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SL.N; F /. This article is devoted to studying the influence of the elliptic representations of
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1. Introduction

Let F be a nonarchimedean local field of characteristic zero and let G D SL.N / D
SL.N; F /. This article is devoted to studying subspaces of the tempered dual of
SL.N / which have an especially intricate geometric structure, and to computing,
with full arithmetic details, their K-theory. Our results illustrate, in a special case,
part (3) of the recent conjecture in [2].

The subspaces of the tempered dual which are especially interesting for us contain
elliptic representations. A tempered representation of SL.N / is elliptic if its Harish-
Chandra character is not identically zero on the elliptic set.

An element in the discrete series of SL.N / is an isolated point in the tempered
dual of SL.N / and contributes one generator to K0 of the reduced C*-algebra of
SL.N /.

Now SL.N / admits elliptic representations which are not discrete series: we
investigate, with full arithmetic details, the contribution of the elliptic representations
of SL.N / to the K-theory of the reduced C*-algebra AN of SL.N /.

According to [7], AN is a C*-direct sum of fixed C*-algebras. Among these fixed
algebras, we will focus on those whose duals contain elliptic representations. Let n
be a divisor of N with 1 � n � N and suppose that the group UF of integer units
admits a character of order n. Then the relevant fixed algebras are of the form

C.T n=T ;K/Z=nZ � AN :
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Here, K is the C*-algebra of compact operators on standard Hilbert space, T n=T
is the quotient of the compact torus T n via the diagonal action of T . The compact
group T n=T arises as the maximal compact subgroup of the standard maximal torus
of the Langlands dual PGL.n;C/. We prove (Theorem 3.1) that this fixed C*-algebra
is strongly Morita equivalent to the crossed product

C.T n=T / Ì Z=nZ:

The reduced C*-algebra AN is liminal, and its primitive ideal space is in canonical
bijection with the tempered dual of SL.N /. Transporting the Jacobson topology on
the primitive ideal space, we obtain a locally compact topology on the tempered dual
of SL.N /, see [5], 3.1.1, 4.4.1, 18.3.2.

Let Tn denote the C*-dual of C.T n=T ;K/Z=nZ. Then Tn is a non-Hausdorff
space, and has a very special structure as topological space. Whenn is a prime number
`, then T` will contain multiple points. When n is non-prime, Tn will contain not
only multiple points, but also multiple subspaces. This crossed product C*-algebra
is a noncommutative unital C*-algebra which fits perfectly into the framework of
noncommutative geometry. In the tempered dual of SL.N /, there are connected
compact non-Hausdorff spaces, laced with multiple subspaces, and simply described
by crossed product C*-algebras.

The K-theory of the fixed C*-algebra is then given by the K-theory of the crossed
product C*-algebra. To compute (modulo torsion) the K-theory of this noncommu-
tative C*-algebra, we apply the Chern character for discrete groups [3]. This leads
to the cohomology of the extended quotient .T n=T /==.Z=nZ/. This in turn leads
to a problem in classical algebraic topology, namely the determination of the cyclic
invariants in the cohomology of the n-torus.

The ordinary quotient will be denoted by X.n/:

X.n/ ´ .T n=T /=.Z=nZ/:

This is a compact connected orbifold. Note that X.1/ D pt . The orbifold X.n; k; !/
which appears in the following theorem is defined in Section 4. The notation is such
that X.n; n; 1/ is the ordinary quotient X.n/ and each X.n; 1; !/ is a point. The
highest common factor of n and k is denoted .n; k/.

Theorem 1.1. The extended quotient .T n=T /==.Z=nZ/ is a disjoint union of com-
pact connected orbifolds:

.T n=T /==.Z=nZ/ D F
X.n; k; !/

The disjoint union is over all 1 � k � n and all n=.k; n/th roots of unity ! in C.

We apply the Chern character for discrete groups [3], and obtain
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Theorem 1.2. The K-theory groups K0 and K1 are given by

K0.C.T
n=T /;K/Z=nZ ˝Z C ' L

H ev.X.n; k; !/I C/;

K1.C.T
n=T /;K/Z=nZ ˝Z C ' L

H odd.X.n; k; !/I C/:

The direct sums are over all 1 � k � n and all n=.k; n/th roots of unity ! in C.

