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Prop profile of bi-Hamiltonian structures

Henrik Strohmayer

Abstract. Recently S.A. Merkulov established a link between differential geometry and ho-
mological algebra by giving descriptions of several differential geometric structures in terms
of minimal resolutions of props. In particular he described the prop profile of Poisson geom-
etry. In this paper we define a prop such that representations of its minimal resolution in a
vector space V are in a one-to-one correspondence with bi-Hamiltonian structures, i.e., pairs
of compatible Poisson structures, on the formal manifold associated to V .
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Introduction

Poisson geometry plays a prominent role in Hamiltonian mechanics; the differential
equations associated to a Hamiltonian system can be formulated via Poisson struc-
tures. The presence of two compatible Poisson structures makes it possible to solve a
wide range of integrable Hamiltonian equations, e.g. the KdV-equations, by provid-
ing a hierarchy of integrable vector fields. This kind of geometric structure is called
a Poisson pair or a bi-Hamiltonian structure. See e.g. [1] for a treatment of Hamilto-
nian systems, [27] for a survey on Poisson geometry and [11] for an introduction to
bi-Hamiltonian structures.
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In the papers [15], [16] and [17] S.A. Merkulov made the discovery that certain
differential geometric structures, including Hertling–Manin, Nijenhuis, and Poisson
structures, allow descriptions as the degree zero part of minimal resolutions of certain
simple algebraic props. Merkulov called such descriptions prop profiles. Apart from
the sheer beauty of these observations they provide us with new and surprising links
between differential geometry, homological algebra and algebraic topology. For
example, the prop profile of Hertling–Manin’s weak Frobenius manifolds was shown
to be given by a minimal resolution of the operad of Gerstenhaber algebras which
in turn is quasi-isomorphic to the chain operad of the little 2-disc operad [4]. The
prop profile of Poisson geometry, on the other hand, predicts existence of rather
mysterious wheeled Poisson structures which can be deformation quantized [20],
[19] in a wheeled propic way. Here by wheeled we mean that we allow graphs
with oriented cycles which on the geometric side translates to traces of the involved
structures. It is an open and interesting question whether or not the associated props
have topological meaning as in the case of Hertling–Manin geometry.

The general philosophy of constructing prop profiles can be expressed as follows:

DiffGeom
(i) �� DiffGeom

(ii) �� Props
(iii) �� Props.

(iv)
��

(i) Extract the fundamental part of a differential geometric structure.

(ii) Translate this fundamental part into a prop P .

(iii) Compute its minimal resolution P1.

(iv) Translate P1 back into a differential geometric structure.

A Poisson structure on a graded manifoldV is a graded Lie bracket on the structure
sheaf OV which acts as a derivation in each argument with respect to the multiplication
on OV . A Poisson structure can equivalently be defined as a bivector field� of degree
two satisfying Œ�; ��S D 0. Here the bracket is the Schouten bracket on the polyvector
fields onV . The fundamental part of Poisson structures translates into the prop Lie1Bi
of Lie 1-bialgebras, i.e., of Lie bialgebras with bracket and cobracket differing by
one in degree. The prop profile of Poisson geometry, constructed in [17], is given by
its minimal resolution Lie1Bi1. Translating the prop profile back into differential
geometry yields polyvector fields� of degree two, but not necessarily concentrated in^2

TV , such that Œ�; ��S D 0. Such a polyvector field can be interpreted as a family
fLngn2N of n-ary brackets on the structure sheaf OV . These families of brackets
form L1-algebras and the brackets act as derivations in each argument with respect
to the multiplication in OV .
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Our main result is that formal bi-Hamiltonian structures can be derived from a
rather simple algebraic structure comprising a Lie bracket of degree one and two com-
patible Lie cobrackets of degree zero, with the further relations that each cobracket
together with the Lie bracket form a Lie 1-bialgebra. We call such structures Lie2

1-bialgebra and denote the corresponding prop by Lie1
2Bi. Using results from [8],

[6], and [23], we show that its dioperadic part is Koszul, which makes it possible
to compute its minimal resolution Lie1

2Bi1 (§ 5.4) and leads us to the following
conclusion.

Theorem A. There is a one-to-one correspondence between representations of
Lie1

2Bi1 in Rn and formal bi-Hamiltonian structures on Rn vanishing at the ori-
gin.

In fact we prove a stronger result. When considering representations in arbitrary
graded vector spaces we obtain the following result which we prove in Section 6.

Theorem B. There is a one-to-one correspondence between representations of
Lie1

2Bi1 in a graded vector space V and polyvector fields � D P
k k�¯k 2^• TV �¯� on the formal manifold associated to V which depend on the formal pa-

rameter ¯ and satisfy the conditions

(i) k� 2 ^•�kC1
TV ,

(ii) j�j D 2,

(iii) Œ�; ��S D 0,

(iv) �j0 D 0.

A pair of Lie algebras are called compatible if the sum of their Lie brackets is
again a Lie bracket. We denote the operad of compatible Lie algebras, introduced
in [6], by Lie2. As a byproduct of the resolution of Lie1

2Bi we obtain a minimal
resolution of Lie2 (§ 5.5). We call algebras over this operad L21-algebras.

A pair of Poisson structures are called compatible if their brackets are compatible
as Lie brackets. We show (§ 6.4) how an element � 2 ^• TV �¯� with properties (i),
(ii), and (iii) of Theorem B corresponds to a family fkLngn2N;1�k�n of n-ary brackets
on the structure sheaf OV . These brackets form an L21-algebra and act as derivations
in each argument with respect to the multiplication in OV . When V is concentrated
in degree zero we obtain precisely a bi-Hamiltonian structure. Property (iv) means
that the structure vanishes at the distinguished point. By Remark 4.1.2 this is not a
serious restriction.

To deformation quantize in the propic sense of Merkulov one needs a wheeled
propic resolution of Lie1

2Bi. From the dioperadic resolution that we construct one
obtains a propic resolution by known results. We note (§ 5.7) that the same obstruction
occurs as in the case of Lie1Bi when trying to extend it to a resolution of wheeled
props.
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Section 1 comprises definitions of operads, dioperads, properads and props and
in Section 2 we give a formulation of the Koszul duality machinery that enables us
to compute resolutions of such algebraic structures. This is done using the unifying
approach of G�-algebras [18] which are algebraic structures in which the product is
modeled by classes of directed graphs. This makes it possible to define all the above
structures as instances of G�-algebras differing just in which class of graphs one
considers. Also the Koszul duality theory of the respective structures can be expressed
as special cases of this unifying theory. Although these sections essentially contain no
new material we think their rather encompassing length is motivated for two reasons.
Firstly, not all of this material has been expressed in this unifying language and that
which has has not been so in this amount of detail. Secondly, to the best of our
knowledge their is as of yet no canonical source gathering this material; we wish to
keep the paper fairly self-contained and accessible to differential geometers as well
as to algebraists.

The rest of the paper is organized as follows. In Section 3 we recall basic notions of
Poisson geometry and give an interpretation of the prop profile of Poisson structures
in terms of a family of brackets. Then, in Sections 4 and 5, we extract the prop profile
of bi-Hamiltonian structures. Finally in Section 6 we prove Theorem A and Theorem
B and interpret the prop profile of bi-Hamiltonian structures as a family of brackets.

A few words about our notation. All vector spaces and tensor products are con-
sidered to be over a field K of characteristic zero unless otherwise specified. The
symmetric product of vector spaces is denoted by ˇ. For a graded vector space
V D L

j 2Z Vj we denote by V Œi � the vector space whose graded components are
given by V Œi �j D ViCj . Given a finite set S we denote its cardinality by jS j. By N
we mean the set f0; 1; 2; : : : g. For n 2 N, we denote by Œn� the set f1; : : : ; ng. Let
Sn denote the symmetric group of permutations of Œn�. By 1n we denote the trivial
representation of Sn and by sgnn the sign representation.

1. Operads and generalizations

Operads, dioperads and properads are all generalizations of associative algebras. An
associative algebra consists of a vector space and a product; the generalized structures
consist of certain families of these. See [18] for an introduction to these generaliza-
tions via an interpretation of the multiplicative structure of associative algebras in
terms of graphs. Below we give thorough definitions of the above structures, as well
as their co-versions, using this graph-approach.

1.1. S-bimodules. First we define the underlying spaces of our generalized struc-
tures.

Definition. An .Sm;Sn/-bimodule is a vector spaceM with a right action of Sn and
a commuting left action of Sm. A family fM.m; n/gm;n2N of .Sm;Sn/-bimodules
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is called an S-bimodule. A family fM.n/gn2N of right .Sn/-modules is called an
S-module.

If an S-bimodule M satisfies M.m; n/ D 0 whenever m ¤ 1 we can consider it
as an S-module since the action of S1 is trivial. We denote M.1; n/ by M.n/.

Let M and N be S-bimodules. An S-bimodule homomorphism � W M ! N is a
family f�m;n W M.m; n/ ! N.m; n/gm;n2N of .Sm;Sn/-bimodule homomorphisms.
We will often write �.p/ for �m;n.p/.

1.2. Labeleddirectedgraphs. Composition of elements of S-bimodules is modeled
by graphs. Intuitively we can think of these graphs as 1-dimensional regular CW-
complexes with the 1-cells given an orientation. Two subsets of the 1-cells are singled
out, directed towards and away from the graph, respectively, and are labeled with
integers.

Definition. A labeled directed graph G is the data

.VG ; EG ; ˆG ; E
in
G ; E

out
G ; inG ; outG/:

The elements of the set VG are called the vertices ofG, the elements of the setEG the
edges. Further ˆG W EG ! .VG � VG/ t VG . The edges in the preimage ˆ�1

G .VG/

are called external edges and the edges in the preimage ˆ�1
G .VG � VG/ are called

internal. We denote the internal edges by E int
G . For an edge e with ˆG.e/ D .u; v/

we say that e is an edge from u to v and in this case we call the vertices u and v
adjacent.

The set of external edges is partitioned into the sets E in
G and Eout

G of global input
edges and global output edges, respectively. We denote by nG and mG the cardi-
nalities of these sets. The external edges are labeled by integers via the bijections
inG W ŒnG � ! E in

G and outG W Eout
G ! ŒmG �.

A labeled directed .m; n/-graph G is a labeled directed graph withmG D m and
nG D n.

Note that the data .VG ; E
int
G ; ˆG jE int

G
/ is an ordinary directed graph.

There exist a natural right action of Sn and a commuting left action of Sm on the
class of .m; n/-graphs given by permuting the labels. For a labeled directed .m; n/-
graph G the action of � 2 Sn is given by .inG�/.i/ ´ inG B �.i/. Similarly � 2 Sm

acts to the left by .�outG/.e/ ´ � B outG.e/, cf. Figure 1.
A path from a vertex u to a vertex v in a labeled directed graph is a sequence

of edges e1; : : : ; er such that for some sequence of vertices u D v1; : : : vrC1 D v

either ˆG.ei / D .vi ; viC1/ or ˆG.ei / D .viC1; vi /. A path is called directed if
ˆG.ei / D .vi ; viC1/ for all i and it is called closed if u D v. A closed directed path
is called a wheel. A graph is connected if for each pair of vertices there is a path
between them.
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Figure 1. Example of action on a .5; 3/-graph G by S3 from the right and by S5 from the left.

1.3. Subgraphs. In order to describe the associativity of the compositions described
by graphs we need to define subgraphs and the notion of contraction of a subgraph in
a graph.

Loosely speaking, a subgraph consists of some subset of the vertices of a graph,
the edges in the original graph attached to the subset, and an arbitrary global labeling.

Let G be a graph. A subgraph H of G is a graph satisfying

(i) VH � VG and EH � EG ,

(ii) if ˆG.e/ D .u; v/ and u; v 2 VH , then e 2 EH and ˆH .e/ D ˆG.e/,

(iii) if e 2 EG ,ˆG.e/ D .u; v/, u … VH and v 2 VH , then e 2 E in
H andˆH .e/ D v,

similarly if u 2 VH , v … VH , then e 2 Eout
H and ˆH .e/ D u,

(iv) if e 2 E in
G , ˆ.e/ D v and v 2 VH , then e 2 E in

H , similarly if e 2 Eout
G .

Note that inH and outH are arbitrary labelings of the global input and output edges
of H .

1.4. Contraction of subgraphs. The contraction of a subgraph in a graph can be
thought of as replacing all vertices and internal edges of the subgraph with a single
vertex.

Let H be a subgraph of a graph G. The contraction of H in G is the labeled
directed graph G=H defined by the same data as G except

(i) VG=H D .VG n VH / t fvH g, where by vH we denote the vertex into which H
is contracted,

(ii) EG=H D EG nE int
H ,

(iii)

ˆG=H .e/ D

8̂̂̂<̂
ˆ̂:
ˆG.e/ if e 2 EG nEH ;

.u; vH / if ˆG.e/ D .u; v/ for some v 2 VH ;

.vH ; u/ if ˆG.e/ D .v; u/ for some v 2 VH ;

vH if ˆG.e/ D v for some v 2 VH :



Prop profile of bi-Hamiltonian structures 195

Let G� be a class of graphs, cf. § 1.7. We say that a subgraph H of a graph
G 2 G� is G�-admissible if both G=H 2 G� and H 2 G�. In Figure 2 we see an
example of a subgraph H which is G�-admissible but not G#-admissible.
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Figure 2. The contraction G=H of a subgraph H in a graph G.

1.5. Isomorphisms of graphs. We are only interested in the structure of the graphs
up to a certain level of detail: how many vertices there are, how many internal edges
there are in each direction between any two vertices, how many external edges are
directed towards and away from each vertex and how they are labeled. Thus we need
to define isomorphisms of graphs.

