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On the classification of certain fusion categories
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Abstract. We advance the classification of fusion categories in two directions. Firstly, we
completely classify integral fusion categories – and consequently, semi-simple Hopf algebras
– of dimension pq2, where p and q are distinct primes. This case is especially interesting
because it is the simplest class of dimensions where not all integral fusion categories are group-
theoretical. Secondly, we classify a certain family of Z=3Z-graded fusion categories, which
are generalizations of the Z=2Z-graded Tambara–Yamagami categories. Our proofs are based
on the recently developed theory of extensions of fusion categories.
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1. Introduction and results

Recall that a fusion category is a semi-simple rigid monoidal category with finitely
many simple objects Xi , with simple unit X0 D 1, such that End.Xi / D C for all i .
The goal of this article is to obtain two classification results for fusion categories, and
to apply one of them to the classification of semi-simple Hopf algebras. We begin by
explaining how the main results of the article fit into the existing literature.

Classification of fusion categories is an important and difficult problem. More
specifically, by the Ocneanu rigidity theorem (see [ENO1]), there are finitely many
fusion categories of a given dimension and, in particular, finitely many fusion cate-
gories with a given fusion ring R (called categorifications of R). This leads to the
natural problems of classifying all fusion categories of a given dimension and cate-
gorifications of a given fusion ring. In full generality these problems are very hard; for
example, the first problem includes the classification of finite groups and Lie groups.
However, for certain dimensions and certain fusion rings these problems are some-
times tractable and lead to interesting results. For example, there exist classifications
of fusion categories of dimension p, p2 (see [ENO1]), pq ([EGO]) or pqr ([ENO2]),
where p, q, r are distinct primes. In [TY] categorifications of Tambara-Yamagami
rings are classified. In addition, there is a simple description of group-theoretical cat-
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egories, i.e., categories that are Morita equivalent to a pointed category (see [ENO1])
and all categories whose dimension is a prime power are of this type (see [DGNO]).

In this article we extend these classification results in two directions. Our first
result is the classification of integral fusion categories of dimension pq2, where p and
q are distinct primes. This case is interesting because it is the first class of dimensions
for which an integral fusion category need not be group-theoretical, and significantly
new methods are needed to get a classification.1 The second result is the classification
of categorifications of certain fusion rings Rp;G , associated with a finite group G.
These rings are generalizations of the Tambara–Yamagami rings (which correspond
to p D 2). Namely, we obtain a complete classification of categorifications of such
rings for p D 3, when the order of the groupG is not divisible by 3. Our main results
are Theorems 1.1 and 1.4 below.

Theorem 1.1. Let p and q be primes, and C be an integral2 fusion category of
Frobenius–Perron dimension pq2. Then exactly one of the following is true:

� C is a group-theoretical category.

� p D 2, and C is a Tambara–Yamagami category [TY] corresponding to an
anisotropic quadratic form3 on .Z=qZ/2; there are two equivalence classes of
such categories.

� The prime p is odd and divides q C 1, and C is one of the categories
C.p; q; f�1; �2g; �/ we shall explicitly construct. Here, �1 ¤ �2 2 Fq2 are
such that �p

1 D �
p
2 D 1, but �1�2 ¤ 1, and � 2 H3.Z=pZ;C�/ Š Z=pZ.

There are .p2 � p/=2 equivalence classes of such categories.

Corollary 1.2. All semi-simple Hopf algebras of dimensionpq2 are group-theoretical.

Remark. Another proof of Corollary 1.2, based on different methods, is given in
[ENO2].

Our second theorem concerns categorifications of a certain fusion ring Rp;G at-
tached to a finite group G and a prime p.

Definition 1.3. LetG be a finite group whose order is a square4 and let p 2 N. Then
the fusion ring Rp;G is the ring generated by the group ring ZŒG� and X1; : : : ; Xp�1,

1All integral fusion categories of dimension pqr classified in a recent preprint [ENO2] are group-
theoretical and thus the techniques of [ENO2] do not work in our situation.

2If p and q are odd, then the assumption that C is integral is redundant.
3I.e., of the form x2 � ay2, where a is a quadratic non-residue.
4This assumption is unnecessary when p D 1 or p D 2.
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with relations

g ˝Xi D Xi ˝ g D Xi ; X�
i D Xp�i ;

Xi ˝Xj D
´ pjGjXiCj if i C j ¤ p;P

g2G g if i C j D p:

Theorem 1.4. Let A be a finite group of order not divisible by 3. Then the fu-
sion ring R3;A admits categorifications if and only if A is abelian, of the form
A Š LN

iD1.Z=p
ni

i Z/ai , where pi are primes, pairs .pi ; ni / are distinct, and ai

are even integers. In this case, there are 3
Q

i

�
ai

2
C 1

�
categorifications.

The proofs of these theorems are based on the solvability of fusion categories of
dimension paqb proved in [ENO2], the new theory of extensions of fusion categories
developed in [ENO3], and some intricate linear algebra over finite fields.

The organization of this article is as follows. Section 2 contains a review of
standard definitions, and also results from recent literature which we will need. In
Section 3, we exhibit non-trivial gradings on the fusion categories of study, and analyze
these gradings with the methods from [ENO3]. Sections 4 and 5 present the proofs
of Theorem 1.1 and Corollary 1.2, respectively. In Section 6, we focus on the case of
Z=3Z-graded extensions of VecA. In Section 7 we prove Theorem 1.4.

Remark. It is not difficult to extend Theorem 1.1 to classify non-integral categories
of dimension pq2. This is because the dimensions of all objects in such a category
are necessarily square roots of positive integers. This forces a Z=2Z-grading on
the category, which means either p or q is 2. Then a case by case analysis yields a
complete list. We have not included these computations as they are not of particular
interest.

