J. Noncommut. Geom. 4 (2010), 265–279 DOI 10.4171/JNCG/55

Journal of Noncommutative Geometry © European Mathematical Society

R**-groups and geometric structure in the representation theory of** $SL(N)$

Jamila Jawdat and Roger Plymen

Abstract. Let F be a nonarchimedean local field of characteristic zero and let $G = SL(N)$ = $SL(N, F)$. This article is devoted to studying the influence of the elliptic representations of $SL(N)$ on the K-theory. We provide full arithmetic details. This study reveals an intricate geometric structure. One point of interest is that the R-group is realized as an isotropy group. Our results illustrate, in a special case, part (3) of the recent conjecture in [2].

Mathematics Subject Classification (2010)*.* 22E50, 46L80.

Keywords. Local field, special linear group, elliptic representations, L-packets, K-theory, reduced C*-algebra.

1. Introduction

Let F be a nonarchimedean local field of characteristic zero and let $G = SL(N)$ = $SL(N, F)$. This article is devoted to studying subspaces of the tempered dual of $SL(N)$ which have an especially intricate geometric structure, and to computing, with full arithmetic details, their K-theory. Our results illustrate, in a special case, part (3) of the recent conjecture in [2].

The subspace[s o](#page-13-0)f the tempered dual which are especially interesting for us contain *elliptic* representations. A tempered representation of $SL(N)$ is *elliptic* if its Harish-Chandra character is not identically zero on the elliptic set.

An element in the discrete series of $SL(N)$ is an isolated point in the tempered dual of $SL(N)$ and contributes one generator to K_0 of the reduced C*-algebra of $SL(N)$.

Now $SL(N)$ admits elliptic representations which are not discrete series: we investigate, with full arithmetic details, the contribution of the elliptic representations of SL(N) to the K-theory of the reduced C*-algebra \mathfrak{A}_N of SL(N).

According to [7], \mathfrak{A}_N is a C*-direct sum of fixed C*-algebras. Among these fixed algebras, we will focus on those whose duals contain elliptic representations. Let n be a divisor of N with $1 \le n \le N$ and suppose that the group \mathcal{U}_F of integer units admits a character of order n. Then the relevant fixed algebras are of the form admits a character of order n . Then the relevant fixed algebras are of the form

$$
C(\mathbb{T}^n/\mathbb{T},\mathfrak{K})^{\mathbb{Z}/n\mathbb{Z}}\subset \mathfrak{A}_N.
$$

Here, $\hat{\mathcal{R}}$ is the C*-algebra of compact operators on standard Hilbert space, $\mathbb{T}^{n}/\mathbb{T}$ is the quotient of the compact torus \mathbb{T}^n via the diagonal action of \mathbb{T} . The compact group \mathbb{T}^n/\mathbb{T} ar[ise](#page-13-0)s as the maximal compact subgroup of the standard maximal torus of the Langlands dual PGL (n, \mathbb{C}) . We prove (Theorem 3.1) that this fixed C*-algebra is strongly Morita equivalent to the crossed product

$$
C(\mathbb{T}^n/\mathbb{T})\rtimes\mathbb{Z}/n\mathbb{Z}.
$$

The reduced C^* -algebra \mathfrak{A}_N is liminal, and its primitive ideal space is in canonical bijection with the tempered dual of $SL(N)$. Transporting the Jacobson topology on the primitive ideal space, we obtain a locally compact topology on the tempered dual of $SL(N)$, see [5], 3.1.1, 4.4.1, 18.3.2.

Let \mathfrak{S}_n denote the C*-dual of $C(T^n/\mathbb{T}, \mathfrak{K})^{\mathbb{Z}/n\mathbb{Z}}$. Then \mathfrak{S}_n is a non-Hausdorff space, and has a very special structure as topological space. When n is [a p](#page-13-0)rime number ℓ , then \mathfrak{T}_ℓ will contain multiple points. When n is non-prime, \mathfrak{T}_n will contain not only multiple points, but also *multiple subspaces*. This crossed product C*-algebra is a noncommutative unital C*-algebra which fits perfectly into the framework of noncommutative geometry. In the tempered dual of $SL(N)$, there are connected compact non-Hausdorff spaces, laced with multiple subspaces, and simply described by crossed product C*-algebras.

The K-theory of the fixed C*-algebra is then given by the K-theory of the crossed product C*-algebra. To compute (modulo torsion) the K-theory of this noncommutative C^* -algebra, we apply the Chern character for discrete groups $[3]$. This leads to the cohomology of the *extended quotient* $(T^n/T)/(Z/nZ)$. This in turn leads to a problem in classical algebraic topology, namely the determination of the cyclic invariants in the cohomology of the n-torus.

The ordinary quotient will be denoted by $\mathfrak{X}(n)$:

$$
\mathfrak{X}(n) := (\mathbb{T}^n / \mathbb{T}) / (\mathbb{Z} / n \mathbb{Z}).
$$

This is a compact connected orbifold. Note that $\mathfrak{X}(1) = pt$. The orbifold $\mathfrak{X}(n, k, \omega)$ which appears in the following theorem is defined in Section 4. The notation is such that $\mathfrak{X}(n,n,1)$ is the ordinary quotient $\mathfrak{X}(n)$ and each $\mathfrak{X}(n,1,\omega)$ is a point. The highest common factor of *n* and *k* is denoted (n, k) .

Theorem 1.1. *The extended quotient* $(T^n/T)/(Z/nZ)$ *is a disjoint union of compact connected orbifolds:*

$$
(\mathbb{T}^n/\mathbb{T})/(\mathbb{Z}/n\mathbb{Z}) = \bigsqcup \mathfrak{X}(n,k,\omega)
$$

The disjoint union is over all $1 \leq k \leq n$ *and all* $n/(k, n)$ *th roots of unity* ω *in* \mathbb{C} *.*

We apply the Chern character for discrete groups [3], and obtain

Theorem 1.2. *The K-theory groups* K_0 *and* K_1 *are given by*

$$
K_0(C(\mathbb{T}^n/\mathbb{T}), \mathfrak{K})^{\mathbb{Z}/n\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} \simeq \bigoplus H^{\text{ev}}(\mathfrak{X}(n, k, \omega); \mathbb{C}),
$$

$$
K_1(C(\mathbb{T}^n/\mathbb{T}), \mathfrak{K})^{\mathbb{Z}/n\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} \simeq \bigoplus H^{\text{odd}}(\mathfrak{X}(n, k, \omega); \mathbb{C}).
$$

The direct sums are over all $1 \leq k \leq n$ and all $n/(k, n)$ th roots of unity ω in \mathbb{C} *.*

For the ordinary quotient $\mathfrak{X}(n)$ we have the following explicit formula (Theorems 6.1 and 6.3). Let $H^{\bullet} := H^{\text{ev}} \oplus H^{\text{odd}}$ and let ϕ denote the Euler totient.

