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A Lefschetz fixed-point formula for certain orbifold C*-algebras
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Abstract. Using Poincaré duality in K-theory, we state and prove a Lefschetz fixed point
formula for endomorphisms of crossed product C*-algebras C0.X/ ÌG coming from covari-
ant pairs. Here G is assumed countable, X a manifold, and X Ì G cocompact and proper.
The formula in question describes the graded trace of the map induced by the automorphism
on K-theory of C0.X/ Ì G, i.e. the Lefschetz number, in terms of fixed orbits of the spatial
map. Each fixed orbit contributes to the Lefschetz number by a formula involving twisted
conjugacy classes of the corresponding isotropy group, and a secondary construction that as-
sociates, by way of index theory, a group character to any finite group action on a Euclidean
space commuting with a given invertible matrix.
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Introduction

The goal of this article is to state and prove a ‘noncommutative Lefschetz formula’ for
a certain class of orbifold C*-algebras A, and for a certain class of endomorphisms
˛ W A ! A. The C*-algebras in question are the crossed products A D C0.X/ ÌG,
where X is a manifold and G is a countable group acting co-compactly and properly
onX . It is well known that such actions give rise to orbifolds, and that the groupoids
X Ì G are Morita equivalent to the corresponding orbifold groupoids (e.g., see
[12]). The endomorphism ˛ W A ! A is associated to a covariant pair .�; �/, where
� W X ! X is a map and � 2 Aut.G/ is a group automorphism, with � and � satisfy-
ing the equivariance condition �.�.g/x/ D g�.x/. Note that this data corresponds
to a self-map P� W GnX ! GnX of the space of orbits, together with a coherent fam-
ily of (finite) group homomorphisms, going between the isotropy groups attached
to the orbits. It corresponds to an automorphism of the orbifold determined by the
action of G on X . We consider the corresponding orbifold Lefschetz number taken
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by the trace of the induced map on the K-theory of the crossed-product C*-algebra
A D C0.X/ ÌG:

Lef.˛/ ´ traces.˛� W K�.A/Q ! K�.A/Q/:

The symbol traces denotes the graded trace (the trace on K0 minus the trace on K1),
and ˛� is of course the map induced on K-theory by the automorphism ˛ W A ! A.
We aim to compute the Lefschetz number of ˛ in geometric terms. Specifically, we
are going to compute it in terms of 1) the fixed orbits of the spatial map of the orbit
space GnX , and 2) representation-theoretic information about the isotropy assigned
to each such fixed orbit.

The geometry here is therefore in some sense the geometry of the primitive ideal
space of the crossed-product C*-algebraA, which as a set is a bundle overGnX with
fibre over Px 2 GnX the irreducible dual of StabG.x/, for any choice of x 2 Px, but
which as a topological space has multiple points at orbits with nontrivial isotropy.

IfG is trivial, or more generally, acts freely, then only fixed points of the induced
map on the quotientGnX are detected, and we get essentially the classical Lefschetz
fixed point theorem for GnX .

At the other extreme, where X is trivial (is a point) and, henceG is finite, we just
have an automorphism of a finite group. Our Lefschetz theorem then recovers the
following well-known fact about automorphisms of finite groups,

#.Fix. O� W yG ! yG// D 1
jGj

P
g2G

jZ� .g/j;

where Z� .g/ D fh 2 G j �.h/g D ghg and O� W yG ! yG is the permutation of the
irreducible dual ofG induced by the automorphism. This theorem is often expressed
in terms of ‘twisted conjugacy classes’ instead, the right hand side is trivially seen to
be the number of �-twisted conjugacy classes in G.

In the general case, the local Lefschetz data around a fixed orbit in our theorem
can be described as follows: the automorphism generates a family of subgroups of
the isotropy group of each fixed point, and for each such subgroup, a virtual character
of that subgroup. The characters are individually averaged, and the results added up.

We now explain this in a little more detail.
Let � W � ! O.n;R/ be an orthogonal representation of a finite group � , and

A 2 GL.n;R/ a self-intertwiner of this representation, i.e., A commutes with �.�/.
Using this data we can define a conjugation-invariant function

�.�;A/ W � ! Z; �.�;A/.g/ D sign det.AjFix.g/
/; (0.1)

which we call the orientation character of the pair .�; A/. Of course if g 2 � then
Fix.g/ is an A-invariant linear subspace of Rn so this makes sense.

A pleasant and apparently not entirely obvious fact is that �.�;A/ is a virtual
character, that is, a difference of characters, of the group � . We prove this. Indeed,
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this ‘integrality result’ follows from index theory. It turns out that �.�;A/ is the
virtual character associated to the �-equivariant analytic index of the �-equivariant
Schrödinger-type operator obtained by perturbing the de Rham operator d C d� on
L2-forms on Rn by the covector field XA, where XA.x/ D Ax � dx.

Of course, now the fact that �.�;A/ is a character implies that its average over the
group with respect to normalized Haar measure is an integer, since by elementary
representation theory this gives the dimension of the component of the trivial repre-
sentation of the virtual representation corresponding to the virtual character �.�;A/.

Returning to the general situation of G acting on X , choose a point p from each
fixed orbit of the induced map P� W GnX ! GnX . For each p we have a secondary
group action, and covariant pair, as follows.

Let Lp ´ fg 2 G j �.gp/ D pg; then we have a group action of the isotropy
group StabG.p/ on Lp by twisted conjugation h � g ´ �.h/gh�1. Let the orbits of
this action be represented by elementsg1; : : : ; gm. For each i , let�p;i � StabG.p/ be
the stabilizer of gi under this action. One easily checks that�p;i commutes with �Bgi
and hence, differentiating and identifying the tangent space at p with Rn, one obtains
a representation �p;i W �p;i ! O.n;R/ and an intertwiner Ap;i ´ Id � .� B gi /0.p/.
Then our Lefschetz theorem reads as following:

Theorem 0.1. In the above notation

Lef.Œ˛�/ D P
Pp2Fix. P�/

P
i

1
j�p;i j

P
h2�p;i

�p;i .h/;

where the ��p;i
are the index characters, as in (0.1), so that

�p;i .h/ D sign det.Id �Dp.� B gi /jFix.h/
/:

The technique on which the proof of our orbifold fixed point theorem relies on is
quite general, and can be phrased for general C*-algebras: we use the fact that for
C*-algebras satisfying the Künneth theorem and the UCT and in addition satisfying
Poincaré duality in K-theory, the Lefschetz number of an endomorphism can be
phrased as an index problem. This index problem arises from the automorphism and
the cycles representing the fundamental classes of the duality. More precisely, the
Lefschetz number can be realized as a Kasparov product in KK.C;C/: one twists
the fundamental class of the Poincaré duality by the automorphism, then pair with
the dual fundamental class. This index is computable in some situations by a local
formula, as happens here. For more details of the general idea and an application to
endomorphisms of Cuntz–Krieger algebras, see the preprint [9].

That the C*-algebras C0.X/ ÌG and C� .X/ ÌG are Poincaré dual is proved in
[6]. It can be deduced from results of Kasparov on equivariant KK-theory. However,
for purposes of applying the abstract Lefschetz formula of [9] we need explicit de-
scriptions of the fundamental classes� and O�. The first part of the article is devoted
to finding such representatives.
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In the second part, we analyse the orientation character �.�;A/ and in the third this
becomes the critical ingredient in the computation of the appropriate index pairing,
which yields the Lefschetz theorem, Theorem 0.1.

The problem of giving a good description of the K-theory of such orbifolds as
appear here will be dealt with elsewhere. Such a description is needed to give a good
formula for the global Lefschetz number of an automorphism. At the moment it
seems to us to be a (surprisingly) delicate problem, however, and to keep down the
length of the article, we have restricted our attention here to establishing the formula
modulo K-theory computations with a focus on the geometric, local description of
our Lefschetz invariants.

Note. All groups occurring in this article are discrete. We generally use group-
algebra notation in connection with crossed products. Thus, if A is a G-C*-algebra,
then A Ì G is a completion of the linear span of the elements aŒg�, with a 2 A and
g 2 G.

1. Fundamental classes

Let X be a complete Riemannian manifold and let G be a countable group acting
isometrically, co-compactly and properly on X . Let C� .X/ denote the algebra of
continuous sections of the Clifford algebra bundle of X which vanish at infinity.
Since the group G acts isometrically on X , the action extends to an action of G on
C� .X/. We can form the crossed product C� .X/ ÌG. To fix notation, we denote by

dxg W Tg�1xX ! TxX

the differential of the action of g on X at the point y D g�1x. It extends uniquely
to a �-homomorphism dxg W Cl.Tg�1xX/ ! Cl.TxX/ and the action of G on the
Clifford bundle C� .X/ is given by

g.'/.x/ D dxg .'.g
�1x//;

for ' 2 C� .X/, x 2 X and g 2 G.
In this section, we are going to first review the proof of the Poincaré duality be-

tweenC0.X/ÌG andC� .X/ÌG, and then, using the proof, compute the fundamental
classes for this duality. Let us first recall the following two equivalent definitions of
Poincaré duality.

Definition 1.1 (cf. [6], [7]). Letƒ and Oƒ beC �-algebras. Thenƒ and Oƒ are Poincaré
dual

(i) if there exist classes, called fundamental classes, � 2 KK.ƒ y̋ Oƒ;C/ and
O� 2 KK.C; Oƒ y̋ƒ/ such that O� y̋ Oƒ� D 1ƒ and O� y̋ƒ� D 1 Oƒ, or equivalently,
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(ii) if for every pair of C �-algebras A and B , there is an isomorphism

ˆA;B W KK.ƒ y̋ A;B/ ��!Š KK.A; Oƒ y̋ B/
natural with respect to intersection and composition products.

Remark 1.2. It is easy to see the equivalence of the two definitions of Poincaré
duality. The isomorphism ˆA;B of (ii) can be obtained by the cap product with the
class O� over ƒ and the inverse is given by the cap product with the class � over Oƒ.
On the other hand, for a given system of isomorphisms fˆA;Bg, one can get classes
� D ˆ�1

Oƒ;C.1 Oƒ/ and O� D ˆC;ƒ.1ƒ/.

