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Twisting on associative algebras and Rota–Baxter type operators
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Abstract. We introduce an operation called “twisting” on the Hochschild complex by analogy
with Drinfeld’s twisting operations. By using the twisting and derived bracket constructions,
we study differential graded Lie algebra structures associated to the bi-graded Hochschild
complex. We show that Rota–Baxter type operators are solutions of Maurer–Cartan equations.
As an application of twisting, we give a construction of associative Nijenhuis operators.
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1. Introduction

In [7] Drinfeld introduced an operation called “twisting”, motivated by the study
of quasi-Lie bialgebras and quasi-Hopf algebras. The twisting operations provide a
method of analyzing Manin triples. In the context of Poisson geometry, they gave
a detailed study of twisting operations (see Kosmann-Schwarzbach [10], [12] and
Roytenberg [21], [22]). We briefly describe twisting operations. We consider a
graded commutative algebra,

V�
.V ˚ V �/, where V is a vector space over R and V �

is the dual space of V . The graded algebra has a graded Poisson bracket defined by
fV; V g D fV �; V �g ´ 0 and fV; V �g ´ hV; V �i. By definition, a structure in the
graded Poisson algebra is an element ‚ in

V3
.V ˚V �/ satisfying the Maurer–Cartan

equation f‚; ‚g D 0. It is known that the structure ‚ is an invariant Lie algebra
structure on V ˚ V �. The structures are closely related to (quasi-)Lie bialgebra
structures. A Lie bialgebra structure is defined as a pair of tensors .�1; �2/ such that
‚12 ´ �1 C �2 is a structure in the above sense, where �1 2 .

V2
V �/ ˝ V and

�2 2 V � ˝ V2
V . When .�1; �2/ is a structure of Lie bialgebra, the total space

.V ˚ V �; ‚12/ is called a Drinfeld double. Let r be an element in V ^ V . By
definition, the twisting of a structure ‚ by r is a canonical transformation,

‚r ´ exp.Xr/.‚/;
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where Xr is a Hamiltonian vector field Xr ´ f�; rg and ‚r is the result of twisting.
Interesting information is provided by the orbits of twisting operations. We recall a
basic proposition. Let .�1; 0/ be a structure of Lie bialgebra such that �2 D 0. Then
the Drinfeld double is the space V ˚V � with the structure ‚1 ´ �1. If r is a solution
of the Maurer–Cartan equation (or classical Yang–Baxter equation)

Œr; r� D 0;

then a pair .�1; f�1; rg/ is a Lie bialgebra structure and the double, �1 C f�1; rg,
is equal to the result of twisting ‚r

1, where Œr; r� ´ ff�1; rg; rg. Conversely, the
Maurer–Cartan condition of r is characterized by this property.

The aim of this note is to construct the theory of twisting on associative algebras
according to the philosophy and construction in [12] and [21]. At first, we will
define a twisting operation in the category of associative algebras. The twisting
operation is defined by using only a canonical bigraded system of the graded Poisson
algebra

V•
.V ˚ V �/. Hence, given a suitable bigraded Lie algebra, one can define

a twisting-like operation on the bigraded Lie algebra. We consider the Hochschild
complex C �.T / ´ Hom.T ˝�; T /, where T is a vector space decomposed into two
subspaces T ´ A1 ˚ A2. In Section 2, we introduce a canonical bigraded Lie
algebra system on C �.A1 ˚A2/. The graded Lie bracket is given by Gerstenhaber’s
bracket product. Our structures, � , are defined as associative structures on A1 ˚ A2,
i.e., � is a 2-cochain in C 2.A1 ˚ A2/ and t1 � t2 ´ �.t1 ˝ t2/ is associative for
any t1; t2 2 A1 ˚ A2. For a given 1-cochain H W A2 ! A1, we define a twisting
operation in the same manner as the classical one,

�H ´ exp.X yH /.�/;

where yH is the image of the natural map C �.A2; A1/ ,! C �.A1 ˚ A2/, X yH
is an analogy of Hamiltonian vector field defined by X yH ´ f�; yH g, and where
C �.A2; A1/ ´ Hom.A˝�

2 ; A1/. We will see that � is decomposed into the unique
four substructures

� D O�1 C O�1 C O�2 C O�2:

The twisting operation is completely determined by transformation rules of the four
substructures. In Section 4 we present explicit formulas of the transformation rules
(Theorem 4.5).

We consider the case of O�1 D O�2 D 0. Then A1 and A2 are both subalgebras
of the associative algebra .A1 ˚ A2; �/. Such a triple .A1 ˚ A2; A1; A2/ is called
associative twilled algebra, simply, twilled algebra (Carinena et al. [5]). If a Lie
algebra decomposes into two subalgebras, it is called a twilled Lie algebra in [11],
or called a twilled extension in [13], or a double Lie algebra in [17]. This concept
is used in order to construct integrable Hamiltonian systems (Adler–Kostant–Symes
theorem). The notion of associative twilled algebra considered here is an associative
version of the classical one. In [5] associative twilled algebras are studied from the
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point of view of quantization. In Section 3 we will perform a detailed investigation
of twilled algebras. By the derived bracket construction in [11], a twilled algebra
structure on A1˚A2 induces a differential graded Lie algebra (briefly dg-Lie algebra)
structure on C �.A2; A1/ (see Proposition 3.3). So we can consider a deformation
theory on the induced dg-Lie algebra. We consider the Maurer–Cartan equation

dR C 1

2
ŒR; R� D 0

in a dg-Lie algebra and find a solution R in a Rota–Baxter algebra. Let .A; R/ be an
arbitrary associative algebra equipped with an operator R W A ! A. The operator
R is called Rota–Baxter operator if R satisfies the identity (so-called Rota–Baxter
identity)

R.x/R.y/ D R.R.x/y C xR.y// C qR.xy/;

where q 2 K is a scalar (called weight). Rota–Baxter operators have been studied in
combinatorics (see Rota [18], [19]). In this note we do not pursue this line because
it is beyond our aim. Now A ˚ A has a natural twilled algebra structure, and then
C �.A; A/ has a dg-Lie algebra structure. In Section 5.1, we show that R is a Rota–
Baxter operator if and only if R is a solution of the Maurer–Cartan equation.

In Section 6 we give an application of our construction. We recall the notion
of associative Nijenhuis operator ([5]). Let N W A ! A be a linear map on an
associative algebra A. The operator N is called associative Nijenhuis operator if it
satisfies an associative version of the classical Nijenhuis condition

N.x/N.y/ D N.N.x/y C xN.y// � N 2.xy/;

where x; y 2 A. The deformed multiplication x �N y ´ N.x/y CxN.y/�N.xy/

is a new associative multiplication on A which is compatible with the original one. In
this sense, an associative Nijenhuis operator induces a quantum bihamiltonian system
(see [5]). We give a construction of associative Nijenhuis operators by analogy with
Poisson–Nijenhuis geometry.

We recall a theorem of Vaisman [25]. Let .V; P / be a Poisson manifold equipped
with a Poisson structure tensor P , i.e., P is a solution of the Maurer–Cartan equation

1

2
ŒP; P � D 0;

where the bracket product is a graded Lie bracket (called Schouten–Nijenhuis bracket).
Since the Poisson structure is a .2; 0/-tensor, it is identified with a bundle map
P W T �V ! T V . The Poisson bundle map induces a Lie algebroid structure
on the cotangent bundle T �V , i.e., the space of sections of

V•
T �V has a cer-

tain graded Lie bracket f ; gP . Vaisman showed that if a 2-form ! is a solution
of the strong Maurer–Cartan equation d! D f!; !gP D 0, then the bundle map
N ´ P! W T V ! T V is a Nijenhuis tensor and the pair .P; N / is a compatible pair
or a Poisson–Nijenhuis structure in the sense of [14]. This compatibility implies that
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the bundle map NP W T �V ! T V is a Poisson structure bundle map and P C tNP

is a one-parameter family of Poisson structures.
We will obtain a result similar to Vaisman’s theorem. First of all, we need Rota–

Baxter type operators as substitutes for Poisson structures. Let A be an associative
algebra and M an A-bimodule, and let � W M ! A be a linear map. The linear map
� is called a generalized Rota–Baxter operator of weight 0, or briefly GRB ([23]),
if � is a solution of

�.m/�.n/ D �.�.m/ � n C m � �.n//; .GRB/

where m; n 2 M and � is the bimodule action. When M D A as a canonical
bimodule, (GRB) reduces to a classical Rota–Baxter identity of weight zero. We
consider a semi-direct product algebra T ´ .A Ë M; O�/, where O� is the associative
multiplication of A Ë M . The Hochschild complex C �.A Ë M/ becomes a dg-Lie
algebra by Gerstenhaber bracket and the coboundary map d O� ´ f O�; �g. We define,
due to [11], a second bracket product on C �.A Ë M/ by

