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Regularity and dimension spectrum of the equivariant spectral
triple for the odd-dimensional quantum spheres
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Abstract. The odd-dimensional quantum sphere Sg@-i—l is a homogeneous space for the
quantum group SU, (¢ + 1). A generic equivariant spectral triple for que+1 on its Lp-
space was constructed by Chakraborty and Pal in [4]. We prove regularity for that spectral
triple here. We also compute its dimension spectrum and show that it is simple. We give
a detailed construction of its smooth function algebra and some related algebras that help
proving regularity and in the computation of the dimension spectrum. Following the idea of
Connes for SU,(2), we first study another spectral triple for S,fK'H equivariant under torus
group action and constructed by Chakraborty and Pal in [3]. We then derive the results for the
SU (€ 4 1)-equivariant triple in the case ¢ = 0 from those for the torus equivariant triple. For
the case ¢ # 0, we deduce regularity and dimension spectrum from the case ¢ = 0.
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1. Introduction

In noncommutative geometry, the starting point is usually a separable unital C*-
algebra A which is the noncommutative version of a compact Hausdorff space. As-
sociated to this, one has certain invariants like the K-groups and the K-homology
groups. In geometry, what one does next is to equip the topological space with a
smooth structure so that in particular one can then talk about its de Rham cohomol-
ogy. In the noncommutative situation, the parallel is to look for an appropriate dense
subalgebra of A that will play the role of smooth functions on the space. Given this
dense subalgebra, one can compute various cohomology groups associated with it,
namely the Hochschild cohomology, cyclic cohomology and the periodic cyclic co-
homology, which are noncommutative and far-reaching generalizations of ordinary
de Rham homology and cohomology. The question is: how to get hold of this dense
subalgebra? One answer to this lies in the notion of a spectral triple, which plays a
central role in Connes’ formulation of noncommutative geometry.

In ordinary differential geometry, with just a smooth structure on a manifold, one
can hardly go very far. In order that one can talk about shapes and sizes of spaces, one
needs to bring in extra structure. One example is the Riemannian structure, which
gives rise to a Riemannian connection, which in turn enables one to talk about curva-
ture and so on. Other examples of such extra structures are Spin and Spin® structures.
In the presence of these extra structures, one has an operator-theoretic data that com-
pletely encodes the geometry. In noncommutative geometry, one takes this operator-
theoretic data as the initial data and this is what goes by the name spectral triple.

Definition 1.1. Let 4 be an associative unital *-algebra. An even spectral triple for
A is a triple (¥, wr, D) together with a Z,-grading y on J¢ such that

(1) # is a (complex separable) Hilbert space,
(2) m: A — L(H) is a *-representation (usually assumed faithful),

(3) D is aself-adjoint operator with compact resolvent such that [D, w(a)] € L(H)
forall a € A,

(4) n(a)y = yn(a)foralla € Aand Dy = —yD.

If no grading is present, one calls it an odd spectral triple.

The algebra 4 appearing in this definition is in general different from the C*-
algebra A one starts with. Typically it is a dense subalgebra in A, big enough so that
the K-groups of 4 and +4A coincide.

Since D has compact resolvent, it has finite dimensional kernel. Hence by making
a finite rank perturbation, one can make D invertible. Now if one replaces D with
sgn D, then one gets the notion of a Fredholm module over the algebra 4. If 4 is a
dense *-subalgebra of a C*-algebra A, then this Fredholm module extends uniquely
and gives a Fredholm module over A. In other words, one obtains an element in
the K-homology group of A. This gives a map from the K-theory of A to the set of
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integers via the K-theory—K-homology pairing. Starting from this Fredholm module,
one can construct its Chern character, which gives an element in the periodic cyclic
cohomology of «#, which, in turn, gives a map from the K-theory of A to C via the
periodic cyclic cohomology—K-theory pairing. The two maps thus obtained are the
same. This is the content of the index theorem.

The Chern character is often difficult to compute. And that is where the spectral
triple comes into the picture. Under certain hypothesis on the spectral triple, one
can construct a cyclic cocycle, i.e., an element in the periodic cyclic cohomology that
differs from the Chern character by a coboundary, so that it gives rise to the same map
from K-theory to Z. Under a mild hypothesis on an invariant known as the dimension
spectrum, these cocycles are given in terms of certain residue functionals, that can
be relatively easier to compute. This is the Connes—Moscovici local index theorem
([7]), which is one of the major results in noncommutative geometry. It was first
proved in the context of transverse geometry of foliations but is much more general
in nature and has wider applicability. This was illustrated by Connes in [5], where
he made a detailed analysis of the equivariant spectral triple for the quantum SU(2)
group constructed in [2]. A similar analysis was later done by Dabrowski et al. in
[14] for the spectral triple constructed in [8]. Typically, the C*-algebras associated
to quantum groups or their homogeneous spaces are given by a set of generators and
relations. While constructing spectral triples, one does it for the associated coordinate
function algebra, i.e., the *-subalgebra generated by these generators. This algebra is
not closed under the holomorphic function calculus of the C*-algebra. Therefore one
needs to construct the smooth function algebra, to prove regularity and to compute
the dimension spectrum in order to be able to apply the Connes—Moscovici theorem.
This was done in [5], where Connes also defined a symbol map and gave formulae
for computing the residue functionals in terms of the symbol maps.

Odd-dimensional quantum spheres are higher-dimensional analogues of the quan-
tum SU(2). The (2¢ + 1) dimensional sphere S2¢*! is a homogeneous space of the
quantum group SU, (£+1). In [4], Chakraborty and Pal constructed a generic spectral
triple on the L,-space of the sphere with non-trivial K-homology class and equivari-
ant under the action of SU, (¢ + 1). The main aim of the present article is to prove
that this spectral triple is regular. We also introduce the smooth function algebra and
compute the dimension spectrum. The dimension spectrum is shown to be simple so
that the Connes—Moscovici local index theorem is applicable to this triple. The local
index computation will be taken up in a separate article.

Here is a brief outline of the contents of this article. In the next section, we recall a
few basic notions from [7]. We then collect together a few observations and remarks
on tensor products of Fréchet algebras and fix some of the notations. In Section 3,
we first look at the torus equivariant spectral triple for the spheres and introduce a
smooth function algebra, prove regularity and compute the dimension spectrum. The
key here is the short exact sequence

0— X ®C(T) — C(S2*) — C(s2¢7) — 0,
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and results by Schweitzer ([12], [13]) on spectral invariance. Using these and the
idea employed by Connes in [5], we build the smooth function algebra over S2¢*!
recursively starting from C*°(T).

In Section 4, we deal with the SU, (¢ + 1)-equivariant spectral triple. We first
treat the case ¢ = 0. Using a decomposition of the L,-space, we relate it to the torus
equivariant triple with a certain multiplicity. Regularity, smooth function algebra and
properties of the dimension spectrum all then follow from the results in Section 3.
Here again the idea is exactly as in [5] for SU,4(2). In Section 4.4 we treat the case
q # 0. We take a close look at the representation of the algebra, in particular the
images of the generating elements, and after a careful analysis we prove that, modulo
operators that one can neglect for the purpose of computing the dimension spectrum,
things can be deduced from the torus equivariant case again.

2. Preliminaries

2.1. Regular spectral triples. In this section we recall some definitions and notions
from [7]. Let D be a selfadjoint operator on a Hilbert space # which is invertible.
Define #; = Dom(|D|%) for s > 0. Then J is a decreasing family of vector
subspaces of #. Let Hoo := ()4 Hs. The subspace H is a dense subspace of H.

Definition 2.1. An operator 7: Ko, — Ho is said to be smoothing if for every
m,n > 0 the operator |D|"T|D|" is bounded. The vector space of smoothing
operators is denoted by OP~°,

For T € OP~°, define ||T |

man = |1DI"T|D|"|| form,n > 0.

Lemma 2.2. The vector space OP™%° is an involutive subalgebra of £(H) and
equipped with the family of seminorms || - ||m,» is a Fréchet algebra.

Let § be the unbounded derivation [| D|, -]. More precisely, Dom(8) consists of all
bounded operators T that leave Dom(|D|) invariant and for which §(T") := [|D|, T]
extends to a bounded operator.

Lemma 2.3 ([6]). The unbounded derivation § is a closed derivation, i.e., if T, is
a sequence in Dom(6) such that T, — T and §(T,)) — S then T € Dom(8) and
3(T)=S.

Define OP° := {T € £(¥) : T € (), Dom(§")}. The following lemma says
that elements of OP® are operators on Hqo.

Lemma 2.4. Let T be a bounded operator on #. Then the following are equivalent.
(1) The operator T € op°.
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(2) The operator T leaves Hso invariant and 8" (T): Heo — Hoo is bounded for
everyn € N.