Let G and G0 be labeled directed graphs. An isomorphism of labeled directed
graphs‰ W G ! G0 is a pair .‰V ; ‰E /, where‰V W VG ! VG0 and‰E W EG ! EG0

are bijections with the properties

(i) ‰E .E
in
G/ D E in

G0 and ‰E .E
out
G / D Eout

G0 ,

(ii) ˆG0.‰E .e// D ‰V �‰V .ˆG.e// for all internal edges e,

(iii) ˆG0.‰E .e// D ‰V .ˆG.e// for all external edges e,

(iv) inG0 D ‰E B inG and outG D outG0 B‰E .

Example. Three graphs, of which the third not is isomorphic to the first two because
of the labeling of the edges.

1 2

3

1

��� ������ ��� Š
2 1

3

1

��� ������ ��� Š
1 3

2

1

��� ������ ���

1.6. Decorated graphs. Compositions of elements of S-bimodules is described by
graphs decorated with S-bimodules. When decorating a vertex v with an element p
of an S-bimoduleM we want to keep track of how we connect p to the internal edges
attached to v.
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We define the set of local input edges of v to be

E in
v ´ fe 2 E int

G j ˆG.e/ D .u; v/ for some u 2 VGg [ fe 2 E in
G j ˆG.e/ D vg

and the set of local output edges of v as

Eout
v ´ fe 2 E int

G j ˆG.e/ D .v; u/ for some u 2 VGg [ fe 2 Eout
G j ˆG.e/ D vg:

Note that we allow edges from a vertex to itself. Such an edge will be both a local
input and output edge of the same vertex.

For two finite sets I , J of the same cardinality, let Bij.I; J / denote the set of
bijections from I to J and let hI �!� J i denote the vector space generated over K
by Bij.I; J /. If jI j D n there is a natural left action of Sn on hI �!� Œn�i given by
�g ´ � B g for g 2 Bij.I; Œn�/ and � 2 Sn. Similarly, if jJ j D m, Sm acts to the
right on hŒm� �!� J i by f� ´ f B � for f 2 Bij.Œm�; J / and � 2 Sm.

We define a vector space by

M.Eout
v ; E in

v / ´ hŒm� �!� Eout
v i ˝Sm

M.m; n/˝Sn
hE in

v �!� Œn�i;
where m and n are the cardinalities of Eout

v and E in
v , respectively. Often we will

denote an element f ˝Sm
p ˝Sn

g 2 M.Eout
v ; E in

v / by Np or simply p.

Remark. Decorating by M.Eout
v ; E in

v / rather than by M.m; n/ corresponds to an
additional labeling of the internal edges locally, cf. Figures in [24], pp. 4868–4869.

We want decorated graphs to extend the notion of tensor products, but for a general
graph there is no natural ordering of the vertices. Let fVigi2I be a family of vector
spaces indexed by some finite set I with jI j D k. The unordered tensor product of
this family is defined to beO

i2I

Vi ´
� M

s2Bij.Œk�;I /

Vs.1/ ˝ � � � ˝ Vs.k/

�
Sk

:

Here we consider the coinvariants with respect to the right action of Sk on Bij.Œk�; I /.
We denote an equivalence class in

N
i2I Vi by Œv1 ˝� � �˝vk�, where v1 ˝� � �˝vk 2

Vs.1/ ˝ � � � ˝ Vs.k/ for some s 2 Bij.Œk�; I /.

Definition. We define the vector space of decorations of a graphG by an S-bimodule
M to be GhM i ´ N

v2VG
M.Eout

v ; E in
v /AutG, where AutG denotes the automor-

phism group of G.
We call an element ofGhM i decorated graph and denote it by .G; Œp1˝� � �˝pk�/.

A decorated subgraph of a decorated graph .G; Œp1 ˝ � � � ˝ pk�/ is a decorated
graph .H; Œpi1 ˝ � � � ˝pil �/ such thatH is a subgraph ofG, fi1; : : : ; ilg D fi 2 Œk� j
pi 2 M.Eout

v ; E in
v / for some v 2 VH g, and i1 < � � � < il .
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1.7. Classes of graphs. From now on we will refer to isomorphism classes of labeled
directed graphs simply as graphs. We define the following classes of graphs:

(i) G� is the class of all graphs.

(ii) G# is the class of graphs without wheels.

(iii) G
#
c is the class of connected graphs without wheels.

(iv) G
#
c;0 is the class of connected graphs without closed paths (the class of trees).

(v) G
#1
c is the class of connected graphs without closed paths whose vertices have

exactly one edge directed from it (the class of rooted trees).

(vi) G
#1

1
c is the class of connected graphs without directed paths whose vertices have

exactly one edge directed towards it and exactly one edge directed from it (the
class of ladder graphs).

We observe that G
#1

1
c � G

#1
c � G

#
c;0 � G

#
c � G# � G�. When depicting graphs

of the classes (ii)–(vi) we think of them as having a global flow, from global input
edges to global output edges, downwards.

Let G� denote an arbitrary class of the classes (i)–(vi). We denote by G�.m; n/
the subclass of G� consisting of all .m; n/-graphs and by G�

.i/
the subclass consisting

of graphs with i vertices.

1.8. S-bimodules of decorated graphs. We define the vector space of .m; n/-
graphs of G� decorated by an S-bimodule M by

G�hM i.m; n/ ´
M

G2G�.m;n/

GhM i:

There is a natural .Sm;Sn/-bimodule structure on G�hM i.m; n/ induced by the
actions of Sm and Sn onG, �.G; Œp1 ˝� � �˝pk�/� ´ .�G�; Œp1 ˝� � �˝pk�/. Thus
G�hM i.m; n/ is naturally an .Sm;Sn/-bimodule. This lets us define the S-bimodule
of decorated graphs

G�hM i ´ fG�hM i.m; n/gm;n2N:

1.9. G�-algebras. We are now ready to define the compositions in our generalized
structures.

Let � W G�hM i ! M be a homomorphism of S-bimodules. We call such a
morphism a composition product inM . Denote by �G W GhM i ! M the restriction
of � to GhM i. We will write �G.p1 ˝ � � � ˝ pk/ for �..G; Œp1 ˝ � � � ˝ pk�//.

Given an .r; s/-subgraph H of a graph G we define the morphism

�G
H W GhM i ! G=H hM i
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by

�G
H .G; Œ Np1 ˝ � � � ˝ Npk ˝ Nq1 ˝ � � � ˝ Nql �/

´ .G=H; Œ.out�1
H ˝Sr

�H . Np1 ˝ � � � ˝ Npk/˝Ss
in�1

H /˝ Nq1 ˝ � � � ˝ Nql �/;

where Œ Np1 ˝ � � � ˝ Npk� is the decoration of H .

Definition. A G�-algebra is an S-bimoduleM together with a composition product
� W G�hM i ! M satisfying the associativity condition

�G D �G=H B �G
H

for each G 2 G� and each G�-admissible subgraph H of G.

1.10. G�-coalgebras. Let� W M ! G�hM i be a homomorphism of S-bimodules.
We call such a morphism a decomposition coproduct in M . Denote by G� W M !
GhM i the composition of � with the projection G�hM i � GhM i.

Given an .r; s/-subgraph H of a graph G we define the morphism

G
H� W G=H hM i ! GhM i

by
G
H�.G=H; Œ.out�1

H ˝Sr
NpH ˝Ss

in�1
H /˝ Nq1 ˝ � � � ˝ Nql �/

´ .G; Œ Np1 ˝ � � � ˝ Npk ˝ Nq1 ˝ � � � ˝ Nql �/;

where .H; Œ Np1 ˝ � � � ˝ Npk�/ D �H . NpH /.

Definition. A G�-coalgebra is an S-bimodule M together with an S-bimodule ho-
momorphisms � W M ! G�hM i satisfying the coassociativity condition

G� D G
H� B G=H�

for each G 2 G� and G�-admissible subgraph H of G.

1.11. G#-(co)algebras versus G�-(co)algebras. Some notions related to G�-
(co)algebras allow simpler expositions when one forgets about G�-(co)algebras.
Since we will only implicitly be needing G�-(co)algebras we avoid the subtleties
related to them by restricting our attention to the strict subclasses of G�; from now
on let G� be one of the subclasses (ii)–(vi) in § 1.7. See e.g. [13], [20] for a treatment
of G�-(co)algebras, also called wheeled props (without unit).

1.12. Graphs decorated by several S-bimodules. Given a graphG with jVG j > 1,
we can decorate it by more than one S-bimodule. Let M1; : : : ;Ml be S-bimodules
and let VG D V1 t � � � t Vl be a partition of the set of vertices of G. We define the
vector space

GhMV1

1 ; : : :M
Vl

l
i ´ N

v2VG

Mv;
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where Mv D Mi .E
out
v ; E in

v / for v 2 Vi .
Given morphisms of S-bimodules �1 W M1 ! N1, …, �l W Ml ! Nl we define

the morphism

.�
V1

1 ; : : : ; �
Vl

l
/ W GhMV1

1 ; : : :M
Vl

l
i ! GhN V1

1 ; : : : N
Vl

l
i

by
.G; Œ Np1 ˝ � � � ˝ Npl �/ 7! .G; Œ�i1.p1/˝ � � � ˝ �ik .pk/�/;

where �ij D �r when pj 2 Mr .

1.13. Units and counits. We define the S-bimodule I by´
I.1; 1/ D K;

I.m; n/ D 0 for .m; n/ ¤ .1; 1/.

Let G be a .m; n/-graph satisfying jE in
u j D jEout

u j D 1 for all vertices u 2 VG

except for one vertex v which then satisfies jE in
v j D n and jEout

v j D m. The maps
inG and outG naturally induce maps zinG W Œn� ! E in

v and foutG W Eout
v ! Œm�.

Let M be an S-bimodule. There exists a natural isomorphism

GhIVGnfvg;M fvgi �!� M.m; n/

defined by

.G; Œ Nc1 ˝ � � � ˝ Nck�1 ˝ Np�/ 7! .c1 � � � ck�1/�
�1p��1;

where � 2 Sm and � 2 Sn are permutations such that for Np D f ˝Sm
p ˝Sn

g 2
M.Eout

v ; E in
v / we have .�g/ B zinG D IdŒn� and foutG B .f �/ D IdŒm�.

Let � be a composition product in M and let 	 W I ! M be an S-bimodule
homomorphism. We say that 	 is a unit with respect to � if the following diagram
commutes for all m; n 2 N and G 2 G�.m; n/ of the above type:

GhIVGnfvg;M fvgi .�VG nfvg;Idfvg
M

/
��

�
��


















GhM i

�G

��
M.m; n/.

We denote the element 	.1/ 2 M.1; 1/ by 1. The above condition is then equiv-
alent to that, for all G as above, the morphism �G satisfies

�G.1 ˝ � � � ˝ 1 ˝ .f ˝Sm
p ˝Sn

g/˝ 1 ˝ � � � ˝ 1/ D ��1p��1: (1)
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On the coside, let � be a decomposition coproduct in M and let 
 W M ! I be
an S-bimodule homomorphism. We say that 
 is a counit with respect to � if the
diagram

M.m; n/
G� ��

�
����������������� GhM i

.�VG nfvg;Idfvg
M

/

��
GhIVGnfvg;M fvgi

commutes for all m; n 2 N and G 2 G�.m; n/ of the above type.

1.14. (Co)unital G�-(co)algebras. If there exists a morphism 	 W I ! M , which
is a unit with respect to �, we call the data .M;�; 	/ a unital G�-algebra.

If there exists a morphism 
 W M ! I , which is a counit with respect to �, we
call the data .M;�; 
/ a counital G�-coalgebra.

Definition. We have

(i) a (co)unital G#-(co)algebra is called a (co)prop,

(ii) a (co)unital G
#
c -(co)algebra is called a (co)properad,

(iii) a (co)unital G
#
c;0-(co)algebra is called a (co)dioperad,

(iv) a (co)unital G
#1
c -(co)algebra such that M.m; n/ D 0 if m ¤ 1 is called an

(co)operad,

(v) a (co)unital G
#1

1
c -(co)algebra such that M.m; n/ D 0 if m; n ¤ 1 is called an

(co)associative (co)algebra.

In §A.1 we show how the above definitions relate to the classical ones.

1.15. Homomorphisms of G�-algebras. Let G be graph in G� and v be a vertex
of G. A homomorphism � W M ! M 0 of S-bimodules canonically gives rise to a
morphism �v W M.Eout

v ; E in
v / ! M 0.Eout

v ; E in
v / by

�v.f ˝Sm
p ˝Sn

g/ ´ f ˝Sm
�m;n.p/˝Sn

g:

We write �.p/ for �v.f ˝p˝g/. This further extends to a morphism �G W GhM i !
GhM 0i by

�G.G; Œp1 ˝ � � � ˝ pk�/ ´ .G; �.p1/˝ � � � ˝ �.pk//:

Finally this gives us a morphism of S-bimodules �G� W G�hM i ! G�hM 0i.
Let .P ; �P ; 	P / and .Q; �Q; 	Q/ be G�-algebras. A G�-algebra homomor-

phism is a homomorphism of S-bimodules � W P ! Q such that � B 	P D 	Q and
for all decorated graphs G 2 G� we have � B .�P /G D .�Q/G B �G .
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1.16. The endomorphism G�-algebra. We define the endomorphism G�-algebra
End�

V of a vector space V by End�
V .m; n/ ´ Hom.V ˝n; V ˝m/. The .Sm;Sn/

action is given by permuting the input and output. For a graph G 2 G�, the compo-
sition product �G W GhEnd�

V i ! End�
V is defined as the composition of multivariate

functions according to G. The local labelings of the vertices dictate, in an obvious
way, which output is to be plugged into which input of functions decorating adjacent
vertices. The global labeling plays a similar role. A unit 	 W I ! End�

V is given by
	.1/ ´ IdV .

1.17. Representations of G�-algebras. A representation of a G�-algebra P in a
vector space V is a homomorphism � W P ! End�

V of G�-algebras. We say that �
gives V the structure of a P -algebra.

We can think of a P -algebra as an assignment of multilinear operations on V , pos-
sibly with several inputs and outputs, satisfying axioms encoded by the composition
product in P .