Theorem 1.3. Let $\mathfrak{X}(n)$ denote the ordinary quotient $(\mathbb{T}^n/\mathbb{T})/(\mathbb{Z}/n\mathbb{Z})$. Then we *have*

$$
\dim_{\mathbb{C}} H^{\bullet}(\mathfrak{X}(n); \mathbb{C}) = \frac{1}{2n} \sum_{d|n, d \text{ odd}} \phi(d) 2^{n/d}.
$$

Theorem 1.1 lends itself to an interpretation in terms of representation theory. When $n = \ell$ a prime number, the elliptic representations of SL (ℓ) are discussed in Section 2. The extended quotient $(T^{\ell}/T)/(\mathbb{Z}/\ell Z)$ is the disjoint union of the ordinary quotient $\mathfrak{X}(\ell)$ and $\ell(\ell - 1)$ isolated points. We consider the ca[no](#page-13-0)nical projection π of the extended quotient onto the ordinary quotient:

$$
\pi\colon (\mathbb{T}^{\ell}/\mathbb{T})/\!/\!/\mathbb{Z}/\ell\mathbb{Z})\to \mathfrak{X}(\ell).
$$

The points τ_1,\ldots,τ_ℓ constructed in Section 2, are precisely the $\mathbb{Z}/\ell\mathbb{Z}$ fixed points in T^{ℓ}/T . These are ℓ points of reducibility, each of which admits ℓ elliptic constituents. Note also that, in the canonical projection π , the fibre $\pi^{-1}(\tau_j)$ of each point τ_j contains ℓ points. We may say that the extended quotient encodes, or provides a model of, reducibil[ity](#page-13-0). This is a very special case of the recent conjecture in [2].

When n is non-prime, we have points of reducibility, each of which admits elliptic constituents. In addition to the points of reducibility, there is a subspace of reducibility. There are continua of L-packets. Theorem 1.2 describes the contribution, modulo torsion, of all these L-packets to K_0 and K_1 .

Let the infinitesimal character of the elliptic representation ϵ be the cuspidal pair (M, σ) , where σ is an irreducible cuspidal representation of M with unitary central character. Then ϵ is a constituent of the induced representation $i_{GM}(\sigma)$. Let ϵ be the point in the Bernstein spectrum which contains the cuspidal pair (M, σ) . To conform to the notation in [2], we will write $E^* := \mathbb{T}^n / \mathbb{T}$, $W^* = \mathbb{Z}/n\mathbb{Z}$. The standard projection will be denoted

$$
\pi^{\mathfrak{s}}\colon E^{\mathfrak{s}}/\hspace{-0.1cm}/W^{\mathfrak{s}} \to E^{\mathfrak{s}}/W^{\mathfrak{s}}.
$$

The space of tempered representations of G determined by \approx will be denoted Irr^{temp} (G) ^{\sharp}, and the infinitesimal character will be denoted inf.ch.

Theorem 1.4. *There is a continuous bijection*

$$
\mu^{\mathfrak{s}}\colon E^{\mathfrak{s}}/\!\!/W^{\mathfrak{s}} \to \text{Irr}^{\text{temp}}(G)^{\mathfrak{s}}
$$

such that

$$
\pi^{\mathfrak{s}} = (\inf \text{ch.}) \circ \mu^{\mathfrak{s}}.
$$

This confirms, in a special case, part (3) *of the conjecture in* [2]*.*

In Section 2 of this article, we review elliptic representations of the special linear algebraic group $SL(N, F)$ over a p-adic field F. Section 3 concerns fixed C*-algebras and crossed products. The extended quotient $(T^n/T)/(Z/nZ)$ is computed in Section 4. The formation of the R-groups is described in Section 5. In Section 6 we compute the cyclic invariants in the cohomology of the n-torus.

We would like to thank Paul Baum for several valuable discussions, Anne-Marie Aubert for her careful reading of the manuscript, Kuok Fai Chao and the referee for several constructive comments.

2. The elliptic representations of $SL(N)$

Let F be a nonarchimedean local field of characteristic zero. Let G be a connected reductive linear group over F. Let $G = G(F)$ be the F-rational [poi](#page-13-0)nts of G. We say that an element x of G is *elliptic* if its centralizer is compact modulo the center of G. We let G^e denote the set of regular elliptic elements of G.

Let $\mathcal{E}_2(G)$ denote the set of equivalence classes of irreducible discrete series representations of G, and denote by $\mathcal{E}_t(G)$ be the set of equivalence classes of irreducible tempered representations of G. Then $\mathcal{E}_2(G) \subset \mathcal{E}_t(G)$. If $\pi \in \mathcal{E}_t(G)$, then we denote its character by Θ_{π} . Since Θ_{π} can be viewed as a locally integrable function, we can consider its restriction to G^e , which we denote by Θ^e_π . We say that π is elliptic if $\Theta_{\pi}^{e} \neq 0$. The set of elliptic representations includes the discrete series.
Here is a classical example where elliptic representations occur [1].

Here is a classical example where elliptic representations occur [1]. We consider the group $SL(\ell, F)$ with ℓ a prime not equal to the residual characteristic of F. Let K/F be a cyclic of order ℓ extension of F. The reciprocity law in local class field theory is an isomorphism

$$
F^{\times}/N_{K/F} K^{\times} \cong \Gamma(K/F) = \mathbb{Z}/\ell\mathbb{Z},
$$

where $\Gamma(K/F)$ is the Galois group of K over F. Let now $\mu_{\ell}(\mathbb{C})$ be the group of ℓ th roots of unity in C. A choice of isomorphism $\mathbb{Z}/\ell\mathbb{Z} \cong \mu_{\ell}(\mathbb{C})$ then produces a character κ of F^{\times} of order ℓ as follows:

$$
\kappa\colon F^\times\to F^\times/N_{K/F}K^\times\cong\mathbb{Z}/\ell\mathbb{Z}\cong\mu_\ell(\mathbb{C}).
$$

Let B be the standard Borel subgroup of $SL(\ell)$, let T be the standard maximal torus, and let $B = T \cdot N$ be its Levi decomposition. Let τ be the character of T defined by

$$
\tau := 1 \otimes \kappa \otimes \cdots \otimes \kappa^{\ell-1}
$$

and let

$$
\pi(\tau) := \mathrm{Ind}_{B}^{G}(\tau \otimes 1)
$$

be the unitarily induced representation of $SL(\ell)$.