Œf; g� O� ´ .�1/jf j�1ff O�; f g; gg:
Here the new bracket is a graded Lie bracket on C �.M; A/ � C �.A Ë M/. One can
show that � is a generalized Rota–Baxter operator if and only if it is a solution of the
Maurer–Cartan equation

1

2
Œ O�; O�� O� D 0;

where O� is the image of the natural map C 1.M; A/ ,! C 1.A Ë M/, � 7! O� .
Now, given a generalized Rota–Baxter operator � W M ! A, M becomes an

associative algebra, where the associative multiplication on M is given by a structure
f O�; O�g. The associativity of f O�; O�g follows from Œ O�; O�� O� D 0. We denote the
associative algebra by M� . One can show that M� ˚A has a twilled algebra structure.
Thus a dg-Lie algebra structure, .d O�; Œ; �f O�; O�g/, is induced on C �.A; M�/. By analogy
with Vaisman’s theorem, we assume that � W A ! M is a solution of the strong
Maurer–Cartan equation in C �.A; M�/,

d O� y� D Œ y�; y��f O�; O�g D 0;

where d O� is the Hochschild coboundary on C �.A; M/ and y� is defined similarly
with O� . Then we can show that a linear endomorphism N ´ �� W A ! A is
an associative Nijenhuis operator and the pair .�; N D ��/ is compatible (see
Proposition 6.1). This proposition can be considered as an associative version of
Vaisman’s result.
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2. Cochain calculus

In this section, we define a bigraded Lie algebra structure on Hochschild complex
C �.A1 ˚A2/. In the following, we assume that the characteristic of the ground field
K is zero and so Q is included in K.

2.1. Gerstenhaber brackets. We recall the definition of Gerstenhaber’s bracket
product. Let V be a vector space over K. We consider the space of cochains g.V / ´L

n2N C n.V /, where C n.V / D C n.V; V / ´ HomK.V ˝n; V /. The degree of
f 2 g.V / is denoted by jf j, so f is in C jf j.V /. For any f 2 C jf j.V / and
g 2 C jgj.V /, we define a product,

f NB g ´
jf jP
iD1

.�1/.i�1/.jgj�1/f Bi g;

where Bi is the composition of maps defined by

f Bi g.b1; : : : ; bjf jCjgj�1/

D f .b1; : : : ; bi�1; g.bi ; : : : ; biCjgj�1/; biCjgj : : : ; bjf jCjgj�1/:

The degree of f NB g is jf j C jgj � 1. The Gerstenhaber bracket, or shortly, G-bracket
on g.V / is defined as a graded commutator,

ff; gg ´ f NB g � .�1/.jf j�1/.jgj�1/g NB f:

We recall two fundamental identities.
(I) Graded commutativity:

ff; gg D �.�1/.jf j�1/.jgj�1/fg; f gI
(II) graded Jacobi identity:

.�1/.jf j�1/.jhj�1/fff; gg; hg C .�1/.jhj�1/.jgj�1/ffh; f g; gg
C .�1/.jgj�1/.jf j�1/ffg; hg; f g D 0;

where h 2 C jhj.V /. The above graded Jacobi identity is equivalent to

ff; fg; hgg D fff; gg; hg C .�1/.jf j�1/.jgj�1/fg; ff; hgg;
which is called graded Leibniz identity, sometimes also called graded Loday identity.

Graded Lie algebras. Let g be a graded vector space equipped with a binary mul-
tiplication f ; g of degree 0. If the bracket product satisfies the two conditions

ff; gg D �.�1/deg.f / deg.g/fg; f g; (1)

ff; fg; hgg D fff; gg; hg C .�1/deg.f / deg.g/fg; ff; hgg; (2)
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then g is called a graded Lie algebra. Here f; g; h; 2 g and deg.�/ is the degree of g.
The cochain complex g.V / is a graded Lie algebra of deg.f / ´ jf j � 1. A graded
Lie algebra g is called a differential graded Lie algebra (dg-Lie algebra) if g has a
square zero derivation d of degree C1 satisfying

dff; gg D fdf; gg C .�1/deg.f /ff; dgg: (3)

Associative structures. It is well known that S 2 C 2.V / is an associative structure
if and only if it is a solution of Maurer–Cartan equation fS; Sg D 0. If S is an
associative structure, then dS .f / ´ fS; f g is a coboundary map of the Hochschild
complex .C �.V /; dS / so that .g.V /; dS / becomes a dg-Lie algebra.

Derived brackets. Let g be a dg-Lie algebra. We define a new bracket product by

Œf; g�d ´ .�1/deg.f /fdf; gg:
The new bracket is called derived bracket ([11]). It is well known that the derived
bracket is a graded Leibniz bracket, i.e., (2) holds up to degree shift. Remark that the
derived bracket is not graded commutative in general. We recall a basic lemma.

Lemma 2.1 ([11]). Let g be a dg-Lie algebra, and let h � g be an abelian subalgebra,
i.e., fh; hg D 0. We define a new degree (derived degree) by degd .h/ ´ deg.h/ C 1.
If the derived bracket is closed on h, then .h; degd ; Œ; �d / is a graded Lie algebra.

2.2. Lift and bidegree. Let A1 and A2 be vector spaces, and let c W A˝n
2 ! A1

be a linear map, or a cochain in C n.A2; A1/. We can construct a cochain Oc 2
C n.A1 ˚ A2/ by

Oc..a1; x1/ ˝ � � � ˝ .an; xn// ´ .c.x1; : : : ; xn/; 0/:

In general, for a given multilinear map f W Ai.1/ ˝ Ai.2/ ˝ � � � ˝ Ai.n/ ! Aj ,

i.1/; : : : ; i.n/; j 2 f1; 2g, we define a cochain Of 2 C n.A1 ˚ A2/ by

Of ´
´

f on Ai.1/ ˝ Ai.2/ ˝ � � � ˝ Ai.n/,

0 all other cases.

We call the cochain Of a horizontal lift of f , or simply lift. For instance, the lifts of
˛ W A1 ˝ A1 ! A1, ˇ W A1 ˝ A2 ! A2 and 	 W A2 ˝ A1 ! A2 are defined by

Ǫ ..a; x/; .b; y// D .˛.a; b/; 0/; (4)

Ǒ..a; x/; .b; y// D .0; ˇ.a; y//; (5)

O	..a; x/; .b; y// D .0; 	.x; b//; (6)
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respectively. Let H W A2 ! A1 (resp. H W A1 ! A2) be a 1-cochain. The lift is
defined by

yH.a; x/ D .H.x/; 0/ .resp. yH.a; x/ D .0; H.a///:

For any .a; x/ 2 A1 ˚ A2, we have yH yH.a; x/ D yH.H.x/; 0/ D .0; 0/.

Lemma 2.2. yH yH D 0.

This lemma will be used in Section 4.
We denote by Al;k the direct sum of all .l C k/-tensor powers of A1 and A2,

where l (resp. k) is the number of A1 (resp. A2). For instance,

A1;2 ´ .A1 ˝ A2 ˝ A2/ ˚ .A2 ˝ A1 ˝ A2/ ˚ .A2 ˝ A2 ˝ A1/:

The tensor space .A1 ˚ A2/˝n is expanded into the direct sum of Al;k , l C k D n.
For instance,

.A1 ˚ A2/˝2 D A2;0 ˚ A1;1 ˚ A0;2:

We consider the space of cochains C n.A1˚A2/ ´ HomK..A1˚A2/˝n; A1˚A2/.
By the standard properties of Hom-functor, we have

C n.A1 ˚ A2/ Š P
lCkDn

C n.Al;k; A1/ ˚ P
lCkDn

C n.Al;k; A2/; (7)

where the isomorphism is the horizontal lift.
Let f be an n-cochain in C n.A1 ˚ A2/. We say that the bidegree of f is kjl if

f is an element in C n.Al;k�1; A1/ or in C n.Al�1;k; A2/, where n D l C k � 1. We
denote the bidegree of f by kf k D kjl . In general, cochains do not have bidegree.
We call a cochain f a homogeneous cochain if f has a bidegree.

We have k C l � 2 because n � 1. Thus there are no cochains of bidegree 0j0 or
1j0 or 0j1. If the dimension of A1 is finite and if A2 D A�

1 is the dual space of A1,
then a kjl-cochain is identified with an element in A˝k

1 ˝A�˝l
1 . Hence the definition

above is compatible with the classical one. For instance, the lift yH 2 C 1.A1 ˚ A2/

of H W A2 ! A1 has bidegree 2j0. We recall that Ǫ ; Ǒ; O	 2 C 2.A1 ˚ A2/ in (4),
(5) and (6). One can easily see that k Ǫk D k Ǒk D k O	k D 1j2. Thus the sum

O� ´ Ǫ C Ǒ C O	 (8)

is a homogeneous cochain of bidegree 1j2. The cochain O� is a multiplication of
semidirect product type,

O�..a; x/; .b; y// D .˛.a; b/; ˇ.a; y/ C 	.x; b//;

where .a; x/; .b; y/ 2 T . Observe that O� is not a lift (there is no �), however, we
will use this symbol because O� is an interesting homogeneous cochain.

