0C�v0!v/� and canceled

out the �v�v0 C !v!v0 term, which must vanish by symmetry and the i factors.
Now we can prove directly that these polynomials obey a deletion/contraction

rule.

Theorem 3.3. For any semi-regular edge e, we have

UG.˛e; qv/ D ˛eUG�e.˛e; qv/C UG=e.˛e; qv/;

VG.˛e; qv; pf / D ˛eVG�e.˛e; qv; pf /C VG=e.˛e; qv; pf /:

Moreover we have the terminal form evaluation

UG.˛e; qv/ D Q
e

˛e
Q
v

qv;

VG.˛e; qv; pf / D Q
e

˛e
P
v

p2v
Q
v0¤v

qv (3.15)

for G solely made of self-loops attached to isolated vertices.

Proof. IfG is not a terminal form we can pick up any semi-regular edge e connecting
vertices v1 and v2 with �v1

D C1; �v2
D �1. We expand

e�˛e�e!e D 1C ˛e!e�e:
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For the first term, since we must saturate the �e and !e integrations, we must keep
the �e.�v1

� �v2
/ term in e

P
v �e�ev�v and the similar ! term, hence we get a con-

tribution

detQG;e;1 D
Z Q

e0¤e;v d�e0d!e0d�vd!v.�v1
� �v2

/.!v1
� !v2

/

e� P
e0¤e ˛

0
e�e0!e0 e�qv�v!ve� P

e0¤e;v �e0�e0v�vCP
e0¤e;v !e0�e0v!v :

Performing the trivial triangular change of variables with unit Jacobian,

O�v1
D �v1

� �v2
; O�v D �v for v ¤ v1;

and the same change for the! variables, we see that the effect of the .�v1
��v2

/.!v1
�

!v2
/ term is simply to change the v1 label into v2 and to destroy the edge e and the

vertex v1. This is exactly the contraction rule, so detQG;e;1 D detQG=e . The
second term detQG;e;2 with the ˛e!e�e factor is even easier. We must simply put to
0 all terms involving the e label, hence trivially detQG;e;2 D ˛e detQG�e . Observe
that during the contraction steps the weight factor qv1

�v1
!v1

is just changed into
qv1
�v2

!v2
. That is why we get the new weight qv1

Cqv2
for the new vertex v2 which

represent the collapse of former vertices v1 and v2.
Note that the source terms in V do not involve �e and !e variables. Therefore

the argument goes through exactly in the same way for the second polynomials.
The only remark to make is that, like weights, flag momenta follow contraction
moves.

The evaluation on terminal forms is easy. For a graph with only vertices and self-
loops the matrixQG is diagonal since �ev is always 0. Hence UG is the product of the
diagonal elements

Q
e ˛e

Q
v qv . The second polynomial can be analyzed through

the Grassmann representation, but it is simpler to use directly (3.14) and the fact that
QG is diagonal to get (3.15). This completes the proof of Theorem 3.3, hence also
of Theorem 3.2.

We turn now to the limit of small regulators qv to show how for a connected graph
G the ordinary amplitude ı.

P
f pf /AG and the ordinary polynomials UG and VG

emerge out of the leading terms of the regularized amplitude BG and the generalized
polynomials UG and VG .

When all q’s are sent to zero there is no constant term in UG but a constant term
in VG . Up to second order in the q variables we have

UG.˛e; qv/ D qG
P
T

Q
e 62T

˛e CO.q2/;

VG.˛e; qv; pf / D p2G
P
T

Q
e 62T

˛e C P
T2

.p2G1
qG2

C p2G2
qG1

/
Q
e 62T2

˛e CO.q2/;
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where the sum over T runs over trees and the sum over T2 runs over two trees
separating the graph into two connected components G1 and G2. Hence we find

e�V=U

Ud=2
D e�p2

G
=qG

q
d=2
G

e
� P

T2
.p2

G1
qG2

Cp2
G2
qG1

/
Q

e 62T2
˛e=qG

P
T

Q
e 62T ˛eCp2

G
O.1/CO.q/

� P
T

Q
e 62T ˛e CO.q/

�d=2 :

Up to inessential normalization factors the first term tends to ı.pG/ and the second
one tends to e�V=U =U d=2 if we use the fact that ı.pG/f .pG/ D ı.pG/f .0/, that is,
if we use the delta distribution to cancel the p2GO.1/ term and to simplify .p2G1

qG2
C

p2G2
qG1

/ to qGp2G1
D qGp

2
G2

. This proves (3.4).
The UG and VG polynomials are in fact easy to recover simply from the UG

polynomial alone:

Theorem 3.4. For any connected G and any vertex v,

UG.˛e/ D @

@qv
UG.˛e; qv/

ˇ̌ˇ
qv0 D0 for all v0:

On the submanifold pG D 0 we further have

VG.˛e; pf / D �1
2

X
v¤v0

pv � pv0

@2

@qv@qv0

UG.˛e; qv/
ˇ̌ˇ
qv00 D0 for all v00:

Proof. This is an easy consequence of Theorem 3.2.

We can also prove an analog of Proposition 2.1 between VG and UG.vv0/, but
only on the submanifold pG D 0.

3.5. Relation to the discrete Schrödinger operator. As an aside, it is worthwhile
to notice that there is a relation with discrete Schrödinger operators on graphs [13].
Recall that given a graphG D .V;E/ the discrete Laplacian is defined as follows. We
first introduce the 0-forms �0.G/ D RV as the real functions on the set of vertices
and 1-forms �0.G/ D RE as functions on the edges. Then the discrete differential
d W �0.G/ ! �1.G/ is defined as

d .e/ D P
v

�ev v;

where we recall the convention that �ev D 0 for a self-loop, and an arbitrary orientation
is chosen on the edges. Next, given strictly positive weightsˇe associated to the edges,
we define d� W �1.G/ ! �0.G/ by

d��.v/ D P
e

ˇe�ev �e:
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Note that d� is precisely the adjoint of d for the scalar product on RE defined by
the weights ˇe and the Euclidean one on RV . Accordingly, the 0-form Laplacian

 W �0.G/ ! �0.G/ is


 D d�d;

or, in terms of its action on functions  2 RV ,


 .v0/ D P
e;v

ˇe�ev0�ev v:

Note that there is exactly one zero mode per connected component, as follows from
the equivalence between 
 D 0 and d D 0. Finally, the weights qv associated
to the vertices2 define a function V from the vertices to R acting multiplicatively
on �0.G/ so that we define the discrete Schrödinger operator (Hamiltonian in the
quantum mechanics language) on the graph by

H D �
C V:

Turning back to the parametric representation, if we perform the Gaußian integration
over the momenta we are left with

�D=2

.˛1 � � �˛e/D=2
Z Q

v dxve� P
v;v0 xvHv;v0xv0 C2i

P
v xv �pv ;

with weights ˇe D 1
˛e

. In particular, the first Symanzik polynomial with regulators
qv is expressed in terms of the determinant of H ,

UG.˛; q/ D �Q
e ˛e

�
detH D �Q

e ˛e
� Z Q

v d
x vd ve� P

v;v0 x vHv;v0 v0 ;

with x v ,  v Grassmann variables. By the same token, the ratio appearing in the
Feynman amplitude is expressed in terms of its inverse G (Green’s function in the
language of quantum mechanics),

VG.˛; q; p/

UG.˛; q/
D

X
v;v0

Gv;v0 pv � pv;

where the Green’s function can also be expressed using Grassmann integrals. As a
byproduct, it turns out that it can also be computed by contraction/deletion.

