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Abstract. In this paper we show that the homology of a certain natural compactification of the
moduli space, introduced by Kontsevich in his study of Witten’s conjectures, can be described
completely algebraically as the homology of a certain differential graded Lie algebra. This
two-parameter family is constructed by using a Lie cobracket on the space of noncommutative
0-forms, a structure which corresponds to pinching simple closed curves on a Riemann surface,
to deform the noncommutative symplectic geometry described by Kontsevich in his subsequent
papers.
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1. Introduction

1.1. Background. Consider the moduli space Mg;n of compact Riemann surfaces
of genus g with n marked points such that � ´ 2 � 2g � n < 0 and n � 1. In
the 1980s it was discovered by the work of mathematicians such as Harer [Ha86],
Mumford, Penner [Pe87] and Thurston that this space admits a description in terms
of an orbi-cellular complex where every orbi-cell is indexed by a type of graph called
a ribbon graph, which lies embedded in the Riemann surface.

In his seminal 92 paper [Ko92], Kontsevich introduced a certain compactification
of the moduli space Mg;n, which played a crucial role in his proof of Witten’s con-
jectures. An essential point in the proof was that this compactification also admits a
description in terms of an orbi-cellular complex.

This compactification was defined as a natural quotient of the Deligne–Mumford
compactification Mg;n by a certain equivalence relation. Although the resulting quo-
tient does not enjoy the good geometric properties of the Deligne–Mumford com-
pactification, in particular it is no longer an orbifold and hence we cannot talk of
Poincaré duality, it has the advantage that it admits the aforementioned orbi-cellular
decomposition and that the tautological classes have a natural description in this
framework.

�The work of the author was supported by the Max-Planck-Institut für Mathematik, Bonn.
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In his subsequent papers [Ko93], [Ko94]; Kontsevich (and later Ginzburg [Gi01])
developed a framework for studying the symplectic geometry of noncommutative
spaces, building on the foundations laid by the work of Connes. In this paper he
introduced a certain noncommutative analogue of the Poisson algebra of Hamiltonian
vector fields on a symplectic manifold. He demonstrated that the Chevalley–Eilenberg
homology of this Lie algebra precisely recovers the homology of the orbi-cellular
complex of ribbon graphs and hence the homology of the moduli space Mg;n.

The goal of this paper is to prove the analogous statement for the compactification
of the moduli space introduced by Kontsevich in [Ko92]. This is done by introducing
the extra structure of a Lie bialgebra on Kontsevich’s Lie algebra of noncommutative
Hamiltonians. This Lie bialgebra structure is used to construct a two-parameter family
of differential graded Lie algebras; one may consider it to be a type of deformation of
the original noncommutative symplectic geometry of Kontsevich. It is then shown that
the Chevalley–Eilenberg homology of this differential graded Lie algebra recovers
the homology of the above compactification.

This leads to the possibility of studying the (co)homological aspects of what is
in principle a geometric object, in a purely algebraic manner. In particular, there
is a natural way to produce classes in the homology of any differential graded Lie
algebra by exponentiating elements in the associated Maurer–Cartan moduli space.
In this context the above result provides a way to construct homology classes on this
compactification of the moduli space using entirely algebraic data. A description
of the resulting algebraic structures, which arise as deformations of A1-structures,
is provided by the author in [Ha08]; but see also the related paper by Barannikov
[Ba06].

Furthermore, there is a map between this two-parameter family of differential
graded Lie algebras and the original Lie algebra defined by Kontsevich. This map
is the natural one determined by setting the values of the deformation parameters to
be zero. Geometrically, it corresponds to the map from the above compactification
of the moduli space to its one-point compactification, which collapses the boundary
of the moduli space to a point. This map is the dual of the inclusion of the open
moduli space into the above compactification. Given a homology class defined on
the one-point compactification of the open moduli space, one can ask the following
question: can this class be lifted to the above compactification and is there some way
to parameterise the different possible liftings? This problem can be interpreted as a
problem in algebraic deformation theory within this setting [Ha08].

The algebraic structures which arise in this paper appear in various guises else-
where in the mathematical literature. Lie bialgebra structures on the space of non-
commutative 0-forms appear in the works of Ginzburg and Schedler [GS06], [Sc05].
Algebraic structures related to compactifications of the moduli space are treated by
Barannikov in the context of modular operads [Ba06]. Many relevant ideas appear
in the work of Movshev [Mv99]. I was also present at a conference at the Institut
Henri Poincaré where I heard Fukaya give a talk [Fu07] on similar algebraic struc-
tures and their role in open Gromov–Witten theory. In his talk he explained how he
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had developed these structures using the framework of string topology provided by
Chas–Sullivan [CS04].

1.2. Layout of the paper. The layout of the paper is as follows. In Section 1.3 we
recollect how the theory of Jenkins–Strebel differentials on stable curves leads to cer-
tain compactifications of the moduli space that have a natural orbi-cellular structure.
In Section 2 we recall the basic apparatus of noncommutative symplectic geometry
introduced in [Ko93] and define a Lie bialgebra structure on the space of noncommu-
tative 0-forms on a symplectic vector space. In Section 3 we use this Lie bialgebra
structure to define a two-parameter family of differential graded Lie algebras. In Sec-
tion 4 we give a precise formulation of the complex of stable ribbon graphs introduced
by Kontsevich in [Ko92] and its relationship with the aforementioned compactifica-
tions of the moduli space. In Section 5 we formulate and prove our main theorem
which states that the stable homology of the family of differential graded Lie algebras
introduced in Section 3 recovers exactly the homology of the above compactifications
of the moduli space. Throughout the paper we work over the field of rational numbers
Q. The term ‘vector space’ always refers to vector superspaces.

1.3. Jenkins–Strebel theory. Let us recall how the Jenkins–Strebel theory gives
us an orbi-cellular decomposition of the moduli space of curves. More detailed
expositions can be found in: [Lo94], [Mo04] and [Zv03], on which the following
account is based.

Let R be a Riemann surface with n � 1 marked points and of genus g > 1 � 1
2
n.

A meromorphic section ˇ of the tensor square of the holomorphic cotangent bundle of
R is called a quadratic differential. A horizontal trajectory of ˇ is a curve on R such
that the pullback of the quadratic differential is defined by a positive real function.

Given positive real numbers p1; : : : ; pn; we can invoke the results of Jenkins
[Je57] or Strebel [St67] which asserts that there exists a unique quadratic differential
ˇ on R such that the following holds:

(1) it has a double pole at each marked point and no other poles,

(2) the quadratic residue of the pole at the i th marked point is �. pi

2�
/2,

(3) the union of all the closed horizontal trajectories of ˇ is a dense subspace of R.

Such a differential is called a Jenkins–Strebel differential.
The trajectories of a Jenkins–Strebel differential can be used to decompose the

Riemann surface. The union of all the closed horizontal trajectories of our Jenkins–
Strebel differential carves out a disconnected open subspace of R, whose connected
components will be open disks containing one and only one of the marked points. The
closed horizontal trajectories surrounding the i th marked point will all have length
pi in the metric naturally determined by our quadratic differential.

The complement of the subspace carved out by the closed horizontal trajectories
is a connected graph which lies embedded in the surface, called the critical graph of
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Figure 1. Trajectories of a Jenkins–Strebel differential.

the Jenkins–Strebel differential. Its edges are the nonclosed horizontal trajectories
and its vertices are the zeroes of the quadratic differential. A zero of order n gives
rise to a vertex of valency n C 2 and therefore each vertex will be at least trivalent.
The embedding of the graph into the surface, together with the natural orientation on
the surface, canonically endows every vertex of the graph with a cyclic ordering of
the incident half-edges. The resulting graph is called a ribbon graph. If we further
decorate every edge of the graph by the positive real number corresponding to the
length of this edge in the metric determined by the quadratic differential, we obtain
the definition of a metric ribbon graph.

Hence the Jenkins–Strebel theory provides a way to associate a metric ribbon
graph to any Riemann surface. Conversely, given any metric ribbon graph, a standard
gluing construction provides a way to reconstruct the corresponding Riemann surface.
If we sum the lengths of all the edges of the metric ribbon graph which surround the
i th marked point, then we recover the positive real number pi , which we call the
perimeter of the marked point.

This correspondence between Riemann surfaces and metric ribbon graphs leads
to the following orbi-cellular decomposition of the decorated moduli space
Mg;n � �ı

n�1, due independently to: Harer [Ha86], Mumford, Penner [Pe87] and
Thurston. To any point in Mg;n � �ı

n�1 we can associate a ribbon graph by simply
taking the critical graph of the unique Jenkins–Strebel differential on the Riemann
surface whose perimeters are prescribed by the coordinate functions on the open
simplex �ı

n�1. Now we say that two decorated Riemann surfaces in Mg;n � �ı
n�1

are equivalent if the corresponding ribbon graphs are isomorphic. This equivalence
relation partitions the space Mg;n ��ı

n�1 into orbi-cells, each orbi-cell being indexed
by a certain ribbon graph.