Remark 1.3. Note that when we sayƒ and Oƒ are Poincaré dual, we already implicitly
used the fact that Poincaré duality is symmetric. Indeed one can show that �0 ´
	�.�/ 2 KK. Oƒ y̋ ƒ;C/ and O�0 ´ 	�. O�/ 2 KK.C; ƒ y̋ Oƒ/ satisfy condition (i)
in Definition 1.1, where 	 is the flip isomorphism.

Note 1.4. Under these circumstances, the maps

�� W K�.ƒ/ ! K�. Oƒ/; x 7! Ox ´ .x ˝ 1 Oƒ/˝
ƒ˝ Oƒ �

and
O�� W K�. Oƒ/ ! K�.ƒ/; y 7! Oy ´ O�˝ Oƒ˝ƒ .y y̋ 1ƒ/

are inverse isomorphisms. Similarly, the maps

�� W K�. Oƒ/ ! K�.ƒ/; x 7! Ox ´ .1ƒ ˝ x/˝
ƒ˝ Oƒ �

and
O�� W K�.ƒ/ ! K�. Oƒ/; y 7! Oy ´ O�˝ Oƒ˝ƒ .1 Oƒ y̋ y/

are inverse isomorphisms.

Recall that Kasparov duality (see [10] for an extensive discussion, or the original
source [16], Theorem 4.9) states that, in this situation, and more generally where G
is allowed to be locally compact, there is a canonical isomorphism

KA;B W RKKG.X IA;B/ ��!Š KKG.C� .X/ y̋ A;B/
for any G-C �-algebras A and B . If G is discrete, then for A and B equipped with
the trivial G-action, we have the following canonical isomorphism

CA;B W KKG.C� .X/ y̋ A;B/ ��!Š KK..C� .X/ ÌG/ y̋ A;B/;
Œ.E; '; F /� 7��! Œ.E; ' Ì 
; F /�;
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where 
 is the group representation on E . Moreover, if such G acts properly on X ,
then, as a consequence of [18], Theorem 5.4, we have an isomorphism

EA;B W RKKG.X IA;B/ ��!Š KK.A; .C0.X/ ÌG/ y̋ B/:
Combining all the isomorphisms above, we have Poincaré duality between

C0.X/ Ì G and C� .X/ Ì G as follows: for all C �-algebras A and B with trivial
G-action, there exists an isomorphism

ˆA;B W KK..C� .X/ ÌG/ y̋ A;B/
C�1

A;B���! KKG.C� .X/ y̋ A;B/
K�1

A;B���! RKKG.X IA;B/
EA;B���! KK.A; .C0.X/ ÌG/ y̋ B/;

(1.1)

which is natural with respect to intersection and external products.
Now using the above system of isomorphisms fˆA;Bg and the equivalence of the

two definitions of Poincaré duality (see Definition 1.1 and Remark 1.2) as well as the
symmetry of Poincaré duality (Remark 1.3), we can compute fundamental classes

� D 	�.ˆ�1
C0.X/ÌG;C.1C0.X/ÌG// and O� D 	�.ˆC;C� .X/ÌG.1C� .X/ÌG//: (1.2)

For explicit descriptions for � and O�, we need an extensive discussion on the map
ˆA;B , i.e., the mapsCA;B ,KA;B andEA;B . We already know the mapCA;B . The map
KA;B is the isomorphism of Kasparov’s first Poincaré duality. Recall the following
Remark 1.5 and Lemma 1.6 from [16].

Remark 1.5. (i) Let d W L2.ƒ�
CX/ ! L2.ƒ�

CX/ denote the (densely defined) de
Rham operator. Let D D d C d� and let F be the pseudodifferential operator
D.1CD2/� 1

2 . Then .L2.ƒ�
CX/; F / is a cycle for an element in KKG.C� .X/;C/

where the action of C� .X/ on L2.ƒ�
CX/ comes from the identification as vector

bundles of the Clifford bundle of X and the exterior bundle. We denote this cycle
by ŒD�.

(ii) The map

	X;C� .X/ W RKKG.X IA;B/ ! KKG.C� .X/ y̋ A;C� .X/ y̋ B/
associates to a cycle .E; F / for RKKG.X IA;B/ the cycle .C� .X/ y̋ C0.X/E; 1 y̋ F /
for KKG.C� .X/ y̋ A;C� .X/ y̋ B/. The map 	X;C� .X/ is natural with respect to
intersection products in the sense that

	X;C� .X/.f y̋B f 0/ D 	X;C� .X/.f / y̋
C� .X/ y̋B 	X .f

0/;

for f 2 RKKG.X IA;B/, f 0 2 RKKG.X IB;C /.
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(iii) At the level of cycles, the map

p�
X W KKG.A;B/ ! RKKG.X IA;B/

tensors with the standard representative of 1C0.X/ 2 KKG.C0.X/; C0.X//. Note that
p�
X is natural with respect to intersection products in the sense that p�

X .f1 y̋B f2/ D
.p�
X .f1// y̋X;B .p�

X .f2// for f1 2 KKG.A;B/, f2 2 KKG.B; C /.
(iv) Let � denote the metric onX . Then there exists an open neighbourhood U of

the diagonal inX�X where for every point .x; y/ 2 U there exists a unique geodesic
from x to y. For such U let FU be the ideal of C0.X/ y̋ C� .X/ of Clifford sections
supported onU . SinceG acts isometrically and cocompactly onX , there exists " > 0
such that U" ´ f.x; y/ j �.x; y/ < "g is contained in the set U . Let �".x; y/ D
�.x;y/
"
.dy�/.x; y/. Then .FU"

; �"/ defines a cycle in RKKG.X I C; C� .X// with �"
as a multiplicative operator and Œ.FU"

; �"/� D Œ.FU"0 ; �"0/� for any 0 < "0 � ". We
denote the class Œ.FU"

; �"/� by‚, and we shall simply write .FU ; �/ if we do not want
to specify the special " used in the construction. A slightly more complicated con-
struction yields a similar class ‚ D Œ.FU ; �/� for possibly non-cocompact isometric
actions.

The following is a special case of Kasparov’s [16], Theorem 4.9:

Lemma 1.6. Let G act isometrically on a complete Riemannian manifold X . The
composition

KA;B W RKKG.X IA;B/ �X;C� .X/������! KKG.C� .X/ y̋ A;C� .X/ y̋ B/
�˝ŒD�������! KKG.C� .X/ y̋ A;B/

is an isomorphism with inverse the composition

K�1
A;B W KKG.C� .X/ y̋ A;B/ p�

X���! RKKG.X IC� .X/ y̋ A;B/
‚ y̋ ����! RKKG.X IA;B/:

(1.3)

The map EA;B is the isomorphism from [18], Theorem 5.4. To understand the
map EA;B explicitly, we need to understand two ingredients. Firstly, the descent
homomorphism

descent W RKKG.X IA;B/ ! KK.C0.X;A/ ÌG;C0.X;B/ ÌG/:

Secondly, the unit class ŒE� 2 K0.C0.X/ ÌG/, defined whenever GnX is compact:
ŒE� is defined by the finitely generated projective right C0.X/ÌG-module E which
is the completion of Cc.X/ with respect to the inner product

h'; '0i.x; g/ D '.x/'0.gx/: (1.4)
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For future reference, the right action of C0.X/ ÌG on E is given by

'f .x/ D '.x/f .x/; 'g.x/ D '.gx/; g 2 G; f 2 C0.X/: (1.5)

Remark 1.7. ŒE� is also represented by the projection P 2 C0.X/ ÌG,

P D P
g2G

'g.'/;

where ' 2 Cc.X/ is chosen so that 0 � ' � 1,
P
g2G g.'/2 D 1. See [4].

Lemma 1.8 ([18], Theorem 5.4; [11], Lemma 20). Let G act properly and cocom-
pactly on X . The map EA;B W RKKG.X IA;B/ ! KK.A; .C0.X/ÌG/ y̋ B/ given
by the composition

RKKG.X IA;B/ descent�����! KK.C0.X;A/ ÌG;C0.X;B/ ÌG/
ŒE�˝������! KK.A; .C0.X/ ÌG/ y̋ B/

is an isomorphism whenever A and B are G-trivial C �-algebras.

Remark 1.9 (cf. [18]). The mapEA;B can be explicitly described as follows. Suppose
that we have a cycle .E; F / for RKKG.X IA;B/. Then E is a rightC0.X;B/-module,
and a leftC0.X;A/-module, and the two actions ofC0.X/ on the left and right agree.
Furthermore, the group G acts on E . We can assume by averaging that F is exactly
G-invariant. Now we complete the compactly supported elements of E to a right
C0.X;B/ ÌG-module QE using the inner product valued in C0.X;B/ ÌG,

h�; � 0i D P
h2G

h�; h.� 0/iŒh�:

The right action of C0.X;A/ ÌG is given by letting C0.X;A/ act as originally, and
G acting by �h D h�1.�/:

Finally, we note that adjointable operators on the right C0.X;B/ÌG-module QE
are in 1-1-correspondence with G-equivariant operators on E . (Generalizations of
the isomorphism EA;B are given in [11], [6].)

Now we are going to construct fundamental classes� and O�. First, we construct
the class �. Recall Remark 1.5 (i) for the discussion below. We define two com-
muting �-homomorphisms C� .X/ÌG ! B.L2.ƒ�

CX/ y̋ `2G/ and C0.X/ÌG !
B.L2.ƒ�

CX/ y̋ `2G/, by constructing two corresponding covariant pairs. We let
eg 2 `2G denote the point-mass at g 2 G.

The �-homomorphism C� .X/ Ì G ! B.L2.ƒ�
CX/ y̋ `2G/ is defined by the

covariant pair

'.� y̋ eg/ D ' � � y̋ eg ; h.� y̋ eg/ D h � � y̋ egh�1 (1.6)
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for g; h 2 G, � 2 L2.ƒ�
CX/, ' 2 C� .X/. The �-homomorphism C0.X/ Ì G !

