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Non-commutative integral forms and twisted multi-derivations
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Abstract. Non-commutative connections of the second type or hom-connections and asso-
ciated integral forms are studied as generalisations of right connections of Manin. First,
it is proven that the existence of hom-connections with respect to the universal differential
graded algebra is tantamount to the injectivity, and that every injective module admits a hom-
connection with respect to any differential graded algebra. The bulk of the article is devoted
to describing a method of constructing hom-connections from twisted multi-derivations. The
notion of a free twisted multi-derivation is introduced and the induced first order differential
calculus is described. It is shown that any free twisted multi-derivation on an algebraA induces
a unique hom-connection on A (with respect to the induced differential calculus �1.A/) that
vanishes on the dual basis of �1.A/. To any flat hom-connection r on A one associates a
chain complex, termed a complex of integral forms onA. The canonical cokernel morphism to
the zeroth homology space is called a r-integral. Examples of free twisted multi-derivations,
hom-connections and corresponding integral forms are provided by covariant calculi on Hopf
algebras (quantum groups). The example of a flat hom-connection within the 3D left-covariant
differential calculus on the quantum group Oq.SL.2// is described in full detail. A descent
of hom-connections to the base algebra of a faithfully flat Hopf–Galois extension or a princi-
pal comodule algebra is studied. As an example, a hom-connection on the standard quantum
Podleś sphere Oq.S

2/ is presented. In both cases the complex of integral forms is shown
to be isomorphic to the de Rham complex, and the r-integrals coincide with Hopf-theoretic
integrals or invariant (Haar) measures.

Mathematics Subject Classification (2010). 58B32; 16W25.

Keywords. Hom-connection, integral form, twisted multi-derivation, covariant differential
calculus, quantum group.

1. Introduction

The notion of a right connection appears in [16], Chapter 4, as a means for introducing
integral forms and defining the Berezin integral on a supermanifold. The prompt
for this new type of connection comes from an approach to supersymmetric D-
modules of Penkov [18]. A formulation of the theory of right connections or co-
connections in terms of differential operators between modules over a commutative
algebra is described in [27] (and over a commutative algebra in the braided category
of Yetter–Drinfeld modules in [26]). It is also argued there that right connections or
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co-connections are dual notions (in a suitable sense) to connections in differential
geometry.

Motivated by the adjoint relationship between tensor products and homomor-
phisms, the notion of a hom-connection for any differential graded algebra was in-
troduced in [1]. Connections in noncommutative geometry, studied at least from
its inception in [5], are maps from a module M to M tensored with one-forms that
satisfy the Leibniz rule (thus a noncommutative connection is a generalisation of the
covariant derivation). Hom-connections are maps with a domain in homomorphisms
from one-forms to M and with M as a codomain, that are again required to satisfy
(a suitable version of) the Leibniz rule. Under suitable commutativity and finiteness
assumptions hom-connections reduce to right connections or co-connections in clas-
sical (super)geometry. Similarly to connections, to a flat hom-connection one can
associate a chain complex. This is the complex of module-valued integral forms in
noncommutative geometry.

Any finite-dimensional compact oriented (super)manifold admits a flat right con-
nection with certain uniqueness property; see [16], Chapter 4, § 5, [27]. This right
connection is dual to the de Rham differential and can be used to establish an equiv-
alence between categories of left and right connections and an isomorphism between
de Rham and integral forms. More directly, if D is the dimension of the manifold,
then the corresponding right connection arises from the de Rham differential from
.D � 1/-forms to D-forms. The finite-dimensionality plays in this construction the
most crucial role.

The aim of the present article is to extend the aforementioned classical construc-
tion of right connections to noncommutative algebras with a view on singling out
algebras corresponding to finite-dimensional noncommutative manifolds through the
existence of (flat) hom-connections together with an isomorphism between de Rham
and integral forms. This can be understood as a contribution to a programme aimed
at understanding what algebras describe finite-dimensional spaces in noncommuta-
tive geometry, a programme which is recently gathering momentum; see for example
[14], [10].

The article is organised as follows. In Section 2 we introduce the notions of in-
tegral forms and integrals associated to a hom-connection, and consider existence of
hom-connections. In particular, it is proven that existence of hom-connections with
respect to the universal differential graded algebra is tantamount to the injectivity,
and that every injective module admits a hom-connection with respect to any differ-
ential graded algebra. Section 3 describes a construction of hom-connections from
free twisted multi-derivations. First the notion of a free twisted multi-derivation is
introduced and the induced first order differential calculus is described. Sufficient and
necessary conditions for a twisted multi-derivation with a triangular twisting matrix to
be free are determined in Proposition 3.3. It is shown that any free multi-derivation on
an algebraA induces a unique hom-connection onA (with respect to the induced dif-
ferential calculus�1.A/) that vanishes on the dual basis of�1.A/; see Theorem 3.4
and Corollary 3.5. Examples in this section include hom-connections on quasi-free
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algebras and on algebras with a derivation based differential calculus. In particular,
the r-integral on a matrix algebraMn.C/ with derivation based differential calculus
is shown to coincide with the integral constructed in [11]. As another very explicit
illustration of Theorem 3.4 we construct a hom-connection and complex of integral
forms for the quantum plane with a covariant differential structure. We show that this
complex is isomorphic to the noncommutative de Rham complex.

Main examples are described in Section 4. These are examples of hom-connections
and integral forms on algebras with a Hopf-algebra coaction including Hopf algebras
themselves. It is proven that any left- (or right-) covariant differential calculus on
a Hopf algebra with bijective antipode gives rise to a free twisted multi-derivation
and hence to a hom-connection; see Theorem 4.1. Furthermore a close relationship
between integrals on Hopf algebras and integrals associated to this hom-connection is
established. A hom-connection within the Woronowicz 3D left-covariant differential
calculus on the quantum group Oq.SL.2// is described in full detail. Next the de-
scent of hom-connections within Hopf–Galois extensions is studied. It is shown that a
hom-connection on a total algebraA of a faithfully flat Hopf–Galois extensionB � A

descends to a hom-connection onB , provided that it has a certain covariance property
and the (strongly) horizontal forms on B � A are a direct summand (in a suitable
category) of forms on A; see Theorem 4.3. In particular, a covariant hom-connection
on a principal comodule algebra B � A with respect to the universal differential
calculus descends to a hom-connection onB . Also, a hom-connection on Oq.SL.2//
(with respect to the 3D calculus) described earlier descends to a hom-connection
on the quantum standard Podleś sphere Oq.S

2/. In both cases, hom-connections
can be identified with exterior differentials �2.Oq.SL.2/// ! �3.Oq.SL.2/// and
�1.Oq.S

2// ! �2.Oq.S
2//, respectively. Similar to the case of the quantum plane,

the constructed hom-connections are flat and the corresponding complexes of inte-
gral forms are isomorphic to de Rham complexes �.Oq.SL.2/// and �.Oq.S

2//,
respectively. This is a noncommutative counterpart of the classical identification of
differential and integral forms on a compact oriented finite dimensional manifold.

We work over a field k. All algebras are unital and associative. Only Section 4
requires the reader to have some familiarity with the language of Hopf algebras or
quantum groups. We follow the standard Hopf algebra notation and conventions
there.

2. Hom-connections and injective modules

2.1. Hom-connections, integral forms and gauge transformations. By a differen-
tial graded algebra over an algebra A we mean a non-negatively graded differential
graded algebra .�.A/; d/ with �0.A/ D A. The pair .�1.A/; d/ is referred to as a
first order differential calculus on A. Any algebra A admits the universal differential
graded algebra .�A; d/ over A defined as follows. �A ´ TA.�

1A/ is the tensor
algebra of theA-bimodule�1A D ker�, where� W A˝A ! A is the multiplication
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map. The differential is defined as d W A ! �1A, a 7! 1˝ a� a˝ 1, and extended
to the whole of �A by the graded Leibniz rule and d2 D 0.

A right hom-connection with respect to a differential graded algebra .�.A/; d/
over an algebra A is a pair .M;r/, where M is a right A-module and

r W HomA.�
1.A/;M/ ! M

is a k-linear map such that, for all f 2 HomA.�
1.A/;M/ and a 2 A,

r.fa/ D r.f /aC f .da/:

Here HomA.�
1.A/;M/ is a right A-module by .fa/.!/ ´ f .a!/, ! 2 �1.A/.

Any hom-connection .M;r/ can be extended to higher forms. The vector spaceL
nD0 HomA.�

n.A/;M/ is a right module over �.A/ with the multiplication

f!.!0/ ´ f .!!0/

for all ! 2 �n.A/, f 2 HomA.�
nCm.A/;M/, !0 2 �m.A/. For any n > 0, define

rn W HomA.�
nC1.A/;M/ ! HomA.�

n.A/;M/ by

rn.f /.!/ ´ r.f!/C .�1/nC1f .d!/ (2.1)

for all f 2 HomA.�
nC1.A/;M/ and ! 2 �n.A/.

The map F ´ r B r1 is a right A-module homomorphism which is called the
curvature of .M;r/, and .M;r/ is said to be flat provided thatF D 0. To a flat hom-
connection .M;r/ one associates a chain complex .

L
nD0 HomA.�

n.A/;M/;r/.
The homology of this complex is denoted by H�.AIM;r/. In case M D A this
complex is termed a complex of integral forms on A, and the canonical map

ƒ W A ! coker.r/ D H0.AIA;r/
is called a r-integral on A.