Clearly, the following lemma holds.
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Lemma 2.3. Let f 2 C n.A1 ˚ A2/ be a cochain. The bidegree of f is kjl if and
only if the following four conditions hold:

(deg1) k C l � 1 D n.

(deg2-1) If x is an element in Al;k�1, then f .x/ is in A1.

(deg2-2) If x is an element in Al�1;k , then f .x/ is in A2.

(deg3) All the other cases, f .x/ D 0.

Lemma 2.4. If kf k D kj0 (resp. 0jk) and kgk D l j0 (resp. 0jl), then ff; gg D 0,
or simply,

f.kj0/; .l j0/g D f.0jk/; .0jl/g D 0:

Proof. Assume that kf k D kj0 and kgk D l j0. Then f and g are both horizontal
lifts of cochains in C �.A2; A1/. Thus, from the definition of lift, we have f Bi g D
g Bj f D 0 for any i; j .

Lemma 2.5. Let f 2 C jf j.A1 ˚ A2/ and g 2 C jgj.A1 ˚ A2/ be homogeneous
cochains with bidegrees kf jlf and kg jlg respectively, where jf j and jgj are usual
degrees of cochains f and g. The composition f Bi g is again a homogeneous
cochain, and the bidegree is kf C kg � 1jlf C lg � 1.

Proof. We show that conditions (deg1)–(deg3) hold. The condition (deg1) holds
because kf C kg � 1 C lf C lg � 1 D jf j C jgj D jf Bi gj C 1. We show that
condition (deg2) holds. Take an element x ˝ y ˝ z in Alf Clg�1;kf Ckg�2. Consider

f Bi g.x; y; z/ D f .x; g.y/; z/: .?/

If (?) is zero, then it is in A1 for (deg2-1) is satisfied. So we assume .?/ ¤ 0.
We consider the case of g.y/ 2 A1. In this case, y is in Alg;kg�1 and x ˝ z

is in Alf �1;kf �1. Thus x ˝ g.y/ ˝ z is an element in Alf ;kf �1, which implies
f .x˝g.y/˝z/ 2 A1. If g.y/ 2 A2, y is in Alg�1;kg and x˝z is in Alf ;kf �2. Thus
x˝g.y/˝z is an element in Alf ;kf �1, which gives f .x˝g.y/˝z/ 2 A1. Similarly,
if x˝y˝z is an element in Alf Clg�2;kf Ckg�1, the condition holds. We show (deg3).
If x˝y ˝z is an element in Alf Clg�1Ci;kf Ckg�2�i and g.y/ ¤ 0, then x˝g.y/˝z

is in Alf Ci;kf �1�i . When i ¤ 0, from the assumption, f .x ˝ g.y/ ˝ z/ D 0. The
proof is completed.

Proposition 2.6. If kf k D kf jlf and kgk D kg jlg , then the Gerstenhaber bracket
ff; gg has the bidegree kf C kg � 1jlf C lg � 1.

Proof. Straightforward.

Remark. Given a bidegree k C 1jl C 1-cochain f , we define bideg.f / ´ kjl . If
bideg.f / D kjl and bideg.g/ D mjn, then bideg.ff; gg/ D bideg.f / C bideg.g/ D
k C mjl C n. Thus the bidegree, bideg, of the Gerstenhaber bracket is 0j0.
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3. Main objects

Notation. Let A1 and A2 be two vector spaces. We denote the elements of A1 by
a; b; c; : : : and the elements of A2 by x; y; z; : : : . We sometimes use an identification
.a; x/ Š a C x, where .a; x/ 2 A1 ˚ A2.

3.1. Twilled algebras

3.1.1. Structures. Let T be an associative algebra equipped with an associative
product � . We assume a decomposition of T into two subspaces, T D A1 ˚ A2.
The associative structure defines an associative multiplication by �..a; x/; .b; y// ´
.a; x/ � .b; y/ for any .a; x/; .b; y/ 2 T .

Definition 3.1 ([5]). The triple .T ; A1; A2/, or simply T , is called an associative
twilled algebra if A1 and A2 are subalgebras of T . We sometimes denote a twilled
algebra T by A1 ‰ A2. Such a structure is sometimes called a matching pair of
associative algebras in the literature.

One can easily check that if A1 ‰ A2 is a twilled algebra, then A1 (resp. A2)
is an A2-bimodule (resp. A1-bimodule). These bimodule structures are defined by
the following decomposition of associative multiplication of T . For any a 2 A1 and
x 2 A2, the multiplications a�x and x �a are decomposed into four multiplications,

a � x D .a �2 x; a �1 x/; x � a D .x �2 a; x �1 a/;

where a �2 x and x �2 a are A1-components of a � x and x � a, respectively, and,
similarly, a �1 x and x �1 a are A2-components. One can easily check that the
multiplication �1 (resp. �2) is the bimodule action of A1 on A2 (resp. A2 on A1).

In general, the associative multiplication of A1 ‰ A2 has the form

.a; x/ � .b; y/ D .a � b C a �2 y C x �2 b; a �1 y C x �1 b C x � y/:

The total multiplication, �, is decomposed into two “associative” multiplications of
semidirect product,

.a; x/ �1 .b; y/ ´ .a �1 b; a �1 y C x �1 b/;

.a; x/ �2 .b; y/ ´ .a �2 y C x �2 b; x �2 y/;

where we put a �1 b ´ a � b and x �2 y ´ x � y. Hence the structure � is also
decomposed into two associative structures,

� D O�1 C O�2;

where O�i is the structure associated with the multiplication �i for i D 1; 2. Recall
(8). The cochains O�1 and O�2 have the bidegrees 1j2 and 2j1, respectively. Under the
assumption, the decomposition of � is unique, i.e., if � is decomposed into two sub-
structures of bidegrees 1j2 and 2j1, then such substructures are uniquely determined.
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Lemma 3.2. The associativity of � (f�; �g D 0) is equivalent to the compatibility
conditions

1
2
f O�1; O�1g D 0; (9)

f O�1; O�2g D 0; (10)
1
2
f O�2; O�2g D 0: (11)

Proof. We will show a more general result in Lemma 3.9 below.

3.1.2. The case of subalgebras in duality. Given an arbitrary associative algebra
A, we have a Lie algebra by the commutator Œa; b� ´ ab � ba on A. The induced
Lie algebra is denoted by L.A/. The correspondence L W A ! L.A/ is a functor
(sometimes called “Liezation”) from the usual category of associative algebras to the
category of Lie algebras.

In this short section, we assume that A1 μ A is a finite dimensional vector
space and A2 is the dual space. In this case, T D A ˚ A� has a nondegenerate
symmetric bilinear form, .�j�/, where .AjA�/ D .A�jA/ is the dual pairing and
.AjA/ D .A�jA�/ D 0. We make a natural assumption, namely, the bilinear form is
invariant (or associative) with respect to the associative multiplication of T , explicitly,

.t1 � t2jt3/ D .t1jt2 � t3/

for any t1; t2; t3 2 T . Such a twilled algebra is called invariant twilled algebra.
If T is an invariant twilled algebra, then the triple .L.T /; L.A/; L.A�// is a

Manin triple. It is a twilled Lie algebra with an invariant pseudo-Euclidean metric
decomposed into two maximally isotropic subalgebras. In general, a pair of Lie
algebras .g1; g2/ becomes a Lie bialgebra if and only if a triple of Lie algebras
.g1 ‰ g2; g1; g2/ is a Manin triple. In this case, the total space g1 ‰ g2 is
called a Drinfeld double. Thus the pair .L.A/; L.A�// becomes a Lie bialgebra and
L.A/ ‰ L.A�/ is a Drinfeld double. If T is a quasi-twilled algebra in the sense of
Definition 3.10 below, then the cocycle term �1 (or �2) is a cyclic cocycle, i.e., for
any a; b; c 2 A,

�1.a; b/.c/ D �1.b; c/.a/ D �1.c; a/.b/:

This fact is a direct consequence of the invariance property. The commutator
ˆ1.a; b/ ´ �1.a; b/ � �1.b; a/ is identified with a skew-symmetric 3-tensor inV3

A�. This implies that if A˚A� is a quasi-twilled algebra, then L.T / is the dou-
ble of quasi-Lie bialgebra .L.A/; L.A/�/ (see [7], [10] for quasi-Lie bialgebras).

