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Locally constant n-operads as higher braided operads

Michael A. Batanin�

Abstract. We introduce a category of locally constant n-operads which can be considered as
the category of higher braided operads. For n D 1; 2;1 the homotopy category of locally
constant n-operads is equivalent to the homotopy category of classical nonsymmetric, braided
and symmetric operads, respectively.
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1. Introduction

It is well known that contractible nonsymmetric operads detect 1-fold loop spaces,
contractible braided operads detect 2-fold loop spaces and that contractible symmetric
operads detect1-fold loop spaces. A natural question arises: is there a sequence of
groups G.n/ D fG.n/

k
gk�0 together with a notion of G.n/-operad, which we would

call n-braided operad, such that the algebras of a contractible such operad are n-fold
loop spaces? With some natural minor assumptions one can prove that the answer
to the above question is negative. This is because for such an operad A the quotient
Ak=G

.n/

k
is a K.G

.n/

k
; 1/-space. One can show, however, that such a quotient must

have a homotopy type of the space of unordered configurations of k points in Rn,
which is a K.�; 1/-space only for n D 1; 2;1.

In this paper we show that there is a category of operads which we can think of as
a correct replacement for the nonexistent category of G.n/-operads in all dimensions.
We call them locally constant n-operads. For n D 1; 2;1 the homotopy category
of locally constant n-operads is equivalent to the homotopy category of classical
nonsymmetric, braided and symmetric operads, respectively.

Here is a brief overview of the paper. In Section 2 we recall the definitions of
symmetric and braided operads. In Section 3 we introduce the category of n-ordinals
as higher dimensional analogue of the category of finite ordinals. Using this category
and its subcategory of quasi-bijections we define n-operads and quasisymmetric n-
operads in Section 4. In Section 5 we show that the category of quasi-bijections is
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closely related to the classical Fox–Neuwirth stratification of configuration spaces.
As a corollary we observe that the nerve of this category has homotopy type of
unordered configurations of points in Rn. We also prove two technical lemmas that
we use in Section 6 to relate different operadic notions. Finally in Section 7 we
introduce locally constant operads and compare them with symmetric, braided and
quasisymmetric operads. We also state our recognition principle for n-fold loop
spaces.

2. Symmetric and braided operads

For a natural number n we will denote by Œn� the ordinal

0 < 1 < � � � < n:

We denote an empty ordinal by Œ�1�. A morphism from Œn� ! Œk� is any function
between underlying sets. It can be order-preserving or not. It is clear that we then
have a category. We denote this category by �s . Of course, �s is equivalent to
the category of finite sets. In particular, the symmetric group SnC1 is the group of
automorphisms of Œn�.

Let � W Œn� ! Œk� be a morphism in �s and let 0 � i � k. Then the preimage
��1.i/ has a linear order induced from Œn�. Hence, there exists a unique object
Œni � 2 �s and a unique order-preserving bijection Œni � ! ��1.i/. We will call Œni �

the fiber of � over i and will denote it ��1.i/ or Œni �.
Analogously, given a composite of morphisms in �s ,

Œn�
��! Œl �

!�! Œk�; (1)

we will denote �i the i -th fiber of � ; i.e., the pullback

��1.!�1.i//

��

�i �� !�1.i/

��

�� Œ1�

�i

��
Œn�

� �� Œl �
! �� Œk�.

Let � be the subcategory of bijections in �s . This is a strict monoidal groupoid
with tensor product˚ given by ordinal sum and with Œ�1� as its unital object.

A right symmetric collection in a symmetric monoidal category V is a functor
A W �op ! V . The value of A on an object Œn� will be denoted An. Notice, that this is
not a standard operadic notation. Classically, the notation for AŒn� is AnC1 to stress
the fact that AnC1 is the space of operations of arity nC 1.

The following definition is classical May definition [7] of symmetric operad.

Definition 2.1. A (right) symmetric operad in V is a right symmetric collection A

equipped with the following additional structure:
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� a morphism e W I ! A0,

� for every order-preserving map � W Œn�! Œk� in �s a morphism

�� W Ak ˝ .An0
˝ � � � ˝ Ank

/! An;

where Œni � D ��1.i/.

They must satisfy the following identities:

(1) For any composite of order-preserving morphisms in �s

Œn�
��! Œl �

!�! Œk�;

the diagram

Ak ˝ Al�
˝ An�

0
˝ � � � ˝ An�

i
˝ � � � ˝ An�

k

��

' �� Ak ˝ Al1
˝ An�

0
˝ � � � ˝ Ali

˝ An�
i

˝ � � � ˝ Alk
˝ An�

k

��
Al ˝ An�

0
˝ � � � ˝ An�

i
˝ � � � ˝ An�

k

����
���

���
���

��
Ak ˝ An�

������
����

����
����

�

An

commutes. Here
Al�
D Al0

˝ � � � ˝ Alk
;

An�

i
D An0

i
˝ � � � ˝ A

n
mi
i

and
An�
D An0

˝ � � � ˝ Ank
:

(2) For an identity � D id W Œn�! Œn� the diagram

An ˝ A0 ˝ � � � ˝ A0

��

An ˝ I ˝ � � � ˝ I��

id
������

����
����

����
��

An

commutes.

(3) For the unique morphism Œn�! Œ0� the diagram

A0 ˝ An

��

I ˝ An
��

id�����
���

���
��

An

commutes.
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The following equivariance conditions are also required:

(1) For any order-preserving � W Œn� ! Œk� and any bijection � W Œk� ! Œk� the
following diagram commutes:

Ak ˝ .An�.0/
˝ � � � ˝ An�.k/

/
�� �� An

Ak ˝ .An0
˝ � � � ˝ Ank

/

A.�/˝�.�/

		

�� �� An,

A.�/

		

where �.�/ is the symmetry in V which corresponds to permutation � and
� D 	S .�I 1; : : : ; 1/ is the permutation, which permutes the fibers Œn0�; : : : ; Œnk�

according to � and whose restriction on each fiber is an identity.

(2) For any order-preserving � W Œn�! Œk� and any set of bijections �i W Œni �! Œni �,
0 � i � k, the following diagram commutes:

Ak ˝ .An0
˝ � � � ˝ Ank

/
�� �� An

Ak ˝ .An0
˝ � � � ˝ Ank

/

id˝A.�0/˝���˝A.�k/

		

�� �� An.

A.�0˚���˚�k/

		

We can give an alternative definition of symmetric operad [2].