Now $\pi(\tau)$ is a representation in the minimal unitary principal series of $SL(\ell)$. It has ℓ distinct irreducible elliptic components and the Galois group $\Gamma(K/F)$ acts simply transitively on the set of irreducible components. The set of irreducible components of $\pi(\tau)$ is an *L*-packet.

Let

$$
\pi(\tau) = \pi_1 \oplus \cdots \oplus \pi_\ell
$$

be the ℓ components of $\pi(\tau)$. The character Θ of $\pi(\tau)$, as character of a principal series representation, *vanishes on the elliptic set*. The character Θ_1 of π_1 on the elliptic set is therefore *cancelled out* by the sum $\Theta_2 + \cdots + \Theta_\ell$ of the characters of the relatives π_2,\ldots,π_ℓ of π_1 .

Let ω denote an ℓ th root of unity in $\mathbb C$. All the ℓ th roots are allowed, including $\omega = 1$. In the definition of τ , we now replace κ by $\kappa \otimes \omega^{\text{val}}$. This will create ℓ characters, which we will denote by $\tau_1, \ldots, \tau_\ell$, where $\tau_1 = \tau$. For each of these characters, the R-group is given as follows:

$$
R(\tau_j)=\mathbb{Z}/\ell\mathbb{Z}
$$

for all $1 \le j \le \ell$, and the induced representation $\pi(\tau_j)$ admits ℓ elliptic constituents.
If $P = MI$ is a standard parabolic subgroup of G then $i\alpha \ell(\sigma)$ will denote the

If $P = MU$ is a standard parabolic subgroup of G then $i_{GM}(\sigma)$ will denote the induced representation $\text{Ind}_{MU}^G(\sigma \otimes 1)$ (normalized induction). The R-group attached to σ will be denoted $R(\sigma)$ to σ will be denoted $R(\sigma)$.

Let $P = MU$ be the standard parabolic subgroup of $G := SL(N, F)$ described as follo[ws](#page-13-0). Let $N = mn$, let M be the Levi subgroup $GL(m)^n \subset GL(N, F)$ and let $M = \tilde{M} \cap SL(N, F)$.

We will use the framework, notation and main result in [6]. Let $\sigma \in \mathcal{E}_2(M)$ and let $\pi_{\sigma} \in \mathcal{E}_2(M)$ with $\pi_{\sigma}|M \supset \sigma$. Let $W(M) := N_G(M)/M$ denote the Weyl group of M, so that $W(M)$ is the symmetric group on n letters. Let

$$
\bar{L}(\pi_{\sigma}) := \{ \eta \in \hat{F}^{\times} \mid \pi_{\sigma} \otimes \eta \simeq w\pi_{\sigma} \text{ for some } w \in W \},
$$

$$
X(\pi_{\sigma}) := \{ \eta \in \hat{F}^{\times} \mid \pi_{\sigma} \otimes \eta \simeq \pi_{\sigma} \}.
$$

By [6], Theorem 2.4, the R-group of σ is given by

$$
R(\sigma) \simeq \bar{L}(\pi_{\sigma})/X(\pi_{\sigma}).
$$

We follow [6], Theorem 3.4. Let η be a smooth character of F^{\times} such that η^{n} $X(\pi_1)$ and $\eta^j \notin X(\pi_1)$ for $1 \le j \le n - 1$. Set

$$
\pi_{\sigma} \simeq \pi_1 \otimes \eta \pi_1 \otimes \eta^2 \pi_1 \otimes \cdots \otimes \eta^{n-1} \pi_1, \quad \pi_{\sigma} | M \supset \sigma,
$$
 (1)

with $\pi_1 \in \mathcal{E}_2(\mathrm{GL}(m)), \eta \pi_1 := (\eta \circ \det) \otimes \pi_1$. Then we have

$$
L(\pi_{\sigma})/X(\pi_{\sigma})=\langle \eta \rangle
$$

and so $R(\sigma) \simeq \mathbb{Z}/n\mathbb{Z}$. The elliptic representations are the constituents of $i_{GM}(\sigma)$ with π_{σ} as in equation (1).

3. Fixed algebras and crossed products

Let M denote the Levi subgroup which occurs in Section 2. Denote by $\Psi^1(M)$ the group of unramified unitary characters of M. Now $M \subset SL(N, F)$ comprises blocks x_1, \ldots, x_n with $x_i \in GL(m, F)$ and $\prod \det(x_i) = 1$. Each unramified unitary character $\psi \in \Psi^1(M)$ can be expressed as

$$
\psi: diag(x_1,\ldots,x_n) \to \prod_{j=1}^n z_j^{\text{val}(\det x_j)},
$$

with $z_1, z_2,..., z_n \in \mathbb{T}$, i.e., $|z_i| = 1$. Such unramified unitary characters ψ correspond to coordinates $(z_1 : z_2 : \cdots : z_n)$ with each $z_i \in \mathbb{T}$. Since

$$
\prod_{i=1}^{n} (zz_i)^{\text{val}(\det x_i)} = \prod_{i=1}^{n} z_i^{\text{val}(\det x_i)}
$$

we have *homogeneous* coordinates. We have the isomorphism

$$
\Psi^1(M) \cong \{ (z_1 : z_2 : \cdots : z_n) \mid |z_i| = 1, 1 \le i \le n \} = \mathbb{T}^n / \mathbb{T}.
$$

If M is the standard maximal torus T of SL(N) then $\Psi^1(T)$ is the maximal *compact* torus in the dual torus

$$
T^{\vee} \subset G^{\vee} = \text{PGL}(N, \mathbb{C}),
$$

where G^{\vee} is the Langlands dual group.

