
J. Noncommut. Geom. 4 (2010), 313–329
DOI 10.4171/JNCG/57

Journal of Noncommutative Geometry
© European Mathematical Society

Boutet de Monvel’s calculus and groupoids I

Johannes Aastrup, Severino T. Melo, Bertrand Monthubert, and Elmar Schrohe

Abstract. Can Boutet de Monvel’s algebra on a compact manifold with boundary be obtained
as the algebra ‰0.G/ of pseudodifferential operators on some Lie groupoid G? If it could,
the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid
C*-algebra C�.G/. While the answer to the above question remains open, we exhibit in this
paper a groupoid G such that C�.G/ possesses an ideal � isomorphic to G . In fact, we prove
first that G ' ‰ ˝ K with the C*-algebra ‰ generated by the zero order pseudodifferential
operators on the boundary and the algebra K of compact operators. As both ‰ ˝ K and �

are extensions of C.S�Y / ˝ K by K (S�Y is the co-sphere bundle over the boundary) we
infer from a theorem by Voiculescu that both are isomorphic.
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Introduction

Boutet de Monvel’s calculus [3], [4], [5], [11], [25], [29] is a pseudodifferential
calculus on manifolds with boundary. It includes the classical differential boundary
value problems as well as the parametrices to elliptic elements. Many operator-
algebraic aspects of this algebra (spectral invariance, noncommutative residues and
traces, composition sequence, K-theory) have been studied recently [1], [10], [12],
[19], [20], [23], [28]. The problem of identifying this algebra as the pseudodifferential
algebra (or as an ideal of one) of a Lie groupoid may be the key to an effective
application of the methods of noncommutative geometry. If that is accomplished,
one could then seek for extensions of the calculus, and for a better understanding
of its index theory [5], [9], [25]. Basic definitions and certain facts about Boutet de
Monvel’s algebra are recalled in Section 1.

The groupoid approach to pseudodifferential calculus was developed in noncom-
mutative geometry, following the seminal work of A. Connes for foliations [8]. The
guiding principle in that approach is that the central object in global analysis is a
groupoid. To study a particular situation, for a class of singular manifolds for in-
stance, one needs to define a groupoid adapted to the context and then use the general
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pseudodifferential tools for groupoids, as developed in [22], [24], [21], [17], [18].
This has been applied to the context of manifolds with corners, with the goal of
studying Melrose’s b-calculus (see [22], [24], [21]). Groupoids were defined whose
pseudodifferential calculi recover the b-calculus and the cusp-calculus. Basic defini-
tions and certain facts about pseudodifferential calculus on groupoids are recalled in
Section 3.

The starting point of this work is the following result (see [19]): The kernel of the
principal symbol map for Boutet de Monvel’s calculus is equal to the norm closure
G of the ideal of singular Green operators. Since in the pseudodifferential calculus
on a groupoid, the C*-algebra of the groupoid is the kernel of the principal symbol
map, this gives a hint that finding a groupoid whose C*-algebra is G could give some
insight about the relationship between the Boutet de Monvel algebra and groupoid
pseudodifferential algebras.

Besides, G fits into a short exact sequence (see [20], Section 7)

0 ! K ! G ! C.S�Y /˝ K ! 0;

which is similar to that for pseudodifferential operators on smooth manifolds:

0 ! K ! ‰ ! C.S�Y / ! 0:

In Section 2, we show that G is actually Morita-equivalent to the norm closure ‰
of the algebra of pseudodifferential operators on the boundary. Since G is a stable
C*-algebra, it is thus isomorphic to ‰ ˝ K .

On the other hand, we define in Section 4 a groupoid whose C*-algebra contains
an ideal � which fits in an extension analoguous as that of ‰ ˝ K . By showing in
Section 5 that the KK-theory elements induced by these extensions coincide, we infer
from a theorem by Voiculescu that G and � are isomorphic.
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1. Boutet de Monvel’s calculus