2. Resolutions via Koszul duality

In this section we make definitions of G�-algebras presented by generators and re-
lations. To this end we describe the free G�-algebra. We also set up the differential
graded framework and describe two kinds of resolutions of G�-algebras. One kind
of resolution is based on an extension of the Koszul duality theory for associative
algebras to G�-algebras. As the absence of wheels in directed graphs makes a more
accessible presentation possible, we restrict our attention in this section to the strict
subfamilies of G�, i.e., in this section G� denotes one of the subfamilies (ii)–(vi)
defined in § 1.7.

This section contains no new material; we merely wish to express the results we
need from [9],[7],[8] and [24] in the unifying language of [18].

2.1. Differential graded S-bimodules. We can also define G�-(co)algebras in the
differential graded framework.

A graded S-bimodule is an S-bimodule M which can be decomposed as
M.m; n/ ´ L

i2ZM.m; n/
i . We denote by M i the collection fM.m; n/igm;n2N.

For an element p 2 M i we write jpj D i , and say that p is of degree i . We will refer
to this degree as the cohomological degree.

A homomorphism � W M ! N of graded S-bimodules of degree j is a homomor-
phism of S-bimodules satisfying �.M i / � N iCj .

A differential graded (dg) S-bimodule is a pair .M; d/, where M is a graded
S-bimodule and d W M ! M is a homomorphism of graded S-bimodules of degree
one satisfying d2 D 0.

A homomorphism � of dg S-bimodules is a degree zero homomorphism of graded
S-bimodules satisfying d B � D � B d .
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In the differential graded framework we apply the Koszul–Quillen sign rules;
whenever a symbol of degree a is moved past a symbol of degree b the sign .�1/ab

is introduced, e.g. for decorated graphs we have

.G; Œp1 ˝ � � � ˝ pi ˝ piC1 ˝ � � � ˝ pk�/

D .G; Œ.�1/jpi jjpiC1jp1 ˝ � � � ˝ piC1 ˝ pi ˝ � � � ˝ pk�/:

2.2. Differential graded G�-algebras and G�-coalgebras. The differential d of
a dg S-bimodule M extends to a differential dG on the vector space GhM i defined
by

dG.G; Œp1 ˝ � � � ˝ pk�/ ´ .G; Œ
kP

iD1

.�1/jp1jC���jpi�1jp1 ˝ � � � ˝ d.pi /˝ � � � ˝ pk�/:

The grading of M induces a grading on GhM i given by j.G; Œp1 ˝ � � � ˝ pk�/j D
jp1j C � � � C jpkj. Together this makes G�hM i into a dg S-bimodule.

Definition. A dg G�-algebra is a triple ..P ; d /; �; 	/ where .P ; �; 	/ is a G�-
algebra, .P ; d / is a dg S-bimodule, and � is a morphism of dg S-bimodules.

Explicitly, the condition that � is a morphism of dg S-bimodules is given by
d�G D �Gd

G for all G 2 G�. We say that a morphism d W P ! P is a G�-
algebra derivation if this condition is satisfied.

Definition. A dg G�-coalgebra is a triple ..C ; d /;�; 
/ where .C ; �; 
/ is a G�-
coalgebra, .C ; d / is a dg S-bimodule, and � is a morphism of dg S-bimodules.

The last condition can be expressed by G�d D dG
G� for allG 2 G�. We call an

S-bimodule homomorphism d W C ! C a G�-coalgebra coderivation if it satisfies
this condition.

2.3. Weight graded S-bimodules and G�-(co)algebras. We will need to consider
an extra grading on the objects we study. We call a dg S-bimoduleM weight graded
if it has a decompositionM D L

s2NM.s/, where eachM.s/ is a dg sub-S-bimodule.
This is an extra grading which differs from the cohomological degree in that it does
not effect signs, i.e., the Koszul–Quillen sign rules only apply to cohomological
degree. We call M.s/ the weight s part of M . The tensor product of weight graded
S-bimodules inherits a weight grading by .M ˝N/.t/ D L

rCsDt M.r/ ˝N.s/.
We call a G�-algebra .P ; �; 	/weight-graded if P is a weight graded S-bimodule

and � preserves the weight grading. Note that we necessarily have 	.I / � P.0/.
Similarly we call a G�-coalgebra .C ; �; 
/weight graded if C is a weight graded

S-bimodule and � preserves the weight grading.
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2.4. Free G�-algebras. The free G�-algebra F �.M/ on an S-bimoduleM is char-
acterized by the classical universal property; there is an inclusion � W M ! F �.M/

such that given any homomorphism of S-bimodules � W M ! P , there is a unique
homomorphism of G�-algebras Q� making the diagram

M

	

����
��

��
��

�

 �� P

F �.M/

Q

���

�
�

�
�

commute. Here we give an explicit construction. The free non-unital G�-algebra,
F �.M/, on an S-bimodule M has G�hM i as underlying S-bimodule. The com-
position product � W G�hF �.M/i ! F �.M/ maps a graph decorated with graphs
decorated with M to a graph decorated with M . Intuitively we may thing of this
composition product as grafting the external edges of the decorating graphs together
according to the internal edges of the graph they decorate, leaving the decoration by
M unchanged, except for a minor modification of the internal labeling.

To be more precise, for a graph G 2 G�, the morphism �G maps

.G; Œ.G1; Œ Np1
1 ˝ � � � ˝ Np1

kl
�/˝ � � � ˝ .Gk; Œ Npk

1 ˝ � � � ˝ Npk
lk
�/�/ 2 Gh.G�hM i/i

to
.G.G1; : : : ; Gk/; Œ Qp1

1 ˝ � � � ˝ Qpk
lk
�/ 2 G.G1; : : : ; Gk/hM i;

where G.G1; : : : ; Gk/ is the result of the grafting and Qpa
b

is equal to Npa
b

up to a
modification of the labeling to keep track of how the pa

b
connect to the grafted graph.

We describe in detail the graph G.G1; : : : Gk/ as well as the modification of the
labeling in §A.2 of the appendix.

Since it does not matter in which order we graft the edges, the associativity
condition �G D �G=H B �G

H is immediate.
To define a unit of F �.M/ we have to add a special graph, j, to G� con-

sisting of a single edge and no vertices. The space of decorations is defined as
jhM i ´ K, in analogy with the tensor product of zero factors. We define the grafting
G.j; : : : ; j; G0; j; : : : ; j/ ´ ��1G0��1, where � , � , and G are defined as in (1) in
§ 1.13 and G0 is an .m; n/-graph. The unit is then defined by 1 ´ .j; Œ1�/.

The inclusion � W M ! F �.M/ is defined as follows. For an element p 2
M.m; n/, its image �.p/ is the decorated one vertex .m; n/-graph .G; Œf ˝Sp˝Sg�/

such that g B inG D IdŒn� and outG B f D IdŒm�.
We will usually omit the � and denote a free G�-algebra simply by F .M/ when

it is clear which family of graphs we consider.

2.5. Cofree G�-coalgebras. The cofree G�-coalgebra on an S-bimodule M is
characterized by the universal property obtained by reversing all arrows in the dia-
gram characterizing free G�-algebras. Its underlying S-bimodule is also G�hM i.
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The decomposition coproduct � is defined as follows. For a decorated graph X D
. zG; Œp1 ˝ � � � ˝ pk�/ the image of X under G� is the sum over all decorated graphs
Y D .G; Œ.G1; Œp

1
1 ˝� � �˝p1

kl
�/˝� � �˝.Gk; Œp

k
1 ˝� � �˝pk

lk
�/�/ such that�.Y / D X in

the free G�-algebra onM . The counit is given by 
 W .j; Œ1�/ ! 1 and zero otherwise.

2.6. Quadratic G�-algebras. As for associative algebras we want to give presen-
tations of G�-algebras in terms of generators and relations.

An ideal of a G�-algebra P is a sub-S-bimodule J satisfying�G.p1˝� � �˝pk/ 2
J whenever at least one of the pi is in J. We denote the ideal generated by a subset
J � P by .J /.

Let P be a G�-algebra and J be an ideal of P . The quotient G�-algebra P=J

is defined by P=J.m; n/ ´ P .m; n/=J.m; n/. If P is weight graded and the ideal
J is homogeneous with respect to this weight grading, i.e., J D L

s2N J.s/ and
J.s/ D J \ P.s/, then the quotient P=J inherits a weight grading from P .

The free G�-algebra has a natural weight grading by the number of vertices of a
decorated graph, F �.M/ D L

s2N F �
.s/
.M/, where F �

.s/
.M/ ´ G�

.s/
hM i.

Definition. A quadratic G�-algebra is a G�-algebra P D F �.M/=.R/, where
R � F �

.2/
.M/.

Example 2.6.1 (Dioperad of Lie bialgebras). Let M be the S-bimodule given by
M.1; 2/ D 11 ˝ sgn2, M.2; 1/ D sgn2 ˝11, and M.m; n/ D 0 for other m; n. We
denote a graph decorated with the natural basis element ofM.1; 2/ by

���� and a graph
decorated with the basis element of M.2; 1/ by ���� . Consider the quadratic dioperad
LieBi D F .M/=.R/ where R D R.1; 3/ t R.3; 1/ t R.2; 2/, with R.i; j / �
F .M/.i; j /, is the following set of relations

R.1; 3/ W
1 2

3��� ������ ��� C
2 3

1��� ������ ��� C
3 1

2��� ������ ��� R.3; 1/ W
3

1 2

��� ���

��� ��� C
1

2 3

��� ���

��� ��� C
2

3 1

��� ���

��� ��� (2)

R.2; 2/ W
1 2

1 2

��� ���

��� ���
�

1

2

1

2

��� ��� ��� C
2

1

1

2

��� ��� ��� C
1

2

2

1

��� ��� ��� �
2

1

2

1

��� ��� ���: (3)

A representation � W LieBi ! EndV in a vector spaceV makesV into a Lie bialgebra.
The Lie bracket is given by �.

����/ W V ˝2 ! V and the Lie cobracket by �.����/ W V !
V ˝2. That � is map of dioperads ensures that the Jacobi and co-Jacobi identities (2)
are satisfied as well as the compatibility of the brackets (3).

See e.g. [9] for a treatment of quadratic operads, [8] for quadratic dioperads and
[24] for quadratic properads and props.

2.7. Connected G�-(co)algebras. We call an S-bimodule connected ifM.m; 0/ D
0 for all m, M.0; n/ D 0 for all n, and M.1; 1/ D K.
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A weight graded S-bimodule M is called connected if M is connected as an
S-bimodule, M.0/.1; 1/ D K, and M.0/.m; n/ D 0 for other m; n.

We call a (weight graded) G�-(co)algebra connected if the underlying S-bimodule
is connected.

2.8. (Co)augmented G�-(co)algebras. We can give the S-bimodule I , with´
I.1; 1/ D K;

I.m; n/ D 0 for .m; n/ ¤ .1; 1/;

a G�-algebra structure by defining the composition product �G.c1 ˝ � � � ˝ ck/ ´
c1 : : : ck , the product of the scalars, the unit 	 being the identity I ! I .

An augmentation of a G�-algebra P is a morphism of G�-algebras 
 W P ! I .
We define the augmentation ideal of P by xP .m; n/ ´ ker.
m;n/.

We can also give the S-bimodule I a G�-coalgebra structure by G�.c/ ´ .G; Œc �
1˝ � � � ˝ 1�/, the counit 
 being the identity I ! I .

A coideal of a G�-coalgebra C is a sub-S-bimodule J such that

�G.J/ �
M

v2VG

GhCVGnfvg;Jfvgi:

A coaugmentation of a G�-coalgebra C is a morphism of G�-coalgebras 	 W I !
C . We define the coaugmentation coideal of C by xC.m; n/ ´ coker.	m;n/.

The augmentation ideal of the free G�-algebra and the coaugmentation coideal of
the cofree G�-coalgebra are given by the same S-bimodule xF �.M/ D xF �;c.M/ DL

s�1 G�
.s/

hM i.

2.9. Suspension and desuspension. The suspension †M of a dg S-bimodule M
is defined as .†M/.m; n/ ´ Ks˝M.m; n/, where s is an element of degree 1. We
define the desuspension †�1M by .†�1M/.m; n/ ´ Ks�1 ˝M.m; n/, where s�1

is an element of degree �1. Thus .†M/i D M i�1 and .†�1M/i D M iC1.

2.10. Derivations of free G�-algebras. Let F �.M/, be the free G�-algebra on an
S-bimodule M and let � W M ! F �.M/ be an S-bimodule homomorphism. Such
a morphism � determines a G�-algebra derivation 
d W F �.M/ ! F �.M/. The
morphism � is itself determined by morphisms G� W M ! GhM i, with jVG j � 1.
For a pair of graphsH � G we define the morphism G

H� W G=H hM i ! GhM i as in
§ 1.10, then 
d defined by


d j zGhM i ´
X

G=HD zG

G
H�

can readily be checked to satisfy the derivation property. The above sum is over all
pairs H , G such that H is an admissible subgraph of G up to the global labeling of
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H since G
H� is not dependent on this labeling. Since G� applied to a fixed element

of M is non-zero for only finitely many G this is true also for G
H� .

Conversely a derivation d of the free G�-algebra F �.M/ is determined by its
restriction d jM W M ! F �.M/. Indeed,

d.G; Œp1 ˝ � � � ˝ pk�/

D d�G..G1; Œp1�/˝ � � � ˝ .Gk; Œpk�//

D �Gd
G..G1; Œp1�/˝ � � � ˝ .Gk; Œpk�//

D
kP

iD1

.�1/.jp1jC���Cjpi�1j/jd j�G..G1; Œp1�/˝ � � � ˝ .Gi ; Œdpi �/˝ � � � ˝ .Gk; Œpk�//

D
kP

iD1

.�1/.jp1jC���Cjpi�1j/jd j.G; Œp1 ˝ � � � ˝ dpi ˝ � � � ˝ pk�/:

Here the one-vertex graphs Gi and the local labelings of the pi are appropriately
chosen so as to satisfy the above equalities as well as .Gi ; Œpi �/ 7�!� pi under the
isomorphism defined in § 1.13.