3.6. Categorified polynomials. We have up to now considered two seemingly un-
related graph polynomials obeying contraction/deletion rules, the multivariate Tutte
polynomial ZG.ˇe; q/ and UG.˛e; qi /, from which the Symanzik polynomials can
be recovered by various truncations. Therefore, it is natural to wonder wether there

2Strictly speaking, the latter are associated to the flags and qv is the sum the weights of the flags
attached to v.
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is a single graph polynomial obeying contraction/deletion rules too, from which both
ZG.ˇe; q/ and UG.˛e; qi / can be recovered. In this subsection for simplicity we
shall consider only the first Symanzik polynomial, and the flags considered no longer
bear external momenta but an abstract index.

Such a polynomial is an invariant of graphs with flags, i.e., labeled half-edges
attached to the vertices. In order to make the contraction possible, it is necessary to
allow each vertex to have several flags, all carrying distinct labels. The requested
polynomial WG.ˇe; qI / depends on edge variables ˇe as well as on independent
variables qI for each non empty subset I of the set of labels of the flags, with the
proviso that, for each vertex, the subsets I contain all the flags attached to the vertex
or none of them. Thus, for a diagram with V 0 vertices carrying flags there are 2V

0 �1
variables qI .

Definition 3.2. For a graph G with flags, WG.ˇe; qI / is defined by the expansion

WG.ˇe; qI / D
X
A�E

� Y
e2E

ˇe
Y

Cn connected
components

qIn

�
;

where In are the sets of flags attached to the vertices of the connected component Cn
of the spanning graph .V; A/.

For example, for the bubble graph on two vertices with two edges between these
vertices and flags 1, 2 attached to one of vertex, and flag 3 to the other one, we have

WG.ˇe; qI / D .ˇ1ˇ2 C ˇ1 C ˇ2/q123 C q12q3:

Since the variables qI are defined using the flags, the contraction/deletion rule
for WG.ˇe; qI / requires us to properly define how the flags follow the contrac-
tion/deletion rule for any edge of G � e and G=e. Because the vertices and the
flags of G � e are left unchanged, the same variables qI appear in G and G � e.
For G=e we restrict the qI to those associated with subsets that contain either all the
flags attached to the two vertices merged by the contraction of e, either none of them.
This is best formulated using flags: the new vertex simply carries the flags of the
two vertices that have been merged. Then the contraction/deletion identity simply
follows from grouping the terms in WG.ˇe; qI / that contain ˇe and those that do not.

Proposition 3.1. The polynomial WG.ˇe; qI / obeys the contraction/deletion rule for
any edge:

WG.ˇe; qI / D ˇeWG=e.ˇe0¤e; qI jG=e/C WG�e.ˇe0¤e; qI /:

The multivariate Tutte polynomial is easily recovered by setting qI D q for any I ,

ZG.ˇe; q/ D WG.ˇe; qI D q/:
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In this case all the information about the flags is erased so that they may be omitted.
To recover UG.˛e; qi /, it is convenient to introduce as an intermediate step the
polynomial

‡G.˛e; qi / D P
A�E

Q
e…E

˛e
Q
Cn

� P
i2In

qi
�
;

where as before In are the flags included in the connected component Cn of the
spanning graph .V; A/. By its very definition, ‡G.˛e; qi / is related to WG.ˇe; qI /

by setting qI D P
i2I qi :

‡G.˛e; qi / D � Q
e

˛e
�
WG

�
ˇe D 1=˛e; qI D P

i2I qi
�
:

Then the polynomial UG.˛e; qi / is obtained from ‡G.˛e; qi / by keeping only the
highest degree terms in the ˛e’s for each term in

Q
Cn

P
i2In

qi . Indeed, UG.˛e; qi /

is obtained from ‡G.˛e; qi / by truncating its expansion to those subsets A � E

that are spanning forests, i.e., that obey 0 D jAj � V C k.A/. Since the number of
connected components k.A/ is fixed by the global degree in the qi ’s, the forests are
obtained with jAj minimal, so that the global degree in the ˛e’s must be maximal.
Note that a truncation to the spanning forests may also be performed at the level of
the multivariate Tutte polynomial by restricting, at fixed degree in q, to the terms of
minimal degree in the ˇe’s. This yields an expansion over spanning forests [63] (see
also [39]):

FG.ˇe; q/ D P
A�E

spanning forest

� Q
e2A

ˇe
�
qk.A/:

This, as well as the relation to the Symanzik polynomial, is conveniently summarized
by the following diagram.

Proposition 3.2. The previous polynomials may be obtained from W.˛e; qI / by the
following series of substitutions and truncations,

‡G.˛e; qi /

highest order
in the ˛e �� UG.˛e; qi /

term in
P

i qi

��������������

WG.ˇe; qI /

qI D P
i2I qi ,

multiplication by
Q

e ˛e

���������������

qI D q
���������������

UG.˛e/

ZG.ˇe; q/ lowest order
in the ˇe

�� FG.ˇe; q/

term in q,
multiplication by

Q
e ˛e

��������������

where ˛e D 1=ˇe .

Alternatively, the polynomial WG.˛e; qI / can be seen as an extension of the
polynomial WG.�a; y/ introduced by Noble and Welsh in [50].
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Definition 3.3. For a graph with weights !v 2 N� assigned to the vertices, the W
polynomial is defined as

WG.�a; y/ D
X
A�E

.y � 1/jAj�r.A/ Y
C1;:::;Ck.A/

connected components
of .V; A/

�an
;

with an D P
v2Cn

!v the sum of the weights of the vertices in the connected com-
ponent Cn.

This polynomial also obeys the contraction/deletion rule if we add the weights
of the two vertices that are merged after the contraction of an edge. Alternatively,
weights may be assigned to flags, with the convention that the weight of a vertex is
the sum of the weights of the flags attached to it. ThenW.�a; y/ is naturally extended
to diagrams with flags and results from a simple substitution in WG.�a; y/.

Proposition 3.3. For a graph with weights !i 2 N� assigned to the flags,

WG.�a; y/ D .y � 1/�jV jWG.ˇe D y � 1; qI D .y � 1/�aI
/;

with aI D P
i2I !i the sum of the weights of the flags in I .

The polynomial WG.�a; y/ only encodes the sum of the weights of the flags in
each connected component and erases information about their labels. In particular,
if we weight each flag by !i D 1, then the expansion of W only counts the number
flags per component whereas that of WG.ˇe; qI / keeps track of the associated set of
labels. In a more sophisticated language, the latter may be considered as the simplest
categorification of the former: integers, understood as finite sets up to isomorphisms,
have been replaced by the category of finite sets.

3.7. Symanzik polynomials through the tree matrix theorem in x-space. In this
section we provide a sketch of a more standard proof of Theorem 3.1 through the x-
space representation and the tree matrix theorem. The reason we include it here is for
completeness and because we have not been able to find it in the existing literature, in
which the same computation is usually performed through the Binet–Cauchy theorem.