Definition 2.2. A (right) symmetric operad in V is a right symmetric collection
A equipped with the following additional structure:

� a morphism e W I ! A0,

� for every order-preserving map � W Œn�! Œk� in �s a morphism

�� W Ak ˝ .An0
˝ � � � ˝ Ank

/! An;

where Œni � D ��1.i/.
They must satisfy the same conditions as in the definition 2.1 with respect to

order-preserving maps and identities but the equivariance conditions are replaced by
the following:

(1) For every commutative diagram in �s ,

Œn0�

�

��

� 0
�� Œk0�

�

��
Œn�

� �� Œk�,
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whose vertical maps are bijections and whose horizontal maps are order-pre-
serving the following diagram commutes:

Ak0 ˝ .An0
�.0/
˝ � � � ˝ An0

�.k/
/

��0 �� An

Ak ˝ .An0
˝ � � � ˝ Ank

/

A.�/˝�.�/

		

�� �� An,

A.�/

		

where �.�/ is the symmetry in V which corresponds to permutation �.

(2) For every commutative diagram in �s ,

Œn00�

�

��

� 0
�� Œn0�

	0

��
Œn�

	 �� Œk�,

where � , � 0 are bijections and 
, 
0 are order-preserving maps, the following
diagram commutes:

Ak ˝ .An0
0
˝ � � � ˝ An0

k
/

1˝A.� 0
0

/˝���˝A.� 0
k

/

��

��0
�� An0

A.� 0/

��
Ak ˝ .An00

0
˝ � � � ˝ An00

k
/ An00

Ak ˝ .An0
˝ � � � ˝ Ank

/

1˝A.�0/˝���˝A.�k/

		

�� �� An.

A.�/

		

Proposition 2.1. Definitions 2.1 and 2.2 are equivalent.

We leave this proposition as an exercise for the reader.
Let Br be the groupoid of braid groups. We will regard the objects of Br as

ordinals. There is a monoidal structure on Br given by ordinal sum on objects and
concatenation of braids on morphism. The ordinal Œ�1� is the unital object.

The following is the definition of braided operad from [4]. A right braided col-
lection in a symmetric monoidal category V is a functor A W Brop ! V . The value
of A on an object Œn� will be denoted An.

Definition 2.3. A right braided operad in V is a right braided collection A equipped
with the following additional structure:

� a morphism e W I ! A0,
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� for every order-preserving map � W Œn�! Œk� in �s a morphism

�� W Ak ˝ .An0
˝ � � � ˝ Ank

/! An;

where Œni � D ��1.i/.

They must satisfy the identities (1)–(3) from the definition 2.1 and the following
two equivariancy conditions:

(1) For any order-preserving � W Œn�! Œk� and any braid � W Œk�! Œk� the following
diagram commutes:

Ak ˝ .An�.0/
˝ � � � ˝ An�.k/

/
�� �� An

Ak ˝ .An0
˝ � � � ˝ Ank

/

A.�/˝�.�/

		

�� �� An,

A.�/

		

where �.�/ is the symmetry in V which corresponds to the braid � and � D
	B.�I 1; : : : ; 1/ is a braid obtained from � by replacing the i -th strand of � by
ni parallel strands for each i .

(2) For any order-preserving � W Œn� ! Œk� and any set of braids �i W Œni � ! Œni �,
0 � i � k, the following diagram commutes:

Ak ˝ .An0
˝ � � � ˝ Ank

/
�� �� An

Ak ˝ .An0
˝ � � � ˝ Ank

/

id˝A.�0/˝���˝A.�k/

		

�� �� An.

A.�0˚���˚�k/

		

3. n-ordinals and quasibijections

Definition 3.1. An n-ordinal consists of a finite set T equipped with n binary relations
<0; : : : ; <n�1 satisfying the following axioms:

(1) <p is nonreflexive;

(2) for every pair a, b of distinct elements of T there exists exactly one p such that

a <p b or b <p aI

(3) if a <p b and b <q c then a <min.p;q/ c.

Every n-ordinal can be represented as a pruned planar tree with n levels. For
example, the 2-ordinal

0 <0 1; 0 <0 2; 0 <0 3; 1 <1 2; 2 <1 3; 2 <1 3 (2)
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is represented by the pruned tree

����

0

��
1

��
2 3

.

See [1] for a more detailed discussion.

Definition 3.2. A map of n-ordinals

� W T ! S

is a map � W T ! S of underlying sets such that

i <p j in T

implies that

(1) �.i/ <r �.j / for some r � p, or

(2) �.i/ D �.j /, or

(3) �.j / <r �.i/ for r > p.

For every i 2 S the preimage ��1.i/ (the fiber of � over i ) has a natural structure
of an n-ordinal.

We denote by Ord.n/ the skeletal category of n-ordinals . The category Ord.n/

is monoidal. The monoidal structure ˚ is defined as follows. For two n-ordinals S

and T the n-ordinal S ˚T has as an underlying set the union of underlying sets of S

and T . The orders <k restricted to the elements of S and T coincide with respective
orders on S and T , and a <0 b if a 2 S and b 2 T . The unital object for this
monoidal structure is empty n-ordinal.

An n-ordinal structure on T determines a linear order (called total order) on the
elements of T as follows:

a < b iff a <r b for some 0 � r � n � 1:

We denote by ŒT � the set T with its total linear order. In this way we have a monoidal
functor

Œ�� W Ord.n/! �s:

This functor is faithful but not full. For example, no morphism from the 2-ordinal (2)
to the 2-ordinal 0 <1 1 can reverse the order of 1, 2 and 3

We also introduce the category of1-ordinals Ord.1/.

Definition 3.3. An1-ordinal consists of a finite set T equipped with a sequence of
binary relations <0, <�1, <�2, … satisfying the following axioms:

(1) <p is nonreflexive;
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(2) for every pair a, b of distinct elements of T there exists exactly one p such that

a <p b or b <p aI
(3) if a <p b and b <q c then a <min.p;q/ c.

The definition of morphism between1-ordinals coincides with the Definition 3.2.
The category Ord.1/ is the skeletal category of1-ordinals. As for Ord.n/ we have
a functor of total order

Œ�� W Ord.1/! �s:

For a k-ordinal R, k � n we consider its .n � k/-th vertical suspension Sn�kR,
which is an n-ordinal with the underlying set R, and the order <m is equal to the order
<m�k on R (so <m is empty for 0 � m < n�k). We also can consider the horizontal
.n � 1/-suspension T n�kR, which is a n-ordinal with the underlying set R, and the
order <m is equal to the order on R (so <m is empty for k � 1 < m � n � 1).

The vertical suspension provides us with a functor S W Ord.n/! Ord.nC1/. We
also define an1-suspension functor Ord.n/! Ord.1/ as follows. For an n-ordinal
T its1-suspension is an1-ordinal S1T whose underlying set is the same as the
underlying set of T , and a <p b in S1T if a <nCp�1 b in T . It is not hard to see
that the sequence

Ord.0/
S��! Ord.1/

S��! Ord.2/
S��! � � � S��! Ord.n/ ��! � � � S1

��! Ord.1/

exhibits Ord.1/ as a colimit of Ord.n/.