Since the decorated moduli space Mg;n � �ı
n�1 is not compact, it cannot be an

orbi-cellular complex; therefore we compactify it by adding one point. This leads to
the following theorem:

Theorem 1.1. The one-point compactification of the decorated moduli space
Mg;n � �ı

n�1 is an orbi-cellular complex whose orbi-cells are indexed by ribbon
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graphs (and one 0-cell for the point). An orbi-cell E lies on the boundary of another
orbi-cell E 0 if and only if the ribbon graph corresponding to E is obtained from the
ribbon graph corresponding to E 0 by collapsing edges which are not loops.

The Jenkins–Strebel theory can also be applied to the Deligne–Mumford com-
pactification of the moduli space. Unfortunately, however, this does not lead to an
orbi-cellular decomposition of the Deligne–Mumford compactification. Instead, we
obtain an orbi-cellular decomposition of a quotient of the Deligne–Mumford compact-
ification by a certain equivalence relation. The information which is lost corresponds
precisely to the complex structure on the irreducible components of a stable curve
which contain no marked points.

Let C be a stable curve. We can use the Jenkins–Strebel theory to associate to C a
piece of combinatorial data which describes some of the complex structure of C . We
start by deleting the nodal singularities of C , then we apply the Jenkins–Strebel theory
to each connected component of the resulting surface in the same way as has already
been discussed; that is to say that we choose a list of perimeters for the marked points
and consider the critical graph of the corresponding Jenkins–Strebel differential on
each connected component. The punctures on the components which arose from
removing the nodal singularities will lie on the vertices of the graph. Where a nodal
singularity has the type of that which is formed by pinching a nonseparating curve,
both the corresponding punctures on the connected component are ascribed a common
vertex. The caveat here of course is that we cannot apply the Jenkins–Strebel theory
to those components without any marked points. For this reason we collapse these
components of the curve and label the resulting nodal singularity by the (arithmetic)
genus of the collapsed component; we call this number the genus defect.

genus
defect = 2

genus
defect = 0

Extract graph

Contract 
unmarked 
components

Apply JS theory

Figure 2. Extracting a K-stable ribbon graph from a stable curve.

This surface now has a connected graph embedded inside it defined by the union
of the critical graphs of the Jenkins–Strebel differentials. Each vertex of this graph
is labeled by the nonnegative integer corresponding to the genus of the collapsed
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component (or zero if no component was collapsed in forming that vertex). The
edges issuing from each vertex are partitioned into groups called cycles, the number
of cycles being equal to the number of components meeting that vertex. The edges
belonging to any particular cycle all lie on one of the components and therefore pick
up a cyclic ordering as before. We call the graph resulting from this procedure a stable
ribbon graph. In order to distinguish them from the more general stable ribbon graphs
that we will encounter at the end of this section, we will refer to them as K-stable
ribbon graphs, whenever such a distinction is necessary. If we further decorate every
edge of this graph with the positive real number defined by the length of this edge in
the metric determined by the Jenkins–Strebel differential, we arrive at the definition
of a stable metric ribbon graph.

Hence we have seen that to any stable curve we can associate a certain piece of
combinatorial information called a stable metric ribbon graph. Unfortunately, as has
already been mentioned, it is not possible to reconstruct the original curve from this
data since the Jenkins–Strebel theory cannot be used to recover the complex structure
on the components without marked points. To this end we introduce the following
equivalence relation on Mg;n: consider two stable curves C and C 0, collapse those
components without marked points and label the resulting nodal singularities with
their arithmetic genus; then C and C 0 are equivalent if the resulting curves are bi-
holomorphic through a mapping which preserves the genus defect parameters. This
is the compactification of the moduli space defined by Kontsevich in [Ko92].

Let us denote the quotient of the Deligne–Mumford compactification by this
equivalence relation by KMg;n. Using the above procedure it is clear that we can
associate a K-stable metric ribbon graph to any point in KMg;n � �ı

n�1. Moreover,
given any K-stable metric ribbon graph, a standard gluing construction allows us to
reconstruct the point in KMg;n ��ı

n�1. This leads to an orbi-cellular decomposition
of KMg;n � �ı

n�1; two points in KMg;n � �ı
n�1 belong to the same cell if and only

if their corresponding K-stable ribbon graphs are isomorphic. We summarise this in
the following theorem, due to Kontsevich [Ko92]:

Theorem 1.2. The one-point compactification of the decorated moduli space
KMg;n��ı

n�1 is an orbi-cellular complex whose orbi-cells are indexed by K-stable
ribbon graphs (and one 0-cell for the point). An orbi-cell E lies on the boundary
of another orbi-cell E 0 if and only if the stable ribbon graph corresponding to E is
obtained from the stable ribbon graph corresponding to E 0 by contracting some of
the edges.

Remark 1.3. Of course, one must describe exactly how the edges are contracted for
a stable ribbon graph. This will be done in Section 4.

The application of the Jenkins–Strebel theory, as outlined above, can in fact be
extended to give an orbi-cellular decomposition of a compactification of the decorated
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moduli space Mg;n � �n�1. This compactification slightly generalises Kontsevich’s
original construction and was introduced by Looijenga in [Lo94].

Let C be a stable curve and let p1; : : : ; pn be a list of perimeters for the marked
points, some of which (but not all) are allowed to vanish. Again, we will use the
Jenkins–Strebel theory to associate a type of graph to this piece of information. We
begin by deleting the nodal singularities and puncturing the surface at those marked
points with vanishing perimeters. Next, we apply the Jenkins–Strebel theory to each
connected component of this surface. Of course, the caveat here is that we cannot
apply the Jenkins–Strebel theory to a component which has no marked points, or to
a component for which all of the marked points have vanishing perimeters; therefore
we collapse these components and label the corresponding nodal singularity by both
the arithmetic genus of the collapsed component and the number of marked points
that it contains. The first number is referred to as the genus defect, as before, and the
second number is referred to as the boundary defect.

Contract
unmarked and
nonpositive 
components

Extract graph

genus
defect = 0
boundary
defect = 1

genus
defect = 0
boundary
defect = 0

genus
defect = 3
boundary
defect = 1

Apply
JS theory 

p3 D 0

p4 > 0

p1 D 0

p5 > 0

p2 > 0

Figure 3. Extracting an L-stable ribbon graph from a stable curve with vanishing perimeters.

This surface has a connected graph lying embedded inside of it determined by
the critical graphs of the Jenkins–Strebel differentials. The structure of this graph
is exactly the same as before except that each vertex is decorated by an additional
parameter coming from the boundary defect. In order to distinguish these graphs
from the graphs occurring earlier in Figure 2, we will refer to them as L-stable
ribbon graphs, when the context demands it. Note that a K-stable ribbon graph is
an L-stable ribbon graph but not vice-versa.

Now let us describe what kind of moduli space we have constructed an orbi-cellular
decomposition of. Here we see that we are losing even more information than before;
we are losing not just the complex structure of those components without marked
points, but also the complex structure on those components whose marked points all
have vanishing perimeters.
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To this end we introduce the following equivalence relation on Mg;n � �n�1:
two decorated curves .C; p1; : : : ; pn/ and .C 0; p0

1; : : : ; p0
n/ are equivalent if pi D p0

i

for all i and the curves given by collapsing both the components without marked
points and those components whose marked points all have vanishing perimeters, are
biholomorphic through a mapping which preserves both the genus and the boundary
defect. We will denote the quotient of Mg;n � �n�1 by this equivalence relation by
LŒMg;n � �n�1�. We have the following theorem, due to Looijenga [Lo94]:

Theorem 1.4. The moduli space LŒMg;n ��n�1� is an orbi-cellular complex whose
orbi-cells are indexed by L-stable ribbon graphs. An orbi-cell E lies on the boundary
of another orbi-cell E 0 if and only if the stable ribbon graph corresponding to E is
obtained from the stable ribbon graph corresponding to E 0 by contracting some of
the edges.

2. Noncommutative geometry and Lie bialgebras

In this section we recall the basic framework of noncommutative symplectic geom-
etry as defined by Kontsevich in [Ko93]. After recalling how the Lie algebra of
noncommutative Hamiltonians on a symplectic vector space is defined, we introduce
a definition for the divergence of a noncommutative vector field. We then use our
definition for the divergence of a noncommutative vector field to give Kontsevich’s
Lie algebra of noncommutative Hamiltonians the extra structure of a Lie bialgebra.

2.1. Noncommutative differential geometry. We begin by recalling the definition
of noncommutative (polynomial) differential forms and the corresponding definition
of the de Rham complex. The first place we must start is the definition of noncom-
mutative 1-forms.