We complete this preliminary section by describing the action of the group of
module automorphisms on hom-connections. This is a hom-connection version of
gauge transformations of connections.

Proposition 2.1. Let G D AutA.M/ be the group of automorphisms of a right
A-moduleM , and view HomA.�

1.A/;M/ as a right G-space by

.f;ˆ/ 7! Œf Gˆ W ! 7! ˆ�1.f .!//�:

For any hom-connection .M;r/ and ˆ 2 AutA.M/, the pair .M;rˆ/, where

rˆ W HomA.�
1.A/;M/ ! M; f 7! ˆ.r.f Gˆ//;

is a hom-connection.
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Proof. Note that, for all f 2 HomA.�
1.A/;M/, ˆ 2 AutA.M/ and a 2 A,

.fa/ Gˆ D .f Gˆ/a:
Therefore,

rˆ.fa/ D ˆ.r..fa/ Gˆ//
D ˆ.r..f Gˆ/a//
D ˆ.r.f Gˆ/a/Cˆ.f Gˆ.da//
D rˆ.f /aCˆ.ˆ�1.f .da///

D rˆ.f /aC f .da/;

where the fourth equality follows by the right A-linearity of ˆ. Hence rˆ is a
hom-connection as claimed.

The action ofG D AutA.M/ extends to the action on
L

nD0 HomA.�
n.A/;M/.

A calculation similar to the proof of Proposition 2.1 yields the relation

Fˆ.f / D ˆ.F.f Gˆ//
between the curvatures of r and rˆ for all f 2 HomA.�

2.A/;M/. In particular,
the gauge transform of a flat hom-connection is a flat hom-connection.

2.2. Existence of hom-connections. First we determine, when a module admits a
hom-connection with respect to the universal differential calculus, and thus obtain a
dual version of [7], Corollary 8.2.

Theorem 2.2. A right A-module M admits a hom-connection with respect to the
universal differential graded algebra if and only ifM is an injective module.

Proof. Note that M is an injective right A-module if and only if there is a right
A-module map � W Homk.A;M/ ! M such that � B � D id, where � W M !
Homk.A;M/ is the canonical monomorphism induced by the A-multiplication on
M , i.e., �.m/.a/ D ma for allm 2 M and a 2 A. Indeed, by the standard argument
Homk.A;M/ is injective, hence if � exists, M is a direct summand of an injective
module, therefore it is injective. Conversely, if M is an injective right A-module,
then the diagram

0 �� M
� ��

D
��

Homk.A;M/

M

can be completed by the required right A-module map � W Homk.A;M/ ! M .



286 T. Brzeziński, L. El Kaoutit, and C. Lomp

In the light of [1], Section 3.9, hom-connections onM with respect to the universal
differential graded algebra are in bijective correspondence with rightA-module maps
� W HomA.A˝ A;M/ ! M such that

� B HomA.�;M/ B  D id; (2.2)

where  W M ! HomA.A;M/ is the canonical isomorphism m 7! Œa 7! ma�.
Write x W Homk.A;M/ ! HomA.A˝A;M/ for the canonical isomorphism f 7!
Œa˝ b 7! f .a/b�, and note that

� D x �1 B HomA.�;M/ B  :
If a hom-connection, i.e., � satisfying (2.2), exists, then define � D � B x and
compute

� B � D � B x B x �1 B HomA.�;M/ B  D id:

Therefore, M is an injective right A-module.
Conversely, assume thatM is an injective rightA-module with the corresponding

� and define � D � B x �1: Then

� B HomA.�;M/ B  D � B x �1 B HomA.�;M/ B  D � B � D id;

hence there is a hom-connection in M .

As a corollary we obtain a dual version of [6], Proposition III.3.6.

Corollary 2.3. An injective rightA-moduleM admits a hom-connection with respect
to any graded differential algebra .�.A/; d/ over A.

Proof. Denote by ru the hom-connection with respect to the universal differential
graded algebra .�A; du/ given by Theorem 2.2. The desired hom-connection is
given by r D ru B i�u , where i�u .f / D f B iu for f 2 HomA.�

1.A/;M/ and
where iu W �1A ! �1.A/ is the canonical A-bimodule homomorphism such that
d D iu B du (whose existence is guaranteed by the universal property of .�1A; du/,
see e.g. [6], Proposition III.1.3).

Again, with no restriction on the differential graded algebra, one can state the
following criterion for the existence of hom-connections on direct sums of modules.

Proposition 2.4. A finite direct sum of A-modules admits a hom-connection if and
only if each of the summands admits a hom-connection.

Proof. Suppose that M D N ˚ P and let �N W M ! N and �N W N ! M be the
(direct-sum defining) epimorphism and monomorphism. IfM has a hom-connection
rM W HomA.�

1.A/;M/ ! M , then

rN W HomA.�
1.A/;N / ! N; f 7! �N .rM .�N B f //;
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is a hom-connection on N .
Conversely, assume that .N;rN / and .P;rP / are hom-connections. Let

�P W M ! P and �P W P ! M be the (direct-sum defining) epimorphism and
monomorphism. Then the hom-connection

rM W HomA.�
1.A/;N ˚P / ' HomA.�

1.A/;N /˚HomA.�
1.A/; P / ! N ˚P

is given by
rM .f / D �N .rN .�N B f //C �P .rP .�P B f //:

In both cases checking that the maps given by the stated formulae satisfy the Leibniz
rule for a hom-connection is a routine calculation.

3. Twisted multi-derivations and hom-connections

By a right twisted multi-derivation in an algebra A we mean a pair .@; 	/, where
	 W A ! Mn.A/ is an algebra homomorphism (Mn.A/ is the algebra of n � n

matrices with entries from A) and @ W A ! An is a k-linear map such that

@.ab/ D @.a/	.b/C a@.b/; (3.1)

for all a 2 A, b 2 B . Here An is understood as an .A-Mn.A//-bimodule. Thus,
writing 	.a/ D .	ij .a//

n
i;j D1 and @.a/ D .@i .a//

n
iD1, (3.1) is equivalent to the

following n equations:

@i .ab/ D P
j

@j .a/	j i .b/C a@i .b/; i D 1; 2; : : : ; n:

Equivalently, a right twisted multi-derivation is a derivation onAwith values in theA-
bimoduleAn

� with the underlying vector space equal toAn, but withA-multiplications

a � x � c D .a
P

j xj	j i .c// for all a; c 2 A; x D .xi / 2 An
� : (3.2)

Twisted multi-derivations (for n D 2) give rise to double Ore extensions [32].
A map 	 W A ! Mn.A/ can be viewed as an element of Mn.Endk.A//. Write

� for the product in Mn.Endk.A//, I for the unit in Mn.Endk.A// and 	T for the
transpose of 	 .

Definition 3.1. Let .@; 	/ be a right twisted multi-derivation. We say that .@; 	/ is
free, provided that there exist algebra maps N	 W A ! Mn.A/ and O	 W A ! Mn.A/

such that

N	 � 	T D I; 	T� N	 D I; (3.3)

O	 � N	T D I; N	T� O	 D I: (3.4)
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For any algebra homomorphism 	 W A ! Mn.A/ define the A-bimodule An
� as

free left A-module
Ln

iD1A!i with basis !1; : : : ; !n and right A-action given by

!ia D P
j

	ij .a/!j ; i D 1; 2; : : : ; n: (3.5)

Identifying an arbitrary element x 2 An
� with the coefficient vector .xi / of its repre-

sentation using the left A-basis !1; : : : ; !n we obtain the formula (3.2).

Lemma 3.2. There exists an algebra homomorphism N	 W A ! Mn.A/ such that

	T� N	 D I D N	 � 	T

if and only if !1; : : : ; !n is also a basis for An
� as a right A-module.

Proof. Suppose that N	 exists, then
P

k N	jk.	ik.a// D ıj ia, for all a 2 A. Suppose
that

P
i !iai D 0, for some ai 2 A. Then

P
ij 	ij .ai /!j D 0. Since f!igi is a free

basis of the left A-module,
P
i

	ij .ai / D 0 for all j D 1; 2; : : : ; n:

In particular 	kj .ak/ D � P
i¤k 	ij .ai / for all j . Hence, for all k,

ak D
nP

j D1

N	kj B 	kj .ak/ D �
nP

j D1

P
i¤k

N	kj B 	ij .ai / D � P
i¤k

ıikai D 0:

Therefore,
P

i !iA D L
!iA is free on the right. As

P
j

!i N	ij .a/ D P
j;k

	ik. N	ij .a//!k D a!i ;

it follows that An
� D L

!iA.
On the other hand suppose that f!igi is a right A-basis for An

� . For all i D
1; 2; : : : ; n and a 2 A, a!i D P

j !j N	j i .a/ for some well-defined N	j i .a/ 2 A.
Since An

� is a left A-module and free on the right with the basis f!igi , the function
N	 W a 7! . N	ij .a// 2 Mn.A/ is an algebra map. Then a!i D P

j !j . N	j i .a// DP
j;k 	jk N	j i .a/!k , and the freeness on the left shows that ıkia D P

j 	jk. N	j i .a//,
i.e., 	T� N	 D I. The other equality follows analogously.