Definition 3.4. A map of n-ordinals is called a quasibijection if it is a bijection of
the underlying sets.

Let Qn, 1 � n � 1, be the subcategory of quasibijections of Ord.n/. The total
order functor induces then a functor which we will denote by the same symbol:

Œ�� W Qn ! � :

Definition 3.5. A map � of n-ordinals 1 � n � 1 is called order-preserving if it
preserves the total orders in the usual sense, or, equivalently, only conditions 1 and 2

from the Definition 3.2 hold for � .

Lemma 3.1. For every morphism � W T ! S in Ord.n/, 1 � n � 1, there exists a
factorisation

T
��! T 0 
�! S;

where � is a quasibijection, � is order-preserving and � preserves total order on
fibers of �.
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Proof. For n D 1 this factorisation is trivial, since all maps of 1-ordinals are order-
preserving.

Let n D 2. Let � W T ! S be a map of 2-ordinals and let S D SŒk� be a
suspension of the 1-ordinal Œk�. Let T 0 be the 2-ordinal whose underlying set is the
same as that of T , whose only nonempty order is <1 and whose total order coincides
with ŒT �. So T 0 itself is a vertically suspended 1-ordinal. Now one can factorise the
map Œ�� W ŒT �! ŒS� in �s:

ŒT �
��! ŒT 0� 
�! ŒS�;

with � being total order-preserving and � a bijection which preserves the order on
the fibers of � [2]. Obviously, � can be considered as a map of 2-ordinals and it is
order-preserving. Let us check that � is also a map of 2-ordinals. Indeed, if i , j are
from the same fiber of � then � preserves their order. If i <0 j in T and they are from
different fibers, then there is no restriction on � since T 0 is a suspended 1-ordinal.
Finally, if i <1 j in T and they are from different fibers then �.i/ <1 �.j /; so
�.i/ <1 �.j / because � is order-preserving.

Finally, if S is an arbitrary 2-ordinal, then S D S1˚� � �˚Sk for some suspended
1-ordinals S1; : : : ; Sk and moreover,

� D �1 ˚ � � � ˚ �k W T D T1 ˚ � � � ˚ Tk ! S1 ˚ � � � ˚ Sk :

By applying the previous result to each �k we obtain a required factorisation of � .
The factorisation for n > 2 can be obtained similarly.

4. Quasisymmetric n-operads

We now recall the definition of pruned .n � 1/-terminal n-operad [1]. Since we do
not need other types of n-operads in this paper we will call them simply n-operads.
The notation Un means the terminal n-ordinal.

Let V be a symmetric monoidal category. For a morphism of n-ordinals � W T !
S the n-ordinal Ti is the fiber ��1.i/.

Definition 4.1. An n-operad in V is a collection AT , T 2 Ord.n/, of objects of V

equipped with the following structure:

� a morphism e W I ! AUn
(the unit),

� for every morphism � W T ! S in Ord.n/ a morphism

m� W AS ˝ AT0
˝ � � � ˝ ATk

! AT (the multiplication/:

They must satisfy the following identities:
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– for any composite T
�! S

!! R, the associativity diagram

AR ˝ AS�
˝ AT �

0
˝ � � � ˝ AT �

i
˝ � � � ˝ AT �

k

��

' AR ˝ AS0
˝ AT �

1
˝ � � � ˝ ASi

˝ AT �
i

˝ � � � ˝ ASk
˝ AT �

k

��
AS ˝ AT �

1
˝ � � � ˝ AT �

i
˝ � � � ˝ AT �

k

����
���

���
���

��
AR ˝ AT�

������
����

����
����

�

AT

commutes, where

AS�
D AS0

˝ � � � ˝ ASk
;

AT �

i
D AT 0

i
˝ � � � ˝ A

T
mi
i

;

and

AT�
D AT0

˝ � � � ˝ ATk
I

– for an identity � D id W T ! T the diagram

AT ˝ AUn
˝ � � � ˝ AUn

��

AT ˝ I ˝ � � � ˝ I��

id
������

����
����

����
���

AT

commutes;
– for the unique morphism T ! Un the diagram

AUn
˝ AT

��

I ˝ AT
��

id
�����

���
���

��

AT

commutes.

Let � W T ! S be a quasibijection and A be a pruned n-operad. Since a fiber of
� is the terminal n-ordinal Un, the multiplication

�� W AS ˝ .AUn
˝ � � � ˝ AUn

/! AT

in composition with the morphism

AS ! AS ˝ .I ˝ � � � ˝ I /! AS ˝ .AUn
˝ � � � ˝ AUn

/

induces a morphism
A.�/ W AS ! AT :

It is not hard to see that in this way A becomes a contravariant functor on Qn.
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Definition 4.2. We call a pruned n-operad A quasisymmetric if for every quasibijec-
tion � W T ! S the morphism

A.�/ W AS ! AT

is an isomorphism.

The desymmetrisation functor from symmetric to n-operads for finite n was de-
fined in [2] using pulling back along the functor Œ�� W Ord.n/ ! �s . It was shown
that this functor has a left adjoint which we call symmetrisation. We can obviously
extend these definitions to n D 1. By construction the desymmetrisation of a sym-
metric operad is a quasisymmetric n-operad for any n.

Let …Qn be the fundamental groupoid of Qn. A quasisymmetric operad provides,
therefore , a contravariant functor on …Qn.

Definition 4.3. A Qn-collection is a contravariant functor on Qn. A …Qn-collection
is a contravariant functor on …Qn.

Definition 4.4. A Qn-operad is a …Qn-collection A together with the following
structure:

� for every order-preserving map � W T ! S the usual operadic map

�� W AS ˝ .AT0
˝ � � � ˝ ATk

/! AT :

This collection of maps must satisfy the usual associativity and unitarity condi-
tions plus two equivariancy conditions:

– For every commutative diagram

T 0 � 0
��

��

S 0

��
T

� �� S ,

where vertical maps are quasi-bijections and horizontal maps are order-pre-
serving, the diagram

AS ˝ .AT0
˝ � � � ˝ ATk

/ ��

��

AT

��
AS 0 ˝ .AT 0

0
˝ � � � ˝ AT 0

k
/ �� AT 0

commutes.
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– For every commutative diagram

T
� 0

��

�

��

T 0

	0

��
T 00 	 �� S ,

where � , � 0 are quasi-bijections and 
, 
0 are order-preserving, the diagram

AS ˝ .AT 0
0
˝ � � � ˝ AT 0

k
/

��

�� AT 0

��
AS ˝ .AT0

˝ � � � ˝ ATk
/ AT

AS ˝ .AT 00
0
˝ � � � ˝ AT 00

k
/

		

�� AT 00

		

commutes.

