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1. Introduction

Let F be a nonarchimedean local field of characteristic zero and let G = SL(N) =
SL(N, F). This article is devoted to studying subspaces of the tempered dual of
SL(N) which have an especially intricate geometric structure, and to computing,
with full arithmetic details, their K-theory. Our results illustrate, in a special case,
part (3) of the recent conjecture in [2].

The subspaces of the tempered dual which are especially interesting for us contain
elliptic representations. A tempered representation of SL(N) is elliptic if its Harish-
Chandra character is not identically zero on the elliptic set.

An element in the discrete series of SL(/N) is an isolated point in the tempered
dual of SL(N) and contributes one generator to Ko of the reduced C*-algebra of
SL(N).

Now SL(N) admits elliptic representations which are not discrete series: we
investigate, with full arithmetic details, the contribution of the elliptic representations
of SL(N) to the K-theory of the reduced C*-algebra %Ay of SL(N).

According to [7], A x is a C*-direct sum of fixed C*-algebras. Among these fixed
algebras, we will focus on those whose duals contain elliptic representations. Let n
be a divisor of N with 1 < n < N and suppose that the group U r of integer units
admits a character of order n. Then the relevant fixed algebras are of the form

C(T"/T,K)%/"% c Ay.
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Here, K is the C*-algebra of compact operators on standard Hilbert space, T" /T
is the quotient of the compact torus T” via the diagonal action of T. The compact
group T" /T arises as the maximal compact subgroup of the standard maximal torus
of the Langlands dual PGL(n, C). We prove (Theorem 3.1) that this fixed C*-algebra
is strongly Morita equivalent to the crossed product

C(T"/T)Y~xZ/nZ.

The reduced C*-algebra 2 y is liminal, and its primitive ideal space is in canonical
bijection with the tempered dual of SL(/N). Transporting the Jacobson topology on
the primitive ideal space, we obtain a locally compact topology on the tempered dual
of SL(N), see [5], 3.1.1,4.4.1, 18.3.2.

Let T, denote the C*-dual of C(T”/T, &)%Z/*Z. Then T, is a non-Hausdorff
space, and has a very special structure as topological space. When 7 is a prime number
£, then T, will contain multiple points. When 7 is non-prime, T, will contain not
only multiple points, but also multiple subspaces. This crossed product C*-algebra
is a noncommutative unital C*-algebra which fits perfectly into the framework of
noncommutative geometry. In the tempered dual of SL(N), there are connected
compact non-Hausdorff spaces, laced with multiple subspaces, and simply described
by crossed product C*-algebras.

The K-theory of the fixed C*-algebra is then given by the K-theory of the crossed
product C*-algebra. To compute (modulo torsion) the K-theory of this noncommu-
tative C*-algebra, we apply the Chern character for discrete groups [3]. This leads
to the cohomology of the extended quotient (T"/T)//(Z/nZ). This in turn leads
to a problem in classical algebraic topology, namely the determination of the cyclic
invariants in the cohomology of the n-torus.

The ordinary quotient will be denoted by X (n):

X(n):=(T"/T)/(Z/nZ).

This is a compact connected orbifold. Note that X(1) = p¢. The orbifold X(n, k, ®)
which appears in the following theorem is defined in Section 4. The notation is such
that X(n,n, 1) is the ordinary quotient X(n) and each X(n, 1, ) is a point. The
highest common factor of n and k is denoted (n, k).

Theorem 1.1. The extended quotient (T"/T)//(Z/nZ) is a disjoint union of com-
pact connected orbifolds:

(T*/M)(Z/nZ) = || X0 . k.»)

The disjoint union is over all 1 < k < n and all n/(k,n)th roots of unity w in C.

We apply the Chern character for discrete groups [3], and obtain
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Theorem 1.2. The K-theory groups Ko and K are given by

Ko(C(T"/T),K)%/"% @7 C ~ @ HY (X(n.k, w): C),
K{(C(T"/T),K)%/"? @7 C ~ @ HY(X(n, k, w); C).

The direct sums are over all 1 < k < n and all n/(k,n)th roots of unity w in C.

For the ordinary quotient X(n) we have the following explicit formula (Theo-
rems 6.1 and 6.3). Let H® := H® & H° and let ¢ denote the Euler totient.