It is easy to see from Lemma 2.4 that OP? is an algebra and that | D |~ T |D|™ is
bounded for every m € Z if T € OP°. As a consequence it follows that OP~ is an
ideal in OP®. Now we recall the notions of regularity and dimension spectrum for a
spectral triple.

Definition 2.5. Let (A, J, D) be a spectral triple. We say that (A, #, D) is regular
if A + [D, A] C OP°.

A spectral triple (A, #, D) is p+ summable if | D|~? is in the ideal of Dixmier
traceable operators £1:°°) In particular, if (4, #, D) is p+ summable, then |D|™*
is trace class for s > p. Let (4, K, D) be a regular spectral triple which is p+
summable for some p. Let B be the algebra generated by 6" (4) and 6" ([D, A)).
We say that the spectral triple (A, #, D) has discrete dimension spectrum ¥ C C
if X is discrete and, for every b € B, the function Trace(b|D|~?) initially defined
for Re(z) > p extends to a meromorphic function with poles only in X. We say the
dimension spectrum is simple if all the poles are simple.

2.2. Topological tensor products. The C*-algebras involved in tensor products
that we deal with in this paper are all nuclear. Therefore no ambiguities arise due to
nonuniqueness of tensor products. Apart from C*-algebras and their tensor products,
we will also deal with Fréchet algebras and their tensor products. Suppose that
Aj and A, are two Fréchet algebras with topologies coming from the families of
seminorms (|| + |[x)rea and (|| - la)aens. For each pair (A,1) € A x A’, one
forms the projective cross norm || - || 1,1, which is a seminorm on the algebraic tensor
product Ay ®,g A2. The family (|| - [[1,4/)(1,2)eaxa’ then gives rise to a topology
on Ay ®,g A2. Completion with respect to this is a Fréchet algebra and is called the
projective tensor product of A; and A,. While talking about tensor product of two
Fréchet algebras, we will always mean their projective tensor product and will denote
itby 4; ® A».

We will mainly be concerned with Fréchet algebras sitting inside some &£ () with
Fréchet topology finer than the norm topology. In other words, we will be dealing
with Fréchet algebras with faithful continuous representations on Hilbert spaces. Let
Ay, A, be Fréchet algebras. If p;: A; — L(H;) are continuous representations
for i = 0,1, where the #;’s are Hilbert spaces, then by the universality of the
projective tensor product it follows that there exists a unique continuous representation
P1®p2: A1®Az — L(H®H2) suchthat (01 ®p2)(a1®az) = p1(a1)®pz2(az). If
the A;’s are subalgebras of &£ (#;) then we will call the tensor product representation
of A1 ® A; on H; ® H, the natural representation.

Lemma 2.6. Let (A, #1, D1) and (A, H2, D3) be regular spectral triples. Assume
that the following conditions hold:
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(1) The algebras A, and A, are Fréchet algebras represented faithfully on #1 and
Ho, respectively.

(2) The selfadjoint operators D and D, are positive with compact resolvent.

(3) Fori = 0,1, the unbounded derivations §; = [Dj, -] leave A; invariant and
8;: A; — A; is continuous.

Let D := D1 ® 1 + 1 ® D,. Suppose that the natural representation of A1 Q@ A, on
H1 ® JHo is faithful. Then the triple (A1 @ Aa, #H1 ® Ha, D) is a regular spectral
triple. More precisely, the unbounded derivation § := [D, -] leaves the algebra
A1 ® A, invariant and the map §: A{Q® Ay — A1Q® A, is continuous.

Proof. Letd’ = 81 ® 1 +1® 8,. Then 4’ is a continuous linear operator on A1 @ A,.
Clearly A1 ®u; A2 C Dom(8) and § = ' on A Qque A>. Now leta € 4104,
be given. Choose a sequence (a,) € Ay Qug A2 such that a, — a in A;®A,.
Then a, — a in £(H; ® F5). Since §’ is continuous and because the inclusion
A1®A, C L(H1 ® H,) is continuous, it follows that (6'(a,)) = (8(ay)) is a
Cauchy sequence in £(#; ® J>). Since § is closed, this implies that @ € Dom(§)
and §(a) = 6’(a). Now the lemma follows. O

The above lemma can be extended to tensor product of finite number of spectral
triples with the appropriate assumptions.

Remark 2.7. Note that the above lemma is not meant to apply to a very general set up.
The assumptions that the D;’s are positive and the algebras A; are invariant under the
derivations §; are rather unusual for a spectral triple. A spectral triple will normally
not satisfy these requirements. For example, positivity of D means that the spectral
triple has trivial K-homology class, giving trivial pairing with K-theory. Also, the
operator D is not given by the usual product formula for two Dirac operators. We will
use this lemma in Section 4 in a very specific situation, where D; is | D;| for Dirac
operators 5i and D is the absolute value of the Dirac operator for the product space
that we are interested in. Also the A;’s are of very specific nature so that invariance
under §; is satisfied. The main purpose of the lemma is to derive, in our situation, the
invariance of 471 ® A, under § and the continuity of this map.

Notations. Let us now collect together some of the notations that will be used
throughout the paper. The symbol #, with or without subscripts, will denote a Hilbert
space. The space of bounded linear operators on J# will be denoted by &£ (), and the
space of compact linear operators on J# will be denoted by K (#). We will denote
by ¥ the set {1,2,...,2¢ + 1} and by ¥, and X; ¢ the subsets {1,2,...,£ + 1} and
{—j+1,L—j+2,...,£ 4 1}, respectively, where 0 < j < /.

Let I' = I's denote the set of maps y from X to Z such that y; € N for all
ieX\{{+1},ie, 'y = IN¢ x Z x N¢. For a subset A of X, we will denote by
y4 the restriction y|4 of y to A. Let 'y denote the set {y4 : y € I'} and #4 be the
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Hilbert space £2(I'4). We will denote #x, by just J, and H#x; , by J;. Thus

Hy =Lr(N) @ - ® Lr(N) ®€2(Z) @ £r(N) @ --- ® £r(N),
¢ copies ¢ copies
H;j =Ll(N)® - @ £r(N) ®L2(Z).

j copies

Note that #; and Hy are different.

Let A € X. We will denote by {e, }, the natural orthonormal basis for #4 =
{,(I'4) and by p,, the rank one projection |e, ) (e, |. Fori € A, we will denote by N;
the number operator on the i -th coordinate on #y, i.e.,

Ni =) yipy: ey — yie, (defined on H4 withi € A).
v

We will denote by | D 4| the operator ) ;4 | Ni| on Hy.
Let Fy be the following operator on £,(Z):

ek ifk >0,
Foer = .
—ep ifk <O.

For 1 < j <2+ 1, let V; be the operator on #;; defined by
Fo ifj=£¢+1,
V= |
I otherwise.

Let F4 denote the operator ® je4V; on #4 and let D4 = F4|D4|. Thus

DAe — _(ZiEAlyiDey if { +1¢€ A and Yi+1 <0,
! (O ieqlyil)ey,  otherwise.

We will denote Fx; , by Fj and Dy, , by D;.
Recall that #¢;y is £2(N) if j # £ + 1 and is £5(Z) if j = £ + 1. Suppose that
F; is a subspace of &£(Hy;y) foreach j € X. For A C X, define
Fig= Fj if j € A,
- C-1 ifjdA,

and ¥4 to be the tensor product Q) 5, ¥,4 in £(Hx) (the type of the tensor product
will depend on the specific F;’s we look at). This tensor product will often be
identified with ®jeA Fi € L(Ha).

On both £,(N) and £,(Z), we will denote by N the number operator defined
by Ne, = ne, and by S the left shift defined by Se,, = e,—1. For k € Z (for
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k € N in the case of £5(N)), let p; denote the projection |eg ) {ex|. We will freely
identify £,(Z) with L,(T). Thus the right shift on £,(Z) will be multiplication by
the function ¢ > ¢ and will be denoted by z. Let T be the Toeplitz algebra, i.e., the
C*-subalgebra of &£(£2(IN)) generated by S. For a positive integer k, we will denote
by T the k-fold tensor product of T, embedded in £ ({>(N¥)). Denote by o the
symbol map from T to C(T) that sends S* to z and all compact operators to 0.

3. Torus equivariant spectral triple

3.1. The spectral triple. In this section we recall the spectral triple for the odd-
dimensional quantum spheres given in [3]. We begin with some known facts about
odd-dimensional quantum spheres. Let ¢ € [0,1]. The C*-algebra C(S2‘*1)

of the quantum sphere S2‘™! is the universal C*-algebra generated by elements
Z1,Z2,...,2¢+1 satisfying the following relations (see [10]):

zizj =qzjzi, 1=<j<i=<{+]1,
2z = qzjzf, 1<i#j<L+]1,

z,-zf—zi*z,-—l—(l—qz)ZZkZ;:O, 1<i<tf4+1,
k>i
0+1
Y zizf =1

i=1

We will denote by A(S, qzz+1) the *-subalgebra of A, generated by the z;’s. Note that
for £ = 0, the C*-algebra C(S2**1) is the algebra of continuous functions C(T) on
the torus and for £ = 1, itis C(SUg(2)).