B.L2.ƒ�
CX/ y̋ `2G/ is defined by the covariant pair

f .� y̋ eg/ D g�1.f / � � y̋ eg ; h.� y̋ eg/ D � y̋ ehg (1.7)

for f 2 C0.X/, g; h 2 G, � 2 L2.ƒ�
CX/. The dots indicate the actions already

implied in the cycle D D .L2.ƒ�
CX/; F / of Kasparov (see Remark 1.5 (i)); note

that C0.X/ embeds in C� .X/. Observe that the two �-homomorphisms just defined
commute, and so determine a �-homomorphism

… W C0.X/ ÌG y̋ C� .X/ ÌG ! B.L2.ƒ�
CX/ y̋ `2G/:

Let g 2 G, f 2 C0.X/ and ' 2 C� .X/ be compactly supported. If T is a locally
compact operator on L2.ƒ�

CX/, e.g., if T D F 2 � 1, then

.f y̋ '/.T y̋ 1/.� y̋ eg/ D g�1.f /'T � y̋ eg ;
so that .f y̋ '/.T y̋ 1/ acts as the block diagonal operator

L
g2G.g�1.f /'T / y̋ 1,

which has compact blocks. As

g�1.f /' D 0 for g … H ´ fh 2 G j h�1.supp.f // \ supp.'/ 6D ;g;
since the indicated setH is finite and sinceG acts properly, there are only finitely many
blocks. Thus .f y̋ '/..F 2 � 1/ y̋ 1/ is compact. This observation and similar ones
prove that the Hilbert space L2.ƒ�

CX/ y̋ `2G equipped with the �-homomorphism
… W C� .X/ÌG y̋ C0.X/ÌG ! B.L2.ƒ�

CX/ y̋ `2G/ defined above and the operator
F y̋ 1 defines a cycle for KK.C0.X/ ÌG y̋ C� .X/ ÌG;C/.

Definition 1.10. We define

� 2 KK.C0.X/ ÌG y̋ C� .X/ ÌG;C/

to be the class of the cycle .L2.ƒ�
CX/ y̋ `2G; …; F y̋ 1/ above.

We shall show below that � coincides with the fundamental class of (1.2).
The dual class O� is more complicated to write down. Recall the class ‚ D

Œ.FU ; �/� from Remark 1.5 (iv). We consider the completion E of Cc.X/FU y̋ CG
(with action of Cc.X/with respect to the first variable inU � X �X ) equipped with
the following C� .X/ ÌG y̋ C0.X/ ÌG-valued inner product:

h˛ y̋ Œg�; ˛0 y̋ Œg0�i D P
h2G

g�1.˛�h.˛0//Œg�1hg0� y̋ Œg�1h�: (1.8)

Here Œg�1h� is understood as in G � C0.X/ Ì G, Œg�1hg0� is understood as in
G � C� .X/ Ì G and g�1.˛�h.˛0// is understood as in C� .X/ y̋ C0.X/, equipped
with the diagonal G-action. The right module-structure is given by

.˛ y̋ Œg�/f D f ˛ y̋ Œg�; .˛ y̋ Œg�/h D h�1.˛/ y̋ Œh�1g�;
.˛ y̋ Œg�/' D ˛g.'/ y̋ Œg�; .˛ y̋ Œg�/h0 D ˛ y̋ Œgh0�;

(1.9)
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where f 2 C0.X/, h 2 G � C0.X/ ÌG and ' 2 C� .X/, h0 2 G � C� .X/ ÌG.
Note that any G-invariant element ofM.C� .X/ y̋ C0.X// acts as an operator on

E by multiplication in the FU -variable. TheG-invariance is needed to commute with
the action of G � C0.X/ ÌG on the right.

Definition 1.11. The class O� 2 KK.C; C� .X/ÌG y̋ C0.X/ÌG/ is given by the pair
.E; �G/, where we let �G be the operator on E induced by the G-invariant multiplier
� of FU � C0.X/ y̋ C� .X/ as described in Remark 1.5 (iv), and E is the Hilbert
module as above with the inner product and the right actions given in (1.8) and (1.9).

Now we need to prove that the classes � and O� defined above are actually
the fundamental classes for ƒ D C0.X/ Ì G and Oƒ D C� .X/ Ì G, i.e., they
satisfy identities � D 	�.ˆ�1

C0.X/ÌG;C.1C0.X/ÌG// 2 KK.ƒ y̋ Oƒ;C/ and O� D
	�.ˆC;C� .X/ÌG.1C� .X/ÌG// 2 KK.C; Oƒ y̋ ƒ// from (1.2), where 	 denotes the flip
isomorphism. This will follow from

Proposition 1.12. Let � and O� be the classes defined in Definitions 1.10 and 1.11
and let ˆ.�;�/ be the isomorphisms (1.1). Then

	�.ˆC;C� .X/ÌG.1C� .X/ÌG// D O� and ˆC0.X/ÌG;C.	
��/ D 1C0.X/ÌG :

For the proof we need some preliminary discussion.

Definition and Remark 1.13. We give – here and elsewhere – the crossed product
C0.X/ÌG the structure of a trivialG-C �-algebra. Let A be anX ÌG-algebra. The
multiplication class mA is the class

mA 2 RKKG.X IA y̋ C0.X/ ÌG;A/

given by the cycle .A y̋ `2G; 0/, where the right Hilbert A-structure of A y̋ `2G is
the obvious one, and the further module structures are as follows.

Note that there are two G’s involved here; one the G which appears in RKKG ,
the other which appears in the crossed product C0.X/ÌG. To reduce confusion, we
refer to the action of the former as the equivariant action. The equivariant action of
G on A y̋ `2G is then given by h.a y̋ eg/ D h.a/ y̋ egh�1 . The C0.X/-structure is
by multiplication in the A factor.

The representation of the crossed product is given by the covariant pair

f .a y̋ eg/ D g�1.f /a y̋ eg ; h.a y̋ eg/ D a y̋ ehg :
One easily checks that this is a covariant pair. The left actions of C0.X/ Ì G and
of C0.X/ clearly commute, and the �-homomorphism C0.X/ Ì G ! B.A y̋ `2G/
is equivariant, that is, C0.X/ Ì G acts as G-invariant operators on A y̋ `2G. Since
the action of A y̋ C0.X/ÌG is by compact operators on A y̋ `2G we get a cycle as
required.
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Lemma 1.14. The isomorphism

EC0.X/ÌG;C W RKKG.X IC0.X/ ÌG;C/ ! KK.C0.X/ ÌG;C0.X/ ÌG/

maps mC0.X/ to 1C0.X/ÌG .

Proof. Apply the explicit description in Remark 1.9. We get the completion of
C0.X/ y̋ CG with respect to the inner product

ha y̋ eg ; a0 y̋ eg0i D a�g�1.g0.a0//Œg�1g0� 2 C0.X/ ÌG

for a; a0 2 C0.X/, g; g0 2 G, and the right C0.X/ ÌG-module structure

.a y̋ eg/f D fa y̋ eg ; .a y̋ eg/h D h�1.a/ y̋ egh:
The left action of C0.X/ ÌG is given by

f .a y̋ eg/ D g�1.f /a y̋ eg ; h.a y̋ eg/ D a y̋ ehg :
Let C0.X/ y̋ `2G be the completion of the above to a Hilbert module. We define

a map W W C0.X/ y̋ `2G ! C0.X/ Ì G, where the co-domain has its standard
C0.X/ ÌG-bimodule structure, by the formula

W.a y̋ eg/ D g.a/Œg�:

Then

hW �1.aŒg�/;W �1.a0Œg0�/i D hg�1.a/ y̋ eg ; .g0/�1.a0/ y̋ eg0i D g�1.a�a0/Œg�1g0�;

and

W �1.aŒg�h/ D W �1.aŒgh�/ D h�1.g�1.a// y̋ egh D .g�1.a/ y̋ eg/h;
W �1.aŒg�f / D W �1.ag.f /Œg�/ D g�1.a/f y̋ eg D .W �1.aŒg�//f:

Hence W gives an isometry between the inner product we have defined initially
onC0.X/ y̋ CG, and the usual inner product on the free, rank one HilbertC0.X/ÌG-
module.

Similarly, one checks thatW conjugates the left C0.X/ÌG-module structure we
have defined above and the standard one by algebra multiplication.

Therefore the image of the class mC0.X/ under the map EC0.X/ÌG;C sends the
cycle for the multiplication class to a cycle which is unitarily equivalent to the standard
representative of 1C0.X/, so that EC0.X/ÌG;C.mC0.X// D 1C0.X/ as claimed.

Proof of Proposition 1.12. Consider first the fundamental class �. This is accom-
plished by a direct computation: by Lemma 1.14, it remains to apply the map from
Remark 1.5 (ii),

	X;C� .X/ W RKKG.X IC0.X/ ÌG;C/ ! KKG.C� .X/ y̋ C0.X/ ÌG;C� .X//;
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to the class mC0.X/. A straightforward application of the definition gives the cycle
.C� .X/ y̋ `2G; 0/. The left action of C� .X/ is given by '.a y̋ eg/ D 'a y̋ eg ; the
group G acts by h.a y̋ eg/ D h.a/ y̋ egh�1 : The left action of C0.X/ ÌG is given
by the covariant pair

f .a y̋ eg/ D g�1.f /a y̋ eg ; h.a y̋ eg/ D a y̋ ehg :
Finally, we take the product of the class of this cycle, with the class D 2

KKG.C� .X/;C/ of Kasparov (see Remark 1.5 (i)). Comparing with Definition 1.10,
we see that the modules are the same. The axioms for a Kasparov product imply that
the operator involved in the product is also that described in Definition 1.10.

The assertion regarding O� is similar but slightly more straightforward; we leave
its confirmation to the reader.

2. The orientation character

Before proceeding to the Lefschetz theorem, we need to perform an index calculation
on Euclidean space Rn generalising the computation of the index of the Schrödinger
operator d

dx
˙x onL2.R/ (see [13]). The analogue for Rn of the harmonic oscillator in

dimension 1 is the operatorDCX, whereD D dCd� is the de Rham operator acting
onL2.ƒ�

CRn/, and X is Clifford multiplication by the form x1dx1C� � �Cxndxn on
Rn. The (unbounded) cycle .L2.ƒ�

CRn/;D C X/ represents the Kasparov product

ŒX� y̋ C� .Rn/ ŒD� 2 KKO.n;R/.C;C/ D R.O.n;R//

of the class ŒD� of the de Rham operator (see Remark 1.5) the generator ŒX� 2
KKO.n;R/.C; C� .Rn// constructed via the covector field X as explained below (by
identifying X with the vector field x 7! x on Rn). It is the content of Kasparov’s Bott-
periodicity theorem [15], Theorem 7 of § 5, that ŒX� y̋ C� .Rn/ ŒD� D 1 2 R.O.n;R//.