Definition 2.1. Let V be a vector space. The module of noncommutative 1-forms
�1.V / is defined as

�1.V / ´ T .V �/ ˝ T C.V �/:

�1.V / has the structure of a T .V �/-bimodule via the actions

a � .x ˝ y/ ´ ax ˝ y;

.x ˝ y/ � a ´ x ˝ ya � xy ˝ a

for a; x 2 T .V �/ and y 2 T C.V �/.
Let d W T .V �/ ! �1.V / be the map given by the formulae

d.x/ ´ 1 ˝ x; x 2 T C.V /;

d.x/ ´ 0; x 2 Q:

The map d thus defined is a derivation of degree zero.
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The noncommutative 1-forms are used to construct the algebra of all noncommu-
tative forms as follows:

Definition 2.2. Let V be a vector space and let A ´ T .V �/. The algebra of
noncommutative forms ��.V / is defined as

�
�

.V / ´ TAŒ…�1.V /� D A ˚
1L

iD1

…�1.V / ˝A � � � ˝A …�1.V /„ ƒ‚ …
i factors

:

Since �1.V / is an A-bimodule, ��.V / has the structure of an associative algebra
whose multiplication is the standard associative multiplication on the tensor algebra
TAŒ…�1.V /�. The map d W T .V �/ ! �1.V / lifts uniquely to a map d W ��.V / !
��.V / which gives ��.V / the structure of a differential graded algebra.

It is possible to introduce analogues of the Lie derivative and contraction operator
on the algebra of noncommutative forms, which is done as follows:

Definition 2.3. Let V be a vector space and let � W T .V �/ ! T .V �/ be a vector field.
(1) We can define a vector field L� W ��.V / ! ��.V /, called the Lie derivative,

by the formulae

L�.x/ ´ �.x/; L�.dx/ ´ .�1/j�jd.�.x//

for any x 2 T .V �/.
(2) We can define a vector field i� W ��.V / ! ��.V /, called the contraction

operator, by the formulae

i�.x/ ´ 0; i�.dx/ ´ �.x/

for any x 2 T .V �/.

It turns out that the algebra of noncommutative forms is not the right thing to
consider in the framework of noncommutative geometry. Instead, we must consider
its quotient by the submodule of commutators.

Definition 2.4. Let V be a vector space. The de Rham complex DR�

.V / is defined
as

DR�

.V / ´ ��.V /

Œ��.V /; ��.V /�
:

The differential on DR�

.V / is induced by the differential on ��.V / defined in Defi-
nition 2.2 and is similarly denoted by d .

The definition of the Lie derivative and contraction operator pass naturally to this
quotient to give Lie and contraction operators on the de Rham complex DR�

.V /. Of
course, quotienting out by the submodule of commutators means that the de Rham
complex is no longer an algebra. By an abuse of terminology, we will continue to
refer to elements of DR�

.V / as differential forms.
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2.2. Noncommutative symplectic geometry. Having now recalled the basic frame-
work of noncommutative differential geometry, we proceed to introduce the relevant
terminology for noncommutative symplectic geometry, as outlined in [Gi01], [Ko93]
and [HL07]. We start with the definition of a symplectic form and a symplectic vector
field.

Definition 2.5. Let V be a vector space and ! 2 DR2.V / be any 2-form. We say
that ! is a symplectic form if

(1) it is a closed form, that is to say that d! D 0,
(2) it is non-degenerate, that is to say that the map

DerŒT .V �/� ! DR1.V /; � 7! i�.!/; (2.1)

is bijective.

Definition 2.6. Let V be a vector space and let ! 2 DR2.V / be a symplectic form.
We say a vector field � W T .V �/ ! T .V �/ is a symplectic vector field if L�.!/ D 0.

In what follows we will only consider constant symplectic forms. A constant
2-form is a 2-form ! 2 DR2.V / which can be written in the form

! D P
i

dxidyi (2.2)

for some functions xi ; yi 2 V �.
There is a one-to-one correspondence between constant 2-forms and skew-sym-

metric bilinear forms: given any constant 2-form ! as in (2.2) we define the corre-
sponding bilinear form h�; �i by the formula

ha; bi ´ P
i

.�1/xi Œxi .a/yi .b/ � .�1/abyi .a/xi .b/�: (2.3)

Furthermore, the symplectic form ! is non-degenerate if and only if the bilinear form
h�; �i is non-degenerate.

Any non-degenerate bilinear form h�; �i on a vector space yields a non-degenerate
bilinear form h�; �i�1 on the dual space, defined by simply identifying the space
with its dual. If we assume that

x1; : : : ; xk„ ƒ‚ …
even

I �1; : : : ; �k„ ƒ‚ …
odd

2 V �

is a system of coordinates on V and that our symplectic form ! is given by the formula

! D
kP

iD1

dxid�i ;

then we have the following formula for h�; �i�1:

hxi ; �j i�1 D h�j ; xi i�1 D ıij :
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2.3. Lie algebras of noncommutative vector fields. In this section we recall how
to define a Lie algebra structure on the space of noncommutative 0-forms when the
underlying manifold is equipped with a symplectic form. In what follows, we assume
that our symplectic form is odd, although an analogous treatment applies when our
symplectic form is even.

Let .V; !/ be a symplectic vector space whose symplectic form is odd. To any 0-
form a 2 DR0.V / we can associate a certain symplectic vector field ˛ 2 DerŒT .V �/�.
This symplectic vector field is uniquely specified by the equation

da D i˛.!/: (2.4)

This correspondence allows us to define an odd Lie bracket, also known as an anti-
bracket, on the space hŒV � ´ DR0.V /.

Definition 2.7. Given a symplectic vector space .V; !/ as above, we define a bracket

f�; �gW hŒV � ˝ hŒV � ! hŒV �

of odd degree by the formula

fa; bg ´ L˛.b/:

Proposition 2.8. The bracket f�; �g on hŒV � is an odd Lie bracket, that is to say that
the bracket

Œ�; �� W …hŒV � ˝ …hŒV � ! …hŒV �

given by the formula … B Œ�; �� D f�; �g B .… ˝ …/ is a Lie bracket.

The proof follows as a result of standard identities for the operators introduced in
Definition 2.3. The Lie algebra structure on hŒV � corresponds precisely under (2.4)
to the usual commutator bracket of symplectic vector fields.

Let a1; : : : ; anI b1; : : : ; bm 2 V � be linear functions. An explicit formula for the
Lie bracket f�; �g is

fa1 : : : an; b1 : : : bmg D
nP

iD1

mP
j D1

.�1/phai ; bj i�1

� .zi�1
n�1 � Œa1 : : : Oai : : : an�/.z

j �1
m�1 � Œb1 : : : Obj : : : bm�/;

(2.5)

where zk denotes the permutation .k k � 1 : : : 2 1/ and

p ´ jai j.ja1j C � � � C jai�1j/ C jbj j.ja1j C � � � C janj C jb1j C � � � C jbj �1j/:
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2.4. A Lie bialgebra structure on the space of noncommutative 0-forms. In this
section we give a definition for the divergence of a noncommutative vector field and
use this to construct a Lie cobracket on the space of noncommutative 0-forms on a
symplectic vector space. We show that combining this structure with the Lie algebra
structure described in the last section gives the space of 0-forms the structure of an
involutive Lie bialgebra.

Our definition for the divergence of a noncommutative vector field has a slightly
curious appearance as it lands in the second tensor power of 0-forms, instead of
landing in 0-forms as is usual in commutative geometry. Nevertheless, it does lift the
ordinary definition for the divergence of a commutative vector field and satisfies an
important identity which is the analogue of the classical formula for the divergence
of a commutator of two vector fields.

Definition2.9. Let V be a finite-dimensional vector space with coordinates x1; : : : ; xn

and let f1; : : : ; fk 2 V � be linear functions. We define the divergence of the vector
field � ´ .f1 : : : fk/@xi

by the formula

r.�/ ´
kP

iD1

.�1/xi .fi C���Cfk/@xi
.fi / � Œ.f1 : : : fi�1/ ˝ .fiC1 : : : fk/�: (2.6)

By extending (2.6) linearly, we arrive at the definition for the divergence

r W DerŒT .V �/� ! DR0.V / ˝ DR0.V /:

It is easy to see that the above definition of divergence is independent of the choice
of coordinates. It satisfies the following formula for the commutator of two vector
fields:

Lemma 2.10. Let V be a finite-dimensional vector space and �; � 2 DerŒT .V �/� be
vector fields. Then

r.Œ�; ��/ D .L� ˝ 1 C 1 ˝ L�/Œr.�/� � .�1/�� .L� ˝ 1 C 1 ˝ L� /Œr.�/�:

Proof. The proof follows by direct calculation.

In particular, this formula guarantees that the subspace of noncommutative vector
fields with vanishing divergence forms a Lie subalgebra of DerŒT .V �/�. It also
corresponds to the compatibility condition between the Lie bracket on 0-forms and
the Lie cobracket on 0-forms, which we will define next. First of all, however, let us
recall the definition of an involutive Lie bialgebra.

Definition 2.11. A Lie bialgebra is a vector space g together with the structures of a
Lie bracket

Œ�; �� W g ˝ g ! g
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and a Lie cobracket
� W g ! g ˝ g

such that the following compatibility condition is satisfied:

�.Œx; y�/ D Œx; �.y/� � .�1/xy Œy; �.x/�: (2.7)

Furthermore, we say that g is an involutive Lie bialgebra if the following additional
condition is satisfied:

Œ�; �� B � D 0: (2.8)

Remark 2.12. Note that for x; y; z 2 g we define

Œx; y ˝ z� ´ Œx; y� ˝ z C .�1/xyy ˝ Œx; z�:

Now we use our definition for the divergence of a noncommutative vector field to
define an involutive Lie bialgebra structure on the space of 0-forms on a symplectic
vector space.