There is a natural torus group T¢+! action  on C(S ;“1) as follows. For w =
(w1, ..., we41), define an automorphism 7, by 7, (z;) = w;z;. Let Y, be the
following operators on J;:

N N * .
VI—Vs* @I ®---®1 ifl<k<d,
g Q- Qqg & q RIRQ--® 1
k—1 copies £+1—k copies

3.1
" Q- 4N @5* ifk=¢+1. @-1)
N—

Yig =
£ copies

Here for g = 0, ¢" stands for the rank one projection py = |eg)(eo|. Then 7y : z
Yk 4 gives a faithful representation of C(S qze+1) on J#y forg € [0, 1) (see Lemma 4.1
and Remark 4.5, [10]). We denote the image my (C(S;“l)) by A¢(q) or by just Ay.

Let {e, : y € T'g,} be the standard orthonormal basis for #;. For w =

(w1, wa, ..., Wet1), define Uy (ey) = wi” w%’z . wgﬁle,{ to be th.e unitary U,
on H#y, where y = (y1,¥2,...,Ye+1) € I's,. Then (7, U) is a covariant represen-

tation of (C(S2+1), T+, 7). Note that 4, C Ty ® C(T).
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In [3] all spectral triples equivariant with respect to this covariant representation
were characterised, and an optimal one was constructed. We recall the following
theorem from [3].

Theorem 3.1 ([3]). Let Dy be the operator e, — d(y)e, on Hy, where the d,,’s are
given by

d(y) = Yi+v2+..ve + vesl ifyer1 20,
~1+v2+.ve + vesl) ifves <O.

Then (A(S;“’l), He, Dy) is a non-trivial (£ + 1)-summable spectral triple. Also Dy

commutes with Uy, for every w € T,

The operator Dy is optimal, i.e., if (A(SqMH), Hy, D) is a spectral triple such
that D commutes with Uy, for every w, then there exist positive real numbers a and
b such that |D| < a + b|Dy|.

In the next few sections, we will introduce a dense subalgebra 47° of A¢(g) closed
under its holomorphic function calculus and establish regularity of the spectral triple
(AZ°, He, Dg). We will also compute its dimension spectrum.

3.2. The smooth function algebra 4A7°. In this section we associate a dense Fréchet

C*-subalgebra of A¢(q) = me(C(S2**1)) which is closed under holomorphic func-
tional calculus. We first show that the C*-algebra A¢(q) is independent of ¢.

Lemma 3.2. For any q € (0, 1), one has Ag(0) = A¢(q).

Proof. Let us first show that A¢(q) € A;(0). We prove this by induction on £. Let us
denote the generators Y; , of A;(q) by }’jff1+1). Note that for £ = 0, one has Yl(j]) =
Y 1(,10) and Ag(q) = Ap(0) = C(T) so that the inclusion is trivial. Next, assume the
inclusion for £ — 1. Observe that for 1 < j < £, we have y &+ qN ® Yj(fl) and

ji+lq
Yj(f_’;’lo) =po® Yj(f)) From this last equality and from the induction hypothesis, it

follows that py ® Y/-(fl) € A¢(0)for 1 < j < {. Sincefor1 < j < ¢,

{41 {4 {41 L {41
ria =gt ey = 2w e @ v
n

it follows that Yj(fIH) € Ag(0) for 2 < j < £ + 1. So it remains to show that
Yl(,éqﬂ) € Ay(0). Note that Yl(fq"'l) =(H/1-¢*N ® I)Yl(fo"'l) and
{+1 {+1
A" ®I =3 en CI"(Y1(,0Jr ))"(]?0 ® 1)(Y1(,0+ ))*n
+1 C+1)\ s vy (EF1 L4+1)
— ZZneIN qn(Yl(,0+ ))n(Y2(,0+ )) (Y2(,0+ ))(Po ® I)(Yl(,0+ )) n
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Therefore we have the required inclusion.
For the other inclusion, we will use the following fact: if B denotes the C*-

subalgebra of £(£,(N)) generated by the operator X = (1 — g2V )%S *, then B
contains the shift operator S. This is because the operator | X| is invertible and
S* = X|X|™'. Using this fact for the first copy of £2(N), since Y1, € Ay(q),
one gets Y10 € A¢(q). Next assume that Y; 0 € A¢(q) for 1 <i < j — 1, where

2<j<{ Then Pj_y:=1— Zk YioY,' o € Ae(g). Observe that

P Y = XQI®---Q1
j=1Yjqg =po® B p@X I &1,
j—1 L+1—j
Yio=po® - ®p®S*"QIQ---®1.
e N —
j-1 L+1—j
Therefore using the above fact for the j-th copy of £>2(N) we get Yo € Ay(q).
Finally, since Yy41,0 = Ye41,4( — Zi:l Yk,OY*O)» one has Yy1q10 € A¢(q). O
Write ¢; for Yz*O Note that the C*-subalgebra of Ay generated by a», ..., 0p4+1
is isomorphic to A¢_; where the map a — po ® a gives the isomorphism. We define

the Fréchet subalgebras »A7° inductively as follows.
The algebra

A = {D ez anz" : (a,) is rapidly decreasing}

is the algebra of smooth functions on T together with the increasing family of semi-

norms || - ||, given by [[(ax)|, = Y_(1 + |n|)?|an|. Then A is a dense Fréchet

C* subalgebra of A9 = C(T). Note that ||la| < [la|o for a € AF°. Now assume
AZ 1, | - [lm) be defined such that

(1) the seminorms || - ||, are increasing and (A2 |, || - [|) is a Fréchet algebra,
(2) the subalgebra A"" is *-closed and dense in A¢y_;. For every a € 'A’e 1> one
has [la*[|m = IIaIIm,
(3) forevery a € 472, one has ||a| < |lallo, where || - || denotes the C* norm of
Ag_q.
Now define
AT = { X jken @1’ (Po ® aji)e + Yo Aeef + Yo Akttt
aj € ALY (14 + k) lajkllm < oo, (Ag) is (3.2)
rapidly decreasing}.

Leta =Y, o/ (po® ajaf + gm0 At + 520 A-ke ¥ be an element of
47°. Define for m € N, the seminorms ||a|[, as

lall = max (3, (1 + j + k) llagills) + Srez (1 + K" 2]
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Proposition 3.3. The pair (A7, || - |m) has the following properties:
(1) the seminorms || - || are increasing and (A3, || - ||m) is a Fréchet algebra,

(2) the subalgebra AS° is *-closed and dense in Ay. For every a € AS°, one has
L
la*llm = llal

m»

(3) foreverya € AS°, one has ||a| < ||a|lo where || - || denotes the C* norm of Ay.

Proof. The proofis by induction on £. Parts (2) and (3) and the fact that the seminorms
| - ||, are increasing follow from the definition and the induction hypothesis. One
verifies directly that (#A°, || || ) is a Fréchet algebra using induction and the relations

ey =1,
*Jj . k  xr s _ g *j _ s
o (po @ ajr)ajo;’ (po ® ars)oy = Skraty” (po @ ajrars)ay,
Mo = (aik)m " — Zzzo(aik)m n+k(P0 ® l)Ollf ifm > n,
PO e = ) ik (po ® D R ifm < n. O

Denote the generators 21, Za, . . ., Z¢41 ofC(qu“l) by Zi“l), Zé”l), o ze(ﬁ:l).

Letoy: C(que“) — C(S;e_l) be the homomorphism given by o (") = 0 and

{+1
oy (z.(eﬂ)) = zl.(e) for 1 <i < {. Let us denote by the same symbol oy the induced

1
homomorphism from Ay to Ay—;. Observe that if one applies the map o on the £-th
copy of T in Ty ® C(T) followed by evaluation at 1 in the (£ 4 1)-th copy, then the

restriction of the resulting map to Ay is precisely oy.

Proposition 3.4. The dense Fréchet C*-subalgebra A7° of Ay is closed under holo-
morphic functional calculus in Ag. Moreover, the algebra A7° contains the genera-

£+1) £+1)
tors Yl’q ""’Y£+1,q'

Proof. We prove this proposition by induction on £. For £ = 0, by definition
#Ag° = C*°(T). Hence the proposition is clear in this case. Now assume that the

algebra #4732 | is closed under holomorphic functional calculus in A¢—; and contains
Y 1(2 ey Ye(éq). The homomorphism oy: Ay — Ay—q gives the exact sequence

0 — K(l(NY)) ® C(T) — Ay —> Ag—; —> O.
One also has at the smooth algebra level the “sub” extension
0 —> S(L2(NY) ® C®(T) — AL —> A, —> 0.