In this section we extend Kasparov’s calculations to the following more general
situation: we assume that � is a compact group acting on Rn via an orthogonal
representation � W � ! O.n;R/. Moreover, we shall assume that A 2 GL.n;R/
commutes with �. Let XA denote the covector fieldx 7! Ax �dx acting onL2.ƒ�

CRn/
via Clifford multiplication. We then obtain a �-invariant Fredholm operator XACD

(or a bounded version of it) and we need to compute the �-index

ind�.XA CD/ 2 R.�/:

We shall do this in two different ways: in a first version we make use of Kasparov’s
ideas for the proof of his Bott-periodicity theorem by reducing the computations to
appropriate two- and one-dimensional subspaces. In a second version we sketch the
argument how the result can also be obtained from a use of the Atiyah–Singer Index
Theorem for open subsets of RN (see [1]) together with some calculations given by
Atiyah and Segal in [2].
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Before we do this we need to recall the relation between vector fields on a manifold
X and corresponding classes in K�0 .C� .X//. So let X be any Riemannian manifold
such that the compact group � acts isometrically onX . Suppose that v W X ! TX is
a�-invariant continuous vector field onX such that there exists a compact setK � X

with v.x/ ¤ 0 outsideK. We then say that v is co-compactly supported. From v we
construct a new vector field Qv as follows: choose a �-invariant positive continuous
function ' W X ! Œ0; 1� such that ' 	 0 onK and such that 1�' 2 C0.X/. Then set

Qv.x/ ´ '.x/
v.x/

kv.x/k :

The vector field Qv acts as self-adjoint bounded operator on C� .X/ by point-wise
Clifford multiplication such that Qv2 � 1 (which is point-wise multiplication by x 7!
.k Qv.x/k2 � 1/) lies in C� .X/. It thus defines a class Œv� 2 KK�.C; C� .X// D
K�0 .C� .X//.

Two such vector fields v0; v1 W X ! TX are said to be homotopic, if there exists
a co-compactly supported �-invariant continuous map v W X � Œ0; 1� ! TX such that
v.x; t/ 2 TxX for all .x; t/ 2 X � Œ0; 1� and

vjX�f0g D v0 and vjX�f1g D v1:

Lemma 2.1. Suppose that v W X ! TX is a co-compactly supported �-invariant
continuous vector field. Then the class Œv� 2 K�0 .C� .X// does not depend on the
choice of the function '. Moreover, two homotopic co-compactly supported vector
fields on X determine the same class in K�0 .C� .X//.

Proof. Suppose that v.x/ ¤ 0 outside the compact set K � X and suppose that '0
and '1 are two functions which vanish on K and which have value 1 at 1. Then

t 7! Qvt D .t'1 C .1 � t /'0/ vkvk
is an operator homotopy between Qv0 and Qv1 which proves the first assertion. A similar
argument gives the second assertion.

Recall from Remark 1.5 the construction of the Dirac class ŒD� D ŒDX � 2
KK�0 .C� .X/;C/ given by the de Rham operator D D d C d� W L2.ƒ�

C.X// !
L2.ƒ�

C.X//. Note that if U � X is any open �-invariant sub-manifold, then ŒDX �
restricts to the class ŒDU � under the canonical inclusion 
U W C� .U / ! C� .X/. The
following basic (and certainly well-known) lemma turns out to be extremely useful
for our computations.

Lemma 2.2. Suppose that v W X ! TX is a co-compactly supported �-invariant
vector field onX . LetK � X be compact such that v does not vanish outsideK and
let U � X be an open �-invariant neighborhood of K in X . Then

ŒvU �˝C� .U / ŒDU � D Œv�˝C� .X/ ŒD� 2 R.�/;

where vU W U ! T U denotes the restriction of v to U .
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Proof. By the construction of the class Œv� we may assume without loss of generality
that there exists a compact �-invariant set C � U such that kv.x/k D 1 for all
x … C . The Kasparov product Œv�˝C� .X/ ŒD� is represented by the pair

.L2.ƒ�
C.X//; T / with T D �v.x/ C ��

v.x/ C
p
1 � kv.x/k2 Dp

1CD2
(2.1)

and with D D d C d�, which can be deduced from [15], Remark 3 on p. 541.
Since kv.x/k2 D 1 outside U , it follows that the second summand vanishes on
X n U . It is then clear that L2.ƒ�

C.X// decomposes into the direct product of T -
invariant subspaces L2.ƒ�

C.U //˚L2.ƒ�
C.X nU// such that the restriction of T to

L2.ƒ�
C.U // gives the product ŒvU �˝C� .U / ŒDU � (since D is local). The restriction

of T to L2.ƒ�
C.X nU// is given point-wise by the unitary operator �v.x/ C ��

v.x/
(it

is unitary since kv.x/k D 1) and hence has index 0.

Remark 2.3. Suppose that .E1; �1; F1/ and .E2; �2; F2/ are two Kasparov cycles
giving elements x 2 KKG.A;B/ and y 2 KKG.B; C /, respectively, where we
assume here that G is a compact group. Assume that both operators F1; F2 are G-
invariant and self-adjoint with kF1k � 1. Suppose further that F 2 B.E1 y̋B E2/ is
a self-adjoint F2-connection, i.e.,

‚	F2 � .�1/deg.	/�deg.F2/F‚	 2 K.E2;E1 y̋B E2/

for all � 2 E1, where ‚	 W E2 ! E1 y̋B E2I � 7! � y̋B �. Let

T D .F1 ˝ 1/C .1 � F 21 ˝ 1/1=2F 2 B.E1 y̋B E2/:

It then follows from [5], 18.10.1, that .E1 ˝B E2; �1 ˝ 1; T / is a representative
for the Kasparov product x y̋B y 2 KKG.A; C /, provided that ŒT; �1.A/ y̋ 1� 2
K.E1 y̋B E2/. Formula (2.1) is a direct consequence of this principle. But we shall
use this principle also in a more advanced setting in § 3 below.

We now specialize to the case where X D V is a finite dimensional Euclidean
vector space together with a linear action � W � ! O.V /. We want to give explicit
computations of the product Œv�˝C� .V / ŒDV � in the case where v W V ! T V D V �V
is given by v.x/ D Ax for someA 2 GL.V /which commutes with the representation
�. We shall always write XA for this vector field. We shall show below that the product
ŒXA�˝C� .V / ŒD� 2 KK�.C;C/ D R.�/ is equal to the orientation character �.�;A/
as in

Definition 2.4. Let � W � ! O.V / and A 2 GL.V / as above. The orientation
character �.�;A/ W � ! Z is the conjugation-invariant function on �

�.�;A/.g/ ´ sign det.AjFix.g/
/;

where Fix.g/ � V denotes the space of fixed-points for g 2 � .
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The set Fix.g/ is of course a linear subspace ofV invariant underA, so the formula
makes sense. It is clear that �.�;A/ is conjugation-invariant. The remaining part of
this section is devoted to the proof of

Theorem 2.5. The orientation character �.�;A/ is a virtual character of � (i.e., a
difference of two characters). Under the identification of R.�/ as the ring of Z-
linear combinations of characters of � , we have

�.�;A/ D ŒXA�˝C� .V / ŒD�:

Remark 2.6. (a) Recall that the identification of R.�/ with the ring of Z-linear
combinations of characters of� is given by sending a finite dimensional representation

 W � ! End.H / to its character �
.g/ D trace.
.g// (the non-normalized trace on
End.H /). If a class in KK�.C;C/ D R.�/ is represented by a �-invariant Fredholm
operatorF W H even ! H odd, then the corresponding virtual character in R.�/ is given
by the difference function � D �C � ��, where �C and �� denote the traces of the
�-representations on HC D ker.F / and H� D coker.F /, respectively. Since the
value at a point g 2 � only depends on the action of g on these spaces, it follows that
in order to compute it we may always restrict our attention to the closed subgroup
�g � O.V / generated by �.g/.

Recall also that the identification KK�.C;C/ Š R.�/ is multiplicative in the
sense that it sends the Kasparov product y̋ C on KK�.C;C/ to the pointwise product
of characters in R.�/.

(b) We may always assume that A 2 O.V /. Indeed, if A D OjAj is the polar
decomposition of A withO D AjAj�1, then the homotopy t 7! O.t Id C .1� t /jAj/
between A and O induces a �-invariant homotopy between the vector fields XA and
OX, and the result follows from Lemma 2.1.

(c) In case where A D Id is the identity, we obtain the class ŒX� 2 K�0 .C� .V //.
It is the “canonical” generator of K�0 .C� .V // as described by Kasparov in [15], § 5,
and it follows from Kasparov’s Bott-periodicity theorem [15], Theorem 7 of § 5, that
ŒX�˝C� .V / ŒD� D 1 2 R.�/ (in the language of [15], the class ŒX� is denoted ˇV
and ŒD� is denoted ˛V ).

Note that in case of the trivial group � D feg the above theorem reduces to an
index computation given by Lück and Rosenberg in [20].

The quantity we will be interested in for our Lefschetz theorem is the component
of the trivial representation in �.�;A/: this is obtained by averaging the character over
�; thus we derive the formula

Corollary 2.7. Suppose that F W H even ! H odd is a �-equivariant Fredholm oper-
ator representing the Kasparov product ŒXA�˝C� .V / ŒD� 2 R.�/. Then

dimC.ker� F / � dimC .coker� F / D
Z
�
�.�;A/.g/ dg

(normalized Haar measure) where V � denotes the �-fixed points of a �-module V .
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Example 2.8. In this example we want to compute the class ŒXA� y̋ C� .R/ŒDR� 2 R.�/
in the special case whereV D R is one-dimensional, following the lines of Kasparov’s
[14], Example 3 on p. 760. This gives the key calculation for the proof of Theorem
2.5. By part (b) and (c) of the above remark we may assume that A is multiplication
by �1. Also, by Lemma 2.2 we may restrict everything to the interval .�
; 
/. If
we identify L2.ƒ0C.�
; 
// and L2.ƒ1C.�
; 
// with L2.�
; 
/ in the canonical

way, we can realize the class D D D.�
;
/ by the matrix D D �
0 d=dx

�d=dx 0

�
. On

the basis fen j n 2 Zg with en.x/ D einx the operator d
dx

acts by en 7! inen, thus

we obtain a bounded version Qd W L2.�
; 
/ ! L2.�
; 
/ of the operator d D d
dx

by defining

Qden D i sign.n/en with sign.n/ D
´
0 if n D 0,
n

jnj if n ¤ 0.