Combining the last two observations we conclude the following.

Proposition 2.10.1. There is a one-to-one correspondence between G�-algebra
derivations of F �.M/ and S-bimodule homomorphismsM ! F �.M/.

2.11. Coderivations of cofree G�-coalgebras. Let F �;c.M/ be the free G�-
coalgebra on an S-bimoduleM and � W F �;c.M/ ! M be an S-bimodule homomor-
phism. Such a� determines a G�-coalgebra coderivationd
 W F �;c.M/ ! F �;c.M/

as follows. The morphism � is itself determined by morphisms �G W GhM i ! M .
For a pair of graphs H � G, we define the morphism �G

H W GhM i ! G=H hM i as
in § 1.9. Then d
 defined by

d
 jGhM i ´
X

H�G

�G
H ;

can readily be checked to satisfy the coderivation property. Here the sum is over, up
to the labeling of H , all G�-admissible subgraphs H of G.

Conversely a coderivation d of the cofree G�-coalgebra F �;c.M/ is uniquely
determined by the projection Md W F �;c.M/ ! M . First we observe that

d.F
�;c

.s/
.M// �

M
r�s

F
�;c

.r/
.M/:

This claim is verified by induction on the number of vertices. Now suppose that
d jF �;c

.r/
.M/ is known for all r < s and consider X D .G; Œp1 ˝ � � � ˝ ps�/. First

we note that d.X/ is a sum of decorated graphs with at most s vertices. Next for
G0 2 G�

.2/
we observe that G0�d.X/, if non-zero, consists of terms where either one
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of the vertices is decorated with .j; Œ1�/ or both vertices are decorated with graphs
with at most s � 1 vertices. It is clear that in order to determine the part of d.X/
which consists of graphs with more than one vertex, it is enough to know the part of
G0�d.X/ without trivially decorated vertices, for allG0 2 G�

.2/
. Thus if we consider

only such terms in the equality G0�d.X/ D dG0

G0�.X/, then in the right hand side
d is applied only to graphs with less than s vertices and is therefore known by the
induction assumption. Hence d.X/ is fully known if we only know the projection of
d to F

�;c
.1/
.M/ Š M . We have proved the following.

Proposition 2.11.1. There is a one-to-one correspondence between G�-coalgebra
coderivations of F �;c.M/ and S-bimodule homomorphisms F �.M/ ! M .

2.12. Quasi-(co)free dg G�-(co)algebras. A free G�-algebra on a dg S-bimodule
.M; d/ has a natural differential induced by d , as defined in § 2.2. We will consider
also free G�-algebras where the differential differs from the differential freely gen-
erated by d . We call a free G�-algebra F �.M/ with a differential 
ı D d C 
d ,
where 
d is a derivation determined by a morphism � W M ! F �.M/ (cf. § 2.10), a
quasi-free G�-algebra.

Similarly we call a cofree G�-coalgebra F �;c.M/quasi-cofree if its codifferential
is a sum ı
 D dCd
 of the codifferential induced by the one onM and a coderivation
d
 determined by a morphism � W F �.M/ ! M (cf. § 2.11).

2.13. Quasi-free resolutions. A quasi-free resolution of dg G�-algebra .P ; ı/
is a quasi-free G�-algebra .F �.M/; d C 
d/ together with a quasi-isomorphism
� W F �.M/ ! P . If 
d satisfies 
d.M/ � L

i�2 F �
.i/
.M/ we call the resolution

minimal.

2.14. Bar and cobar constructions. For the rest of the section let G� be one of G
#1

1
c ,

G
#1
c , G

#
c;0, and G

#
c . Let P be a dg G�-algebra. Consider the cofree G�-coalgebra

F �;c.†�1 xP /. It comes equipped with the codifferential d induced by the differential
of P , cf. § 2.2. The restriction of �P to G�

.2/
hP i induces a degree one morphism

� W G�
.2/

h†�1 xP i ! †�1 xP . By § 2.11, the morphism � determines a coderivation


d of F �;c.†�1 xP /. The associativity of �P implies 
d
2 D 0. That P is a dg

G�-algebra implies d.
d/ C .
d/d D 0. Thus we see that ı ´ d C 
d satisfies
ı2 D 0. We define the bar construction of P to be the quasi-cofree G�-coalgebra
B�.P / ´ .F �;c.†�1 xP /; ı/.

Now let C be a dg G�-coalgebra. We define the cobar construction of C to be the
quasi-free G�-algebra ��.C/ ´ .F �.† xC/; ı/ where the differential ı ´ d C d


is defined as follows. The G�-algebra F �.† xC/ has a differential d induced by the
codifferential of C , cf. § 2.2. The projection of �C to G�

.2/
hCi induces a degree

one morphism � W † xC ! G�
.2/

h† xCi. By § 2.10, � determines a derivation d
 of
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F �.† xC/. The coassociativity of �C implies d2



D 0. That �C is a morphism of
dg S-bimodules implies d.d
 /C .d
 /d D 0. By the above observations we see that
ı2 D 0.

When we do not want to emphasize which family of graphs we are considering
we will usually omit the � from the notation of the bar and cobar constructions.

2.15. Bar-cobar resolutions. Applying first the bar and then the cobar construction
to a G�-algebra P yields a quasi-free resolution of P .

Theorem. Let P be a connected dg G�-algebra, where G� is one of G
#1

1
c , G

#1
c ,

G
#
c;0, and G

#
c . In this case the morphism

F �.† xF �;c.†�1 xP // ! P

induced by the projection

† xF �;c.†�1 xP / ! † xF �;c
.1/
.†�1 xP / Š xP � P

induces a quasi-isomorphism of dg G�-algebras

�.B.P // �!� P :

This was proved for operads in [9], for dioperads in [8], and for properads in [24].
The problem with the bar-cobar resolution is that it can be very difficult to compute
explicitly. Fortunately there is a large class of G�-algebras for which there exists a
more easily computable resolution.

2.16. Koszul G�-algebras. In addition to the weight grading given by the number
of vertices, the cofree G�-coalgebra on a weight graded S-bimodule M inherits
another weight grading, the total weight,

F �;c.M/.s/ ´
M

G2G�

fv1;:::;vkgDVG
s1C���CskDs

Gh.M.s1//
v1 ; : : : ; .M.sk//

vk i:

For a weight graded S-bimodule M concentrated in positive weight we observe that´
F

�;c
.s/
.M/.s/ D F

�;c
.s/
.M.1//;

F
�;c

.r/
.M/.s/ D 0 for r > s:

Now consider the bar construction B.P / on a connected weight graded G�-
algebra P . By the above observations we see that B.P / is bi-graded by the number
of vertices and the total weight. We also observe that †�1 xP is concentrated in
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positive weight since P is connected. By construction we see that 
d.B.r/.P /.s// �
B.r�1/.P /.s/. The compatibility of 
d and d yields a complex of dg S-bimodules

0 ! B.s/.P /.s/ ! B.s�1/.P /.s/ ! � � � :
One can show that the weight graded sub-S-bimodule given by

.P ·/.s/ ´ Hs.B.	/.P /.s/; 
d/ D ker.
d W B.s/.P /.s/ ! B.s�1/.P /.s//

is a weight graded sub-G�-coalgebra of B.P /. We call P · the Koszul dual of P

and we say that P is Koszul if the inclusion P · ,! B.P / is a quasi-isomorphism. It
is shown in the above mentioned references that a Koszul G�-algebra is necessarily
quadratic.

Remark. Note that the Koszul dual is defined as the homology of .B.P /; 
d/ with
respect to the weight grading. The codifferential raises the cohomological degree by
one but lowers the weight by one.

2.17. Koszul resolutions. For Koszul G�-algebras we have the following well-
known result.

Theorem ([22], [9], [8], [24]). Let P be a Koszul dg G�-algebra, where G� is one

of G
#1

1
c , G

#1
c , G

#
c;0, and G

#
c . In this case the morphism of the bar-cobar resolution

induces a minimal quasi-free resolution

�.P ·/ �!� P :

We denote this resolution by P1. Representations of P1 yield strongly homo-
topy, also called infinity, versions of the algebras corresponding to P ; e.g. algebras
over the operad Lie1 are called strongly homotopy Lie algebras or L1-algebras.

If P is a Koszul G�-algebra with zero differential, then all we need to know
in order to compute the differential of �.P ·/ is the structure of the decomposition
coproduct of P ·. Next we will consider a shortcut to determining this coproduct.

2.18. Koszul dual G�-algebras. To a quadratic G�-algebra there is an associated
dual G�-algebra defined as follows.

Let M be an S-bimodule. The Czech dual S-bimodule M_ of M is defined by
M_.m; n/ ´ sgnm ˝M.m; n/� ˝ sgnn. Now consider the free G�-algebra on a
connected S-bimodule M satisfying in addition that M.1; 1/ D 0 and that M.m; n/
is finite dimensional for all .m; n/. The components F �

.s/
.M/.m; n/ are then all finite

dimensional and the linear dual .F �.M//� is naturally isomorphic to F �;c.M �/ as
G�-coalgebras. This isomorphism induces a pairing

h _; _ i W F �
.2/.M

_/˝ F �
.2/.M/ ! K
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defined by
.G; Œe�

a ˝ e�
b �/˝ .G0; Œec ˝ ed �/ 7! ıG;G0ıa;cıb;d ;

where the ı’s are Kronecker deltas, feig is a basis of M , fe�
i g the dual basis, and we

assume in the case G D G0 that e�
a decorates the same vertex as ec .

Now let P D F .M/=.R/ be a quadratic G�-algebra such that M satisfies the
above conditions. Let R? be a subset of F �

.2/
.M_/ satisfying that .R?/.2/ is the

orthogonal complement to .R/.2/ with respect to the pairing h _; _ i. We define the
Koszul dual G�-algebra of P to be P Š ´ F .M_/=.R?/.

The Koszul dual G�-algebra P Š of a quadratic G�-algebra P relates to the Koszul
dual P · in the following way:

.P ·/.s/.m; n/ Š †�s..P Š/.s/.m; n//
_;

where the isomorphism is of G�-coalgebras. Thus, computing the Koszul dual G�-
algebra and its composition product gives us an accessible way of determining the
differential of the cobar construction on P ·.

3. Poisson geometry

In this section we recall basic facts concerning Poisson structures. We also give an
interpretation of extended Poisson structures on formal graded manifolds as a family
of brackets comprising an L1-algebra on the structure sheaf of the manifold.

3.1. Classical Poisson geometry. Let M be a manifold and denote by OM the
structure sheaf of M, i.e., the sheaf of commutative K-algebras of smooth functions
on M. A Poisson bracket on M is an operation f _; _ g W OM ˝OM ! OM satisfying
the properties

(i) ff; gg D �fg; f g (skew-symmetry),

(ii) ff; fg; hgg C fg; fh; f gg C fh; ff; ggg D 0 (Jacobi identity),

(iii) ff; ghg D ff; gghC gff; hg (Leibniz property of ff; _ g).

Thus a Poisson bracket is a Lie bracket on OM which in each argument acts as a
derivation with respect to the multiplication of smooth functions on OM. We call the
pair .M; f _; _ g/ a Poisson geometry and we will refer to the Poisson bracket as a
Poisson structure.

3.2. Poisson structures as bivector fields. To a manifold M there is associated the
tangent sheaf TM of derivations of OM. Elements of TM are called vector fields and
it comes equipped with a Lie bracket

ŒA; B� ´ A B B � B B A; A;B 2 TM:
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Consider now the exterior algebra
^	

OM
TM of polyvector fields. We will omit OM

from the notation. It has a natural grading given by the tensor length, i.e.,
^i

TM are
precisely the elements of degree i . The bracket of TM can be extended to a degree
�1 Lie bracket on

^	
TM. The extended bracket

Œ _; _ � zS W ^k
TM ^K

^l
TM ! ^kCl�1

TM (4)

is defined by

ŒA1 ^ � � � ^ Ak; B1 ^ � � � ^ Bl � zS
´

X
i;j

.�1/iCj ŒAi ; Bj � ^ A1 ^ � � � ^ �Ai ^ � � � ^ Ak ^ B1 ^ � � � ^ �Bj ^ � � � ^ Bl I

for k � 1, l D 0, i.e, B0 2 OM, by

ŒA1 ^ � � � ^ Ak; B0� zS ´
X
i;j

.�1/iCkAi .B0/ ^ A1 ^ � � � ^ �Ai ^ � � � ^ AkI

for k D 0, l � 1 by

ŒB0; A1 ^ � � � ^ Ak� zS ´
X
i;j

.�1/iAi .B0/ ^ A1 ^ � � � ^ �Ai ^ � � � ^ AkI

and for k D l D 0 by
ŒA0; B0� zS ´ 0:

Note that the above degree �1 Lie bracket on
^• TM is equivalent to the ordinary

degree zero Schouten bracket Œ _; _ �S on
^• TMŒ1�. We prefer to work with the former

structure and will refer to it as the odd Schouten bracket.
The cotangent sheaf of a manifold M is defined by �1

M
´ HomOM

.TM;OM/

and the de Rham algebra by�•
M

´ ^•�1
M

. Note that there is a natural isomorphism
�i

M
Š HomOM

.^iTM;OM/. The elements of�i
M

are called i -forms. To an element
f 2 OM there is an associated 1-form df defined by df .A/ ´ A.f /, for a vector
field A.

From a bivector field � , i.e., an element of
^2

TM, one obtains an operation

f _; _ g� W OM ˝ OM ! OM

defined by
ff; gg� ´ �df ^ dg:

This operation satisfies properties (i) and (iii) of § 3.1 since � is a bivector field.
Conversely, any bilinear operation OM ^ OM ! OM satisfying the properties (i)
and (iii) can be described by a bivector field in this way. The condition that f _; _ g�

satisfies the Jacobi identity is equivalent to Œ�; �� zS D 0. Thus the following definition
is equivalent to the one given in § 3.1.

