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Algebraic string bracket as a Poisson bracket
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Abstract. In this paper we construct a Lie algebra representation of the algebraic string bracket
on negative cyclic cohomology of an associative algebra with appropriate duality. This is a
generalized algebraic version of the main theorem of [AZ] which extends Goldman’s results
using string topology operations.The main result can be applied to the de Rham complex of a
smooth manifold as well as to the Dolbeault resolution of the endomorphisms of a holomorphic
bundle on a Calabi–Yau manifold.
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1. Introduction

Goldman’s original work [Go] on the Lie algebra of free homotopy classes of ori-
ented closed curves on an oriented surface was extensively generalized through the
introduction of String Topology by Chas and Sullivan [CS]. In particular, they gener-
alized this Lie bracket to one on the equivariant homology of the free loop space of a
compact and oriented manifoldM . From the beginning, it was clear that this bracket
had a deep relation to the holonomy map on a vector bundle; see [Go], [CFP], [CCR],
[CR]. This relation is the subject of a paper, [AZ], by the first and third author. It
is shown there that using Chen’s iterated integral one obtains a map of Lie algebras
from the equivariant homology of the free loop space to the space of functions on a
space of generalized flat connections.

Algebraic analogues of string topology Lie algebra have also been considered
in recent years. Jones [J] had shown that for a simply connected topological space
X the equivariant homology of the free loop space is isomorphic to the negative
cyclic cohomology of the algebra of cochains on X . Using this, and Connes’ long
exact sequence relating negative cyclic cohomology and Hochschild cohomology,
together with the BV-algebra on Hochschild cohomology, Menichi [Men] deduced a
Lie bracket on the negative cyclic cohomology in a way similar to the one in string
topology [CS], Section 6.

The starting point for this work was to obtain a generalization of the results in
[AZ] and place it in a more algebraic setting where the equivariant homology of the
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loop space is replaced by negative cyclic cohomology. A suitable setting for this is
to consider a unital differential graded algebra A over a field k D R or C, with a
reasonable trace Tr W A! k. Using the results of [T], the above assumptions imply
an isomorphism HH�.A;A/ Š HH�.A;A�/ of the Hochschild cohomologies of A
with values in A and its dual A� such that the cup product on HH�.A;A/ and the
dual of Connes’ B-operator on HH�.A;A�/ make these spaces into a BV-algebra.
This BV-algebra, together with Connes’ long exact sequence between the Hochschild
cohomology HH�.A;A�/ and negative cyclic cohomology HC�

�.A/, imply a Lie
algebra structure on HC�

�.A/ by a theorem of Menichi [Men], Proposition 7.1, which
is based on a similar marking/erasing result of Chas and Sullivan [CS], Theorem 6.1.

Now, using work of Gan and Ginzburg in [GG], we may look at the moduli space

MC D fa 2 Aodd j daC a � a D 0g=� (1)

of Maurer–Cartan solutions. Since we only consider odd elements, the trace induces
a symplectic structure ! on MC , and thus one can define a Poisson bracket on the
function ring O.MC/ of MC . More details of this construction will be given in
Section 3.

We may connect the two sides of the above discussion via a canonical map
fa 2 Aodd j da C a � a D 0g ! HC�

� .A/, a 7! P
n�0 1 ˝ a˝n, and dualizing

this gives a map � W HC�

�.A/ ! O.MC/. We may now compare the two Lie alge-
bras from above. Our main result then states that the brackets are indeed preserved.

Theorem 1. � W HC2�

� .A/! O.MC/ is a map of Lie algebras.

In a special case considered in [AZ] this map becomes the generalized holonomy
map from the equivariant homology of the free loop space of M to the space of
functions on the moduli space of generalized flat connections on a vector bundle
E !M . In fact one has a commutative diagram

HC2�

� .A/
� �� O.MC/

HS1

2�
.LM/;

‰

������������
�

������������
(2)

where ‰ is the generalized holonomy discussed in [AZ] and � comes from Chen’s
iterated integral map, as described in Section 5. In particular, for dimM D 2, this
recovers Goldman’s results on the space of flat connections on a surface.

Another motivation for this work was the study of the algebraic structure of the
deformation complex of a CY manifold. We were interested in the Hochschild and
cyclic complexes of A D �0;�.M;End.E//, the Dolbeault resolution of the en-
domorphisms of a strong generator E of the category of perfect complexes on an
algebraic CY manifold. The discussion of this paper, once done at the chain level,
relates to the algebraic structure of the deformation complex.
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Finally, we remark that the above discussion generalizes in a straight forward way
to the case of a cyclic A1-algebra A. This will be the topic of the last Section 6. In
fact, by the same reasoning as above, we obtain the Lie bracket on the negative cyclic
cohomology HC�

�.A/. Also, by symmetrization we may associate an L1-algebra to
A, which induces a Maurer–Cartan space similar to (1). We find that the canonical
map � is still well defined such that Theorem 1 also remains valid in this generalized
setting.