The vector field x 7! �x on .�
; 
/ is homotopic to x 7! � sin.x
2
/. Thus, using

Lemma 2.2 and the formula for the Kasparov product as given in (2.1) it follows that
Œ�X� y̋ C� .R/ ŒDR� is given by the �-equivariant index of the operator

T ´ � sin.x
2
/C cos.x

2
/ Qd W L2.�
; 
/ ! L2.�
; 
/:

To compute it we first calculate the index of the operator

S ´ 2iei
x
2 T D .1 � eix/C i.eix C 1/ Qd;

which in terms of the orthonormal basis fen j n 2 Zg is given by

Sen D

8̂<
:̂

�2enC1 if n > 0,

e0 � e1 if n D 0,

2en if n < 0.

It then follows from a short computation that ker S D f0g and coker S D he0 C e1i.
Going back to the original operator T we get ker T D f0g and coker T is generated
by 1

2
e�i x

2 .1C eix/ D cos.x
2
/.

If we write O.R/ D f1;�1g, then the corresponding action of �1 onL2.�
; 
/ Š
L2.ƒ1C.�
; 
// is given by � 7! .x 7! ��.�x//. Thus, on the generator �.x/ D
cos.x

2
/ of coker T it acts by multiplication with �1. It follows that Œ�X� y̋ C� .R/

ŒDR� 2 R.�/ is represented by the virtual character � given by

�.g/ D
´

�1 if �.g/ D 1,

1 if �.g/ D �1.

The following lemma will allow to reduce the proof of Theorem 2.5 to the case
of the above example.
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Lemma 2.9. For i D 1; 2 let Vi be an Euclidean vector space with representation
�i W � ! O.Vi /and letAi 2 GL.Vi / commutewith�i . LetV D V1˚V2, � D �1˚�2
and A D A1 ˚ A2. Then

ŒXA� y̋ C� .V / ŒDV � D .ŒXA1
� y̋ C� .V1/ ŒDV1

�/ � .ŒXA2
� y̋ C� .V2/ ŒDV2

�/ 2 R.�/:

Proof. It is not difficult to check that under the canonical isomorphism C� .V / Š
C� .V1/ y̋ C� .V2/ we get ŒXA� D ŒXA1

� y̋ C ŒXA2
� in KK�.C� .V /;C/ (compare

with the formula for ˇV in [15], p. 546) and it is shown in [15], p. 547, that ŒDV � D
ŒDV1

� y̋ C ŒDV2
� in KK�.C; C� .V //. The result then follows from the associativity

of the Kasparov product.

Proof of Theorem 2.5. Let g 2 � be fixed. As observed in Remark 2.6 we may
assume that � D �g is the closed subgroup of O.V / generated by �.g/ (which we
then identify withg). We also observed that we may assume without loss of generality
that A 2 O.V /. Let F � V be the set of g-fixed-points in V and letN D F?. Then
F and N are both, g- and A-invariant, and therefore the result will follow from the
above lemma if we can show that

.ŒXAF
� y̋ C� .F / ŒDF �/.g/ D sign det.AF /; (2.2)

where AF denotes the restriction of A to F , and

.ŒXAN
� y̋ C� .F / ŒDN �/.g/ D 1: (2.3)

Since �g acts trivially on F , we may choose an orthonormal basis fv1; : : : ; vlg of F
and, up to homotopy, we may assume that AF is given with respect to this basis by� ˙1 0
0 Il�1

�
. If the upper left entry is 1 we have ŒXAF

� D ŒX� and the result follows
from Kasparov’s Bott-periodicity theorem (see Remark 2.6 (c)). If the upper left entry
is �1, we apply the above lemma to the decomposition F D hv1i ˚ hv2; : : : ; vli.
Since AF restricts to the identity on hv2; : : : ; vli, this summand provides the factor
C1 to the character at g and since g acts trivially on hv1i it follows from Example 2.8
that the first summand provides the factor �1 to the character at g. This verifies (2.2).

To verify (2.3) we first consider the �1 eigenspace V�1 for the action of g on
N . This is clearly �g - and A-invariant, and we may consider the decomposition
N D V�1 ˚ V ?�1 of N as in the lemma. If B denotes the restriction of A to V�1 we
may again assume, up to �g -invariant homotopy, that B D � ˙1 0

0 Ik�1

�
with respect

to a suitable orthonormal base fw1; : : : ; wkg of V�1. Decomposing

V�1 D hw1i ˚ hw2; : : : ; wki
the second summand provides the factor 1 by Bott-periodicity and the summand hw1i
provides also the factor 1 by Example 2.8, since g acts via the flip on Rw1.

We therefore may assume without loss of generality that the action of g onN does
not have eigenvalues 1 or �1. If N ¤ f0g let �t D cos.t/C i sin.t/ be a complex
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eigenvalue for the action of g on the complexification NC D N C iN of N and let
Vt � NC denote the corresponding eigenspace. Again, since A commutes with g, it
follows that Vt isA-invariant. SinceA is orthogonal (and hence it acts unitarily on the
complex vector space Vt ) there exists a non-zero A-eigenvector u D u1 C iu2 2 Vt
for some eigenvalue �s D cos.s/C i sin.s/, s 2 Œ0; 2
/. It follows then from basic
linear algebra that if we choose u to be a unit vector in NC, then

p
2u1,

p
2u2

are orthogonal unit vectors in N and then g and A act on the invariant subspace
hu1; u2i � N via rotation by the angles t and s, respectively. But then we can �g -
equivariantly homotop the restriction ofA to hu1; u2i to the identity, which shows that
the direct summand hu1; u2i provides the factor 1 to the character at g. Equation (2.3)
now follows from a straightforward induction argument.

In the remaining part of this section we want to discuss briefly how Theorem 2.5
can also be obtained by appealing to Atiyah and Singer [1]. For ease of notation
let V D Rn with standard inner product. The cycle .L2.ƒ�

CRn/;D C XA/ is an
unbounded representative for the Kasparov product of the classes ŒX�˝C� .Rn/ŒD� (see
[17], Lemma 4, and also [3] and [19] for the realization of KK-classes by unbounded
operators), it therefore is a �-equivariant Fredholm operator onL2.ƒ�

C.R
n// and has

a �-equivariant index ind�a .D C X/ 2 R.�/ such that

ind�a .D C X/ D ŒX� y̋ C� .Rn/ ŒD� 2 R.�/:

We now eliminate Clifford algebras from the picture, using the tangent bundle in-
stead, using the well known KK� -equivalence between C� .Rn/ and C0.TRn/ (a
consequence of Kasparov’s Bott-periodicity – see [15], § 5, Theorem 8, [5], 24.5).
Under this equivalence ŒD� becomes the class ŒD= � of the Dolbeault operator on
TRn Š Cn, and ŒX� becomes in the notation of Atiyah–Singer the Bott generator,
j0Š.1/ 2 KK�.C; C0.TRn// D K0�.TRn/, where j0 W f0g ! Rn is the inclusion of
the origin of Rn. Atiyah and Singer say the index map takes the class j0Š.1/ to 1. On
the other hand, the class ŒXA� 2 K�0 .C� .R

n// corresponds toA�.j0Š.1// 2 K0�.TRn/.
Therefore, following [1], computing ŒXA� y̋ C� .Rn/ ŒD� D ind�a .D C XA/ is equiv-
alent to computing the topological index ind�t .A�.j0Š.1/// 2 R.�/ as introduced
in [1].

As before, in order to compute the character at g it suffices to assume that
� D �g is the subgroup of O.n;R/ generated by �.g/. For convenience, let
ˇW 2 O.n;R/.T W / be the Bott generator, whenever W is a �-invariant linear
subspace of Rn. As is well known, O.n;R/.T W / is a rank-one R.�/-module with
generator ˇW . Equivariant Bott periodicity ind�t W O.n;R/.T W / ! R.�/ com-
mutes with the module action, and ind�t .ˇW / D 1 2 R.�/ by Atiyah–Singer [1]. To
be explicit, let 	 W 
�E ! 
�E be an odd endomorphism of Z=2-graded bundles,
with 	 an isomorphism outside of a compact subset of TRn, and so representing a
class a 2 O.n;R/.TRn/. Suppose b 2 R.�/ is represented by a finite-dimensional
�-vector space V . Then a �b is represented by 	˝ IdV W 
�.E˝V / ! 
�.E˝V /.
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The cycle for O.n;R/.TRn/ representingA�ˇRn is given by the trivial Z=2-graded
bundle TRn �ƒ�

C.R
n/ together with the odd endomorphism 	 W TRn �ƒ�

C.R
n/ !

TRn � ƒ�
C.R

n/ determined by the map TRn ! Cn, .x; �/ 7! Ax C i� (using
Clifford multiplication.) Note that asAxC i� vanishes only at the origin of TRn, the
endomorphism 	 is an isomorphism outside of a compact set.

Let F denote the fixed subspace of g and N D F?. We have a well-known
isomorphism

ƒ�
C.R

n/ Š ƒ�
C.F / y̋ ƒ�

C.N / (2.4)

of graded vector spaces, and there is a corresponding isomorphism of (trivial) bundles.
Note that F and N are also A-invariant.

If we restrict 	 W TRn�ƒ�
C.R

n/ ! TRn�ƒ�
C.R

n/ to TF , then under the identifi-
cation (2.4), the endomorphism 	 , when restricted toTF , becomes the endomorphism
	 y̋ IdN W TF �ƒ�

C.F / y̋ ƒ�
C.N / ! TF �ƒ�

C.F / y̋ ƒ�
C.N /. Thus we have the

following.

Lemma 2.10. If iF W F ! Rn is the �-equivariant inclusion, then

i�F .A�.ˇRn// D sign det.AjF / ˇF � Œƒ�
C.N /� 2 O.n;R/.TF /;

where ƒ�
C.N / 2 R.�/ is given by

Pdim.N/
iD0 .�1/i ŒƒiCN�, an alternating sum of

finite-dimensional �-spaces.