Remark. It is also possible to extend Lemmas 6.1 and 6.2, and thus Theorem 1.4, to
the situation where A contains no elements of order 9 (i.e., the 3-component of A is
a vector space over F3). However, it seems that our methods break down if A has a
more complicated 3-component.

Remark. Some possible directions of future research would be a generalization of
Theorem 1.1 to categories of dimension pqn, n � 3, and of Theorem 1.4 to p > 3.
These problems reduce to describing orbits of actions of certain reductive subgroups
of O.2n; Fq/ on the Lagrangian Grassmanian. While in general these problems may
be intractable, we think that under reasonable simplifying assumptions one can get
manageable and interesting classifications.

Acknowledgements. The authors would like to warmly thank Pavel Etingof and
Victor Ostrik for posing the problem, and for many helpful conversations as the work
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progressed. We are grateful to Victor Ostrik for explaining to us how Corollary 1.2
could be easily derived from our results. The work of both authors was supported
by the Research Science Institute and conducted in the Department of Mathematics
at MIT.

2. Preliminaries

In this section we recall several basic notions about fusion categories. For more details
see [ENO1], [ENO2], [ENO3], [O1]. For the remainder of the article, C and D are
fusion categories, G is any finite group, and A is a finite abelian group.

Definition 2.1. A fusion (or based) ring R is an associative ring which is free of
finite rank as a Z-module, with fixed Z-basis B D fXig containing X0 D 1, and an
involution � W B ! B extending to an anti-involution R ! R such that:

(i) XiXj D P
N.i; j; k/Xk for all i , j , whereN.i; j; k/ are non-negative integers,

(ii) N.i; j �; 0/ D ıij .

Definition 2.2. The fusion ring of C , denotedK.C/, has as its basis the isomorphism
classes of simple objects of C , with N.i; j; k/ equal to the multiplicity of Xk in
Xi ˝ Xj , and � defined by the duality in C . A categorification of a fusion ring R is
a fusion category C such that K.C/ D R.

A fusion ring can have more than one categorification, or none at all. For example,
consider the group ring ZŒG� of a finite group G (with basis fg 2 Gg). Categorifi-
cations of these rings are known as pointed categories. One such categorification is
the category ofG-graded vector spaces, V D L

g2G Vg , with the trivial associativity
isomorphism. We can construct other categorifications by letting the associativity
isomorphism ˛ be defined on the graded components by

.Ug ˝ Vh/˝Wk

�.g;h;k/�����! Ug ˝ .Vh ˝Wk/;

for some 3-cocycle � 2 Z3.G;C�/. We denote the resulting category VecG;� (or just
VecG if � is trivial). It is well known that VecG;� depends only on the cohomology
class of �, and these categories are the only pointed categories. Thus, categorifications
of ZŒG� are parameterized by the set H3.G;C�/=Aut.G/. On the other hand, the two-
dimensional fusion ring with the basis f1; Xg and the fusion rules X2 D 1 C nX has
two categorifications when n D 0; 1, and no categorifications for n > 1 (see [O3]).

Definition 2.3. The Frobenius–Perron dimension FPdimXi ofXi is the largest posi-
tive eigenvalue of the matrix Ni with entries N.i; j; k/ (such an eigenvalue exists by
the Frobenius–Perron theorem).
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For categories of group representations (or more generally, representations of a
semi-simple quasi-Hopf algebra), this is the vector space dimension; however, in
general the dimension need not be an integer – it is only an algebraic integer. If all
FPdimXi are integers, we call the category integral.

Definition 2.4. The dimension jC j of C is the sum of the squares of dimensions of
all simple objects of C .

For the category of representations of a semi-simple quasi-Hopf algebra H , jC j
is the vector space dimension of H , by Maschke’s theorem.

Definition 2.5. We say that C is graded by G if C decomposes as a direct sum
C D L

g2G Cg , such that Cg ˝ Ch � Cgh. Let us denote the trivial component of
the grading Ce . When G is abelian, we refer to the trivial component as C0. By an
extension of D by G, we mean a G-graded fusion category C with Ce D D .

Lemma 2.6 ([O2]). Let C be a G-graded fusion category whose trivial component
Ce is pointed, with some component Cg containing a unique simple object. Then
Ce Š VecA, with A abelian.

Proof. The category Cg defines a fiber functor on Ce , which implies that Ce D RepH
for some commutative Hopf algebra H . Thus, � D 0;H D Fun.G/. Now, RepH�
is the dual category to Ce with respect to Cg , which is the same as Ce . Thus H� is
commutative and G is abelian.

Definition 2.7. The Picard group of C , denoted Pic.C/, is the set of all equivalence
classes of invertible C -bimodule categories under the operation of the tensor product.
Thus, Pic.C/ is the group of equivalence classes of Morita auto-equivalences of C .

Definition 2.8. Two fusion categories C and C 0 are equivalent, if there is an invertible5

tensor functor: C ! C 0. If we have two categories C and C 0 graded by the same
group G, then we say that they are grading-equivalent if there is some invertible
tensor functor: C ! C 0 which restricts to a functor Cg ! C 0

g for each g 2 G.

Theorem 2.9 ([ENO3]). Pic.VecA/ is the split orthogonal group O.A˚ A�/.