In other words, a right twisted multi-derivation .@; 	/ is free if and only if
!1; : : : ; !n is a right A-basis for An

� and AnN� .
In general it might be difficult to determine, when an algebra map 	 W A ! Mn.A/

admits maps N	 , O	 satisfying conditions of Definition 3.1 (note that we are dealing with
matrices with noncommutative entries even ifA is a commutative algebra). However,
when 	.a/ is an upper-triangular matrix for each a 2 A, a criterion for existence of
N	 , O	 can be established.
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Proposition 3.3. Let .@; 	/ be a right twisted multi-derivation in which 	 is an upper-
triangular matrix (inMn.Endk.A//) with non zero diagonal entries. Then .@; 	/ is a
free multi-derivation in the sense of Definition 3.1 with N	 a lower-triangular matrix
if and only if the diagonal entries 	i i , i D 1; : : : ; n of 	 are invertible.

Proof. To ease the notation we denote the composition of endomorphisms by juxta-
position. If .@; 	/ is a free multi-derivation with N	 a lower-triangular matrix, then
equations (3.3) immediately imply that

P
k 	ki N	ki D 	i i N	i i D 1 and

P
k N	ik	ik D

N	i i	i i D 1 for all i . Thus all diagonal entries in 	 are invertible. Conversely assume
that all diagonal entries in 	 are invertible and define a matrix N	 by

N	ij D 0 for i < j I
N	i i D 	�1

i i for all i D 1; : : : ; nI

N	ij D �
i�1P
kDj

	�1
i i 	ki N	kj for i � j C 1:

We claim that N	 �	T D 	T� N	 D I . Clearly,
P

k 	ki N	ki D 	i i N	i i D 1 and similarlyP
k N	ik	ik D 1. It remains to prove that

P
k 	kj N	ki D P

k N	ik	jk D 0 for any
i ¤ j . Given such a pair of indices, it is clear from definitions that

P
k 	kj N	ki D 0

for any j < i . On the other hand, if j > i , then

nP
kD1

	kj N	ki D
jP

kDi

	kj N	ki D
j �1P
kDi

	kj N	ki C 	jj N	j i

D
j �1P
kDi

	kj N	ki � 	ij	
�1
i i �

j �1P
kDiC1

	kj N	kj D 0:

For the second equality in (3.3), observe that
P

k N	ik	jk D 0 for i < j . So let i > j .
If i D j C 1, then, by the definition of N	 ,

nP
kD1

N	ik	jk D
j C1P
kDj

N	ik	jk D N	j C1 j	j j C N	j C1 j C1	j j C1 D 0:

Assume that
Pl

kDj N	l k	jk D 0, for all l such that j < l � i and l � j � 2. Then

nP
kD1

N	iC1 k	jk D
iC1P
kDj

N	iC1 k	jk D
iP

kDj

N	iC1 k	jk C N	iC1 iC1	j iC1

D �
iP

kDj

iP
lDk

	�1
iC1 iC1	l iC1 N	l k	jk C N	iC1 iC1	j iC1

D �
iP

lDj

	�1
iC1 iC1	l iC1.

lP
kDj

N	l k	jk/C N	iC1 iC1	j iC1
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D �	�1
iC1 iC1	j iC1. N	jj	j j / � .

iP
lDj C1

	�1
iC1 iC1	l iC1.

Pl
kDj N	l k	jk//

C N	iC1 iC1	j iC1

D �	�1
iC1 iC1	j iC1.	

�1
jj 	j j /C 	�1

iC1 iC1	j iC1 D 0;

where in the third equality the definition N	iC1 k D � Pi
lDk 	

�1
iC1 iC1	l iC1 N	l k and in

the fifth one the induction hypothesis were used. This finishes the proof of equations
(3.3). In a similar way, one can show that if ˛ 2 Mn.Endk.A// is a lower-triangular
matrix in which all the ˛i i are invertible, then the upper-triangular matrix Q̨ defined
by

Q̨ i i D ˛�1
i i for i D 1; : : : ; n; and Q̨ ij D �

jP
lDiC1

˛�1
i i ˛l i Q̨ l j for i C 1 � j;

satisfies Q̨ � ˛T D ˛T � Q̨ D I. In particular, if O	 ´ QN	 , then O	 � N	T D N	T � O	 D I,
i.e., equations (3.4) are satisfied as required.

Given a free right twisted multi-derivation .@; 	 I N	; O	/ define a first order differen-
tial calculus on A as follows: �1.A/ D An

� ; hence writing !i D .0; 0; : : : ; 1; : : : ; 0/

for standard generators of An
� we obtain relations (3.5) in �1.A/. Equations (3.5)

and the freeness of �1.A/ as an A-module imply that

a!i D P
j

!j N	j i .a/; i D 1; 2; : : : ; n: (3.6)

The exterior differential d W A ! �1.A/ is defined by

da D P
i

@i .a/!i D P
i;j

!i N	ij .@j .a//: (3.7)

The fact that .@; 	/ is a right twisted multi-derivation ensures that the differential d
satisfies the Leibniz rule. This first order differential calculus can be extended to a
differential graded algebra in a standard way. Furthermore,�1.A/ can be understood
as a universal calculus in which relations (3.5)–(3.7) are satisfied.

Within this set-up, one can formulate the following noncommutative version of
Proposition 3 in [16], Chapter 4, § 5.

Theorem 3.4. Let .@; 	 I N	; O	/, be a free right twisted multi-derivation on A, and let
�1.A/ be the associated first order differential calculus with generators !i . Define
right A-module maps 
i W �1.A/ ! A by 
i .!j / D ıij , i; j D 1; 2; : : : ; n. Then
there exists a unique hom-connection r W HomA.�

1.A/; A/ ! A such that r.
i / D
0 for all i D 1; 2; : : : ; n.

Proof. For each i D 1; 2; : : : ; n, write @�
i ´ P

j; k N	kj B @j B O	ki , and define

r W HomA.�
1.A/; A/ ! A; f 7! P

i

@�
i .f .!i //: (3.8)
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Since @�
i .1/ D 0, r.
i / D 0, for all i D 1; 2; : : : ; n. Furthermore, for all a 2 A and

f 2 HomA.�
1.A/; A/,

r.fa/ D P
i

@�
i .f .a!i // D P

i;j;k;l

N	kj .@j . O	ki .f .!l/ N	li .a////

D P
j;k;l

N	kj .@j . O	kl.f .!l//a//

D P
j;k;l;r

N	kj .@r. O	kl.f .!l//	rj .a///C P
j;k;l

N	kj . O	kl.f .!l//@j .a//

D P
i

@�
i .f .!i //aC P

j;l

f .!l/ N	lj .@j .a//

D r.f /aC P
j;l

f .!l N	lj .@j .a/// D r.f /aC f .da/;

where the first equality follows by the definition of rightA-action on HomA.�
1.A/; A/

and the definition of r in (3.8). The second equality follows by relations (3.6) and
the A-linearity of f . The third equality is a consequence of multiplicativity of O	
and the first of equations (3.4). The fourth equality follows by the twisted derivation
property, while the fifth one is a consequence of multiplicativity of N	 , the first of
equations (3.3) and the second of (3.4). Finally the linearity of f and the definition
of d in (3.7) are used. Hence r is a hom-connection.

Similar calculations (that in particular use the second of equations (3.4)) and the
definition of 
i affirm that, for all f 2 HomA.�

1.A/; A/,

f D P
i;k


i O	ik.f .!k//:

Suppose that Nr is a hom-connection such that Nr.
i / D 0, i D 1; 2; : : : ; n. Then

Nr.f / D P
i;k

Nr.
i O	ik.f .!k/// D P
i;k

Nr.
i / O	ik.f .!k//C P
i;k


i .d O	ik.f .!k///

D P
i;j;k;l


i .!l N	lj .@j . O	ik.f .!k///// D P
i;j;k

N	ij .@j . O	ik.f .!k//// D r.f /:

The second equality is the Leibniz rule for a hom-connection, the third one is a
consequence of the hypothesis on Nr and the definition of d in (3.7). The remaining
two equalities are consequences of the definitions of the 
i and r. This completes
the proof of uniqueness of r.

A first order differential calculus �1.A/ is said to be dense if every element of
�1.A/ is of the form

P
i aidbi , for some ai ; bi 2 A. The calculus discussed in

Theorem 3.4 is dense if and only if there exist two finite subsets faitg, fbitg of
elements of A such that

P
t

ait@k.bit / D ıik for all i; k D 1; : : : ; n:



292 T. Brzeziński, L. El Kaoutit, and C. Lomp

Typically, one is interested in calculi that are dense. Also typically the calculi of
main interest are not free as A-modules (but they are often finitely generated and
projective, as A is understood as functions on a noncommutative space and �1.A/

is understood as sections of the noncommutative cotangent bundle). Note, however,
that the calculations in the proof of Theorem 3.4 justify the following assertion.

Corollary 3.5. Let .@; 	 I N	; O	/ be a free right-twisted multi-derivation, and let�1.A/

be any differential calculus on A finitely (but not necessarily freely) generated by
the !i and such that relations (3.5)–(3.7) are satisfied, for all a 2 A. Then the
formula (3.8) defines a hom-connection on A with respect to �1.A/.

In a typical noncommutative geometry situation, rather than constructing calculus
from a multi-derivation, one would start with a suitable differential calculus, and then
search for a free right-twisted multi-derivation. In all such situations it is Corollary 3.5
rather than Theorem 3.4 that produces a hom-connection.