Proof. Given the preceding discussion, it is clear that

i�F .A�.ˇRn// D .AjF /�.ˇF / � Œƒ�
C.N /� 2 O.n;R/.TF /: (2.5)

Since � acts trivially on F (and TF ), if the restriction of A to F has positive
determinant, it is �-equivariantly homotopic to the identity. If the determinant is
negative, it is similarly homotopic to a reflectionQ, and it is standard thatQ�.ˇF / D
�ˇF in non-equivariant K-theory, but then in this case also, because the �-action on
TF is trivial.

Following a pattern of argumentation inAtiyah–Segal [2], since �.g/ the generator
of � has no fixed points in N , the class Œƒ�

C.N /� is a unit in the localization R.�/g
of the ring R.�/ at the prime ideal determined by g (see [2], Lemma 2.7) – indeed,
this prime ideal consists of all characters which vanish at g, while the character
corresponding to Œƒ�

C.N /� is

g 7!
dim.N/P
iD0

.�1/i trace.g W ƒiCN ! ƒiCN/ D det.1 � gjN / 6D 0:

For this reason and the above calculation, it follows that i�F W O.n;R/.TRn/ !
O.n;R/.TF / is an isomorphism after localizing at g (cf. [2], Proposition 2.8). Since
i�F .ˇRn/ D ˇF � Œƒ�

C.N /� by the same argumentation withA set equal to the identity,
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we get that i�F .A�ˇRn/ D sign det.AjF / i�F .ˇRn/ and hence since i�F is an isomor-
phism after localization atg, thatA�.ˇRn/ D sign det.AjF /ˇRn after localization atg.
Therefore, taking ind�t of both sides and using that ind�t .ˇRn/ D 1 2 R.�/, gives
that ind�t .A�ˇRn/ D sign det.AjF / 1 2 R.�/g . Evaluation of characters at g passes
to the localization, and is compatible with evaluation before localization, whence
evaluating the above expression at g gives that ind�t .A�ˇRn/.g/ D sign det.AjF / as
required. This gives the second proof of Theorem 2.5.

3. The Lefschetz theorem

Let the countable group G act isometrically, properly and co-compactly on the Rie-
mannian manifold X (it follows that X is complete.) Let � W X ! X be a smooth
map. We are going to formulate and prove a Lefschetz fixed-point formula in this con-
text using the discussion in Section 1 on Poincaré duality between ƒ D C0.X/ ÌG
and Oƒ D C� .X/ ÌG. To get an endomorphism of the algebra ƒ and to be adequate
for the formulation of the Lefschetz theorem, we need a couple of assumptions on the
map � on the manifold X . First we require the following compatibility of the map �
and the G-action on X :

Assumption 3.1. There is an automorphism � W G ! G such that

�.�.g/x/ D g.�.x// for all x 2 X:

The assumption ensures that the maps f 7! f B � and g 7! �.g/ constitute a
covariant pair for the action of G on C0.X/. We obtain an automorphism

˛ W C0.X/ ÌG ! C0.X/ ÌG: (3.1)

Next we require a transversality assumption on �. Suppose for the moment that
the G-action on X is free. Then GnX is a manifold, and since � maps orbits to
orbits, we obtain a smooth map P� W GnX ! GnX . In this case, we want to demand
that P� is in general position: that is, that its graph is transverse to the diagonal in
GnX �GnX .

By definition of the smooth structure onGnX , this means the following: If x 2 X ,
g 2 G such that �.gx/ D x, then the map

Id � d.� B g/.x/ W TxX ! TxX (3.2)

is non-singular.
If the G-action is not free, GnX is not a manifold. But the reformulation of the

condition that P� be in general position given above still makes sense. We thus impose
the following
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Assumption 3.2. For every g 2 G, the smooth map � B g W X ! X is in general
position, i.e., (3.2) holds for all x 2 X with �.gx/ D x.

The abstract Lefschetz theorem (see [9]) asserts that the Leftschetz number equals
an index-theoretic pairing,i.e.,

Lef.Œ˛�/ D h yŒ˛�;�i;
where Lef.Œ˛�/ is the Lefschetz number of ˛ defined by

Lef.Œ˛�/ ´ traces.˛� W K�.C0.X/ ÌG/Q ! K�.C0.X/ ÌG/Q/

(which only depends on Œ˛� 2 KK.C0.X/ Ì G;C0.X/ Ì G/) and yŒ˛� denotes the
Poincaré dual of Œ˛� which more exactly equals ˛�.	� O�/ 2 KK.C; ƒ y̋ Oƒ/, where,
as before, 	 W Oƒ y̋ ƒ ! ƒ y̋ Oƒ denotes the flip map.

Therefore, in order to prove Theorem 0.1, we want to compute the pairing
˛�.	� O�/ y̋

ƒ y̋ Oƒ �; where ˛ is as in (3.1). By functoriality, this is the same as

	� O� y̋
ƒ y̋ Oƒ ˛

�.�/, which we will focus on instead.
We set

F" ´ f.x; g/ 2 X �G j �.�.gx/; x/ < "g;
where � denotes the metric on X . Give F" the structure of a G-space by restricting
the following action of G on X �G:

h.x; g/ ´ .hx; �.h/gh�1/: (3.3)

Let F D F0 in the above notation, so F D f.x; g/ j �.gx/ D xg. Then F" is a
neighbourhood ofF andF" ! F as " ! 0. Note also thatG leavesF" (and likewise
F D F0) invariant, as if �.�.gx/; x/ < " then

�.�.�.h/gh�1hx/; hx/ D �.h�.gx/; hx/ D �.�.gx/; x/ < ":

Let V" be the set of first coordinates of points in F". Then V" is a G-set for " 
 0.
Let V ´ V0.

Lemma 3.3. The set V is discrete. Furthermore, if ı > 0, there exists " > 0 such
that every component of V" is contained in a ı-ball in X with center in V .

Proof. Suppose .xj / and .gj / are sequences in X and G respectively such that
�.gjxj / D xj , the xj are all distinct, and xj ! x0 for some x0. Let hj such
that �.hj / D g�1

j . Then �.xj / D hjxj . Since xj ! x0, �.xj / ! �.x0/, and hence
hjxj ! �.x0/. But then

�.hjx0; �.x0// � �.hjx0; hjxj /C �.hjxj ; �.x0// ! 0:

But since the G-action is proper, there are only finitely many h 2 G which map x0
to any fixed, pre-compact neighbourhood of �.x0/. Hence hj D h for some h and
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almost all j . We may assume hj D h for all j , which gives that gj D g for all j
and then � B g has an accumulation point amongst its fixed points, which contradicts
Assumption 3.2. This argument proves that V is discrete.

For the second statement, observe that fV1=ng is a nested sequence whose in-
tersection is V . Using the G-compactness of X , we see that, given ı > 0, there
exists n 2 N such that V1=n is contained in the ı-neighbourhood of V . By the first
statement, the second statement now follows.

Since V is discrete and the G-action on X is co-compact, V splits into finitely
many G-orbits. Observe that the set of such orbits has an obvious correspondence
with the set

Fix. P�/ ´ fp 2 X j P�. Pp/ D Ppg;
where P� is the induced map GnX ! GnX and Pp denotes an orbit of p. Let us
denote each G-orbit in V corresponding to each point p 2 Fix. P�/ by Vp .

The G-set F admits a similar decomposition, F D F
Fp , where

Fp D f.x; h/ 2 F j x 2 Vpg. For each Vp fix an element gp 2 G such that
�.gpp/ D p. Let Lp ´ gpKp be the coset of Kp ´ StabG.p/. Then one can see
that Lp D fg 2 G j �.gp/ D pg.

From this, we get the following. Consider a point gp 2 Vp . Then there exists
h 2 G such that �.hgp/ D gp, and hence �.�.g/�1hgp/ D p D �.gpp/, so that
gpp D �.g/�1hgp and g�1

p �.g/�1hg 2 Kp . Hence h lies in the twisted conjugate
�.g/Lpg

�1 of Lp . The converse of this statement is also true.
Hence we can write

Vp D fgp j gKp 2 G=Kpg; Fp D f.gp; h/ j gKp 2 G=Kp; h 2 �.g/Lpg�1g:
Similarly, we get decompositions of V" and F". By Lemma 3.3, we may choose

ı > 0 small enough so that all the ı-balls centered at the points of V are disjoint and
therefore there exists " > 0 such that

V" D F
p2Fix. P�/

gKp2G=Kp

V";gp; (3.4)

where V";gp is the part of V" which is contained in the ı-ball centered at the point
gp 2 V . Similarly,

F" D F
p2Fix. P�/

gKp2G=Kp

F";gp; (3.5)

where
F";gp D f.x; h/ 2 X �G j x 2 V";gp; h 2 �.g/Lpg�1g:

In what follows, we shall describe the pairing 	� O� y̋
ƒ y̋ Oƒ ˛

�� as a direct sum
of Kasparov products which live on the Hilbert spaces L2.ƒ�

C.V";p//
�p;g , where

�p;g � Kp denotes the stabilizer of g 2 Lp under the conjugation action
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g 7! �.h/gh�1. These summands can then be computed via the results of the
previous section. We start with a careful description of the Hilbert space (recall Def-
initions 1.10 and 1.11). It is the tensor product of the right Hilbertƒ y̋ Oƒ-module E

described prior to Definition 1.11, and the Hilbert space L2.ƒ�
CX/ y̋ `2G occurring

in connection with the fundamental class�, twisted by the automorphism ˛ induced
from � and � (see (3.1)). Here and throughout we writeƒ for C0.X/ÌG and Oƒ for
C� .X/ ÌG.

After twisting � by ˛, we obtain the Hilbert space L2.ƒ�
CX/ y̋ `2G equipped

with a twisted representation of ƒ y̋ Oƒ whose explicit form we state for the record
(compare with the untwisted version in (1.6) and (1.7)): the algebraƒ D C0.X/ÌG
acts via the covariant pair

f .� y̋ eg/ D g�1.f B �/� y̋ eg ; h � .� y̋ eg/ D � y̋ e�.h/g (3.6)

for f 2 C0.X/, h 2 G and � y̋ eg 2 L2.ƒ�
CX/ y̋ `2G. The algebra Oƒ D C� .X/ÌG

acts by the covariant pair

'.� y̋ eg/ D '� y̋ eg ; h � .� y̋ eg/ D h.�/ y̋ egh�1 (3.7)

for ' 2 C� .X/, h 2 G and � y̋ eg 2 L2.ƒ�
CX/ y̋ `2G. Recall that E is the

completion of Cc.X/FU y̋ CG with respect to a certain inner product, where U D
f.x; y/ j �.x; y/ < "g for some " > 0 from Remark 1.5 (iv). We may choose (and
fix) " such that (3.4) is satisfied for a suitable ı > 0.