The V � V matrix QG.˛/ analog in this case of (3.12) is defined as

ŒQG.˛/�v;v0 D
X
e

�ev
1

˛e
�ev0 :

It has vanishing sum over lines (or columns):

X
v0

ŒQG.˛/�v;v0 D
X
v0

X
e

�ve
1

˛e
�ev0 D 0:
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Therefore by the tree matrix theorem the determinant of the .V � 1/ � .V � 1/

matrix QG.˛/, defined as its principal minor with the line and column for the root
vertex number V deleted, is


G.˛/ D detŒQG.˛/� D
X
T

Y
e2T

1

˛e
;

where the sum is over all trees of G. Since every tree of G has V � 1 edges, 
G
is clearly a homogenous polynomial in the ˛�1

e . For ˛ > 0, 
 is positive. The
remaining .V � 1/ vectors z may then be integrated out, and the result is

AG.p/ D
Z 1

0

Q
l.d˛ee

�˛em
2
/

expf�pvŒQ
�1
G
.˛/	v;v0pv0 g

Œ˛1:::˛E
G.˛/	d=2 :

This formula expresses AG.p/ as a function of the invariant scalar product of
external momenta pv � pv0 . The denominator

UG.˛/ � ˛1 : : : ˛E
G.˛/ D
X
T

Y
e 62T

˛e

is a homogenous polynomial of degree V � 1. This gives an alternative proof of
(3.8). The second Symanzik polynomial can also be obtained by this method and
the corresponding computation is left to the reader. Of course harmonic regulators
can also be included if one wants to avoid the non-canonical choice of a root, but the
Pfaffian structure of the phase-space representation is lost. Also this x-space method
does not generalize easily to noncommutative field theory, to which we now turn our
attention.

4. Bollobás–Riordan polynomials

4.1. Ribbon graphs. A ribbon graph G D .V;E/ is an orientable surface with
boundary represented as the union of V closed disks, also called vertices, and E
ribbons, also called edges, such that

� the disks and the ribbons intersect in disjoint line segments,

� each such line segment lies on the boundary of precisely one disk and one ribbon,

� every ribbon contains two such line segments.

So one can think of a ribbon graph as consisting of disks (vertices) attached to each
other by thin stripes (edges) glued to their boundaries (see Figures 5 and 6). For any
such ribbon graph G there is an underlying ordinary graph xG obtained by collapsing
the disks to points and the ribbons to edges.

Two ribbon graphs are isomorphic if there is a homeomorphism from one to the
other mapping vertices to vertices and edges to edges. A ribbon graph is a graph with
a fixed cyclic ordering of the incident half-edges at each of its vertices.
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A face of a ribbon graph is a connected component of its boundary as a surface. If
we glue a disk along the boundary of each face we obtain a closed Riemann surface
whose genus is also called the genus of the graph. The ribbon graph is called planar
if that Riemann surface has genus zero.

Generalized ribbon graphs that can also incorporate Moebius strips and correspond
to nonorientable surface can be defined but will not be considered in this article.

There is a duality on ribbon graphs which preserves the genus but exchanges faces
and vertices, keeping the number of edges fixed. It simply considers the disks glued
along faces as the vertices of a dual graph and changes the ends of each ribbon into
borders of the dual ribbon.

Extended categories of ribbon graphs with flags can be defined. Flags can be
represented as ribbons bordered by dotted lines to distinguish them from ordinary
edges (see Figures 5 and 6). Beware that the cyclic ordering of flags and half-edges at
each vertex is very important and must be respected under isomorphisms. The genus
of an extended graph is defined as the genus of the graph obtained by removing the
flags and closing the corresponding segments on their vertices. The number of broken
faces is the number of faces which do contain at least one flag. It is an important
notion in noncommutative field theory.

We define for any ribbon graph

� V.G/ as the number of vertices;

� E.G/, the number of edges,

� k.G/, the number of connected components,

� r.G/ D V.G/ � k.G/, the rank of G,

� n.G/ D E.G/ � r.G/, the nullity of G,

� bc.G/ D F.G/, the number of components of the boundary of G,3

� g.G/ D k � .V �E C bc/=2 is the genus of the graph,

� f .G/ the number of flags of the graph.

A graph with a single vertex hence with V D 1 is called a rosette.
A subgraph H of a ribbon graph G is a subset of the edges of G.
The Bollobás–Riordan polynomial, which is a generalization of Tutte polynomial,

is an algebraic polynomial that is used to incorporate new topological information
specific to ribbon graphs, such as the genus and the number of “broken” or “external”
faces. It is a polynomial invariant of the ribbon graph.

4.2. Bollobás–Riordan polynomial

Definition 4.1 (Global definition). The Bollobás–Riordan polynomial is defined by

RG D RG.x; y; z/ D P
H�G

.x � 1/r.G/�r.H/yn.H/zk.H/�bc.H/Cn.H/:

3This is the number of faces ofG whenG is connected.
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Figure 5. A planar ribbon graph with V D E D 1, bc D 2 and two flags.

Figure 6. A non-planar ribbon graph without flags, with V D 2, E D 3, bc D 1, g D 1,
f D 2, and its dual graph with V D 1, E D 3, bc D 2, g D 1, f D 2.

RG.x � 1; y � 1; 1/ D T xG.x; y/ is the relation to the Tutte polynomial for the
underlying graph xG. Observe also that ifG is planar we haveRG.x� 1; y � 1; z/ D
T xG.x; y/.

When H is a spanning graph of G, we have k.H/ � k.G/ D r.G/ � r.H/. So
we can rewrite the R polynomial as

RG D .x � 1/�k.G/ P
H�G

M.H/;

where

M.H/ D .x � 1/k.H/yn.H/zk.H/�bc.H/Cn.H/ (4.1)

so that M.H/ depends only on H but not on G.

4.3. Deletion/contraction. The deletion and contraction of edges in a ribbon graph
are defined quite naturally: the deletion removes the edge and closes the two scars at
its end; the contraction of a semi-regular edge creates a new disk out of the two disks
at both ends of the ribbon with a new boundary which is the union of the boundaries
of the two disks and of the ribbon (see Figure 7). An interesting property is that
deletion and contraction of edges are exchanged in the dual graph.
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f1 f1
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f2 f2

f2f2

f2

G � e2 G=e2

G � e1 G=e1

Figure 7. The contraction/deletion for a ribbon graph.

The deletion of a self-loop is standard. However the natural contraction of a
self-loop creates a surface with a new border. Iterating, we may get surfaces of
arbitrary genus with an arbitrary number of disks removed, a category also called
disk-punctured surfaces. The ribbons can now join any puncture to any other. For
instance, the contraction of the self-loop on the graph G1 of Figure 8 leads to a
cylinder, i.e., to a single vertex which is a sphere with two disks removed. The

Figure 8. Contraction of the single self-loop G1.

contraction of the two self-loops in graph G2 of Figure 9 corresponds to the cylinder
with a ribbon gluing the two ends, hence to a torus.

Deletion and contraction defined in this extended category of graphs can be iterated
until the graph has no longer any edge, i.e., is a collection of disk-punctured Riemann
surfaces. These punctured Riemann surfaces are very natural objects both in the
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Figure 9. Contraction of the two self loops non-planar G2.

context of string theory and in NCQFT. However we do not consider them in this
article.

In this article we remain in the category of ordinary ribbon graphs with disk-like
vertices. The contraction/deletion of semi-regular edges leads to rosettes as terminal
forms. To treat them we introduce the notion of double contraction on nice crossings.
Nice crossings were introduced in [34]:

Definition 4.2. A nice crossing pair of edges in a rosette is a pair of crossing edges
e1 and e2 which are adjacent on the cycle of the rosette. Adjacency means that one
end of e1 is consecutive with an end of e2 (see Figure 10).

a bc d ab c d

Figure 10. When deleting the two edges of a nice pair crossing on some contracted vertex, one
also needs to interchange the half-edges encompassed by the first edges with those encompassed
by the second one. Beware that the horizontal line in this picture is a part of the rosette cycle.

It is proved in [34] that any rosette R of genus g > 0 contains at least one nice
crossing.