Notation. For a map F of complexes, F� (resp. F �) denotes the induced map in
homology (resp. cohomology).

Acknowledgments. The authors would like to thank Victor Ginzburg and Luc
Menichi for useful discussions and correspondence on this topic. The authors were
partially supported by the Max-Planck Institute in Bonn and the second author warmly
thanks the Laboratoire Jean Leray at the University of Nantes for their invitation
through the Matpyl program.

2. The Lie algebra HC�

�.A/

In this section, we recall the Lie algebra structure of the negative cyclic cohomology
HC�

�.A/, for a dga .A; d; � / with a trace Tr W A ! k. The Lie bracket comes from
the long exact sequence that relates negative cyclic (co-)homology to Hochschild
(co-)homology. For simplicity, we will work in the normalized setting.

Definition 2. Let .A D L
i2ZA

i ; d W Ai ! AiC1; � / be a differential graded as-
sociative algebra over a field k, and let M D L

i2ZM
i be a differential graded

A-bimodule. The (normalized) Hochschild chain complex is defined as

xC�.A;M/´ Q
n�0

M ˝ NA˝n; (3)

where NA D A=k and s denotes shifting down by one. The boundary ı W xC�.A;M/!
xC�C1.A;M/ is defined by,

ı.a0 ˝ a1 ˝ � � � ˝ an/

´
nP
iD0
.�1/�ia0 ˝ � � � ˝ d.ai /˝ � � � ˝ an C

n�1P
iD0
.�1/�ia0 ˝ � � �

� � � ˝ .ai � aiC1/˝ � � � ˝ an � .�1/�0
n.an � a0/˝ a1 ˝ � � � ˝ an�1;

where a0 2 M , a1; : : : ; an 2 A, �0 D ja0j, �i D .ja0j C � � � C jai�1j C i � 1/, and
�0
n D .janj C 1/ � .ja0j C � � � C jan�1j C n � 1/. Note that the differential is well

defined; see [L]. Similarly, the (normalized) Hochschild cochain complex is defined
by

xC n.A;M/´ ff W s NA˝n !M j f .a1˝ � � � ˝ ai ˝ � � � ˝ an/ D 0 if ai D 1g: (4)



334 H. Abbaspour, T. Tradler, and M. Zeinalian

Here the differential ı� W xC �.A;M/! xC ��1.A;M/ is given by

.ı�f /.a1 ˝ � � � ˝ an/
´

nP
iD1
.�1/jf jC�if .a1 ˝ � � � ˝ dai ˝ � � � ˝ an/C d.f .a1 ˝ � � � ˝ an//

C
n�1P
iD1
.�1/jf jC�if .a1 ˝ � � � ˝ .ai � aiC1/˝ � � � ˝ an/

C .�1/jf j.ja1jC1/a1 � f .a1 ˝ � � � ˝ an/
C .�1/jf jC�nf .a1 ˝ � � � ˝ an�1/ � an:

The respective (co-)homology theories are denoted by

HH�.A;M/ D H. xC�.A;M/; ı/; HH�.A;M/ D H. xC �.A;M/; ı�/:

Denoting byA� D Hom.A; k/ the graded dual ofA, we see that the dual of xC�.A;A/

is given by xC �.A;A�/. Recall furthermore that there is a cup productY on xC �.A;A/

defined by

.f Y g/.a1 ˝ � � � ˝ amCn/´ f .a1 ˝ � � � ˝ am/ � g.amC1 ˝ � � � ˝ amCn/:

Next, we define the (normalized) negative cyclic chains CC�
� .A/ of A to be the

vector space xC�.A;A/ŒŒu��, where u is of degree C2, and with differential ı C uB ,
where B W xC�.A;A/! xC��1.A;A/ is Connes’ operator,

B.a0 ˝ a1 ˝ � � � ˝ an/´
nP
iD0
.�1/�i1˝ ai ˝ � � � ˝ an ˝ a0 ˝ � � � ˝ ai�1; (5)

where �i D .jai j C � � � C janj C n � i C 1/.ja0j C � � � C jai�1j C i � 1/. Thus,
every element of CC�

n .A/ is an infinite sum
P1
iD0 aiui 2 xC�.A;A/ŒŒu��, where

ai 2 xCn�2i .A;A/, ı acts on ai 2 xC�.A;A/, and uB acts as

� � � uB �� xC�.A;A/ � u2 uB �� xC�.A;A/ � u uB �� xC�.A;A/: (6)

Dually, define the (normalized) negative cyclic cochains CC�

�.A/ of A by taking
CC�

�.A/ D xC �.A;A�/ ˝ kŒv; v�1�=vkŒv�, where v is an element of degree �2.
Explicitly, the degree n part CCn�.A/ is represented by finite sums

Pk
iD0 aiv�i

where ai 2 xC n�2i .A;A�/. The differential is given by ı� C vB�, where ı� acts on
xC �.A;A�/, and vB� acts as follows.