For the ordinary quotient X.n/ we have the following explicit formula (Theo-
rems 6.1 and 6.3). Let H • ´ H ev ˚H odd and let � denote the Euler totient.

Theorem 1.3. Let X.n/ denote the ordinary quotient .T n=T /=.Z=nZ/. Then we
have

dimC H •.X.n/I C/ D 1

2n

X
d jn; d odd

�.d/2n=d :

Theorem 1.1 lends itself to an interpretation in terms of representation theory.
When n D ` a prime number, the elliptic representations of SL.`/ are discussed
in Section 2. The extended quotient .T `=T /==.Z=`Z/ is the disjoint union of the
ordinary quotient X.`/ and `.` � 1/ isolated points. We consider the canonical
projection � of the extended quotient onto the ordinary quotient:

� W .T `=T /==.Z=`Z/ ! X.`/:

The points �1; : : : ; �` constructed in Section 2, are precisely the Z=`Z fixed points in
T `=T . These are ` points of reducibility, each of which admits ` elliptic constituents.
Note also that, in the canonical projection � , the fibre ��1.�j / of each point �j
contains ` points. We may say that the extended quotient encodes, or provides a
model of, reducibility. This is a very special case of the recent conjecture in [2].

When n is non-prime, we have points of reducibility, each of which admits elliptic
constituents. In addition to the points of reducibility, there is a subspace of reducibil-
ity. There are continua ofL-packets. Theorem 1.2 describes the contribution, modulo
torsion, of all these L-packets to K0 and K1.

Let the infinitesimal character of the elliptic representation � be the cuspidal pair
.M; �/, where � is an irreducible cuspidal representation of M with unitary central
character. Then � is a constituent of the induced representation iGM .�/. Let s be the
point in the Bernstein spectrum which contains the cuspidal pair .M; �/. To conform
to the notation in [2], we will write Es ´ T n=T , W s D Z=nZ. The standard
projection will be denoted

�s W Es==W s ! Es=W s:

The space of tempered representations of G determined by s will be denoted
Irrtemp.G/s, and the infinitesimal character will be denoted inf.ch.
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Theorem 1.4. There is a continuous bijection

�s W Es==W s ! Irrtemp.G/s

such that

�s D .inf:ch:/ B �s:

This confirms, in a special case, part (3) of the conjecture in [2].

In Section 2 of this article, we review elliptic representations of the special linear
algebraic group SL.N; F / over ap-adic fieldF . Section 3 concerns fixed C*-algebras
and crossed products. The extended quotient .T n=T /==.Z=nZ/ is computed in
Section 4. The formation of the R-groups is described in Section 5. In Section 6 we
compute the cyclic invariants in the cohomology of the n-torus.

We would like to thank Paul Baum for several valuable discussions, Anne-Marie
Aubert for her careful reading of the manuscript, Kuok Fai Chao and the referee for
several constructive comments.

2. The elliptic representations of SL.N/

Let F be a nonarchimedean local field of characteristic zero. Let G be a connected
reductive linear group over F . Let G D G.F / be the F -rational points of G . We
say that an element x of G is elliptic if its centralizer is compact modulo the center
of G. We let Ge denote the set of regular elliptic elements of G.

Let E2.G/ denote the set of equivalence classes of irreducible discrete series rep-
resentations ofG, and denote by Et .G/ be the set of equivalence classes of irreducible
tempered representations ofG. Then E2.G/ � Et .G/. If� 2 Et .G/, then we denote
its character by‚� . Since‚� can be viewed as a locally integrable function, we can
consider its restriction to Ge , which we denote by ‚e

� . We say that � is elliptic if
‚e

� ¤ 0. The set of elliptic representations includes the discrete series.
Here is a classical example where elliptic representations occur [1]. We consider

the group SL.`; F / with ` a prime not equal to the residual characteristic of F . Let
K=F be a cyclic of order ` extension of F . The reciprocity law in local class field
theory is an isomorphism