The double contraction of such a nice crossing pair consists in deleting e1 and
e2 and interchanging the half-edges encompassed by e1 with the ones encompassed
by e2, see Figure 10. This double contraction was defined in [34] under the name of
“3rd Filk move”. It decreases the genus by one and the number of edges by 2.

In the next section iterating this double contraction until we reach planarity allows
us to compute theU ? Symanzik polynomial by remaining in the category of ordinary
ribbon graphs.
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Theorem 4.1 (Bollobás–Riordan polynomial, contraction/deletion). Let G be any
ribbon graph, then

RG D RG=e CRG�e
for every ribbon graph G and any regular edge e of G and

RG D xRG=e

for every bridge of G.

Therefore the R-polynomial satisfies the contraction/deletion relations as the
Tutte polynomial. However to complete its definition we also need to define the
R-polynomial for single vertex graphs, namely the rosettes, which can be read off
from (4.1). For such a rosette R we have k.R/ D V.R/ D k.H/ D V.H/ D 1, so
that the R-polynomial does not depend on x and

RR.y; z/ D P
H�R

yE.H/z2g.H/:

For z D 1 we recover RR.y � 1; 1/ D yE.R/.

4.4. The multivariate Bollobás–Riordan polynomial. Like in the case of Tutte
polynomial, we can generalize the Bollobás–Riordan polynomial to a multivariate
case. As before we associate to each edge e a variable ˇe .

Definition 4.3. The multivariate Bollobás–Riordan polynomial of a ribbon graph
analog of the multivariate polynomial (2.1) is

ZG.x; fˇeg; z/ D P
H�G

xk.H/
� Q
e2H

ˇe
�
zbc.H/:

It obeys again a deletion/contraction relation similar to Theorem 4.1) for any
semi-regular edge.

5. Translation-invariant NCQFT

5.1. Motivation. Noncommutative quantum field theory, hereafter called NCQFT,
has a long story. Schrödinger, Heisenberg [60] and Yang [70] tried to extend the
noncommutativity of phase space to ordinary space. Building on their ideas Snyder
[62] formulated quantum field theory on such noncommutative space in the hope that
it might behave better than ordinary QFT in the ultraviolet regime.

Right from the start another motivation to study noncommutative quantum field
theory came from the study of particles in strong magnetic fields. It was early recog-
nized that non-zero commutators occur for the coordinates of the centers of motion of
such quantum particles, so that noncommutative geometry of the Moyal type should
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be the proper setting for many-body quantum physics in strong external fields. This
includes in condensed matter the quantum Hall effect (see the contribution of Poly-
chronakos in [23]), or other strong field situations.

Another motivation comes from particle physics. Initial work by Dubois-Violette,
Kerner and Madore lead Connes, Lott, Chamseddine and others to forcefully advocate
that the classical Lagrangian of the current standard model arises naturally on a simple
noncommutative geometry. For a review see Alain Connes’s contribution in [23] and
references therein.

Still an other motivation came from the search of new regularizations of non-
Abelian gauge theories that may throw light on their difficult mathematical structure.
After ’t Hooft proposed the large N limit of matrix theory, in which planar graphs
dominate, as relevant to the subject [35], the Eguchi–Kawai model was an important
attempt for an explicit solution. These ideas have been revived in connection with the
ultraviolet behavior of NCQFT on the Moyal–Weyl geometry, which also leads to the
domination of planar graphs. Seiberg and Witten proposed in [61] a mapping between
ordinary and noncommutative gauge fields which does not preserve the gauge groups
but preserve the gauge equivalent classes.

The interest for noncommutative geometry also stems from string theory. Open
string field theory may be recast as a problem of noncommutative multiplication of
string states [69]. It was realized in the late 1990s that NCQFT is an effective theory
of strings [15]. Roughly this is because in addition to the symmetric tensor g�� the
spectrum of the closed string also contains an antisymmetric tensor B�� . There is no
reason for this antisymmetric tensor not to freeze at some lower scale into a classical
field, inducing an effective noncommutative geometry of the Moyal type. There
might therefore be some intermediate regime between QFT and string theory where
NCQFT is the relevant formalism. The ribbon graphs of NCQFT may be interpreted
either as “thicker particle world-lines” or as “simplified open strings world-sheets”
in which only the ends of strings appear but not yet their internal oscillations.

5.2. Scalar models on the Moyal space. The noncommutative Moyal space is
defined in even dimension d by

Œx�; x� �? D {‚�� ;

where ‚ is an antisymmetric d=2 by d=2 block-diagonal matrix with blocks�
0 �

�� 0

	

and we have denoted by ? the Moyal–Weyl product

.f ? g/.x/ D
Z

d4k

.2�/4
d4y f .x C 1

2
‚ � k/g.x C y/e{k�y :

Note that in the limit � ! 0 this product becomes the ordinary commutative product
of functions.
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5.2.1. The “naive” model. The simplest field theory on this space consists in re-
placing the ordinary commutative local product of fields by the Moyal–Weyl product

SŒ�� D
Z
ddx.1

2
@�� ? @

�� C 1
2

2� ? � C �

4
� ? � ? � ? �/: (5.1)

In momentum space the action (5.1) can be written as

SŒ�� D
Z
ddp.1

2
p��p

�� C 1
2

2�� C V.�; �//;

where V.�; �/ is the corresponding potential.
An important consequence of the use of the non-local product ? is that the interac-

tion part no longer preserves the invariance under permutation of external fields. This
invariance is restricted to cyclic permutations. Furthermore, there exists a basis – the
matrix base – of the Moyal algebra where the Moyal–Weyl product takes the form
of an ordinary (infinite) matrix product. For these reasons the associated Feynman
graphs are ribbon graphs, that is, propagators should be drawn as ribbons.

In [26] several contractions on such a Feynman graph were defined. In particular
the “first Filk move” is the contraction introduced in Section 4.3. Repeating this
operation for the V �1 edges of a spanning tree, one obtains a rosette (see Figure 11).

k2

k1

p

p

Figure 11. An example of a rosette with two flags. The crossings of edges k1 and k2 indicate
the non-trivial genus (here g D 1).

Note that the number of faces or the genus of the graph does not change under
contraction. There is no crossing between edges for a planar rosette. The example
of Figure 11 corresponds thus to a non-planar graph (one has crossings between the
edges k1 and k2). This pair is called a nice crossing pair.

The notions expressed in the previous section (namely the Green and Schwinger
functions or the perturbation theory concepts) remain the same as in QFT. Usual
Feynman graphs are simply replaced by ribbon Feynman graphs.

Recall that this “naive model” 5.1 is not renormalizable in d D 4. This is due to
a new type of non-local divergence at the level of the 2-point function: the UV/IR
mixing [48].
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5.2.2. A translation-invariant renormalizable scalar model. In order to restore
renormalizability at d D 4, the propagator can be modified in the following way [32]

SGMRTŒ�� D
Z
ddp.1

2
p��p

��C 1
2
m2��C 1

2
a 1
�2p2��C �

4
� ?� ?� ?�/; (5.2)

where a is some dimensionless parameter which is taken in the interval 0 < a �
1
4
�2m4.

In momentum space the corresponding propagator can be written as

CGMRT D 1

p2 Cm2 C a
�2p2

: (5.3)

In [32], this model was proved to be renormalizable at any order in perturbation the-
ory. Furthermore, its renormalization group flows [4] were calculated; a mechanism
for taking the commutative limit has been proposed [46] (for a review on all these
developments see [64]).

5.3. The NC parametric representation. In this subsection we present the imple-
mentation of the parametric representations for the noncommutative scalar models
introduced in the previous subsection.