The dual map of an associative multiplication on T becomes a coassociative
comultiplication T ! T ˝T . Here T and T ˝T are identified with T � and .T ˝T /�
by the bilinear form. Since O�i is associative, the dual map 
 O�i

W T ! T ˝ T ,
i D 1; 2, of O�i becomes a coassociative multiplication. We rewrite the conditions
(9), (10) and (11) in terms of the comultiplications. Then (9) and (11) are equivalent
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to the coassociativity of 
 O�i
, i D 1; 2, respectively. So we consider (10). We define

a .T ; O�1/-bimodule structure on T ˝ T by t � .T ˝ T / ´ .t �1 T / ˝ T and
.T ˝ T / � t ´ T ˝ .T �1 t /, where t 2 T and �1 is the associative multiplication
of O�1. For any s; t; u; v 2 T , we have

.
 O�2
.s �1 t /ju ˝ v/ D .s �1 t ju �2 v/;

where the pairing .�j�/ is extended on T ˝ T by the rule

.s ˝ t ju ˝ v/ ´ .sjv/.t ju/:

The invariance property holds with respect to O�i , i D 1; 2, for instance,

.a �1 xjb/ D .a � xjb/ D .ajx � b/ D .ajx �1 b/;

where .AjA/ D 0 is used. Thus we have .s �1 t ju �2 v/ D .sjt �1 .u �2 v//. By
(10), we have t �1 .u �2 v/ D .t �2 u/ �1 v C .t �1 u/ �2 v � t �2 .u �1 v/. Thus
(10) is equivalent to the condition

.
 O�2
.s �1 t /ju ˝ v/ D .sjt �1 .u �2 v//

D .sj.t �2 u/ �1 v/ C .sj.t �1 u/ �2 v/

� .sjt �2 .u �1 v//:

(12)

The first term of the right-hand side of (12) is

.sj.t �2 u/ �1 v/ D .v �1 sjt �2 u/ D .u �2 .v �1 s/jt / D .u ˝ .v �1 s/j
 O�2
.t//:

We put 
 O�2
.t/ D P

t1 ˝ t2. Then we have

.u ˝ .v �1 s/j
 O�2
.t// D P

.ujt2/.v �1 sjt1/

D
X

.ujt2/.vjs �1 t1/

D .u ˝ vjs � 
 O�2
.t//:

(A)

And the second and third terms of the right-hand side of (12) are

.sj.t �1 u/ �2 v/ � .sjt �2 .u �1 v// D .
 O�2
.s/j.t �1 u/ ˝ v/ � .s �2 t ju �1 v/:

We put 
 O�2
.s/ D P

s1 ˝ s2. Then we have

.
 O�2
.s/j.t �1 u/ ˝ v/ D P

.s1jv/.s2jt �1 u/

D
X

.s1jv/.s2 �1 t ju/

D .
 O�2
.s/ � t ju ˝ v/:

(B)

and
.s �2 t ju �1 v/ D .
 O�1

.s �2 t /ju ˝ v/ D .
 O�1
B O�2.s; t/ju ˝ v/: .C/
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From (A), (B) and (C) we obtain a compatibility condition,

.
 O�2
.s�1 t /ju˝v/ D .s �
 O�2

.t/ju˝v/C.
 O�2
.s/�t ju˝v/�.
 O�1

B O�2.s; t/ju˝v/:

(13)
Because T ˝ T is a .T ; O�1/-bimodule, we obtain a Hochschild complex

.C �.T ; T ˝T /; D O�1
/, where D O�1

is a Hochschild coboundary map. Condition (13)
is equivalent to (14) below. Under the assumptions of this section, the identity (10)
f O�1; O�2g D 0 is equivalent to

D O�1

 O�2

� 
 O�1
B O�2 D 0: (14)

Since f O�2; O�1g D 0 we have D O�2

 O�1

� 
 O�2
B O�1 D 0. One can easily show that

D O�i

 O�i

� 
 O�i
B O�i D 0 holds for i D 1; 2. Thus we have D�
� � 
� B � D 0.

From (14) we have D O�1
.
1 B O�2/ D 0. By direct computation, one can show that if

A is unital (i.e. 1 �1 A D A �1 1), then D O�1
.
1 B O�2/ D 0 implies (14).

It is obvious that A is a sub-coalgebra of .T ; 
 O�2
/. Since O�2 is zero on A ˝ A,


 O�2
is a derivation on A, i.e., for any a; b 2 A,


 O�2
.a �1 b/ D 
 O�2

.a/ � b C a � 
 O�2
.b/:

An associative and coassociative algebra .�; �; ı/ is called infinitesimal bialgebra
([9]) if ı.a�b/ D a �ı.b/Cı.b/�a for any a; b 2 �. Thus the triple .A; �1; 
 O�2

/ is an
infinitesimal bialgebra. We consider the converse. Given an infinitesimal bialgebra
.�; �; ı/, the multiplications � and ı are extended to � ˚ �� by adjoint actions.
However the compatibility condition (14) is not satisfied in general. This implies that
the Liezation of an infinitesimal bialgebra is not a Lie bialgebra in general. For this
problem, see the detailed study by Aguiar in [3].

3.1.3. Induced dg-Lie algebras. This short section is the heart of this article. The
meaning of twilled algebra is given by the proposition below. By the associative
condition (9), .C �.T /; d O�1

.�/ ´ f O�1; �g/ becomes a dg-Lie algebra. The graded
space C �.A2; A1/ is identified with an abelian subalgebra of the dg-Lie algebra via
the horizontal lift. One can easily check that the derived bracket

Œf; g� O�1
´ .�1/jf j�1ff O�1; f g; gg

is closed on C �.A2; A1/. By Lemma 2.1, C �.A2; A1/ becomes a graded Lie algebra.
Further, by (10) and (11), d O�2

´ f O�2; g becomes a square zero derivation on the
induced graded Lie algebra C �.A2; A1/.

Proposition 3.3. If T D A1 ‰ A2 is a twilled algebra, then C �.A2; A1/ has a
dg-Lie algebra structure. The degree of the dg-Lie algebra structure is the same as
the usual degree of cochains.
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Proof. We show only the derivation property of d O�2
. Since O�2 is an associative

structure, d O�2
is square zero. For any cochains f; g 2 C �.A2; A1/, we have

d O�2
Œf; g� O�1

´ .�1/jf j�1f O�2; ff O�1; f g; ggg
D .�1/jf j�1ff O�2; f O�1; f gg; gg � ff O�1; f g; f O�2; ggg
D .�1/jf jff O�1; f O�2; f gg; gg � ff O�1; f g; f O�2; ggg
D Œd O�2

f; g� O�1
C .�1/jf jŒf; d O�2

g� O�1
:

By Lemma 2.1, the derived degree is given by degd O�1
.f / D deg.f /C1 D jf j, where

deg.f / D jf j � 1 is the degree of the canonical dg-Lie algebra .C �.T /; d O�1
/ (recall

Section 2.1). Thus d O�2
satisfies the defining condition (3) of a dg-Lie algebra.

Recalling deformation theory it is natural to ask: what is a solution of the Maurer–
Cartan equation in a dg-Lie algebra? We will solve this question in Section 5.

3.1.4. Examples

Example 3.4 (Trivial extensions, semidirect product algebras). Let A be an asso-
ciative algebra and let M an A-bimodule. The trivial extension A Ë M is a twilled
algebra of A D A1 and M D A2, where the structure O�2 is trivial and O�1 is defined
by

O�1..a; m/; .b; n// ´ .a; m/ � .b; n/ ´ .ab; a � n C m � b/;

for any .a; m/; .b; n/ 2 A ˚ M . Here � is the bimodule action of A on M .

A direct product algebra A � A is a twilled algebra. The following example is
considered as a q-analogue of trivial extensions.

Example 3.5 (q-trivial extensions). Let A be an associative algebra. Define a mul-
tiplication on A ˚ A by

.a; x/ �q .b; y/ ´ .ab; ay C xb C qxy/;

where q 2 K. Then .A ˚ A; �q/ becomes a twilled algebra. We denote the twilled
algebra by A ‰q A.

If .T ; �/ is an associative algebra, then C �.T / becomes an associative algebra
with the help of a cup product: f _� g ´ �.f; g/, f; g 2 C �.T /.

Example 3.6. If T D A1 ‰ A2 is a twilled algebra, then

C �.T / D C �.T ; A1 ‰ A2/ Š C �.T ; A1/ ‰ C �.T ; A2/

is a twilled algebra because the cup product is decomposed into _� D _ O�1
C _ O�2

.
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3.2. Proto-, quasi-twilled algebras. A quasi-Lie bialgebra is known as a classical
limit of a quasi-Hopf algebra. The notion of quasi-Lie bialgebra is generalized to
proto-Lie bialgebras (see [10]). The latter is a more complicated object than quasi-
Lie bialgebras. The proto-Lie bialgebras provide a general framework of quantum-
classical correspondence. In this section, we will study associative analogues of
proto-, quasi-Lie bialgebras.

Definition 3.7. Let .T ; �/ be an associative algebra decomposed into two subspaces,
T D A1 ˚ A2. Here A1 and A2 are not necessarily subalgebras. We call the triple
.T ; A1; A2/ a proto-twilled algebra.