Since §(£2(N%)) ® C(T) C K (£2(N) ® C(T) and A | C Ay are closed
under the respective holomorphic functional calculus, it follows from Theorem 3.2,
part 2, [13] that 4A}° is spectrally invariant in Ay. Since [la| < [afo for all a €
A7°, it follows that the Fréchet topology of #A7° is finer than the norm topology.
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Therefore #47° is closed under holomorphic functional calculus in 4. Observe that
Y““’ Y z0q" " (po @ Y9 Jag fori = 2. Hence Y5 € A% fori =

..£+ 1. Also note that gV ® I =Y ns04"" (po ® 1)a;. Since A7° is closed
under holomorphic functional calculus, it follows that /1 — g2V 2 ® I € A, As

Yl(,eqﬂ) = aj(v/1 —¢?N*2 ® I) it follows that Y(ZH) € A2°. This completes the
proof. O

Next we proceed to prove that the spectral triple (47°, #;, Dy) is regular and
compute its dimension spectrum. The proof is by induction. We start with the case
£ = 0 to start the induction.

3.3. The case £ = 0. For { = 0, the spectral triple (A, Ho, Do) is unitarily
equivalent to the spectral triple (C°°(T), Lo(T), : do) For f € C°(T) one has
[Do, f] = : f’. Let (ex) be the standard orthonormal basis and let p; be the
projection onto er. Let Fy := sign(Dg). Note that [Fy,z] = 2poz and hence by
induction [Fp, z"] = 222;}) Prz" pr—n for n > 0. Thus [Fy, z"] is smoothing
for n > 0. Also ||| Dol [Fo.z"]|Dol*|| < 2(1 + n)"*s+1. Since [Fp,z~"I]*
—[Fy, z!"1, it follows that [Fy, z"] € OP~ for every n. Moreover, ||[Fo, z"
2(1 + |n])"™S*1. Hence we observe that [Fy, f] € OP™ and ||[Fo. f]
2|l fllr+s+1- Let 8 be the unbounded derivation [| Dy], -].

=
=

Lemma 3.5. Let B 1= { fo + fiFo + R: fo. fi € C®(T), R € OP;%°}. Then:

(D) If fo + f1Fo is smoothing then fo = fi = 0. Hence 8B is isomorphic to
the direct sum C*°(T) & C°(T) & OPB‘;O. We give 8B the Fréchet space
structure coming from this decomposition. This topology on B is generated
by the seminorms (|| - |lm)meN which are defined by || fo + f1Fo + R|m =

1 follm + 1 fillm 4 2or 15<m

(2) The vector space B is closed under § and the derivation [Dy, -].

(3) For every b € B, [Fo,b] € OP™%°. Also the map b — [Fp,b] € OP™>°
continuous. The derivations § and [Dy, -] are continuous.

(4) The vector space B is an algebra and contains C*°(T).

Proof. First observe that a bounded operator 7' on £,(Z) is smoothing if and only if
({(Tem, en))m,n is rapidly decreasing. Now suppose R := fo + f1 Fy be smoothing.
Fix an integer r. Observe that (R(e,), e, 45 ) converges to fo (r+ f1 (ryasn — +o0
apd converges to fo (r)— X fl (r) asn — —oo. B:ut since {? is smoothing it follows that
fo(r)+ fi(r) =0 = fo(r)— f1(r). Hence fo(r) = f1(r) = 0 for every integer r.
Thus fo = f1 = 0. This proves part (1).

Parts (2), (3) and (4) follow from the observations that [Dyg, f] = ll [ [Fo, f] €
(0) < 2||f||r+s+1 and S(b) = [D(),b]F() + D()[F(),b]. This com-
pletes the proof. O
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In particular, it follows from parts (2) and (4) of the above lemma that the spectral
triple (#4g°, #o, Do) is regular.

Let & be the C*-subalgebra of £({,(Z)) generated by C(T) and Fy. Note that
the algebra B plays the role of smooth function subalgebra for the C*-algebra &.
Therefore £°° will stand for the algebra 3.

3.4. Regularity and the dimension spectrum. In this section we prove regularity
and calculate the dimension spectrum for the spectral triple (A%°, #¢, D¢). The proof
is by induction on £. Let us denote the derivation [|Dy|, -] by &, and let Fy stand for
the sign of the operator Dy. Observe that F; = 1% Q Fo =1Q® Fi_y.

Proposition 3.6. Let By := {Ao+ A1 F;+ R: Ao, A1 € A%, R € OP™°}., Then:

(1) If A9 + A1 Fy is smoothing then Ay = A; = 0. Hence By is isomorphic
to the direct sum A © A & OP™°. Equip By with the Fréchet space
structure coming from this decomposition. This topology on By is induced
by the seminorms (|| - |lm)meN which are defined by |Ag + A1F¢ + R||m =
”AO”m + ”Al”m + Zr+s5m ”R”r,s-

(2) For every b € By, [Fy,b] € OP™°. Also the map b — [F;,b] € OP™% s
continuous.

(3) The vector space By is closed under the derivations 6y and [Dy, -]. Moreover
the derivations §; and Dy, -] are continuous.

(4) The vector space By is an algebra and contains A}°.

Proof. The proof is by induction on £. For £ = 0, the proposition is just Lemma 3.5.
Now assume that the proposition is true for £ — 1. Suppose that Ay + A Fy is
smoothing for some Ao, A1 € AJ°. Then Ag + A1 Fy € Ty ® & and Ag + A1 Fy is
compact. Therefore (0 ® id)(A4g + A1 Fy) = 0. Now let

A= Y afl (pp@adel + ¥ aPel + ¥ 2 at
Jk=0 k>0 k>0

fori =0,1. Let f;(2) = ) ez A,(Ci)zk fori =0,1. Now (0 ® id)(Ag + A1 Fp) =
fo®I+ f1® Fy_1. Sowehave fo®I + f1® Fy—q = 0. Writing Fy =2P;— 1, it
follows that ( fo+ f1)® Pg—1+(fo— /1) ®(1—P¢—1) = 0. Hence fo = f1 = 0. This
shows that /\,(Cl) =0fori =0,1. Letbj, = a;.)k +ajl.kFg_1. Since R := Ao+ A1 Fy
is smoothing, it follows that for every j, k the matrix entries (e(; ), R(e(,,))) are
rapidly decreasing in (y, y’). Hence bjx is smoothing for every j, k. By induction
hypothesis a'}} = 0 for every j.k > 0 and for i = 0, 1. Thus Ao = A; = 0. This
proves part (1).
Observe that

Se(ar) = —a1,  |Dol"atk = afK (Do) + k), af|Delf = (IDg| + k) k.
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Also Fy commutes with ;. To prove (2), itis enough to show that [ Fy, a] is smoothing
for every a € #47° and the map a — [Fy, a] is continuous. Let

a= Y of"™(po®amn)a + Y Amad™ + Y A pai™
m,n>0 m=>0 m>0
be an element in AZ°. Then [Fy,a] = ), 5021 (Po ® [Fi—1,amn])ef.
induction hypothesis, it follows that p0®[F@ 1 amn] is smoothing forevery m,n > O
Since (OPB;O, | |l .s) is a Fréchet space, to show that [ Fy, a] is smoothing it is enough
to show that the infinite sum ) |~ o 1" (po ® [Fy—1, amn])a] converges absolutely
in every seminorm || - ||.s. Now observe that

|Del"ai™ (po ® [Fi—1, amn])e| Del*

3.3
— (D] +m) (po ® [Feor, amnD)(IDel + e, O

Since the map a’ € AJ°, > [F;_;,a’] € OP™* is continuous, there exist p € N
and C, > 0 such that |[[Fy_1.a']|l;,; < Cplla’|l, for every a’ € 4%, and for

i,j < max{r,s}. Hence, by eq. (3.3), it follows that

Z

Z 7™ (po ® [Fo—1,

O Gm™ I N[y amallli s

its-

=

'M* 3
Mn TI.Mw

N
I
o
~.
I
o

(i)(j)Cp( > mnlamallp).

m,n
This shows that [F, a] is smoothing and the above inequality also shows that for
every r,s > 0, there exists # > 0 and a C; > 0 such that ||[ < Ctlals.
Hence the map a +— [Fy, a] is continuous. This proves (2).