Theorem 4.1. The category of Qn-operads is equivalent to the category of qua-
sisymmetric n-operads.

Proof. Obviously, every quasisymmetric n-operad is a Qn-operad. Let us construct
an inverse functor. Given a Qn-operad C we define a quasisymmetric operad A on an
n-ordinal T to be equal to CT . We have to define A on an arbitrary map of n-ordinals
� W T ! S .

Let us choose a factorisation of � according to Lemma 3.1.

Now we can define operadic multiplication by the following commutative dia-
gram:

AS ˝ .AT0
˝ � � � ˝ ATk

/
�� ��

1˝.˛�1
�1

˝���˝˛�1
�k

/

��

AT

AS ˝ .AT 0
0
˝ � � � ˝ AT 0

k
/

�� �� AT 0 .

˛�

		

The second equivariancy axiom implies that this definition does not depend on a
chosen factorisation. Suppose now that we have a composite

T
��! S

!�! R:
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It generates the following factorization diagram

T 000



		
			

			
		

T

��









 ��

���
��

� S

�
��

��
�� R

T 0

���
���

�

��
S 0

������

T 00

��

which in its turn generates the following huge diagram:

ARAS? AT ?
0

: : : AT ?
k

����
��
��
�

����
��

��
��

�
�� ARAS0

AT ?
0

: : : ASk
AT ?

k

����
��

��
��

�

ARAS0
?

AT ?
0

: : : AT ?
k

����
��
��
��
��
��
��

���
��

��
��

ARAS? A
T 0?

0
: : : A

T 0?
k

�����
��

��
��

����
��
��
��
��
��
��
��
��
��
��

�� ARAS0
A

T 0?
0

: : : ASk
A

T 0?
k

����
��
��
��
��
��
��
��
��
��
��
��

���
��

��
��

��
��

��
��

��

ARAS0? A
T 0?

0
: : : A

T 0?
k

����
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
�

AS0 AT ?
0

: : : AT ?
k

���
��
��
��
��
��
��
�

��

ARAT 0
0

: : : AT 0
k

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

equivariancy 1

ARAS0? A
T 00?

0
: : : A

T 00?
k

!

����
��
��
��
��
��
��
��
��
��
��

ARAS0
1

A
T 00?

0
: : : AS0

k
A

T 00?
k

���
��

��
��

��
��

��
��

��
��

��
��

�

AS0 A
T 0?

0
: : : A

T 0?
k

���
��
��
��
��
��
��
�

��

AS0 AT ?
0

: : : AT ?
k

���
��
��
��
��
��
��
�

ARAT0
: : : ATk

����
��
��
��
��
��
��

�����
���

���
�

AS0 A
T 00?

0
: : : A

T 00?
k

����
��
��
�

����
���

���
��

ARAT 00
0

: : : AT 00
k

������
����

����
����

��

AS A
T 0?

0
: : : A

T 0?
k

  ��
���

���
���

AT 00

associativity

!!  
  
  
 

��

ARAT 000
0

: : : AT 000
k

������
���

���
���

��

AT 0

equivariancy 1

��!
!!

!!
!!

AT 000

equivariancy 2

"""""
""
""
""

AT
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In this diagram we omit the symbol ˝ to shorten the notations. Then the central
region of the diagram commutes because of associativity of A with respect to order-
preserving maps of n-ordinals. Other regions commute either by one of equivariancy
conditions either by naturality either by functoriality. The commutativity of this
diagram means the associativity of A with respect to composition of maps of n-
ordinals.

5. The category of quasi-bijections and configuration spaces

It is clear that the category Qn is the union of connected components Qn.k/ where
k is the cardinality of the n-ordinals.

Theorem 5.1. (1) For a finite n the space N.Qn.k// has homotopy type of unordered
configuration spaces of k-points in Rn.

(2) The localisation functor

l2 W Q2 ! …Q2

induces a weak equivalence of the nerves.
(3) The groupoid …Q2 is equivalent to the groupoid of braids.
(4) The localisation functor

l1 W Q1 ! …Q1

induces a weak equivalence of the nerves.
(5) The groupoids …Qn, 3 � n � 1, are equivalent to the symmetric groups

groupoid.

Proof. We give a sketch of the proof. A detailed discussion can be found in [1], [3].
Consider the configuration space of ordered k-points in Rn:

Confk.Rn/ D f.x1; : : : ; xk/ 2 .Rn/k j xi ¤ xj if i ¤ j g:
It admits a so-called Fox–Neuwirth stratification.

Let
o

S
n�p�1
C denote the open .n � p � 1/-hemisphere in Rn, 0 � p � n � 1:

o

S
n�p�1
C D fx 2 Rn j x2

1 C � � � C x2
n D 1; xpC1 > 0; xi D 0 if 1 � i � pg:

Similarly,
o

Sn�p�1� D fx 2 Rn j x2
1 C � � � C x2

n D 1; xpC1 < 0; xi D 0 if 1 � i � pg:
Let uij W Confk.Rn/! Sn�1 be the function

uij .x1; : : : ; xk/ D xj � xi

kxj � xik :
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The Fox–Neuwirth cell corresponding to an n-ordinal T with ŒT � D Œk � 1� is a
subspace of Confk.Rn/,

FNT D fx 2 Confk.Rn/ j uij .x/ 2 o

S
n�p�1
C if i <p j in T;

uij .x/ 2 o

Sn�p�1� if j <p i in T g:
Each Fox–Neuwirth cell is an open convex subspace of .Rn/k . We also have

Confk.Rn/ D S
ŒT �DŒk�1�; �2Sk

�FNT :

Here �FNT means a space obtained from FNT by renumbering points according to
the permutation � .

Let Jn.k/ be the Milgram poset of all possible n-ordinal structures on the set
f0; : : : ; k� 1g [1]. The group Sk acts on Jn.k/ and the quotient Jn.k/=Sk is isomor-
phic to Qn.k/.

One can think of an element from Jn.k/ as a pair .T; �/ where T is an n-ordinal
and � is a permutation from Sk and .T; �/ > .S; �/ in Jn.k/ when there exists a
quasibijection � W T ! S and � � � D � .