F �=NK=F K
� Š �.K=F / D Z=`Z;

where �.K=F / is the Galois group of K over F . Let now �`.C/ be the group of
`th roots of unity in C. A choice of isomorphism Z=`Z Š �`.C/ then produces a
character 	 of F � of order ` as follows:

	 W F � ! F �=NK=F K
� Š Z=`Z Š �`.C/:
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Let B be the standard Borel subgroup of SL.`/, let T be the standard maximal
torus, and let B D T � N be its Levi decomposition. Let � be the character of T
defined by

� ´ 1˝ 	 ˝ � � � ˝ 	`�1

and let
�.�/ ´ IndG

B .� ˝ 1/

be the unitarily induced representation of SL.`/.
Now �.�/ is a representation in the minimal unitary principal series of SL.`/.

It has ` distinct irreducible elliptic components and the Galois group �.K=F / acts
simply transitively on the set of irreducible components. The set of irreducible com-
ponents of �.�/ is an L-packet.

Let
�.�/ D �1 ˚ � � � ˚ �`

be the ` components of �.�/. The character ‚ of �.�/, as character of a principal
series representation, vanishes on the elliptic set. The character ‚1 of �1 on the
elliptic set is therefore cancelled out by the sum ‚2 C � � � C‚` of the characters of
the relatives �2; : : : ; �` of �1.

Let ! denote an `th root of unity in C. All the `th roots are allowed, including
! D 1. In the definition of � , we now replace 	 by 	 ˝ !val. This will create `
characters, which we will denote by �1; : : : ; �`, where �1 D � . For each of these
characters, the R-group is given as follows:

R.�j / D Z=`Z

for all 1 � j � `, and the induced representation �.�j / admits ` elliptic constituents.
If P D MU is a standard parabolic subgroup of G then iGM .�/ will denote the

induced representation IndG
MU .�˝1/ (normalized induction). TheR-group attached

to � will be denoted R.�/.
Let P D MU be the standard parabolic subgroup of G ´ SL.N; F / described

as follows. Let N D mn, let zM be the Levi subgroup GL.m/n � GL.N; F / and let
M D zM \ SL.N; F /.

We will use the framework, notation and main result in [6]. Let � 2 E2.M/ and
let �� 2 E2. zM/with �� jM � � . LetW.M/ ´ NG.M/=M denote the Weyl group
of M , so that W.M/ is the symmetric group on n letters. Let

NL.�� / ´ f
 2 �F � j �� ˝ 
 ' w�� for some w 2 W g;
X.�� / ´ f
 2 �F � j �� ˝ 
 ' ��g:

By [6], Theorem 2.4, the R-group of � is given by

R.�/ ' NL.�� /=X.�� /:
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We follow [6], Theorem 3.4. Let 
 be a smooth character of F � such that 
n 2
X.�1/ and 
j … X.�1/ for 1 � j � n � 1. Set

�� ' �1 ˝ 
�1 ˝ 
2�1 ˝ � � � ˝ 
n�1�1; �� jM � �; (1)

with �1 2 E2.GL.m//, 
�1 ´ .
 B det/˝ �1. Then we have

NL.�� /=X.�� / D h
i
and so R.�/ ' Z=nZ. The elliptic representations are the constituents of iGM .�/

with �� as in equation (1).

3. Fixed algebras and crossed products

Let M denote the Levi subgroup which occurs in Section 2. Denote by ‰1.M/

the group of unramified unitary characters of M . Now M � SL.N; F / comprises
blocks x1; : : : ; xn with xi 2 GL.m; F / and

Q
det.xi / D 1. Each unramified unitary

character  2 ‰1.M/ can be expressed as

 W diag.x1; : : : ; xn/ !
nQ

j D1

z
val.det xj /

j ;

with z1; z2; : : : ; zn 2 T , i.e., jzi j D 1. Such unramified unitary characters  corre-
spond to coordinates .z1 W z2 W � � � W zn/ with each zi 2 T . Since

nQ
iD1

.zzi /
val.det xi / D

nQ
iD1

z
val.det xi /
i

we have homogeneous coordinates. We have the isomorphism

‰1.M/ Š f.z1 W z2 W � � � W zn/ j jzi j D 1; 1 � i � ng D T n=T :