Lemma 3.8. Let � be an arbitrary 2-cochain in C 2.T /. Then � is uniquely decom-
posed into four homogeneous cochains of bidegrees 0j3, 1j2, 2j1 and 3j0,

� D O�1 C O�1 C O�2 C O�2:

Proof. Recall the decomposition (7). The space of 2-cochains C 2.T / is decomposed
into

C 2.T / D .0j3/ ˚ .1j2/ ˚ .2j1/ ˚ .3j0/;

where .i jj / is the space of bidegree i jj -cochains, i; j D 0; 1; 2; 3. The decom-
position is essentially unique. Thus � is uniquely decomposed into homogeneous
cochains of bidegrees 0j3, 1j2, 2j1 and 3j0. The four substructures O�1, O�1, O�2 and O�2

in the lemma are given as the homogeneous cochains. The proof is completed.

The multiplication .a; x/ � .b; y/ ´ �..a; x/; .b; y// of T is uniquely decom-
posed by the canonical projections T ! A1 and T ! A2 into the eight multiplica-
tions:

a � b D .a �1 b; a �2 b/;

a � y D .a �2 y; a �1 y/;

x � b D .x �2 b; x �1 b/;

x � y D .x �1 y; x �2 y/:

We put bidegrees on the four cochains: k O�1k ´ 0j3, k O�1k ´ 1j2, k O�2k ´ 2j1 and
k O�2k ´ 3j0. Then we obtain

O�1..a; x/; .b; y// D .0; a �2 b/;

O�1..a; x/; .b; y// D .a �1 b; a �1 y C x �1 b/;

O�2..a; x/; .b; y// D .a �2 y C x �2 b; x �2 y/;

O�2..a; x/; .b; y// D .x �1 y; 0/:

Observe that O�1 and O�2 are lifted cochains of �1.a; b/ ´ a �2 b and �2.x; y/ ´
x �1 y.
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Lemma 3.9. The Maurer–Cartan condition f�; �g D 0 is equivalent to the following
five conditions:

f O�1; O�1g D 0; (15)
1
2
f O�1; O�1g C f O�2; O�1g D 0; (16)

f O�1; O�2g C f O�1; O�2g D 0; (17)
1
2
f O�2; O�2g C f O�1; O�2g D 0; (18)

f O�2; O�2g D 0: (19)

Proof. From the five conditions, one can directly check the Maurer–Cartan condition
of � . We show the converse. The bidegrees of O�1, O�1, O�2 and O�2 are 0j3, 1j2, 2j1
and 3j0, respectively. If f�; �g D 0, then

f O�1; O�1g C 2f O�2; O�1g C 2f O�1; O�2g C 2f O�1; O�2g C f O�2; O�2g C 2f O�1; O�2g
C 2f O�1; O�1g C 2f O�2; O�2g D 0:

The first two terms have 1j3-bidegree, the second two terms have 2j2-bidegree, the
third two terms have 3j1-bidegree and the last two terms have 0j4 and 4j0, respectively.
Thus we have f O�1; O�1g C 2f O�2; O�1g D 0 for 1j3-bidegree, which is (16). Similarly,
we obtain (15)–(19).

Definition 3.10. Let T D A1 ˚ A2 be a proto-twilled algebra equipped with the
structures . O�1; O�2; O�1; O�2/. We call the triple .T ; A1; A2/ a quasi-twilled algebra
if �2 D 0, or, equivalently, A2 is a subalgebra. Since A1 ˚ A2 D A2 ˚ A1, the
definition works in the case of �2 ¤ 0 and �1 D 0.

It is obvious that twilled algebras are special quasi-twilled algebras of �1 D �2 D
0. By Lemma 3.9, � is the structure of a quasi-twilled algebra of �2 D 0 if and only
if

f O�1; O�1g D 0; (20)
1
2
f O�1; O�1g C f O�2; O�1g D 0; (21)

f O�1; O�2g D 0; (22)
1
2
f O�2; O�2g D 0: (23)

In Proposition 3.3, we saw that C �.A2; A1/ has a dg-Lie algebra structure. In the
quasi-twilled algebra case, by (23), d O�2

is still a square zero derivation, but the derived
bracket by O�1 does not satisfy the graded Jacobi identity in general. However the
Jacobiator still satisfies a weak Jacobi identity in the sense of homotopy Lie algebras
([6], [15]). The 3-cochain 1

2
f O�1; O�1g rises up to the graded Jacobiator via the derived
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bracket,

.�1/jgj�1 1
2
ffff O�1; O�1g; f g; gg; hg

D Œf; Œg; h� O�1
� O�1

� ŒŒf; g� O�1
; h� O�1

� .�1/jf kgjŒg; Œf; h� O�1
� O�1

:

By (21), the Jacobiator is also given by �f O�2; O�1g. We define a tri-linear bracket
product (homotopy) on C �.A2; A1/ by

Œf; g; h� O�1
´ .�1/jgj�1fff O�1; f g; gg; hg:

Since C �.A2; A1/ is abelian with respect to f�; �g, the tribracket is skew-symmetric.
We can show that the system .d O�2

; Œ � ; � � O�1
; Œ � ; � ; � � O�1

/ defines a strong homotopy
Lie algebra structure of ln�4 ´ 0 on C �.A2; A1/. This assertion is shown in [24]
as a corollary of a more general result.

The complex plane, T ´ C, is a quasi-twilled algebra decomposed into the real
part and the imaginary part. Given an R-algebra A, the complexification C ˝R A D
A ˚ p�1A is a quasi-twilled algebra.

Example 3.11 (Quasi-trivial extension). Let A be an associative algebra. Define a
multiplication on A ˚ A by

.a; x/ �Q .b; y/ ´ .ab C Qxy; ay C xb/;

where Q 2 K. Then A ˚ A becomes a quasi-twilled algebra, where �2.x; y/ ´
Qxy. We denote this algebra by A ˚Q A.

4. Twisting by a 1-cochain

Let h be a 1-cochain in C 1.T /. By analogy with Hamiltonian vector fields, we define
an operator by Xh ´ f � ; hg, and by analogy with Hamiltonian flows, we put

exp.Xh/. � / ´ 1 C Xh C 1

2Š
X2

h C 1

3Š
X3

h C : : : ;

where X2
h

´ ff � ; hg; hg and Xn
h

is defined in the same manner. Observe that exp.Xh/

is not well defined in general.
Let .T D A1 ˚ A2; �/ be a proto-twilled algebra, and let OH 2 C 1.T / be the lift

of a linear map H W A2 ! A1 (or H W A1 ! A2). Then exp.X yH / is always well

defined as an operator because yH yH D 0 (recall Lemma 2.2).

Definition 4.1. A transformation

�H ´ exp.X yH /.�/ (24)

is called a twisting of � by H .
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It is clear that the result of twisting by H is again a 2-cochain. We can consider
the twisting operations as special examples of gauge transformations in deformation
theory (see [6]). Lemma 4.2 and Proposition 4.3 follow from standard arguments in
deformation theory.

Lemma 4.2. �H D e� yH �.e
yH ˝ e

yH /, where e˙ yH D 1 ˙ yH .

Proof. We have

e� yH �.e
yH ˝ e

yH / D �.e
yH ˝ e

yH / � yH�.e
yH ˝ e

yH /

D � C �.1 ˝ yH/ C �. yH ˝ 1/ C �. yH ˝ yH/ � yH�

� yH�.1 ˝ yH/ � yH�. yH ˝ 1/ � yH�. yH ˝ yH/

D � C �.1 ˝ yH/ C �. yH ˝ 1/ � yH� C �. yH ˝ yH/

� yH�.1 ˝ yH/ � yH�. yH ˝ 1/ � yH�. yH ˝ yH/:

Since yH yH D 0, for any I � 4, we have XI
yH .�/ D 0. Thus we have

exp.X yH /.�/ D � C f�; yH g C 1

2
ff�; yH g; yH g C 1

6
fff�; yH g; yH g; yH g:

One can directly check the three identities below.

f�; yH g D �. yH ˝ 1/ C �.1 ˝ yH/ � yH�;

1
2
ff�; yH g; yH g D �. yH ˝ yH/ � yH�. yH ˝ 1/ � yH�.1 ˝ yH/;

1
6
fff�; yH g; yH g; yH g D � yH�. yH ˝ yH/:

The proof of the lemma is completed.

From the above lemma, we have f�H ; �H g D e�H f�; �g.e yH ˝ e
yH ˝ e

yH /. This
implies

Proposition 4.3. The result of twisting �H is an associative structure, i.e., one has
f�H ; �H g D 0.

The following corollary is useful.