Notice that there is a well defined inclusion of the algebraic tensor product
Cc.X/FU ˇ CG into ƒ y̋ Oƒ given by sending the elementary tensor ˛ y̋ Œh� to
the element ˛.Œh� y̋ Œh�/ 2 .C0.X/ y̋ C� .X// Ì .G � G// Š ƒ y̋ Oƒ. Using this
inclusion, we obtain a natural pairing

M W .Cc.X/FU ˇ CG/ � .L2.ƒ�
CX/ y̋ `2G/ ! L2.ƒ�

CX/ y̋ `2G
given by applying the action of ƒ y̋ Oƒ as described in (3.7) to the image of
Cc.X/FU ˇ CG under the above described inclusion.

Recall that F" D f.x; g/ 2 X �G j �.�.gx/; x/ < "g. We denote byL2.ƒ�
CF"/

the set of all � 2 L2.ƒ�
CX/ y̋ `2G which live on F" in the obvious sense (by viewing

the elements of L2.ƒ�
CX/ y̋ `2G as sections on X �G). We then get

Lemma 3.4. Let ˛ y̋ Œh� 2 Cc.X/FU ˇ CG act on L2.ƒ�
CX/ y̋ `2G as described

above. Then .˛ y̋ Œh�/ � L2.ƒ�
CX/ y̋ `2G � L2c.ƒ

�
CF"/, where L2c.ƒ

�
CF"/ denotes

the set of L2-sections on F" which vanish outside some compact subset of F".

Proof. If we regard the elements of L2.ƒ�
CX/ y̋ `2G as sections on X � G in

the canonical way, it follows from (3.7) that the action of ˛ y̋ Œh� on such section
� 2 L2.ƒ�

CX/ y̋ `2G is given by the formula

..˛ y̋ Œh�/ � �/.x; g/ D ˛.�.gx/; x/dxh .�.h
�1x; �.h�1/gh///; (3.8)
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where dx
h

W Cl.Th�1xX/ ! Cl.TxX/ is the isomorphism underlying the action ofG
onC� .X/. Thus the result follows directly from the fact that ˛ is compactly supported
in U" D f.x; y/ j �.x; y/ < "g.

In what follows let P � X be a fixed set of representatives for Fix. P�/ D GnV ,
with V as in the discussion in the beginning of this section. Let

S ´ f.p; gKp/ j p 2 P; gKp 2 G=Kpg;
where Kp denotes the stabilizer of p in G. Recall from (3.5) that for " > 0 small
enough, the set F" decomposes into a disjoint union

F" D F
.p;gKp/2S

F";gp;

with
F";gp D f.x; h/ 2 X �G j x 2 V";gp; h 2 �.g/Lpg�1g:

Note that G acts unitarily on L2.ƒ�
CF"/ via

.s�/.x; g/ D dxs .�.s
�1x; �.s�1/gs// (3.9)

for s 2 G, � 2 L2c.ƒ
�
CF"/, where, by abuse of notation, dxs W ƒ�

C.Ts�1xX/ !
ƒ�

C.TxX/ is the isometry induced by the differential dxs W Ts�1xX ! TxX . This
action restricts to well-defined actions of Kp D StabG.p/ on F";p for all p 2 P . As
usual, we let L2.ƒ�

CF";p/
Kp denote the Kp-invariant elements in L2.ƒ�

CF";p/.
In what follows, we equip L2c.ƒ

�
CF"/ with a new inner product given by

h�; �i D P
s2G

hs.�/; �iL2.ƒ�
CF"/

with action of G on L2c.ƒ
�
CF"/ as explained above. Note that this inner product

makes sense, since G acts properly on F" and � and � are compactly supported.
We denote by H" the Hausdorff completion of L2c.ƒ

�
CF"/ with respect to this inner

product.

Lemma 3.5. Consider the composition ˆ D ‰ BM of maps

E y̋
ƒ y̋ Oƒ .L

2.ƒ�
CX/ y̋ `2G/ M�! H"

‰�! L
p2P

L2.ƒ�
CF";p/

Kp ;

whereM is given on elementary tensors by the pairing of Lemma 3.4 and where

‰.�/ D L
p2P

1pjKp j
P
s2G

s�jF";p

for � 2 L2c.ƒ�
CF"/. Then ˆ is an isometric isomorphism of Hilbert spaces.
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Proof. Using formulas (1.8), (3.6), (3.7) and (3.8), we compute for all ˛i y̋ Œhi � 2
Cc.X/FU y̋ CG and �i 2 L2.ƒ�

CX/ y̋ `2G, i D 1; 2:

h.˛1 y̋ Œh1�/ y̋
ƒ y̋ Oƒ �1; .˛2 y̋ Œh2�/ y̋

ƒ y̋ Oƒ �2iE y̋
ƒ y̋ Oƒ

L2.ƒ�
CX/

y̋ `2G

D P
g2G

Z
X

h.h˛2 y̋ Œh2�; ˛1 y̋ Œh1�iE � �1/.x; g/; �2.x; g/i dx

D P
g2G

P
s2G

Z
X

h.h�1
2 .˛

�
2 s.˛1//Œh

�1
2 sh1� y̋ Œh�1

2 s�/ � �1.x; g/; �2.x; g/i dx

D P
g2G

P
s2G

Z
X

hh�1
2 .˛

�
2 s.˛1//.�.gx/; x/d

x

h�1
2
sh1

.�1.h
�1
1 s

�1h2x; �.s�1h2/gh�1
2 sh1//; �2.x; g/i dx

D P
g2G

P
s2G

Z
X

hdx
h�1

2

.˛�
2 s.˛1/.h2�.gx/; h2x//d

x

h�1
2
sh1

.�1.h
�1
1 s

�1h2x; �.s�1h2/gh�1
2 sh1//; �2.x; g/i dx:

Now, applying on both sides the unitary transformation � 7! h2� given by the formula
in (3.9), the above term transforms into

D P
g2G

P
s2G

Z
X

h.˛�
2 s.˛1//.�.gx/; x/d

x
sh1
.�1.h

�1
1 s

�1x; �.s�1/gsh1//;

dxh2
.�2.h

�1
2 x; �.h

�1
2 /gh2//i dx

D P
g2G

P
s2G

Z
X

h.dxs .˛1/.s�1�.gx/; s�1x/dx
sh1
.�1.h

�1
1 s

�1x; �.s�1/gsh1//;

˛2.�.gx/; x/d
x
h2
.�2.h

�1
2 x; �.h

�1
2 /gh2//i dx

D P
s2G

P
g2G

Z
X

hs..˛1 y̋ Œh1�/ � �1/.x; g/; .˛2 y̋ Œh2�/ � �2.x; g/i dx

D P
s2G

hs..˛1 y̋ Œh1�/ � �1/; .˛2 y̋ Œh2�/ � �2iL2.ƒ�
CF"/

:

This demonstrates that M extends to a well-defined unitary homomorphism from
E y̋

ƒ y̋ Oƒ .L
2.ƒ�

CX/ y̋ `2G/ to H", and it is not difficult to see that it has dense image.
Thus the result will follow if we can show that‰ W H" ! p̊2PL2.ƒ�

CF";p/
Kp is also

isometric (it clearly has dense image). After decomposing F" into the disjoint unionF
.p;gKp/2S F";gp , we may assume without loss of generality thatP D fpg is a single

point. ThenL2c.ƒ
�
CF"/ can be written as the set of finite sums � D P

gKp
�g with �g

supported onF";gp . Each such function is of the formg�0 for some �0 2 L2.ƒ�
CF";p/.

So assume now that �; � 2 L2.ƒ�
CF";p/ and g; h 2 G. Then

hg�; h�iH"
D P
s2G

hsg�; h�iL2.ƒ�
CF"/

s 7!hsg�1D P
s2G

hs�; �iL2.ƒ�
CF"/

D P
s2Kp

hs�; �iL2.ƒ�
CF"/

:
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On the other hand, we have

‰.g�/ D 1pjKpj
P
s2G

sg�jF";p
D 1pjKp j

P
s2Kp

s�jF";p

from which we get

h‰.g�/;‰.h�/iL2.ƒ�
C
F";p/

D 1
jKp j

P
s;t2Kp

hs�; t�iL2.ƒ�
C
F";p/

D P
s2Kp

hs�; �iL2.ƒ�
C
F";p/

;

which now proves that h‰.�/;‰.�/iL2.ƒ�
C
F";p/

D h�; �iH"
for all �; � 2 L2c.ƒ�

CF"/.

Since Kp acts on F";p D V";p � Lp by h � .x; g/ D .hx; �.h/gh�1/ as defined
in (3.3), and also since one can consider L2.ƒ�

CF";p/ as a direct sum of copies of
L2.ƒ�

CV";p/, one summand for each point in Lp , we have

L2.ƒ�
CF";p/

Kp D L
g

L2.ƒ�
CV";p/

�p;g ;

where g runs through a given set †p of representatives for the orbits in Lp under
the twisted conjugation by Kp and �p;g � Kp denotes the stabilizer of g under this
action. Thus, combining this observation with the above lemma we get

E y̋
ƒ y̋ Oƒ .L

2.ƒ�
CX/ y̋ `2G/ Š L

†

L2.ƒ�
CV";p/

�p;g D L
†

H
�p;g
p;g ;

with † D [p2P†p and Hp;g D L2.ƒ�
CV";p/.