Let σ , π_{σ} , π_1 be as in equation (1). Let g be the order of the group of unramified characters χ of F^{\times} such that $(\chi \circ \det) \otimes \pi_1 \simeq \pi_1$. Now let

$$
E := \{ \psi \otimes \sigma \mid \psi \in \Psi^1(M) \}.
$$

The base point $\sigma \in E$ determines a homeomorpism

$$
E \simeq \mathbb{T}^n/\mathbb{T}, \quad (z_1^{\text{valodet}} \otimes \cdots \otimes z_n^{\text{valodet}}) \otimes \sigma \mapsto (z_1^g : \cdots : z_n^g).
$$

From this point onwards, we will require that the *restriction of* η to the group \mathcal{U}_F *of integer units is of order n.* Let $W(M)$ denote the Weyl group of M and let $W(M, E)$ b[e](#page-13-0) [t](#page-13-0)he subgroup of $W(M)$ which leaves E globally invariant. Then we have $W(M, E) = W(\sigma) = R(\sigma) = \mathbb{Z}/n\mathbb{Z}$.

Let $\mathcal{R} = \mathcal{R}(H)$ denote the C*-algebra of compact operators on the standard Hilbert space H. Let $\alpha(w, \lambda)$ denote normalized intertwining operators. The fixed C^{*}-algebra $C(E, \mathcal{R})^{W(M, E)}$ is given by

$$
\{f \in C(E,\mathfrak{K}) \mid f(w\lambda) = \alpha(w,\lambda\tau) f(\lambda) \alpha(w,\lambda\tau)^{-1}, w \in W(M,E)\}.
$$

This fixed C*-algebra is a C*-direct summand of the reduced C*-algebra \mathfrak{A}_N of $SL(N)$, see [7].

Theorem 3.1. Let $G = SL(N, F)$, and M be a Levi subgroup consisting of n blocks *of the same size* m. Let $\sigma \in \mathcal{E}_2(M)$ *. Assume that the induced representation* $i_{GM}(\sigma)$ *has elliptic constituents, then the fixed C*-algebra* $C(E, \mathcal{R})^{W(M, E)}$ *is strongly Morita equivalent to the crossed product* C^* -*algebra* $C(E) \rtimes \mathbb{Z}/n\mathbb{Z}$.

Proof. For the commuting algebra of $i_{MG}(\sigma)$, we have [12]

$$
\mathrm{End}_G((i_{MG}(\sigma)))=\mathbb{C}[R(\sigma)].
$$

Let w_0 be a generator of $R(\sigma)$, then the normalized intertwining operator $\alpha(w_0,\sigma)$ is a unitary operator of order n . By the spectral theorem for unitary operators, we [have](#page-13-0)

$$
\alpha(w_0, \sigma) = \sum_{j=0}^{n-1} \omega^j E_j
$$

where $\omega = \exp(2\pi i/n)$ and E_i are the projections onto the irreducible subspaces of the induced representation $i_{MG}(\sigma)$. The unitary representation

$$
R(\sigma) \to U(H), \quad w \mapsto \mathfrak{a}(w, \sigma)
$$

contains each character of $R(\sigma)$ countably many times. Therefore condition (***) in [10], p. 301, is satisfied. The condition $(**)$ in [10], p. 300, is trivially satisfied since $W(\sigma) = R(\sigma)$.

We have $W(\sigma) = \mathbb{Z}/n\mathbb{Z}$. Then a subgroup $W(\rho)$ of order d is given by $W(\rho) =$ $k\mathbb{Z}$ mod *n* with $dk = n$. In that case, we have

$$
\alpha(w_0,\sigma)|_{W(\rho)}=\sum_{j=0}^{n-1}\omega^{kj}E_j.
$$

We compare the two unitary representations

$$
\phi_1\colon W(\rho)\to U(H),\quad w\mapsto \alpha(w,\sigma)|_{W(\rho)},
$$

$$
\phi_2\colon W(\rho)\to U(H),\quad w\mapsto \mathfrak{a}(w,\rho).
$$

Each representation contains every character of $W(\rho)$. They are *quasi-equ[iv](#page-13-0)alent* as in [10]. Choose an increasing sequence (e_n) of finite-rank projections in $\mathcal{L}(H)$ which converge strongly to I and commute with each projection E_i . The compressions of ϕ_1, ϕ_2 to e_n H remain quasi-equivalent. Condition (*) in [10], p. 299, is satisfied.

All three conditions of [10], Theorem 2.13, are satisfied. We therefore have a strong Morita equivalence

$$
(C(E) \otimes \mathfrak{K})^{W(M,E)} \simeq C(E) \rtimes R(\sigma) = \mathbb{C}(E) \rtimes \mathbb{Z}/n\mathbb{Z}.
$$

W[e](#page-13-0) will need a special case of the Chern character for discrete [g](#page-13-0)r[oups](#page-13-0) [3].

Theorem 3.2. *We have an isomorphism*

$$
K_i(C(E) \rtimes \mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C} \cong \bigoplus_{j \in \mathbb{N}} H^{2j+i}(E/\!/\!/\mathbb{Z}/n\mathbb{Z}); \mathbb{C})
$$

with $i = 0, 1$ *, where* $E/(Z/nZ)$ *denotes the extended quotient of* E *b[y](#page-13-0)* Z/nZ *.*

When N is a prime number ℓ , this r[es](#page-13-0)ul[t](#page-13-0) [alr](#page-13-0)eady appeared in [8], [10].

4. The formation of the fixed sets

Extended quotients were introduced by Baum and Connes [3] in the context of the Chern character for discrete groups. Extended quotients were used in [9], [8] in the context of the reduced group C*-algebras of GL(N) and SL(ℓ) where ℓ is prime. The results in this section extend results in [8], [10].

Definition 4.1. Let X be a compact Hausdorff topological space. Let Γ be a finite *abelian* group acting on X by a (left) continuous action. Let

$$
\widetilde{\mathbf{X}} = \{ (x, \gamma) \in \mathbf{X} \times \Gamma \mid \gamma x = x \}
$$

with the group action on \tilde{X} given by

$$
g \cdot (x, \gamma) = (gx, \gamma)
$$

for $g \in \Gamma$. Then the *extended quotient* is given by

 \sim

$$
X/\!\!/\Gamma:=\widetilde{X}/\,\Gamma=\bigsqcup_{\gamma\in\Gamma}X^\gamma/\,\Gamma
$$

where X^{γ} is the γ -fixed set.