Corollary 4.4. The twisting by H induces an algebra isomorphism

eH W .T ; �H / ! .T ; �/:

Obviously, .T ; �H / is also a proto-twilled algebra. Thus �H is also decomposed
into the unique four substructures. The twisting operations are completely determined
by the following result.
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Theorem 4.5. Assume a decomposition of � , � ´ O�1 C O�2 C O�1 C O�2. The unique
four substructures of �H have the form

O�H
1 D O�1; (25)

O�H
1 D O�1 C f O�1; yH g; (26)

O�H
2 D O�2 C d O�1

yH C 1
2
ff O�1; yH g; yH g; (27)

O�H
2 D O�2 C d O�2

yH C 1
2
Œ yH; yH� O�1

C 1
6
fff O�1; yH g; yH g; yH g; (28)

where d O�i
.�/ ´ f O�i ; �g, .i D 1; 2/ and Œ yH; yH� O�1

´ ff O�1; yH g; yH g.
Proof. The first term of exp.X yH /.�/ is � . It follows from bidegree calculus that

f O�2; yH g D 0 because k O�2k D 3j0 and k yHk D 2j0. Thus the second term of
exp.X yH /.�/ has the form

f O�1; yH g C f O�2; yH g C f O�1; yH g:
We have kf O�1; yH gk D 2j1, kf O�2; yH gk D 3j0 and kf O�1; yH gk D 1j2, which implies
ff O�2; yH g; yH g D 0. Thus the third term has the form

1

2
.ff O�1; yH g; yH g C ff O�1; yH g; yH g/:

The bidegrees are kff O�1; yH g; yH gk D 3j0 and kff O�1; yH g; yH gk D 2j1. The final term
is fff�; yH g; yH g; yH g D fff O�1; yH g; yH g; yH g, which has the bidegree 3j0. Thus the
sum of all 3j0-terms is

O�2 C f O�2; yH g C 1

2Š
ff O�1; yH g; yH g C 1

3Š
fff O�1; yH g; yH g; yH g;

which gives (28). In this way, the remaining three conditions hold.

5. Maurer–Cartan equations

Let T D A1 ˚ A2 be a proto-twilled algebra equipped with an associative structure
� and let . O�1; O�1; O�2; O�2/ be the unique four substructures of � . In this section we
discuss various examples of twisting operations.

5.1. The case of �1 D 0 and �2 D 0. Then T D A1 ‰ A2 is a twilled algebra.
However the result of twisting by H W A2 ! A1, .TH ; A1; A2/, is a quasi-twilled
algebra in general. The twisted structures have the form

O�H
1 D O�1;

O�H
2 D O�2 C d O�1

OH;

O�H
2 D d O�2

yH C 1
2
Œ yH; yH� O�1

:
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This O�H
2 is called curvature. The derivation operator d O�2

on the graded Lie algebra
C �.A2; A1/ is modified by H , d O�H

2
.�/ D d O�2

.�/CŒ OH; �� O�1
, where d O�H

2
d O�H

2
¤ 0

in general. By Lemma 3.9 (19), the cocycle condition of �H
2 still holds:

d O�H
2

O�H
2 D 0:

This is a kind of Bianchi identity.

5.1.1. Maurer–Cartan operators. In Proposition 3.3 we saw that C �.A2; A1/ has
a dg-Lie algebra structure. We study the Maurer–Cartan equation in this dg-Lie
algebra.

Corollary 5.1. The result of twisting TH D A1 ˚ A2 is also a twilled algebra if and
only if the curvature vanishes, or, equivalently, H is a solution of the Maurer–Cartan
equation

d O�2
yH C 1

2
Œ yH; yH� O�1

D 0: .MC/

The condition (MC) is equivalent to

H.x/�1 H.y/CH.x/�2 y Cx�2 H.y/ D H.H.x/�1 y Cx�1 H.y//CH.x�2 y/:

(29)

Proof. We have d O�2
yH D O�2. yH ˝ 1/ � yH O�2 C O�2.1 ˝ yH/ and

1

2
Œ yH; yH� O�1

D 1

2
ff O�1; yH g; yH g D O�1. yH ˝ yH/ � yH O�1.1 ˝ yH/ � yH O�1. yH ˝ 1/:

This gives

.d O�2
yH C 1

2
Œ yH; yH� O�1

/..a; x/; .b; y// D H.x/ �2 y � H.x �2 y/ C x �2 H.y/

C H.x/ �1 H.y/ � H.H.x/ �1 y

C x �1 H.y//

for any .a; x/; .b; y/ 2 T .

Definition 5.2. Let A1 ‰ A2 be a twilled algebra and let H W A2 ! A1 a linear map.
We call the operator H in (MC), or, equivalently, in (29) Maurer–Cartan operator.
The Maurer–Cartan operator is called strong if it is a derivation with respect to the
multiplication �2, i.e.,

H.x �2 y/ D x �2 H.y/ C H.x/ �2 y:

In [16] the Maurer–Cartan equation in other dg-Lie algebras was studied. The
concept of strong solution is due to their work. If H is strong, then the identity,
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H.x/ �1 H.y/ D H.H.x/ �1 y C x �1 H.y//, automatically holds. The strong
Maurer–Cartan condition is equivalent to

d O�2
yH D 1

2
Œ yH; yH� O�1

D 0:

We easily obtain

Corollary 5.3. If H is the Maurer–Cartan operator, then

x �H y ´ H.x/ �1 y C x �1 H.y/ C x �2 y

is an associative multiplication on A2.

Proof. When H satisfies (MC), we have O�H
2 D 0. By Lemma 3.9, we obtain

f O�H
2 ; O�H

2 g D 0, which gives the associativity of O�H
2 . The multiplication has the

following form on A2:

O�H
2 .x; y/ D H.x/ �1 y C x �1 H.y/ C x �2 y:

We recall Rota–Baxter operators mentioned in the Introduction.

Example 5.4 (Rota–Baxter operators of weight q). Let A be an associative algebra.
Recall the twilled algebra of Example 3.5. The multiplication of A ‰q A is defined
by

.a; x/ �q .b; y/ ´ .ab; ay C xb C qxy/; (30)

where q 2 K (weight). By (29), the Maurer–Cartan operators on A ‰q A satisfy
the Rota–Baxter identity of weight q,

R.x/R.y/ D R.R.x/y C xR.y// C qR.xy/;

where we put R ´ H . Thus Rota–Baxter operators can be seen as examples of
Maurer–Cartan operators.

As an example of Rota–Baxter operator, we know

R.f /.x/ ´ f .qx/ C f .q2x/ C f .q3x/ C � � � .convergent/

where R is defined on a certain algebra of functions (see [19]).

5.1.2. The case of O�2 D 0. In this case, since d O�2
D 0, the Maurer–Cartan equation

simply has the form Œ OH; OH� O�1
=2 D 0, or, equivalently, (29) reduces to the identity

H.x/ �1 H.y/ D H.H.x/ �1 y C x �1 H.y//:

Furthermore, if A2 D A1 as a canonical bimodule, then H is considered a Rota–
Baxter operator with weight zero.
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Definition 5.5 ([23]). Let A be an associative algebra and let M be an A-bimodule.
A linear map � W M ! A is called generalized Rota–Baxter operator (of weight
zero) if � is a solution of the identity

�.m/�.n/ D �.�.m/ � n C m � �.n//; (31)

or, equivalently, Œ O�; O�� O�=2 D 0, where m; n 2 M and O� is the associative structure
of A Ë M .

A generalized Rota–Baxter operator is obviously a (strong) Maurer–Cartan op-
erator. Given a generalized Rota–Baxter operator � W M ! A, we have a twilled
algebra A ‰ M� by the twisting of A Ë M by � , where M� is an associative sub-
algebra given by Corollary 5.3. The associative structure of A ‰ M� is the sum
O� C f O�; O�g of two structures.

Corollary 5.6. Under the assumptions above, if �1 is a second generalized Rota–
Baxter operator on A Ë M , i.e., Œ O�1; O�1� O� D 0, then H ´ �1 � � is the Maurer–
Cartan operator on A ‰ M� . If H is strong, then � C tH is a one-parameter
family of generalized Rota–Baxter operators for any t 2 K.

Proof. By assumption, we have Œ yH; yH� O�=2 D �Œ O�1; O�� O�. On the other hand, since
d O�2

. � / D ff O�; O�g; � g, we have

d O�2
yH D ff O�; O�g; O�1g D Œ O�; O�1� O� D Œ O�1; O�� O�:

We obtain the condition (MC). Thus Maurer–Cartan operators on A ‰ M� are given
as the difference of � with generalized Rota–Baxter operators. If H is a strong
Maurer–Cartan operator, then so is tH for any t 2 K. This implies the second part
of the corollary.

We recall Section 3.1.2. Let A be a finite dimensional associative algebra and let
A� be the dual space. By canonical adjoint action, A acts on the dual space. In this
case, there are interesting similarities between generalized Rota–Baxter operators and
classical r-matrices. We recall the classical Yang–Baxter equation (CYBE). There
exist several equivalent definitions of CYBE. Here is one of them: CYBE is defined
to be an operator identity in the category of Lie algebras,

Œ Qr.x/; Qr.y/� D Qr.Œ Qr.x/; y� C Œx; Qr.y/�/;

where r is a 2-tensor in g ˝ g (g is a finite dimensional Lie algebra), Qr W g� ! g is
the associated linear map, x; y are elements in the dual space g� and the brackets on
the right-hand side are adjoint actions. The space of alternative tensors

V� g has a
graded Lie algebra structure of the Schouten bracket. If r is an element in g ^ g, then
the Schouten bracket Œr; r� is in

V3 g, and Œr; r� D 0 if and only if Qr satisfies CYBE
above. Such a matrix r is called triangular r-matrix. When g is a Lie algebroid, a
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triangular r-matrix is a Poisson structure. The notion of generalized Rota–Baxter
operator can be seen as an associative version of triangular r-matrices and Poisson
structures. We believe that this picture is justified by the following example.