Theorem 1.3. Let X(n) denote the ordinary quotient (1" /T)/(Z/nZ). Then we
have

. . 1 n
dimec H*(¥(n);C) = o > e
d|n,d odd

Theorem 1.1 lends itself to an interpretation in terms of representation theory.
When n = £ a prime number, the elliptic representations of SL({) are discussed
in Section 2. The extended quotient (T*/T)//(Z/£Z) is the disjoint union of the
ordinary quotient X(£) and £(£ — 1) isolated points. We consider the canonical
projection 7 of the extended quotient onto the ordinary quotient:

r (TYT)))(Z/Z) — %(0).

The points 71, . . ., T¢ constructed in Section 2, are precisely the Z /£Z fixed points in
T*%/T. These are £ points of reducibility, each of which admits £ elliptic constituents.
Note also that, in the canonical projection 7, the fibre 77!(z;) of each point ;
contains £ points. We may say that the extended quotient encodes, or provides a
model of, reducibility. This is a very special case of the recent conjecture in [2].

When 7 is non-prime, we have points of reducibility, each of which admits elliptic
constituents. In addition to the points of reducibility, there is a subspace of reducibil-
ity. There are continua of L-packets. Theorem 1.2 describes the contribution, modulo
torsion, of all these L-packets to Ky and K.

Let the infinitesimal character of the elliptic representation € be the cuspidal pair
(M, 0), where o is an irreducible cuspidal representation of M with unitary central
character. Then ¢ is a constituent of the induced representation igps (o). Let s be the
point in the Bernstein spectrum which contains the cuspidal pair (M, o). To conform
to the notation in [2], we will write Ef := T"/T, W® = Z/nZ. The standard
projection will be denoted

7% E5))W® — E®/W>.

The space of tempered representations of G determined by s will be denoted
Irr'*™P(G)#, and the infinitesimal character will be denoted inf.ch.
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Theorem 1.4. There is a continuous bijection

w?: EZJW® — Irt“™(G)®
such that

7% = (inf.ch.) o u®.
This confirms, in a special case, part (3) of the conjecture in [2].

In Section 2 of this article, we review elliptic representations of the special linear
algebraic group SL(N, F) overa p-adicfield F. Section 3 concerns fixed C*-algebras
and crossed products. The extended quotient (T"/T)//(Z/nZ) is computed in
Section 4. The formation of the R-groups is described in Section 5. In Section 6 we
compute the cyclic invariants in the cohomology of the n-torus.

We would like to thank Paul Baum for several valuable discussions, Anne-Marie
Aubert for her careful reading of the manuscript, Kuok Fai Chao and the referee for
several constructive comments.

2. The elliptic representations of SL(V)

Let F be a nonarchimedean local field of characteristic zero. Let G be a connected
reductive linear group over F. Let G = G(F) be the F-rational points of G. We
say that an element x of G is elliptic if its centralizer is compact modulo the center
of G. We let G¢ denote the set of regular elliptic elements of G.

Let &, (G) denote the set of equivalence classes of irreducible discrete series rep-
resentations of G, and denote by &; (G ) be the set of equivalence classes of irreducible
tempered representations of G. Then §,(G) C &,(G). If w € &;(G), then we denote
its character by ®,. Since ®, can be viewed as a locally integrable function, we can
consider its restriction to G¢, which we denote by ©%. We say that = is elliptic if
©¢ # 0. The set of elliptic representations includes the discrete series.

Here is a classical example where elliptic representations occur [1]. We consider
the group SL(¢, F) with £ a prime not equal to the residual characteristic of F. Let
K/ F be a cyclic of order £ extension of F. The reciprocity law in local class field
theory is an isomorphism

F*/Ng;p KX ~T(K/F) = Z/(Z,

where ['(K/ F) is the Galois group of K over F. Let now uy(C) be the group of
£th roots of unity in C. A choice of isomorphism Z /{Z =~ u;(C) then produces a
character k of F* of order £ as follows:

K: FX — F*/Ng/p K* =~ Z/{Z = p(C).
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Let B be the standard Borel subgroup of SL(¢), let T be the standard maximal
torus, and let B = T - N be its Levi decomposition. Let t be the character of T
defined by

T=1Qk® - ®@Kkt!

and let
(7)== Indg(t ®1)

be the unitarily induced representation of SL({).

Now 7 (7) is a representation in the minimal unitary principal series of SL(¥).
It has £ distinct irreducible elliptic components and the Galois group I'(K/ F') acts
simply transitively on the set of irreducible components. The set of irreducible com-
ponents of 7 (7) is an L-packet.