The extended quotient will always contain the ordinary quotient. The standard projection $\pi: X/\Gamma \to X/\Gamma$ is induced by the map $(x, y) \mapsto x$. We note the following elementary fact, which will be useful later (in Lemma 5.2): let $y = \Gamma x$ be a point in X/Γ . Then the cardinality of the pre-image $\pi^{-1}y$ is equal to the order of the isotropy group $\Gamma_{\mathbf{x}}$:

$$
|\pi^{-1}y| = |\Gamma_x|.
$$

We will write $X = E = T^n / T$, where T acts diagonally on T^n , i.e.,

$$
t(t_1,t_2,\ldots,t_n)=(tt_1,tt_2,\ldots,tt_n),\quad t,t_i\in\mathbb{T}.
$$

We have the action of the finite group $\Gamma = \mathbb{Z}/n\mathbb{Z}$ on \mathbb{T}^n/\mathbb{T} given by cyclic permutation. The two actions of $\mathbb T$ and of $\mathbb Z/n\mathbb Z$ on $\mathbb T^n$ commute. We will write (k, n) for the highest common factor of k and n .

Theorem 4.2. *The extended quotient* $(\mathbb{T}^n / \mathbb{T}) / (\mathbb{Z}/n\mathbb{Z})$ *is a disjoint union of compact connected orbifolds:*

$$
(\mathbb{T}^n/\mathbb{T})/\!/(\mathbb{Z}/n\mathbb{Z}) \simeq \bigsqcup_{\substack{1 \leq k \leq n \\ \omega^{n/(k,n)}=1}} \mathfrak{X}(n,k,\omega).
$$

Here ω *is a* $n/(k, n)$ *th root of unity in* \mathbb{C} *.*

Proof. Let γ be the standard *n*-cycle defined by $\gamma(i) = i + 1$ mod *n*. Then γ^{k} is the product of n/d cycles of order $d = n/(n, k)$. Let ω be a dth root of unity in C. All dth roots of unity are allowed, including $\omega = 1$. The element $t(\omega) =$ $t(\omega; z_1,...,z_n) \in \mathbb{T}^n$ is defined by imposing the relations

$$
z_{i+k} = \omega^{-1} z_i,
$$

all suffices mod *n*. This condition allows n/d of the complex numbers z_1 ,..., z_n to vary freely, subject only to the condition that each z_j has modulus 1. The crucial point is that

$$
\gamma^k \cdot t(\omega) = \omega t(\omega)
$$

Then ω determines a γ^k -fixed set in \mathbb{T}^n/\mathbb{T} , namely the set $\mathfrak{Y}(n, k, \omega)$ of all cosets $t(\omega) \cdot \mathbb{T}$. The set $\mathfrak{Y}(n, k, \omega)$ is an $\left(\frac{n}{d} - 1\right)$ -dimensional subspace of fixed points.

Note that $\mathfrak{Y}(n, k, \omega)$, as a coset of the closed subgroup $\mathfrak{Y}(n, k, 1)$ in the compact Lie group E, is homeomorphic (by translation in E) to $\mathfrak{Y}(n, k, 1)$. The translation is by the element $t(\omega : 1, \ldots, 1)$. If ω_1, ω_2 are distinct dth roots of unity, then $\mathfrak{Y}(n, k, \omega_1), \mathfrak{Y}(n, k, \omega_2)$ are disjoint.

We define the quotient space

$$
\mathfrak{X}(n,k,\omega) := \mathfrak{Y}(n,k,\omega)/(\mathbb{Z}/n\mathbb{Z})
$$

and apply Definition 4.1.

 \Box

When $k = n$, we must have $\omega = 1$. In that case, the orbifold is the ordinary quotient: $\mathfrak{X}(n, n, 1) = \mathfrak{X}(n)$.

Let $(n, k) = 1$. The number of such k in $1 \le k \le n$ is $\phi(n)$. In this case, ω is
ath root of unity and $\mathcal{X}(n, k, \omega)$ is a point. There are *n* such roots of unity in \mathbb{C} an *n*th root of unity and $\mathcal{X}(n, k, \omega)$ is a point. There are *n* such roots of unity in \mathbb{C} . Therefore, the extended quotient $(\mathbb{T}^n/\mathbb{T})/(\mathbb{Z}/n\mathbb{Z})$ always contains $\phi(n)n$ isolated points.

Theorem 1.1 is a consequence of Theorems 3.1, 3.2 and 4.2. If, in Theorem [1.1](#page-5-0), we take *n* to be a prime number ℓ , then we recover the following result in [8], p. 30: the extended quotient $(\mathbb{T}^{\ell}/\mathbb{T})/(\mathbb{Z}/\ell\mathbb{Z})$ is the disjoint union of the ordinary quotient $\mathfrak{X}(\ell)$ and $(\ell - 1)\ell$ points.

5. The formation of the R**-groups**

We continue with the notation of Section 3. Let σ , π_{σ} , π_1 , η be as in equation (1). The *n*-tuple $t := (z_1, \ldots, z_n) \in \mathbb{T}^n$ determines an element $[t] \in E$. We can interpret $[t]$ as the unramified character

$$
\chi_t := (z_1^{\text{valodet}}, \dots, z_n^{\text{valodet}}).
$$

Let $\Gamma = \mathbb{Z}/n\mathbb{Z}$, and let $\Gamma_{[t]}$ denote the isotropy subgroup of Γ .

Lemma 5.1. *The isotropy subgroup* $\Gamma_{[t]}$ *is isomorphic to the R-group of* $\chi_t \otimes \sigma$ *:*

$$
\Gamma_{[t]} \simeq R(\chi_t \otimes \sigma).
$$

Proof. Let the order of $\Gamma_{[t]}$ be d. Then d is a divisor of n. Let γ be a generator of $\Gamma_{[t]}$. Then γ is a product of n/d disjoint d-cycles, as in Section 4. We must have $t = t(\omega)$ with ω a dth root of unity in $\mathbb C$. Note that $\gamma \cdot t(\omega) = \omega t(\omega)$. Then we have

$$
R(\chi_t \otimes \sigma) = \bar{L}(\chi_t \otimes \pi_{\sigma})/X(\chi_t \otimes \pi_{\sigma})
$$

= { $\alpha \in \widehat{F}^{\times} | w\pi_{\sigma} \simeq \pi_{\sigma} \otimes \alpha$ for some w in W }/X($\chi_t \otimes \pi_{\sigma}$)
= { $\omega^{\text{valodet}} \otimes \eta^{n/d}$ }
= $\mathbb{Z}/d\mathbb{Z}$
= $\Gamma_{[t]}$

since, modulo $X(\chi_t \otimes \pi_\sigma)$, the character $\eta^{n/d}$ has order d.