To keep track of the cyclic ordering at the vertex it is convenient to detail the
incidence matrix "ev into a more precise incidence tensor "vei where i D 1, …, 4
indexes the four corners of the Moyal vertex. As before it is 1 if the edge e starts at
corner i of vertex v, �1 if it exits at that corner, and 0 otherwise.

To implement the parametric representation we follow Section 3.3. The propaga-
tor remains the same as in QFT, but the contribution of a vertex v now corresponds to
a Moyal kernel. In momentum space, using again summation over repeated indices,
it can be written as

ı
� 4P
iD1

"veike
�
e

� i
2

P
1�i<j �4 "

v
ei
ke‚"

v
ej
ke : (5.4)

By ki‚kj we denote k�i ‚��k
�
j . The ı-function appearing in the vertex contribution

(5.4) is nothing but the usual momentum conservation. It can be written as an integral
over a new variable Qxv , called hyperposition. One associates such a variable to any
Moyal vertex, even though this vertex is non-local:

ı
� 4P
iD1
"veike

� D
Z

d Qx0
v

.2�/4
ei Qx0

v.
P4

iD1 "
v
ei
ke/ D

Z
d Qxv
.2�/4

e Qxv
.
P4

iD1 "
v
ei
ke/: (5.5)

Here � is a d=2 by d=2 block-diagonal matrix with blocks

� D
�
0 �i
i 0

	
:

Note that to pass from the first to the second line in (5.5) the change of variables
i Qx0
v D Qxv� has Jacobian 1.
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5.3.1. The “naive” model. Putting now together the contributions of all the internal
momenta and vertices, one has the following parametric representation:

AT
G.p1; : : : ; pN / D KTG

Z QE
e;e0D1 ddked˛ee�˛e.k

2
e Cm2/

� QV�1
vD1

R
dd Qxvei Qxv.

P4
iD1 "

v
ei
ke/e

� i
2

P
i<j "

v
ei
ke‚"

v
e0j
ke0
:

Here we denote by KTG some inessential normalization constant. Furthermore note
that in the integrand above we have denoted, to simplify the notations, by ke or ke0

momenta which can be both internal or external.

5.3.2. The translation-invariant model. The parametric representation of the
model (5.2) was analyzed in [65]. This representation is intimately connected to
the one of the model (5.1) (see the previous subsubsection) for the following reason.
One can rewrite the propagator (5.3) as

1

AC B
D 1

A
� 1

A
B

1

AC B

for
A D p2 Cm2; B D a

�2p2
:

Thus the propagator (5.3) can be written as

CGMRT D 1

p2 Cm2
� 1

p2 Cm2
a

�2p2.p2 Cm2/C a

D 1

p2 Cm2
� 1

p2 Cm2
a

�2.p2 Cm21/.p
2 Cm22/

;

(5.6)

where �m21 and �m22 are the roots of the denominator of the second term on the right-

hand side (considered as a second order equation inp2, i.e., ��2m2˙p
�4m4�4�2a
2�2 < 0.

Note that the form (5.6) allows us already to write an integral representation of the
propagator C.p;m; �/. Nevertheless, for the second term one would need a triple
integration over some set of Schwinger parameters:

CGMRT D
Z 1

0

d˛e�˛.p2Cm2/

� a

�2

“ 1

0

d˛d˛.1/d˛.2/e�.˛C˛.1/C˛.2//p2

e�˛m2

e�˛.1/m2
1e�˛.2/m2

2 :

(5.7)

Instead of that one can use the formula

1

p2 Cm21

1

p2 Cm22
D 1

m22 �m21

�
1

p2 Cm21
� 1

p2 Cm22

	
:
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This allows to write the propagator (5.6) as

CGMRT D 1

p2 Cm2
� a

�2.m22 �m21/
1

p2 Cm2

�
1

p2 Cm21
� 1

p2 Cm22

	
:

This form finally leads to the integral representation

CGMRT D
Z 1

0

d˛e�˛.p2Cm2/ � a

�2.m22 �m21/
“ 1

0

id˛d˛1e
�.˛C˛1/p

2�˛m2�˛1m
2
1

C a

�2.m22 �m21/
“ 1

0

d˛d˛2e
�.˛C˛2/p

2

e�˛m2

e�˛2m
2
2 :

Let us also remark that the noncommutative propagator CGMRT is bounded by the
“usual” commutative propagator C.p;m/

CGMRT � C.p;m/:

Using now (5.7), the parametric representation of the model (5.2) is thus a sum of
2E terms coming from the development of the E internal propagators. Each of these
terms has the same form of the one of polynomials in the previous subsection. The
only differences comes from

� the proper substitution of the set of Schwinger ˛ parameters, and

� the mass part.

One has

AT
G D KTG

� Z QL
iD1 d˛i 1

ŒU.˛/	
D
2

e
�V.˛;p/

U.˛/ e� PL
iD1 ˛im

2

C
�

� a

�2

�L�1 LX
j1D1

Z
d j̨1

QL
i¤j1
iD1

d˛id˛
.1/
i d˛

.2/
i

1

ŒU.˛i C˛.1/

i
C˛.2/

i
; j̨1

/	
d
2

e
� V.˛i C˛

.1/
i

C˛
.2/
i

; j̨1
;p/

U.˛i C˛
.1/
i

C˛
.2/
i

; j̨1
/
e� PL

iD1 ˛im
2

e
� PL

i¤j1
iD1

˛
.1/

i
m2

1

e
� PL

i¤j1
iD1

˛
.2/

i
m2

2

C
�

� a

�2

�L�2 LX
j1<j2

j1;j2D1

Z
d j̨1

d j̨2

QL
i¤j1;j2

iD1

d˛id˛
.1/
i d˛

.2/
i

1

ŒU.˛i C˛.1/

i
C˛.2/

i
; j̨1

; j̨2
/	

d
2

e
� V.˛i C˛

.1/
i

C˛
.2/
i

; j̨1
; j̨2

;p/

U.˛i C˛
.1/
i

C˛
.2/
i

; j̨1
; j̨2

/
e� PL

iD1 ˛im
2

e
� PL

i¤j1;j2
iD1

˛
.1/

i
m2

1

e
� PL

i¤j1;j2
iD1

˛
.2/

i
m2

2

C � � � C
�

� a

�2

�L Z QL
iD1 d˛id˛

.1/
i d˛

.2/
i

1

ŒU.˛i C˛.1/

i
C˛.2/

i
/	

d
2

e
� V.˛i C˛

.1/
i

C˛
.2/
i

;p/

U.˛i C˛
.1/
i

C˛
.2/
i

/

e� PL
iD1 ˛im

2

e� PL
iD1 ˛

.1/

i
m2

1e� PL
iD1 ˛

.2/

i
m2

2

	
:
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5.4. Deletion/contraction for the NC Symanzik polynomials. In this subsection
we give some results relating the Bollobás–Riordan polynomial and the parametric
representations of the noncommutative scalar models introduced here.

5.4.1. The “naive” model. As in the commutative case, we have to perform a
Gaußian integral in a d.E C V � 1/-dimensional space. Consider a ribbon graph G
with a root xV .

We introduce the condensed notations analog to (3.10), (3.11) and (3.12):

AG.p/ D
Z Q

ed˛ee
�˛em

2

Z
dd Qxddpe�YXY t

where

Y D �
ke Qxv pe Qx Nv

�
; X D

�
Q �iRt

�iR M

	
:

Q is an d.ECV �1/-dimensional square matrix. We have denoted bype the external
momenta and by Qx Nv the hyperposition associated to the root vertex xV . The matrix R
is a d.N C1/�d.ECV �1/-dimensional matrix andM is a d.N C1/-dimensional
square matrix representing the Moyal couplings between the external momenta and
the root vertex.