Let X denote a compact manifold of dimension n with boundary Y and interior PX .
Given a pseudodifferential operator P , defined on an open neighborhood zX of X ,
and u 2 C1.X/, one defines PCu as equal to the restriction to PX of PEu, where Eu
is the extension of u to zX which vanishes outside X . In general, singularities may
develop at the boundary, and one gets only a mappingPC W C1.X/ ! C1. PX/. One
says thatP has the transmission property if the image of the truncated operatorPC is
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contained inC1.X/ (a subspace ofC1. PX/). This was defined by Boutet de Monvel
in [3], [4], where he proved that the transmission property for a classical (polyho-
mogoneous) pseudodifferential operator is equivalent to certain symmetry conditions
for the homogeneous components of the asymptotic expansion of its symbol at the
boundary. Later [5], he constructed an algebra whose elements are operators of the
form 0

@PC C G K

T S

1
A W

C1.X/
˚

C1.Y /
�!

C1.X/
˚

C1.Y /
; (1)

where P is a pseudodifferential operator on X satisfying a condition that ensures
the transmission property, S is a pseudodifferential operator on Y , while G, K and
T belong to classes of operators he then defined and named, respectively, singular
Green, Poisson and trace operators. We call an operator as in (1) a Boutet de Monvel
operator. For detailed expositions of his calculus, we refer to [11], [25].

A Boutet de Monvel operator has an order, roughly the usual order of pseudod-
ifferential operators. The entries T and G have, moreover, an integer class assigned
to them. The class of a trace operator is related to the order of the derivatives that
appear in the boundary-value conditions it prescribes. One must assign a class also to
singular Green operators due to the fact that the compositionKT is a singular Green
operator. There exist isomorphisms between suitable Sobolev spaces such that the
composition of a given operator of arbitrary order and class with one of them has
order and class zero. For index theory purposes it is therefore sufficient to consider
operators of order and class zero. These form an adjoint invariant subalgebra of the
algebra L.H / of all bounded operators on a suitable Hilbert space H . Adopting the
definition of order in [25], [29] forK and T , we here choose H D L2.X/˚L2.Y /.
If, as does Grubb [11], one keeps the original definition (which makes more sense if
one needs general Lp estimates) then one must take a Sobolev space of order �1=2
over the boundary.

Boutet de Monvel operators can also be defined as mappings between smooth
sections of vector bundles. If E is a bundle of positive rank over X , and F is
an arbitrary bundle over Y , then the algebra of all Boutet de Monvel operators of
order and class zero acting between sections of E and F is Morita equivalent [19],
Section 1.5, to the algebra obtained by taking a rank-one trivial bundle over X and
the zero-bundle over Y . This partly justifies, again if one is interested in index theory,
to consider only the operators appearing in the upper-left corner of the matrix in (1)
and to assume, as we did at the beginning, that the bundle over X is X � C.

The problem of computing the Fredholm index of a Boutet de Monvel operator
acting between sections of different bundles over each side can be reduced to the case
of equal bundles on both sides by a device developed by Boutet de Monvel [3], [4],
recalled in [20], Section 1.1.

Let us now explain what a singular Green operator G is, in the case of order and
class zero and of a rank-one trivial bundle over X . Its distribution kernel is smooth
outside the boundary diagonal; i.e., if ' 2 C1

c . PX/, and if we denote by M' the
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operator of multiplication by ', then GM' and M'G are integral operators with
smooth kernels. The push-forward of G by a boundary chart is an operator-valued-
symbol pseudodifferential operator on the variables tangential to the boundary, as
we describe below. It is perhaps worth stressing, however, that it is in general not a
pseudodifferential operator on all variables, because of its particular way of acting
on the normal variable.

Given u 2 C1
c .RnC/, RnC D f.x0; xn/ 2 Rn�1 � RI xn � 0g, let Ou denote the

vector-valued Fourier transform of u with respect to the n � 1 first variables,

Ou.� 0/ D
Z
eix0��0

u.x0; �/dx0 2 C1
c .RC/: (2)

In local coordinates for which the boundary corresponds to xn D 0 and the interior
to xn > 0, G is given by

Gu.x0; �/ D .2�/1�n

Z
eix0��0

g.x0; � 0;Dn/ Ou.� 0/ d� 0 (3)

The integrals in (2) or in (3) should be regarded, for fixed � 0 or x0, respectively,
as L2.RC/-valued integrals. For each .x0; � 0/, g.x0; � 0;Dn/ in (3) is an integral
operator with kernel Qg.x0; � ; � ; � 0/ equal to the restriction to RC � RC of a function
belonging to the Schwartz space of rapidly decreasing functions on R2. The function
Qg.x0; xn; yn; �

0/ (called by Grubb the symbol-kernel of G) is smooth and satisfies
the estimates [11], (1.2.38). This is invariantly defined [11], Theorem 2.4.11, with
respect to coordinate changes that preserve the set fxn D 0g.