Example 5.7. Let A be a 2-dimensional algebra generated by
�

0 1
0 0

�
and

�
1 0
0 0

�
. The

dual space A� is an A-bimodule by adjoint action. Thus we have a twilled algebra
A Ë A�. Define a tensor r by

r ´
�

0 1

0 0

�
^

�
1 0

0 0

�
:

This tensor is identified to a map Qr W A� ! A. By direct computation, one can check
that the map is a generalized Rota–Baxter operator.

In general, if a 2-tensor r 2 A ^ A satisfies Aguiar’s multiplicative equation
(called associative Yang–Baxter equation in [1], [2], [3])

r13r12 � r12r23 C r23r13 D 0; (AYBE)

then Qr W A� ! A is a generalized Rota–Baxter operator (see [23]). Conversely,
a skew-symmetric generalized Rota–Baxter operator satisfies (AYBE) above. In
non skew-symmetric cases, there is a delicate difference between AYBE and the
generalized Rota–Baxter condition.

When r is skew-symmetric, the twisting by r preserves the bilinear pairing .�j�/

in Section 3.1.2. Thus the associative structure O� C f O�; Org satisfies the invariant
condition in the sense of 3.1.2.

A Poisson structure is considered as a sheaf version of triangular matrices. It
is natural to ask what is a sheaf version of Rota–Baxter operators. We do not yet
have an interesting solution. We wish to find a Rota–Baxter operator on the universal
enveloping algebra of a Lie algebroid. If there exists such a Rota–Baxter operator, it
is considered as an example of the sheaf version.

5.2. The case of �1 ¤ 0 and �2 D 0. Then T D A1 ˚ A2 is a quasi-twilled
algebra. However TH D A1 ˚ A2 is not necessarily a quasi-twilled algebra because
�H

1 D �1 ¤ 0 and

O�H
2 D d O�2

yH C 1

2
Œ yH; yH� O�1

C 1

6
fff O�1; yH g; yH g; yH g ¤ 0:

In general, the results of twisting have the form

O�H
1 D O�1;

O�H
1 D O�1 C f O�1; yH g;

O�H
2 D O�2 C d O�1

yH C 1

2
ff O�1; yH g; yH g;

O�H
2 D d O�2

yH C 1
2
Œ yH; yH� O�1

C 1
6
fff O�1; yH g; yH g; yH g:
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Since O�1 is not associative, the derived bracket Œ � ; � � O�1
does not satisfy the graded

Jacobi rule in general. However the space C �.A2; A1/ still has a homotopy Lie
algebra structure .d O�2

; Œ � ; � � O�1
; Œ � ; � ; � � O�1

/ of Section 3.2. We consider the Maurer–
Cartan equation in this homotopy Lie algebra. The following two corollaries are
proved in the same way as Corollary 5.1 and Corollary 5.3.

Corollary 5.8. The result of twisting TH D A1 ˚ A2 is also a quasi-twilled algebra
if and only if it is a solution of the twisted Maurer–Cartan equation

d O�2
yH C 1

2
Œ yH; yH� O�1

C 1

6
Œ yH; yH; yH� O�1

D 0; .TMC/

or, equivalently,

H.x/ �1 H.y/ C H.x/ �2 y C x �2 H.y/

D H.H.x/ �1 y C x �1 H.y// C H.x �2 y/ C H.�1.H.x/; H.y///
(32)

for any x; y 2 A2.

Corollary 5.9. If TH D A1 ˚ A2 is a quasi-twilled algebra, then

x �H;�1
y ´ O�H

2 .x; y/ D H.x/ �1 y C x �1 H.y/ C x �2 y C �1.H.x/; H.y//:

is an associative multiplication on A2.

Example 5.10 (Twisted Rota–Baxter operators [23]). If O�2 D 0, or �2 is trivial, then
(32) is reduced to an identity:

H.x/ �1 H.y/ D H.H.x/ �1 y C x �1 H.y// C H.�1.H.x/; H.y///: .TRB1/

(TRB1) is equivalent to

1

2
Œ yH; yH� O�1

D �1

6
Œ yH; yH; yH� O�1

: .TRB2/

Such an operator H is called twisted Rota–Baxter operator (of weight zero).
As an example of twisted Rota–Baxter operators, we mention the Reynolds op-

erators in probability theory ([20]). Let A be a certain functional algebra. Define an
operator R W A ! A by

R.f /.x/ ´
Z 1

0

e�tf .x � t /dt:

Then R satisfies the identity

R.f /R.g/ D R.R.f /g C fR.g// � R.R.f /R.g//:

Such an operator is called Reynolds operator. The last term �R.R.f /R.g// D
R�.R.f /; R.g// can be seen as the cocycle term of twisted Rota–Baxter identity.
Thus a Reynolds operator can be seen as a homotopy version of Rota–Baxter operators
of weight zero.
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A Reynolds operator is used, in the study of turbulent flow, in order to induce a
mean field model of Navier–Stokes equation (so-called Reynolds equation). One can
easily verify that if R.f / ´ Nf is the mean of f , then the operator satisfies the identity

above, because an averaging operation satisfies the identities Nf g D Nf � Ng D f Ng
and NNf D Nf in general. Unfortunately, we do not know of an application of our
construction to Rota’s theory.

5.3. The case of �1 D 0 and �2 ¤ 0. In this case, O�1 D O�H
1 D 0, and thus O�1 and

O�H
1 are both associative. The twisted four substructures have the form

O�H
1 D O�1;

O�H
2 D O�2 C d O�1

yH;

O�H
2 D O�2 C d O�2

yH C 1
2
Œ yH; yH� O�1

:

Similar to Corollary 5.1 and Corollary 5.3, we obtain the two corollaries below.

Corollary 5.11. The result of twisting TH D A1 ˚ A2 is a usual twilled algebra,
i.e., O�H

2 D 0 if and only if H is a solution of the quasi-Maurer–Cartan equation

d O�2
yH C 1

2
Œ yH; yH� O�1

D � O�2; .QMC/

or, equivalently,

H.x/ �2 y C x �2 H.y/ C H.x/ �1 H.y/ C �2.x; y/

D H.H.x/ �1 y C x �1 H.y// C H.x �2 y/:
(33)

Corollary 5.12. If H satisfies (QMC), then O�H
2 is an associative structure and defines

an associative multiplication on A2 by

x �H;�2
y ´ O�H

2 .x; y/ D H.x/ �1 y C x �1 H.y/ C x �2 y: (34)

We consider the case of O�2 D 0. Then (QMC) and (33) reduce to the identities

1

2
Œ yH; yH� O�1

D � O�2

and
H.x/ �1 H.y/ � H.H.x/ �1 y C x �1 H.y// D ��2.x; y/; (35)

respectively.
Recall the quasi-twilled algebra A ˚Q A of Example 3.11.

Claim. Define a linear map .a; x/ 7! .q
2
x; 0/ on A ˚ A. Then its integral ecq=2

is an algebra isomorphism

e
cq=2 W A ‰q A ! A ˚Q A; Q D q2

4
:
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Proof. We have

e
cq=2..a; x/ �q .b; y// D .ab C q

2
ay C q

2
xb C q2

2
xy; ay C xb C qxy/

D ..a C q
2
x/.b C q

2
y/ C q2

4
xy; ay C xb C qxy/

D .a C q
2
x; x/ �Q .b C q

2
y; y/; Q D q2

4
: �

If Q D 0, then A ˚QD0 A is the semi-direct product algebra. Thus A ‰q A is
isomorphic to A Ë A modulus q2.

Now the claim says that A ‰q A is the result of twisting of A ˚Q A by q=2.
Let .R.A/; A/ be the graph of R. One can easily verify that if R is a q-Rota–
Baxter operator, then A ‰q A D A ‰ .R.A/; A/ is a second twilled algebra
decomposition. By twisting, we have a twilled algebra A ‰ .R.A/ C q

2
A; A/ and

A ‰ .R.A/; A/ D A ‰q A
ecq=2

���! A ˚q2=4 A D A ‰ .R.A/ C q
2
A; A/:

Example 5.13 (Rota–Baxter operator mod q2 [8]). Let .A; R/ be a Rota–Baxter
algebra. We define a linear map B W A ! A by B.A/ ´ R.A/ C q

2
A. Then the

graph .B.A/; A/ of B is a subalgebra of the quasi-twilled algebra A ˚q2=4 A. This
implies that B is a solution of

B.x/B.y/ � B.B.x/y C xB.y// D �q2

4
xy:

The right-hand term .q2=4/xy ´ �2.x; y/ can be seen as the cocycle-term in (35).