Definition 2.13. Let .V; !/ be a symplectic vector space whose symplectic form is
odd. We define a diagonal � on hŒV � ´ DR0.V / of odd degree by the commutative
diagram

hŒV �
� ��

a 7!˛

������������
hŒV � ˝ hŒV �

DerŒT .V �/�,

1
2 r

��������������

where the map in the lower left corner is that defined by equation (2.4).

Proposition 2.14. The diagonal � on hŒV �, together with the bracket f�; �g on hŒV �

described in Definition 2.7 give hŒV � (or, more precisely, its parity reversion …hŒV �)
the structure of an involutive Lie bialgebra.

Proof. An explicit formula for the cobracket � is given by the following: let a1, …,
an 2 V � be linear functions, then

�.a1 : : : an/ D 1
2

P
i<j

.�1/phai ; aj i�1Œ1 C .1 2/�

� Œ.aiC1 : : : aj �1/ ˝ .aj C1 : : : ana1 : : : ai�1/�;

(2.9)

where

p ´jai j.ja1j C � � � C jai j/ C jaj j.ja1j C � � � C jaj j/
C .ja1j C � � � C jai�1j/.jaiC1j C � � � C jaj �1j C jaj C1j C � � � C janj/:

Using this formula, one can verify directly both the coJacobi identity and the involu-
tivity condition. The compatibility condition between the bracket and the cobracket
follows as a direct consequence of Lemma 2.10.
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Remark 2.15. Note that the cobracket � given in the form of equation (2.9) appears
in the work of Movshev [Mv99] and Schedler [Sc05]; see also [Fu07].

3. A two-parameter family of differential graded Lie algebras

In this section we will use the framework of noncommutative geometry defined in
the previous section to construct a two-parameter family of differential graded Lie
algebras. This two-parameter family will be the central object of the main theorem
formulated in Section 5.

3.1. The Chevalley–Eilenberg complex. In this section we recall the definition
of the Chevalley–Eilenberg complex of a differential graded Lie algebra as well as
some of its basic properties. In this paper, we will only be interested in Lie algebras
equipped with an antibracket; that is to say that we assume that the Lie bracket is a
map of odd degree.

Definition 3.1. Let g be a differential graded Lie algebra whose bracket is an odd
map. The Chevalley–Eilenberg complex of g, denoted by C�.g/, is the complex
whose underlying vector space is the symmetric algebra on g:

C�.g/ ´ S.g/ D
1L

nD0

.g˝n/Sn
:

The differential ı W C�.g/ ! C�.g/ is defined by the formula

ı.g1 : : : gn/ ´ P
1�i<j �n

.�1/pfgi ; gj g � g1 : : : Ogi : : : Ogj : : : gn

C P
1�i�n

.�1/qd.gi / � g1 : : : Ogi : : : gn;

where

p ´jgi j.jg1j C � � � C jgi�1j/ C jgj j.jg1j C � � � C jgj �1j/ C jgi jjgj j;
q ´jgi j.jg1j C � � � C jgi�1j/;

and d is the differential on g. The homology of this complex is known as the
Chevalley–Eilenberg homology of the differential graded Lie algebra g and is de-
noted by H�.g/.

In fact the Chevalley–Eilenberg complex has much more structure than simply
that of a complex. It has a commutative multiplication

� � �W C�.g/ ˝ C�.g/ ! C�.g/
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coming from the canonical multiplication in the symmetric algebra and we can also
equip it with an odd bracket

f�; �gW C�.g/ ˝ C�.g/ ! C�.g/

by simply extending the bracket on g according to the Leibniz rule. This bracket is
given by the formula

fg1 : : : gn; h1 : : : hmg D
nP

iD1

mP
j D1

.�1/pfgi ; hj g � g1 : : : Ogi : : : gn � h1 : : : Ohj : : : hm;

(3.1)
where

p ´ jgi j.jg1 C� � �Cjgi�1j/Cjhj j.jg1jC� � �CjgnjCjh1jC� � �Cjhj �1j/Cjgi jjhj j:
The appropriate terminology for this type of algebraic structure is a Batalin–Vilkovisky
algebra, whose definition we will now recall.

Definition 3.2. A Batalin–Vilkovisky algebra is a vector space W equipped with:

(1) a differential d W W ! W ,

(2) a commutative product � � �W W ˝ W ! W of even degree, and

(3) a Lie bracket f�; �gW W ˝ W ! W of odd degree.

These structures must satisfy the following axioms:

(a) The bracket and product must satisfy the Leibniz rule; that is to say that

fa; b � cg D fa; bg � c C .�1/.aC1/bb � fa; cg:
for all a; b; c 2 W .

(b) The differential should be a derivation of the Lie bracket; that is to say that

d.fa; bg/ C fd.a/; bg C .�1/afa; d.b/g D 0:

for all a; b 2 W .

(c) For all a; b 2 W ,

d.a � b/ D d.a/ � b C .�1/aa � d.b/ C fa; bg:
In fact, the second axiom is a consequence of the third axiom. It is a standard

fact, which can be verified directly, that the Chevalley–Eilenberg complex with the
algebraic structures defined above is a Batalin–Vilkovisky algebra; in particular, it is
a differential graded Lie algebra.

In Section 5, we will need to consider a minor variant of Chevalley–Eilenberg
homology known as relative Chevalley–Eilenberg homology. We now recall its def-
inition.
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Definition 3.3. Let g be any differential graded Lie algebra and let h � g be an
arbitrary differential graded Lie subalgebra. Note that h acts on S.g=h/ canonically,
as g=h is an h-module. The relative Chevalley–Eilenberg complex C�.gI h/ is given
by taking the coinvariants of this action:

C�.gI h/ ´ S.g=h/h:

One can check that the differential ı on C�.g/ induces a well-defined differential on
C�.gI h/, also denoted by ı. The homology of this complex is called the relative
Chevalley–Eilenberg homology of g modulo h and is denoted by H�.gI h/.

3.2. Construction of the two-parameter family. In this section we construct the
two-parameter family of differential graded Lie algebras that will play the central
role in the main theorem of Section 5. Here we exploit a standard construction
which produces a differential graded Lie algebra from any involutive Lie bialgebra.
We apply this construction to the involutive Lie bialgebra structure we defined in
Section 2 on the space of 0-forms on a symplectic vector space.

We begin by recalling the details of this construction. Let .V; !/ be a symplec-
tic vector space whose symplectic form is odd and let h ´ hŒV � be the involu-
tive Lie bialgebra of Proposition 2.14. Consider the Chevalley–Eilenberg complex
.C�.h/; ı/. We know from the results of the previous section that C�.h/ is a differen-
tial graded Lie algebra. There is a way to include the Lie bialgebra structure on h in
the Chevalley–Eilenberg complex C�.h/ such that the Chevalley–Eilenberg complex
retains the structure of a differential graded Lie algebra. We can define a map

� W C�.h/ ! C�.h/

from the Lie cobracket � W h ! h ˝ h by simply extending the cobracket using the
Leibniz rule:

�.h1 : : : hn/ ´
nP

iD1

.�1/p�.hi / � h1 : : : Ohi : : : hn;

where p ´ jhi j.jh1j C � � � C jhi�1j/.
Now we tensor the Chevalley–Eilenberg complex C�.h/ with the free polynomial

algebra in one generator � and equip it with a deformed differential:

Lemma 3.4. For any symplectic vector space .V; !/, the tensor product of the
Chevalley–Eilenberg complex of h ´ hŒV � with the free polynomial algebra in
one variable �

l ´ QŒ�� ˝ C�.h/

is a differential gradedLie algebrawhenwe equip itwith the differentiald ´ � �ıC�.

Proof. The Lie bracket on the Chevalley–Eilenberg complex of h extends naturally
to l as a trivial deformation. We already know that ı is a derivation of this Lie bracket;
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that � is also a derivation follows from the compatibility condition (2.7) between the
bracket and the cobracket on h.

Next we show that d 2 D 0. Since we already know that ı2 D 0 and since the
condition �2 D 0 follows from the coJacobi identity, this is equivalent to Œı; �� D 0.
The compatibility condition (2.7) between the bracket and cobracket ensures that
Œı; �� is a derivation of the commutative product and the involutivity constraint (2.8)
guarantees that it is zero on the generators and hence zero everywhere.

Recall that the underlying vector space of h is

DR0.V / ´
1L

iD0

.ŒV ��˝i /Z=iZ:

Let us introduce the notation h�n for the subspace of 0-forms of order � n,

h�n ´
1L

iDn

.ŒV ��˝i /Z=iZ:

With this notation the Lie algebra h splits as a vector space,

h D Q ˚ h�1I
hence we see that the differential graded Lie algebra l is really a two-parameter
deformation

l D QŒ�� ˝ S.h/ D QŒ�; �� ˝ S.h�1/

by identifying the symmetric algebra on the field Q with the free polynomial algebra
in one generator �. One can check that the differential and the Lie bracket are actually
QŒ�; ��-linear, which follows as a simple consequence of the definitions.