We also can associate a convex subspace of the configuration space FN.T; �/ D
�FNT with every element of Jn.k/. Moreover, if .T; �/ > .S; �/ then FN.S; �/ is
on the boundary of the closure of FN.T; �/. Let us define

FN.T; �/ D S
.S;�/�.T;�/

FN.S; �/:

The spaces FN.T; �/ are contractible and, moreover, we have a functor

FN W J op
n .k/! Top:

We then have the following zig-zag of weak equivalences

N.J op
n .k// hocolim FN! colim FN ' Confk.Rn/:

The first statement of the theorem follows then from the quotient of the zig-zag above
by the action of the symmetric group. The second and the third statements are the
consequences of the fact that the space Confk.R2/ is the K.Brk; 1/-space. The
fifth statement follows from the fact that the fundamental group of Confk.Rn/ is
trivial for n > 3. Finally the fourth statement can be obtained using the formula
Q1 D colimn Qn.

We shall now, in Lemmas 5.1 and 5.2, make the equivalence between …Q2 and
Br more explicit. These results will then be used in Section 6 to relate different
operadic notions.

The total order functor Œ�� W Q2 ! � induces by the universal property a functor
s2 W …Q2 ! � .
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Let p W Br ! � be the canonical functor. The map p admits a section q, which
is not a homomorphism. For � 2 Sn we construct a braid q.�/ which, for i < j such
that �.i/ > �.j /, has a strand from i to �.i/ which goes over the strand from j to
�.j / and there is no crossing if � preserves the order of i and j .

Lemma 5.1. The composite

Q2

Œ����! � �! qBr

is a functor.
The functor induced by the universal property of …Q2,

b W …Q2 ! Br;

is an equivalence of groupoids.

Proof. To prove that qŒ�� is a functor we have to prove that it preserves composition.

We observe that in a composite of quasi-bijections of 2-ordinals T
��! S

��! R if
� reverses the total order of two elements i; j 2 T then � cannot reverse the order
of �.i/ and �.j /. So, the resulting overcrossings in the composite qŒ��qŒ�� are the
same as in qŒ� � ��.

To prove the second claim it is sufficient to check that the induced morphism of
groups

b W …Q2.SŒn � 1�; SŒn � 1�/! Brn

is an isomorphism.
It is obviously an epimorphism. So we have to prove that it is also a monomor-

phism.
For this it will be enough to prove that if a zig-zag

z W SŒn � 1� T Œn � 1�! SŒn � 1� � � � ! SŒn � 1�;

where each arrow is given by a permutation of two consecutive elements or an identity
permutation, is such that the corresponding braid b.z/ is trivial, then z is trivial in
…Q2.

This can be done if we prove that the morphisms in …Q2.SŒn � 1�; SŒn � 1�/,

N�i W SŒn � 1�
1 � T Œn � 1�

�i�! SŒn � 1�;

where the left arrow is given by an identity and the right arrow is given by permutation
�i which changes the order of i and i C 1, satisfy the classical Artin braid relations.
Then we can prove triviality of z using the same rewriting process as for b.z/.
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Let j > iC1 and choose m, l such that Œm�1�˚ Œl�1� D Œn�1� and i 2 Œm�1�,
j D mC 1. The following commutative diagram in Q2 proves that N�i N�j D N�j N�i :

SŒn � 1�

T Œn � 1�

"""""
""
""
""

����
���

���
���

�

�i

##############
T Œn � 1�

�i

$$###
###

###
###

%%������������

�j

��$
$$

$$
$$

$$

SŒn � 1� SŒm � 1�˚ SŒl � 1���

�j

��

�i

		

.�i ;�j / �� SŒn � 1�

T Œn � 1�

&&$$$$$$$$$

##############

�j ����
���

���
���

�
T Œn � 1�

$$###
###

###
###

�j

%%������������ �i

''"""""""""

SŒn � 1�

In this diagram all unnamed morphisms are identities on the underlying sets. The
morphism .�i ; �j / acts as �i on Œm � 1� and as �0 on Œl � 1�.

For the proof of the Yang–Baxter relations N�i N�iC1 N�i D N�iC1 N�i N�iC1 we should
consider the following commutative diagram in Q2, which expresses the morphism
N�iC1 N�i N�iC1:

T Œn � 1�

�i

((%%%
%%%

%%%
%%%

%

�i

��



&&
&&&

&&&
&&&

&&

))'
''

''
''

''
''

''
''

''
''

''
''

''
'

SŒn � 1� SŒn � 1�

T Œn � 1�

##(((((((((((

�iC1

��

��
�iC1

����
���

���
���

SŒi� ˚ SŒn � i � 2�

**&&&&&&&&&&&&&

�iC1

��

T Œn � 1�

�iC1

%%�����������

�iC1

$$(((
(((

(((
((

��

SŒi C 1� ˚ SŒn � i � 3�

$$(((
(((

(((
((



&&
&&&

&&&
&&&

&&
SŒi C 1� ˚ SŒn � i � 3�

		

�iC1�i

((%%%
%%%

%%%
%%%

%

SŒn � 1� T Œn � 1���

		

�� SŒn � 1� T Œn � 1�
�iC1�i �iC1

��

�iC1

		

��

++

SŒn � 1�

An analogous diagram (the mirror image of the above diagram) can be written for
N�i N�iC1 N�i . The relation follows from it immediately.
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So we have a commutative diagram of categories and functors

Q2

Œ�� )
))

))
))

))
�� …Q2

s2

��

b ��
Br

a
��

p
,,**
**
**
**
*

� ,

where c is an adjoint equivalence to b. Notice that all functors in this diagram are
strict monoidal functors.

Lemma 5.2. Let
z W S � � T

	�! R

be a zig-zag of quasi-bijections of n-ordinals such that

s2.z/ D �1 ˚ � � � ˚ �k :

Then there exist braids bi , 1 � i � k, such that p.bi / D �i , 1 � i � k, and

b.z/ D b1 ˚ � � � ˚ bk :

Proof. Our aim is to prove that there exist quasi-bijections �i W Ti ! Si D SŒni �,

i W Ti ! Ri D SŒni �, 1 � i � k, � W L

i Si ! S ,  W L
i Ri ! R, and

� W L
i Ti ! T such that the diagram

L
i Si

�

��

L
i Ti

L
i �i��

�

��

L
i 	i ��

L
i Ri

�

��
S T

��� 	 �� R

commutes and b.�/ D b./ D 	B.� I 1; : : : ; 1/ for a braid � on k strands. Then the
result will follow from an elementary observation that the braid

b.S/
b.�/�1

����!L
i

b.Si /

L
i b.�i /�1

�������!L
i

b.Ti /

L
i b.	

i
/������!L

i

b.Ri /
b.�/��! b.R/

is equal to L
i

b.Si /

L
i b.��1

i
/�������!L

i

b.Ti /

L
i b.	

i
/������!L

i

b.Ri /:

It is enough to proof the lemma for k D 2. The rest follows by induction. Also
without loss of generality we can assume that S D SŒn� and T D T Œn�. Now
p.S/ is the ordinal sum Œl �˚ Œm�, n D mC 1C 1, and the image of the restriction
of the map ��1
 on f0; : : : ; lg is f0; : : : ; lg, while the image of the restriction on
fl C 1; : : : ; mC l C 1g is fl C 1; : : : ; mC l C 1g.
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We put S1 D SŒl�, T1 D T Œl� and S2 D SŒm�, T1 D T Œm�. We have to construct
quasi-bijections

�i ; 
i W Ti ! Si ; i D 1; 2;

and also quasi-bijections

�;  W S1 ˚ S2 ! S; � W T1 ˚ T2 ! T;

which make the diagram

S1 ˚ S2

��

T1 ˚ T2
�1˚�2��

��

	1˚	2 �� S1 ˚ S2

��
S T

��� 	 �� S

(3)

commutative.
The quasibijection � is simply the identity. Let us describe �1. Let �.Œl�/ be the

image of the set f0; : : : ; lg in the ordinal Œn�. This image gets an induced order from Œn�

which makes it isomorphic to Œl �. Let �1 W �.Œl�/! Œl � be this unique isomorphism.
We define �1 as the composite

Œl �! �.Œl�/
1! Œl �:

Similarly, we define �2 as the composite

Œm�! �.Œm�/
2! Œm�;

where �.Œm�/ is the image of flC1; : : : ; mClC1g, and we give analogous definitions
for 
1 and 
2.

Finally, we define � by the formula

�.x/ D
´

��1
1 .x/ if x 2 ¹0; : : : ; lº;

��1
2 .x/ if x 2 ¹l C 1; : : : ; mC l C 1º:

We use a similar argument to define . The commutativity of the diagram (3) follows
from the definition.

6. Quasisymmetric n-operads vs symmetric and braided operads

Theorem6.1. The category of quasisymmetric 2-operads and the category of braided
operads are equivalent.

Proof. We first prove that the category of quasisymmetric 2-operads is equivalent to
the category whose objects are mixed 2-operads in the sense of the definition below
and whose morphisms are multiplications and units preserving morphisms of the
underlying braided collections.
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Definition 6.1. A mixed 2-operad in V is a right braided collection A equipped with
the following additional structure:

� a morphism e W I ! A0,

� for every order-preserving map � W Œn�! Œk� in �s a morphism

�� W Ak ˝ .An0
˝ � � � ˝ Ank

/! An;

where Œni � D ��1.i/.

They must satisfy the identities (1-3) from the definition of symmetric operad and the
following two equivariance conditions:

(1) For any two quasi-bijections of 2-ordinals � , � and two order-preserving maps
�; � 0 2 �s such that the diagram

ŒT 0�

Œ��

��

� 0
�� ŒS 0�

Œ��

��
T

� �� S

commutes in �s the following induced diagram commutes:

Ak0 ˝ .An0
�.0/
˝ � � � ˝ An0

�.k/
/

��0 �� An0

Ak ˝ .An0
˝ � � � ˝ Ank

/

A.b.�//˝�.�/

		

�� �� An,

A.b.�//

		

where �.�/ is the symmetry in V which corresponds to the permutation Œ��.

(2) For any two quasi-bijections � , � 0 and two order-preserving maps 
; 
0 2 �s

such that the diagram

ŒT 00�

Œ��

��

Œ� 0� �� ŒT 0�

Œ	0�

��
T

	 �� S

commutes in �s the following diagram commutes:

Ak ˝ .An0
0
˝ � � � ˝ An0

k
/

1˝A.b.� 0
0

//˝���˝A.b.� 0
k

//

��

��0
�� An0

A.b.� 0//

��
Ak ˝ .An00

0
˝ � � � ˝ An00

k
/ An00

Ak ˝ .An0
˝ � � � ˝ Ank

/

1˝A.b.�0//˝���˝A.b.�k//

		

�� �� An.

A.b.�//
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For a quasisymmetric 2-operad A we define a mixed 2-operad B by pulling back
along the equivalence c W Br ! …Q2. And vice versa, we produce a quasisymmetric
2-operad from a mixed 2-operad by pulling back along b W …Q2 ! Br . It is not
hard to check that this indeed gives the necessary equivalence of the corresponding
operadic categories. Now we will prove that the category of mixed 2-operads is
equivalent to the category of braided operads. Let A be an operad in the sense of
6.1. We have to check that A also satisfies the Fiedorowicz equivariance conditions.
Let us start from the second condition. For each �i let us choose a zigzag of 2L

morphisms in Q2 such that

�i D b.Ti

�1 � R1
i

�2�! R2
i  � � �  R2L

i

�2k��! Si /:

Obviously, such a zig-zag exists and L can be chosen independently on i . Then the
following square commutes for each odd j :

Œn�

Œ
L

i �
j

i
�

��

Œ
L

i �
j C1

i
�

�� Œn�

�

��
Œn�

� �� Œk�.

Hence, the application of the second equivariance condition of definition 6.1 L times
gives the second Fiedorowicz equivariance condition.

For the first equivariance condition we do an analogous construction by choosing
a presentation of the braid � as an image of a zigzag.

Let A be an operad in the sense of 2.3. We construct an operad B in the sense of
6.1 as follows. As a braided collection B coincides with A. Its multiplication is the
same as in A as well. The only nontrivial statement to check is that B satisfies the
equivariance conditions from Definition 6.1. To prove the second condition we use
Lemma 5.2.

It is obvious also that the first equivariance condition is satisfied in the following
special case. Let � 0 W T ! S 0 be an order-preserving map and let � W S 0 ! S be a
quasibijection. Apply Lemma 3.1 to produce a quasibijection �.�; � 0/ W T 0 ! T and
order-preserving map �.�; � 0/ W T ! S such that � 0 � � D �.�; � 0/ � �.�; � 0/. Then
b.�.�; � 0// D 	B.b.�/I 1; : : : ; 1/ and we can apply the first equivariance Fiedorow-
icz condition.

Then the first equivariance condition is satisfied in general because of the second
equivariance condition of the Definition 6.1 applied to the commutative diagram

ŒT 0�

Œ��

��

Œ�.�;� 0//� �� ŒT �

Œ��

��
ŒT �

Œ�� �� ŒS�.
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Theorem 6.2. The category of Qn-operads 3 � n � 1 and the category of sym-
metric operads are equivalent.

Proof. The proof is a repetition of the above proof with the simplification that
sn W …Qn ! � for 3 � n � 1 is an equivalence.