To show (3), it is enough to show that the map a > &¢(a) from A° to By
makes sense and is continuous. We will use the fact that the unbounded derivation
8¢ is a closed derivation. Leta = ), -0 (Po ® dmn)@] + 3 ps0 Ama]" +
> m>0 A—ma]"" be an element in A Since a1 and po ® dpmy € Dom(8y) it follows
that each of the terms in the 1nﬁn1te sum is an element in Dom(8¢). Hence in order
to show a € Dom(dy), it is enough to show that the sum

Z S¢(a™(po ® amn)ey) + 22 Ambe(af") + 3° Ande(af")

m>0 n>0

converges. Observe that §y(a]™) = ma(™, §¢(a}) = —na’f and

Sé(aikm(PO ® amn)a;l) = (m— ”)alm(PO ® amn)oﬁ + alm(PO ® 8¢ l(amn))al

Since §¢—1 is continuous, it follows that ||6¢—1 (@mn)| is rapidly decreasing, where
| - || is the operator norm. (Note that for b € By, one has ||b|| < ||b]|o.) Hence the
infinite sum

Z S¢(a™(po ® amn)ey) + 3 Ambe(af") + X A-nSe(ai™)

m,n m>0 n>0
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converges absolutely in the operator norm. Therefore a € Dom(8;). Since §¢—1 is
continuous for every r there exists p and C, such that ||§,—; (a’) ||, < Cp||a’||,. Write
8¢—1(amn) as 8¢g—1(amn) = Cl;nn + angZ + Ry Let

Ao = > ai™(po ® (M —n)amn + apy))af + 3 mimof + 3 (—n)A_pai”,

m,n m=>0 n>0
_ *m " n
Ay = Y ai™(po ® ap,)ef,
m,n

R=7) o™ (po® Rmn)ay.
m,n

Then é¢(a) = Ao + A1 Fy + R. In every seminorm of A7°, the double sequence
(a,,) and (a,,,) are rapidly decreasing. Also R, is rapidly decreasing in every
seminorm of OPB‘;". Hence Ao, A1 € AJ° and as in the proof of (2), it follows that
R is smoothing and given r, s there exists ¢ and C; such that || R|;s < C¢|la||;. Fix

anr > 0 and choose ¢ > 1 + r and C; > 1 such that ||§;—1(a")|, < C;||d’|; for

every a’ € A7 . Now [|Ao|; < Cillall; and [|A1]l; < Ctlla|l;. This shows that
the map a — 8¢(a) € By is continuous. Since [Dy, b] = 6¢(b) F¢ + | D¢|[Fy, b], the
second part of (3) follows as [Fy, b] is smoothing by (2). This proves (3).

Part (4) follows from (2) and (3). O

We next prove a lemma that will be crucial in the computation of the dimension
spectrum. For an r tuple n = (n1,n,,...,n,) € N”, we will write |n| for Z;Zl n;.
For r = 0, we let N° = {0}.

Lemma 3.7. Letr > 0and s > 1 be integers. Let (a(n)),enr be rapidly decreasing.

Then the function
JORID DL

neN’” ,meN* (|n| + |m|)z
[n|+|m|>1

is meromorphic with simple polesin{l1,2,...,s}andRes,—s £(z) = ﬁ > pan).

Proof. First observe that forRez > r + s,

(=Y (X aw)

N>1 |n|+|m|=N
1
B NXz:l F(InlgNa(n) m2|m|=ZN—|n| 1)
1 N — —1
()

Note that for a function (b(n)),enr of rapid decay, the sequence (Zl =N D)) Nen

is of rapid decay. Now (N _lsnl“;s _1) = Zi_:lo gk (n)N¥, where gi (n) is a polynomial
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in (ny,ns,...,n,) and gs_1(n) = ﬁ Hence modulo a holomorphic function

£(z) = Zi:o (3, gk(n)a(n))(z — k). Now the result follows from the fact that
{(z) is meromorphic with a simple pole at z = 1 with residue 1. O

We will next prove that the spectral triple (A%°, #;, D) is regular and has discrete
dimension spectrum with simple poles at {1,2,...,¢ 4+ 1}.

Remark 3.8. Recall that the unitaries Uy, for w = (w1, wa, ..., We4+1) € T are

givenby Uy e, = w}'wh? .. wz_ﬁl ey. Abounded operator T on J; is said to be ho-

mogeneous of degree (my,ma, ..., my41) if Uy TUS = wi wy > ... wznfil T.IfT
ishomogeneous of degree (my, ma, ..., my41) # (0,...,0)thenTrace(T|Dy|7%) =
0if Re(z) > £ + 1 since U,,’s commute with the operator | Dy|.

Proposition 3.9. The spectral triple (A}°, Hy, Dy) is regular. Ithas{1,2,... . £+ 1}
as the dimension spectrum with only simple poles.

Proof. Regularity of the spectral triple follows from Proposition 3.6. We now prove
that for b € By, the function Trace(b|Dy¢|~?) is meromorphic with simple poles at
{1,2,...,£+1}. Since Trace(h| D¢|~?) is holomorphic for b € OP~*°, we need only
to show thatfora € A7°, the functions Trace(a|D¢|™%) and Trace(a F¢| D¢|~%) extend
to meromorphic functions with simple poles at {1,2,...,£ + 1}. Now any element
a € Ap° canbe writtenasa = a®+a' where a® is homogeneous of degree O and a! is
an infinite sum of homogeneous elements of non zero degrees. Hence, by Remark 3.8,
Trace(a|D¢|?) = Trace(a®|Dy¢|~?) and Trace(a Fy|D¢|?) = Trace(a® Fy|D¢|7?).
Thus it is enough to consider the functions Trace(a|D¢|~%) and Trace(a Fy|D¢|™%)
where a is homogeneous of degree 0.
It is easy to see that the set of homogeneous elements of degree 0 in A7 is

{Zfzo(znew AL(Pny ® Pny ® ... pn; ® 1)) : (AL) is of rapid decay for all i },

where py = S* poSk. Leta = Zf=0(2n A(Pny ® Py ® ...pn, ® 1) be a
homogeneous element of degree 0 in C*°(S2**!). Then

Trace(a|De|™ Z)—ZZ > (|n|—|—|m|+l‘)z Z 2 (|n|+|m|)z

i=0peNi,reN neN?
meNt—i meW ‘

L
Now Znew (Ir/:# is holomorphic and hence, modulo a holomorphic function,

~ L /\i
Trace(a|Dy| )=22( Z m) Z(Z (|n|+|m|)z)

i=0
men\jf i meW i
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It follows from Lemma 3.7 that Trace(a|D¢|™%) is meromorphic with simple poles
in the set {1,2,...,£ + 1}. Similarly one can show that Trace(a Fy| D¢|~%) is mero-
morphic with simple poles in {1,2,...,£}. Fix 0 <i < £. Let (A,),¢ni be such
that ), A, = 1. Leta = ) ,cni An(Pn, ® Pny ® pu; ® 1). Then one has
Res;—¢+1-; Trace(a|D¢|7%) = ﬁ by Lemma 3.7 and by the above equation.
Hence every k € {1,2,...,£ + 1} is in the dimension spectrum. This completes the
proof. O

4. SU, (¢ + 1)-equivariant spectral triple

4.1. Left multiplication operators. Let us recall from [4] some basic facts on rep-
resentations of C(SU,4 (€ 4 1)) on L»(SUg4 (€ 4 1)) by left multiplication. Irreducible
unitary representations of the quantum group SU, (£ + 1) are indexed by Young
tableaux A = (A1,...,A¢41) where A; e Nand A; > A5 > --- > Ay = 0 (The-
orem 1.5, [15]). Denote by u* the irreducible unitary indexed by A. Basis elements
of the Hilbert space J; on which u* acts can be parametrized by arrays of the form

I rnzg ... Tg Tig+1
1 1)) oo T2y
r = s
re1 g2
Te+1,1
where the r;;’s are integers satisfying r1; = A; for j = 1,... . £+ 1,rij > rigy1,; >

ri,j+1 = Oforalli, j, and the top row coincides with A. This is known as Gelfand—
Tsetlin tableau, briefly GT tableau. Let {e(A, r) : r is a GT tableau with top row A}
be an orthonormal basis for J;. Denote the matrix entries of u* with respect to this
basis by uﬁ’s. Note that the generators u;; of the C*-algebra C(SU, (¢ + 1)) are the

matrix entries of the irreducible 1 = (1,0,...,0). The collection {uﬁ”,s DAL P, S}

A
r,s’

ey s for short (as r and s specify 1), the normalized uﬁ,s’s, ie,eps = ||uﬁ,s I~ tu
Then {e, 5 : r, s} forms a complete orthonormal basis for L,(SU, (£ + 1)).

Let p be the half-sum of positive roots of sl({ + 1) and A(r) be the weight of
the weight vector e(A, r). Let F), be the unique intertwiner in Mor(u*, (u*)¢¢) with
Trace F), = Trace F ! (here, for a representation u, its contragradient representation

forms a complete orthogonal set of vectors in L, (SU, (£ + 1)). Denote by e} , or by

A

r,s-

_1
is denoted by u¢; see [11] for details). Then one has ||ufs | =d, 2g7v(™) where

pras L+1L4+2—i
v(r)=(p,A(r)=—5 > ri+ > > rijs
j=1 i=2 j=1 (41)
dy =Trace F = Y. ¢q*¥®.

riri=A
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Write L
k(rom) =d7d,2q? v, (4.2)

From equation (4.19) in [4], we have

yt(uij)efs = Y Co(LA, u;i,r,m)Cy(1,A, 1; j,s, n)k(r,m)eq,, 4.3)
,m,n
where C,; denote the Clebsch-Gordon coefficients.