Lemma 5.2. *In the standard projection* $p: E/\Gamma \rightarrow E/\Gamma$ *, the cardinality of the fibre of* [*t*] *is the order of the R-group of* $\chi_t \otimes \sigma$.

Proof. This follows from Lemma 5.1.

 \Box

We will assume that σ is a *cuspidal* representation of M with unitary central character. Let ∞ be the point in the Bernstein spectrum of SL(N) which contains the cuspidal pair (M, σ) . To conform to the notation in [2], we will write $E^{\mathfrak{s}} :=$ T^n/T . $W^{\sharp} = \mathbb{Z}/n\mathbb{Z}$. The standard projection will be denoted

$$
\pi^{\mathfrak{s}}\colon E^{\mathfrak{s}}/\hspace{-0.1cm}/W^{\mathfrak{s}} \to E^{\mathfrak{s}}/W^{\mathfrak{s}}.
$$

The space of tempered representations of G determined by \approx will be denoted by Irr^{temp} $(G)^{\epsilon}$, and the infinitesimal character will be denoted *in f.ch.*

Theorem 5.3. *We have [a](#page-13-0) commutative diagram*

$$
E/\!\!/W^{\mathfrak{s}} \xrightarrow{\mu^{\mathfrak{s}}} \operatorname{Irr}^{\text{temp}}(G)^{\mathfrak{s}}
$$

$$
\pi^{\mathfrak{s}} \downarrow \qquad \qquad \downarrow \text{inf.ch.}
$$

$$
E/W^{\mathfrak{s}} \longrightarrow E/W^{\mathfrak{s}}
$$

in which the map μ^* *is a continuous bijection. This confirms, in a special case, part* (3) *of the conjecture in* [2]*.*

Proof. We have

$$
\mathbb{C}[R(\sigma)] \simeq \mathrm{End}_G(i_{GM}(\sigma)).
$$

This implies that the characters of the cyclic group $R(\sigma)$ parametrize the irreducible constituents of $i_{GM}(\sigma)$. This leads to a labelling of the irreducible constituents of $i_{GM}(\sigma)$, which we will write as $i_{GM}(\sigma : r)$ with $0 \le r < n$.
The map μ^* is defined as follows:

The map μ^s is defined as follows:

$$
\mu^{\mathfrak{s}}\colon(t,\gamma^{rd})\mapsto i_{GM}(\chi_t\otimes\sigma:r).
$$

We now apply Lemma 5.2.

Theorem 3.2 in [7] relates the natural topology on the Harish-Chandra parameter space to the Jacobson topology on the tempered dual of a reductive p -adic group. As a consequence, the map $\mu^{\mathfrak{s}}$ is continuous. \Box

6. Cyclic invariants

We will consider the map

$$
\alpha\colon \mathbb{T}^n\to (\mathbb{T}^n/\mathbb{T})\times \mathbb{T},\quad (t_1,\ldots,t_n)\mapsto ((t_1:\cdots:t_n),t_1t_2\ldots t_n),
$$

where $(t_1 : \dots : t_n)$ is the image of $(t_1: \dots : t_n)$ via the map $\mathbb{T}^n \to \mathbb{T}^n/\mathbb{T}$. The map α is a homomorphism of Lie groups. The kernel of this map is

$$
\mathcal{G}_n := \{\omega I_n \mid \omega^n = 1\}.
$$

We therefore have the isomorphism of compact connected Lie groups:

$$
\mathbb{T}^n/\mathcal{G}_n \cong (\mathbb{T}^n/\mathbb{T}) \times \mathbb{T}.\tag{2}
$$

This isomorphism is [eq](#page-13-0)uivariant with respect to the $\mathbb{Z}/n\mathbb{Z}$ -action, and we infer that

$$
(\mathbb{T}^n/\mathcal{G}_n)/(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{T}^n/\mathbb{T})/(\mathbb{Z}/n\mathbb{Z}) \times \mathbb{T}.
$$
 (3)

Theorem 6.1. *Let* $H^{\bullet}(-;\mathbb{C})$ *denote the total cohomology group. We have*

$$
\dim_{\mathbb{C}} H^{\bullet}(\mathfrak{X}(n);\mathbb{C}) = \frac{1}{2} \cdot \dim_{\mathbb{C}} H^{\bullet}(\mathbb{T}^n;\mathbb{C})^{\mathbb{Z}/n\mathbb{Z}}.
$$

Proof. The cohomology of the orbit space is given by the fixed set of the cohomology of the original space [4], Corollary 2.3, p. 38. We have

$$
H^{j}(\mathbb{T}^{n}/\mathcal{G}_{n};\mathbb{C})\cong H^{j}(\mathbb{T}^{n};\mathbb{C})^{\mathcal{G}_{n}}\cong H^{j}(\mathbb{T}^{n};\mathbb{C})
$$
\n(4)

since the action of \mathcal{G}_n on \mathbb{T}^n is homotopic to the identity. We spell this out. Let $z :=$ (z_1, \ldots, z_n) and define $H(z, t) = \omega^t \cdot z = (\omega^t z_1, \ldots, \omega^t z_n)$. Then $H(z, 0) = z$,
 $H(z, 1) = \omega_1 z$. Also H is equivariant with respect to the permutation action of $H(z, 1) = \omega \cdot z$. Also, H is equivariant with respect to the permutation action of $\mathbb{Z}/n\mathbb{Z}$. That is to say, if $\epsilon \in \mathbb{Z}/n\mathbb{Z}$ then $H(\epsilon \cdot z,t) = \epsilon \cdot H(z,t)$. This allows us to proceed as follows:

$$
H^{j}(\mathbb{T}^{n};\mathbb{C})^{\mathbb{Z}/n\mathbb{Z}} \cong H^{j}(\mathbb{T}^{n}/\mathcal{G}_{n};\mathbb{C})^{\mathbb{Z}/n\mathbb{Z}}
$$