Definition. A Poisson structure on a manifold M is a polyvector field � 2 ^2
TM

satisfying Œ�; �� zS D 0.
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3.3. Generalized Poisson structures. In fact one does not need to consider only
the solutions of Œ�; �� zS D 0 which are of degree two. One generalization of Poisson
geometry is to n-ary Poisson brackets. For n even, a polyvector field � 2 ^n

TM

defines a generalized Poisson structure if Œ�; �� zS D 0. The associated n-ary Poisson
bracket is defined analogously to the case n D 2; for a polyvector field � 2 ^n

TM

it is given by
ff1; : : : ; fng ´ �df1 ^ � � � ^ dfn:

The condition Œ�; �� zS D 0 translates into a generalized Jacobi identity. Notice that for
polyvector fields of a non-graded manifold the expression Œ�; �� zS identically vanishes
for n odd. It is possible to define a Poisson bracket with properties mimicking the
classical case also for n odd, but then the generalized Jacobi identity can not be
expressed through the Schouten bracket. See e.g. [2] and [25] for more on n-ary
Poisson brackets.

3.4. Bi-Hamiltonian structures. Let M be a manifold equipped with a pair of
Poisson brackets f _; _ g1 and f _; _ g2. Consider the bracket defined by their sum

f _; _ g ´ f _; _ g1 C f _; _ g2:

It is obviously skew symmetric and it satisfies the Leibniz property, but it does not
always satisfy the Jacobi identity. The Poisson brackets f _; _ g1 and f _; _ g2 are
called compatible if their sum satisfies the Jacobi identity and thus itself is a Poisson
bracket.

Definition. A pair of compatible Poisson structures is called a bi-Hamiltonian struc-
ture or a Poisson pair.

Let �1 and �2 be bivector fields corresponding to a pair of Poisson brackets, thus
they satisfy Œ�1; �1� zS D 0 and Œ�2; �2� zS D 0, respectively. The compatibility of the
Poisson brackets is equivalent to Œ�1 C�2; �1 C�2� zS D 0which in turn is equivalent
to Œ�1; �2� zS D 0. By introducing a formal parameter ¯, the above conditions are
together equivalent to

Œ�1 C �2¯; �1 C �2¯� zS¯
D 0:

Here the bracket is the linearization in ¯ of the odd Schouten bracket.

3.5. Poisson structures on formal graded manifolds. We now turn our attention to
graded manifolds. More accurately, we will consider only formal graded manifolds,
i.e., manifolds consisting of a formal neighborhood of a single point, and the grading
we consider is over Z. A graded vector space V can be naturally viewed as a formal
graded manifold by considering a formal neighborhood of the origin. We denote the
distinguished point by 0. Let feag be a homogeneous basis of V , and denote the
associated dual basis by ftag, with grading jtaj D �jeaj. The structure sheaf of V is

given by OV ´ 2

J• V � Š K�ta�.
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A graded Poisson bracket on a formal graded manifold V is a degree zero bilinear
operation f _; _ g W OV ^ OV ! OV satisfying the properties

(i) ff; gg C .�1/jf jjgjfg; f g (graded skew-symmetry),

(ii) .�1/jf jjhjff; fg; hggC .�1/jgjjf jfg; fh; f ggC .�1/jhjjgjfh; ff; ggg (graded Ja-
cobi identity),

(iii) ff; ghg D ff; gghC .�1/jf jjgjgff; hg (Leibniz property of ff; _ g).

We see that a graded Poisson structure is a graded Lie algebra on OV with the extra
property that the Lie bracket is a graded derivation in each argument with respect to
the graded commutative multiplication on OV .

3.6. Graded Poisson structures as bivector fields. The tangent sheaf TV of vector
fields of V is the OV -module of derivations of OV . The tangent sheaf is generated
over OV by the derivations f @

@ta g with @tb

@ta D ıa;b . We note that j @
@ta j D �jtaj. The

sheaf of polyvector fields is defined as
^• TV ´ J•

OV
.TV Œ�1�/:

We denote the generators s @
@ta by a, where s is a formal symbol of degree one. Thus

j aj D �jtaj C 1. With this notation we have
^• TV Š K�t;  �. The degree of a

homogeneous polyvector field

� D �
a1:::ai

b1:::bj
tb1 : : : tbj a1

: : :  ai

is given by
j�j D jtb1 j C � � � C jtbj j C j a1

j : : : j ai
j:

Note that
^• TV also has the grading described in § 3.2; we will refer to this grading

as the weight and to the former as the cohomological degree or simply as the degree.
When V is concentrated in degree zero these gradings coincide.

We define the odd Schouten bracket by

ŒA; B� zS ´ A 	 B C .�1/jAjjBjCjAjCjBjB 	 A
where we use the notation

A 	 B ´ @A

@ a

@B

@ta
:

Note that the with the above grading the Schouten bracket is a degree �1 (cohomo-
logical as well as weight) Lie bracket and if V is concentrated in degree zero, then
this definition coincides with (4). An interpretation of graded Poisson structures in
terms of bivector fields vanishing on the Schouten bracket, analogous to that of § 3.2
can be found in [3].

Definition. A graded Poisson structure on a formal graded manifold V is an element
� 2 ^2

TV of degree two satisfying Œ�; �� zS D 0.
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Remark. That we require the bivector field to be of degree two ensures that the
associated Poisson bracket is of degree zero.

3.7. Extended Poisson structures. When translated to differential geometry the
prop profile of Poisson geometry, to be discussed in detail in § 4.1, can be interpreted
[17] as polyvector fields � with the properties

(i) � 2 ^•�1
TV ,

(ii) j�j D 2,

(iii) Œ�; �� zS D 0,

(iv) �j0 D 0.

If we want such polyvector fields to generalize Poisson structures then Property
(iv) is not desirable. We propose the following definition.

Definition. An extended Poisson structure on a formal graded manifold V is an
element � 2 ^•�1

TV of degree two satisfying Œ�; �� zS D 0.

We call an extended Poisson structure pointed if it satisfies Property (iv). By
Remark 4.1.2 the prop profile essentially describes all extended Poisson structures.

Note that if V is concentrated in degree zero, then an extended Poisson structure
is an ordinary Poisson structure on V , i.e., in this case � 2 ^2

TV .

3.8. The family of brackets of an extended Poisson structure. The cotangent
sheaf of a formal graded manifold V is defined by�1

V ´ HomOV
.TV ;OV / and the

de Rham algebra by

�•
V ´ J•

OV
.�1

V Œ1�/:

A basis over OV of �1
V is given by fdtag, where  bdta ´ dta. b/ D ıa;b and

jdtaj D jtaj � 1.
To a polyvector field � D P

n�1 �n, with �n ´ �a1:::an.t/ a1
: : :  an

, we
associate a family of brackets as follows. We define an n-ary bracketLn W Nn

OV !
OV by

Ln.f1; : : : ; fn/ W D �ndf1 ^ � � � ^ dfn

D .�1/��a1:::an.t/.@a1
f1/ : : : .@an

fn/:

Here the sign .�1/� is given by


 D j@an
j.jf1j C � � � C jfn�1j C n � 1/C j@an�1

j.jf1j C � � �
� � � C jfn�2j C n � 2/C � � � C j@a2

j.jf1j C 1/:
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Definition. A vector space V together with a family flngn2N of graded skew sym-
metric maps ln W Nn

V ! V of degree 2�n is called an L1-algebra if the conditionX
rCsDnC1

.s; n � s/-unshuffles �


.�/ sgn.�/.�1/r.s�1/lr.ls.v�.1/; : : : v�.s//; v�.sC1/; : : : ; v�.n// (5)

is satisfied for all n 2 N. Here the sign 
.�/ is the sign appearing from the Koszul–
Quillen sign rule.

Proposition 3.8.1. The bracketsLn associated to a polyvector field � 2 ^•�1
TV as

above are graded skew commutative and have the graded Leibniz property in each
argument, i.e.,

Ln.f1; : : : ; fj �1; gh; fj C1; : : : fn/ D .�1/�1gLn.f1; : : : ; fj �1; h; fj C1; : : : fn/

C .�1/�2Ln.f1; : : : ; fj �1; g; fj C1; : : : fn/h

for all n � 1 and all 1 � j � n, where 
1 D jgj.jf1j C � � � C jfj �1j C 2 � n/ and

2 D jhj.jfj C1j C � � � C jfnj/. Moreover, the family of brackets fLngn�1 gives OV

the structure of L1-algebra if and only if � is an extended Poisson structure.

Proof. That the brackets Ln are graded skew symmetric is immediate from the defi-
nition. The Leibniz property is satisfied since Ln.f1; : : : ; fj �1; _ ; fj C1; : : : fn/ is a
vector field. We notice that

jLnj D j�a1:::an.t/j C .j@a1
j C � � � C j@an

j/ D j�nj � n D 2 � n:
Thus � is of degree two if and only if Ln is of degree 2� n. For the Poisson bracket
associated to a bivector fieldP the condition ŒP; P � zS D 0 is equivalent to the Poisson
bracket satisfying the Jacobi identity. That theLi satisfy the L1-conditions is proven
much in the same way. It is a tedious but straightforward computation to verify that
the brackets Ln associated to a polyvector field � of degree two satisfy equation (5)
if and only if Œ�; �� zS D 0.

This leads to another definition of extended Poisson structures on formal graded
manifolds, which by the preceding proposition is equivalent to the one we gave in
§ 3.7.

Definition. An extended Poisson structure on a formal graded manifold V is an L1-
algebra fLngn�1 on OV such that the brackets Ln have the Leibniz property in each
argument.

Remark. That a polyvector field gives an L1-algebra structure on the algebra of
functions was observed in [26] using the notion of higher derived brackets.
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3.9. Graded bi-Hamiltonian structures. A graded Bi-Hamiltonian structure on a
formal manifold V is defined analogously to the non-graded case; it is a pair �1 and
�2 of graded Poisson structures such that their sum �1 C�2 again is a graded Poisson
structure. In particular this implies that the associated Poisson brackets are a pair of
compatible graded Lie brackets. In Section 6 we propose a definition of extended
bi-Hamiltonian structures, obtained from the machinery of prop profiles, such that
the associated family of brackets is the strongly homotopy structure associated to a
pair of compatible Lie brackets.

4. Prop profiles I: Extracting the prop

Finding a prop profile of a geometric structure is done in two main steps. First one
extracts the fundamental part of the geometric structure and encodes it as a prop. Then
one computes a minimal resolution of the extracted prop. The aim of this section is to
extract the prop of bi-Hamiltonian structures. We begin by recalling the prop profile
of Poisson structures originally constructed in [17].

4.1. The prop profile of Poisson structures. Consider the formal graded manifold
associated to a vector space V . Recall that a Poisson structure on V is a degree
two bivector field P 2 ^• TV satisfying ŒP; P � zS D 0. To be precise we consider a
pointed Poisson structure. With the notation of the previous section we have

P D
X
n�1

P
a1a2

b1:::bn
tb1 : : : tbn a1

 a2
:

We can interpret this as a collection of degree zero maps

pn W Jn
V ! ^2

V

defined by
pn.eb1

ˇ � � � ˇ ebn
/ ! P

a1a2

b1:::bn
ea1

^ ea2
:

The condition ŒP; P � zS D 0 then translates into a sequence of quadratic relations of
these maps. Merkulov’s idea [17] was that this algebraic structure corresponds to
just the degree zero part of the resolution of a prop. This means that a certain part of
the structure is fundamental and the rest of the maps are higher homotopies, many of
which may not be visible in degree zero.

Kontsevich in [10] gave an interpretation of degree two (degree one if we consider^• TV Œ1�) vector fields Q satisfying ŒQ;Q� zS D 0 as L1-algebras. A vector field Q
given by

Q D
X
n2N

Qa
b1:::bn

tb1 : : : tbn a
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gives rise to a family of degree one maps

qn W ˇn V ! V

defined by
qn.eb1

ˇ � � � ˇ ebn
/ ! Qa

b1:::bn
ea:

The vector field satisfies ŒQ;Q� zS D 0 if and only if the maps qn give V Œ�1� the
structure of L1-algebra. Such vector fields are called homological. In fact a homo-
logical vector field corresponds to a part of the prop profile of Poisson structures. The
reason why it does not show in a classical Poisson structure is that it lies in the wrong
degree; degree one maps vanish on a vector space concentrated in degree zero. The
fundamental part of the L1-structure obtained from Q is the map q2, the rest of the
qn are higher homotopies. We denote the part of the vector field corresponding to
q2 by yQ. The properties of a Poisson structure is modeled by the vanishing of the
Schouten bracket. Considering this condition on the fundamental part only we have

Œ yQ; yQ� zS D 0; (6)

which is equivalent to q2 being a degree one Lie bracket on V . The maps fqng
satisfying conditions dictated by ŒQ;Q� zS D 0 give V the structure obtained from the
minimal resolution .Lie1/1 of the operad Lie1 of Lie algebras with the bracket of
degree one. Identifying q2 with

���� the operadic interpretation of (6) is

1 2

3��� ������ ��� C
2 3

1��� ������ ��� C
3 1

2��� ������ ��� D 0: (7)

Another fundamental part of the data of a Poisson structure is p1. We denote the
part of P corresponding to p1 by yP . In contrast to yQ it lies in a degree where one
can spot it in the case of classical Poisson structures, but for degree reasons no part
corresponding to the higher homotopies of p1 is visible. The condition

Œ yP ; yP � zS D 0 (8)

is equivalent to the map p1 defining a Lie coalgebra structure on V . Identifying p1

with ���� , the propic (though still operadic in its nature) depiction of (8) is

3

1 2

��� ���

��� ��� C
1

2 3

��� ���

��� ��� C
2

3 1

��� ���

��� ��� D 0: (9)

To obtain the maps pn with n � 2 we need to combine the fundamental parts yP
and yQ. Their relation is also modeled by the Schouten bracket

Œ yP ; yQ� zS D 0; (10)
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which translates to
1 2

1 2

��� ���

��� ���
�

1

2

1

2

��� ��� ��� C
2

1

1

2

��� ��� ��� �
1

2

2

1

��� ��� ��� C
2

1

2

1

��� ��� ��� D 0: (11)

We can simultaneously express the conditions (6), (8), and (10) by

Œ yP C yQ; yP C yQ� zS D 0:

To describe Poisson geometry as a minimal resolution of an algebraic object we need
to go beyond operads; since p1 has multiple outputs and q2 multiple inputs we need
a prop to model them.