� � � vB
�

��! xC �.A;A�/ � v�2 vB�

��! xC �.A;A�/ � v�1 vB�

��! xC �.A;A�/:

Note that if C�.A;A/ is finite dimensional in each degree, then the graded dual of
CCn�.A/ is isomorphic to the chain complex CC�

n .A/ D Hom.CCn�.A/; k/; see also
[HL], Lemma 3.7. It is easy to see that B2 D ıB C Bı D 0, and we define the
associated (co-)homology theories by

HC�
� .A/ D H.CC�

� .A/; ı C uB/; HC�

�.A/ D H.CC�

�.A/; ı� C vB�/:
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Lemma 3. If H�.A;A/ is bounded from below, then both xC�.A;A/Œu� and
xC�.A;A/ŒŒu�� with differential ı C uB calculate negative cyclic homology HC�

� .A/.

This lemma follows from a spectral sequence argument for the inclusion
xC�.A;A/Œu� ,! xC�.A;A/ŒŒu��, similarly to [HL], Lemma 3.6. Note that our sign
convention is opposite to the one from [HL] but in agreement with [GJP] since our
differential ı W xC�.A;A/! xC�C1.A;A/ is of degreeC1.

From now on, we additionally assume that we also have a suitable trace map.

Definition 4. Let Tr W A ! k be a trace map satisfying Tr.da/ D 0 and Tr.ab/ D
�.�1/jaj�jbj Tr.ba/ for all a; b 2 A. Assume furthermore that the map ! W A! A�,
!.a/.b/´ Tr.ab/, is a bimodule map which induces an isomorphism on homology
H.A/! H.A�/. By abuse of language, we will also view! as a map! W A˝A! k,
!.a; b/ D Tr.ab/. In this case, A is also called a symmetric algebra.

Notice that ! W A ! A� induces a morphism of the Hochschild complexes
!] W xC �.A;A/ ! xC �.A;A�/ via composition !].f / ´ ! B f , which is an iso-
morphism on homology !�

]
W H �.A;A/ ! H �.A;A�/. We may thus transfer the

cup product Y on H �.A;A/ to a product t on HH�.A;A�/ by setting f t g ´
!�

]
..!�

]
/�1f Y .!�

]
/�1g/. Define furthermore the operator � W HH�.A;A�/ !

HH�.A;A�/ as the dual ofB on homology. Then we assume that .HH�.A;A�/;t; �/
is a BV-algebra, i.e., t is a graded associative, commutative product, �2 D 0, and
the bracket fa; bg ´ .�1/jaj�.a t b/� .�1/jaj�.a/t b � a t�.b/ is a derivation
in each variable.

Recall from Menichi [Men] that this BV-algebra induces a Lie algebra on the
negative cyclic cohomology HC�

�.A/ using the long exact sequences of Hochschild

and negative cyclic cohomology. The inclusion CC�
� .A/

�u! CC�
� .A/ given by

multiplication by u has cokernel xC�.A;A/. We thus obtain a short exact sequence

0! CC�
� .A/

�u��! CC�
� .A/! xC�.A;A/! 0; (7)

which induces Connes’ long exact sequence of homology groups:

� � � ! HHn.A;A/
B���! HC�

n�1.A/! HC�
nC1.A/

I��! HHnC1.A;A/
B���! � � � : (8)

Here the projection to the u0 term I W CC�
� .A/! xC�.A;A/ induces the map I�, and

the connecting map B� is induced by the composition xC�.A;A/
B�! xC�.A;A/

inc�!
CC�

� .A/. Notice that unlike inc B B W xC�.A;A/ ! CC�
� .A/, the inclusion

inc W xC�.A;A/! CC�
� .A/ is not a chain map.

Dually, we have the short exact sequence

0! xC �.A;A/! CC�

�.A/! CC�

�.A/! 0;

inducing Connes’ long exact sequence of cohomology groups

� � � ! HHn.A;A�/ I
�

�! HCn�.A/ HC
n�2
� .A/

B�

��! HHn�1.A;A�/ I
�

�! � � � : (9)
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Notice that the composition

B� D B� B I � (10)

is exactly the� operator of our BV-algebra on HH�.A;A�/ so that we may obtain an
induced Lie algebra from [Men], Lemma 7.2, much like the marking/erasing situation
in [CS].

Proposition 5 (L. Menichi [Men]). The bracket fa; bg ´ I �.B�.a/tB�.b// induces
a Lie algebra structure on HC�

�.A/.

We end this section with some examples of the above definitions.

Examples 6. Let M be a smooth, compact and oriented Riemannian manifold.
– A first example is obtained by taking A D ��.M/ the de Rham forms on M ,

d D dDR the exterior derivative on A, and Tr.a/´ R
M
a.