Now for our purposes, this differential graded Lie algebra is not exactly what we
want, hence we must embark on a technical description as to how it is to be altered.
We need to modify it by cutting out some of the low order terms. Note that this issue
also arises in Kontsevich’s original paper [Ko93], although there it is technically
much more straightforward to deal with. The main problem is that the vertices of a
stable ribbon graph which consist of only one cycle and have vanishing genus and
boundary defect must be at least trivalent.

We begin by noting that l splits as a vector space

l D QŒ�; �� ˚ �
QŒ�; �� ˝ � 1L

iD1

Œ.h�1/˝i �Si

��
:

Observing that the left-hand summand QŒ�; �� is a trivial ideal in our differential
graded Lie algebra, we see that

l0 ´ QŒ�; �� ˝ � 1L
iD1

Œ.h�1/˝i �Si

�
(3.2)
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inherits the structure of a differential graded Lie algebra when we quotient out l by
this ideal.

The differential graded Lie algebra that we are looking for sits inside (3.2) as a
differential graded Lie subalgebra. Note again that h�1 splits as a vector space

h�1 D V � ˚ h�2:

Let QCŒ�; �� denote the ideal of QŒ�; �� consisting of polynomials which vanish at
the origin, so that QŒ�; �� splits as

QŒ�; �� D Q ˚ QCŒ�; ��:

Hence, (3.2) splits as a sum of vector spaces:

l0 D V � ˚ .QCŒ�; �� ˝ V �/ ˚ .QŒ�; �� ˝ h�2/ ˚ �
QŒ�; �� ˝ � 1L

iD2

Œ.h�1/˝i �Si

��
:

If we throw away the leftmost summand V � then we arrive at the desired definition
for our differential graded Lie algebra:

Theorem 3.5. Let .V; !/ be a symplectic vector space whose symplectic form is odd.
Then

ƒ�;� ŒV � ´ .QCŒ�; �� ˝ V �/ ˚ .QŒ�; �� ˝ h�2/

˚ �
QŒ�; �� ˝ � 1L

iD2

Œ.h�1/˝i �Si

��

is a differential graded Lie algebra, whose differential is the one induced by the
deformed differential d ´ � � ı C �.

Proof. It is simple to check that ƒ�;� ŒV � is a differential graded Lie subalgebra of
(3.2).

Remark 3.6. Now suppose that the vector space V has dimension njn and consider
the Lie algebra h�2. The subspace S2.V �/ � h�2 of strictly quadratic Hamiltonians
forms a Lie subalgebra which can be identified with the Lie algebra peŒQnjn� of linear
endomorphisms of V which preserve the bilinear form associated to the symplectic
form ! by (2.3). This Lie algebra also sits inside ƒ�;� as a differential graded
Lie subalgebra with trivial differential, simply by choosing the inclusion S2.V �/ �
h�2 � ƒ�;� corresponding to the summand Q � QŒ�; �� (note that h�2 is not itself
a differential graded Lie subalgebra of ƒ�;� , only S2.V �/). The Lie subalgebra
peŒQnjn� and its invariant theory will play an important role in the proof of the main
theorem in Section 5.
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3.3. A diagram of differential graded Lie algebras. Since the differential graded
Lie algebra that we defined in Theorem 3.5 is a two-parameter deformation, we may
consider the family of differential graded Lie algebras defined by choosing specific
values in Q for these deformation parameters; in particular, we may consider the
differential graded Lie algebras defined by setting one or both of these deformation
parameters to be zero.

More precisely, given a symplectic vector space .V; !/, there exists the unique
structure of a differential graded Lie algebra on the spaces

ƒ� ŒV � ´.QCŒ�� ˝ V �/ ˚ .QŒ�� ˝ h�2/ ˚ �
QŒ�� ˝ � 1L

iD2

Œ.h�1/˝i �Si

��
;

ƒŒV � ´h�2 ˚ � 1L
iD2

Œ.h�1/˝i �Si

�

such that the maps in the diagram

ƒ�;� ŒV �
�D0���! ƒ� ŒV �

�D0���! ƒŒV �

given by setting the deformation parameters to zero are morphisms of differential
graded Lie algebras.

Now consider the canonical projection

	 W ƒŒV � ! h�2ŒV �

from ƒŒV � to the Lie algebra h�2ŒV � of Hamiltonians of quadratic and higher order.
One can check that this projection is a morphism of differential graded Lie algebras,
where h�2ŒV � is equipped with the trivial differential. Let us introduce the notation
gŒV � for the Lie algebra h�2ŒV �. Combining the map 	 with the morphism that was
defined above by setting the deformation parameter � to equal zero, we arrive at the
following important diagram of differential graded Lie algebras:

ƒ�;� ŒV � �! ƒ� ŒV � �! gŒV �: (3.3)

Remark 3.7. The differential graded Lie algebra ƒ� ŒV � should coincide with the
differential graded Lie algebra constructed in [Ba06].

Recall from Remark 3.6 that the Lie algebra peŒQnjn� sits inside each one of these
differential graded Lie algebras as a subalgebra. A simple check reveals that the
above diagram respects these embeddings of peŒQnjn�. The geometric interpretation
of diagram (3.3) in terms of moduli spaces of Riemann surfaces will be explained in
Section 5.
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4. The stable ribbon graph complexes

In this section we give precise definitions for the complexes of L and K-stable ribbon
graphs. The main point is to provide a precise description of what happens to the
graph of nonclosed horizontal trajectories of a Jenkins–Strebel differential when the
length of one of its edges tends to zero in the corresponding metric. The presentation
provided here is mainly based on the accounts given by [Mo04] and [Zv03].

4.1. Stable ribbon graphs. We begin with the formal definition of an (oriented)
stable ribbon graph.

Definition 4.1. An L-stable ribbon graph is a set 
 called the set of half-edges
together with the following data:

(1) A partition of 
 into pairs, denoted by E.
/, called the set of edges of 
 .

(2) A partition of 
 , denoted by V.
/, called the set of vertices of 
 . We will refer
to the cardinality of a vertex v 2 V.
/ as the valency of v.

(3) For every vertex v 2 V.
/, a further partition C.v/ of v called the cycles of
v. Furthermore, we require that every cycle c 2 C.v/ is endowed with a cyclic
ordering of its elements.

(4) For every vertex v 2 V.
/, a pair of nonnegative integers g.v/ and n.v/, called
the genus defect and boundary defect respectively. Furthermore, if both g.v/

and n.v/ are equal to zero and C.v/ consists of a single cycle, then we impose
the additional requirement that the vertex v be at least trivalent.

(5) An ordering of the edges of 
 modulo the action of the group of even permuta-
tions of the edges. This part of the data is called the orientation on 
 .

Definition 4.2. A K-stable ribbon graph is an L-stable ribbon graph for which the
boundary defect at each vertex vanishes.

Remark 4.3. Note that stable ribbon graphs are not ribbon graphs because only the
cycles of a vertex carry a cyclic ordering and not the vertex itself; however, if we
consider only those stable ribbon graphs for which every vertex has just a single cycle
and for which both the genus and boundary defect are equal to zero, then we recover
the usual definition of a ribbon graph.

There is a fairly obvious notion of isomorphism for stable ribbon graphs. Two
stable ribbon graphs are isomorphic if there is a bijective mapping between their set
of half-edges preserving the structures defined by items (1)–(5) of Definition 4.1.

To any stable ribbon graph 
 we can associate permutations �0, �1, �1: 
 ! 


defined as follows:

(1) �1 is defined as the fixed point free involution whose 2-cycles are the edges of 
 ,
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(2) �0 is defined as the permutation whose cycles are the cycles of the graph 
 ,

(3) �1 ´ ��1
0 �1.

The cycles of the permutation �1 are called the perimeters of the stable ribbon
graph. This is because they trace out the set of nonclosed horizontal trajectories
surrounding a given marked point on a Riemann surface; hence, the perimeters of a
stable ribbon graph are in one-to-one correspondence with the set of marked points
on the corresponding Riemann surface which have nonvanishing perimeters.

We need to pay special attention to those perimeters which are constituted of
a single edge or loop. This is because the contraction of such an edge or loop
corresponds to shrinking the length of this perimeter to zero, for which there are
special combinatorial rules. A set of representative examples is provided by the
following figures.

(a) (b)

(c) (d)

Figure 4. Edges and loops completely surrounding a marked point.

We now describe the various combinatorial rules for contracting edges in a stable
ribbon graph. They describe how the graph of nonclosed horizontal trajectories of a
Jenkins–Strebel differential changes as we shrink the length of one of its edges.