Let

7(t)=m & D my

be the £ components of (7). The character ® of 7 (7), as character of a principal
series representation, vanishes on the elliptic set. The character ®; of m; on the
elliptic set is therefore cancelled out by the sum ©;, + --- + O, of the characters of
the relatives 7, ...,y of my.

Let w denote an £th root of unity in C. All the £th roots are allowed, including
@ = 1. In the definition of 7, we now replace x by k ® w*¥. This will create £
characters, which we will denote by 7y, ..., t¢, where 7; = t. For each of these
characters, the R-group is given as follows:

R(tj) = Z/UZ

forall 1 < j < ¢, and the induced representation 7 (z; ) admits £ elliptic constituents.

If P = MU is a standard parabolic subgroup of G then igas (o) will denote the
induced representation Indde (0 ® 1) (normalized induction). The R-group attached
to o will be denoted R(0).

Let P = MU be the standard parabolic subgroup of G := SL(N, F') described
as follows. Let N = mn, let M be the Levi subgroup GL(m)" C GL(N, F) and let
M = M N SL(N, F).

We will use the framework, notation and main result in [6]. Let 0 € &,(M) and
let 7, € E3(M) with s |M D o. Let W(M) := Ng(M)/M denote the Weyl group
of M, so that W(M ) is the symmetric group on n letters. Let

L(ng):={ne F* | To ® n >~ wm, for some w € W,

X(mo)i={ne F* | 1, @ ) =~ 14}
By [6], Theorem 2.4, the R-group of o is given by

R(0) ~ L(”G)/X(T[O‘)'
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We follow [6], Theorem 3.4. Let 1 be a smooth character of F * such that " €
X(my)and ) ¢ X(mp) forl < j <n—1. Set

Mo T @NT @ NP Q@0 'my. 1e|M Do )
with 7y € &,(GL(m)), nm; := (n o det) ® ;. Then we have
L(e)/ X (m6) = (1)

and so R(0) >~ Z/nZ. The elliptic representations are the constituents of igps (o)
with 7, as in equation (1).

3. Fixed algebras and crossed products

Let M denote the Levi subgroup which occurs in Section 2. Denote by W! (M)
the group of unramified unitary characters of M. Now M C SL(N, F) comprises
blocks x1, ..., x, with x; € GL(m, F) and [ [ det(x;) = 1. Each unramified unitary
character ¥ € W!(M) can be expressed as

. n val(det x;)
¥ diag(xy,...,x,) = l_[Zj ,
j=1
with z1,25,...,2, € T,1i.e., |z;| = 1. Such unramified unitary characters ¥ corre-
spond to coordinates (z7 : zp : --- : z,) with each z; € T. Since

n n
1_[ (ZZi)Val(de[Xj) — 1—[ Zyal(detx,-)

l
i=1 i=1
we have homogeneous coordinates. We have the isomorphism
lIfl(]W) ~{(zy:z2: -z | |zil =1, 1 <i Sn}:-]]—n/—l]—‘

If M is the standard maximal torus T of SL(N) then W!(T) is the maximal
compact torus in the dual torus

TV C GY = PGL(N, 0),

where GV is the Langlands dual group.
Let 0, 4, 71 be as in equation (1). Let g be the order of the group of unramified
characters y of F* such that (y o det) ® 1 >~ m1. Now let

E:={y®o|yec¥ (M)
The base point 0 € E determines a homeomorpism

Ex~T"T, (®..-®z2 Q0 (z§ :---:z5).
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From this point onwards, we will require that the restriction of 1 to the group
UF of integer units is of order n. Let W(M) denote the Weyl group of M and let
W(M, E) be the subgroup of W(M) which leaves E globally invariant. Then we
have W(M, E) = W(o) = R(o) = Z/nZ.

Let & = K(H) denote the C*-algebra of compact operators on the standard
Hilbert space H. Let a(w, A) denote normalized intertwining operators. The fixed
C*-algebra C(E, &)W M-E) is given by

(f € C(E,R) | f(wh) = a(w,At) fM)a(w, At)"", w € W(M, E)}.

This fixed C*-algebra is a C*-direct summand of the reduced C*-algebra Ay of
SL(N), see [7].

Theorem 3.1. Let G = SL(N, F), and M be a Levi subgroup consisting of n blocks
of the same sizem. Let 0 € &,(M). Assume that the induced representation igps (0)
has elliptic constituents, then the fixed C*-algebra C(E, &)W M-E) is strongly Morita
equivalent to the crossed product C*-algebra C(E) x Z /nZ.

Proof. For the commuting algebra of iprg (o), we have [12]
Endg ((imc(0)) = C[R(0)].