If M is the standard maximal torus T of SL.N / then ‰1.T / is the maximal
compact torus in the dual torus

T _ � G_ D PGL.N;C/;

where G_ is the Langlands dual group.
Let � , �� , �1 be as in equation (1). Let g be the order of the group of unramified

characters � of F � such that .� B det/˝ �1 ' �1. Now let

E ´ f ˝ � j  2 ‰1.M/g:
The base point � 2 E determines a homeomorpism

E ' T n=T ; .zvalBdet
1 ˝ � � � ˝ zvalBdet

n /˝ � 7! .z
g
1 W � � � W zg

n /:
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From this point onwards, we will require that the restriction of 
 to the group
UF of integer units is of order n. Let W.M/ denote the Weyl group of M and let
W.M;E/ be the subgroup of W.M/ which leaves E globally invariant. Then we
have W.M;E/ D W.�/ D R.�/ D Z=nZ.

Let K D K.H/ denote the C*-algebra of compact operators on the standard
Hilbert space H . Let a.w; �/ denote normalized intertwining operators. The fixed
C*-algebra C.E;K/W.M;E/ is given by

ff 2 C.E;K/ j f .w�/ D a.w; ��/f .�/a.w; ��/�1; w 2 W.M;E/g:
This fixed C*-algebra is a C*-direct summand of the reduced C*-algebra AN of
SL.N /, see [7].

Theorem 3.1. LetG D SL.N; F /, andM be a Levi subgroup consisting of n blocks
of the same sizem. Let � 2 E2.M/. Assume that the induced representation iGM .�/

has elliptic constituents, then the fixed C*-algebraC.E;K/W.M;E/ is strongly Morita
equivalent to the crossed product C*-algebra C.E/ Ì Z=nZ.

Proof. For the commuting algebra of iMG.�/, we have [12]

EndG..iMG.�// D CŒR.�/
:

Letw0 be a generator ofR.�/, then the normalized intertwining operator a.w0; �/

is a unitary operator of order n. By the spectral theorem for unitary operators, we
have

a.w0; �/ D
n�1P
j D0

!j Ej

where ! D exp.2�i=n/ and Ej are the projections onto the irreducible subspaces of
the induced representation iMG.�/. The unitary representation

R.�/ ! U.H/; w 7! a.w; �/

contains each character ofR.�/ countably many times. Therefore condition (***) in
[10], p. 301, is satisfied. The condition (**) in [10], p. 300, is trivially satisfied since
W.�/ D R.�/.

We haveW.�/ D Z=nZ. Then a subgroupW.�/ of order d is given byW.�/ D
kZ mod n with dk D n. In that case, we have

a.w0; �/jW.�/ D
n�1P
j D0

!kjEj :

We compare the two unitary representations

�1 W W.�/ ! U.H/; w 7! a.w; �/jW.�/;
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�2 W W.�/ ! U.H/; w 7! a.w; �/:

Each representation contains every character of W.�/. They are quasi-equivalent as
in [10]. Choose an increasing sequence .en/ of finite-rank projections in L.H/which
converge strongly to I and commute with each projection Ej . The compressions of
�1; �2 to enH remain quasi-equivalent. Condition (*) in [10], p. 299, is satisfied.

All three conditions of [10], Theorem 2.13, are satisfied. We therefore have a
strong Morita equivalence

.C.E/˝ K/W.M;E/ ' C.E/ ÌR.�/ D C.E/ Ì Z=nZ:

We will need a special case of the Chern character for discrete groups [3].

Theorem 3.2. We have an isomorphism

Ki .C.E/ Ì Z=nZ/˝Z C Š L
j 2N

H 2j Ci .E==.Z=nZ/I C/

with i D 0; 1, where E==.Z=nZ/ denotes the extended quotient of E by Z=nZ.

When N is a prime number `, this result already appeared in [8], [10].

4. The formation of the fixed sets

Extended quotients were introduced by Baum and Connes [3] in the context of the
Chern character for discrete groups. Extended quotients were used in [9], [8] in the
context of the reduced group C*-algebras of GL.N / and SL.`/where ` is prime. The
results in this section extend results in [8], [10].