\n
$$
\cong H^{j}((\mathbb{T}^{n}/\mathbb{T}) \times \mathbb{T};\mathbb{C})^{\mathbb{Z}/n\mathbb{Z}}
$$

\n
$$
\cong H^{j}((\mathbb{T}^{n}/\mathbb{T})/(\mathbb{Z}/n\mathbb{Z}) \times \mathbb{T};\mathbb{C}).
$$

\n(5)

We apply the Künneth theorem in cohomology (there is no torsion):

$$
(H^j(\mathbb{T}^n;\mathbb{C}))^{\mathbb{Z}/n\mathbb{Z}} \cong H^j(\mathfrak{X}(n);\mathbb{C}) \oplus H^{j-1}(\mathfrak{X}(n);\mathbb{C}) \quad \text{with } 0 < j \le n,
$$

$$
(H^n(\mathbb{T}^n;\mathbb{C}))^{\mathbb{Z}/n\mathbb{Z}} \simeq H^{n-1}(\mathfrak{X}(n);\mathbb{C}), \quad H^0(\mathbb{T}^n;\mathbb{C})^{\mathbb{Z}/n\mathbb{Z}} \cong H^0(\mathfrak{X}(n);\mathbb{C}) \simeq \mathbb{C},
$$

$$
H^{\text{ev}}(\mathbb{T}^n;\mathbb{C})^{\mathbb{Z}/n\mathbb{Z}} = H^{\bullet}(\mathfrak{X}(n);\mathbb{C}), \quad H^{\text{odd}}(\mathbb{T}^n;\mathbb{C})^{\mathbb{Z}/n\mathbb{Z}} = H^{\bullet}(\mathfrak{X}(n);\mathbb{C}).
$$

We now have to find the cyclic invariants in $H^{\bullet}(\mathbb{T}^n;\mathbb{C})$. The cohomology ring $H^{\bullet}(\mathbb{T}^n, \mathbb{C})$ is the exterior algebra \wedge V of a complex *n*-dimensional vector space V, as can be seen by considering differential forms $d\theta_1 \wedge \cdots \wedge d\theta_r$. The vector space V admits a basis $\alpha_1 = d\theta_1, \ldots, \alpha_n = d\theta_n$. The action of $\mathbb{Z}/n\mathbb{Z}$ on $\bigwedge V$ is induced by permuting the elements $\alpha_1, \ldots, \alpha_n$, i.e., by the regular representation ρ of the cyclic group $\mathbb{Z}/n\mathbb{Z}$. This representation of $\mathbb{Z}/n\mathbb{Z}$ on $\bigwedge V$ will be denoted $\bigwedge \rho$. The dimension of the space of cyclic invariants in $H^{\bullet}(\mathbb{T}^n,\mathbb{C})$ is equal to the multiplicity of the unit representation 1 in $\wedge \rho$. To determine this, we use the theory of group characters.

R-groups and geometric structure in the representation theory of
$$
SL(N)
$$
 277

 \Box

Lemma 6.2. *The dimension of the subspace of cyclic invariants is given by*

$$
(\chi_{\bigwedge \rho}, 1) = \frac{1}{n} (\chi_{\bigwedge \rho}(0) + \chi_{\bigwedge \rho}(1) + \cdots + \chi_{\bigwedge \rho}(n-1)).
$$

Proof. This is a standard result in the theory of group characters [11].

Theorem 6.3. *The dimension of the space of cyclic invariants in* $H^{\bullet}(\mathbb{T}^n,\mathbb{C})$ *is given by the formula*

$$
g(n) := \frac{1}{n} \sum_{d|n, d \text{ odd}} \phi(d) 2^{n/d}
$$

Proof. We note first that

$$
\chi_{\bigwedge \rho}(0) = \text{Trace } 1_{\bigwedge V} = \dim_{\mathbb{C}} \bigwedge V = 2^n.
$$

To evaluate the remaining terms, we need to recall the definition of the elementary symmetric functions e_i :

$$
\prod_{j=1}^n (\lambda - \alpha_j) = \lambda^n - \lambda^{n-1} e_1 + \lambda^{n-2} e_2 - \dots + (-1)^n e_n.
$$

If we need to mark the dependence on $\alpha_1, \ldots, \alpha_n$ we will write $e_j = e_j(\alpha_1, \ldots, \alpha_n)$. Set $\alpha_j = \omega^{j-1}, \omega = \exp(2\pi i/n)$. Then we get

$$
\lambda^{n} - 1 = \prod_{j=1}^{n} (\lambda - \alpha_{j}) = \lambda^{n} - \lambda^{n-1} e_{1} + \lambda^{n-2} e_{2} - \dots + (-1)^{n} e_{n}.
$$

Let $d | n$, let ζ be a *primitive* dth root of unity. Let $\alpha_j = \zeta^{j-1}$. We have

$$
(\lambda^d - 1)^{n/d} = (\lambda^d - 1) \dots (\lambda^d - 1) = \prod_{j=1}^n (\lambda - \alpha_j).
$$
 (6)

Set $\lambda = -1$. If d is even, we obtain

$$
0 = 1 + e_1(1, \zeta, \zeta^2, \dots) + e_2(1, \zeta, \zeta^2, \dots) + \dots + e_n(1, \zeta, \zeta^2, \dots). \tag{7}
$$

If d is odd, we obtain

$$
2^{n/d} = 1 + e_1(1, \zeta, \zeta^2, \dots) + e_2(1, \zeta, \zeta^2, \dots) + \dots + e_n(1, \zeta, \zeta^2, \dots).
$$
 (8)

We observe that the regular representation ρ of the cyclic group $\mathbb{Z}/n\mathbb{Z}$ is a direct sum of the characters $m \mapsto \omega^{rm}$ with $0 \le r \le n$. This direct sum decomposition
allows us to choose a basis v_n in V such that the representation Δ o is diagallows us to choose a basis v_1,\ldots,v_n in V such that the representation $\bigwedge \rho$ is diagonalized by the wedge products $v_{j_1} \wedge \cdots \wedge v_{j_l}$. This in turn allows us to compute the character of $\bigwedge \rho$ in terms of the elementary symmetric functions e_1,\ldots,e_n .