The construction in Theorem 3.4 or Corollary 3.5 simplifies if .ı; 	/ is a right
twisted multi-derivation with a diagonal matrix 	 . Write 	i for the (only non-zero)
diagonal elements of 	 . Then each of the @i becomes a right twisted derivation,
i.e., @i .ab/ D @i .a/	i .b/ C a@i .b/. In this case the conditions (3.4) and (3.3)
are mutually equivalent and simply state that each of the endomorphisms 	i is an
algebra automorphism; see Proposition 3.3. Furthermore N	 is the inverse of 	 (i.e.,
a diagonal matrix with entries 	�1

i ) and O	 D 	 . If there exist scalars qi such
that 	�1

i @i	i D qi@i , then, following [12], each of the @i is called a right qi -skew
derivation. In this case the formula for a hom-connection in Theorem 3.4 takes
particularly simple form:

r.f / D P
i

qi@i .f .!i //:

To illustrate the construction in Theorem 3.4 or Corollary 3.5 we describe hom-
connections on a quasi-free algebra, hom-connections with respect to differential
graded algebras based on derivations, and integral forms on the matrix algebra and
on the quantum plane.

Example 3.6. Assume that A is a finitely generated algebra. A is said to be quasi-
free [7], [23], provided that the universal one-forms �1A are (finitely generated)
projective as an A-bimodule. Let !i 2 �1A, �i 2 A HomA.�

1A;A˝ A/ be a finite
dual basis. Define

N�i D � B �i 2 A HomA.�
1A;A/:

The A-bilinearity of the N�i implies that the maps

@i W A ! A; a 7! N�i .1˝ a � a˝ 1/;

are derivations (not twisted, i.e., each @i is a q-skew derivation with q D 1 and
	i D id). Let

�1.A/ ´ �1A=ŒA;�1A�
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(note that�1.A/ D H0.A;�
1A/, the zeroth Hochschild homology of A with values

in �1A). Write � W �1A ! �1.A/ for the canonical A-bimodule epimorphism and
then define

d W A ! �1.A/; a 7! �.1˝ a � a˝ 1/;

and N!i D �.!i /. Since, in the universal calculus, da D P
i �i .da/!i (where we view

theA-bimodule�1.A/ as a left module over the enveloping algebraAe ´ A˝Aop),
a straightforward calculation yields

da D P
i

@i .a/ N!i ;

in �1.A/. By construction, �1.A/ is a central A-bimodule, hence N!ia D a N!i , for
all a 2 A. Thus, by Corollary 3.5, a quasi-free algebra A admits a hom-connection
r W HomA.�

1.A/; A/ ! A,

r.f / D P
i

@i .f . N!i // D P
i

� B �i .1˝ f .�.!i // � f .�.!i //˝ 1/:

Example 3.7. The construction described in Theorem 3.4 is also applicable to dif-
ferential graded algebras based on derivations introduced in [8]; see [9] for a review
and various applications e.g. to Yang–Mills theories. Let A be an algebra and set
R D Z.A/ (the centre of A). Denote by D.A/ the Lie algebra of all derivations
A ! A. Take a Lie subalgebra and R-submodule g � D.A/, and define �n.A/

as a set of R-multilinear antisymmetric maps g˝Rn ! A. �.A/ D ˚i�
i .A/ is an

algebra with the product

!�.X1; : : : ;XpCq/

D 1

pŠqŠ

X
�2SpCq

.�1/sgn.�/!.X�.1/; : : : ;X�.p//�.X�.pC1/; : : : ;X�.pCq//:

The differential is given by the Koszul formula

d.!/.X1; : : : ;XnC1/ D
nC1P
iD1

.�1/iC1Xi .!.X1; : : : ;Xi�1;XiC1; : : : ;XnC1//

C P
1�i<j �nC1

.�1/iCj!.ŒXi ;Xj �;X1; : : : ;Xi�1;XiC1;

: : : ;Xj �1;Xj C1; : : : ;XnC1/:

In particular da.X/ D X.a/. Suppose that g is finitely generated and projective as
an R-module, and let X1; : : : ;Xn 2 g, N!1; : : : ; N!n 2 g� D HomR.g; R/ be a dual
basis. Then �1.A/ ' g� ˝R A as A-bimodules. The isomorphism is

# W �1.A/ ! g� ˝R A; ! 7! P
i

N!i ˝R !.Xi /:
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g� ˝R A is a left A-module by a. N! ˝R b/ D N! ˝R ab. The differential d W A !
�1.A/ translates through # to

da ´ #.da/ D P
i

N!i ˝R da.Xi / D P
i

N!i ˝R Xi .a/

D P
i

Xi .a/. N!i ˝R 1/ D P
i

. N!i ˝R 1/Xi .a/:

Thus�1.A/ ' g�˝RA is generated (as a left and rightA-module) by!i ´ N!i ˝R1:

Furthermore,
a!i D !ia; da D P

i

Xi .a/!i ;

for all a 2 A. Hence there is a hom-connection

r.f / D P
i

Xi .f .!i // for all f 2 HomA.�
1.A/; A/: (3.9)

In the light of the chain of the (A-bimodule) isomorphisms

HomA.�
1.A/; A/ ' HomR.g

�; A/ ' A˝R g ' g ˝R A;

the formula for the hom-connection comes out as

r.X ˝R a/ D P
i

Xi . N!i .X/a/ for all X 2 g; a 2 A: (3.10)

In the case g D D.A/, this last formula is a noncommutative version of the example
of a co-connection constructed in [27], Section 3.

Assume now that g is free as an R-module with a finite basis Xi , and let N!i be
the dual basis, i.e., N!i .Xj / D ıij . Set !i D N!i ˝R 1A as before. Since g is a Lie-
subalgebra ofD.A/ generated as anR-module by the Xi , there are elements cijl 2 R
such that

ŒXi ;Xj � D P
l

cijlXl : (3.11)

Then one finds that

!i!j D �!j!i ; d!l D �1
2

X
i;j

cijl!i!j : (3.12)

Using these expressions and the derivation property of each of the Xi , the curvature
F of hom-connection (3.9) can be computed as

F.f / D �1
2

X
i;j;l

f .Xl.cijl/!i!j /

for all f 2 HomA.�
2.A/; A/. In particular, if R D k, then r in (3.9) is a flat

hom-connection.
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Example 3.8. As a special case of Example 3.7, take k D C, A D Mn.C/ (the
algebra of complex n � n-matrices) and g D D.A/ D sl.n;C/ (the Lie algebra of
complex traceless n� n-matrices). This is an example of noncommutative geometry
studied in [11]. In this case R D Z.A/ D C, and thus the constructed hom-
connection is flat. To get further insight into this example, choose a basis El for
sl.n;C/ (e.g. a basis consisting of Hermitian matrices). Then the corresponding
basis fXl I l D 1; : : : ; n2 � 1g for D.A/ can be chosen as Xl.a/ D {ŒEl ; a�. The
formula (3.10) then yields a flat hom-connection

r.Pl Xl ˝ al/ D P
l

Xl.al/ D P
l

{ŒEl ; al �:

This last expression affirms that Im.r/ D sl.n;C/, therefore coker.r/ D C, and
the r-integral ƒ W Mn.C/ ! C comes out as

ƒ.a/ D ƒ..a � 1
n

Tr.a//C 1
n

Tr.a// D 1
n

Tr.a/;

since, by definition, ƒ vanishes on all traceless matrices (the image of r). This is
exactly the integral on Mn.C/ considered in [11], Section VA.

One can construct an isomorphism between the de Rham complex and the complex
of integral forms as follows. Set N D n2 � 1 and suppose that the matrices El ,
l D 1; : : : ; N form a fundamental representation of sl.n;C/, i.e., the corresponding
structure constants cijk in equations (3.11)–(3.12) are completely antisymmetric.
Consider the following diagram

A
d ��

ˆ0

��

�1.A/
d ��

ˆ1

��

�2.A/
d ��

ˆ2

��

: : :
d �� �N �1.A/

d ��

ˆN �1

��

�N .A/

ˆN

��
�N .A/�

rN �1 �� �N �1.A/�
rN �2 �� �N �2.A/�

rN �3 �� : : :
r1 �� �1.A/�

r �� A,

where ˆN is the canonical isomorphism given by

ˆN .!1!2 : : : !N / D 1;

and

ˆk.!/ W �N �k.A/ ! A; !0 7! .�1/.N �1/kˆN .!!
0/

for all ! 2 �k.A/. Since the structure constants cijk are non-zero only when all the
indices are different, equations (3.12) imply that

d.!1!2 : : : !k�1!kC1 : : : !N / D 0

for allk D 1; : : : ; N . Using this and the definition of the hom-connection r one easily
checks that the right-most square in the above diagram is commutative. Combining
the commutativity of the right-most square with the definitions of rk in equations
(2.1) one can check that all the remaining squares are commutative. Since ˆN is
an isomorphism (of A-bimodules), each of the ˆk is an injective map. A simple
dimension-counting argument then yields that the ˆk are isomorphisms.
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Example 3.9. This example deals with a (quantum-group) covariant differential cal-
culus on the quantum hyperplane introduced in [21], [28]. Although derived in the
context of quantum groups, and hence really belonging to forthcoming Section 4,
the knowledge of this context is not needed here. To make the presentation more
succinct we discuss only the case of the two-dimensional quantum plane, but with a
two-parameter differential structure.