7. Locally constant n-operads

The quasisymmetric n-operads are defined in any symmetric monoidal category V .
But according to Theorems 6.1 and 6.2 they are different from symmetric operads
only when n D 1; 2. As we have seen before the main reason why quasisymmetric
operads collapse to symmetric operads for n > 2 is that the configuration space
Confk.Rn/ is simply connected and so localising with respect to quasi-bijections can
only produce a groupoid equivalent to � . The correct procedure, therefore, should be
to take the weak !-groupoid …1Qn and consider presheaves on it with values in V

as the category of collections. There are, however, considerable technical difficulties
with this approach.

Fortunately, the results of Cisinski [5] show a way around this problem by con-
sidering as the category of collections the category of locally constant functors from
Q

op
n to V . Pursuing this idea we give the following definition.

Definition 7.1. Let V be a symmetric monoidal category and W (weak equivalences)
be a subclass of its morphisms. A locally constant n-operad in .V; W/ is an n-operad
A in V such that for every quasibijection � W T ! S the morphism A.�/ W AS ! AT

is a weak equivalence.

Remark. We have chosen the name locally constant n-operads (which some people
prefer to call homotopically locally constant n-operads) for two reasons. First, we
would like our terminology to agree with the terminology of [5]. But a more important
reason is about philosophy. The notion of locally constant n-operad (and locally
constant functor) depends only on the class of weak equivalences but not on the choice
of homotopy theory in V . For example, if V is a symmetric monoidal category and
Iso is the class of all isomorphisms, a locally constant n-operad in .V; Iso/ is the
same as a quasisymmetric n-operad in V . So, the word ‘homotopical’ is a little bit
misleading. Compare this situation with the theory of homotopy limits developed
in [6]. We believe that a ‘true’ reason for this phenomenon is that homotopy limit
and locally constant functors are higher categorical rather than homotopical notions.
But the homotopy theory is helpful in computations. As far as we know a similar
argument is behind Cisinski’s choice of terminology.

An example of an interesting locally constant n-operad in the model category
of topological spaces which is not a quasisymmetric n-operad is the Getzler–Jones
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n-operad GJn constructed in [1] for all n <1. One can also construct an1-version
GJ1 by the formula GJ1

T D GJnxT , where <�n is the minimal nonempty relation in

the1-ordinal T , the n-ordinal xT has the same underlying set as T and the relation
<n�p�1 in xT coincides with the relation <�p in T .

Let V be a symmetric monoidal category equipped with a class of weak equiva-
lences W . We introduce the following notations:

� SO is the category of symmetric operads in V ;

� BO is the category of braided operads in V ;

� On is the category of n-operads in V ;

� QOn is the full subcategory of On of quasisymmetric n-operads in V ;

� LCOn is the full subcategory of On of locally constant n-operads in .V; W/.

Definition 7.2. A morphism of operads (in any of the categories above) is a weak
equivalence if it is a termwise weak equivalence of the collections. The homotopy
category of operads is the category of operads localised with respect to the class of
weak equivalences.

Let us describe the relations between the different categories of operads we deal
with in this paper. We have already done it for the case W D Iso in Section 6.

Let us fix a base symmetric monoidal model category V and let W be its class of
weak equivalences in the model category theoretic sense. Moreover, we will assume
that V satisfies the conditions from Section 5 of [1], which means that there is a model
structure on the category of collections transferable to the category of operads (see
[1] for the details).

For n D 1 the relationships between operadic categories above is simple. The
following categories are isomorphic to the category of nonsymmetric operads

O1 ' LCO1 ' QO1;

and we have a classical adjunction between nonsymmetric operads and symmetric
operads. All this is true on the level of homotopy categories.

For n D 2 we have the following diagram of categories and right and left adjoint
functors:

O2

Sym2 ��

L2

--+
++

++
++

++
++

SO
Des2

��

U2

��
LCO2

I2

		

K2 �� QO2
J2

��
B2 �� BO.
A2

��

F2

		

In this diagram the functor Des2 is right adjoint to Sym2 (see [1], [2] for the
construction). The functors I2 and J2 are natural inclusions. The functor K2 is left
adjoint to J2 and L2 is left adjoint to the composite J2 � I2. Using the theory of
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internal operads from [2] one can show that L2 on the level of collections is given by
the left Kan extension along the localisation functor l2 W Q2 ! …Q2:

L2.A/ D Lanl2
.A/: (4)

We have also the same formula for K2. The functor A2 is a right adjoint and B2 is a
left adjoint part of the equivalence constructed in Section 6. Finally, U2 is the functor
which produces a braided operad from a symmetric operad by pulling back along the
functor p W Br ! � and F2 is its left adjoint given by quotienting with respect to the
action of the pure braid groups .

Theorem 7.1. The homotopy category of locally constant 2-operads and the homo-
topy category of quasisymmetric 2-operads and the homotopy category of braided
operads are equivalent.

The functor of symmetrisation Sym2 can be factorised as L2 � B2 � F2.
A base space X is a 2-fold loop space (up to group completion) if and only if it is

an algebra of a contractible 2-operad , if and only if it is an algebra of a contractible
braided operad (Fiedorowicz’s recognition principle [4]).

Proof. Since …Q2 is a groupoid, the localisation functor l2 is locally constant in
the sense of [5], 1.14. By the formal Serre spectral sequence [5], Prop. 1.15, we
get that the homotopy left Kan extension along l2 is a left adjoint to the restriction
functor between homotopy categories of collections. The functor l2 induces a weak
equivalence of the nerves and so, by Quillen’s Theorem B, it is also aspherical in the
sense of [5], 1.4. So, by [5], Prop. 1.16, the homotopy left Kan extension along l2 is
an equivalence of homotopy categories of collections.

Taking into account the formula (4) we see that to prove the equivalence of homo-
topy categories of operads it is enough to show that for an n-operad A (1 � n � 1)
there exists a cofibrant replacement B.A/ such that the underlying Qn-collection of
B.A/ is cofibrant in the projective model structure.

Recall [1] that phn is the categorical symmetric operad representing the 2-functor
of internal pruned n-operads. In particular an n-operad A is represented by an operadic
functor QA W phn ! V �. If we forget about operadic structures then for any k � 0 we
will have a functor QAk W phn

k ! V . Take the bar-resolution B.L; L; C. QA//, where
.L; �; �/ is the monad on the functor category Œd.phn/; V � generated by restriction
and left Kan extension along the inclusion of discretisation d.phn

k/ of phn
k to phn

k

and C.A/ is the termwise cofibrant replacement of the underlying n-collection of A.
These functors for all k � 0 form an operadic functor B.A/ W phn ! V � and, hence,
determine an n-operad B.A/ which is a cofibrant replacement for A [2].