We denote by A0 the set of all polyhomogeneous operators PC CG of order and
class zero on X , and by G0 its subset of all singular Green operators. It follows from
the rules of Boutet de Monvel’s calculus that A0 is an algebra and that G0 is an ideal
in A0.

In the sequel, we shall restrict ourselves to coordinate changes which preserve the
variable xn, i.e., we choose a normal coordinate. Then two *-homomorphisms are
defined on A0, the principal symbol and the boundary principal symbol:

� W A0 ! C1.S�X/ and � W A0 ! C1.S�Y;L.L2.RC///:

The principal symbol of a given PC CG is, by definition, the usual principal symbol
of P

�.PC CG/ D p0;

where p0 is the leading term in the asymptotic expansion of the symbol of P .
At a point .x0; � 0/ in S�Y , the boundary principal symbol of PC is defined to be

the truncated Fourier multiplier

�PC
.x0; � 0/ D p0.x

0; 0; � 0;Dn/C
of symbol �n 7! p0.x

0; 0; � 0; �n/. The boundary principal symbol of G 2 G0 is the
integral operator

�G.x
0; � 0/ D g0.x

0; � 0;Dn/ (4)
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with the rapidly decreasing kernel Qg0.x
0; � ; � ; � 0/, where Qg0 denotes the leading

term in the asymptotic expansion of Qg, cf. [11], (1.2.39). Then � maps G0 into
C1.S�Y;KRC

/, with the ideal KRC
of compact operators on L2.RC/.

Let A and G denote the norm closures of A0 and G0, respectively; and let KX

denote the set of all compact operators onL2.X/. It follows from Theorem 1 in [25],
2.3.4.4, that � and � can be extended to C*-algebra homomorphisms

N� W A ! C.S�X/ and N� W A ! C.S�Y;L.L2.RC///:

Moreover, by Corollary 2 in [25], 2.3.4.4, and [19], Theorems 5 and 6, we have that

ker N� \ ker N� D KX ; ker N� D G ; (5)

and N� maps G onto C.S�Y;KRC
/. In other words, the restriction of the boundary

principal symbol to G gives rise to the exact sequence of C�-algebras

0 ! KX ! G
N��! C.S�Y;KRC

/ ! 0: (6)

In Section 2 we use (6) to prove that G is isomorphic to the tensor product‰˝K

of the C*-closure ‰ of the pseudodifferential operators of order zero on Y by the
compacts. For that we need to use trace and Poisson operators.

Similarly as for the singular Green operators, the trace operators and the Poisson
operators (T and K in (1)) are, locally, operator-valued-symbol pseudodifferential
operators on the variables tangential to the boundary, given by

T u.x0/ D .2�/1�n

Z
eix0��0

t .x0; � 0;Dn/ Ou.� 0/ d� 0; u 2 C1
c .RnC/; (7)

and

Ku.x0; �/ D .2�/1�n

Z
eix0��0

k.x0; � 0;Dn/ Ou.� 0/ d� 0; u 2 C1
c .Rn�1/: (8)

The mappings t .x0; � 0;Dn/ W L2.RC/ ! C and k.x0; � 0;Dn/ W C ! L2.RC/ are
defined, for each .x0; � 0/ 2 Rn�1 � Rn�1, each v 2 L2.RC/ and each ˛ 2 C, by

t .x0; � 0;Dn/v D
Z

Qt .x0; yn; �
0/v.yn/ dyn (9)

and
Œk.x0; � 0;Dn/˛�.xn/ D ˛ Qk.x0; xn; �

0/: (10)

For each .x0; � 0/, Qt .x0; � ; � 0/ and Qk.x0; � ; � 0/ are restrictions to RC of functions in the
Schwartz class on R. The functions Qt .x0; yn; �

0/ and Qk.x0; xn; �
0/, called the symbol-

kernels of T andK, are smooth and satisfy certain estimates. In the polyhomogenous
case, they have asymptotic expansions in homogeneous components, whose leading
terms we denote by Qt0 and Qk0, respectively. The estimates and expansions for Qt and Qk
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listed or explained in [11], Section 1.2, are not the right ones for our definition of order
(and consequent choice of Hilbert space): we need to shift some of the exponents
there by ˙1=2.