The quantum plane is a unital algebra A generated by x, y subject to relation
xy D qyx, where q is a non-zero element of k, i.e., A D kŒx; y�=hxy � qyxi.
�1.A/ is generated freely by !1 D dx and !2 D dy, subject to relations

dxx D pxdx; dxy D qydx C .p � 1/xdy; dyx D pq�1xdy; dyy D pydy;

(3.13)
where p is a non-zero element of k; see [21], Theorem 2.1, or [2], Section 2A. This
first order differential calculus extends to the full differential graded algebra�.A/ D
A˚�1.A/˚�2.A/, in which dydx D �pq�1dxdy and .dx/2 D .dy/2 D 0. The
corresponding matrix 	 is

	.xrys/ D
�
prqsxrys pr.ps � 1/xrC1ys�1

0 prCsq�rxrys

�
:

Since 	 is upper-triangular and its diagonal entries are bijective, the corresponding
twisted multi-derivation is free. The construction in the proof of Proposition 3.3
yields

N	.xrys/ D
�

p�rq�sxrys 0

p�rqr�sC1.p�s � 1/xrC1ys�1 p�r�sqrxrys

�

and

O	.xrys/ D
�
prqsxrys prC1.ps � 1/xrC1ys�1

0 prCsq�rxrys

�
:

One can now construct a hom-connection onA as in Theorem 3.4. We concentrate on
the following questions: is this hom-connection flat, what is the form of the associated
integral and how is the complex of integral forms related to the de Rham complex?

Write 
x 2 HomA.�
1.A/; A/ for the dual of dx, 
y 2 HomA.�

1.A/; A/ for
the dual of dy, and 
 2 HomA.�

2.A/; A/ for the dual of dxdy. Then 
dx D 
y
and 
dy D �pq�1
x . Since the hom-connection r constructed in Theorem 3.4
has the property r.
x/ D r.
y/ D 0, one immediately concludes that r1.
/ D 0.
Since every element of HomA.�

2.A/; A/ is of the form 
a, for some a 2 A, and the
curvature F of r is A-linear, we conclude that F D 0.

Noting that r.
ya/ D 
y.da/ for all a 2 A, one easily finds that

xrys D prCsq�r p � 1
psC1 � 1r.
yxrysC1/:

Therefore, r W HomA.�
1.A/; A/ ! A is an epimorphism, so coker.r/ D 0, and

thus the r-integral is zero.
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Finally, one easily checks the commutativity of the diagram

A
d ��

‚�

��

�1.A/
d ��

ˆ

��

�2.A/

�2.A/�
r1 �� �1.A/� r �� A,

‚

��

where

‚.a/ D dxdya; ‚�.a/ D 
a; ˆ.dxaC dyb/ D pq�1
xb � 
ya
for all a; b 2 A. All the vertical arrows are (right A-module) isomorphisms. Conse-
quently, the integral complex is isomorphic to the de Rham complex.

4. Examples of integral forms on quantum groups and spaces

The data which enter the definition of a differential calculus, and hence also the
hom-connection in Theorem 3.4, have natural interpretation in terms of actions of
coalgebras and Hopf algebras. First, there is a bijective correspondence between
algebra maps 	 W A ! Mn.A/ and measurings of then�n comatrix coalgebraM c

n .k/
to A, and hence right (or left) module algebra structures of A over O.Mn.k//. Write
�ij for a basis for M c

n .k/ with comultiplication 
.�ij / D P
k �ik ˝ �kj and counit

".�ij / D ıij . IfH is a Hopf algebra containingM c
n .k/, e.g.H D O.SL.n//, such that

A is a rightH -module algebra, then the associated algebra map 	 is 	ij .a/ ´ aG�ij .
Furthermore, assignments N	ij .a/ D aGS.�j i / and O	ij .a/ D aGS2.�ij /, where S is
the antipode ofH , define maps N	 and O	 as in Definition 3.1. If A is a leftH -module
algebra and H has a bijective antipode, then 	 , N	 , O	 are given by 	ij .a/ D �ij F a,
N	ij .a/ D S�1.�j i /Fa, O	ij .a/ D S�2.�j i /Fa; see Theorem 4.1 below for the proof.

Extending the comatrix coalgebra by an nC 1-dimensional vector space V with
basis g; �1; : : : ; �n we define a coalgebra Cn D M c

n .k/˚ V with comultiplication

.g/ D g ˝ g and 
.�i / D g ˝ �i C P

j �j ˝ �j i and counit ".g/ D 1 and
".�i / D 0. Then right twisted n-multi-derivations .@; 	/ onA correspond bijectively
to measurings of Cn to A.

These observations are a basis for finding examples of twisted multi-derivations,
and so of hom-connections. We describe these examples presently from a differential
geometric point of view.

4.1. Quantum groups with (left) covariant differential calculi. Let A be a Hopf
algebra with the coproduct 
, counit " and bijective antipode S . Following [31], a
first order differential calculus�1.A/ on a Hopf algebraA is said to be left covariant,
if the coproduct 
 extends to a map 
L W �1.A/ ! A˝�1.A/ by the formula


L.ad.b// D a.1/b.1/ ˝ a.2/d.b.2//;
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where the Sweedler notation 
.a/ D a.1/ ˝ a.2/ (summation implicit) is used. By
[31], Theorem 2.1 and Theorem 5.2, the whole information about a left covariant
differential calculus is contained in the following data: elements !i 2 �1.A/ such
that
L.!i / D 1˝!i (one says !i are left-invariant) and that freely generate�1.A/

as anA-module, and k-linear maps �ij ; �i W A ! k, i; j D 1; 2; : : : ; n. These satisfy
the relations

�ij .ab/ D P
k

�ik.a/�kj .b/; �ij .1/ D ıij ; (4.1)

�i .ab/ D P
j

�j .a/�j i .b/C ".a/�i .b/ (4.2)

for all a; b 2 A. The dual space A� D Homk.A;k/ is an algebra with convolution
product f � g D .f ˝ g/ B 
. A is a left A�-module with the multiplication
f F a D .id ˝ f /.
.a//. Using this notation the commutation rules in �1.A/ and
the definition of the exterior differential d W A ! �1.A/ are given by

!ia D P
j

.�ij F a/!j ; d.a/ D P
i

.�i F a/!i : (4.3)

Note that relations (4.1)–(4.2) mean that the elements �ij , �i span a subcoalgebra
in the Hopf dual Aı � A� of A with coproduct and counit (in Aı), 
.�ij / DP

k �ik ˝ �kj , 
.�i / D 1˝ �i C P
j �j ˝ �j i , ".�ij / D ıij and ".�i / D 0 (recall

that the unit in A� is given by the counit in A). Since A is a left Aı-module algebra
(with multiplication F) the observations made in the preamble to Section 4 yield the
following

Theorem 4.1. Let�1.A/ be a left covariant differential calculus on a Hopf algebra
A with bijective antipode S .

(1) Let f!1; !2; : : : ; !ng be a left invariant basis for �1.A/, let f
1; 
2; : : : ; 
ng
be its right dual basis and let f�1; �2; : : : ; �ng be its left dual basis. Then

r W HomA.�
1.A/; A/ ! A;

f 7! P
i

.S2 B �i B d B S�2/.f .!i // D P
i .�i B S�2/ F f .!i /;

where �i D "B�i Bd W A ! k, is a unique hom-connection onA such that r.
i / D 0

for all i D 1; 2; : : : ; n.
(2) Assume that �1.A/ extends to a differential graded algebra such that the

hom-connection r constructed in item (1) is flat, and that there is a right integral
� W A ! k on the Hopf algebraA. Then there exists a unique map ' W coker.r/ ! k
such that

� D ' Bƒ;
where ƒ W A ! coker.r/ is the r-integral on A.
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Proof. (1) Note that the �i are the same as in (4.3) and let �ij be the corresponding
(as in (4.3)) mapsA ! k. The following defines a free right twisted multi-derivation
.@; 	 I N	; O	/:
@i .a/ D �i Fa; 	ij .a/ D �ij Fa; N	ij .a/ D .�j i BS�1/Fa; O	ij .a/ D .�ij BS�2/Fa:
Indeed, first note that, since the antipode is an anti-algebra map, comultiplication is
an algebra map and �ij satisfy conditions (4.1), all three maps 	 , O	 , N	 are algebra
morphisms (note the distribution of indices in the definition of N	 ). Equations (4.2)
force .@; 	/ to be a right twisted multi-derivation. Checking that relations (3.3) and
(3.4) hold is performed by the standard gymnastics with the Sweedler notation. For
example, to prove the first of (3.4), take any a 2 A and compute

P
k

O	ik B N	jk.a/ D P
k

a.1/�ik.S
�2.a.2///�kj .S

�1.a.3///

D a.1/�ij .S
�2.a.2//S

�1.a.3///

D a.1/�ij .S
�2.a.2/S.a.3//// D a�ij .1/ D aıij ;

where the second and last equalities follow by (4.1), and the third and fourth one use
properties of the antipode. The remaining equations (3.3) and (3.4) are checked in
the same manner.

Even the most perfunctory comparison of equations (4.3) with (3.5) and (3.7)
reveals that the left covariant differential calculus we start with (and which is deter-
mined by the �i , �ij ) is the same as the differential calculus constructed from the
right twisted multi-derivation .@; 	 I N	; O	/. Theorem 3.4 implies the existence and
uniqueness of a hom-connection .A;r/ such that r.
i / D 0. The formula for r
given in the proof of Theorem 3.4 can be simplified as follows:

r.f / D P
i

@�
i .f .!i //

D P
i;j;k

f .!i /.1/�jk.S
�1.f .!i /.2///�j .f .!i /.3//�ki .S

�2.f .!i /.4///

D P
i;j

f .!i /.1/�j .f .!i /.3//�j i .S
�1.f .!i /.2//S

�2.f .!i /.4///

D P
i

f .!i /.1/Œ�i .f .!i /.3/S
�1.f .!i /.2//S

�2.f .!i /.4///

� ".f .!i /.3//�i .S
�1.f .!i /.2//S

�2.f .!i /.4///�

D P
i

f .!i /.1/�i .S
�2.f .!i /.2///

D P
i

.�i B S�2/ F f .!i /;

where the third equality follows by (4.1) and the fourth by (4.2). The fifth equality
follows by the properties of the antipode and counit and by (4.2) (to conclude that
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�i .1/ D 0). Thus the unique hom-connection onA such that r.
i / D 0 has the form
stated.