Gaußian integration gives, up to inessential constants,

AG.p/ D
Z Q

e d˛ee
�˛em

2 1

detQd=2 e
�PRQ�1RtP t

(5.8)

where P is a line matrix regrouping the external momenta (and the hyperposition
associated to the root vertex).

The determinant of the matrix Q defines therefore the first Symanzik NC-poly-
nomialU ? and the product of the matricesR and inverse ofQ defines the quotient of
the second Symanzik polynomial V ? byU ?, where the star recalls the Moyal product
used to define this NCQFT.

Let us calculate first the determinant of Q. One has

Q D D ˝ 1d C A˝ �; (5.9)

where D is a diagonal matrix with coefficients Dee D ˛e for e D 1; : : : ; E and
Dvv D 0 for the rest, v D 1; : : : ; V � 1. A is an antisymmetric matrix. In [34] it was
noted that for such a matrix

detQ D det.D C A/d :

This implies, as in the commutative case, that

U ? D det.D C A/:
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Factoring out powers of i one has

det.D C A/ D det

0
BBBB@

˛1 f12 �P4
iD1 �vei�f12 ˛2

: : :

: : :P4
iD1 �vei 0

1
CCCCA :

The difference with the commutative case comes from the non-trivial antisymmetric
coupling between the E edges variables. It corresponds to an E dimensional square
matrix F with matrix elements

fee0 D � �
2

nP
vD1

4P
i;jD1

!.i; j /"vei"
v
e0j for all e < e0; e; e0 D 1; : : : ; E;

where ! is an antisymmetric matrix such that !.i; j / D 1 if i < j . This matrix takes
into account the antisymmetric character of ‚ in k�‚��p� .

Using again Lemma 2.1 we obtain

det.D C A/ D
Z Q

i;e d!id�id!ed�e

e� P
e ˛e�e!ee� P

e;v �e�ev�vC�$!e� P
e;e0 �efee0�e0 C�$! :

Note that the last term above represents the difference with the commutative case.
We have the exact analog of Theorem 3.3 to prove a deletion/contraction rule.

Theorem 5.1. For any semi-regular edge e we have

det.D C A/G D ˛e det.D C A/G�e C det.D C A/G=e:

Proof. We pick up a semi-regular edge e entering v1 and exiting v2. Thus it exists
some i and j with �v1

ei D C1, �v2

ej D �1. We expand

e�˛e�e!e D 1C ˛e!e�e;

leading to two contributions, which we denote by detQG;e;1 and detQG;e;2, respec-
tively. For the first term, since one must saturate the �e and !e integrations, one has
to keep the �e.�v1

� �v2
C P

Qe fe Qe�Qe/ term and the similar ! term. Note that the
sum is done on all the edges Qe hooking to any of the vertices v1 and v2 and with which
the edge e has no trivial Moyal oscillation factor. One has

detQG;e;1 D
Z Q

e0¤e;v d�e0d�vd!e0d!v

.�v1
� �v2

C P
Qe
fe Qe�Qe/.!v1

� !v2
C P

Qe
fe Qe!Qe/

e� P
e0¤e ˛

0
e�e0!e0 e� 1

4

P
e0¤e;v �e0�e0v�vC�$! :
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As in the commutative case, we now perform the trivial triangular change of variables
with unit Jacobian,

O�v1
D �v1

� �v2
C P

Qe
fe Qe�Qe; O�v D �v for v ¤ v1;

and the same change for the ! variables. What happens now is analogous to the
commutative case, with the difference that the last term in the definition of O�v1

will lead to the reconstruction of the Moyal oscillation factors of the edges hooking
to v1 with the edges hooking to v2. This completes the ribbon contraction, thus
detQG;e;1 D detQG=e . The second term detQG;e;2 with the ˛e!e�e factor is
even easier. We must simply put to 0 all terms involving the e label, hence trivially
detQG;e;2 D ˛e detQG�e .

We need now to compute U ? on terminal forms after contracting/deleting all
semi-regular edges, that is, to compute U ? on a rosette graph R. This is done by
using the double contraction introduced in the previous section.

Consider a nice crossing of R between two edges e1 and e2 with parameters ˛1
and ˛2. It leads to a contribution

U ?R D .˛1˛2 C 1
4
�2/UR=e1e2

; (5.10)

where we recall that the contracted rosette R=e1e2 is obtained by deleting e1 and e2
from R and interchanging the half-edges encompassed by e1 with the ones encom-
passed by e2, see Figure 10. The procedure can be iterated on R=e1e2 until after
g.R/ double contractions a planar rosette with 2E.R/�2g.R/ is reached, for which
F D 0 and for which the terminal form is

Q
e ˛e as in the commutative case.

Observe that the main difference with the commutative case is the inclusion of
the �2 term in the terminal form evaluation (5.10). This type of genus-term has no
analog in the commutative case.

Example 5.1. Consider the graph of Figure 12. Its first Symanzik polynomial is

˛1˛2 C ˛1˛3 C ˛2˛3 C 1
4
�2 (5.11)

([65]). Choosing ˛3 as a regular edge leads to a contracted graph where the pair
of edges ˛1 and ˛2 realizes a nice crossing. We thus have a contribution to the first
polynomial

˛1˛2 C 1
4
�2: (5.12)

The deleted part then follows as in the commutative case, leading to a contribution

˛3˛1 C ˛3˛2: (5.13)

Putting together (5.12) and (5.13) we obtain the expected result (5.11).

Let us now give the following definition.
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k k

p1 p2

Figure 12. An example of a non-planar graph, g D 1.

Definition 5.1. A ?-tree of a connected graphG is a subset of edges with one bound-
ary.

This definition allows to write a?-tree in some graph of genusg as an ordinary tree
plus at most g pairs of “genus edges” (where by “genus edges” we understand pairs of
edges which make a recursive succession of nice crossings under double contractions
on the rosette obtained after contracting the edges of the tree in the graph).

Example 5.2. For the graph of Figure 12, the ?-trees are the ordinary trees f1g, f2g,
f3g and the tree plus one pair of genus edges, namely f1; 2; 3g which is the whole
graph.

In [48], the following general expression for the first polynomialU of the “naive”
noncommutative model was given

U ?.˛1; : : : ; ˛E / D
�
�

2

	b X
T ??-tree

Y
e…T ?

2
˛e

�
; (5.14)

where
b D F � 1C 2g

denotes the number of loops of G. Note that the factor 2 above is the one which
matches our conventions.

Let us now give a proof of the formula (5.14). Consider the following lemma:

Lemma 5.1 (Lemma III.2 of [34])). Let D D .diıij /i;j2f1;:::;Dg be diagonal and
A D .aij /i;j2f1;:::;Dg be such that ai i D 0. Then

det.D C A/ D P
K�f1;:::;N g

det.B yK/
Q
i2K

ai ;

whereA yK is the matrix obtained fromA by deleting the lines and columns with indices
in K.
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The particular form (5.9) of the matrix Q allows thus to use this Lemma to
calculate its determinant (i.e., the polynomialU ). Factoring out �

2
on the firstE lines

and then 2
�

on the last V � 1 columns, one has

U ?.˛/ D
�
�

2

	b X
K�f1;:::;Eg

detA yK
Y
e2K

2
˛e

�
;

where we have used that
b �E D �.V � 1/:

Note that the setK on which one sums up corresponds to a set of edges of the graph;
this comes from the fact that the last V �1 entries on the diagonal of the matrixA are
equal to 0. In [34] (see Lemma III.4) it is proven, using a non-trivial triangular change
of Grassmanian variables that a determinant of type A yK is not vanishing if and only
if it corresponds to a graph with only one face. This means that the complement of
the subset of edges K must be a ?-tree, xK D T �. Furthermore, one has

Q
NT ?