The boundary-principal symbols of T and K are

�T .x
0; � 0/ D t0.x

0; � 0;Dn/ and �K.x
0; � 0/ D k0.x

0; � 0;Dn/;

defined as in (9) and (10), except that Qt0 and Qk0 replace Qt and Qk. Lastly, the boundary
principal symbol of a polyhomogeneous pseudodifferential operator on Y is simply
its usual principal symbol, and we get a *-homomorphism

� W B0 ! C1.S�Y;L.L2.RC/˚ C//;

where B0 denotes the set of all polyhomogeneous Boutet de Monvel operators of
order and class zero on X . It has a continuous extension to the norm closure of B0,
but we will not use this fact.

2. A product description of the singular Green operators

Lemma 1. There exists a zero-order Poisson operatorK such thatK�K is a strictly
positive operator on L2.Y /.

Proof. It is well known that the Dirichlet problem

�
�

�0

�
W H 2.X/ �!

L2.X/

˚
H 3=2.Y /

defines a bounded invertible operator. We denote by �3=2 an order reduction of
order 3/2 on Y and by ƒ�2 an order reduction of order �2 on X . This gives us an
isomorphism�

�ƒ�2

�3=2�0ƒ
�2

�
D

�
1 0

0 �3=2

� �
�

�0

�
ƒ�2 W L2.X/ �!

L2.X/

˚
L2.Y /

;

which is an element of order and class 0 in Boutet de Monvel’s calculus. Its inverse
therefore also is in Boutet de Monvel’s calculus; it is of the form

.PC CG K/ W
L2.X/

˚
L2.Y /

�! L2.X/

with suitable P;G, and K of order and class zero. In particular, K is a right inverse
for the trace operator T D �3=2�0ƒ

�2 W L2.X/ ! L2.Y /. For v 2 L2.Y / we thus
have

kvkL2.Y / D kTKvkL2.Y / � kT kL.L2.X/;L2.Y //kKvkL2.X/:

We then get kKvk � ckvk for some c > 0, so that K�K is strictly positive.
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Lemma 2. There exist a trace operator of order and class zero T W L2.X/ ! L2.Y /

and a Poisson operator of order zeroK W L2.Y / ! L2.X/ such that TK is equal to
the identity operator on L2.Y /, K� D T and T � D K.

Proof. LetK0 be a zero-order Poisson operator such thatK�
0K0 is a strictly positive

operator on L2.Y /, and let Q D .K�
0K0/

�1=2. Q is a zero-order pseudodifferential
operator on Y . Take K D K0Q and T D QK�

0 .

We denote by ‰ the norm closure of the algebra of all polyhomogeneous pseu-
dodifferential operators of order zero on Y , and by N� W ‰ ! C.S�Y / the continuous
extension of the principal-symbol homomorphism. It is well known (this is men-
tioned in [2] and follows from [15], Theorem A.4, or from [13], Theorem 3.3) that N�
induces the short exact sequence of C*-algebras

0 �! KY �! ‰
N��! C.S�Y / �! 0; (11)

where KY denotes the ideal of compact operators on L2.Y /.
By Lemma 2, a C*-homomorphism „ W ‰ ! G can be defined by

„.A/ D KAT:

Since„.A/ is compact ifA is compact, we can use„ to couple the sequences (6) and
(11). Together they yield the commutative diagram of exact sequences of C*-algebras

0 �� KX
�� G

N� �� C.S�Y;KRC
/ �� 0

0 �� KY

„jKY

��

�� ‰

„

��

N� �� C.S�Y /

h

��

�� 0.

(12)

Lemma 3. The homomorphism „ imbeds ‰ as a hereditary subalgebra of G .

Proof. We have to prove that, if 0 � G � KAT then G is again of the form KA1T

with A1 2 ‰. Since KT acts as the identity on KAT it also acts as the identity on
G and we therefore get G D KTGKT D K.TGK/T .