For completeness, let us sketch a proof. The key point is that Morita equivalences
between fusion categories C and D are in bijection with braided equivalences between
their Drinfeld centers Z.C/ and Z.D/, and this equivalence maps tensor product of
bimodule categories to composition of functors. (See [ENO2], Theorem 3.1.) In
particular, the group of Morita auto-equivalences of C is naturally isomorphic to

5By an invertible functor, we mean a functor with a quasi-inverse.
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the group of braided auto-equivalences of Z.C/. In the case C D VecA, Z.C/ is
VecA˚A� , with braiding given by the standard (split) quadratic form. Thus, the group
of braided auto-equivalences of Z.C/ is isomorphic to O.A ˚ A�/, and the result
follows.

Theorem 2.10 ([ENO3]). Fix a fusion category Ce . Then categories C , graded by
G, with trivial component Ce are classified, up to grading-equivalence, by triples
.�; h; k/, where � W G ! Pic.Ce/ is a homomorphism, h 2 H2.G; Inv.Z.Ce///,
and k 2 H3.G;C�/.6 There are obstructions �1.�/ 2 H3.G; Inv.Z.Ce/// and
�2.�; h/ 2 H4.G;C�/ which must vanish for C.�; h; k/ to exist. Here, we consider
this data up to the action of the group of tensor auto-equivalences of Ce .

3. Cyclic extensions of VecA

Let us fix primes p and q, and a generator � of Z=pZ.

Proposition 3.1. Let jAj be coprime to p. Then categorifications of Rp;A are
parameterized by the data .�; �/, where � 2 H3.Z=pZ;C�/ ' Z=pZ, and
� W Z=pZ ! O.A˚ A�/ is a homomorphism such that if we write

�.i/ D
�
˛i ˇi

�i ıi

�
;

where ˛i W A ! A, ˇi W A� ! A, �i W A ! A�, ıi W A� ! A�, then ˇi is an
isomorphism for all i ¤ 0. Two such categorifications are equivalent if and only
if they are related by the natural action of Aut.Z=pZ/ and the subgroup of the
orthogonal group of elements of the form

� D
�
 0

'  �1�
�
;

where  �' is skew-symmetric.

Proof. Clearly, any categorification C of the fusion ringRp;A is Z=pZ-graded. From
Lemma 2.6, C0 D VecA. We must have that ˇi is an isomorphism for all i ¤ 0 since
Ci D hXi i, and FPdim.Xi /

2 D jAj D j Im ˇi j. Now, j Inv.Z.C0//j divides jZ.C0/j,
since the dimension of any subcategory divides the dimension of the category. But,
jZ.C0/j D jC0j2. Because we are assuming that p is coprime to jAj, p is coprime
to j Inv.Z.C0//j, whereby H�.Z=pZ; Inv.Z.C0/// D 0. (In particular this implies

6Actually the data h and k belong to torsors over the groups H2.G; Inv.Z.Ce/// and H3.G; C�/,
respectively, rather than to the groups themselves. This is a technical point which is not going to matter
for our considerations. Here Inv.D/ denotes the group of invertible objects of D .
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that the third cohomology group is trivial.) We also have no choice for the second
piece of data, since the second cohomology group is also trivial. Finally, the second
obstruction vanishes because H4.Z=pZ;C�/ D 0. Therefore, by [ENO3], such
categories are determined up to grading-equivalence by the data .�; �/.

It is clear that if C 0, C 00 are two categorifications of Rp;A, then any equivalence
between C 0 and C 00, will preserve the grading, up to the action of Aut.Z=pZ/. Thus,
since the subgroup of the orthogonal group which acts on the data .�; �/ is the group of
auto-equivalences of C0 D VecA, we conclude the statement of this proposition.

Now we consider what happens when instead of requiring that each graded com-
ponent Cg (g ¤ 0) contains a unique simple object, we only require that the graded
component C� contains a unique simple object. Since this condition is not invariant
under the action of Aut.Z=pZ/, we classify these categorifications up to grading-
equivalence.

Theorem 3.2. Let p 2 N be relatively prime to jAj. Then Z=pZ-graded categories
C with trivial component VecA such that C� contains a unique simple object are
parameterized up to grading-equivalence by an element of H3.Z=pZ;C�/ ' Z=pZ,
together with a map ˛ W A ! A and an isomorphism � W A ! A� such that ��˛ is
skew-symmetric and �

˛ Id
.��1��/�1 0

�p

D Id : (1)

Proof. As in Proposition 3.1, our categories are determined by the data .�; �/, except
that we only require ˇ1 to be an isomorphism.

To specify the homomorphism �, it suffices to give the image of the generator
�.�/, say

M D
�
˛ ˇ

� ı

�
2 O.A˚ A�/; (2)

such that ˇ is invertible and M p D Id. However, we must consider such matrices M

up to conjugation by elements of the form�
Id 0

' Id

�
; (3)

where ' is skew-symmetric, since conjugation by elements of the form�
 0

0  ��1

�

amounts to the change of basis .˛; �/ 7! . �1˛ ; �� /.

Claim 3.3. For a given matrix in the form (2), there is exactly one matrix of the form
(3) which conjugates it into a matrix where ı D 0.
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Proof. Observe that when we conjugate (2) by (3) we obtain�
Id 0

' Id

� �
˛ ˇ

� ı

� �
Id 0

�' Id

�
D

�
˛ � ˇ' ˇ

? 'ˇ C ı

�
:

So a matrix in the form of (3) conjugates M into a matrix where ı D 0 if and only if
' D �ıˇ�1 D �ˇ�1�ˇ�ıˇ�1, which is skew-symmetric because M 2 O.A˚A�/.