Definition 4.1. Let X be a compact Hausdorff topological space. Let � be a finite
abelian group acting on X by a (left) continuous action. Let

zX D f.x; �/ 2 X � � j �x D xg
with the group action on zX given by

g � .x; �/ D .gx; �/

for g 2 � . Then the extended quotient is given by

X==� ´ zX=� D F
�2�

X�=�

where X� is the � -fixed set.
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The extended quotient will always contain the ordinary quotient. The standard
projection � W X==� ! X=� is induced by the map .x; �/ 7! x. We note the
following elementary fact, which will be useful later (in Lemma 5.2): let y D �x be
a point in X=� . Then the cardinality of the pre-image ��1y is equal to the order of
the isotropy group �x:

j��1yj D j�xj:
We will write X D E D T n=T , where T acts diagonally on T n, i.e.,

t .t1; t2; : : : ; tn/ D .t t1; t t2; : : : ; t tn/; t; ti 2 T :

We have the action of the finite group � D Z=nZ on T n=T given by cyclic permu-
tation. The two actions of T and of Z=nZ on T n commute. We will write .k; n/ for
the highest common factor of k and n.

Theorem 4.2. The extended quotient .T n=T /==.Z=nZ/ is a disjoint union of com-
pact connected orbifolds:

.T n=T /==.Z=nZ/ ' F
1�k�n

!n=.k;n/D1

X.n; k; !/:

Here ! is a n=.k; n/th root of unity in C.

Proof. Let � be the standard n-cycle defined by �.i/ D i C 1 mod n. Then �k

is the product of n=d cycles of order d D n=.n; k/. Let ! be a d th root of unity
in C. All d th roots of unity are allowed, including ! D 1. The element t .!/ D
t .!I z1; : : : ; zn/ 2 T n is defined by imposing the relations

ziCk D !�1zi ;

all suffices mod n. This condition allows n=d of the complex numbers z1; : : : ; zn

to vary freely, subject only to the condition that each zj has modulus 1. The crucial
point is that

�k � t .!/ D !t.!/

Then ! determines a �k-fixed set in T n=T , namely the set Y.n; k; !/ of all cosets
t .!/ � T . The set Y.n; k; !/ is an .n=d � 1/-dimensional subspace of fixed points.

Note that Y.n; k; !/, as a coset of the closed subgroup Y.n; k; 1/ in the compact
Lie group E, is homeomorphic (by translation in E) to Y.n; k; 1/. The translation
is by the element t .! W 1; : : : ; 1/. If !1; !2 are distinct d th roots of unity, then
Y.n; k; !1/;Y.n; k; !2/ are disjoint.

We define the quotient space

X.n; k; !/ ´ Y.n; k; !/=.Z=nZ/

and apply Definition 4.1.
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When k D n, we must have ! D 1. In that case, the orbifold is the ordinary
quotient: X.n; n; 1/ D X.n/.

Let .n; k/ D 1. The number of such k in 1 � k � n is �.n/. In this case, ! is
an nth root of unity and X.n; k; !/ is a point. There are n such roots of unity in C.
Therefore, the extended quotient .T n=T /==.Z=nZ/ always contains �.n/n isolated
points.

Theorem 1.1 is a consequence of Theorems 3.1, 3.2 and 4.2. If, in Theorem 1.1,
we take n to be a prime number `, then we recover the following result in [8], p. 30:
the extended quotient .T `=T /==.Z=`Z/ is the disjoint union of the ordinary quotient
X.`/ and .` � 1/` points.

5. The formation of the R-groups

We continue with the notation of Section 3. Let � , �� , �1, 
 be as in equation (1).
The n-tuple t ´ .z1; : : : ; zn/ 2 T n determines an element Œt 
 2 E. We can interpret
Œt 
 as the unramified character

�t ´ .zvalBdet
1 ; : : : ; zvalBdet

n /:

Let � D Z=nZ, and let �Œt� denote the isotropy subgroup of � .