Lemma 4. Let

0 �� I1
�� A1

q1 �� B1
�� 0

0 �� I2

�1

��

�� A2

�2

��

q2 �� B2

�3

��

�� 0

be a commutative diagram of short exact sequences, where 	1, 	2 and 	3 are em-
beddings. Then 	2 is full provided that 	1 and 	3 are full.
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Proof. We have to prove that the two-sided ideal generated by 	2.A2/ is dense inA1.
We thus have to prove that to a given a 2 A1 and a given " > 0we can find an element
b in the two-sided ideal generated by the image of 	2 such that ka � bk < ". Since
	3 is full, we can find an element c in the two-sided ideal generated by 	3.B2/ such
that kq1.a/� ck < "

2
. The element c can be lifted to an element b1 in the two-sided

ideal generated by 	2.A2/ and we can therefore find an element d1 2 I1 such that
ka � b1 � d1k < "

2
. Since 	1 is full, there is an element d2 in the two-sided ideal

generated by 	1.I2/ with kd1 � d2k < "
2

. As the desired b we can therefore choose
b D b1 C d2.

Theorem 1. The algebras G and ‰ ˝ K are isomorphic.

Proof. By Lemma 3, the diagram (12) and Lemma 4, the imbedding „ is full and
hereditary. It follows from the remark below Theorem 8 on p. 155 in [8] that G and
‰ are strongly Morita equivalent. By the results in [6] and [7], G ˝ K is isomorphic
to ‰˝ K . However G is stable, since it is the extension of K with a stable algebra,
namely C.S�Y;KRC

/, see Proposition 6.12 in [27]). This gives the isomorphism.

3. Pseudodifferential operators and groupoids

Groupoids were introduced in the context of global analysis when A. Connes showed
that in the case of foliations the index takes values in a C*-algebra which is defined
as the C*-algebra of the holonomy groupoid of the foliation. He defined a pseudo-
differential calculus on a foliation using the groupoid structure.

In several papers ([22], [24], [17], [21]), generalizations of this approach to a
larger class of groupoids were achieved. One particular aspect of this theory is that,
as A. Connes showed in [8] for smooth manifolds, it is possible to define the analytic
index using a groupoid, the tangent groupoid.

A groupoid is a small category in which all morphisms are invertible. This means
that a groupoidG has a set of units, denoted byG.0/, and two maps called range and

source, G
r ��
s

�� G.0/ .

Two elements �; � 0 2 G are composable if and only if r.�/ D s.� 0/:

r.� 0/
s.� 0/ D r.�/

� 0 B �

� 0

�

s.�/
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We recall briefly the main aspects of this theory. Let G be a Lie groupoid,
which means that it has a smooth structure. Then one can define an algebra of
pseudodifferential operators ‰1.G/: A pseudodifferential operator on G is a G-
equivariant continuous family of pseudodifferential operators on the fibers of G.

For example, if M is a manifold without boundary, and G D M �M , with set
of units G.0/ D M , and range and source maps r.x; y/ D x; s.x; y/ D y, and
composition .x; y/.y; z/ D .x; z/, then ‰1.G/ is the algebra of pseudodifferential
operators on M .

If G is a Lie group, ‰1.G/ is the algebra of G-equivariant pseudodifferential
operators on G.

In order to work with singular manifolds, the framework of Lie groupoids needs
to be extended. That was done in [17], where the algebras of pseudodifferential
operators on continuous family groupoids, which are groupoids whose fibers are
smooth manifolds, were defined.

On the algebra of pseudodifferential operators one can define a symbol map,
� . The algebra of order 0 operators can be completed as a C*-algebra, denoted by
‰0.G/, and the symbol map extends to this algebra. The “regularizing operators”
of the calculus, which are the operators with trivial symbol, are the elements of the
C*-algebra of the groupoid, and we have the Atiyah–Singer exact sequence

0 ! C �.G/ ! ‰0.G/ ! C.S�.G// ! 0;

where S�.G/ is the cosphere bundle of the Lie algebroidA.G/, which can be thought
of as a tangent space.