– More generally, if E !M is a finite dimensional complex vector bundle over
M , with a flat connection r, then we may take A D ��.M;End.E// with the usual
differential dr . Similarly, the trace is given by a combination of integration and trace
in End.E/. The cyclic property of the trace guarantees that this induces an injective
bimodule map ! W A! A� that is a quasi-isomorphism.

– Both of the above examples are special cases of elliptic Calabi–Yau space as
defined in [C]. By definition, this means that we have a bundle of finite dimensional
associative C algebras over M , whose algebra of sections is denoted by A. Further-
more, there is a differential operator d W A ! A, which is an odd derivative with
d2 D 0 making A into an elliptic complex, a C linear trace Tr W A! C, a hermitian
metric A˝A! C, and a complex antilinear, C1.M;R/ linear operator �W A! A

satisfying certain natural conditions. It can be seen that this example satisfies the
above assumptions. The details and other examples of elliptic Calabi–Yau spaces can
be found in [C] and [DT].

3. Maurer–Cartan solutions

In this section we define the moduli space of Maurer Cartan solutions for a symmetric
algebra A D L

i�0Ai and then explain its symplectic nature. The main reference
for this section is the paper [GG] by Gan–Ginzburg together with Section 4 of [AZ].
Let us assume k D R or C.

For a; b 2 A define the Lie bracket Œa; b�´ a �b� .�1/jaj�jbjb �a and the bilinear
form !.a; b/´ Tr.ab/. The first remark is that .A D Aodd˚Aeven; d; Œ � ; � �; !/ is a
cyclic differential graded Lie algebra as it is defined in Section 4 of [AZ]. Therefore
all results in [GG] apply here to define the Maurer–Cartan solutions.
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Definition 7. We define the Maurer–Cartan moduli stack as

MC ´ fa 2 Aodd j daC 1
2
Œa; a� D daC a � a D 0g;

MC ´MC=�;
where the equivalence is generated by the infinitesimal action of A0 on A. Here for
a 2 A0, the vector field �x on A is defined by

�x.a/ D Œx; a� � dx:

Recall that ! is a symplectic form and the infinitesimal action is Hamiltonian.
Moreover, the map 	 W a 7! 
a 2 .Aeven/�, where


.x/ D !.daC 1
2
Œa; a�; x/

is the moment map corresponding to the Hamiltonian action above. One should think
of the tangent space TŒa�MC at a class Œa� as the 3-term complex TŒa�MC :

T �1
Œa� MC ´ Aeven �.a/��! T 0Œa�MC ´ TaA

odd D Aodd �0
a��! T 1Œa�MC ´ Aeven�;

(11)
graded by �1, 0 and 1. Here �.a/ is the map x 7! �x.a/. The kernel of 	0 is the
Zarisky tangent space to MC , and the image of �.a/ accounts for the tangent space
of the action orbit. Ideally, when 0 is a regular value for	 and the infinitesimal action
of Aeven on MC D 	�1.0/ is free, this complex is concentrated in degree zero, and
the Zarisky tangent space to MC at Œa� is the cohomology group H 0.TŒa�MC/ D
H�.Aodd; da/ where dab D db C Œa; b�.

Note that the 3-term complex (11) is self-dual, where the self-duality at the middle
term is given by the symplectic form

!.Xa; Ya/´ Tr.Xa � Ya/ 2 k: (12)

By assumption from the previous section, ! is non-degenerate. This gives rise to
an isomorphism TŒa�MC ��!' .TŒa�MC/� and equips .TŒa�MC/ with a symplectic
form given by (12). In the case of a nonsingular point Œa� this is the usual pairing on
H 0.TŒa�MC/ D H.Aodd; da/ induced by !.

The function space O.MC/ is defined to be the subspace of O.MC/ invariant un-
der the infinitesimal action. The symplectic form allows us to define the Hamiltonian
vector field X of a function  2 O.MC/ via

!.X a ; Ya/ D d a.Ya/´ lim
t!0

d
dt
 .aC tYa/ for all Ya 2 T 1Œa�MC :

We then define the Poisson bracket on O.MC/ by

f ; �g ´ !.X ; X�/ D Tr.X �X�/:
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4. The induced Lie map

In this section we define a map � W HC2�

� .A/ ! O.MC/ and prove that it respects
the brackets. We start by defining a map P W MC ! xC�.A;A/, and in turn the map
R W MC ! CC�

� .A/ which factors through P . Dualizing R will induce the wanted
map �.

Definition 8. Recall that MC D fa 2 Aodd j da C a � a D 0g and xC�.A;A/ DQ
n�0A˝ NA˝n. Let then P W MC ! xC�.A;A/ be given by the expression

P.a/´ P
i�0

1˝ a˝i D .1˝ 1/C .1˝ a/C .1˝ a˝ a/C � � � :

Note that ı.P.a// DP
1˝a˝� � �˝da˝� � �˝aCP

1˝a˝� � �˝.a�a/˝� � �˝a D 0
for a 2 MC , due to the relation da C a � a D 0 in MC . Thus, we obtain in fact a
Hochschild homology class ŒP.a/� 2 HH�.A;A/.