Lemma 5.1. The isotropy subgroup �Œt� is isomorphic to the R-group of �t ˝ � :

�Œt� ' R.�t ˝ �/:

Proof. Let the order of �Œt� be d . Then d is a divisor of n. Let � be a generator of
�Œt�. Then � is a product of n=d disjoint d -cycles, as in Section 4. We must have
t D t .!/with ! a d th root of unity in C. Note that � � t .!/ D !t.!/. Then we have

R.�t ˝ �/ D NL.�t ˝ �� /=X.�t ˝ �� /

D f˛ 2 �F � j w�� ' �� ˝ ˛ for some w in W g=X.�t ˝ �� /

D h!valBdet ˝ 
n=d i
D Z=dZ

D �Œt�

since, modulo X.�t ˝ �� /, the character 
n=d has order d .

Lemma 5.2. In the standard projection p W E==� ! E=� , the cardinality of the
fibre of Œt 
 is the order of the R-group of �t ˝ � .

Proof. This follows from Lemma 5.1.
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We will assume that � is a cuspidal representation of M with unitary central
character. Let s be the point in the Bernstein spectrum of SL.N / which contains
the cuspidal pair .M; �/. To conform to the notation in [2], we will write Es ´
T n=T ; W s D Z=nZ. The standard projection will be denoted

�s W Es==W s ! Es=W s:

The space of tempered representations of G determined by s will be denoted by
Irrtemp.G/s, and the infinitesimal character will be denoted inf:ch:

Theorem 5.3. We have a commutative diagram

E==W s �s

��

�s

��

Irrtemp.G/s

inf:ch:

��
E=W s �� E=W s

in which the map �s is a continuous bijection. This confirms, in a special case, part
(3) of the conjecture in [2].

Proof. We have
CŒR.�/
 ' EndG.iGM .�//:

This implies that the characters of the cyclic group R.�/ parametrize the irreducible
constituents of iGM .�/. This leads to a labelling of the irreducible constituents of
iGM .�/, which we will write as iGM .� W r/ with 0 � r < n.

The map �s is defined as follows:

�s W .t; � rd / 7! iGM .�t ˝ � W r/:
We now apply Lemma 5.2.

Theorem 3.2 in [7] relates the natural topology on the Harish-Chandra parameter
space to the Jacobson topology on the tempered dual of a reductive p-adic group. As
a consequence, the map �s is continuous.

6. Cyclic invariants

We will consider the map

˛ W T n ! .T n=T / � T ; .t1; : : : ; tn/ 7! ..t1 W � � � W tn/; t1t2 : : : tn/;
where .t1 W � � � W tn/ is the image of .t1; : : : ; tn/ via the map T n ! T n=T . The map
˛ is a homomorphism of Lie groups. The kernel of this map is

Gn ´ f!In j !n D 1g:
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We therefore have the isomorphism of compact connected Lie groups:

T n=Gn Š .T n=T / � T : (2)

This isomorphism is equivariant with respect to the Z=nZ-action, and we infer that

.T n=Gn/=.Z=nZ/ Š .T n=T /=.Z=nZ/ � T : (3)

Theorem 6.1. LetH •.�I C/ denote the total cohomology group. We have

dimCH •.X.n/I C/ D 1
2

� dimCH •.T nI C/Z=nZ:

Proof. The cohomology of the orbit space is given by the fixed set of the cohomology
of the original space [4], Corollary 2.3, p. 38. We have

H j .T n=GnI C/ Š H j .T nI C/Gn Š H j .T nI C/ (4)

since the action of Gn on T n is homotopic to the identity. We spell this out. Let z ´
.z1; : : : ; zn/ and define H.z; t/ D !t � z D .!tz1; : : : ; !

tzn/. Then H.z; 0/ D z,
H.z; 1/ D ! � z. Also, H is equivariant with respect to the permutation action of
Z=nZ. That is to say, if � 2 Z=nZ then H.� � z; t/ D � �H.z; t/. This allows us to
proceed as follows:

H j .T nI C/Z=nZ Š H j .T n=GnI C/Z=nZ

Š H j ..T n=T / � T I C/Z=nZ

Š H j ..T n=T /=.Z=nZ/ � T I C/:

(5)

We apply the Künneth theorem in cohomology (there is no torsion):

.H j .T nI C//Z=nZ Š H j .X.n/I C/˚H j �1.X.n/I C/ with 0 < j � n;