Thus, we have reduced the problem to classifying the set of all matrices M in the
form �

˛ ˇ

� 0

�
2 O.A˚ A�/;

whose p-th power is the identity matrix. The condition that M 2 O.A˚A�/ can be
expressed as ��˛ being skew-symmetric, and ˇ D ���1. Therefore, we want to find
linear maps ˛, � , with � invertible, such that ��˛ is skew-symmetric and�

˛ ���1

� 0

�p

D Id : (4)

Now, conjugating M by anything in the general linear group does not change the
property that M p D Id, so we can replace M with�

Id 0

0 ���1

� �
˛ ���1

� 0

� �
Id 0

0 ��
�

D
�

˛ Id
.��1��/�1 0

�
:

Therefore (4) may be replaced with the condition (1).

Remark. One may easily deduce Theorem 3.2 of [TY] as a corollary to Theorem 3.2
above.

Lemma 3.4. Let C be a cyclic q-group. Then, up to equivalence, there is exactly one
non-degenerate skew-symmetric map � W C ˚ C ! .C ˚ C/�.

Proof. Identical to the proof of the corresponding theorem for vector spaces.

Lemma 3.5. Let a 2 Z such that q−a2 � 4, and let C be a cyclic q-group. Then, up
to equivalence, there is exactly one isomorphism � W C ˚ C ! .C ˚ C/� such that
.��1��/2 D a��1�� � Id.

Proof. Write C D Z=qnZ. First, assume to the contrary that qn�1��1�� is mul-
tiplication by some constant qn�1	. Then qn�1� D .qn�1��/� D .qn�1	�/� D
qn�1	2� . Thus, moduloq,	2 D 1, soqn�1 Id D qn�1.	 Id/2 D qn�1.a	 Id � Id/ D
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qn�1.a	 � 1/ Id. Thus, 1 D 	2 D .2=a/2 modulo q, which contradicts our assump-
tion that q does not divide a2 � 4. Thus, the characteristic polynomial of x D ��1��
is t2 � at C 1, since that is the minimal polynomial and of the correct degree. Now
we claim that there is exactly one equivalence class for x, namely the class of

x D
�
a 1

�1 0

�
: (5)

Since the characteristic polynomial of x is t2 � at C 1, x has the form

x D
�
a � d b

c d

�
;

where d.a�d/�bc D 1, and a ¤ 2d modulo q if b D c D 0modulo q, because we
already proved that qn�1x was not multiplication by a scalar. If d.a � d/� bc D 1,
it is straight-forward to check�

a � d b

c d

� �
.a � d/y C b y

cy C d 1

�
D

�
.a � d/y C b y

cy C d 1

� �
a 1

�1 0

�
:

Thus, we are done if there is y 2 Fq so that

�cy2 C .a � 2d/y C b D det

�
.a � d/y C b y

cy C d 1

�
¤ 0;

as we can take an arbitrary lift of y into Z=qnZ to finish. Since we cannot have
b D c D 0; a � 2d D 0 modulo q, there is some y 2 Fq that finishes the claim,
unless q D 2 and �cy2 C .a� 2d/yC b D y2 C y. But in the latter case, it follows
that det x D 0, which contradicts the invertibility of x. Therefore, we may assume
(5). If we write

� D
�
b c

d e

�
;

then we have that�
b d

c e

�
D �� D �x D

�
b c

d e

� �
a 1

�1 0

�
D

�
ab � c b

ad � e d

�
:

Therefore,

� D
�
d .a � 1/d
d d

�
:

But, for any y, t , such a map is equivalent to�
ay C t �y
y t

�
�

�
ay C t y

�y t

�
D

�
d.y2 C ayt C t2/ .a � 1/d.y2 C ayt C t2/

d.y2 C ayt C t2/ d.y2 C ayt C t2/:

�
:
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In order to show the statement of this lemma, it suffices to show that there are y; t 2
Z=qnZ so that y2 C ayt C t2 D 1=d . By Hensel’s Lemma, it suffices to prove there
is a solution modulo q such that 2y C at ¤ 0.

If q D 2, this is clear, since we can take y D t D 1 (d and amust both be 1, since
� is invertible). If q ¤ 2, then it is equivalent to .2y C at/2 C .4 � a2/t2 D 4=d .
Observe that we may choose 2y C at and t independently; that is we want to find
z; w 2 Fq so that z2C.4�a2/w2 D 4=d . If4=d is a quadratic residue, we may choose
z2 D 4=d , w2 D 0. Therefore, suppose that d is not a quadratic residue. Then, if
.4 � a2/ is also not a quadratic residue, we may take z D 0, w2 D 4=..4 � a2/d/.
So, say that 4� a2 is a quadratic residue, 4� a2 D f 2. Then our equation becomes
z2 C .f w/2 D 4=d , where f ¤ 0. Define the sets Si D f2=d C i; 2=d � ig for
i D 0; 1; 2; : : : ; q�1

2
. By the pigeonhole principle, we must either have that 2=d is

a quadratic residue, in which case we are done, or that two quadratic residues in the
same Si , say fz2; .f w/2g D Si , which implies that z2 C .f w/2 D 4=d .

Lemma 3.6. Let C be an integral fusion category of Frobenius–Perron dimension
pq2. Then either C is faithfully graded by Z=pZ, or C is group-theoretical.

Proof. By [ENO2], any fusion category of dimension pmqn is Morita equivalent to
a nilpotent fusion category. Therefore, every fusion category of dimension pq2 is
either Morita equivalent to a category with a faithful Z=qZ-grading, or one with a
faithful Z=pZ-grading.

Suppose that C is Morita equivalent to a category D with a faithful Z=qZ-grading.
Let D0 be the trivial component of the grading. Then D0 is an integral fusion category
of dimension pq. Therefore, by [EGO], D0 is group-theoretical and thus Morita
equivalent to a pointed category D 0

0, and D is Morita equivalent to some Z=qZ
graded category D 0 whose trivial component is D 0

0 (see [ENO2], Lemma 3.3). But
the possible dimensions of objects of D 0 are only 1,

p
q,

p
p,

p
qp. Thus, since

Morita equivalence preserves integrality, D 0 is pointed, and therefore C is group-
theoretical.