Definition 4.4. Let 
 be an oriented stable ribbon graph and let e 2 E.
/ be an edge.
We define the graph 
=e to be the graph obtained by contracting this edge according
to the following rules:

(1) Suppose that e is not a loop, in which case it joins distinct vertices v1; v2 2 V.
/.
These vertices are partitioned into cycles, so the endpoints of e lie in distinct
cycles c1 � v1 and c2 � v2. When the length of the edge e shrinks to zero,
the vertices v1 and v2 become joined, and the cycles c1 and c2 coalesce to form
a new cycle with a naturally defined cyclic ordering. The genus and boundary
defects for the vertices v1 and v2 are added to give the defects for the new vertex
made from joining v1 and v2. The orientation is defined in an obvious way. All
the other combinatorial structures elsewhere on the graph are left alone.

Note that when both c1 and c2 each consist of a single half-edge (cf. Figure 4 (a)),
c1 and c2 do not coalesce, but instead vanish and the boundary defect at the new
vertex is defined to be the sum of the boundary defects of v1 and v2 plus one. If,



178 A. Hamilton

contract
edge

p1 D 0

c1

p2 > 0

e

p3 > 0

c2

p1 D 0

p3 > 0

p2 > 0

Figure 5. Contracting an edge in a stable ribbon graph.

furthermore, c1 and c2 are the only cycles of v1 and v2, then the edge e cannot
be contracted.

(2) Now suppose that e is a loop, in which case both its endpoints lie in a single
vertex v. Suppose furthermore, that they join distinct cycles c1; c2 � v. As the
length of the loop e tends to zero, these cycles coalesce to form a single cycle as
before. In so doing, a nonseparating double-point is formed on the topological
surface corresponding to the vertex v, hence the genus defect of v increases by
one. No other combinatorial structures are changed.

contract
loope

c1

c2

Figure 6. Contracting a loop joining two distinct cycles.

As before, care must be taken when both c1 and c2 consist of a single half-edge
(cf. Figure 4 (b)). In this case c1 and c2 are annihilated and both the genus and
the boundary defect are increased by one.

(3) Finally, suppose that e is again a loop, but that now both of its endpoints lie
in the same cycle c contained in some vertex v. Shrinking the length of this
loop pinches the surface and a double-point is formed. The cycle c splits up
into two cycles c1 and c2, with naturally defined cyclic orderings. All the other
combinatorial structures remain unchanged.

contract
loope c1 c2

Figure 7. Contracting a loop which joins a cycle to itself.

Again, care must be taken with this definition when the endpoints of e lie next to
each other in the cyclic ordering (cf. Figure 4 (c)). In this case, the cycle c does
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not split up, but the boundary defect is increased by one. Furthermore, if the
cycle c consists of just the two half-edges of e (cf. Figure 4 (d)), then the cycle
c is annihilated and the boundary defect actually increases by two. Finally, if
in the lattermost situation the vertex has no other cycles than c, then the loop e

cannot actually be contracted at all.

4.2. The stable ribbon graph complexes. In this section we will describe various
complexes constructed from the stable ribbon graphs described in the preceding sec-
tion which form the complex of orbi-cellular chains on moduli spaces of Riemann
surfaces. We begin with their definition.

Definition 4.5. The L-stable ribbon graph complex1 LG� is the complex whose
underlying vector space is freely generated by isomorphism classes of oriented L-
stable ribbon graphs, modulo the relation that reversing the orientation on a stable
ribbon graph is equivalent to multiplying by .�1/. The differential @ is given by
summing over all possible contractions of the edges:

@.
/ ´
X

e2E.�/


=e:

Note that some edges cannot be contracted, in which case the corresponding term in
the sum is defined to be zero. The grading on this complex is given by counting the
number of edges. The homology of this complex will be denoted by H�LG .

Note that this complex has a natural subspace (not a subcomplex) generated by
K-stable ribbon graphs.

Definition 4.6. We define the complex KG� to be the complex which is generated by
K-stable ribbon graphs and whose differential is uniquely defined by the requirement
that the natural projection

LG� ! KG� (4.1)

is a morphism of complexes. Its homology will be denoted by H�KG .

Furthermore, this complex has a natural subspace (again, not a subcomplex) which
is generated by those stable ribbon graphs for which the boundary defect and the genus
defect vanishes at every vertex and such that every vertex is partitioned into just one
cycle. In fact, these graphs are just ribbon graphs, hence we make the following
definition:

Definition 4.7. We define the complex G� to be the complex which is generated by
ribbon graphs and whose differential is uniquely defined by the requirement that the
natural projection

KG� ! G� (4.2)
1Note that in [CL07] the terminology ‘prestable ribbon graph complex’ was used for LG� and the term

‘stable ribbon graph complex’ was used for KG�.
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be a morphism of complexes. We call this object the ribbon graph complex. Its
homology will be denoted by H�G .

Note that all three complexes have a natural commutative multiplication given by
taking the disjoint union of graphs. Since any graph can be uniquely decomposed
into its connected components, it follows that these complexes are freely generated,
as algebras, by connected graphs; hence they have the canonical structure of differ-
ential graded commutative cocommutative Hopf algebras in which the subcomplex
generated by connected graphs coincides with the subspace of primitive elements
of the Hopf algebra structure. We will denote the homology of this subcomplex by
adjoining the prefix P .

We can now formulate the fundamental theorem; which follows from the work of
Harer [Ha86], Mumford, Penner [Pe87], Thurston, Kontsevich [Ko92] and Looijenga
[Lo94]; that describes the relationship between these complexes and moduli spaces
of Riemann surfaces. For a given locally compact topological space X , let us denote
the one-point compactification of this space by X1. We begin by collecting all the
moduli spaces of different genera and with varying numbers of marked points into
one object by making the following definitions:

M�t ´
G
n�1

g>1�
n
2

ŒMg;n � �ı
n�1�1=Sn;

KM�
t ´

G
n�1

g>1�
n
2

ŒKMg;n � �ı
n�1�1=Sn;

LM�
t ´

G
n�1

g>1�
n
2

LŒMg;n � �n�1�=Sn;

where the symmetric group Sn acts naturally on these moduli spaces by the diagonal
action which permutes the labels of the marked points and the barycentric coordinates
of �n�1.

Theorem 4.8. For all k � 1 there exists the following commutative diagram

HkLM�
t �� HkKM�

t �� HkM�t

PHkLG �� PHkKG �� PHkG .

Proof. The vertical isomorphisms are just the formal expressions of theorems 1.1, 1.2
and 1.4 that the subcomplexes of LG�, KG� and G� generated by connected graphs
are precisely the complex of orbi-cellular chains on the corresponding moduli spaces
and hence compute the homology of these moduli spaces. The lower horizontal maps
are just those induced by (4.1) and (4.2).
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The top left horizontal map is the morphism which is induced by the mapping

Mg;n � �n�1 ! ŒKMg;n � �ı
n�1�1

which sends any point in Mg;n � @�n�1 to the point at infinity.
Likewise the top right horizontal map is induced by the mapping

ŒMg;n � �ı
n�1�1 ! ŒMg;n � �ı

n�1�1;

which maps every point in Œ@Mg;n � �ı
n�1�1 to the point at infinity.

Remark 4.9. Note that standard arguments from algebraic topology allow one
to relate the homology of the one-point compactification of the moduli space
ŒMg;n � �ı

n�1�=Sn to the homology of the one-point compactification of Mg;n.
Briefly, since the one-point compactification of a cartesian product of two spaces is
the smash product of the one-point compactifications of each individual space, the
corresponding long exact sequence in homology, which obviously splits, shows that
the homology of the one-point compactification of Mg;n ��ı

n�1 is just a n�1-shifted
copy of H�Mg;n. Since we are working rationally, taking Sn-coinvariants commutes
with homology. A similar argument applies to KMg;n � �ı

n�1. Note that since
LŒMg;n � �n�1� is not fibered over the moduli space, no such analogue holds for
this space.

Remark 4.10. Given any Riemann surface we can recover the number of marked
points n and the arithmetic genus g of this Riemann surface from its (stable) ribbon
graph 
 using the formulae

n D np C P
v2V.�/

n.v/;

g D 1 � jV.
/j C 1
2
.jE.
/j C jC.
/j � np/ C P

v2V.�/

g.v/;

where np is the number of perimeters of 
 , jC.
/j is the total number of cycles of 


and n.v/ and g.v/ denote the boundary and genus defect respectively.
It follows from this fact that the graph complexes LG�, KG� and G� all split as

a sum of graph complexes which each have a fixed genera and number of marked
points, hence we can equate the homology of each individual summand directly to
the homology of the corresponding moduli space having the same genera and number
of marked points. However, collecting all these spaces into one object will allow us
to provide a convenient formulation of our main theorem in the next section.

5. The main theorem

In this section we formulate and prove our main theorem which states that the homol-
ogy of the moduli space LŒMg;n ��n�1� is identical to the (stable) relative homology
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of the differential graded Lie algebra defined by Theorem 3.5. We then relate the di-
agram of differential graded Lie algebras defined by (3.3) to the natural maps on
the moduli spaces of Riemann surfaces given by collapsing orbi-cells lying on the
boundary to a point. We remind the reader that we always work over Q; in particular
we view all our differential graded Lie algebras as Q-vector spaces, notwithstanding
the fact that they may be naturally defined over larger polynomial rings.