For our subsequent analysis, we will compute the quantities C, (i, r, s) and k (r, m)
appearing in the above formula. We will use the formulae given in ([11], p. 220),
keeping in mind that for our case (i.e. for SU, (£ + 1)), the top right entry of the GT
tableau is zero.

For a positive integer j with 1 < j < £ 41, let

M; = {(my,may,....m;) e N/ : 1 <m; <€+2—iforl <i<j} (44
For M = (my,ms,...,m;) € M;, denote by M(r) the tableau s defined by

4.5)

Sjkz

ik otherwise.

With this notation, observe now that C, (i, r,s) will be zero unless s is M(r) for
some M € M;. (One has to keep in mind, however, that not every tableau of the
form M (r) is a valid GT tableau.)
From ([11], p. 220), we have
i—1

Cyli.r ., M(r)) = [] R(r,a,mg,mgy1) X R'(r,i,m;), (4.6)

a=1
where

Ya,i —Ta+1,k — i+ k]q
[rai —ra,j —i+Jjlq

| ' i+2—a[
R(r,a, j, k) = sgn(k —j)q2(_raj+ra+l,k—k+j)( l—[

i=1
iF#j

41— o 1
Ha [ra+1,i —ra; —i+Jj —1lg )2 “7)
iy lravii —rapie —i+k=1]y
i#k
FO—j 4+ ]  rag i~ X )
R'(r.a.j)=gq i#7

! . . 1
. (Hfill a[ra+1,i —Tgj — 1+ ] — l]q)z 4.8)

£4+2— . .
Hi:l a[ra,i_raj_l+]]q
i#j

where, foraninteger 1, [n], denotes the g-number (¢” —¢ ") /(¢—q ") and sgn(k— )
islifk > jandis —1ifk < j.
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Remark 4.1. Let us look at the denominators in the above expressions. The integers
Taji — Tq,j and j — i are of the same sign. Therefore for i # j, the quantity
Taji—Ta,j—I+ j isnonzero. Similarly 44 1,; —74+1 k and k —i are of the same sign.
Soifi # k,thenrgy1,; —ra+14k —i +k —1canbezeroonly whenrgy1,;, = rgq1k
and k = i + 1. Now if r and M(r) are GT tableaux, then M(r)s+1,m,., =
Tat1mgy, + 1 and M(r)gy1: = ra41, fori # mgy1. Therefore if mgy; =
i + 1, then rgy1,i — (ra+1,meyq + 1) = 0, 1., Tat1i — rat1,myy, = 1. Hence
Ya+1,i —Ta+1,meyq —1 +Mgy1—1 > 1. Inother words, all the g-numbers appearing
in the denominator in eq. (4.6) are nonzero. Thus no problem arises from division by
Zero.

Remark 4.2. This is essentially a repetition of Remark 4.1 of [4]. The formulae
(4.7) and (4.8) are obtained from eqs. (45) and (46), p. 220, [11] by replacing g with
g~ '. Equation (45) is a special case of the more general formula (48), p. 221, [11].
However, there is a small error in eq. (48) there. The correct form can be found in
egs. (3.1),(3.2a), (3.2b) in [1]. Here we have incorporated that correction in eqs. (4.7)
and (4.8).

We next compute the quantities R(r,a, j,k) and R'(r,a, j).
For a positive integer n, denote by Q (1) the number (1 — ¢2")!/2. Then for any
two integers m and n, one has

[m]q

| _ o (20D Y
]y o(nl) ) -

The next two lemmas are obtained from eqs. (4.7) and (4.8) using the above equality
repeatedly and the factthatr, ; > rg41,; > 74,41 foralla andi.

Lemma4.3. Fora GTtableaur = (r.p), denote by H,p,(r) and V,p (r) the following
differences: Hup(r) :=ra41,6 —Tap+1 and Vap(r) := rap — a1, Then one has

R(r.a. j.k) = sgk = j)gP e OSCaIOLG 0 k). @49)
where
P(r.a,j.k)y= >  Hai(r)+2 3} Vai(r), (4.10)
jAk<i<jvk Pl
Stroa. j.ky =Y YL i) > "
0 ifj <k,
{+2—a .
2 - k
L(r,a,j. k)= 1_[ O(rai —Tra+1,k .l _i_. )
i=1 O(rai—ra,j—i+jl)
i)
thla (4.12)

. l—[ O(ras1,i —raj—i+j—1])
i O(ra+1i —Tat1 e —i +k—1[)

i#k
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Lemma 4.4. One has

R'(r.a.j)=q" DL (r.a. ), (4.13)
where
P'(r,a,j) = > H,i(r), 4.14)
j<i<{+2—a
l+1—a

L/(r,a,j) — i=1 Q(lra+1,l ra,] 1 +.] |) (415)

[T Olras = raj =i+ j)
i#]
Combining Lemmas 4.3 and 4.4, we get the following expression for the CG
coefficient Cy (i, r, M).

Lemma 4.5. Foramove M € M;, let sgn(M) denote the product ]_[fl_:ll sgn(mg 41—
mg). Then one has
i—

1
C,i,r,M) = sgn(M)qB(M)+C(”M)( L(r,a,mg, ma+1))L/(r, i,mj),
1

a=

(4.16)
where
BM)= Y Qm;—mjr—1)+1), 4.17)
Jimji>m;
i—1
Cr,M)= % ( > Hap(r)+2 2 Vap(r))
a=1 mgAmgi1<b<mgVmgii mgy1<b<mg (418)
+ X Hip(r)
m; <b<{+2—i
Lemma 4.6. ( . L(r,a,mg,mgy1)) L (r.i.m;j) =1+ o(q).
Proof. This is a consequence of the following two inequalities:
N—(1-x)2Z|<x for0O<x<1,
and, for0 <r < 1,
[1—(1 —x)_%| <cx for0<x<r,
where c is some fixed constant that depends on r. O

Next we come to the computation of k(r,m). Since Cy(i, r,m) is 0 unless m
is of the form M(r) for some move M = (my,...,m;), we need only to compute
k(r, M(r)), which we denote by «(r, M).
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Since
£ {+1 L4+1642—i
Y(s) =—= Z syt D0 X Sijs
i=2 j=1
we have

qlﬁ(r)—llf(M(r))

—q 4 ZZ+% rj +Z£+1 Z£+2 i rij+ z(zl—i_% rlj+1) (ZE-I-I Zé-‘rZ i r:j+i_1)

— q7_1+1

Let A = (A4,..., A, 0) be the top row of r. Then

¢ {
min{y (s) : 51 = A} = 21: i+ kZ (k= DAg.
=2

NIN

Hence

dy= Y ¢ = g TR TiaCDh (1 4 g26(g2),

sis1=A
where ¢ is a polynomial. Therefore
dy = q—ﬁ YiAi+2 koo (k=D Ak (1 + o(q)).

It follows that )

(%) =aF a4 o).

dl-f—em]

Thus
k(r, M(r)) = ¢* 7277 (1 + 0(q)). (4.19)

Next, observe that

BM)+£€+2—i—m
= > Qmj-mip—D+D)—m—m)+L+2—i—m
j:mj>mj+1

i—1

=2 Y (mi-mjpz)— X 1= (mj—mjp)+Ll+2—i—m;
jimji>m; j'm,~>m,~+1 j=1

=2 X (mj—mj+1)—2(mj—m1+1)— Yol l+2—i—m;
Jimj>mjgy Jjimj>mj gy

i—1
= Z |mj—mj+1|—#{1 <j=<i—-1:mj >mj+1}+€+2—i—m,-.
j=1
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Thus if we write

i—1

AM) = Z |mj _mj+1|—#{l <j<i-—-1 im;j >m]'+1}, (4.20)
j=1
KM)=0+2—i—m;, 4.21)

then both A(M) and K(M) are nonnegativeand B(M) +{+2—i—m; = A(M) +
K(M). Thus we have

wuij)els = X Coli,r, M(r)k(r, M)Cq(j,s, M'(8))ere),m(s)
MeM;
M’eMj
Y sgn(M) Sgn(Mf)qA(M)+K(M)+C(r,M)+B(M’)+C(s,M’) (4.22)

MeM;
M'eM;

(I +o(g))emu),mrs)-

4.2. The spectral triple. Let us briefly recall from [4] the description of the L,-
space of the sphere sitting inside L,(SUy (£ + 1)). Let u" denote the fundamental
unitary for SU, (¢ + 1), i. e. the irreducible unitary representation corresponding
to the Young tableaux 1 = (1,0,...,0). Similarly write v? for the fundamental
unitary for SU,(£). Fix some bases for the corresponding representation spaces.
Then C(SU4 (€ + 1)) is the C*-algebra generated by the matrix entries {ulpj} and

C(SU,(£)) is the C*-algebra generated by the matrix entries {viﬂj }. Now define ¢ by

1 ifi =j=1,
Gufy) = qvly ) if2<ij<l+1, (4.23)
0 otherwise.