6. Application

In this section we give a construction of an associative Nijenhuis operator. First we
recall basic properties of the Nijenhuis operator. A linear operator N W A ! A is
called associative Nijenhuis operator if N is a solution of

N.x/N.y/ D N.N.x/y C xN.y// � N 2.xy/:

In general, given a Nijenhuis operator, x �N y ´ N.x/y C xN.y/ � N.xy/ is a
second associative multiplication and it is compatible with the original multiplication.
Namely, xy C tx �N y is a one-parameter family of associative multiplications for
any t 2 K ([5]).

In the following, we assume that A is an associative algebra, M is an A-bimodule
and we denote the multiplication of A by �A.

Let � W M ! A be a generalized Rota–Baxter operator, i.e., � satisfies the identity

�.m/ �A �.n/ D �.�.m/ � n C m � �.n//: (36)
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Here � is the bimodule action of A on M and m; n 2 M . We recall the twilled algebra
A ‰ M� in Section 5.1.3. The associative multiplication of A ‰ M� has the form

.a; m/ � .b; n/ D .a �A b C a �� n C m �� b; a � n C m � b C m �� n/;

where �� means the bimodule action of M� on A, explicitly,

m �� b ´ �.m/ �A b � �.m � b/;

a �� n ´ a �A �.n/ � �.a � n/;

and m �� n is the associative multiplication of M� , explicitly,

m �� n ´ �.m/ � n C m � �.n/:

We have �.m �� n/ D �.m/ �A �.n/.
Consider a linear map � W A ! M� . The map � is a strong Maurer–Cartan

operator on a twilled algebra M� ‰ A if and only if

�.a �A b/ D a � �.b/ C �.a/ � b; (37)

�.a/ �� �.b/ D �.�.a/ �� b C a �� �.b//; (38)

or, equivalently, � is a solution of

d O� y� D 1

2
Œ y�; y��f O�; O�g D 0:

We give the main result of this section.

Proposition 6.1. Let � W A ! M� be a strong Maurer–Cartan operator.
(1) Then a composition map N ´ �� is an associative Nijenhuis operator on

A; namely, N satisfies the condition

N.a/ �A N.b/ D N.N.a/ �A b C a �A N.b// � NN.a �A b/

for any a; b 2 A.
The pair of .�; N / is compatible in the following sense.
(2) The composition N� W M ! A is a second generalized Rota–Baxter operator.
(3) The operators � and N� are compatible, i.e.,

Œ O�; bN�� O� D 0:

This implies that N� is strong as the Maurer–Cartan operator and � C tN� t 2 K
is a one-parameter family of generalized Rota–Baxter operators.

Proof. (1) Applying � to (38), we have

��.a/ �A ��.b/ D ��.�.a/ �� b C a �� �.b//:
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On the right-hand side, we get

�.a/ �� b C a �� �.b/ D ��.a/ �A b � �.�.a/ � b/ C a �A ��.b/ � �.a � �.b//:

By (37), we have

�.a/ �� b C a �� �.b/ D ��.a/ �A b C a �A ��.b/ � ��.a �A b/:

Thus we obtain the desired condition

��.a/ �A ��.b/ D ��.��.a/ �A b C a �A ��.b// � ����.a �A b/:

(2) We put a ´ �.m/ and b ´ �.n/ for any m; n 2 M . Then, by the Nijenhuis
condition of ��, we have

���.m/ �A ���.n/

D ��.���.m/ �A �.n/ C �.m/ �A ���.n// � ����.�.m/ �A �.n//:

(39)

From the identity (36), we have

���.m/ �A �.n/ D �.���.m/ � n C ��.m/ � �.n//;

�.m/ �A ���.n/ D �.�.m/ � ��.n/ C m � ���.n//;

and from the derivation rule, we have

����.�.m/ �A �.n// D ���.��.m/ � �.n/ C �.m/ � ��.n//:

Thus (39) has the form

���.m/ �A ���.n/

D ���.���.m/ � n C ��.m/ � �.n/ C �.m/ � ��.n/ C m � ���.n//

� ���.��.m/ � �.n/ C �.m/ � ��.n//

D ���.���.m/ � n C m � ���.n//;

as required.
(3) It is obvious that 1��� D O� y� O� . We have

Œ O�; 1���� O� D ff O�; O�g; O� y� O�g
D f O�.� ˝ 1/ C O�.1 ˝ O�/ � O� O�; O� y� O�g
D O�. O� ˝ O� y� O�/ � O� y� O� O�. O� ˝ 1/ C O�. O� y�� ˝ O�/

� O� y� O� O�.1 ˝ O�/ � O� O�. O� y� O� ˝ 1/ � O� O�.1 ˝ O� y� O�/;

(40)



376 K. Uchino

where O� O� D 0 is used. From the generalized Rota–Baxter condition Œ O�; O�� O�=2 D
O�. O� ˝ O�/ � O� O�. O� ˝ 1/ � O� O�.1 ˝ O�/ D 0 we have

.40/ D O�. O� ˝ O� y� O�/ � O� y� O�. O� ˝ O�/ C O�. O� y�� ˝ O�/

� O� O�. O� y� O� ˝ 1/ � O� O�.1 ˝ O� y� O�/

D � O� y� O�. O� ˝ O�/ C O�. O� y�� ˝ O�/ � O� O�. O� y� O� ˝ 1/ C O� O�. O� ˝ y� O�/

D � O� y� O�. O� ˝ O�/ C O� O�. y� O� ˝ O�/ C O� O�. O� ˝ y� O�/:

(41)

Since y� is a derivation with respect to O�, the last equation of (41) is zero.

Example 6.2. Put A ´ C 1.Œ0; 1�/ and M ´ C 0.Œ0; 1�/. We assume a canonical
bimodule action of A on M . An integral operator is a Rota–Baxter operator with
weight zero:

� W M ! A; �.f /.x/ ´
Z x

0

dtf .t/:

Then a derivation

�.f /.x/ ´ !.x/
df

dx
.x/ D !.x/f 0.x/; !.x/ 2 C 0.Œ0; 1�/;

from A to M� is a strong Maurer–Cartan operator. The induced Nijenhuis operator
on A is

N.f /.x/ D
Z x

0

!.t/f 0.t/dt:

Proof. We only check condition (38). For any f; g 2 A,

�.f / �� g D ��.f /g ��.�.f /g/ D
Z x

0

dt!.t/f 0.t/g.x/�
Z x

0

dt!.t/f 0.t/g.t/:

We have

�.�.f / �� g/ D
Z x

0

dt!.t/f 0.t/!.x/g0.x/;

�.f �� �.g// D !.x/f 0.x/

Z x

0

dt!.t/g0.t/:

On the other hand,

�.f / �� �.g/ D !.x/f 0.x/ �� !.x/g0.x/

D
Z x

0

dt!.t/f 0.t/!.x/g0.x/ C !.x/f 0.x/

Z x

0

dt!.t/g0.t/:

Thus we obtain the desired condition.
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We consider two examples in noncommutative cases. In the proof of Example 6.2,
we used the commutativity of only !. Hence if ! is 1 or a central element, then a
similar proof holds in the noncommutative setting.

Example 6.3. Let A be an associative algebra and let AŒŒ��� be an algebra of formal
series with coefficients in A. The multiplication on AŒŒ��� is defined by

ai�
i � bj �j ´ aibj �iCj ; ai ; bj 2 A;

where
P

is omitted. We define a formal integral operatorZ
d�ai�

i ´ 1

i C 1
ai�

iC1; ai 2 A:

The integral operator is a Rota–Baxter operator with weight zero. The formal deriva-
tion operator is a strong Maurer–Cartan operator

�.ai�
i / ´ zk�k d

d�
.ai�

i / ´ izkai�
iCk�1; zk 2 Z.A/:

Here Z.A/ is the space of central elements. The induced Nijenhuis operator is

N.ai�
i / ´ i

i C k
zkai�

iCk :

Example 6.4. Let W hx; @xi be the Weyl algebra. Define a formal integral operator
for the normal basis of the Weyl algebra byZ

dx@i
x � xj ´ 1

1 C j
@i

x � xj C1; i; j � 0:

Then this integral operator is a Rota–Baxter operator with weight zero (see [23]). Put
� ´ i@x

. Then � is a strong Maurer–Cartan operator. Thus the composition map

N.u/ ´
Z

dx�.u/ D
Z

dxŒ@x; u�

is a Nijenhuis operator on W hx; @xi. Since an arbitrary element u has the form
u ´ kij @i

x � xj.j ¤0/ C ki@
i
x C k, we have N.u/ D kij @i

x � xj.j ¤0/. Thus N is a
projection onto the space of elements of the form kij @i

x � xj.j ¤0/.
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