A necessary ingredient in the proof of the main theorem will be the invariant
theory for the Lie algebra peŒQnjn� of linear symplectic vector fields, therefore we
begin by recalling the results of [Se01].

Definition 5.1. A chord diagram is a partition of the set f1; : : : ; 2kg into pairs. For
a given positive integer k, we denote the set of all such chord diagrams by C.k/.

Definition 5.2. Let .V; !/ be a symplectic vector space. For any chord diagram

c ´ fi1; j1g; : : : ; fik; jkg (5.1)

we can define a linear map
!c W V ˝2k ! Q

by the formula

!c.x1 ˝ � � � ˝ x2k/ ´ .�1/phxi1 ; xj1
i : : : hxik ; xjk

i;
where .�1/p is the sign coming from the Koszul sign rule for the permutation

x1; x2; : : : ; x2k�1; x2k 7! xi1 ; xj1
; : : : ; xik ; xjk

:

Note that since the inner product is odd, this sign depends on how the pairs in
(5.1) are ordered. We can get around this issue by assuming that i1 < i2 < � � � < ik .
These maps !c are invariant under the action of the Lie algebra peŒV �. In fact the
following theorem due to Sergeev [Se01] tells us that they form a basis for all the
invariants.

Theorem 5.3. Let .V; !/ be a symplectic vector space of dimension njn.
(1) The set

f!c W V ˝2k ! QI c 2 C.k/g
forms a basis for the space of peŒV �-invariant linear functions on V ˝2k , provided
that n � k.

(2) The dimension of the space of peŒV �-invariant linear functions on V ˝2k�1 is
zero for all k.

For every positive integer n there is a canonical symplectic vector space

Qnjn ´ hx1; : : : ; xn„ ƒ‚ …
even

I �1; : : : ; �n„ ƒ‚ …
odd

i
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with symplectic form

! ´
nP

iD1

dxid�i

to which any other symplectic vector space of the same dimension is isomorphic.
Let us define new differential graded Lie algebras by taking the stable limit of

those defined in Section 3:

ƒ�;� ´ lim�!
n

Œƒ�;� ŒQnjn��;

ƒ� ´ lim�!
n

Œƒ� ŒQnjn��;

g ´ lim�!
n

ŒgŒQnjn��;

pe ´ lim�!
n

ŒpeŒQnjn��:

Remark 5.4. The (relative mod pe) Chevalley–Eilenberg complex of the Lie algebra
g has a natural commutative multiplication induced by the morphism of Lie algebras

gŒQnjn� ˚ gŒQmjm� ! gŒQnCmjnCm�:

Combining this with the usual diagonal on this complex yields the structure of a
commutative cocommutative Hopf algebra. Precisely the same remarks apply to the
(relative) Chevalley–Eilenberg complexes of the differential graded Lie algebras ƒ�;�

and ƒ� .

Now we introduce a map which formally resembles Wick’s formula for integrating
with respect to a Gaussian measure.

Definition 5.5. We define a map

I W C�.ƒ�;� I pe/ ! LG�

as follows. A typical element x of C�.ƒ�;� I pe/ is represented by a product

x ´ x1 � x2 : : : xm

of elements xi 2 ƒ�;� ŒQd jd �, for some d > 0. In turn every element xi is represented
by a product

xi ´ �gi �ni � yi
1 � yi

2 : : : yi
ki

of elements yi
j 2 h�ŒQd jd � and powers of the deformation parameters � and �.

Finally, each element yi
j is represented by a product

yi
j ´ zi

j1 � zi
j 2 : : : zi

jlij
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of elements zi
jr 2 .Qd jd /�. Hence the total number of tensors we have is the sum of

the lij . If the total number of tensors are odd then we define I.x/ to be zero, hence
we assume that

P
i;j lij D 2M is even.

Now, for each chord diagram

c ´ fi1; j1g; : : : ; fiM ; jM g
there is an obvious way to construct a corresponding graph. Namely, we take a graph
having m vertices and partition the i th vertex into ki cycles, such that the j th cycle
has valency lij . We set the genus defect at this vertex to be gi and the boundary defect
to be ni . The chord diagram c provides a way to pair up the half-edges of the graph.
The orientation can be defined canonically by assuming that i1 < � � � < iM . Let us
denote this graph by 
c .

Finally, the map I is defined by the formula

I.x/ ´ P
c2C.M/

!c.x/
c :

That is to say that the coefficient of a graph 
 is determined by first placing the
tensors xi at the vertices of 
 , with the subtensors yi

j placed on the cycles of that
vertex using the cyclic ordering, then contracting these tensors by applying the inner
product h�; �i�1 to each edge.

The map I can obviously be restricted to the subspaces (not subcomplexes)
C�.ƒ� I pe/ and C�.gI pe/. This leads to the commutative diagram

LG�
�� KG�

�� G�

C�.ƒ�;� I pe/ ��

I

��

C�.ƒ� I pe/ ��

I

��

C�.gI pe/,

I

�� (5.2)

where the top horizontal maps are those defined by (4.1) and (4.2) and the bottom
horizontal maps are those defined by diagram (3.3).

Now we are ready to formulate the main theorem.

Theorem 5.6. The vertical maps of diagram (5.2) are isomorphisms of differential
graded Hopf algebras.

We have as an immediate corollary:

Corollary 5.7. Combining Theorem 4.8 with Theorem 5.6 yields the following com-
mutative diagram for all k � 1 relating the primitive homology of the differential
graded Lie algebras defined in Section 3.2 to the homology of the compactifications
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of the moduli space defined in Section 1.3:

HkLM�
t �� HkKM�

t �� HkM�t

PHk.ƒ�;� I pe/ ��

I

��

PHk.ƒ� I pe/ ��

I

��

PHk.gI pe/.

I

��

Remark 5.8. It is in fact possible to consider other compactifications of the moduli
space of curves fitting into the above diagram which correspond to setting one or both
of the deformation parameters � and � to zero. However, in order to avoid unduly
complicating the exposition of this paper, this perspective will not be pursued.

Remark 5.9. It is very likely that Theorem 5.6 could be generalised to the setting
of an arbitrary modular operad. Given any modular operad, one can associate to it a
certain graph complex by decorating the vertices of the graphs by this modular operad.
One should also be able to associate a differential graded Lie algebra to this modular
operad which recovers the homology of this graph complex. For a treatment of graph
complexes from the perspective of modular operads, the reader may consult [CL07].

Proof of Theorem 5.6. First we explain why the vertical maps I must be bijective.
This is just a direct application of Theorem 5.3 which describes the invariants of
the Lie algebra peŒQnjn�. We can construct an explicit inverse to I as follows. To
each graph 
 we define a certain tensor x� in the Chevalley–Eilenberg complex
C�.ƒ�;� ŒQnjn�I peŒQnjn�/, where n is the number of edges of the graph. We do this
by decorating every edge of the graph with a pair of tensors xi , �i for i D 1; : : : ; n so
that every edge of the graph is decorated with a distinct pair of tensors. The structure
of the vertices of 
 and their cycles gives us an obvious way to interpret this object
as a tensor x� in the Chevalley–Eilenberg complex C�.ƒ�;� ŒQnjn�I peŒQnjn�/. Since
the tensors defined in this manner are just peŒQnjn�-coinvariants which are obviously
dual to the peŒQnjn�-invariants !c described in Definition 5.2, applying the map I

to the tensor x� will give us back the graph 
 . By applying Theorem 5.3, we may
assume that any tensor in C�.ƒ�;� I pe/ can be represented by one of the form x� for
some graph 
 , hence the map I is bijective.

Next, we mention that an essentially standard calculation verifies that the map I

is a map of Hopf algebras. Since the proof of this fact involves essentially the same
argument as that employed in Theorem 4.18 of [HL06], we choose not repeat it here.

Thus, it remains to check that the map I is a map of complexes. This is technically
much simpler if we assume that all our tensors have the form x� for some graph 
 ,
which we may do as a consequence of the results on the invariant theory for peŒQnjn� as
explained above. A straightforward calculation using formula (3.1) for the Lie bracket
on ƒ�;� , formula (2.5) for the Lie bracket on noncommutative 0-forms and formula
(2.9) for the Lie cobracket on 0-forms then verifies that I is a map of complexes.
Intuitively, the correspondence is clear:
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(1) The term in the differential on C�.ƒ�;� I pe/ contributed by the Lie bracket on
ƒ�;� corresponds to contracting edges of the form described in Definition 4.4 (1):

z1
32

z1
32

z1
31

z1
31

z1
21

z1
21

z1
22

z1
22

z1
23

z1
23

v

z1
11

z1
11

z1
12

z1
12

z1
14

z1
14

xi

z2
11

z2
11

z2
12

z2
12

z2
14

z2
14

�i

�

v�

Œ�; ��

z2
21

z2
21

z2
22

z2
22

Figure 8. The contribution from the bracket on ƒ�;� .