Next suppose that C is not Morita equivalent to a category D with a faithful Z=qZ-
grading, and that it does not possess a faithful Z=pZ-grading. Then, since all fusion
categories of dimension pq2 are solvable [ENO2], C is an equivariantization of some
category C0 of dimension q2 by Z=pZ. Since all integral categories of dimension
q2 are pointed, and any equivariantization of a pointed category is group-theoretical,
the statement of this lemma follows.

Lemma 3.7. Any integral fusion category of Frobenius–Perron dimensionpq2, which
is Z=pZ-graded such that the trivial component of the grading is VecZ=q2Z;� , is
group-theoretical.

Proof. Since our category is integral, it is either pointed, in which case we are done, or
there is an object of dimension q. If that is the case, then by Lemma 2.6, � D 0. Thus,
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the Picard group of the trivial component is O.Z=q2Z C .Z=q2Z/�/. Therefore,
the category must be group-theoretical, since q.Z=q2Z C .Z=q2Z/�/ is an invariant
Lagrangian subspace, under any action, with respect to the split quadratic form.

Lemma 3.8. Let˛ and� be2�2matrices, with� invertible, and˛�� skew-symmetric.
Then ˛ commutes with ��1��.

Proof. Let ' D ˛��1. Since ˛�� is skew-symmetric, ' is as well. Explicit compu-
tation reveals that �'�� D ��'� , which implies that ˛��1�� D ��1��˛.

4. Proof of Theorem 1.1

Write A D .Z=qZ/2. By Lemmas 3.6 and 3.7, either C is group-theoretical, or C

is a Z=pZ-graded category with trivial component VecA;� . Since C has all objects
of integral dimension by assumption, either C is pointed, in which case we are done,
or C has an object of dimension q, in which case by Lemma 2.6, � D 0. Therefore,
if p D 2, by [TY] such categories are parameterized by a quadratic form � , and by
[GNN] such categories are group-theoretical if and only if there is a subgroupL � A

such that jLj D pjAj D q and such that � is 0 when restricted to L. Since A is a
two-dimensional vector space, this is equivalent to the form � being isotropic. This
completes the proof if p D 2. Thus, we will assume that p is odd.

In particular, C is a Z=pZ-graded category with trivial component VecA such
that C� contains a single simple object, where � is the generator of Z=pZ. From
Theorem 3.2, such C are parameterized by an element of H3.Z=pZ;C�/, together
with an equivalence class of a pair of maps ˛ W A ! A, � W A ! A�, where � is an
isomorphism, which satisfy ��˛ skew-symmetric, and (1).

Write x for ��1��. From Lemma 3.8, we have that ˛ and x commute. Consider
the matrix

M D
�
˛ Id
x�1 0

�

as a two-by-two matrix over the commutative subring of matrices generated by ˛
and x. Then, since M p D Id, we must have det.M /p D Id. Since det.M / D �x�1,
we have that xp D � Id. Over the algebraic closure of Fq , we may choose a basis
such that

x D
��
 0

0 �	
�
;

where	p D 
p D 1. Since det x D det ��1 det �� D 1, it follows that
 D 	�1. By
Lemma 3.5 there is exactly one solution, up to equivalence, to the equation �� D �x,
where � is invertible. This equation is a system of four linear equations in the entries
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of the matrix for � . Solving it yields

� D
�
0 �	�1g

g 0

�
:

Write

˛ D
�
a b

c d

�
:

Then we have that

��˛ D
�
0 g

�	g 0

� �
a b

c d

�
D

�
cg dg

�a	�1g �b	�1g

�

is skew-symmetric. In other words,

˛ D
�
a 0

0 a	�1

�
:

We must therefore have 0
BB@
a 0 1 0

0 a	�1 0 1

�	 0 0 0

0 �	�1 0 0

1
CCA

p

D Id;

or equivalently, there exist �1, �2 distinct p-th roots of unity such that�
a 1

�	 0

�

is conjugate to �
�1 0

0 �2

�
;

i.e., a D �1 C �2, 	 D �1�2. Since p is odd, x and ˛ have the same block form and
therefore the same centralizer.

Claim 4.1. There exists a basis so that both x and ˛ are matrices over Fq if and only
if p jq2 � 1.

Proof. Observe that p j q2 � 1 () j Gal.FqŒ�p� W Fq/j � 2 () � C ��1 2 Fq for
each � which is a primitive p-th root of unity. When 	 D 1, x D � Id and ˛ D
.�1 C ��1

1 / Id are central, and are matrices over Fq () �1 C ��1
1 2 Fq () p jq2 �1.

When 	 ¤ 1, to see the “only if” part, observe that since 	C 	�1 D � tr x 2 Fq , we
know that p jq2 � 1. To see the “if” part, let

 D
�
	 �1

�1 	

�
;
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and observe that

 .��1��/ �1 D
��.	C 	�1/ �1

1 0

�
; (6)

 ˛ �1 D
�
.	C 	�1 C 1/ a

�C1
a

�C1� a
�C1

a
�C1

�
;

both of which are matrices over Fq .

It is thus clear that if q2 � 1 is not divisible by p, there are no non-pointed
categorifications, and if q2 �1 is divisible by p, then up to grading-equivalence, non-
pointed categorifications are determined by an element of H3.Z=pZ;C�/ together
with unordered pairs f�1; �2g of distinct p-th roots of unity under the equivalence
f�1; �2g � f��1

1 ; ��1
2 g. Such pairs determine the pair .�; ˛/ uniquely because they

determine � uniquely, and ��1�� and ˛ have the same centralizer.