Definition. The prop Lie1Bi is the quadratic prop F .M/=.R/ where M is the S-
bimodule given by M.1; 2/ D K

���� D 11 ˝ 12Œ�1�, M.2; 1/ D K���� D sgn2 ˝11,
and zero for other .m; n/. The relations R are given by (7), (9), and (11).

Remarks. (i) This prop is similar to the prop LieBi of Example 2.6.1 with the differ-
ence being that the bracket and cobracket lie in degrees differing by one, explaining
the 1 in the notation.

(ii) Actually, since the relations are dioperadic and constitute what is called a
distributive law, see §5.1, it suffices to encode the fundamental part of the geometric
structure as a dioperad. Its resolution is then easier to compute and is straightforwardly
extended to a resolution of the corresponding prop, see §5.6.

Merkulov called the generators and relations of Lie1Bi the genes and engineering
rules of Poisson geometry, together constituting its genome. By computing its mini-
mal resolution Lie1Bi1 explicitly and translating representations of it into polyvector
fields he obtained the following result.

Theorem 4.1.1 (Proposition 1.5.1 of [17]). There is a one-to-one correspondence
between representations of Lie1Bi1 in a dg vector space V and pointed extended
Poisson structures on the formal manifold associated to V .

To be precise, the above theorem holds if we consider the differential of the vector
space V to be part of the data of a representation. This will be explained in detail in
the case of bi-Hamiltonian structures.

Remark 4.1.2. That the Poisson structures considered in Theorem 4.1.1 are pointed,
i.e., vanish at the distinguished point, poses no real problem. Given an arbitrary non-
pointed Poisson structure on a formal graded manifold V , i.e., an element � 2 ^• TV

such that Œ�; �� zS D 0 and �j0 ¤ 0, it can be obtained from Lie1Bi1 by considering
representations in V ˚ K. For a formal variable x, viewed as a coordinate on K, we
have that x� 2 ^• TV ˚K vanishes at the distinguished point of V ˚ K and since x�
still satisfies Œx�; x�� zS D 0, it corresponds to a representation of Lie1Bi1.
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4.2. Extracting the prop of bi-Hamiltonian structures. A bi-Hamiltonian struc-
ture on the formal manifold associated to a vector space V is a pair of bivector fields
P1 and P2 satisfying ŒP1; P1� zS D 0, ŒP2; P2� zS D 0, and ŒP1; P2� zS D 0. We want
again to extract a prop encoding the fundamental part of this structure. As in the
previous paragraph we let yP1 and yP2 denote the parts of P1 and P2 corresponding to
maps V ! ^2

V . The conditions

Œ yP1; yP1� zS D 0 and Œ yP2; yP2� zS D 0 (12)

are equivalent to that the maps corresponding to yP1 and yP2 each give V the structure
of Lie coalgebra.

Definition. Let V be a vector space and let �1 and �2 be Lie cobrackets on V . We
say that the cobrackets are compatible if their sum�1 C�2 again is a Lie cobracket.
We denote the quadratic prop encoding this structure by CoLie2.

We depict the maps corresponding to yP1 and yP2 with B
�� �� and �

�� �� , respectively.
The compatibility condition Œ yP1; yP2� zS D 0 can then be illustrated by

B

�
3

1 2

�� ��

�� �� C B

�
1

2 3

�� ��

�� �� C B

�
2

3 1

�� ��

�� �� C �

B
3

1 2

�� ��

�� �� C �

B
1

2 3

�� ��

�� �� C �

B
2

3 1

�� ��

�� �� D 0;

which means that the pair . yP1; yP2/ givesV the structure of compatible Lie coalgebras.
We have a similar definition of compatible Lie algebras.

Definition. Let V be a vector space and let Œ _; _ �1 and Œ _; _ �2 be Lie brackets on V .
We say that the brackets are compatible if their sum Œ _; _ �1 C Œ _; _ �2 again is a Lie
bracket. We denote the quadratic operad encoding this structure by Lie2.

Remark. A pair of skew-symmetric brackets Œ _; _ �1 and Œ _; _ �2 on a vector space
V comprise a pair of compatible Lie algebras if and only if for all � 2 K the sum
Œ _; _ �1 C �Œ _; _ �2 is a Lie bracket.

The operad Lie2 was defined in [6]. Note that CoLie2 and Lie2 differ only in the
orientation of the defining graphs.

From the experience of constructing the prop profile of Poisson structures we
expect a homological vector field Q compatible with both P1 and P2 to be present,
i.e., satisfying ŒP1;Q� zS D 0 and ŒP2;Q� zS D 0. The compatibility of the fundamental
part yQ with yP1 and yP2 means that the maps corresponding to the pairs . yP1; yQ/ and
. yP2; yQ/ both give V the structure of Lie1Bi algebra.

To express these conditions with a single equation we introduce a formal para-
meter ¯. The conditions

Œ yQ; yQ� zS D 0; Œ yP1; yQ� zS D 0; Œ yP1; yP1� zS D 0; Œ yP2; yP2� zS D 0; and Œ yP1; yP2� zS D 0
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are then all subsumed by

Œ yQC yP1 C yP2¯; yQC yP1 C yP2¯�S¯
D 0: (13)

Here the bracket is the linearization in ¯ of the Schouten bracket. As in the case
of Poisson structures, the relations (13) are dioperadic and in order to make easier
the computation of the resolution of the corresponding prop we extract the dioperad
encoding these relations.

Definition. We define the quadratic dioperad Lie1
2Bi by

Lie1
2Bi D F .M/=.R/:

Here M D fM.m; n/gm;n�1 is the S-bimodule

M.m; n/ D

8̂<̂
:

11 ˝ .12Œ�1�/ if .m; n/ D .1; 2/;

.sgn2 ˚ sgn2/˝ 11 if .m; n/ D .2; 1/;

0 otherwise:

Denote a (1,2)-graph decorated with the natural basis element of M.1; 2/ by
���� and

(1,2)-graphs decorated with the basis elements of M.2; 1/ by B
�� �� and �

�� �� . The
relationsR D R.1; 3/tR.3; 1/tR.2; 2/ consist of the following subsetsR.i; j / �
F.2/.M/.i; j /:

R.1; 3/ W
1 2

3��� ������ ��� C
2 3

1��� ������ ��� C
3 1

2��� ������ ���;

R.3; 1/ W B

B
3

1 2

�� ��

�� �� C B

B
1

2 3

�� ��

�� �� C B

B
2

3 1

�� ��

�� �� ;
�

�
3

1 2

�� ��

�� �� C �

�
1

2 3

�� ��

�� �� C �

�
2

3 1

�� ��

�� �� ;

B

�
3

1 2

�� ��

�� �� C B

�
1

2 3

�� ��

�� �� C B

�
2

3 1

�� ��

�� �� C �

B
3

1 2

�� ��

�� �� C �

B
1

2 3

�� ��

�� �� C �

B
2

3 1

�� ��

�� �� ;

R.2; 2/ W
1 2

B

1 2

��� ���

�� ��
�

1

2
B

1

2

�� �� ��� C
2

1
B

1

2

�� �� ��� �
1

2
B

2

1

�� �� ��� C
2

1
B

2

1

�� �� ���;

1 2

�

1 2

��� ���

�� ��
�

1

2
�

1

2

�� �� ��� C
2

1
�

1

2

�� �� ��� �
1

2
�

2

1

�� �� ��� C
2

1
�

2

1

�� �� ���:

By this we have obtained the genome of bi-Hamiltonian structures. We are now
ready to plug it into the machinery of Koszul resolutions.
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5. Prop profiles II: Computing the resolution

In this section we will compute a minimal resolution of the prop associated to the
dioperad Lie1

2Bi constructed in the previous section. This is done by first computing
the dioperadic resolution and then extending it to a propic resolution. Recall from
§ 2.17 that one way of obtaining a resolution of a Koszul dioperad P is by com-
puting the Koszul dual codioperad P · and then apply the cobar construction, i.e.,
�.P ·/ �!� P . The differential of this resolution is determined by the decomposition
coproduct of P ·. This codioperad as well as its decomposition coproduct can most
readily be obtained by computing the Koszul dual dioperad P Š and then consider its
linear dual. We begin by presenting a tool for showing Koszulness.

5.1. Distributive laws. From a quadratic dioperad one can extract two operads.
First we note that to a dioperad P one can associate its opposite dioperad defined
by P op.m; n/ ´ P .n;m/. The composition product �op is obtained from � by
reversing the direction of all graphs. Thus to a quadratic dioperad P we can associate
two operads PU and PD defined by PU .n/ ´ P .1; n/ and PD.n/ ´ P op.1; n/.
Explicitly, for a quadratic dioperad P D F .M/=.R/withM concentrated inM.1; 2/
and M.2; 1/, we have

PU D F .M.1; 2//=.R.1; 3//; PD D F .M.2; 1/op/=.R.3; 1/op/;

where R.1; 3/ is the part of R in F.2/.M/.1; 3/, M.2; 1/op is the S-module given
by M.2; 1/op.2/ D M.2; 1/ and zero otherwise, and R.3; 1/op are the relations in
F.2/.M.2; 1/

op/ obtained from R.3; 1/ � F.2/.M/.3; 1/ by reversing the direction
of the decorated graphs.

We also note that to any operad P one can associate a dioperad zP defined by
zP .1; n/ ´ P .n/ and zP .m; n/ D 0 for m ¤ 1.

Next we define a product of dioperads introduced in [8]. We define a two-level
graph to be a graph such that any vertex is connected to at least one other vertex and is
connected to other vertices either only via its output edges or only via its input edges.
The vertices can thus be divided into two levels in a unique way. We say that the
vertices only connected via their outputs lie on the upper level and that the vertices
only connected via their inputs lie on the lower level. Further, we call a graph G
reduced if for all v 2 VG it is true that jinvj � 1, joutvj � 1, and joutvj C jinvj � 3.
Let P and Q be dioperads, we then define

P � Q ´
M

G2G
#;2
c;0

GhP V1 ;QV2i;

where G
#;2
c;0 is the subfamily of G

#
c;0 consisting of reduced two-level graphs and V1

and V2 are the vertices on the lower and upper level, respectively. We say that a
quadratic dioperad P is given by a distributive law if zPU � . zPD/

op D P .
The following theorem was proved by W. Gan.
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Theorem 5.1.1 (Theorem 5.9 of [8]). Let P be a quadratic dioperad. If PU and PD

areKoszul operadsand zPU �. zPD/
op.i; j / D P .i; j / for .i; j / D .2; 2/; .2; 3/; .3; 2/,

then zPU � . zPD/
op D P and P is Koszul.

See [8], [12], and [5] for details on distributive laws.

5.2. Koszulness of Lie1
2
Bi. Now we are ready to show the following result.

Proposition 5.2.1. The dioperad Lie1
2Bi is Koszul.

Proof. We observe that Lie1
2BiU D Lie1 and Lie1

2BiD D Lie2. It was shown in
[23] that the operad Lie2 is Koszul and it is well-known that Lie1 is Koszul. It
is straightforward to see that Lie1 � .Lie2/op.i; j / D Lie1

2Bi.i; j / for .i; j / D
.2; 2/; .2; 3/; .3; 2/; thus by Theorem 5.1.1 we obtain that Lie1

2Bi is Koszul.

5.3. The Koszul dual dioperad of Lie1
2
Bi

Proposition 5.3.1. The Koszul dual dioperad of Lie1
2Bi is

Lie1
2BiŠ D F .N /=.S/;

where

N.m; n/ D

8̂<̂
:

11 ˝ .sgn2Œ1�/ if .m; n/ D .1; 2/;

.12 ˚ 12/˝ 11 if .m; n/ D .2; 1/;

0 otherwise;

and S D S.1; 3/tS.3; 1/tS.2; 2/ consists of subsets S.i; j / � F .N /.i; j /. If we
denote the natural basis element of N.1; 2/ by

���� and the basis elements of N.2; 1/

by B
�� �� and �

�� �� , then S is given by

S.1; 3/ W
1 2

3��� ������ ��� �
2 3

1��� ������ ���;

1 2

3��� ������ ��� �
3 1

2��� ������ ���; (14)

S.3; 1/ W B

B
3

1 2

�� ��

�� �� � B

B
1

2 3

�� ��

�� �� ;
B

B
3

1 2

�� ��

�� �� � B

B
2

3 1

�� ��

�� �� ; (15)

�

�
3

1 2

�� ��

�� �� � �

�
1

2 3

�� ��

�� �� ;
�

�
3

1 2

�� ��

�� �� � �

�
2

3 1

�� ��

�� �� ; (16)

B

�
3

1 2

�� ��

�� �� � B

�
1

2 3

�� ��

�� �� ;
B

�
3

1 2

�� ��

�� �� � B

�
2

3 1

�� ��

�� �� ; (17)

B

�
3

1 2

�� ��

�� �� � �

B
3

1 2

�� ��

�� �� ;
B

�
1

2 3

�� ��

�� �� � �

B
1

2 3

�� ��

�� �� ;
B

�
2

3 1

�� ��

�� �� � �

B
2

3 1

�� ��

�� �� ; (18)



Prop profile of bi-Hamiltonian structures 223

S.2; 2/ W
1 2

B

1 2

��� ���

�� ��
C

1

2
B

1

2

�� �� ���;

1 2

B

1 2

��� ���

�� ��
�

2

1
B

1

2

�� �� ���;

1 2

B

1 2

��� ���

�� ��
C

1

2
B

2

1

�� �� ���;

1 2

B

1 2

��� ���

�� ��
�

2

1
B

2

1

�� �� ���; (19)

1 2

�

1 2

��� ���

�� ��
C

1

2
�

1

2

�� �� ���;

1 2

�

1 2

��� ���

�� ��
�

2

1
�

1

2

�� �� ���;

1 2

�

1 2

��� ���

�� ��
C

1

2
�

2

1

�� �� ���;

1 2

�

1 2

��� ���

�� ��
�

2

1
�

2

1

�� �� ���: (20)

Proof. For Lie1
2Bi D F .M/=.R/ we first observe that N D M_. Recalling the

pairing described in 2.18 we notice that .S/ is the orthogonal complement to .R/
with respect to this pairing.