We are now going to compute the operator. To this end let g 2 Lp . Since
�.�.gx/; x/ < " for all x 2 V";p and g 2 Lp , we have .�.gx/; x/ 2 U" for all such
x and g. Thus we have a well-defined vector field �p;g W V";p ! T V";p given by
�p;g.x/ D �".�.gx/; x/ with �".z; x/ D �.z;x/

"
dx�.z; x/ as in Remark 1.5 (iv). It

determines a class ‚g;p 2 KK�g;p .C; C� .V";p// as in the previous section. Indeed,
since kdx�.z; x/k D 1 for all z; x 2 X with z ¤ x, it follows that �p;g.x/2 � 1 D
k�p;g.x/k2 � 1 ! 0 if x ! 1 in V";p , and therefore the class ‚p;g is given
directly via Clifford multiplication of �p;g on C� .V";p/. On the other hand, we can
consider the Dirac-class ŒDp;g � D ŒDV";p

� 2 KK�p;g .C� .V";p/;C/. It is represented
by the restriction Fp;g of the bounded de Rham operator F D D.1 C D2/�1=2 to
L2.ƒ�

C.V";p//.
The Kasparov product ‚p;g ˝C� .Vp;"/ ŒDp;g � 2 KK�p;g .C;C/ is represented by

the pair .Hp;g ; Pp;g/, with Hp;g D L2.ƒ�
C.Vp;"// and

Pp;g D ��p;g.x/ C ��
�p;g.x/

C
q
1 � k�p;g.x/k2Fp;g : (3.10)
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(Compare with (2.1) in the proof of Lemma 2.2 above.) Since Pp;g is �p;g -invariant,
it restricts to an operatorQp;g on the subspace of the �p;g -invariant vectors in Hp;g .
We then get well-defined classes

Œ.H
�p;g
p;g ;Qp;g/� 2 KK.C;C/

for each pair .p; g/ 2 S . We now get

Proposition 3.6. The class 	� O� y̋
ƒ y̋ Oƒ ˛

�� 2 KK.C;C/ is equal to the sum

P
.p;g/2†

Œ.H
�p;g
p;g ;Qp;g � 2 KK.C;C/:

Proof. Recall the operators F y̋ 1 D D.1 C D2/�1=2 y̋ 1 and �G from Def-
initions 1.10 and 1.11. Under the identification, E y̋

ƒ y̋ Oƒ L
2.ƒ�

CX/ y̋ `2G ŠL
p2P L2.ƒ�

CF";p/
Kp of Lemma 3.5, �G y̋ 1 on E y̋

ƒ y̋ Oƒ L
2.ƒ�

CX/ y̋ `2G cor-

responds to the operator Q‚ given point-wise by � Q�.x;g/ C ��
Q�.x;g/, with Q�.x; g/ D

�.�.gx/; x/ and where �v denotes exterior multiplication with v. Observe that

h Q�.x; g/ D dxh .
Q�.h�1x; �.h/�1gh//

D dxh .�.h
�1�.gx/; h�1x//

D �.�.gx/; x/ D Q�.x; g/;
since � is G-invariant. Thus Q‚ descends to an operator on each L2.ƒ�

CF";p/
Kp .

Under the decomposition L2.ƒ�
CF";p/

Kp Š L
g2†p

H
�p;g
p;g this operator becomes

the sum
L
g2†p

.��p;g.x/C��
�p;g.x/

/ as in (3.10). Similarly, the operator 1 y̋ .F y̋ 1/
descents to the sum of the de Rham operators Fp;g under the decomposition E y̋

ƒ y̋ Oƒ
L2.ƒ�

CX/ y̋ `2G Š L
.p;g/2† H

�p;g
p;g . To check that the sum of the operators

Qp;q D ��p;g.x/ C ��
�p;g.x/

C
q
1 � k�p;g.x/k2Fp;g

on
L
.p;g/2† H

�p;g
p;g satisfies the axioms of a Kasparov product as explained in

Remark 2.3, it is enough to check that T ´ L
.p;g/ Fp;g is a F y̋ 1 connec-

tion. But this follows from the description of the isomorphism ˆ of Lemma 3.5:
If � D ˛ y̋ Œh� 2 Cc.X/FU y̋ CG, and if we consider T as an operator onL
p2P L2.ƒ�

CF";p/
Kp via the obvious identifications, then the operator

F	 ´ ‚	.F y̋ 1/�.�1/deg 	 degF T‚	 2 B.L2.ƒ�
C.X/ y̋ l2G; L

p2P
L2.ƒ�

CF";p/
Kp /

can be described as the composition of the operator Œ….˛Œh� y̋ Œh�/; F2 y̋ 1� 2
K.L2.ƒ�

C.X/ y̋ l2G/ followed by a projection to theL2-sections on a finite union of
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components in F" (which are determined by the support of ˛), and then followed by
the operator ‰ of Lemma 3.5, which becomes bounded when restricted to the set of
L2-sections on a fixed finite number of components of F". Thus F	 is a composition
of a compact operator by bounded operators, hence it is compact. This finishes the
proof.

Finally, in order to get the corresponding integer for the class O� y̋
ƒ y̋ Oƒ ˛

�� 2
KK.C;C/ Š Z, we want to compute the index of the operator H , which is the sum
of indexes of Qp;g for all .p; g/ 2 †. That is,

	� O� y̋
ƒ y̋ Oƒ ˛

�� D P
.p;g/2†

ind.Qp;g/:

We do this by first computing the classes Œ.Hp;g ; Pp;g/� 2 R.�p;g/ and then comput-
ing from this the index of Qp;g as in Corollary 2.7.

To compute Œ.Hp;g ; Pp;g/� 2 R.�p;g/, we linearize using the exponential map so
that we are considering a similar problem in Euclidean space. So in what follow we
may assume that p D 0 is the origin in Rn and V";p is some open neighborhood of
p D 0 in Rn. By choosing " small enough, we may further assume that p D 0 is
the only fixed point of the differential map x 7! �.gx/. This implies that the vector
field �p;g W V";p ! T V";p only vanishes at the point p D 0. The group �p;g acts on
T V";0 through the standard action of O.n;R/ on Rn. Let �p;g W �p;g ! O.n;R/ be
the corresponding representation.

We know from Lemma 2.1 that the class Œ.Hp;g ; Pp;g/� 2 R.�p;g/ only depends
on the homotopy class of �p;g , where, by Lemma 2.2 we may restrict �p;g to arbitrarily
small open balls around 0.

Note first that under the identification of V";p with a neighborhood of 0 in Rn via
the exponential map, the metric, call it �, on V";p is not necessarily the flat metric
coming from Rn. However the convex combination of the metric � and the Euclidean
metric, �Rn , gives a homotopy, �t , between these two metrics. That, in turn, gives
a homotopy, �t ´ �t

"
.dy�t //.�.gx/; x// of corresponding vector fields. Therefore

without loss of generality, we may assume that the set V";p is equipped with the
Euclidean metric and that �p;g.x/ D x � .� B g/.x/. By calculus, x � .� B g/.x/ D
.IdRn � d.� B g/.p// � x C  .x/ for some  such that  .x/kxk ! 0 as x ! 0. Then,
in a small neighbourhood of p D 0, t 7! .IdRn � d.� B g/.p// � x C t .x/ gives a
homotopy, �p;g � .IdRn �d.�Bg/.p//�x D Wp;gX withWp;g D IdRn �d.�Bg/.p/.
It follows then from Lemma 2.5 together with Corollary 2.7 that

ind.Qp;g/ D 1
j�p;g j

P
g2�pg

�.�p;g;Wp;g/.g/;

where �.�;A/.h/ D sign det.AjFix.h// is the orientation character as in Definition 2.4.
Putting all together, we have the following theorem:
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Theorem 3.7. The pairing h yŒ˛�;�i is given by

h yŒ˛�;�i D P
.p;g/2†

1
j�p;g j

P
h2�p;g

�.�p;g;Wp;g/.h/:

The above theorem together with the abstract Lefschetz theorem of [9] proves our
Lefschetz fixed point theorem, Theorem 0.1.

We now discuss an example.

Example 3.8. LetG Š ZÌZ=2Z be the infinite dihedral group. It is the subgroup of
Iso.R/ generated by u.x/ D �x andw.x/ D xC 1. It has the relation uwu D w�1,
and has two conjugacy classes of finite subgroups K1 ´ hui D StabG.0/, and
K2 ´ hwui D StabG.12 /. A fundamental domain for the action is the interval Œ0; 1

2
�.

Note that P0 6D P1
2

2 PR, where we use dot notation to indicate orbits.
The K-theory of C0.R/ÌG is Z3 in dimension 0 and is trivial in dimension 1. A

general property of proper actions tells us that C.GnR/ D C Œ0; 1� is strongly Morita
equivalent to an ideal in C0.R/ Ì G, and one K-theory generator corresponds under
this strong Morita equivalence and the inclusion of the ideal, to the class of the unit
in C.GnR/. We denote this class ŒE�. The other two projections come from the
C �.Ki /, i D 1; 2. We denote them Œpi �, i D 1; 2.

Let
� W R ! R; �.x/ D �x � 1

2
:

Let � W G ! G be �.u/ D uw and �.w/ D w�1. Then � extends to an automorphism
ofG, and �.�.x// D g�.x/ is easily checked for g D w; u, so that we get a covariant

pair. The map � has one fixed orbit, which is P1
4

; note that � itself fixes 1
4

. The
derivative at this point is �1, so that we get a positive sign attached to this point.

Since P1
4

has no isotropy in G, we only get a contribution of C1 from this fixed orbit:
the local side of the Lefschetz formula is equal to 1. On the global side, since �.K1/ D
K2, there is no tracial contribution from the summands Zp1 ˚ Zp2, and therefore
traces.˛�/ D 1, with ˛ W C0.R/ ÌG ! C0.R/ ÌG the induced automorphism.

For a second example, let � be the identity. Let � be a small perturbation of the
identity map R ! R which can be roughly described as follows. Firstly, � maps the
interval Œ0; 1

2
� to itself. It fixes 0 and 1

2
, and has derivative zero at both these points. It

also fixes the point 1
4

, and has derivative rather large at this point (in particular greater
than 1). Finally, � is extended to a G-equivariant map R ! R in the obvious way.

Clearly � is proper G-homotopic to the identity, so its graded trace on K-theory

is 3. It has three fixed orbits P0, P1
4

, and P1
2

, which are actually fixed points in R. The
first and third of these come with a positive sign, and are weighted by the number of
conjugacy classes (i.e., the number of elements) in the isotropy groupsK1 andK2 of
these points. We thus get a contribution of .1C 1/C .1C 1/ D 4 from the first and

third fixed points, and, since P1
4

has no isotropy and �0.1
4
/ > 1, we get a contribution

of �1 from the second fixed point, with a net contribution of 3, as required.
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On the other hand, if we change the above map � just to have now large derivatives
at 0 and 1

2
and zero derivative at 1

4
. Then we get a contribution 0C 1 from 0 and also

the same from 1
2

, and 1 from 1
4

, with a net contribution of 3 again.
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