Claim 4.2. The category C is group-theoretical if and only if �1�2 2 Fq .

Proof. The resulting category is group-theoretical if and only if there exists a La-
grangian subspaceL � A˚A�, with respect to the split quadratic formq.a˚b/ D ba,
which is invariant under the action of Z=pZ.

Fix the homomorphism �. Write M D �.�/, and let ˛ and � be as in (1). Denote
the chosen basis ofA by e1, e2. This gives a basis e1, e2, e�

1 , e�
2 forA˚A�. Because

��1�� and ˛ have the same centralizer, Lemma 3.5 and eq. (6) imply that we may
assume

� D
��1 �.	C 	�1 C 1/

1 �1
�
:

Thus,

M D

0
BBBB@

a.�2C�C1/

�2C�
a

�C1
� �

.�C1/2 � �
.�C1/2

� a
�C1

a
�C1

�2C�C1
.�C1/2 � �

.�C1/2

�1 � .�2C�C1/
�

0 0

1 �1 0 0

1
CCCCA : (7)

For any element or subspace a of A˚ A�, denote by �a the projection of a onto A.
Fix some Lagrangian subspace L. We consider three cases.

Case 1: �L has dimension 0. It follows that L D A�, and by inspection, such
Lagrangian subspaces are never invariant subspaces of the action of Z=pZ by the
homomorphism �.

Case 2: �L has dimension 1. In this case, we prove that there is an invariant
Lagrangian subspace if and only if 	 2 Fq .

First we will show the “only if” part. Since �L has dimension 1, there is some
vector v ¤ 0 2 �L. We claim that v 2 L. To see this, let v0 be a lift of v to L. Write
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v0 D vCw. Since vCw 2 L, it suffices to show thatw 2 L. Takew0 2 L, such that
w0 … hv0i. Since �L has dimension 1, we have that �w0 D 	v. Consider the vector
w0 � 	v0. We have �.w0 � 	v0/ D 0, so w0 � 	v0 2 A�. In view of w0 � 	v0 2 L we
have that

0D q..w0�	v0/Cv0/D q..w0�	v0/CvCw/D ..w0�	v0/Cw/.v/D .w0�	v0/.v/;

since w.v/ D q.v0/ D 0. But from w.v/ D 0, it follows that w 2 hw0 � 	v0i � L,
since the subspace of A� which evaluates to 0 on a non-zero vector in A is one-
dimensional. Therefore, v 2 L. It follows that Mv 2 L, and therefore that ˛v D
�.Mv/ 2 �L D hvi. Thus, v is an eigenvector of ˛. It follows that an eigenvalue of
˛ lies in Fq . Since the eigenvalues of ˛ are �	 and �	�1, we have that 	 2 Fq .

In order to see the “if” part, consider L D hv;wi, where

v D .1;�	; 0; 0/; w D .0; 0; 	; 1/:

Since v 2 A,w 2 A�, andw.v/ D 0, it is clear thatL is a Lagrangian subspace. Thus,
it suffices to show that L is invariant under the action of Z=pZ, or that Mv;Mw 2
hv;wi. By (7),

Mv D a

	
v C .	C 1/w and Mw D � 1

	�1 C 1
v:

Case 3: �L has dimension 2. In this case, we prove that there is no invariant
Lagrangian subspace if 	 … Fq . Assume to the contrary. Since �L has dimension
2, e1; e2 2 �L. Let v be an arbitrary lift of e1 to L, and w be an arbitrary lift of e2

to L. Clearly, we have L D hv;wi. Since q.v/ D 0 and �v D e1, v must have the
form .1; 0; 0; s/ for some s 2 Fq . Similarly, w must have the form .0; 1; s0; 0/. Since
q.vCw/ D 0, we have that s0 D �s. In other words, our Lagrangian subspace would
have to be the span of two vectors in the form v D .1; 0; 0; s/, w D .0; 1;�s; 0/. We
have Mv 2 hv;wi. Now we explicitly compute Mv D .�; ;�1; 1/, where

� D a.	C 1/.	2 C 	C 1/ � s	2

	.	C 1/2
;  D �s	C a.	C 1/

.	C 1/2
:

Since Mv 2 hv;wi, we have that there exists cv; cw 2 Fq with cvvCcww�Mv D 0.
Since �.cvv C cww/ D �

cv
cw

�
, we know that cv D � and cw D  . It follows that

0 D �v C w � Mv D .0; 0; 1 � s; �s � 1/. As

1 � s D .s�2 C �1�2 C 1/.s�1 C �1�2 C 1/

�2
1�

2
2 C 2�1�2 C 1

;

we deduce that
.s�2 C �1�2 C 1/.s�1 C �1�2 C 1/ D 0:
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Without loss of generality we may assume that s D ��1 � ��1
2 . Then

0 D �s � 1 D � .�1 C �2/.�1�2 C 1/2

�1�
2
2

:

But this is impossible, as �1; �2 are p-th roots of unity, p is odd, �1�2 … Fq , and
�1 ¤ �2. (The last two assumptions are needed only when q D 2.)

At this point we can count the number of non-group-theoretical categories of
dimension pq2 up to grading-equivalence, and up to general equivalence. If p does
not divide q2 � 1, then all categorifications are pointed. If p divides q � 1, then all
p-th roots of unity lie in Fq . Therefore, non-group-theoretical categorifications occur
only when p divides q C 1; we have one such categorification for each pair f�1; �2g
such that �1�2 ¤ 1.