We next recall in more detail the construction of the adiabatic groupoid ad.Y �Y /
associated with a smooth manifold Y :

ad.Y � Y / D .TY � f0g/ [ .Y � Y � R�C/

with the tangent bundle TY of Y . The groupoid structure is given as follows:

r.x; �; 0/ D s.x; �; 0/ D x; .x; �; 0/ B .x; � 0; 0/ D .x; � C � 0; 0/;
r.x; y; �/ D .x; �/; s.x; y; �/ D .y; �/; .x; y; �/ B .y; z; �/ D .x; z; �/; � > 0:

This groupoid is endowed with a differential structure, through an exponential, in
the following way:

� On Y � Y � R�C, the structure is that of a product of manifolds.

� Define a map on an open neighborhoodU of TY �f0g in TY �RC, with values
in ad.Y � Y /, by´

 .x; �; �/ D .x; expx.���/; �/ if � > 0;

 .x; �; 0/ D .x; �; 0/:
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In other terms, the topology is such that a sequence of terms .xn; yn; �n/ ofY �Y �R�C
converges to .x; �; 0/ 2 TY � f0g, if and only if we have locally

xn ! x; yn ! x;
xn � yn

�n

! �:

Note that A. Connes’ tangent groupoid is just the restriction of ad.Y �Y / to � 2 Œ0; 1�.
The main interest of this groupoid is that it provides a way to define the analytic

index. Consider indeed the decomposition of the groupoid as an open and a closed
subgroupoid, which gives rise to the exact sequence

0 ! C �.Y � Y � R�C/ ! C �.ad.Y � Y // ! C �.TY / ! 0: (13)

This simplifies sinceC �.Y �Y / ' K andC �.TY / ' C0.T
�Y /. A. Connes proved

that the boundary map of the 6-terms exact sequence induced by this extension is
nothing but the analytic index

inda W K0
c .T

�Y / ! K1.C0.R/˝ K/ D Z:

4. A groupoid associated to the singular Green operators

Suppose that we could identify the C*-closure of Boutet de Monvel’s algebra with
the C*-algebra ‰0.G/ of pseudodifferential operators on a Lie groupoid G. Then,
as pointed out above, the kernel of the principal symbol map would be isomorphic to
C �.G/. As the kernel of the principal symbol map in Boutet de Monvel’s calculus
consists of the singular Green operators, we thus wish to identify these with the
C*-algebra of a groupoid.

We will actually not identify them with a groupoid C*-algebra but with an ideal
in a groupoid C*-algebra.

Let us consider the following action of the group R�C on ad.Y � Y /:
� On TY , R�C acts by dilations: � � .x; �/ D .x; ��/.

� On Y � Y � R�C, R�C acts by � � .x; y; t/ D .x; y; t
�
/.

This is a continuous action: If .xn; yn; tn/ converges to .x; �/ (which means that
xn; yn ! x, tn ! 0, xn�yn

tn
! �), then � � .xn; yn; tn/ D .xn; yn;

tn
�
/ ! .x; ��; 0/

since
xn � yn

tn
�

! ��:

It is thus possible to construct the semi-direct product G D ad.Y � Y / Ì R�C of
the adiabatic groupoid by RC: As a set it is ad.Y �Y /�R�C, with set of units Y �RC,
such that

� r.x; y; t; �/ D .x; t/; s.x; y; t; �/ D .y; t
�
/ for t > 0;
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� r.x; �; �/ D .x; 0/, s.x; �; �/ D .x; 0/ for t D 0;

� .x; y; t; �/.y; z; t
�
; 
/ D .x; z; t; �
/;

� .x; �; �/.x; �; 
/ D .x; � C ��; �
//.

Note that the action of R�C on the adiabatic groupoid induces an action on its C*-
algebra, and that J. Renault proved in [26] that for any locally compact groupoid G

one has
C �.G Ì R�C/ ' C �.G / Ì R�C:

The evaluation at t D 0 provides a map e0 W C �.G/ ! C0.T
�Y /ÌR�C. Also, the

evaluation at the zero-section � D 0 induces a map r0 W C0.T
�Y /ÌR�C ! C.Y /ÌR�C.