Like Lie1
2Bi, its Koszul dual dioperad Lie1

2BiŠ is constructed from two operads.
The first one, .Lie1

2BiŠ/U , generated by
���� with relations (14) is the operad Com1 of

commutative algebras with the operation of degree minus one, Koszul dual to Lie1.
The second one, .Lie1

2BiŠ/D , generated by B
�� �� and �

�� �� with relations (15), (16), (17)
and (18) is the operad of totally compatible commutative algebras. This operad was
defined and shown to be Koszul dual to Lie2 in [6]. See [23] for a treatment of
operads encoding compatible structures. The relations (19) and (20) are orthogonal
to the compatibility relations of Lie 1-bialgebras and are related to the dioperad of
Frobenius algebras; the dioperad of Frobenius algebras is Koszul dual to the dioperad
of Lie bialgebras, see e.g. [8].

By straightforward graph calculations we obtain the following result.

Proposition 5.3.2. The dioperad Lie1
2BiŠ has as underlying S-bimodule

Lie1
2BiŠ.m; n/ D

8̂<̂
:
.1m ˚ � � � ˚ 1m/„ ƒ‚ …

m terms

˝ sgnnŒn � 1� if mC n � 3;

0 otherwise:

Explicitly, a K-basis for Lie1
2BiŠ.m; n/ is given by8̂̂̂̂
<̂
ˆ̂̂:

:::
B:::

B

�:::
�

1 2

n

1 2

iC1

iC2

m

��� ���
���

��
�� ��
��

�� ��

9>>>>=>>>>;
0�i�m�1

:

5.4. A minimal resolution of Lie1
2
Bi. We now have everything we need to describe

a minimal resolution of Lie1
2Bi explicitly.
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Theorem 5.4.1. The Koszul resolution Lie1
2Bi1 of the dioperad Lie1

2Bi is the quasi-
free dioperad on the S-bimodule E D fE.m; n/gm;n�1, where

E.m; n/ D

8̂<̂
:
.sgnm ˚ � � � ˚ sgnm/„ ƒ‚ …

m terms

˝1nŒm � 2� if mC n � 3;

0 otherwise:

We denote the element ofE corresponding to the basis element of Lie1
2BiŠ.m; n/with

i black operations by

i

1 ::: n

1
:::

m

��
��




��
�
��
��

��
��
��
� 


��

�� 	
:::

B:::
B

�:::
�

1 2

n

1 2

iC1

iC2

m

��� ���
���

��
�� ��
��

�� ��

:

The differential of Lie1
2Bi1 is then given by

ı W i

1 ::: n

1
:::

m

��
��




��
�
��
��

��
��
��
� 


��

�� 7!
X

1�k�n
0�j �m�1

2�j Ck�mCn�2
i1Ci2Di

.k;n�k/-shuffles �
.j;m�j /-shuffles �

.�1/sgn.�/Cj.m�j /

i2

�.j C1/
:::

�.m/

�.kC1/::: �.n/

i1

�.1/
:::

�.j /

�.1/ ::: �.k/

����
���


����

�������
 ���

����

����
���



����
 ���

����

:

Proof. From the Koszulness of Lie1
2Bi it follows that Lie1

2Bi1 D �.Lie1
2Bi·/

is a minimal quasi-free resolution of Lie1
2Bi. The cobar construction is given by

�.Lie1
2Bi·/ D F .†Lie1

2Bi·/. We observed in § 2.18 that for a dioperad P we
have .P ·/.s/.m; n/ Š †�s..P Š/.s/.m; n//

_. Since Lie1
2Bi·.m; n/ is concentrated in

weight mC n � 2 it follows from Proposition 5.3.2 that

Lie1
2Bi·.m; n/ D .sgnm ˚ � � � ˚ sgnm/„ ƒ‚ …

m terms

˝1nŒm � 1�:

Setting E D †Lie1
2Bi· the first assertion of the theorem follows.

Since Lie1
2Bi has zero differential it follows that the differential ı of�.Lie1

2Bi·/
is fully determined by the decomposition coproduct of Lie1

2Bi·. Through tedious
but straightforward graph calculations one can determine the composition product of
Lie1

2BiŠ. Considering the linear dual of this product yields the differential ı.

5.5. The minimal resolution of Lie2. The minimal resolution of the operad Lie2

of compatible Lie algebras will play an important role in the interpretation of bi-
Hamiltonian structures on formal graded manifolds as algebraic structures on the
structure sheaf. We get it for free from the preceding theorem since Lie2 D Lie1

2BiD .
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Corollary 5.5.1. The minimal resolution .Lie2/1 of the operad Lie2 of pairs of
linearly compatible Lie algebras is the quasi-free operad on the S-module E D
fE.n/gn�2 where

E.n/ D

8̂<̂
:

sgnn ˚ � � � ˚ sgnn„ ƒ‚ …
n copies

Œn � 2� if n � 2;

0 otherwise:

Denote the natural basis of E.n/ (cf. Theorem 5.4.1) by

i

1 : : : n

��
��




��
�
��
��

; 0 � i � n � 1:

The differential of .Lie2/1 is then given by

ı W i

1 : : : n

��
��




��
�
��
��

7!
X

2�k�n�1
i1Ci2Di

.k;n�k/-shuffles �

.�1/sgn.�/C.k�1/.n�kC1/

i1

�.k/:::�.1/

i2

�.n/:::�.kC1/

��
��

��
�


��

��

��
��

��
�

��
��

��
�

 :

Algebras over the operad .Lie2/1 are defined as follows.

Definition. A dg vector space V together with a family filngn2N;1�i�n of maps
iln W ^n

V ! V of degree 2 � n is called an L21-algebra if the following condition
is satisfied for all n; k 2 N with 2 � k � nC 1X

rCsDnC1
iCj Dk

.s; r � 1/-unshuffles �


.�/ sgn.�/.�1/r.s�1/
ilr.jls.v�.1/; : : : v�.s//; v�.sC1/; : : : ; v�.n//:

Here the sign 
.�/ is the sign appearing from the Koszul–Quillen sign rule.

Remark. Note that the subfamilies f1lngn2N and fnlngn2N both are L1-algebras
sharing the same differential 1l1. The rest of the brackets model the higher homotopies
of the compatibility of the brackets 1l2 and 2l2. If these two are the only non-zero
brackets, then an L21-algebra is a pair of compatible Lie algebras.

Remark. As pointed out by the referee, a family of morphisms fklngn2N;1�k�n is
an L21-algebra if and only if for all � 2 K the family of morphisms fLngn2N, where
Ln D Pn

kD1 �
k�1

kln, is an L1-algebra, i.e., an L21-algebra is a non-linear pencil
of L1-algebras.
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5.6. From dioperads to props. There exists a forgetful functor from the category
of properads to the category of dioperads which is denoted by U

dioperad
properad. It keeps the

same underlying S-bimodule but only allows composition along graphs of genus zero.
The functor U

dioperad
properad has a left adjoint which is denoted by F

properad
dioperad . For a quadratic

dioperad P D F
#

c;0.M/=.R/ we have F
properad

dioperad .P / D F
#

c .M/=.R/, where in the

latter case .R/ is the properadic ideal generated by R. The functor F
properad

dioperad is not
exact, Theorem 47 of [21], however in the same paper it is proved, Proposition 50,
that if a dioperad is given by a distributive law then a quasi-free resolution of the
dioperad is still a resolution when this functor is applied.

The step from properads to props is less troublesome. There exists a similar pair
of functors U

properad
prop and F

prop
properad. Also here it is true that for a quadratic properad

P D F
#

c .M/=.R/ we have F
prop

properad.P / D F #.M/=.R/, where .R/ is the propic
ideal generated by R. By § 7.4 of [24] the functor F

prop
properad is exact. Let F

prop
dioperad

denote the composition F
prop

properad B F
properad

dioperad . We obtain the following result.

Proposition 5.6.1. With the notation

Lie1
2Bi D F

#
c;0.M/.R/ and Lie1

2Bi1 D .F
#

c;0.E/; ı/

we have

F
prop

dioperad.Lie1
2Bi/ D F #.M/.R/ and F

prop
dioperad.Lie1

2Bi1/ D .F #.E/; ı/;
moreover, the latter is a quasi-free resolution of the former.

We will use the same notation for Lie1
2Bi when considering it as prop.

5.7. From props to wheeled props. There exist another pair of adjoint functors
U

prop
wheeledprop and F

wheeledprop
prop between props and wheeled props. Unfortunately the

latter functor is not exact; it has been shown that when applying F
wheeledprop

prop to the
propic resolution of Lie1Bi, new cohomology classes arise, Remark 4.2.4 of [20].
In the same paper it was shown though, that a minimal quasi free wheeled propic
resolution exists, Theorem 4.5.1, but neither the differential nor the S-bimodule by
which it is generated need necessarily be directly obtained from the propic resolution.
The explicit calculation of the wheeled resolution is a highly non-trivial problem
and has not yet been accomplished. Since Lie1Bi1 is present in Lie1

2Bi1 as a
subcomplex, consider e.g. all generators with only white operations, at least the same
difficulties arise when trying to extend the propic resolution of Lie1

2Bi.

6. Prop profiles III: Geometrical interpretation

In this section we first translate representations of Lie1
2Bi1 into polyvector fields.

We then propose a definition of extended bi-Hamiltonian structures on formal graded
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manifolds. Finally we give an interpretation of such structures as a family of brackets
comprising an L21-algebra on the structure sheaf of the manifold.

6.1. Representations of Lie1
2
Bi1 interpreted as polyvector fields. A representa-

tion of Lie1
2Bi1 in a dg vector space .V; d/ is a family of degree zero linear maps

fk�
n
m W V ˇn ! V ^mŒ2 �m�g m;n�1

mCn�3
0�k�m�1

satisfying certain quadratic relations. We set 0�
1
1 ´ �d and note that j0�1

1j D 1 D
2� 1. We construct polyvector fields on the formal graded manifold associated to V
from a representation of Lie1

2Bi1 as follows. For 0 � k � i � 1 let

k�
i
j ´ 1

iŠj Š
k�

a1:::ai

b1:::bj
tb1 : : : tbj a1

: : :  ai
:

Here the elements k�
a1:::ai

b1:::bj
2 K are given by

k�
j
i .eb1

ˇ � � � ˇ ebj
/ D k�

a1:::ai

b1:::bj
ea1

^ � � � ^ eai
: (21)

To assemble these polyvector fields into a single entity we introduce a formal
parameter ¯ of degree zero; we define an element � 2 ^• TV �¯� by

� ´
X
k�0

k�¯k; where k� ´
X

i�kC1
j �1

k�
i
j :

The role of the formal parameter ¯ is to distinguish polyvector fields of the same
weight from each other. Note that the part k� comes from exactly those maps k�

n
m

which are obtained from basis elements of Lie1
2Bi1 with k black operations, cf. The-

orem 5.4.1. We let Œ _; _ � zS¯
denote the linearization in ¯ of the Schouten bracket.

Note also that � satisfies k� 2 ^•�kC1
TV . In fact it is easy to see that the

elements with this property form a Lie subalgebra gV of
^• TV �¯�.

Conversely, to an element� 2 gV one can by reversing the above process associate
a family of maps fk�

n
mg.

Proposition 6.1.1. A family of maps

fk�
n
m W V ˇn ! V ^mgm;n�1

0�k�m�1

is a representation of Lie1
2Bi1 in V if and only if the corresponding formal power

series � 2 gV satisfies the properties

(i) j�j D 2,

(ii) Œ�; �� zS¯
D 0,

(iii) �j0 D 0.
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Proof. Consider a representation � W Lie1
2Bi1 ! EndV . Since the dioperad

Lie1
2Bi1 D �..Lie1

2Bi/·/ is quasi-free, the differential ı is fully determined by
the restriction to the weight one part, i.e., graphs with one vertex. That � is a repre-
sentation of dg dioperads is thus equivalent to that the diagram

†Lie1
2Bi·.m; n/

� ��

ı

��

Hom.V ˝n; V ˝m/

d

��
F.2/.†Lie1

2Bi·/.m; n/
� �� Hom.V ˝n; V ˝m/

commutes for all m; n � 1 with mC n � 3. Depicting the differential d by � and
the image under � of a decorated graph by the graph itself this is equivalent to that
for all m; n 2 N and all 0 � i � m � 1,

X
1�k�n

0�j �m�1
i1Ci2Di

.k;n�k/-shuffles �
.j;m�j /-shuffles �

.�1/sgn.�/Cj.m�j /

i2

�.j C1/
:::

�.m/

�.kC1/::: �.n/

i1

�.1/
:::

�.j /

�.1/ ::: �.k/

����
���


����

�������
 ���

����

����
���



����
 ���

����

D
X

.1;n�1/-shuffles �

i



�.1/

1 : : : m

�.2/ : : : �.n/

����
���


����

����
 ���

���� C
X

.m�1;1/-shuffles �

.�1/sgn.�/C.m�1/

�.m/




i

�.1/: : : �.m�1/

1 : : : n

����
���


����

����
 ���

����
:

(22)

This condition translates into a sequence of quadratic relations on the family of maps
fk�

n
m W V ˇn ! V ^mg corresponding to �.