Let wg be a generator of R(0), then the normalized intertwining operator a(wg, o)
is a unitary operator of order n. By the spectral theorem for unitary operators, we

have
n—1
a(wo.0) = ). o’ E;
j=0
where w = exp(27i/n) and E; are the projections onto the irreducible subspaces of
the induced representation ijs (o). The unitary representation

R(o) > UH), wra(w,o)

contains each character of R(o) countably many times. Therefore condition (***) in
[10], p. 301, is satisfied. The condition (**) in [10], p. 300, is trivially satisfied since
W(o) = R(o).

We have W(o) = Z/nZ. Then a subgroup W(p) of order d is given by W(p) =
kZ modn with dk = n. In that case, we have

n—1 .
a(wo, 0)|we) = wk/Ej.
i=0

We compare the two unitary representations

¢1: W(p) = U(H), w> a(w,o)|w(),
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¢2: W(p) > U(H), wra(w,p).

Each representation contains every character of W(p). They are quasi-equivalent as
in [10]. Choose an increasing sequence (e, ) of finite-rank projections in &£ (H ) which
converge strongly to / and commute with each projection E;. The compressions of
@1, 2 to e, H remain quasi-equivalent. Condition (*) in [10], p. 299, is satisfied.

All three conditions of [10], Theorem 2.13, are satisfied. We therefore have a
strong Morita equivalence

(C(E) @ RYVM-E) ~ C(E)x R(0) = C(E)xZ/nZ. O
We will need a special case of the Chern character for discrete groups [3].

Theorem 3.2. We have an isomorphism

K;(C(E)xZ/nZ)®z C =~ @ HY*(E/(Z/nZ);C)
jeN

withi = 0, 1, where E [[(Z/nZ) denotes the extended quotient of E by Z /nZ.

When N is a prime number £, this result already appeared in [8], [10].

4. The formation of the fixed sets

Extended quotients were introduced by Baum and Connes [3] in the context of the
Chern character for discrete groups. Extended quotients were used in [9], [8] in the
context of the reduced group C*-algebras of GL(/N ) and SL(£) where £ is prime. The
results in this section extend results in [8], [10].

Definition 4.1. Let X be a compact Hausdorff topological space. Let I" be a finite
abelian group acting on X by a (left) continuous action. Let

X ={(x,y) eXxT |yx =x}
with the group action on X given by
g-(x,y) = (gx,y)
for g € I'. Then the extended quotient is given by

X)T:=X/T=|]|X"/T
yel

where X is the y-fixed set.
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The extended quotient will always contain the ordinary quotient. The standard
projection 7: X//T" — X/T is induced by the map (x,y) — x. We note the
following elementary fact, which will be useful later (in Lemma 5.2): let y = I'x be
a point in X/ T". Then the cardinality of the pre-image 7!y is equal to the order of
the isotropy group I'y:

7=yl = |Txl.

We will write X = E = T"/T, where T acts diagonally on T", i.e.,
l(tl,lz,...,ln)=(t11,tt2,...,tln), t,t; €T.

We have the action of the finite group I' = Z/nZ on T" /T given by cyclic permu-
tation. The two actions of T and of Z/nZ on T" commute. We will write (k, n) for
the highest common factor of k£ and n.

Theorem 4.2. The extended quotient (T"/T)//(Z/nZ) is a disjoint union of com-
pact connected orbifolds:

(T"/T)/))(Z/nZ) ~ Ll Xk ).

1<k=<n
wh/(k.n) =1

Here w is a n/(k, n)th root of unity in C.

Proof. Let y be the standard n-cycle defined by y(i) = i + 1 modn. Then y¥
is the product of n/d cycles of order d = n/(n,k). Let w be a dth root of unity
in C. All dth roots of unity are allowed, including @ = 1. The element ¢(w) =
t(w;z1,...,2z,) € T" is defined by imposing the relations

-1
Zitk = @ Zj,

all suffices mod n. This condition allows n/d of the complex numbers zy, ..., z,
to vary freely, subject only to the condition that each z; has modulus 1. The crucial
point is that

v 1) = ot ()

Then  determines a y¥-fixed set in T” /T, namely the set %Y)(n, k, ) of all cosets
t(w) - T. The set Y(n, k, ) is an (n/d — 1)-dimensional subspace of fixed points.
Note that YY) (n, k, ®), as a coset of the closed subgroup %)(n, k, 1) in the compact
Lie group E, is homeomorphic (by translation in E) to %Y)(n, k, 1). The translation
is by the element t(w : 1,...,1). If w1, w; are distinct dth roots of unity, then
V(n, k,w),Y(n, k,w,) are disjoint.
We define the quotient space

X(n,k,w) =Y, k,w)/(Z/nZ)

and apply Definition 4.1. O
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When k = n, we must have w = 1. In that case, the orbifold is the ordinary
quotient: X(n,n,1) = X(n).