To account for grading-equivalences, we first compute the number .p�1/.p�3/
4

of
pairs f�1; �2g with �i ¤ 1 up to equivalence f�1; �2g � f��1

1 ; ��1
2 g. To this we add the

number p�1
2

of pairs f1; �g up to equivalence f1; �g � f1; ��1g, for a total of .p�1/2

4

non-group-theoretical categories up to grading-equivalence.
To account for general equivalences, consider the action of Aut Z=pZ on our cate-

gories. An elementg 2 .Aut Z=pZ/ acts by multiplication byg�2 on H3.Z=pZ;C�/,
and sends .�1; �2/ ! .�

g
1 ; �

g
2 /. There are three orbits on H3.Z=pZ;C�/ under this

action: the quadratic non-residues, the quadratic residues, and 0 in an orbit by itself.
The stabilizer of the first two orbits is ˙1, which then acts on the pairs f�1; �2g as in

the graded case, giving .p�1/2

4
categorifications each, for .p�1/2

2
together. The f0g

orbit in H3.Z=pZ;C�/ yields two types of orbits on the set of pairs f�1; �2g. Clearly
Aut Z=pZ acts transitively on pairs f1; �g. So suppose that �2 D �k

1 . Then the set
fk; k�1g determines the orbit, and the number of such sets which do not contain 0,

˙1 is p�3
2

. This gives a total of p2�p
2

categorifications.

5. Proof of Corollary 1.2

By Lemma 3.6, all categories of dimension pq2 without a faithful Z=pZ-grading
are group-theoretical. Let us suppose that C of dimension pq2 is faithfully Z=pZ-
graded and is the category of representations of some semi-simple Hopf algebra H ,
and demonstrate that C is group-theoretical.

The faithful Z=pZ-grading on C induces a faithful Z=pZ-grading on H� as
follows. Since C is faithfully Z=pZ-graded, there exists a central group-like element
c 2 H such that cp D 1, defining the grading. This element defines the decomposition

H� D L
k H

�
k

, where H�
k

D ff 2 H� j f .cx/ D �kf .x/g and � D e
2�i

p . Clearly
H�

k
¤ 0 for all k.
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We consider the sub-algebra H�
0 of H�, and we let D denote the category of

H�
0 -bimodules in C ; D is Morita equivalent to C . Because H�

0 2 C0, D is also
Z=pZ-graded, and we have jD0j D q2, so D0 is pointed. Furthermore, H� is an
algebra in D , whose 0-component is H�

0 , the unit in D .

Claim 5.1. The multiplication map
 W H�
k ˝H �

0
H�

l ! H�
kCl is an isomorphism for

all k and l .

Proof. We claim first that the map

�l D .�l ˝ Id/ ı� W H ! H=.c � �l/˝H

is injective. Indeed, suppose that a 2 H such that �l.a/ D 0. Then for all V 2 Cl ,
U 2 C , we have that ajV ˝U D 0. Taking U D H , we have V ˝H Š .dim V /H ,
so a must be zero. By duality,


 W H� ˝H �

0
H�

l ! H� (8)

is surjective. By the Nichols–Zoeller theorem [NZ], H� is free over H�
0 of rank p.

Therefore, the left-hand side of (8) has dimension p 	 dimH�
l

D dimH�. Thus (8)
is an isomorphism. Restricting to the graded components yields the claim.

The claim implies that each H�
k

is an invertible object in D , and so in particular
there are invertible objects in each Dk , in addition to the q2 invertible objects in D0.
As the number of invertible objects must divide the overall dimension pq2 of D , we
conclude that D is pointed.

6. Categorifications of R3;A

Lemma 6.1. If jAj is coprime to 3, Z=3Z-graded categories C with trivial component
VecA such that C� contains a single simple object are all categorifications of R3;A,
and are, up to grading-equivalence, parameterized by pairs .�; �/, where � is an
element of H3.Z=3Z;C�/ ' Z=3Z, and � is a map A ! A� such that ����1��
is skew-symmetric. If our equivalence is not required to preserve grading, we must
additionally identify � with ��.

Proof. Clearly, categorifications of R3;A are Z=3Z-graded categories C with trivial
component VecA such that C� contains a single simple object. To see the reverse
inclusion, recall that Cg is contains a unique simple object if and only if �.g/ has its
upper right entry an isomorphism. Thus, it suffices to show that �.g/ has its upper
right entry an isomorphism if, and only if, �.g�1/ does. But this is clear because � is a
homomorphism into the split orthogonal group, so the upper right entry of �.g/ is the
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dual of the upper right entry of �.g�1/. Therefore, by Theorem 3.2, C is determined
up to grading-equivalence by an element of H3.Z=3Z;C�/ ' Z=3Z, together with
a map ˛ W A ! A, and an isomorphism � W A ! A�, satisfying the relations ��˛ is
skew-symmetric and (1). Write x for ��1��. To solve equation (1), we explicitly
compute:�

Id 0

0 Id

�
D

�
˛ Id
x�1 0

�3

D
�
˛3 C x�1˛ C ˛x�1 ˛2 C x�1

x�1˛2 C x�2 x�1˛

�
:

In particular, ˛ D x. The condition that ��˛ is skew-symmetric then becomes that
����1�� is skew-symmetric, from which it follows that .��1��/3 D � Id. When
˛ D x, and x3 D � Id, it is not hard to check that (1) is satisfied.

In other words, the conditions on .˛; �/ given by Theorem 3.2 are equivalent to
˛ D ��1��, and ����1�� skew-symmetric. Therefore, the choice of maps ˛ and �
is equivalent to the choice of a single map � such that ����1�� is skew-symmetric.