˛e D Q
e…T ?

˛e:

5.4.2. The translation-invariant model. The relation of the parametric represen-
tation of the model (5.2) to the Bollobás–Riordan polynomials follows the one of
the “naive” model (5.1) presented above. This is an immediate consequence of the
intimate relationship between the parametric representation of these two noncommu-
tative models, a relationship explained in the previous subsection.

5.5. The second polynomial for NCQFT. In this section we prove the form of the
second polynomial for the model (5.1) (both its real and imaginary part, as we will
see in the sequel). We then relate this second polynomial to the Bollobás–Riordan
polynomial.

From (5.8) it follows directly that

V ?.˛; p/

U ?.˛/
D �PRQ�1RtP t ;

where we have on the left side the matrixM coupling the external momenta to them-
selves. Note that the matrix R couples the external momenta (and the hyperposition
associated to the root vertex) to the internal momenta and the remaining V �1 hyper-
positions. This coupling is done in an analogous way to the coupling of the internal
momenta with the respective variables.

We can thus state that the V polynomial is given, as in the commutative case, by
the inverseQ�1 of the matrixQ giving the U polynomial. The particular form (5.9)
of the matrix Q leads to

Q�1 D 1
2
..D C A/�1 C .D � A/�1/˝ 1d C 1

2
..D C A/�1 � .D � A/�1/˝ �:
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Thus the polynomial V has both a real V R and an imaginary part V I .
In the case of the commutative theories, the imaginary part above disappears. This

is a consequence of the fact that the matrixF , coupling through the Moyal oscillations
the internal momenta, vanishes for � D 0.

Let us give the following definitions.

Definition 5.2. A two ?-tree is a subset of edges with two boundaries.

Furthermore, letK a subset of lines of the antisymmetric matrix A. Let Pf.A yK O� /
be the Pfaffian of the antisymmetric matrix obtained from A by deleting the edges
in the set K [ f�g for � … K. We also define "K;� to be the signature of the
permutation obtained from .1; : : : ; E/by extracting the positions belonging toK[f�g
and replacing them at the end in the order:

1; : : : ; E ! 1; : : : ; Oi1; : : : ; Oip; : : : ; Oi� ; : : : ; E; i� ; ip; : : : ; i1:
We now prove a general form for both the real and the imaginary part of the

polynomial V ?, noted X? and Y?.

Theorem 5.2. The real part of the second Symanzik polynomial can be written as

X? D
�
�

2

	bC1 X
T ?

2
2?-tree

Y
e…T ?

2

2
˛e

�
.pT ?

2
/2; (5.15)

where pT ?
2

is the sum of the momenta entering one of the two faces of the 2?-tree
T ?
2 .

Note that by momentum conservation, the choice of the face in the above theorem
is irrelevant. Furthermore, let us emphasize the fact that, being on the submanifold
pG D 0, an equivalent writing of (5.15) is

X? D �1
2

�
�

2

	bC1 X
T ?

2
2?-tree

Y
e…T ?

2

2
˛e

�
pv � pv0 ;

where pv (and resp. pv0) is the total momenta entering one of the two faces of the
2?-tree.

Proof. We base our proof on the following lemma.

Lemma 5.2 (Lemma IV.1 of [34]). The real part of the polynomial V ? can be written
as

X? D P
K

Q
i…K

di
� P
e1

pe1

P
�…K

Re1�"K� Pf.A yK O� /
�2
; (5.16)

where di are the elements on the diagonal of the matrix Q. Furthermore, when
jKj 2 fE � 1;Eg the matrix with deleted lines is taken to be the empty matrix, with
unit Pfaffian.
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Note that, as before, since the matrix Q has vanishing entries on the diagonal
for the last V � 1 entries the subsets K are nothing but subsets of edges. The
empty matrix obtained from deleting all the first E edges in the graph corresponds
to the graph with no internal edges but only disconnected vertices. Each of these
disconnected components has one boundary; hence the Pfaffian is non-vanishing.

Note that the Pfaffian in (5.16) disappears iff the corresponding graph has 1 bound-
ary (see above). This means that K [ f�g is the complement of a ?-tree T ?:

K [ f�g D T ?:

Hence the subset K is the complement of a ?-tree plus an edge (just like in the com-
mutative case). Adding an extra edge to a ?-tree represents an increase of the number
of boundaries by one unit. Hence, the subset of edgesK above is the complement of
some 2?-tree T ?

2 xK D T ?
2 :

As before, one has Q
e2K

˛e D Q
e…T ?

2

˛e:

The diagonal terms in the matrix Q are again the parameters ˛e . Factoring out �
2

factors on the lines of the matrices corresponding to the edges of the graph and then
2
�

for the lines of the matrices corresponding to the vertices. The extra factor �=2
corresponds to the extra edge � .

Let us now investigate the square root of the momenta combination entering (5.16).
Note that the matrix element Re1� is not vanishing only for external momentum pe1

,
which has a Moyal oscillation with the internal momenta associated to the edge � .
It is this edge � which actually creates the extra boundary. Thus the sum on the
external momenta in (5.16) is nothing but the sum of the momenta entering one of
the two boundaries. By a direct verification, one can explicitly check the signs of the
respective momenta in (5.16), which concludes the proof.

Example 5.3. For the graph of Figure 12, the second polynomial is

V ?.˛; p/ D ˛1˛2˛3p
2 C 1

4
.˛1 C ˛2 C ˛3/�

2p2:

Let us now investigate the form of the imaginary part Y?. One has the following
theorem:

Theorem 5.3. The imaginary part of the second Symanzik polynomial can be written
as

Y?.˛; p/ D
�
�

2

	b X
T ??-tree

Y
e…T ?

2
˛e

�
 .p/;

where  .p/ is the phase obtained by following the momenta entering the face of the
?-tree T ? as if it was a Moyal vertex.
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Proof. The proof follows closely the one ofTheorem 5.2. Nevertheless, the equivalent
of (5.16) is now (see again [34])

Y?.˛; p/ D P
K

Q
e…K

di�KPf.A yK/
� P
e1;e2

� P
�;� 0

Re1��K�� 0 Pf.A yK O� O� 0/Re2� 0

�
pe1

�pe2

�
;

where di are the elements on the diagonal of the matrixQ. Since we look this time for
sets such that Pf.B yK/ is non-vanishing, this implies as above thatK is the complement
of some ?-tree T ?. Furthermore one needs to consider the two extra edges � and � 0.
It is possible from the initial ?-tree above to erase these two more edges such that
the Pfaffian Pf.B yK O� O� 0/ is non-vanishing. Indeed, if the ?-tree is a tree, by erasing
two more edges of it we obtain a graph with 3 disconnected components, each of it
with a single boundary; the corresponding Pfaffian will be non-vanishing. Summing
up all these possibilities leads to the Moyal oscillations of the external momenta
(the one which disappears when truncating the graph). If the ?-tree is formed by
a tree and some pair of genus edges we can always further delete the pair of genus
edges and remain with the regular tree. Obviously the corresponding Pfaffian is again
non-vanishing (since it corresponds to a graph with only one boundary).