Next define the map R´ inc B P as the composition R W MC
P! xC�.A;A/

inc�!
CC�

� .A/. Just as above, we have that ı.R.a// D 0, and since we are in the normalized
setting, we see thatB.R.a// D 0 and so .ıCuB/.R.a// D 0. The induced negative
cyclic homology class is again denoted by ŒR.a/� 2 HC�

� .A/. It is immediate to see
that under the long exact sequence (8), we have that I.R.a// D P.a/.

Using the pairing between negative cyclic homology and negative cyclic coho-
mology, h � ; � i W HC�

�.A/˝ HC�
� .A/! k, we define the map � by

� W HC�

�.A/! O.MC/; �.Œ˛�/.Œa�/´ hŒ˛�; ŒR.a/�i D h˛;R.a/i;
for Œ˛� 2 HC�

�.A/, Œa� 2MC . To simplify notation, we will also write �.˛/ instead
of �.Œ˛�/.

Lemma 9. � is well defined.

Proof. We need to show that the value �.Œ˛�/.Œa�/ D h˛;R.a/i is independent of the
choice of the representative Œa� 2 fx 2 Aodd j dxCx �x D 0g=�. Infinitesimally, this
amounts to showing that LX.b/�.˛/.a/ D 0, where LX.b/ is the Lie derivative along
a vector field in the directionX.b/a D dbC Œa; b� 2 TŒa�MC , for any b 2 Aeven. To
see this, note that

LX.b/�.˛/.a/ D .iX.b/ B d C d B iX.b//�.˛/.a/
D iX.b/ B d.�.˛//.a/
D h˛; d

dt
jtD0R.aC tX.b/a/i:

Now, for any Ya 2 TŒa�MC , we have

d
dt
jtD0R.aC tYa/ D 1˝ Ya C 1˝ Ya ˝ aC 1˝ a˝ Ya C � � �

D B.Ya C .Ya ˝ a/C .Ya ˝ a˝ a/C � � � /;
(13)
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where we used Connes’ operator B W xC�.A;A/ ! CC�
� .A/ from the long exact

sequence (8) applied to Ya C .Ya ˝ a/C .Ya ˝ a ˝ a/ 2 xC�.A;A/. Thus, setting
Ya D X.b/a D db C Œa; b� in the above expression, we obtain

LX.b/�.˛/.a/ D h˛;B
�
db C Œa; b�C db ˝ aC Œa; b�˝ a
C db ˝ a˝ aC Œa; b�˝ a˝ aC � � � �i

D h˛;B B ı.b C .b ˝ a/C .b ˝ a˝ a/C � � � /i
D h˛; ı BB.b C .b ˝ a/C .b ˝ a˝ a/C � � � /i
D hı�˛;B.b C .b ˝ a/C .b ˝ a˝ a/C � � � /i
D 0: �

We are now ready to prove our main theorem.

Theorem 1. � W HC2�

� .A/! O.MC/ is a map of Lie algebras.

Proof. We saw in (13) that d
dt
jtD0R.aCtYa/ D B.YaC.Ya˝a/C� � � / 2 CC�

� .A/,
where .YaC.Ya˝a/C.Ya˝a˝a/C� � � / 2 xC�.A;A/ for Ya 2 TŒa�MC . Therefore,

.d�.˛//a.Ya/ D h˛; ddt jtD0R.aC tYa/i
D h˛;B.Ya C .Ya ˝ a/C .Ya ˝ a˝ a/C � � � /i
D hB�˛; Ya C .Ya ˝ a/C .Ya ˝ a˝ a/C � � � i
D .B�˛/.1C aC a˝ aC � � � /.Ya/;

where ˛ 2 CC�

�.A/;B�˛ 2 xC �.A;A�/, and thus .B�˛/.
P
i�0 a˝i / 2 A�. Now,

using the isomorphism !�

]
W HH�.A;A/! HH�.A;A�/ from Definition 4, we apply

its inverse to obtain an element Œf˛�´ .!�

]
/�1B�Œ˛� 2 HH�.A;A/. We then claim

that the Hamiltonian vector field X�.˛/a may be expressed as

X�.˛/a D f˛
� P
i�0

a˝i� 2 TŒa�MC : (14)

This should be compared with [AZ], Lemma 7.2, and [Go], Proposition 3.7. To this
end, first note that the relation 0 D .ı�f /.

P
i�0 a˝i / D da.f .

P
i�0 a˝i //, for

f 2 xC �.A;A/, shows that X�.˛/a given by equation (14) represents a well-defined
class in TŒa�MC . We show (14) by applying the non-degeneracy of! in the following
equation, which is valid for any Ya 2 TŒa�MC :

!.f˛.
P
a˝i /; Ya/ D Tr.f˛.