Finally, in the case where we do not require that our equivalence preserves grading,
we must figure out what happens under the action of Aut Z=3Z. In order to do this,
we must consider what happens to � under the transformation M ! M �1 D M �.
In our case,

M D
�
��1�� ���1

� 0

�
; M � D

�
0 ��1

�� ���1�
�
:

We find that

M � �
�

1 0

����1�� 1

� �
0 ��1

�� ���1�
� �

1 0

�����1�� 1

�
D

�
��1�� ��1

�� 0

�
;

which is the same as the matrix M with � replaced with ��.

Lemma 6.2. Let q ¤ 3, A be an abelian q-group, and � a non-degenerate map
A ! A� such that ����1�� is skew-symmetric. Then A may be decomposed asL

i .Ci ˚ Ci /, for cyclic groups Ci , where the Ci ˚ Ci are mutually orthogonal
with respect to � , and on each component Ci ˚ Ci , either � is skew-symmetric, or
.��1��/2 D ��1�� � Id.

Proof. Write x D ��1��. Since ����1�� is skew-symmetric, it follows that x3 D
� Id. Write A0 D Ker.x C Id/ and A00 D Im.x C Id/.

First, we claim that Ker.xC Id/ D Ker.xC Id/2. Observe that if .xC Id/2g D 0,
then, since x3 D � Id, 0 D .x�2 Id/.xCId/2g D .x3 �3x�2 Id/g D �3.xCId/g.
Since q ¤ 3, multiplication by �3 is invertible on A, and therefore .x C Id/g D 0.

It follows that A D A0 ˚ A00. Obviously, x restricts to each component. It is
clear that on A0, x is � Id. Since on A00, x C Id is invertible, and 0 D x3 C Id D
.x C Id/.x2 � x C Id/, we have that x2 D x � Id on A00. Now we claim that �
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restricts to each component. Since � W A ! A�, restricting to Im.x C Id/ means
that � W Im.x C Id/ ! Im.x C Id/�, and restricting to Ker.x C Id/ means that
� W Ker.x C Id/ ! Ker.x C Id/�. The first follows from the fact that �.x C Id/ D
.x C Id/���, and the second follows from .� � ��/.x C Id/ D .x C Id/�� .

We have shown that A D A0 ˚ A00 where x and � restrict to A0 and A00, x is
� Id on A0, and x2 D x � Id on A00. Denote by n the unique natural number so that
qnA00 D 0, but qn�1A00 ¤ 0.

We will show that A00 decomposes as a direct sum
L

i .Ci ˚ Ci / which respects
� , by strong induction on jA00j. The base case, where jA00j D 1, is trivial.

In order to do the inductive step, first suppose that qn�1�.g; g/ D 0 for any g
such that there does not exist a g0 where g D qg0. Since any element of A00 is a
multiple of some such g, we would have that qn�1�.g; g/ D 0 for any g 2 A00.
From this, we would have that qn�1�� D �qn�1� ; therefore, by the definition of
x, we would have that �� D �x and qn�1x D �qn�1 Id. Because x2 D x � Id,
qn�1 Id D �.qn�1x/ D x.�qn�1 Id/ D qn�1x2 D qn�1x � qn�1 Id D �2qn�1 Id.
Therefore, 3qn�1 Id D 0. Since q ¤ 3, we would have qn�1 Id D 0, a contradiction.

Thus, we have that there is some g such that there does not exist a g0 with
g D qg0 and such that qn�1�.g; g/ ¤ 0. Write B D Ker �g \ Ker ��g. We
claim that A00 D B ˚ hgi ˚ hxgi. To verify this, it suffices to show that the map
.a; b/ ! .�.g; ag C bxg/; ��.g; ag C bxg// which maps Z=qnZ � Z=qnZ !
.
S

g2A� Im g/2 is an isomorphism. This is clear from the explicit computation that
.�.g; ag C bxg/; ��.g; ag C bxg// D ..a C b/s; as/, where s D �.g; g/ is a gen-
erator of

S
g2A� Im g. Since Ker �xg D Ker ��g and Ker ��xg D Ker.�� � �/g,

it is clear that B is orthogonal to hgi ˚ hxgi. Applying the inductive hypothesis to B
completes the proof.

The proof that A0 decomposes as a direct sum
L

i .Ci ˚ Ci / which respects � ,
under the assumption that � is skew-symmetric, is the standard proof that every skew-
form has a symplectic basis over a vector space, where instead of splitting off hv; v0i
so that �.v; v0/ ¤ 0, we split off hg; g0i such that the order of the cyclic subgroup
generated by g is qn, and so that qn�1�.g; g0/ ¤ 0.

7. Proof of Theorem 1.4

By Lemma 6.1, the categorifications are in one to one correspondence with an element
of H3.Z=3Z;C�/ ' Z=3Z together with a map � W A ! A� satisfying .��1��/3 D
� Id. In order to classify such forms up to equivalence, it suffices to classify such
forms on the q-parts of A for each prime q. By our Lemmas 3.4, 3.5, and 6.2,
there are

Q
.ai=2C 1/ choices for � , as on each Ci ˚ Ci there are two choices,

depending on whether or not � is skew-symmetric. Since there are three choices
for the element of H3.Z=3Z;C�/ ' Z=3Z, the statement of this corollary follows,



On the classification of certain fusion categories 499

provided that we can show that Aut.Z=3Z/ acts trivially on H3.Z=3Z;C�/ and
our solutions for � . To see that it acts trivially on the cohomology group, recall
that H3.Z=3Z;C�/ D .Z=3Z/˝.�2/. To see that it acts trivially on our solutions,
observe that � being skew-symmetric is the same as �� being skew-symmetric. As �
is determined by on how many of each type of Ci ˚ Ci it is skew-symmetric, � and
�� are equivalent. Thus, the statement of the theorem follows.
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