Identifying the differential d and the k�
n
m decorating the vertices with the appro-

priate k�
m
n of (21) we first note that jk�m

n j D 2 is equivalent to jk�n
mj D 2�m. That

� satisfies �j0 D 0 is immediate since n � 1 for the maps k�
n
m. Now consider the

expression Œ�; ��S¯
. It is zero precisely when the coefficients of all monomials

tb1 : : : tbn a1
: : :  am

¯k :

in its expansion vanish. The condition Œ�; ��S¯
=0 is thus equivalent to that for all

m; n � 1, all 0 � i � m�1, all a1; : : : ; am, and all b1; : : : ; bn the following equality
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holds

X
0�j �m�1

1�k�n
i1Ci2Di

.j;m�j /-shuffles �
.k;n�k/-shuffles �

.�1/sgn.�/Cj.m�j /
i1�

a�.1/:::a�.j /e

b�.1/:::b�.k/

j ŠkŠ

i2�
a�.j C1/:::a�.m/

eb�.kC1/:::b�.n/

.m � j /Š.n � k/Š D 0: (23)

It is straightforward to check that (23) is satisfied if and only if (22) is.

Theorem B is now an immediate consequence of the preceding proposition which
also prompts us to make the following definition.

Definition. An extended bi-Hamiltonian structure on a formal graded manifold V is
an element � 2 gV of degree two satisfying Œ�; �� zS¯

D 0.

With this definition Theorem B can be reformulated as follows.

Theorem 6.1.2. There is a one-to-one correspondence between representations of
Lie1

2Bi1 in a dg vector space V and pointed extended bi-Hamiltonian structures on
the formal graded manifold associated to V .

Regarding non-pointed bi-Hamiltonian structures cf. Remark 4.1.2.

6.2. A conceptual interpretation. To make the correspondence between represen-
tations of Lie1

2Bi1 and polyvector fields in gV clearer we can use a result of Merkulov
and Vallette. In [21] they showed that there is a Lie algebra naturally associated to
the set of morphisms between a coprop and a prop.

Let .C ; �; ıC / be a dg coprop and .P ; �; ıP / a dg prop. The collection P C D
Hom.C ;P / of all homomorphisms of graded K-modules is an S-bimodule with
components Hom.C ;P /.m; n/ D Hom.C.m; n/;P .m; n// and the S-action given
by .�f �/.x/ D �f .��1x��1/� . The invariants .P C /S of this action are the S-
equivariant maps. The S-module P C has a prop structure, Lemma 2 of [21], de-
fined as follows. For a graph G and an element .G; Œf1 ˝ � � � ˝ fk� 2 GhP C i,
let G.f1; : : : ; fk/ W GhCi ! GhP i denote the morphism which applies fi to the
decoration of the corresponding vertex. The composition product of P C is given by

�G.f1 ˝ � � � ˝ fk/ ´ �G BG.f1; : : : ; fk/ B G�:

The differential ıP and codifferential ıC induce a differential @ given by @.f / D
ıP B f � .�1/jf jf B ıC . Together this gives P C a structure of dg prop called the
convolution prop. This structure descends to the invariants.

The total space of a dg prop .P ; �; dP / is defined by P tot ´ L
m;n P .m; n/.

There is a product p B q on P tot defined by the sum of all possible compositions
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along two-vertex graphs with p decorating the lower vertex and q the upper vertex
and along disconnected graphs. By Proposition 5 of [21] this product together with
the differential of P makes P tot into a dg associative algebra. Thus the commutator
Œ _; _ � of B gives P tot the structure of a dg Lie algebra.

Let Q be a Koszul prop with zero differential and let C denote the coprop †Q·.
Further let .V; d/ be a dg vector space and let P denote the endomorphism prop of
V . The dg prop morphisms Q1 ! P correspond to the S-invariants � 2 P C such
that

�ı D d�: (24)

When Q has zero differential, the differential ı of Q1 is completely determined by the
decomposition coproduct of C . That an element � 2 P C satisfies (24) is thus equiv-
alent to that it satisfies @.�/C 1

2
Œ�; �� D 0, where @ is induced only by the differential

d of P since C has no codifferential. In other words, a representation of Q in .V; d/
is a Maurer–Cartan element in the Lie algebra LQ.V / ´ ...P C /S/tot; Œ _; _ �; @/.
The underlying space of this Lie algebra is isomorphic to the underlying space of the
deformation complex of Q algebras. See [21] for more on the deformation complex.

Let QgV be the Lie subalgebra of gV consisting of all elements

� D
X

i;j �1;iCj �3
0�k�i�1

k�
i
j ´ k�

a1:::ai

b1:::bj
tb1 : : : tbj a1

: : :  ai
¯k :

The differential d of V translates to a vector field D D Da
b
tb a, where d.eb/ D

Da
b
ea, which in turns yields a differential ı¯ D ŒD; _� zS¯

on QgV . From an element

� 2 gV we obtain an element z� ´ � �D 2 QgV and we have that z� is a Maurer–
Cartan element if and only if Œ�; �� zS¯

D 0.
We define ˆ W LLie1

2
Bi.V / ! QgV to be the vector space morphism given by

ˆ.�/ D z� , where � is the formal power series given by the correspondence in § 6.1.
Proposition 6.1.1 is now a corollary of the following observation.

Proposition 6.2.1. The morphism ˆ W LLie1
2
Bi.V / ! QgV is an isomorphism of dg

Lie algebras.

6.3. RepresentationsofLie1
2
Bi1 innon-gradedvector spaces. If the vector space

V is concentrated in degree zero then the maps k�
n
m corresponding to a representation

of Lie1
2Bi1 vanish unless m D 2. Thus � D 0� C 1�¯ and 0� and 1� are bivector

fields. The condition Œ�; �� zS¯
D 0 is therefore equivalent to

Œ0�; 0�� zS C .Œ0�; 1�� zS C Œ1�; 0�� zS /¯ C Œ1�; 1�� zS¯2 D 0

and we observe that representations of Lie1
2Bi1 in V are in one-to-one correspon-

dence with classical bi-Hamiltonian structures on the formal manifold associated
to V . In particular this proves Theorem A.
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6.4. The family of brackets of an extended bi-Hamiltonian structure. To an
element � D P

k�0 k�¯k 2 gV with k� D P
i�kC1 k�i and

k�i ´ k�
a1:::ai .t/ a1

: : :  ai

we associate a family of brackets as follows. For 1 � k � n we define an n-ary
bracket kLn W Nn

OV ! OV by

kLn.f1; : : : ; fn/i W D k�1�ndf1 ^ � � � ^ dfn

D .�1/�k�1�
a1:::an.t/.@a1

f1/ : : : .@an
fn/:

Here the sign .�1/� is given by


 D j@an
j.jf1j C � � � C jfn�1j C n � 1/C j@an�1

j.jf1j C � � �
� � � C jfn�2j C n � 2/C � � � C j@a2

j.jf1j C 1/:

Theorem 6.4.1. The brackets kLn associated to a polyvector field � 2 gV as above
satisfy the Leibniz property in each argument, i.e.,

kLn.f1; : : : ; fj �1; gh; fj C1; : : : fn/ D .�1/�1gkLn.f1; : : : ; fj �1; h; fj C1; : : : fn/

C .�1/�2
kLn.f1; : : : ; fj �1; g; fj C1; : : : fn/h

where 
1 D jgj.jf1j C � � � C jfj �1j C 2 � n/ and 
2 D jhj.jfj C1j C � � � C jfnj/.
Moreover, the family of brackets fkLngn�1;1�k�n gives OV the structure of L21-
algebra if and only if � is of degree two and satisfies Œ�; �� zS¯

D 0.

Proof. The proof is completely analogous to that of Proposition 3.8.1.

This leads to another definition of extended bi-Hamiltonian structures on formal
graded manifolds, which by the preceding theorem is equivalent to the one we gave
in § 6.1.

Definition. An extended bi-Hamiltonian structure on a formal graded manifold V is
an L21-algebra fkLngn�1;1�k�n on OV such that the brackets kLn have the Leibniz
property in each argument.

Appendix: Details on G�-algebras

A.1. Operads and G
#1
c -algebras. An operad is often defined as the data

.P D fP .n/gn2N; fBn1;n2

i gn1;n22N
1�i�n1

; 1/;

where P is an S-module, 1 2 P .1/, and the maps

Bn1;n2

i W P .n1/˝ P .n2/ ! P .n1 C n2 � 1/
satisfy certain associativity, S-equivariance, and unit axioms, see e.g. [14].
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Proposition A.1.1. The above definition of an operad is equivalent to the definition
of a unital G

#1
c -algebra.

Proof. Let .P ; �; 	/ be a G
#1
c -algebra. We can give P an operad structure of the

above type as follows. Let G 2 G
#1
c be the two-vertex graph depicted in Figure 3.

We then define p1 Bn1;n2

i p2 ´ �G..p1 ˝S g1/ ˝ .p2 ˝S g2//, where p1 and p2

v2

v1

i iC1 iCn1�2 iCn1�1
: : :

1 2 i�1 iCn1 n1Cn2�2 n1Cn2�1
: : : : : :��������������

��
��

��
��

�

��
��

��
��

�

��������������

�������������������������

��������������������

��
��

��
��

�

��
��

��
��

�

��������������������

������������������������� :

Figure 3. A two-vertex graph.

are decorating v1 and v2, respectively, and g1 and g2 are labelings satisfying8̂<̂
:
g1 B inG.1/ D 1; : : : ; g1 B inG.i � 1/ D i � 1;
g2 B inG.i/ D 1; : : : ; g2 B inG.i C n2 � 1/ D n2;

g1 B inG.i C n2/ D i C 1; : : : ; g1 B inG.n1 C n2 � 1/ D n1:

The condition that�G D �G=H B�G
H for all pairs of a three vertex graphG and a two

vertex G
#1
c -admissible subgraph H implies that the Bn1;n2

i satisfy the associativity
axioms of an operad. The S-equivariance axioms follow from the S-equivariance
of � together with the structure of decorated graphs. Defining 1 ´ 	.1/, the unit
axioms of an operad are immediate from those of the G

#1
c -algebra.

Conversely if an S-bimodule has an operad structure then we can define a G
#1
c -

algebra structure by letting�H , forH a two-vertex graph, be given by the appropriate
Bn1;n2

i as above. Then for a graph G 2 G
#1
c , with k D jVG j > 2, we define

�G ´ �.:::.G=H1/=:::=Hk�1/ B � � � B �G=H1

H2
B �G

H1
;

where H1; : : :Hk�1 is an arbitrary sequence of two-vertex graphs such that Hi is a
G

#1
c -admissible subgraph of .: : : .G=H1/= : : : =Hi�1/. That the maps �G are well-

defined and satisfy �G D �G=H B �G
H is a consequence of the associativity and the

S-equivariance of the Bn1;n2

i . The unit is defined by 	.1/ ´ 1.

Similarly, by considering appropriate two-level graphs, one can show that the
definitions of G

#
c;0-, G

#
c -, and G#-algebras correspond to the classical definitions of

dioperads, properads, and props.
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A.2. Composition product of free G�-algebras. We keep the notation of § 2.4.
When describing the grafting of graphs we will denote G.G1; : : : Gk/ by zG.

The vertices of the graph zG are given by V zG ´ VG1
t � � � t VGk

, the internal
edges by E int

zG ´ E int
G1

t � � � tE int
Gk

tE int
G , and the external edges by E in

zG ´ E in
G and

Eout
zG ´ Eout

G . Defining the incidence morphism ˆ zG is more complicated.

For an edge e 2 E int
Gi

we define ˆ zG.e/ ´ ˆGi
.e/. Let e 2 E int

G be an edge with
ˆG.e/ D .vi ; vj / and let the vertices vi and vj ofG be decorated with fi ˝SGi ˝Sgi

and fj ˝SGj ˝Sgj , respectively. Via the local labeling ofG and the global labelings
of Gi and Gj , this edge connects two vertices, wi 2 VGi

and wj 2 VGj
of zG, as

follows. Let ei be the edge inEout
Gi

with fi BoutGi
.ei / D e. Note that this composition

is well defined since another representative, f 0
i ˝S G

0
i ˝S g

0
i of the decoration of

vi , will satisfy outG0
i

D �outGi
and f 0

i D fi�
�1 for some permutation � , implying

f 0
i B outG0

i
D fi B ��1 B � B outGi

D fi B outGi
. By composing further with

inGj
B gj , which by a similar argument also is well defined, we obtain an edge

ej D inGj
B gj B fi B outGi

.ei / 2 E in
Gj

. Let wi D ˆGi
.ei / and wj D ˆGj

.ej /, then
we set ˆ zG.e/ ´ .wi ; wj /:

For an external edge e 2 E in
zG with ˆG.e/ D vi let ei D inGi

B gi .e/ 2 E in
Gi

and

wi D ˆGi
.ei /. We define ˆ zG.e/ ´ wi . Similarly for an external edge e 2 Eout

zG
with ˆG.e/ D vi let ei D fi B outGi

.e/ 2 EGi
and wi D ˆGi

.ei /. We define
ˆ zG.e/ ´ wi . By the same arguments as above this is well defined. The global
labeling of the external edges is directly induced by the one of G, in zG ´ inG and
out zG ´ outG .

For three edges e; ei ; ej connected as above we will use the notation ein ´ ei ,
eout ´ ej , and .ei /con D .ej /con ´ e. We will use the same notation for two
connected edges.

wi

wj

ei

e

ej







con
		

out
		

con





The elements Qpa
b

are defined as follows. If Npa
b

D f a
b

˝S p
a
b

˝S g
a
b

is an element

decorating a vertex w 2 VGi
with jEout

w j D m and jE in
w j D n, then Qpa

b
D Qf a

b
˝S

pa
b

˝S Qga
b

, where the bijections Qf a
b

W Œm� ! Eout
w and Qga

b
W E in

w ! Œn� are given by

Qf a
b .i/ D

(
f a

b
.j / if f a

b
.j / 2 E int

Gi
;

f a
b
.j /con if f a

b
.j / 2 Eout

Gi
;

and

Qga
b .e/ D

(
ga

b
.e/ if e 2 E int

Gi
;

ga
b
.eout/ if e 2 EG \ .E in

w/con:
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