Let (n,k) = 1. The number of such k in 1 < k < n is ¢(n). In this case, w is
an nth root of unity and X(n, k, ®) is a point. There are n such roots of unity in C.
Therefore, the extended quotient (T"/T)//(Z/nZ) always contains ¢ (n)n isolated
points.

Theorem 1.1 is a consequence of Theorems 3.1, 3.2 and 4.2. If, in Theorem 1.1,
we take n to be a prime number £, then we recover the following result in [8], p. 30:
the extended quotient (T¢/T)//(Z /LZ) is the disjoint union of the ordinary quotient
X(£) and (£ — 1)£ points.

5. The formation of the R-groups

We continue with the notation of Section 3. Let o, 75, 71, n be as in equation (1).
The n-tuplet := (z1,...,2z,) € T" determines an element [t] € E. We can interpret
[t] as the unramified character

z

valodet valodet
(z3 s Zy .

Xt =

LetI' = Z/nZ, and let I';) denote the isotropy subgroup of I".

Lemma 5.1. The isotropy subgroup I'[;] is isomorphic to the R-group of y ® o:
F[t] ~ R(x: ® 0).

Proof. Let the order of I'l;) be d. Then d is a divisor of n. Let y be a generator of
I'[;. Then y is a product of n/d disjoint d-cycles, as in Section 4. We must have
t = t(w) with @ a dth root of unity in C. Note that y -t (w) = wt(w). Then we have

R(x: ®0) = L(x: ® 76)/ X (1t ® 75)
={a e F* | wry >~ e ® o for some w in W}/ X(x; ® 75)
— (wvaIOdet ® nn/d)

=7/dZ
=1

since, modulo X (y; ® 7, ), the character /¢ has order d. O

Lemma 5.2. In the standard projection p: EJJT — E/T, the cardinality of the
fibre of [t] is the order of the R-group of x; @ 0.

Proof. This follows from Lemma 5.1. O
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We will assume that o is a cuspidal representation of M with unitary central
character. Let s be the point in the Bernstein spectrum of SL(/N) which contains
the cuspidal pair (M, o). To conform to the notation in [2], we will write E® :=
T"/T, W?® = Z/nZ. The standard projection will be denoted

7% E?)/W® — E5/W?,

The space of tempered representations of G determined by s will be denoted by
Irr'“™P(G)#, and the infinitesimal character will be denoted i n f.ch.

Theorem 5.3. We have a commutative diagram

E// we L) Irrtemp(G)g

e i \Linf.ch.

E/W? E/ W=

in which the map % is a continuous bijection. This confirms, in a special case, part
(3) of the conjecture in [2].

Proof. We have
C[R(0)] ~ Endg(igm (0)).

This implies that the characters of the cyclic group R(o’) parametrize the irreducible
constituents of igas(0). This leads to a labelling of the irreducible constituents of
icym (0), which we will write as igp (0 : r) with 0 < r < n.

The map u® is defined as follows:

p (Y e iom (e ® 0 ).

We now apply Lemma 5.2.

Theorem 3.2 in [7] relates the natural topology on the Harish-Chandra parameter
space to the Jacobson topology on the tempered dual of a reductive p-adic group. As
a consequence, the map u® is continuous. O

6. Cyclic invariants

We will consider the map
o: T" = (T"/T)x T, (t1,....ta) = ((t1 - i ty) ita .. ty),

where (¢1 : --- : ty) is the image of (¢1,...,t,) viathe map T" — T”/T. The map
o is a homomorphism of Lie groups. The kernel of this map is

G, = {wl, | 0" =1}.
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We therefore have the isomorphism of compact connected Lie groups:
T" /8, =~ (T"/T)x T. (2)
This isomorphism is equivariant with respect to the Z /nZ-action, and we infer that
(T"/8)/(Z/nZ) = (T"/T)/(Z/nZ) x T. 3)
Theorem 6.1. Let H*(—; C) denote the total cohomology group. We have
dimg H*(¥(n);C) = 1 - dim¢ H*(T"; C)%/"~.