But since the action of R�C on Y is trivial, the latter algebra is just the algebra of
the (regular) product:

C.Y / Ì R�C D C0.Y � R�C/:
Let C D ker r0 and � D ker r0 B e0.
The kernel of e0 is C �.Y � Y � R�C Ì R�C/. But R�C Ì R�C is directly isomorphic

to the pair groupoid R�C � R�C: To clarify the proof, let us denote G1 D R�C Ì R�C
and G2 D R�C � R�C. Then let 	 W G1 ! G2 be defined by

	.t; �/ D
�
t;
t

�

�
:

This a morphism of groupoids: The composition of .t; �/ with . t
�
; 
/ gives .t; �
/,

and

	.t; �
/ D
�
t;
t

�


�
;

while

	.t; �/ B 	
�
t

�
; 


�
D

�
t;
t

�

�
B

�
t

�
;
t

�


�
D

�
t;
t

�


�
:

Hence the kernel of e0 is just the algebra of compact operators, K .

To make this clear, here is the commutative diagram describing this:

0

��

0

��
0 �� K �� � ��

��

C ��

j

��

0

0 �� K �� C �.G/ e0 ��

��������������
C0.T

�Y / Ì R�C ��

r0

��

0

C0.Y � R�C/.

(14)
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We will use this diagram and extension theory to prove that � is isomorphic to
the algebra of singular Green operators.

Proposition 1. C is isomorphic to C.S�Y /˝ K , where S�Y is the sphere bundle
in T �Y .

Proof. First of all notice that C is isomorphic to C0.T
�Y n Y / Ì R�C: Indeed, the

exact sequence

0 ! C0.T
�Y n Y / ! C0.T

�Y / ! C.Y / ! 0

induces the exact sequence

0 ! C0.T
�Y n Y / Ì R�C ! C0.T

�Y / Ì R�C ! C.Y / Ì R�C D C0.Y � R�C/ ! 0:

But T �Y n Y ' S�Y � R�C, so that C0.T
�Y n Y / ' C.S�Y /˝ C0.R�C/ and

C0.T
�Y n Y / Ì R�C ' C.S�Y /˝ C0.R

�C/ Ì R�C:

Now

C0.R
�C/ Ì R�C ' C �.R�C/ Ì R�C ' C �.R�C Ì R�C/ ' C �.R�C � R�C/ ' K;

where we again used Renault’s result for the second isomorphism and the isomor-
phism of R�C ÌR�C with the pair groupoid R�C �R�C for the third. This ends the proof.

5. Identification of the ideal with the singular Green operators

We have just shown that � is an extension of C0.S
�Y /˝ K by K , and this is also

the case for the algebra of singular Green operators. The main result is the following:

Theorem 2. The C*-algebra � is isomorphic to ‰ ˝ K .

Proof. We shall prove that the extensions

0 ! K ! � ! C.S�Y /˝ K ! 0

and

0 ! K ! ‰ ˝ K ! C.S�Y /˝ K ! 0

satisfy the conditions of a theorem by Voiculescu which we recall now.
D. Voiculescu proved in [31] (look also at the survey [30], Theorem 10.9) that if

two extensions 0 ! K ! D1 ! A ! 0 and 0 ! K ! D2 ! A ! 0 are such
that
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� D1 and D2 define the same element in Ext.A/,

� D1 and D2 are not unital,

� K is essential in D1 and in D2,

then D1 and D2 are isomorphic. Recall that an ideal J of D is essential if and only
if for every x 2 D: if x ¤ 0 then there exists y 2 J such that xy ¤ 0.

Let us apply this important result in our context.
First of all, � and ‰ ˝ K are non-unital since their quotients by the compacts

are isomorphic to C.S�Y /˝ K , which is non-unital. Since the algebra of compact
operators on a Hilbert space H is essential in any C*-algebra included in L.H /,
we obtain that KX is essential in ‰ ˝ KRC

. For the other algebra, notice that
C �.Y � Y � R�C/ is an essential ideal of C �.ad.Y � Y //, thus its crossed product by
R�C is also an essential ideal of C �.ad.Y � Y // Ì R�C, hence of � (see [16]).