P
a˝i / � Ya/

D .!]f˛/.
P
a˝i /.Ya/

D .B�˛/.
P
a˝i /.Ya/

D .d�.˛//a.Ya/
D !.X�.˛/a ; Ya/:
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Now, calculating the Lie bracket gives

�.f˛; ˇg/.a/ D hfŒ˛�; Œˇ�g; ŒR.a/�i
D hI �.B�Œ˛� tB�Œˇ�/; ŒR.a/�i
D hI �!�

]..!
�

]/
�1B�Œ˛�Y .!�

]/
�1B�Œˇ�/; ŒR.a/�i

D h!�

].Œf˛�Y Œfˇ �/; I�ŒR.a/�i
D h!�

].Œf˛�Y Œfˇ �/; ŒP.a/�i:

To evaluate this expression, note that for f˛ W NA˝m ! A and fˇ W NA˝n ! A,
!�

]
.Œf˛�Y Œfˇ �/ is represented by the composition

NA˝mCn f˛˝fˇ�����! A˝ A �!� A
!�! A�:

The first arrow with f˛ ˝ fˇ applied to P.a/ D 1C .1˝ a/C .1˝ a˝ a/C � � � 2Q
i�0A˝ NA˝i then gives an expression, where we apply a to all possible inputs in
NA˝nCm. To this, we then apply the product in A, and apply ! with input 1 2 A since
P.a/ D 1˝ . : : : /. We thus obtain

�.f˛; ˇg/.a/ D Tr.f˛.1C aC a˝ aC � � � / � fˇ .1C aC a˝ aC � � � / � 1/
(14)D Tr.X�.˛/a �X�.ˇ/a / D !.X�.˛/a ; X�.ˇ/a / D f�.˛/; �.ˇ/g.a/:

This is the claim of the theorem.

5. Comparison with generalized holonomy

In this section we compare the map � with the generalized holonomy map ‰ studied
in [AZ]. The relationship may be summarized in diagram (2). This shows how a
special case the result of this paper relates to the main theorem of [AZ]. The map
Tr W A ! C is induced by the trace function on g � GL.n;C/ and integration of
forms on M ; see Example 6.

Our model of S1-equivariant de Rham forms of LM is .�.LM/Œu�; d C u�/
whereu is a generator of degree2 and� W ��.LM/! ���1.LM/ is the map induced
by the S1-action on LM ; see [GJP]. This model is quasi-isomorphic to the small
Cartan model .�inv.LM/Œu�; dCiXu/ for the S1-action, whereX is the fundamental
vector field generated by the natural action of S1. The quasi-isomorphism is given
by the averaging map ��.LM/ ! ��

inv.LM/. More explicitly, for ! 2 ��.LM/,
�.!/ is given by

�.!/ D
Z

fibre
ev�.!/ 2 ���1.LM/:
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S1 � LM ev ��

	

��

LM

LM

(15)

Chen’s iterated integral map and the trace map on g (see (6.3) [AZ], and TheoremA
in [GJP]) yields a map, which we denote by

S W . xC�.A;A/; ı/! .��.LM/; d/:

The map S induces the map SHH W HH�.A;A/ �! H �.LM/ on homology, and,
after applying the pairing between homology and cohomology groups, we get

H�.LM/
�HH

�! HH�.A;A�/:

Extending S by u-linearity, we obtain a map, which we denote by abuse of notation
by the same letter,

S W . xC�.A;A/Œu�; ı C uB/! .��.LM/Œu�; d C u�/:
Since, by Lemma 3, . xC�.A;A/Œu�; ı C uB/ and . xC�.A;A/ŒŒu��; ı C uB/ are quasi-
isomorphic in our setting, we obtain the induced map SHC W HC�

� .A/ �! H �

S1.LM/

on homology. Composing SHC with the map R W MC ! CC�
� .A/ D xC�.A;A/Œu�

from Section 4, we get

MC
R�! HC�

� .A/
SHC

��! H
�

S1.LM/:

Thus by duality, and using Lemma 9, we have

HS1

�
.LM/

�D�HC

����! HC�

�.A/
��! O.MC/:

The composition � B � is the generalized holonomy map ‰ discussed in [AZ].

HC�

�.A/
� �� O.MC/

HS1

�
.LM/

‰

������������
�

������������
(16)

It was proved in [AZ] that ‰ is the morphism of Lie algebras. We will shortly see
how this is a consequence of Theorem 1. We first recall the following theorem.

Theorem 10 (S. Merkulov [Mer]). The Chen integral induces a map of algebras
.H�.LM/; �/! .HH�.A;A/;Y/.
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Thus, by definition, �HH W .H�.LM/; �/ ! .HH�.A;A�/;t/ is also a map of
algebras. With this, we can now prove the following statement.

Theorem 11. The map � W .HS1

�
.LM/; f � ; � g/! .HC�

�.A/; f � ; � g/ induced by the
Chen iterated integrals is a map of Lie algebras. Here, the first bracket is the string
bracket and the second one is defined in the statement of Proposition 5.