(2) Recall that a right integral on a Hopf algebra A is a k-linear map � W A ! k
such that, for all a 2 A,

�.a.1//a.2/ D �.a/; (4.4)

i.e., � is a right A-colinear map. For all f 2 �1.A/�,

�.r.f // D P
i

�.f .!i /.1//�i .S
�2.f .!i /.2/// D P

i

�i B S�2.�.f .!i //1/ D 0;

where the second equality follows by (4.4) and the final equality is a consequence of
�i .1/ D 0. Therefore, � B r D 0. By the universality of cokernels there exists a
unique k-linear map ' W coker.r/ ! k completing the diagram

�1.A/� r �� A
ƒ ��

�

��

coker.r/
'

��� � � � � � �

k.

This completes the proof.

The 3-dimensional (or 3D) calculus on the quantum group Oq.SL.2// defined in
[29] provides an example of the construction described in Theorem 4.1. Suppose
that k is a field of characteristic 0 (typically k D C). Oq.SL.2// is a Hopf algebra
generated by f˛; ˇ; �; ıg with the relations

˛ˇ D qˇ˛; ˛� D q�˛; ˇ� D �ˇ; ˇı D qıˇ; �ı D qı�;

˛ı D ı˛ C .q � q�1/ ˇ�; ˛ı � qˇ� D 1;
(4.5)

where q ¤ 0 is a scalar which is not a root of unity. The coproduct is given by


.˛/ D ˛ ˝ ˛ C ˇ ˝ �; 
.ˇ/ D ˛ ˝ ˇ C ˇ ˝ ı;


.�/ D � ˝ ˛ C ı ˝ �; 
.ı/ D ı ˝ ı C � ˝ ˇ;
(4.6)

and counit and antipode are

".˛/ D ".ı/ D 1; ".ˇ/ D ".�/ D 0;

S.˛/ D ı; S.ı/ D ˛; S.ˇ/ D �q�1ˇ; S.�/ D �q�:
Oq.SL.2// is a Z-graded algebra with the grading defined on generators by j˛j D
j� j D 1, jˇj D jıj D �1. If k D C and q 2 R, Oq.SL.2// can be equipped
with a �-Hopf algebra structure with ˛� D ı and ˇ� D �q� , thus giving rise to
the real form Oq.SU.2// of Oq.SL.2//. If q 2 .0; 1/, then Oq.SU.2// is a dense
subalgebra of theC �-algebra of continuous functions on the quantum group SUq.2/.
The forthcoming purely algebraic discussion applies to this topological situation too.
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The 3D left covariant differential calculus on A D Oq.SL.2// is generated by
three left invariant one-forms f!0; !C; !�g that are required to satisfy the following
commutation relations

!0˛ D q�2˛!0; !0ˇ D q2ˇ!0;

!C˛ D q�1˛!C; !Cˇ D qˇ!C;
!�˛ D q�1˛!�; !�ˇ D qˇ!�;

(4.7)

and similarly for replacing ˛ ! � and ˇ ! ı. The action of the exterior differential
d on the generators is

d.˛/ D ˛!0 � qˇ!C; d.ˇ/ D �q2ˇ!0 C ˛!�;
d.�/ D �!0 � qı!C; d.ı/ D �q2ı!0 C �!�:

(4.8)

The form of relations (4.7) immediately reveals that the matrix 	 is diagonal with
the diagonal entries 	0 and 	C D 	� given by

	0.a/ D q�2jaja; 	˙.a/ D q�jaja (4.9)

for all homogeneous a 2 A (with the Z-degree jaj). Equations (4.8) determine
	i -twisted derivations @i . Explicitly, in terms of actions on generators of A these are

@0.˛/ D ˛; @0.ˇ/ D �q2ˇ; @0.�/ D �; @0.ı/ D �q2ı;

@C.˛/ D �qˇ; @C.ˇ/ D 0; @C.�/ D �qı; @C.ı/ D 0;

@�.˛/ D 0; @�.ˇ/ D ˛; @�.�/ D 0; @�.ı/ D �:
(4.10)

The maps @0, @C, @� are qi -skew derivations with constants 1, q�2 and q2, respec-
tively. Therefore, Theorem 4.1 or Theorem 3.4 give rise to the hom-connection

r.f / D @0.f .!0//C q�2@C.f .!C//C q2@�.f .!�// (4.11)

on Oq.SL.2//.
In [29], Woronowicz describes the full differential graded algebra built on the 3D

calculus. The relations for the higher forms are

!2
i D 0; !C!� D �q2!�!C; !0!� D �q4!�!0; !C!0 D �q4!0!C; (4.12)

and the exterior derivative is

d.!0/ D q!�!C; d.!C/ D q2.q2 C1/!0!C; d.!�/ D q2.q2 C1/!�!0: (4.13)

In degree 3, �3.A/ is generated by the (volume) form !�!0!C.

Proposition 4.2. Let A D Oq.SL.2// and �.A/ be the differential graded algebra
corresponding to the 3D calculus (and described above). The hom-connection (4.11)
is flat. The associated complex of integral forms

�3.A/�
r2��! �2.A/�

r1��! �1.A/� r�! A

is isomorphic to the de Rham complex .�.A/; d/.
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Proof. In the light of relations (4.12), the bimodule�2.A/ is generated by three forms
f!�!C; !�!0; !0!Cg. Let f�0; �C; ��g be a dual basis, i.e., �i are determined by

�0.!�!C/ D 1; �C.!�!0/ D 1; ��.!0!C/ D 1;

and zero on other generators. Again by inspection of relations (4.12) one concludes
that any f 2 HomA.�

2.A/; A/ can be written as f D �0a0 C �CaC C ��a� for
suitably defined ai 2 A; see the proof of Theorem 3.4. Since the curvature of a
hom-connection is a right A-linear map, it suffices to compute it on the �i . One
easily computes that

r1.�0/ D q
0; r1.�C/ D q2.q2 C 1/
�; r1.��/ D q2.q2 C 1/
C;

where the 
i 2 HomA.�
1.A/; A/ are as in Theorem 4.1. r given by (4.11) is the

unique hom-connection such that r.
i / D 0, hence F.�i / D 0, for all i D 1; 2; 3,
and the hom-connection (4.11) is flat.

Let � 2 HomA.�
3.A/; A/ denote the map dual to the volume form !�!0!C,

i.e., �.!�!0!Ca/ D a. Using the Leibniz rule for hom-connections and the fact that
r.
˙/ D r.
0/ D 0 one easily finds that r2.�/ D 0, and consequently r2.�a/ D
�d.a/ for all a 2 A. Consider the diagram

A
d ��

‚�

��

�1.A/
d ��

ˆ

��

�2.A/
d ��

‰

��

�3.A/

�3.A/�
r2 �� �2.A/�

r1 �� �1.A/� r �� A

‚

��

in which all columns are (rightA-module) isomorphisms defined as follows: ‚�.a/ D
�a, ‚.a/ D !�!0!Ca, and

ˆ.!�aC !0b C !Cc/ D ��a � q4�0b C q6�Cc;
‰.!�!0aC !�!Cb C !0!Cc/ D 
Ca � q4
0b C q6
�c

for all a; b; c 2 Oq.SL.2//. The commutativity of this diagram can be checked by
a straightforward albeit lengthy calculation. Therefore, the de Rham and integral
complexes are isomorphic as required.

It is shown in [29], Section 3, that the third de Rham cohomology,H 3.Oq.SL.2///,
is a one-dimensional k-space, i.e.,H 3.Oq.SL.2/// D k. Furthermore, the canonical
epimorphism �3.Oq.SL.2/// ! coker.d W �2.Oq.SL.2/// ! �3.Oq.SL.2//// D
k can be obtained by composing the normalised integral or the Haar measure on
Oq.SL.2// with the inverse of the map ‚ defined in the proof of Proposition 4.2. In
the light of Proposition 4.2, the r-integralƒ W A ! H0.AIA;r/ D k on Oq.SL.2//
is (a scalar multiple of) the normalised integral on the Hopf algebra Oq.SL.2//. That
is

ƒ..ˇ�/l/ D .�1/l q � q�1

qlC1 � q�l�1
; (4.14)
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and zero on all other elements ˛kˇm�n, ıkˇm�n, k;m; n 2 N, m ¤ n, of the
standard linear basis for Oq.SL.2//; see [30], Appendix 1.

4.2. Hopf–Galois extensions and the quantum two-sphere. Let H be a Hopf
algebra, and let A be a right H -comodule algebra. This means that A is a right H -
comodule with coaction %A W A ! A˝H that is an algebra map (where A˝H is
equipped with the tensor product algebra structure). One often refers to such an A as
a quantum space.