Proof. The cohomology of the orbit space is given by the fixed set of the cohomology
of the original space [4], Corollary 2.3, p. 38. We have

H/(T"/6,;C) = H/(T";C)®" ~ H/(T";C) 4)

since the action of &, on T”" is homotopic to the identity. We spell this out. Let z :=
(z1.....zp) and define H(z,t) = o' -z = (0'zy,...,w'z,). Then H(z,0) = z,
H(z,1) = w-z. Also, H is equivariant with respect to the permutation action of
Z/nZ. Thatis to say, if e € Z/nZ then H(e - z,t) = € - H(z,t). This allows us to
proceed as follows:

HI (T O = HI(T"/6,:C)F/"E
~ H/((T"/T) x T;C)%/"% (5)
~ H/(T"/T)/(Z/nZ) x T;C).

We apply the Kiinneth theorem in cohomology (there is no torsion):

(H’(T";C))%/"” ~ H/ (%(n);C) ® H' ™' (X(n);C) with0 < j <n,
(H™(T";C))%/"% ~ H" Y(%(n):C), H(T";C)%/"% ~ H°(%(n):C) ~ C,

H(T";C)%/"% = H*(X(n);C),  H*Y(T":C)*/"* = H*(X(n): C).
O

We now have to find the cyclic invariants in H*(T";C). The cohomology ring
H*(T",C) is the exterior algebra /\ V of a complex n-dimensional vector space V,
as can be seen by considering differential forms d6; A --- A d6,. The vector space
V admits a basis «; = db,,...,a, = db,. The action of Z/nZ on /\ V is induced
by permuting the elements oy, ..., oy, i.e., by the regular representation p of the
cyclic group Z /nZ. This representation of Z/nZ on /\ V will be denoted /\ p. The
dimension of the space of cyclic invariants in H*(T", C) is equal to the multiplicity
of the unit representation 1 in /\ p. To determine this, we use the theory of group
characters.



R-groups and geometric structure in the representation theory of SL(N) 277
Lemma 6.2. The dimension of the subspace of cyclic invariants is given by
AAp D) = L(pp0) 4+ xpp(1) + -+ xppn —1)).
Proof. This is a standard result in the theory of group characters [11]. O

Theorem 6.3. The dimension of the space of cyclic invariants in H*(T", C) is given
by the formula

gy = 3 @

d|n,d odd
Proof. We note first that
IAp(0) = Trace 1y y = dimec AV =2".

To evaluate the remaining terms, we need to recall the definition of the elementary

symmetric functions e;:

n

[TA—a)=A"—A""le; + A" 2e5 — - + (—1)"ep.

j=1
If we need to mark the dependence on y, . .., o, we will write e; = ej(ay, ..., 0t).
Seta; = w/ ™1, @ = exp(27i/n). Then we get
n
M=1=TJlA—0o) =A"=A""e; + A" 2e; — -+ (—=1)"ey.

Jj=1

Let d |n, let ¢ be a primitive dth root of unity. Let a; = ¢/~1. We have
n
A -Vl =A? 1. A =1 =[] (A —a)). (6)
j=1

Set A = —1. If d is even, we obtain

0=1+4e(1,682% .. )+e(1,E, 22 .. )+ +e,(1,5,2%,..). (D

If d is odd, we obtain
2V =1 e (1,882, )+ ea(1,682 . )+ +en(1,6.62,..). (8)

We observe that the regular representation p of the cyclic group Z/nZ is a direct
sum of the characters m — "™ with 0 < r < n. This direct sum decomposition
allows us to choose a basis vy, ..., v, in V such that the representation /\ p is diag-
onalized by the wedge products vj, A--- A vj,. This in turn allows us to compute the
character of /\ p in terms of the elementary symmetric functions ey, ..., e,.
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With ¢ = w" as above, we have

Ny =1+er(1,L ) +ea(l.0 82 ..)+ - +en (1,507 0).

We now sum the values of the character xp,. Let d := n/(r,n). Then { is
a primitive dth root of unity. If d is even then yp ,(r) = 0. If d is odd, then
ANp(T) = 27/d  There are ¢(d) such terms. So we have

Ine@ + 2pp(D) + ok xppn =D = Y7 ¢(d)2"7. ©)
d|n,d odd

We now apply Lemma 6.2. O
The sequence n — g(n)/2,n =1,2,3,4,...,is
1,1, 2,2, 4,6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, ....

as in http://www.research.att.com/~njas/sequences/A000016. Thanks to Kasper An-
dersen for alerting us to this web site.
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