Proof. The brackets on HS1

�
.LM/ and HC�

�.A/ are determined by the products
on H�.LM/ and HC�.A;A�/, together with the maps in the corresponding Gysin
long exact sequences. By Theorem 10, it thus remains to show that the long exact
sequences correspond to each other, i.e., that the following diagrams commute:

: : : �� HS1

�
.LM/

�

��

m� �� H�C1.LM/

�HH

��

e� ��

��

HS1

�C1.LM/

�

��

�� HS1

��1.LM/

�

��

�� : : :

: : : �� HC�

�.A/
B�

�� HH�C1.A;A�/ I �

�� HC�C1� .A/ �� HC��1� .A/ �� : : :

Equivalently, we need to show the commutativity of the dual sequence:

: : : �� HC�
�
.A/

I� ��

SHC

��

HH�.A;A/
B� ��

SHC

��

HC�
��1.A/ ��

SHH

��

HC�
��1.A/ ��

SHC

��

: : :

: : : �� H �

S1.LM/ e�

�� H �.LM/
m�

�� H ��1
S1 .LM/ �� H ��1

S1 .LM/ �� : : :

The top long exact sequence is induced by the short exact sequence (7), while the
bottom one is induced by the short exact sequence

0! .��.M/Œu�; d C u�/ �u��! .��.M/Œu�; d C u�/ j�! ��.M/! 0; (17)

where j.
P
aiu

i / D a0, cf. [GS], [Ma]. In this picture, m� corresponds to the
connecting map of the long exact sequence (17). By a diagram chasing argument
one finds that m� D .i B�/�, where i W ��.M/ ,! ��.M/Œu� corresponds to B� D
.inc B B/� using Chen iterated integrals as corollary of Theorem A in [GJP]. Note
that i is not a chain map, whereas i B� is a chain map since�d D d� and�2 D 0,
(cf. [GJP]).

6. A1-generalization

The previous sections, dealing with the case of dgas .A; d; � / with invariant inner
product ! W A˝ A! k, generalize in a straightforward way to the setting of cyclic
A1-algebras. In this section, we recall the relevant definitions (cf. [T]), and adopt
the above to this situation.
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Definition 12. An A1-algebra on A consists of a sequence of maps f	ngn�1, where
	n W A˝n ! A is of degree .2 � n/, such that, for all n � 1,

P
kClDnC1

rD0;:::;n�l

.�1/�r
l � 	k.a1 ˝ � � � ˝ 	l.arC1 ˝ � � � ˝ arCl/˝ � � � ˝ an/ D 0;

where �r
l
D .l�1/ � .ja1jC� � �Cjar j�r/. A unit is an element 1 2 k 	 A0 such that

	2.a; 1/ D 	2.1; a/ D a, and 	n.� � � ˝ 1˝ : : : / D 0 for n ¤ 2. Again, we write
NA D A=k. We define the Hochschild chain complex of A with values in A or A� to

be the vector spaces xC�.A;A/ and xC�.A;A
�/ from equation (3) with the differentials

modified as follows:

ı W xC�.A;A/! xC�.A;A/; ı.a0 ˝ � � � ˝ an/
DP˙a0 ˝ � � � ˝ 	k.: : : /˝ � � � ˝ an

CP˙	k.as ˝ � � � ˝ a0 ˝ � � � ˝ ar/˝ arC1 ˝ � � � ˝ as�1;
ı W xC�.A;A

�/! xC�.A;A
�/; ı.a�

0 ˝ � � � ˝ an/
DP˙a�

0 ˝ � � � ˝ 	k.: : : /˝ � � � ˝ an
CP˙	�

k
.as ˝ � � � ˝ a�

0 ˝ � � � ˝ ar/˝ arC1 ˝ � � � ˝ as�1;
where 	�

k
.as ˝ � � � ˝ a�

0 ˝ � � � ˝ ar/ 2 A� is given by

	�
k.as˝� � �˝an˝a�

0˝a1˝� � �˝ar/.a/´˙a�
0.	k.a1˝� � �˝ar˝a˝as˝� � �˝an//:

Here, the signs are given by the usual Koszul rule, where a factor of .�1/��0

is
introduced whenever elements of degree � and �0 are being commuted. For an explicit
discussion of the signs; see e.g. [T]. Similarly, xC �.A;A/ and xC �.A;A�/ are defined
by the spaces from (4) with the modified differentials

ı� W xC �.A;A/! xC �.A;A/;

ı�f .a1 ˝ � � � ˝ an/ DP˙f .a1 ˝ � � � ˝ 	k.: : : /˝ � � � ˝ an/
CP˙	k.a1 ˝ � � � ˝ f .: : : /˝ � � � ˝ an/;