Since Bk.A/ is a bar-construction on cofibrant collection it is cofibrant in the
projective model category of functors. Recall also that there is a symmetric categor-
ical operad rhn representing the 2-functor of internal reduced n-operads [1] and a
projection p W phn ! rhn. A typical fiber (in a strict sense) of this projection over
an object w 2 rhn is a category with a terminal object s.w/. The map s assembles to
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the (nonoperadic) functor s W rhn ! phn, which is by definition a section of p and
is also a right adjoint to p. The counit of this adjunction is the identity and the unit
is the unique map to the terminal object s.w/.

The simple calculations with this adjunction show that the restriction functor s�
preserves the cofibrant objects for projective model structures and so s�.Bk.A// is
cofibrant.

There is also an inclusion j W J
op
n ! rhn [1]. It is not hard to see also that the

categories J
op
n .k/ and rhn

k are Reedy categories. Recall that the objects of rhn
k are

planar trees decorated by pruned n-trees (i.e., n-ordinals). One can choose the total
number of edges of n-trees in a decorated planar tree as a degree function and see
that each morphism decreases strictly this function.1

It follows from these considerations that the functor s�.Bk.A// satisfies the fol-
lowing property characterising cofibrant objects in the projective model categories
for functor categories over Reedy categories:

colim.s�.Bk.A//.w//! s�.Bk.A//.T / (5)

is a cofibration. Here the colimit is taken over the category of all w ! T , w ¤ T in
rhn

k . It was proved in [1] that J
op
n .k/ is cofinal in rhn

k . Exactly the same argument
shows that in the colimit (5) one can replace w 2 rhn

k
with the objects from J

op
n .k/.

And, therefore the restriction j �s�.Bk.A// is cofibrant as well.
The quotient functor q W J

op
n .k/ ! Q

op
n .k/ induces the restriction functor q�

on functor categories which is fully faithful. It follows from this that q� reflects
cofibrations. We observe that

q�.u.B.A// D j �s�.Bk.A//;

and so u.B.A// is cofibrant. Hence the first statement of the theorem is proved.
The statement about symmetrisation is obvious since Des2 D U2 � A2 � J2 � I2.

Finally, a contractible operad is locally constant, so the third statement follows from
the first statement, Theorem 8.6 from [1] and the fact that the functors U2, A2, J2, I2

preserve endomorphism operads.

For 3 � n � 1 the corresponding diagram is

On

Symn ��

Ln

����
���

���
���

���
���

SO
Des2

��

An

��
LCOn

In

		

Jn �� QOn.
Kn

��

Bn

		

1In fact, rhn
k is a poset, but we did not provide a proof of this fact in [1].
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Theorem 7.2. For 3 � n � 1 the category of symmetric operads is equivalent to
the category of quasisymmetric n-operads.

For 3 � n <1 a base space X is an n-fold loop space (up to group completion)
if and only if it is an algebra of a contractible n-operad.

The homotopy category of locally constant 1-operads, the homotopy category
of quasisymmetric1-operads and the homotopy category of symmetric operads are
equivalent.

A base space X is an infinite loop space (up to group completion) if and only if it is
an algebra of a contractible1-operad if and only if it is an algebra of a contractible
symmetric operad (May’s recognition principle [7]).

Proof. The proof is analogous to the proof of Theorem 7.1.

An interesting question which we do not consider here is the existence of model
structures on the various categories of operads. The results of [5] indicate that this
might be possible. But it is a subject for a future paper.

Acknowledgements. I would like to thank Denis-Charles Cisinski for his nice an-
swers [5] to my sometimes naive questions. I wish to express my gratitude to
C. Berger, I. Galvez, E. Getzler, V. Gorbunov, A. Davydov, R. Street, A. Tonks,
M. Weber for many useful discussions and to the anonymous referee for useful com-
ments concerning the presentation of the paper.

I also gratefully acknowledge the financial support of Scott Russel Johnson Memo-
rial Foundation, Max Plank Institut für Mathematik and Australian Research Council
(grant No. DP0558372).

References

[1] M. A. Batanin, Symmetrisation of n-operads and compactification of real configuration
spaces. Adv. Math. 211 (2007), 684–725. Zbl 1146.18003 MR 2323542 243, 245, 250,
251, 259, 260, 261

[2] M. A. Batanin, The Eckmann–Hilton argument and higher operads. Adv. Math. 217
(2008), 334–385. Zbl 1138.18003 MR 2365200 240, 245, 247, 259, 260

[3] C. Berger, Combinatorial models for real configuration spaces and En-operads. In Oper-
ads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp.
Math. 202,Amer. Math. Soc., Providence, RI, 1997, 37–52. Zbl 0860.18001 MR 1436916
250

[4] Z. Fiedorowicz, The symmetric bar construction. Preprint 1992.
http://www.math.ohio-state.edu/~fiedorow/ 241, 260

[5] D.-D. Cisinski, Locally constant functors. Math. Proc. Cambridge Philos. Soc. 147
(2009), 593–614. Zbl 05635886 MR 2557145 258, 260, 262

[6] W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, and J. H. Smith, Homotopy limit functors on
model categories and homotopical categories. Math. Surveys Monogr. 113, Amer. Math.
Soc., Providence, RI, 2004. Zbl 1072.18012 MR 2102294 258

http://www.emis.de/MATH-item?1146.18003
http://www.ams.org/mathscinet-getitem?mr=2323542
http://www.emis.de/MATH-item?1138.18003
http://www.ams.org/mathscinet-getitem?mr=2365200
http://www.emis.de/MATH-item?0860.18001
http://www.ams.org/mathscinet-getitem?mr=1436916
http://www.math.ohio-state.edu/~fiedorow/
http://www.emis.de/MATH-item?05635886
http://www.ams.org/mathscinet-getitem?mr=2557145
http://www.emis.de/MATH-item?1072.18012
http://www.ams.org/mathscinet-getitem?mr=2102294


Locally constant n-operads as higher braided operads 263

[7] J. P. May, The geometry of iterated loop spaces. Lectures Notes in Math. 271, Springer-
Verlag, Berlin 1972. Zbl 0244.55009 MR 0420610 238, 262

Received May 29, 2008; revised January 17, 2009

M.A. Batanin, Department of Mathematics, Macquarie University, NSW 2109, Australia

E-mail: mbatanin@ics.mq.edu.au

http://www.emis.de/MATH-item?0244.55009
http://www.ams.org/mathscinet-getitem?mr=0420610

	Introduction
	Symmetric and braided operads
	 n-ordinals and quasibijections
	Quasisymmetric n-operads
	The category of quasi-bijections and configuration spaces
	Quasisymmetric n-operads vs symmetric and braided operads
	Locally constant n-operads
	References