With $\zeta = \omega^r$ as above, we have

$$
\chi_{\bigwedge \rho}(r) = 1 + e_1(1, \zeta, \zeta^2, \dots) + e_2(1, \zeta, \zeta^2, \dots) + \dots + e_n(1, \zeta, \zeta^2, \dots).
$$

We now sum the values of the character $\chi_{\bigwedge \rho}$. Let $d := n/(r, n)$. Then ζ is a primitive dth root of unity. If d is even then $\chi_{\wedge \rho}(r) = 0$. If d is odd, then $\chi_{\wedge \rho}(r) = 2^{n/d}$. There are $\phi(d)$ such terms. So we have

$$
\chi_{\bigwedge \rho}(0) + \chi_{\bigwedge \rho}(1) + \dots + \chi_{\bigwedge \rho}(n-1) = \sum_{d \mid n, d \text{ odd}} \phi(d) 2^{n/d}.
$$
 (9)

 \Box

We now apply Lemma 6.2.

The sequence $n \mapsto g(n)/2, n = 1, 2, 3, 4, \dots$, is

[1](http://www.emis.de/MATH-item?0837.20051), 1, 2, 2, 4, 6, 10, 16, [3](http://www.ams.org/mathscinet-getitem?mr=1305872)0, 52, 94, 172, 316, 586, 1096, 2048, 3[856](#page-3-0), 7286, \dots :

as in http://www.research.att.com/~njas/sequences/A000016. Thanks [to Kasper An](http://www.emis.de/MATH-item?1128.22009)ders[en for alertin](http://www.ams.org/mathscinet-getitem?mr=2374467)[g us](#page-0-0) [to th](#page-2-0)[is w](#page-3-0)[eb si](#page-10-0)te.

References

- [1] M. Assem, The Fourier transform and some character formulae for p -adic $SL₁$, l a prime. *Amer. J. Math.* **116** (1[994\), 1433–1467](http://www.emis.de/MATH-item?0372.46058). [Zbl 0837.20](http://www.ams.org/mathscinet-getitem?mr=0458185)[051 M](#page-1-0)R 1305872 268
- [2] A.-M. Aubert, P. Baum, and R. Plymen, Geometric structure in the representation theory of p-adic groups. *C. R[. Math. Acad.](http://www.ams.org/mathscinet-getitem?mr=1285565) [Sci.](#page-4-0) [Paris](#page-5-0)* **345** (2007), 573–578. Zbl 1128.22009 MR 23[74467](http://www.emis.de/MATH-item?0855.22016) [265,](http://www.emis.de/MATH-item?0855.22016) 267, 268, 275
- [3] P. Baum and A. Connes, Chern character for discrete groups. In *A fête of topology*, Academi[c](http://www.emis.de/MATH-item?0718.22003) [Press,](http://www.emis.de/MATH-item?0718.22003) [Boston](http://www.emis.de/MATH-item?0718.22003) [1](http://www.emis.de/MATH-item?0718.22003)[988,](http://www.ams.org/mathscinet-getitem?mr=1038441) [163–232.](http://www.ams.org/mathscinet-getitem?mr=1038441) [Zbl](#page-0-0) [0656](#page-6-0)[.5500](#page-10-0)5 MR 0928402 266, 272
- [4] A. Borel, *Seminar on transformation groups*.Ann. of Math. Stud. 46, Princeton University Press, Princeto[n,](http://www.emis.de/MATH-item?0757.46060) [N.J.,](http://www.emis.de/MATH-item?0757.46060) [1960.](http://www.emis.de/MATH-item?0757.46060) Zb[l](http://www.ams.org/mathscinet-getitem?mr=1159436) [0091.37202](http://www.ams.org/mathscinet-getitem?mr=1159436) [MR](#page-7-0) [01163](#page-9-0)41 276
- [5] J. Dixmier, *C*-algebras*. North-Holland Publishing Co., North-Holland Math. Library 15, Amsterdam 1977. [Zbl](http://www.emis.de/MATH-item?1014.22014) [0372.46](http://www.emis.de/MATH-item?1014.22014)[058](http://www.ams.org/mathscinet-getitem?mr=1941993) [MR](http://www.ams.org/mathscinet-getitem?mr=1941993) [0458](http://www.ams.org/mathscinet-getitem?mr=1941993)[185](#page-7-0) 266
- [6] D. Goldberg, R-groups and elliptic re[presentations](http://www.ams.org/mathscinet-getitem?mr=1092771) [for SL](#page-6-0)[n](#page-7-0). *Pacific J. Math.* **165** (1994), 77–92. Zbl 0855.22[016](http://www.emis.de/MATH-item?0843.22011) [MR](http://www.emis.de/MATH-item?0843.22011) [1285565](http://www.emis.de/MATH-item?0843.22011) 269, 270
- [7] R. J. Plymen, Reduced C^* -algebra for reductive p-adic groups. *J. Funct. Anal.* **88** (1990), 251–266. Zbl 0718.22003 MR 1038441 265, 271, 275
- [8] R. J. Plymen, Elliptic representations and K-theory for SL(*l*). *Houston J. Math.* **18** (1992), 25–32. Zbl 0757.46060 MR 1159436 272, 274
- [9] R. J. Plymen, Reduced C^* -algebra of the p-adic group $GL(n)$ II. *J. Funct. Anal.* **196** (2002), 119–134. Zbl 1014.22014 MR 1941993 272
- [10] R. J. Plymen and C. W. Leung, Arithmetic aspect of operator algebras. *Compositio Math.* **77** (1991), 293–311. Zbl 0843.22011 MR 1092771 271, 272

- [11] J.-P. Serre, *Linear representations of finite groups*. Grad. Texts in Math. 42, Springer-Verlag, New York 1977. Zbl 0355.20006 MR 0450380 277
- [12] A. J. Silberger, The Knapp-Stein dimension theorem for p-adic groups. *Proc. Amer. Math. Soc.* **68** (1978), 243–246; Correction *ibid.* **76** (1979), 169–170. Zbl 0348.22007 MR 0492091 Zbl 0415.22020 MR 0534411 271

Received November 14, 2008; revised September 30, 2009

J. Jawdat, Department of Mathematics, Zarqa Private University, Jordan E-mail: jjawdat@zpu.edu.jo R. Plymen, School of Mathematics, Manchester University, Oxford Road, Manchester M13

9PL, UK

E-mail: plymen@manchester.ac.uk