Now it remains to show that the extensions give rise to the same element of
Ext.C.S�Y /˝ K/. But since C.S�Y /˝ K is separable, KK1.C.S

�Y /˝ K;C/
is isomorphic to the group of invertibles of Ext.C.S�Y / ˝ K/ due to a result of
Kasparov ([14]). The C*-algebra C.S�Y /˝ K being nuclear, Ext.C.S�Y /˝ K/

is actually a group, thus it is isomorphic to KK1.C.S
�Y /˝ K;C/.

The element iS 2 KK1.C.S
�Y / ˝ K;C/ ' Ext.C.S�Y / ˝ K/ associated to

the extension

0 ! KX ! ‰ ˝ KRC
! C.S�Y /˝ KRC

! 0

provides a mapK1.C.S
�Y /˝KRC

/ ' K1.C.S
�Y // ! K0.C/ D Z, which is the

analytic index.
For the class of the extension

0 ! K ! � ! C.S�Y /˝ K ! 0;

let us consider first the extension

0 ! C �.Y � Y � R�C/ ! C �.ad.Y � Y // ! C0.T
�Y / ! 0;

whose class is denoted by iT 2 KK1.C0.T
�Y /;K˝C0.R�C//' KK0.C0.T

�Y /;K/.
It induces the extension

0 ! C �.Y � Y � R�C/ Ì R�C ' K ! C �.ad.Y � Y // Ì R�C
' C �.G/ ! C0.T

�Y / Ì R�C ! 0

whose class is denoted by ˛ 2 KK1.C0.T
�Y / Ì R�C;K/.

The relation between iT and iS is made clear by considering the exact sequence

0 ! C0.T
�Y / ! C.B�Y / ! C.S�Y / ! 0;

where B�Y is the ball bundle over Y . By  2 KK1.C.S
�Y /; C0.T

�Y // we denote
its class, and one has the well-known equality

iS D  iT :
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For the convenience of the reader, we now recall the diagram (14):

0 �� K �� � ��

��

C ��

j

��

0 .@/

0 �� K �� C �.G/ e0 ��

�������������
C0.T

�Y / Ì R�C ��

r0

��

0 .˛/

C0.Y � R�C/.

Let us denote the class of the first sequence by @ 2 KK1.C;K/; it is thus given by
the Kasparov product

@ D j�˛:
Let us make the relation between j� and ' precise.
Consider the following commutative diagram:

0 �� C0.T
�Y n Y / ��

��

C0.B
�Y n Y / ��

��

C.S�Y / �� 0

0 �� C0.T
�Y / ��

��

C.B�Y /

��

�� C.S�Y / �� 0

C.Y / C.Y /.

The first exact sequence actually decomposes as

0 ! C.S�Y /˝ C0.R
�C/ ! C.S�Y /˝ C0.R

�C [ f1g/ ! C.S�Y / ! 0

so that its KK1-class is the identity of KK1.C.S
�Y /; C.S�Y /˝ C0.R�C//.

There is an action of R�C on each algebra of the previous diagram, which is trivial
on C.S�Y / and C.Y /. This gives the following:

0 �� C0.T
�Y nY /Ì R�C ��

j

��

C0.B
�Y nY /Ì R�C ��

��

C.S�Y � R�C/ �� 0 .@1/

0 �� C0.T
�Y /Ì R�C ��

��

C.B�Y / Ì R�C

��

�� C.S�Y � R�C/ �� 0 .'/

C.Y � R�C/ C.Y � R�C/.

Denote by @1 (resp. ') the class of the first (resp. second) exact sequence of
this diagram, and by j� 2 KK.C0.T

�Y n Y /; C0.T
�Y // the element induced by

C0.T
�Y n Y / ! C0.T

�Y /. One has thus the equality

' D @1j�;
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so that
@ D j�˛ D @�1

1 '˛:

But '˛ is the image of iT under the Thom–Connes isomorphism, and @1 is also
a Thom–Connes element in KK-theory. Hence the classes in KK1 of the extensions
of � and of ‰ ˝ K are the same. Voiculescu’s theorem implies that these algebras
are isomorphic.

Corollary 1. The algebra of singular Green operators is isomorphic to �, an ideal
of C �.ad.Y � Y / Ì R�C/.

Proof. This is a direct consequence of Theorem 2, since the algebra of singular Green
operators is isomorphic to ‰ ˝ K .
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