.Hn.T nI C//Z=nZ ' Hn�1.X.n/I C/;

H ev.T nI C/Z=nZ D H •.X.n/I C/;

H 0.T nI C/Z=nZ Š H 0.X.n/I C/ ' C;

H odd.T nI C/Z=nZ D H •.X.n/I C/:
�

We now have to find the cyclic invariants in H •.T nI C/. The cohomology ring
H •.T n;C/ is the exterior algebra

V
V of a complex n-dimensional vector space V ,

as can be seen by considering differential forms d�1 ^ � � � ^ d�r . The vector space
V admits a basis ˛1 D d�1; : : : ; ˛n D d�n. The action of Z=nZ on

V
V is induced

by permuting the elements ˛1; : : : ; ˛n, i.e., by the regular representation � of the
cyclic group Z=nZ. This representation of Z=nZ on

V
V will be denoted

V
�. The

dimension of the space of cyclic invariants inH •.T n;C/ is equal to the multiplicity
of the unit representation 1 in

V
�. To determine this, we use the theory of group

characters.
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Lemma 6.2. The dimension of the subspace of cyclic invariants is given by

.�V
�; 1/ D 1

n
.�V

�.0/C �V
�.1/C � � � C �V

�.n � 1//:

Proof. This is a standard result in the theory of group characters [11].

Theorem 6.3. The dimension of the space of cyclic invariants inH •.T n;C/ is given
by the formula

g.n/ ´ 1

n

X
d jn; d odd

�.d/2n=d

Proof. We note first that

�V
�.0/ D Trace 1V

V D dimC
V
V D 2n:

To evaluate the remaining terms, we need to recall the definition of the elementary
symmetric functions ej :

nQ
j D1

.� � j̨ / D �n � �n�1e1 C �n�2e2 � � � � C .�1/nen:

If we need to mark the dependence on ˛1; : : : ; ˛n we will write ej D ej .˛1; : : : ; ˛n/.
Set j̨ D !j �1; ! D exp.2�i=n/. Then we get

�n � 1 D
nQ

j D1

.� � j̨ / D �n � �n�1e1 C �n�2e2 � � � � C .�1/nen:

Let d jn, let � be a primitive d th root of unity. Let j̨ D �j �1. We have

.�d � 1/n=d D .�d � 1/ : : : .�d � 1/ D
nQ

j D1

.� � j̨ /: (6)

Set � D �1. If d is even, we obtain

0 D 1C e1.1; �; �
2; : : : /C e2.1; �; �

2; : : : /C � � � C en.1; �; �
2; : : : /: (7)

If d is odd, we obtain

2n=d D 1C e1.1; �; �
2; : : : /C e2.1; �; �

2; : : : /C � � � C en.1; �; �
2; : : : /: (8)

We observe that the regular representation � of the cyclic group Z=nZ is a direct
sum of the characters m 7! !rm with 0 � r � n. This direct sum decomposition
allows us to choose a basis v1; : : : ; vn in V such that the representation

V
� is diag-

onalized by the wedge products vj1
^ � � � ^ vjl

. This in turn allows us to compute the
character of

V
� in terms of the elementary symmetric functions e1; : : : ; en.
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With � D !r as above, we have

�V
�.r/ D 1C e1.1; �; �

2; : : : /C e2.1; �; �
2; : : : /C � � � C en.1; �; �

2; : : : /:

We now sum the values of the character �V
�. Let d ´ n=.r; n/. Then � is

a primitive d th root of unity. If d is even then �V
�.r/ D 0. If d is odd, then

�V
�.r/ D 2n=d . There are �.d/ such terms. So we have

�V
�.0/C �V

�.1/C � � � C �V
�.n � 1/ D

X
d jn; d odd

�.d/2n=d : (9)

We now apply Lemma 6.2.

The sequence n 7! g.n/=2, n D 1; 2; 3; 4; : : : , is

1; 1; 2; 2; 4; 6; 10; 16; 30; 52; 94; 172; 316; 586; 1096; 2048; 3856; 7286; : : : :

as in http://www.research.att.com/~njas/sequences/A000016. Thanks to Kasper An-
dersen for alerting us to this web site.
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