Similarly to the Hopf algebra case, there is a left action of the convolution algebra
H� on a right H -comodule algebra A defined by

f F a D .id ˝ f / B %A.a/ for all f 2 H�; a 2 A:
A (left) covariant differential calculus �1.H/ on H induces a free right twisted
multi-derivation on A as follows. Suppose that the antipode of H is bijective, and
�ij ; �i W H ! k are the data determining �1.H/. Then .@; 	 I N	; O	/, defined for all
a 2 A by

@i .a/ D �i Fa; 	ij .a/ D �ij Fa; N	ij .a/ D .�j i BS�1/Fa; O	ij .a/ D .�ij BS�2/Fa;
is a free right twisted multi-derivation on A. Thus one can associate a differential
graded algebra �.A/ on A based on .@; 	 I N	; O	/, and there is a hom-connection
.A;r W HomA.�

1.A/; A/ ! A/ as in Theorem 3.4 or Corollary 3.5. This hom-
connection has the same form as the one constructed in Theorem 4.1, i.e., r.f / DP

i .�i B S�2/ F f .!i /, where the !i are generators of �1.A/.
Suppose that a hom-connection .A;r/ on a rightH -comodule algebraA has been

constructed. In this section we study the question, when .A;r/ descends to a hom-
connection on the fixed-point (coinvariant) subalgebraB ofA. In particular, we study
the descent of hom-connections from the total space of a quantum principal bundle
to the quantum base space. In algebraic terms, quantum principal bundles are given
by principal comodule algebras; see e.g. [13]. These are examples of Hopf–Galois
extensions whose definition and rudimentary properties we recall presently.

LetH be a Hopf algebra andA a rightH -comodule algebra, and letB D AcoH D
fb 2 A j %A.b/ D b ˝ 1g be the subalgebra of coaction invariants (coinvariants).
B � A is called a Hopf–Galois extension, provided that the map

can W A˝B A ! A˝H; a˝B a
0 7! a%A.a0/;

is bijective. With a Hopf–Galois extension one associates two functors. The induction
functor � ˝B A sends every right B-moduleN to an .A;H/-Hopf moduleN ˝B A.
Recall that an .A;H/-Hopf module or a relative Hopf module is a vector space M
that is a right A-module and a right H -comodule with coaction %M W M ! M ˝H

such that, for all a 2 A, m 2 M ,

%M .ma/ D m.0/a.0/ ˝m.1/a.1/;
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where the Sweedler notation %M .m/ D m.0/ ˝ m.1/, %A.a/ D a.0/ ˝ a.1/ for
coactions is used. The category of .A;H/-Hopf modules is denoted by M H

A . For a
right B-module N , N ˝B A is a right A-module and H -comodule by

.n˝B a/ � a0 D n˝B aa
0; n˝B a 7! n˝B �

A.a/:

The second functor is the coinvariant functor .�/coH which sends any object M 2
M H

A to the right B-module

M coH ´ fm 2 M j %M .m/ D m˝ 1g:
By a theorem of Schneider [24], Theorem 3.7, the functors � ˝B A and .�/coH

establish an equivalence of categories M H
A and MB , provided thatA is faithfully flat

as a left B-module.
For a Hopf–Galois extensionB � Awe choose a covariant first order differential

calculus �1.A/. The covariance means that �1.A/ is an object in M H
A and that

d W A ! �1.A/ is a right H -comodule map. .�1.A/; d/ contains the first order
calculus on B , .�1.B/; d/ (the differential on B is defined by restriction of the
differential on A). Let

j W �1.B/˝B A ! �1.B/A ! �1.A/; ! ˝B a 7! !a: (4.15)

The map j is a morphism in BM H
A , the category of those .A;H/-Hopf modules

which are also leftB-modules by a rightA-linear rightH -colinearB-action (.A; %A/

is an example).

Theorem 4.3. LetH be a Hopf algebra, and let B � A be a Hopf–Galois extension
such thatA is a faithfully flat leftB-module. Choose a covariant first order differential
calculus�1.A/ onA for which there exists a rightH -colinear rightA-linear and left
B-linear map… W �1.A/ ! �1.B/˝B A such that… B j D id, where j is given by
(4.15) (i.e., j is a section in BM H

A ). Let M be an A-relative H -Hopf module. Any
hom-connection .M;r/ with respect to �1.A/ such that

r.HomH
A .�

1.A/;M// � M coH

induces a hom-connection .M coH;rcoH/ with respect to �1.B/.

Proof. Since B � A is a faithfully flat Hopf–Galois extension, the coinvariant and
induction functors are inverse equivalences, and hence there is an isomorphism

HomB.�
1.B/;M coH/ 3 f 7! Of 2 HomH

A .�
1.B/˝B A;M/:

Define rcoH W HomB.�
1.B/;M coH/ ! M coH by

rcoH.f / ´ r. Of B…/;
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for all f 2 HomB.�
1.B/;M coH/. Note that rcoH.f / 2 M coH by the assumption on

r and the fact that Of B… is a map in M H
A . Note also that Of .….d.b/// D f .d.b// for

all b 2 B , since …j�1.B/ D id. Thus the B-linearity of … and the defining property
of r yield

rcoH.f � b/ D r.bf � b B…/ D r.. Of B…/ � b/
D rcoH.f /b C Of .….d.b/// D rcoH.f /b C f .d.b//:

Therefore, .M coH;rcoH/ is a hom-connection as claimed.

In the set-up of Theorem 4.3 suppose that both .A;r/ and .B;rcoH/ are flat
hom-connections. Let ƒ W A ! coker.r/ be the r-integral and let ƒcoH W B !
coker.rcoH/ be the rcoH-integral. By the construction of rcoH, ƒjB B rcoH D 0.
The universality of cokernels then implies that there exists a unique k-linear map
' W coker.rcoH/ ! coker.r/ completing the diagram

�1.B/� rcoH
�� B

ƒcoH
��

ƒjB
��

coker.rcoH/

'
��� � � � � � �

coker.r/.

This establishes a correspondence between r- and rcoH-integrals.
Although the calculi satisfying requirements of Theorem 4.3 might seem rare, the

following corollary asserts the existence of a suitable retraction … for a universal
differential calculus on a principal comodule algebra. In terminology of [13], a
Hopf–Galois extension B � A by H is said to be a principal comodule algebra
if the antipode of H is bijective and A is a right H -equivariantly projective left
B-module. The latter means that there exists a left B-module right H -comodule
splitting s W A ! B ˝ A of the multiplication map B ˝ A ! A. Such an s can
always be normalised so that s.1/ D 1˝ 1; see [3].1

As explained in [22], if the antipode of H is bijective, then A is a principal
comodule algebra if and only if it is a faithfully flat (as a left or right B-module)
Hopf–Galois extension.

Note that the universal first order differential calculus .�1A; d/ on a right H -
comodule algebra A is H -covariant with coaction given by

%�1A.d.a/a0/ D d.a.0//a
0
.0/ ˝ a.1/a

0
.1/

for all a; a0 2 A, i.e., %�1A is the restriction of the diagonal coaction ofH onA˝A.

1The proofs of claims made in [3] are contained in T. Brzeziński, P. M. Hajac, R. Matthes, W. Szymański,
The Chern character for principal extensions of noncommutative algebras, work in progress available at
http://www.impan.pl/~pmh/access.html.

http://www.impan.pl/~pmh/access.html
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Corollary 4.4. Let H be a Hopf algebra with bijective antipode and let A be a
principal comodule algebra, B D AcoH. Then .�1.B//A is a direct summand of
�1A in BM H

A .
Consequently, if .M;r/, M 2 M H

A , is a hom-connection with respect to the
universal differential graded algebra �A such that

r.HomH
A .�

1A;M// � M coH;

then .M coH;rcoH/ is a hom-connection with respect to �B .

Proof. Let s W A ! B ˝ A be a normalised left B-linear, right H -colinear splitting
of the multiplication �B W B ˝ A ! A. Define the map … W �1A ! .�1.B//A by

….d.a/a0/ D s.a/a0 � 1˝ aa0;

for all a; a0 2 A. Since �B.….d.a/a
0// D �B.s.a/a

0/ � aa0 D 0 the map is well
defined as ker.�B/ D .�1.B//A. Obviously … is right A-linear. Since s is left
B-linear, … is also left B-linear, because

….bd.a// D ….d.ba/ � d.b/a/ D s.ba/ � 1˝ ba � s.b/aC 1˝ ba D b….da/

for all a 2 A, b 2 B . Moreover … is right H -colinear since s is:

.…˝ id/ B %�1A.da/ D ….da.0//˝ a.1/ D s.a.0//˝ a.1/ � 1˝ a.0/ ˝ a.1/

D %�1A.s.a/ � 1˝ a/ D %�1A.….da//:

Take an element of the form d.b/a with b 2 B , a 2 A, then

….d.b/a/ D s.b/a � 1˝ ba D b.1˝ 1/a � 1˝ ba D d.b/a;

as s.1/ D 1˝ 1. Hence … splits the inclusion .�1.B//A � �1A as a left B-, right
A-module and right H -colinear map.

Since a principal comodule algebra is a faithfully flat Hopf–Galois extension, the
final assertion follows by Theorem 4.3.

Also the covariant calculus on a smash product or the algebra of functions on a
trivial quantum principal bundle described in [19] admits a splitting that satisfies the
hypothesis of Theorem 4.3. Therefore, Theorem 4.3 should be applicable to piece-
wise trivial comodule (principal) algebras; see [13] for the definition, examples and
further references.