Then C(SU,4 (€ + 1)\ SU,(€)) is the C*-subalgebra of C(SU, (£ + 1)) generated by
the entries uy ; for1 < j < £+ 1. Define C(queﬂ) — C(SU4(£+ 1)\ SU,(£))
by

Y(zi) =q g,
This gives an isomorphism between C(SUq (£ + 1)\ SU4(£)) and C(S2*) and the
diagram

C(S2t+1) ! C(S2“1) ® C(SU4(E + 1))

‘| | o

C(SUL (€ + D\ SU,(8)) ——= C(SU, (£ + 1)\ SU,(£) ® C(SU, (£ + 1))

commutes, where 7: C(S,f“l) — C(S;“l) ® C(SU4 (L + 1)) is the homomor-
phism given by 7(z;) = ) , zx ® uy ; that gives an action of the quantum group
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SUg(£+1) on S2°1. Inother words, (C(S2*1), SU,4 (£+1), T) is the quotient space
SU4 (€ 4 1)\ SU,(£). This choice of ¥ makes L,(SUy (£ + 1)\ SU4(£)) a span of
certain rows of the e, s, as the following two propositions say.

Proposition 4.7 ([4]). Assume that £ > 1. The right regular representation u of G
keeps the subspace L,(SUq (£ + 1)\ SUy({)) invariant, and the restriction of u to
L>(SU4(¢ + 1)\ SU,(£)) decomposes as a direct sum of exactly one copy of each
of the irreducibles given by the Young tableaux A,y ‘= (n + k. k. k, ... k,0), with
n,k e N.

Proposition 4.8 ([4]). Let r"* denote the GT tableaux given by

n+k ifi=j=1,
k=40 ifi=1j=40+1,
k otherwise,

wheren,k € N. Let Sg’k be the set of all GT tableauxwith top row (n+k, k, ..., k,0).
Then the family of vectors

{ejnkginkeN, se Sg’k
forms a complete orthonormal basis for L,(SU4 (€ + 1)\ SU4(£)).

We will denote | J, , 98’k by Go. Since the top row of r* determines r¥

completely and for e,..« g the top row of s equals the top row of r™*_one can index
the orthonormal basis e, g just by s € Go. It was shown in [4] that the restriction

of the left multiplication to C(SU4 (£ + 1)\ SU4(£)) = C(S2**™!) keeps invariant
Lr(SU4;(¢ + 1)\ SU,(0)) = Lo(S ;£+1). We will continue to denote this restriction
by . The operators (z;) = ¢/l (u ’f’j) will be denoted by Z; ;. The C*-algebra
m(C(S2+1)) will be denoted by C.

The following theorem gives a generic equivariant spectral triple for the spheres
S 5“1 constructed in [4].

Theorem 4.9 ([4]). Let D, be the operator on Lz(qu“'l) given by

kepnk ifn =0,

4.24
—(n+k)epnk g ifn>0. (4:24)

Deqernk’s = {
Then (A(Sg“l), Lz(Sje‘H), D.g) is an equivariant nondegenerate (24 + 1)-sum-
mable odd spectral triple.

Our main aim in the rest of the paper is to precisely formulate the smooth function
algebra for this spectral triple, to establish its regularity, and to compute the dimension
spectrum.
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4.3. The case ¢ = 0. The L,-spaces LZ(S(?Z“) for different values of ¢ can be
identified by considering the elements of their canonical orthonormal bases which are
parametrized by the same set. Thus we will assume we are working with one single
Hilbert space # with orthonormal basis given by e,...xy, where r™k is as defined
earlier and s is given by

cL=n-+ k k k .. k Kk dl =0
Co k k R dz
s = ot ko dp , (4.25)
cr dy
Cev1 = dpyr

wherecy > ¢, > - >cp>k,dy <dp <---<dy <kanddy <dyy, <cy. Since
specifying the GT tableau s determines r™k as well and thus completely specifies
the basis element e, «g, we will sometimes use just s in place of the basis element
Cpnkg.
Let us denote by M;-L the following subsets of M;:
IM;-r ={my,....mj) e Mj :m; e{l,{+2—i}forl <i <j m =1},
Mj_ ={my,....mj) e Mj :m; e{l,L+2—i}forl <i <j m =4L{+1}.

Let us denote by N; ; the following element of M;:

Nij=,....1+1—-il—i,....0+2—j), 0<i<j<{+1
\-\f._/
1

We will denote N; ¢4 by just N;. Then from (4.22), we get

7 (u 1j)er"~ks = Z Sgn(M)qz+k+B(M)+C(s’M)(1 + O(q))er"+1~k,M(s)

MeMjf
(4.26)
+ 3 sgn(M)gBMFCEM (1 1 o(g))epni—1 ps)-
MGIMJT
Therefore
Z}iqern.ks = Y sgn(M)g/HIHEHEBODFTCEM) (] 4 o(g))epnt1k ps)
Memf
+ Y sgn(M)g/TIFBODFCEMI(] 4 o(g))epni—1 pys)-
Me[MjT
(4.27)

Letus first look at the cases 1 < j < £. Then the power of ¢ in the first summation
is positive. Therefore none of the terms would survive for ¢ = 0. For terms in the



Regularity and dimension spectrum of the equivariant spectral triple 413

second summation, assume that M € M; withm; = € 4+ 1 and m; = 1 for some
i<j.leta=min{2<i<j:m; =1} Thenm; =L+2—iforl <i<a-1
so that

B(M)Zaiz(z((€+2—i)—(€+1—i)—l)+1)+2(£+3—a—1—1)+1
i=1
=a-2+2—a+1)+1
=20 —a+ 1.

Hence B(M) + 1 — j > 0 and so such terms will not survive for ¢ = 0.
Therefore, the only term that will survive is the one corresponding to M = Ny, ; =
+1,6,£—1,....£+2—j). Inthiscase wehave B(IM) = j —1,C(s, M) = d;
and sgn(M) = (—1)/~!. Therefore

(1) epni1 y, 5 ifdj =0,

ZF eni. = 428
50%rmks {o if dj > 0. (4.28)

Next let us look at the case j = £ 4 1. Here the first sum will be over all M with
my =1 =myqq. if m; # 1 for some i, then B(M) > 0 and therefore the power of
q will be positive, so that the term will not survive forg = 0. If m; = 1 forall i, i.e.,
if M = Ny, then we have B(M) = 0 = C(s, M) and sgn(M) = 1. Therefore for
q = 0, the first summation will become epn+1.k Ny(s) provided that k = 0.

The second sum is over all M with m; = £ + 1. Leta = min{2 < i <
£+ 1:m; = 1}. Then, as before, B(M) > 2{ —a + 1. Therefore if a < £,
then —¢ + B(M) > £ —a + 1 > 0, so that the term will not survive for ¢ = 0. If
a={+1,ie,if M = Ny,then B(IM) = £,C(s, M) = dy1 andsgn(M) = (—1)*.
So, for ¢ = 0, the second summation will become (—1)ee,n.k—1,N0(s) it k > 0 and
d¢+1 = 0. Thus we have

er"'H’k,Ng(s) ifk = 0,
Zi 1 oermis = 3 (=Dfeni—1 o) ifk >0, dgpq =0, (4.29)
0 ifk >0, dgyq > 0.

Next we will establish a natural unitary map between L5 (S, q%“) and

Hy = L(N) @+ @ €a(N) ®€2(Z) @ la(N) ® -+ @ £2(N).

£ copies £ copies

Fort € R, letz1 denote the positive part max{z, 0} and let z_ denote the negative part
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max{(—t), 0} of t. Let us now observe that for any y € 'y, the tableau

L L L
Tl Z% Vi + es)+ o Vi + (es)+ 0
Zl |vil Yavit+ )+ - Y1
s(y) = ¢ ¢ —
+Z lvil 21w —[ SV@+1)+ Sy
> il Yy

L
YoV + (es1)-

isin Go. Conversely, let s € 98’k for some 7, k € N so that e,.» x is a basis element
of Ly(S2**1). Note that s is of the form (4.25). Define y € I's as follows:

(1) ifk > dg4q, then

Vi :di+1_di forl <i<{-1,
Vi = Cop4o—i — Cop43—j ford +3<i<2{+1,
Ye =deyr—de, ver1r =k —depr, Yoy =co—k,
(2) if k < d[+1,then
Vi =diy1—d; forl<i<{-1,
Yi = Cogta—i —Cog43—i Tord+3=<i <20+1,

=k—dy, ver1 =k —dir1, Vet2 = —dita.