ı� W xC �.A;A�/! xC �.A;A�/;
ı�f .a1 ˝ � � � ˝ an/ DP˙f .a1 ˝ � � � ˝ 	k.: : : /˝ � � � ˝ an/

CP˙	�
k
.a1 ˝ � � � ˝ f .: : : /˝ � � � ˝ an/:

Since ı2 D 0, .ı�/2 D 0 in all the above cases, we obtain the associated homologies
and cohomologies H�.A;A/, H�.A;A

�/, H �.A;A/, and H �.A;A�/.
There is a generalized cup product Y on H �.A;A/ induced by

.f Y g/.a1˝ � � � ˝ an/´ P
k�2
˙	k.a1˝ � � � ˝ f .: : : /˝ � � � ˝ g.: : : /˝ � � � ˝ an/:

Furthermore, equation (5) defines an operator B W xC�.A;A/! xC�.A;A/ with B2 D
ıBCBı D 0. We define the negative cyclic chains CC�

� .A/ofA to be the vector space
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xC�.A;A/ŒŒu�� with differential ı C uB , and denote the negative cyclic homology by
HC�

�
.A/. Dualizing CC�

� .A/, we obtain CC�

�.A/ with dual differential and denote
the negative cyclic cohomology by HC�

�.A/. For the same reasons as in Section 2,
we obtain the long exact sequences (8) and (9).

Finally, assume that we have a trace Tr W A ! k such that the associated map
! W A˝ A! k, !.a; b/ D Tr.	2.a˝ b// is a quasi-isomorphism, which satisfies

!.	n.a1 ˝ � � � ˝ an/; anC1/ D ˙!.	n.anC1 ˝ a1 ˝ � � � ˝ an�1/; an/; (18)

for n � 1. In this case, ! W A! A� induces a map of the Hochschild cohomologies
H �.A;A/! H �.A;A�/, !�

]
.f / D ! B f , which we assume to be an isomorphism.

Thus, we may transfer the product Y on H �.A;A/ to a product t on H �.A;A�/.
.HH�.A;A�/;t; � D B�/ is a BV-algebra, cf. [T], so that we obtain the Lie bracket
fa; bg ´ I �.B�.a/ tB�.b// on HC�

�.A/ just as in Proposition 5.

Using this setup, we may now also generalize Section 3.

Definition 13. Recall that there are maps from the n-th symmetric power of a vector
space to the n-th tensor power Sn W A^n ! A˝n, where Sn.a1 ^ � � � ^ an/ DP
�2†n

.�1/�� .a�.1/ ˝ � � � ˝ a�.n//. Defining �n W A^n ! A as �n´ 	n B Sn, we
obtain an L1-algebra on A, cf. [LM], Theorem 3.1. Furthermore, from (18), it is
immediate to see that, for n � 1, we have

!.�n.a1 ^ � � � ^ an/; anC1/ D ˙ � !.�n.anC1 ^ a1 ^ � � � ^ an�1/; an/:

For this L1-algebra, recall from [GG], Section 2, that the Maurer–Cartan solu-
tions are defined by

MC ´ fa 2 Aodd j �1.a/C 1
2Š
�2.a ^ a/C 1

3Š
�3.a ^ a ^ a/C � � � D 0g;

MC ´MC=�;
where the equivalence is again generated by the infinitesimal action of Aeven on Aodd

and where, for a 2 Aeven, the vector field �x on Aodd is defined by

�x.a/ D �1.x/C �2.a ^ x/C 1

2Š
�3.a ^ a ^ x/C � � � :

Note that under the above assumptions the tangent space TŒa�MC to MC at Œa� is the
self-dual 3-term complex

T �1
Œa� MC ´ Aeven �.a/�! T 0Œa�MC ´ TaA

odd D Aodd �0
a�! T 1Œa�MC ´ Aeven�; (19)

where

	0
a.b/ D �1.b/C �2.a ^ b/C

1

2Š
�3.a ^ a ^ b/C � � � :
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The self-duality at the middle term is given by the symplectic form

!.Xa; Ya/ D Tr.	2.Xa ˝ Ya// 2 k:
This can be used to define the Hamiltonian vector field X associated to a function
 2 O.MC/, and thus the Lie bracket on O.MC/ via the usual formula f ; �g D
!.X ; X�/.

We may now define the map P W MC ! xC�.A;A/ by

P.a/´P
i�0 1˝ a˝i D .1˝ 1 NA˝0/C .1˝ a/C .1˝ a˝ a/C � � � ;

and R D inc B P W MC ! CC�
� .A/. As in Definition 8, we may again see that

ı.P.a// D 0, and .ı C uB/.R.a// D 0, and we define

� W HC2�

� .A/! O.MC/; �.Œ˛�/.Œa�/´ hŒ˛�; ŒR.a/�i D h˛;R.a/i;
for Œ˛� 2 HC�.A/, Œa� 2MC . With this, we have the same theorem as in the previous
sections.

Theorem 14. The map � is a well-defined map of Lie algebras.
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