The induction procedure of hom-connections presented in Theorem 4.3 can be
performed for A D Oq.SL.2//. As explained in Section 4.1, Oq.SL.2// is a Z-
graded algebra. The degree zero subalgebra is generated by ˛ˇ, �ı and ˇ� and is
known as the algebra of functions on the standard quantum or Podleś sphere Oq.S

2/

[20]. The statement “Oq.SL.2// is a Z-graded algebra” can be rephrased equivalently
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as: Oq.SL.2// is a comodule algebra over the Hopf algebra H D kZ D kŒz; z�1�

(the group algebra of Z or the algebra of Laurent polynomials in one variable). In this
set-up the algebra of functions on the quantum sphere is the fixed point (coinavriant)
subalgebra of Oq.SL.2//, i.e., Oq.S

2/ D Oq.SL.2//coH. Furthermore, Oq.SL.2//
is a strongly graded algebra (meaning thatAkAl D AkCl , for degree k, l , kC l parts
of A). In the Hopf-algebraic terms this means that Oq.S

2/ � Oq.SL.2// is a Hopf–
Galois extension by H D kŒz; z�1�. In fact, Oq.SL.2// is a principal comodule
algebra. It is a q-deformation of the classical Hopf fibration and one of the first
examples of quantum principal bundles; see [4].

Take �1.A/ to be the 3D calculus described in Section 4.1. This can be seen to
induce the calculus�1.B/ on Oq.S

2/ as follows (see [15] for a detailed description).
First note that the Z-grading of Oq.SL.2// can be extended to �1.A/ by setting
j!�j D �2, j!0j D 0, j!Cj D 2. Then the exterior differential is a degree-preserving
map. This means that there is a coaction of H on �1.A/ compatible with the A-
multiplication and with d , i.e., �1.A/ is a covariant calculus. An easy calculation
yields

d.˛ˇ/ D ˛2!� � q2ˇ2!C D q2!�˛2 � !Cˇ2;

qd.ˇ�/ D ˛�!� � q2ˇı!C D q2!�˛� � !Cˇı;
d.�ı/ D �2!� � q2ı2!C D q2!��2 � !Cı2:

Thus �1.B/ is a left and right B-module generated by

˛2!�; ˛�!�; �2!�; ˇ2!C; ˇı!C; ı2!C:

The quantum determinant relations (see equations (4.19) below) imply that�1.B/A

is a freeA-module generated by !� and !C. Since�1.A/ is a free module generated
by !0; !˙, there is a right A-module map

x… W �1.A/ ! �1.B/A; !�a� C !0a0 C !CaC 7! !�a� C !CaC;

which splits the inclusion�1.B/A 	 �1.A/. The map x… preserves Z-grades, hence
it is a right H -comodule map. It is also clearly a left B-module map (note that ˛ˇ,
�ı and ˇ� commute with !˙).

For the q-deformed Hopf bundle, the translation map � W H ! A ˝B A, h 7!
can�1.1˝ h/ is given by �.h/ D S.i.h/.1//˝B i.h/.2/, where the map i W H ! A

is given as follows:

i.1/ D 1; i.zn/ D ˛n; i.z�n/ D ın for all n 2 N:

Define … W �1.A/ ! �1.B/˝B A by setting

….!/ D x….!S.i.zn/.1///˝B i.zn/.2/

for any! 2 �1.A/ of Z-degreen. Thus,….!/ D x….!.0//�.!.1// for all! 2 �1.A/.
Since x… is leftB-linear, so is…. The rightH -colinearity of… follows from the right
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H -colinearity of x… and i. To prove the right A-linearity of … one uses the right
A-linearity of x… together with the following two properties of the translation map.
For all b 2 B and g; h 2 H , b�.h/ D �.h/b and �.gh/ D hŒ1��.g/hŒ2�, where the
notation �.h/ D hŒ1� ˝B h

Œ2� (summation implicit) is used; see [25], 3.4. The map
… splits the map j W �1.B/˝B A ! �1.A/.

We are now in position to apply Theorem 4.3 to hom-connection .r; A/ given
in equation (4.11). The statement f 2 HomH

A .�
1.A/; A/ means that f is a Z-

degree preserving map. Thus jf .!0/j D 0, jf .!�/j D �2, jf .!C/j D 2. The
definitions of q-skew derivations @0, @˙ imply that @0 is a degree zero map, @C
lowers degree by two, while @� raises degree by two. Therefore, jr.f /j D 0 for
any f 2 HomH

A .�
1.A/; A/. This means that r.f / 2 B D Oq.S

2/, i.e., r satisfies
the requirements of Theorem 4.3. Thus the hom-connection (4.11) induces a hom-
connection .rcoH;Oq.S

2//, for all f 2 HomB.�
1.B/; B/ given by

rcoH.f / D q�2@C. Of .!C//C q2@�. Of .!�//; (4.16)

where
Of .!/ D f .!S.i.zn/.1///i.z

n/.2/

for any ! 2 �1.B/A of Z-degree n. Noting that the !˙ have Z-degrees ˙2 and
taking into account the formulae (4.6) for the coproduct on and commutation rules
(4.5) in Oq.SL.2//, the definition of twisted derivations @˙ (4.10) and corresponding
automorphisms 	˙ (4.9), a straightforward calculation yields the following explicit
form of rcoH:

rcoH.f /

D q2@�.f .˛2!�//ı2 � .q3 C q/@�.f .˛�!�//ˇı C q4@�.f .�2!�//ˇ2

C q�4@C.f .ˇ2!C//�2 � .q�3 C q�5/@C.f .ˇı!C//˛�
C q�2@C.f .ı2!C//˛2 C .q C q�1/Œ.q2f .�2!�/ � f .ı2!C//˛ˇ
C .f .˛2!�/ � q�2f .ˇ2!C//�ı � .qf .˛�!�/
� q�1f .ˇı!C//.˛ı C q�1ˇ�/�:

(4.17)

We now proceed to identify integral forms associated to rcoH with the de Rham
complex of Oq.S

2/. The higher-order differential calculus relations (4.12), (4.13)
restrict to produce the higher order differential calculus on Oq.S

2/; see [15]. The
module of two-forms �2.B/ is freely generated by the central element !C!� D
�q2!�!C. Any ! 2 �1.B/ can be written as ! D x!� C y!C for some x; y 2
Oq.SL.2// of Z-degrees jxj D 2, jyj D �2. The differential on such an ! is given
by

d! D .@C.x/ � q�2@�.y//!C!�: (4.18)

The hom-connection (4.17) can be identified with the differential d W �1.B/ !
�2.B/ as follows. Set

b1 ´ ˛2; b2 ´ �2; b3 ´ ˛� I a1 ´ ı2; a2 ´ q2ˇ2; a3 ´ �.q C q�1/ˇı;
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and
q1 ´ 1; q2 ´ q�4; q3 ´ q�2:

Then the quantum determinant condition yields the following equalities in B D
O.S2

q /, P
i

bi ai D P
i

qi ai bi D 1: (4.19)

�1.B/ decomposes into the direct sum�1.B/ D �C˚��, where�C is generated by
wi ´ !Cai and�� is generated by ui ´ !�bi . Each of the�˙ is a finitely generated
and projective module with the respective dual bases w�

i 2 ��C ´ HomB.�C; B/,
u�

i 2 ��� ´ HomB.��; B/, given by

w�
i .wj / D qi bi aj ; u�

i .uj / D ai bj ; i; j D 1; 2; 3: (4.20)

On these dual basis generators the hom-connection rcoH of equation (4.17) comes
out as

rcoH.w�
i / D qiq

�2@C.bi /; rcoH.u�
i / D q2@�.ai /; i D 1; 2; 3: (4.21)

Using dual bases one constructs the following B-bimodule isomorphisms

‰C W �C ! ���; ‰� W �� ! ��C;
w 7! P

i

u�
i w�

i .w/; u 7! P
i

q�1
i w�

i u�
i .u/:

These combine into an isomorphism of B-bimodules

‰ ´ ‰C � q2‰� W �C ˚ �� D �1.B/ ! �1.B/� D ��� ˚ ��C:

Let ‚ W B ! �2.B/ be the isomorphism given by b 7! !�!Cb. A straightforward
calculation that uses definitions of ‚ and ‰ as well as formulae (4.19), (4.20) and
(4.21) yields

d D ‚ B rcoH B‰;
where d is the differential described in (4.18).

Let � W �2.B/ ! B be the right B-linear map dual to !�!C. Equations (4.19),
(4.20) and (4.21) allow one to show that rcoH

1 .�/ D 0. In view of the isomorphism
‚� W B ! �2.B/�, b 7! �b, and right B-linearity of the curvature, the hom-
connection rcoH is flat. Similarly to Proposition 4.2, the preceding discussion yields

Proposition 4.5. Let B D Oq.S
2/ and �.B/ be the differential graded algebra

described above. The diagram

B
d ��

‚�

��

�1.B/
d ��

‰

��

�2.B/

�2.B/�
rcoH

1 �� �1.B/� rcoH
�� B ,

‚

��
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in which all columns are (B-bimodule) isomorphisms, is commutative. Consequently,
the integral complex associated to rcoH is isomorphic to the de Rham complex.

The rcoH-integral ƒcoH on Oq.S
2/ is then obtained as the restriction of the r-

integral ƒ on Oq.SL.2// to Oq.S
2/; see Section 4.1. Therefore, up to a scalar

multiple, ƒcoH is equal to the unique normalised Oq.SL.2//-invariant functional on
Oq.S

2/ described in [17]. The only non-zero values of ƒcoH are the same as those
in (4.14).
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[3] T. Brzeziński and P. M. Hajac, The Chern-Galois character. C. R. Math. Acad. Sci. Paris
338 (2004), 113–116. Zbl 1061.16037 MR 2038278 305
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