Note that the form of the real part and of the imaginary one of the polynomial
V ? are qualitatively different. Indeed, the real part contains some square of a sum of
incoming external momenta, while the imaginary one contains a phase involving the
external momenta.

Let us end this section by stating that the second noncommutative Symanzik
polynomial also obeys the deletion/contraction rule. The proof is exactly like in the
commutative case, a straightforward re-reading of Theorem 5.1.

5.6. Relation to multivariate Bollobás–Riordan polynomials. In the previous
subsections we have identified the first Symanzik polynomial of a connected graph
in a scalar NCQFT as the first order in w of the multivariate Bollobás–Riordan poly-
nomial,

U ?G.˛; �/ D .�=2/E�VC1� Q
e2E

˛r
� � limw!0w

�1ZG. �
2˛e
; 1; w/:

Recall that the multivariate Bollobás–Riordan polynomial (see [37]) is a generaliza-
tion of the multivariate Tutte polynomial to orientable ribbon graphs defined by the
expansion,

ZG.ˇ; q; w/ D P
A�E

� Q
e2A

ˇe
�
qk.A/wb.A/;

with q.A/ the number of connected components and b.A/ the number of boundaries
of the spanning graph .V; A/.

In order to deal with the second Symanzik polynomial in the noncommutative
case, we now introduce an extension of ZG.ˇ; q; w/ for ribbon graphs with flags
at q D 1. In the case of ribbon graphs, the flags are attached to the vertices and
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the cyclic order of flags and half-edges at each vertex matters. For each cyclically
oriented subset I of the set of labels of the flags, we introduce an independent variable
wI . Cyclically ordered subsets I are defined as sequences of different labels up to
a cyclic permutation. Then each boundary of a graph with the orientation induced
by the graph defines a cyclically ordered subset of the set of labels of the flags by
listing the flags in the order they appear on the boundary. Accordingly, a variable wI
is attached to each boundary.

Definition 5.3. For an orientable ribbon graph G with flags „G.ˇe; wI / is defined
by the expansion

„G.˛e; ˇe; wI / D P
A�E

� Q
e…E

˛e
Q
e2E

ˇe
Q

boundaries
wIn

�
;

where In are the cyclically ordered sets of flags attached to each of the connected
component of the boundary of the spanning graph .V; A/.

We recover ZG.ˇe; 1; w/ by setting wI D w and ˛e D 1, but the information
pertaining to q is lost except for planar graphs. Indeed, in this case the genus of
any subgraph is still 0 so that jV j � jAj C b.A/ D 2k.A/ and thus ZG.ˇe; q; w/ D
qjV j=2ZG.q� 1

2ˇe; q
1
2w/.

The polynomial„G.˛e; ˇe; wI /obeys the contraction/deletion rules for any semi-
regular edges (i.e., all types of edges except self-loops). The structure of the flags of
G � e is left unchanged, but less variables wI enter the polynomial since the number
of boundaries decreases. For G=e, the flags attached to the vertex resulting from the
contraction are merged respecting the cyclic order of flags and half-edges attached to
the boundary of the subgraph made of the contracted edge only.

Proposition 5.1. The polynomial„G.˛e; ˇe; wI / obeys the contraction/deletion rule
for a semi-regular edge,

„G.˛e; ˇe; wI / D ˛e„G�e.˛e0¤e; ˇe0¤e; wI /C ˇe„G=e.˛e0¤e; ˇe0¤e; wI /:

This follows from gathering in the expansion of „G.˛e; ˇe; wI / the terms that
contain e and those that do not. The contraction/deletion rule may be extended to any
edge provided we introduce vertices that are surfaces with boundaries as in [37].

The second interesting property of „G.˛e; ˇe; wI / lies in its invariance under
duality. Recall that for a connected ribbon graph G with flags, its dual G� is defined
by taking as vertices the boundaries of G, with flags and half-edges attached in the
cyclic order following the orientation of the boundary induced by that of G.

Proposition 5.2. For a connected graph G with dual G� we have

„G.˛e; ˇe; wI / D „G�.ˇe; ˛e; wI /:
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Proof. First recall that there is a natural bijection between the edges of G and those
of G�. Thus, to a subset A of edges of G we associate a subset A� of edges of G�
which is the image under the previous bijection of the complementary E � A. Then
the term corresponding to A in „G.˛e; ˇe; wI / equals that corresponding to A� in
„G�.ˇe; ˛e; wI /. The only non-trivial part in the last statement is the equality of
the boundary terms in G and G�, which is best understood by embedding G in a
surface †. Then the spanning graph .V �; A�/, viewed as discs joined by ribbons, is
homeomorphic to † � .V; A/, with the orientation reversed. Accordingly, they have
the same boundary.

This relation may also be extended to non connected graphs at the price of in-
troducing again vertices that are surfaces with holes. For example, the dual of a
disjoint union of n vertices is the vertex made of a sphere with n holes. For a regular
edge, the duality exchanges contraction (resp. deletion) inG with deletion (resp. con-
traction) in G�. In the case of the deletion of a bridge in G, we have to contract a
self-loop in G�, thus leading to vertices that are surfaces with holes. Note that this
implies a duality for the multivariate Bollobás–Riordan polynomial only at the special
point q D 1, in agreement with the fact that the duality for the Bollobás–Riordan
polynomial only holds when its arguments lies on a hypersurface [12].

Finally, let us come to the relation with the second Symanzik polynomial in
NCQFT. For a given connected graph with momentapi such that

P
i pi D 0 attached

to the flags, we decompose the latter polynomial into real and imaginary part,

V ?G .˛e; �; pi / D X?
G.˛e; �; pi /C i Y?G.˛e; �; pi /:

Consider real variables wi and define wI D P
i wi for any cyclically oriented

subset of flags. Then expand .�=2/jE j�jV j„G.2˛e=�; �wI=2/ to the first two orders
at wi D 0,

.�=2/jE j�jV j„G.2˛e=�; �wI=2/ D A
� P
i

wi
� C P

i¤j
Bijwiwj CO.w3/:

The first order term reproduces the first Symanzik polynomial

U ?G.˛e; �/ D A;

whereas the second order terms yields the real part of the second Symanzik polyno-
mial,

X?
G.˛e; �; pi / D �1

2

P
i¤j

Aij pi � pj :

To obtain the imaginary part, consider the variables

wI D 1
2

P
i<j

pi �‚pj



78 T. Krajewski, V. Rivasseau, A. Tanasă, and Z. Wang

if I contain all the flags and wI D 0 otherwise. The previous definition involves
a choice of a total order on I compatible with its cyclic structure, but momentum
conservation

P
i pi D 0 implies that wI does not depend on this choice. Then

Y?G.˛e; �; pi / D .�=2/jE j�jV j„G.2˛e=�;wI /:

As a consequence of their expressions in terms of „G.˛e; ˇe; wI /, the noncommu-
tative Symanzik polynomials obey contraction/deletion rules for regular edges and
duality relations. For example, the duality for the first Symanzik polynomial reads

.�=2/jV jU ?G.˛e; �/ D .�=2/jV �j� Y
e2E

2˛e

�

�
U ?G�.�

2=˛e; �/:

Note that G� is the dual graph whereas the star on polynomials such as U ? and V ?

refer to the Moyal product. Analogous relations, though slightly more cumbersome,
can be written for the second Symanzik polynomial.

Still an other way to categorify and regularize in the infrared is to introduce
harmonic potentials on the edges rather than the vertices, leading to propagators based
on the Mehler rather than the heat kernel. This is the so-called vulcanization. An
extensive study of the corresponding commutative and noncommutative polynomials
is under way as a companion paper [43].
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