(2) The term in the differential contributed by the Lie bracket on 0-forms corre-
sponds to contracting edges of the form described in Definition 4.4 (2):

�i

xi

z1
11

z1
11

z1
13

z1
13 z1

12

z1
12

z1
22

z1
22

z1
21

z1
21

�

Œ�; ��

�2

z1
33z1

33

z1
32z1

32
z1

31z1
31

Figure 9. The contribution from the bracket on h�1.

(3) The term in the differential contributed by the Lie cobracket on 0-forms cor-
responds to contracting edges of the form described in Definition 4.4 (3):

� z1
11

z1
11

z1
12z1

12

�i

xi

z1
16

z1
16

z1
15

z1
15

z1
14

z1
14

Figure 10. The contribution from the cobracket on h�1.



Noncommutative geometry and compactifications of the moduli space of curves 187

References

[Ba06] S. Barannikov, Modular operads and Batalin-Vilkovisky geometry. Internat. Math.
Res. Notices 2007 (2007), Art. ID rnm075. Zbl 1135.18006 MR 2359547 158, 175

[CS04] M. Chas and D. Sullivan, Closed string operators in topology leading to Lie bialgebras
and higher string algebra. In The legacy of Niels Henrik Abel, Springer-Verlag, Berlin
2004, 771–784. Zbl 1068.55009 MR 2077595 159

[CL07] J. Chuang and A. Lazarev, Dual Feynman transform for modular operads. Commun.
Number Theory Phys. 1 (2007), 605–649. Zbl 1166.18003 MR 2412267 179, 185

[Fu07] 158, 170

K. Fukaya, Homological algebra for open Gromov–Witten theory. Talk at the con-
ference “Higher Structures in Geometry and Physics”, I.H.P., Paris, January 15–19,
2007. http://www.math.kyoto-u.ac.jp/~fukaya/fukaya.html

[Gi01] V. Ginzburg, Non-commutative symplectic geometry, quiver varieties, and operads.
Math. Res. Lett. 8 (2001), 377–400. Zbl 1113.17306 MR 1839485 158, 166

[GS06] V. Ginzburg and T. Schedler, Moyal quantization and stable homology of necklace
Lie algebras. Mosc. Math. J. 6 (2006), 431–459, 587. Zbl 1125.17008 MR 2274859
158

[Ha06] A. Hamilton, A super-analogue of Kontsevich’s theorem on graph homology. Lett.
Math. Phys. 76 (2006), 37–55. Zbl 1173.17020 MR 2223762

[Ha08] A. Hamilton, Classes on compactifications of the moduli space of curves through
solutions to the quantum master equation. Lett. Math. Phys. 89 (2009), 115–130.
Zbl 05636912 MR 2534879 158

[HL06] A. Hamilton and A. Lazarev, Characteristic classes of A1-algebras. J. Homotopy
Relat. Struct. 3 (2008), 65–111. MR 2395368 185

[HL07] A. Hamilton and A. Lazarev, Cohomology theories for homotopy algebras and non-
commutative geometry. Algebr. Geom. Topol. 9 (2009), 1503–1583. Zbl 05597153
MR 2530125 166

[Ha86] J. L. Harer, The virtual cohomological dimension of the mapping class group of an
orientable surface. Invent. Math. 84 (1986), 157–176. Zbl 0592.57009 MR 830043
157, 160, 180

[Je57] J. A. Jenkins, On the existence of certain general extremal metrics. Ann. of Math. (2)
66 (1957), 440–453. Zbl 0082.06301 MR 0090648 159

[Ko92] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy
function. Comm. Math. Phys. 147 (1992), 1–23. Zbl 0756.35081 MR 1171758 157,
158, 159, 162, 180

[Ko93] M. Kontsevich, Formal (non)commutative symplectic geometry. InTheGelfandMath-
ematical Seminars, 1990–1992, Birkhäuser, Boston 1993, 173–187. Zbl 0821.58018
MR 1247289 158, 159, 164, 166, 173

[Ko94] M. Kontsevich, Feynman diagrams and low-dimensional topology. In First European
Congress of Mathematics, Vol. II, Progr. Math. 120, Birkhäuser, Basel 1994, 97–121.
Zbl 0872.57001 MR 1341841 158

http://www.emis.de/MATH-item?1135.18006
http://www.ams.org/mathscinet-getitem?mr=2359547
http://www.emis.de/MATH-item?1068.55009
http://www.ams.org/mathscinet-getitem?mr=2077595
http://www.emis.de/MATH-item?1166.18003
http://www.ams.org/mathscinet-getitem?mr=2412267
http://www.math.kyoto-u.ac.jp/~fukaya/fukaya.html
http://www.emis.de/MATH-item?1113.17306
http://www.ams.org/mathscinet-getitem?mr=1839485
http://www.emis.de/MATH-item?1125.17008
http://www.ams.org/mathscinet-getitem?mr=2274859
http://www.emis.de/MATH-item?1173.17020
http://www.ams.org/mathscinet-getitem?mr=2223762
http://www.emis.de/MATH-item?05636912
http://www.ams.org/mathscinet-getitem?mr=2534879
http://www.ams.org/mathscinet-getitem?mr=2395368
http://www.emis.de/MATH-item?05597153
http://www.ams.org/mathscinet-getitem?mr=2530125
http://www.emis.de/MATH-item?0592.57009
http://www.ams.org/mathscinet-getitem?mr=830043
http://www.emis.de/MATH-item?0082.06301
http://www.ams.org/mathscinet-getitem?mr=0090648
http://www.emis.de/MATH-item?0756.35081
http://www.ams.org/mathscinet-getitem?mr=1171758
http://www.emis.de/MATH-item?0821.58018
http://www.ams.org/mathscinet-getitem?mr=1247289
http://www.emis.de/MATH-item?0872.57001
http://www.ams.org/mathscinet-getitem?mr=1341841


188 A. Hamilton

[Lo94] E. Looijenga, Cellular decompositions of compactified moduli spaces of pointed
curves. In The moduli space of curves (Texel Island, 1994), Progr. Math. 129,
Birkhäuser, Boston 1995, 369–400. Zbl 0862.14017 MR 1363063 159, 163, 164,
180

[Mo04] G. Mondello, Combinatorial classes on Mg;n are tautological. Internat. Math. Res.
Notices 2004 (2004), 2329–2390. Zbl 1069.14026 MR 2078260 159, 176

[Mv99] M. V. Movshev, Fukaya category with curves of higher genus. Preprint 1999.
arXiv:math.SG/9911123. 158, 170

[Pe87] R. C. Penner, The decorated Teichmüller space of punctured surfaces. Comm. Math.
Phys. 113 (1987), 299–339. Zbl 0642.32012 MR 919235 157, 160, 180

[Sc05] T. Schedler, A Hopf algebra quantizing a necklace Lie algebra canonically associ-
ated to a quiver. Internat. Math. Res. Notices 2005 (2005), 725–760. Zbl 1079.16028
MR 2146606 158, 170

[Se01] A. Sergeev, An analog of the classical invariant theory for Lie superalgebras, I, II.
Michigan Math. J. 49 (2001), 113–146, 147–168. Zbl 1002.17002 MR 1827078 182

[St67] K. Strebel, On quadratic differentials with closed trajectories and second order poles.
J. Analyse Math. 19 (1967), 373–382. Zbl 0158.32402 MR 0224808 159

[Zv03] D. Zvonkine, Strebel differentials on stable curves and Kontsevich’s proof of Witten’s
conjecture. Preprint 2002. arXiv:math/0209071 159, 176

Received June 27, 2008

A. Hamilton, Mathematics Department, University of Connecticut, 196 Auditorium Road,
Storrs, CT 06269, U.S.A.

E-mail: hamilton@math.uconn.edu

http://www.emis.de/MATH-item?0862.14017
http://www.ams.org/mathscinet-getitem?mr=1363063
http://www.emis.de/MATH-item?1069.14026
http://www.ams.org/mathscinet-getitem?mr=2078260
http://arxiv.org/abs/math.SG/9911123
http://www.emis.de/MATH-item?0642.32012
http://www.ams.org/mathscinet-getitem?mr=919235
http://www.emis.de/MATH-item?1079.16028
http://www.ams.org/mathscinet-getitem?mr=2146606
http://www.emis.de/MATH-item?1002.17002
http://www.ams.org/mathscinet-getitem?mr=1827078
http://www.emis.de/MATH-item?0158.32402
http://www.ams.org/mathscinet-getitem?mr=0224808
http://arxiv.org/abs/math/0209071

	Introduction
	Background
	Layout of the paper
	Jenkins–Strebel theory

	Noncommutative geometry and Lie bialgebras
	Noncommutative differential geometry
	Noncommutative symplectic geometry
	Lie algebras of noncommutative vector fields
	A Lie bialgebra structure on the space of noncommutative 0-forms

	A two-parameter family of differential graded Lie algebras
	The Chevalley–Eilenberg complex
	Construction of the two-parameter family
	A diagram of differential graded Lie algebras

	The stable ribbon graph complexes
	Stable ribbon graphs
	The stable ribbon graph complexes

	The main theorem
	References