Then s(y) = s. Thus we have a bijective correspondence between Gy and I's. We
will often denote a basis element e,k ¢ by &, using this bijective correspondence.

Lemma 4.10. Lety € I's. Forn € Z, let

7 Z?ﬂo ifn =0,
€+1,0 7 no 0
(Zi1 0" ifn<0.
Define
Zj_ﬁ;l i 0 ... 00
0O ... 0
| oo | T
G = 2y 20204
Ye+2 0
0

Then {é; .y € I's} is an orthonormal basis for L2(que+1).

Proof. 1Tt follows from eqs. (4.28) and (4.29) that the actions of Z; o for 1 < j < ¢
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on the basis elements e,...x ¢ are as follows:

n+k k ... kkoO
Co k kO
¢ k... kK O
7 J
7,0 Cj+1 k --'dj-i-l —
ce dy
di+1
l+n+k 1+k 1+k14+k0
14+c¢ 1+k 1+k O
1+Cj+1 1+k...1+dj+1
l4+c 1+dg
1+dptq

and is O for s with d; > 0.
Similarly the action of Z; ¢ on the basis elements are as follows:

n 0 ... 00 n—1 0 ... 00
Cp 0 ... 0 C2—1 0 ... 0
1 00 e —1 0 0

ce O co—1 0

dgyq dgpq—1

if d[+1 > 0, and

n+kk ...k O l+n+k1+k .. 1+k0
c k ... 0 14+cy 14k ... 0
IRty

Cr—1 k O —>( 1) 1+ ¢ 1+k 0

ce O 1+ ¢y 0

0 0

if dg, = 0. Similarly the action of Z} 41,0 ON the basis elements are as follows:

n 0 ... 00 1+n O ... 00
¢ O ... 0 l4+c, O ... 0
ey 00 T li4cy 0 0

cy 0 1+ cg 0

dgy1 1+ dgyq
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and, for k > 0,

n+kk ...kO n+k—1k-1 ...k—=10
Co k 02—1 k—1 0

]

Ty
oy kO — D L k=10
ce O co—1 0

0 0

Then it follows from the above that

2041
254;2_ yi 0 ...00
Y.y 0 ... 0
v b2 Ve+1) +
ZY . 22
Ye+2 0
0

20+1 £l £l
T il i+ e+ o X5y s+ 0

20 ¢
21 il 2avit e+ Y1
43 ¢ -2
2}:2'”' Y1vi 2—(ll/e+1)+ X0 Vi
621 vil 21 Vi
Y1Vi + (es1)—

— (_l)n(y)

(4.30)

where 7(y) := Y{_,(i — Dyi + £(yes1)+. Thus £, = (—=1)"V&,. Therefore it
follows that {¢}, : y € I's} is an orthonormal basis for LZ(S,?K“), O

The map U: Ly(S2“T!) — Hyx given by U§), = e, sets up a unitary isomor-
phism between L,(S2‘*!) and Jx. Let P denote the projection onto the span of
€0 ® -+ ® e in £o(NY). Then we have

UZ]-,OU* =Y o0®I=Y;0@P+Y; 0 —P), (4.31)
and
UDeqU*:D(®P—|D5|®(1—P)—I®j\7, (4.32)

where N is the operator €, ® -+ ® ey, > (D_m;) e, ® - em,. Inother words,
with respect to the decomposition

Hy = Hy @ (He ® L(NE\ {0,...,0})),

one has
UZigU* =Yj0® (Yjo®I),

and 5
UDoqU* =Dy ® (—|Dy|® I — 1 @ N).
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Next we will define the smooth function algebra C/7 (Sg”l) and prove that
the spectral triple (C7 (S(%ZH), H#, D.q) is regular with simple dimension spectrum
{1,2,...,2¢ + 1}.

It follows from decomposition (4.31) that if we identify L>(S2*1) with Hg,
then the C*-algebra generated by the Z;¢’s is Ay ® I, where Ay is the C*-algebra
generated by the Y;’s in £ (). Therefore it is natural to define

CR(S Y ={a®1:ae AP (4.33)

Theorem 4.11. The triple (Cgy (Sge'H), Hs, Deg) is a regular spectral triple with
simple dimension spectrum {1,2,...,20 + 1}.

Proof. Since A7° is closed under holomorphic function calculus in Ay, it follows

that Cgy (Sg“l) is closed under holomorphic function calculus in C*({Z; o : 1 <

J <L+ 1}) = A; ® I. In order to show regularity, let us introduce the algebra
Beg:={a@P+b®U —P):a.be By} (4.34)

Clearly B4 contains Cg7 (Sg“’l). We will show that B, is closed under deriva-
tions with both | D4 | as well as D.,. This will prove regularity of the spectral triple
(CS(SHY). H . Deg).

Note that |Dey| = |D¢| @I +1® N. Since I ® N commutes with every element
of Beg, wegetd(@a® P +bQ® (I —P)) =[|Dyl,al® P +[|D¢|,b]® (I — P) and
[Deg.a®@P+b® (I —P)] =[Dy,al®@P —[|Dg].b]® (I — P). Since By is closed
under derivations with |Dy| and Dy, it follows that 8., is closed under derivations
with |Degy| and Dey.

Next we compute the dimension spectrum of the spectral triple. Forw € T Jet
Uy := Uy ®I. Then | D¢y | commutes with U,. Hence again it is enough to consider
homogeneous elements of degree 0. Now by Lemma 3.7 it follows that for b € 8B,
with b homogeneous of degree 0 the function Trace(b|D.4|~?) is meromorphic with
simple poles and the poles lie in {1,2,...,2¢ + 1}. To show that every point of
{1,2,...,2¢ + 1} is in the dimension spectrum, observe that

Trace(| Deg| %) = 224, (2c2 — 2N (z — k), (4.35)

where c,i is defined as the coefficient of N¥ in (N :"r) Note that for 0 < k < r one
has ¢; > 0. Also note the recurrence rc; = c,ﬁ:} + rclz_l. Hence ¢; > clg_l. Now
from eq. (4.35) it follows that Res, g Trace(| Deq| %) = 2c2¢ — ¢2¢71 > 0 for
0 < k < 2{. This proves that every point of {1,2,...,2¢ 4 1} is in the dimension
spectrum, which completes the proof. (|

We will need the fact that Trace(| D.4|™?) is meromorphic with simple poles at
{1,2,...,2¢ + 1} with nonzero residue and hence we state it as a separate lemma.
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Lemma 4.12. The function Trace(|Deq|™?) is meromorphic with simple poles at
{1,2,...,2¢ 4+ 1}. Also the residue Res;—j Trace(|D.q|™?) is nonzero for k €
{1,2,...,2¢ + 1}.

4.4. Regularity and dimension spectrum for ¢ # 0. Consider the smooth subal-
gebra of the Toeplitz algebra defined as

T ={ Y iken ik S poS* + 3 s AeSE + 250 A S** : Ajk. (Ag) are
rapidly decreasing }

Fora:= 3 renAik S* poS* + Y o0 S + 250 A1 S** € T, define the
seminorm [ s by lallm := S(1 41 [+ K1) [gt] + 31+ [k [)™ | 2x|. Equipped
with this family of seminorms, T is a Fréchet algebra. We will denote by T7° the
k-fold tensor product of T°°.

Lemma 4.13. The triple (T°°,{,(N), N) is a regular spectral triple. More precisely,
T is contained in Dom(§), where § is the unbounded derivation [N, -] and leaves
the algebra T invariant. Also the map &: T — T is continuous.

Proof. Note that [N, S] = —S and [N, p] = 0. Now the lemma follows from the
fact that the unbounded derivation § is closed. O

Fora € N2 U Z, let

S*MpeS™  ifa = (m,n),
Wy =487 ifoa=r >0,
S*r ifoa=r <0.

For a € N? U Z, define || to be |m| + |n| if @ = (m,n) € N? and the usual
absolute value || if « € Z. For an £ tuple @ = (1,2, ...,0) in (N2 U Z)¥,
let o] = ) || and Wy, 1= Wy, @ Wy, ® ... Wy,. We need the following simple
lemma whose proof we omit since it is easy to prove.

Lemma 4.14. The natural tensor product representation of T° on 0>(N)®¢ is injec-
tive. Thus we identify T3° with its range which is {)  xq Wy = ) (1 + |a])P]xq| < 00
for every p}.

Remark 4.15. The tensor product representation of OP},>° ®T7° on £(Hx) is in-
jective since OP> := §(H), and hence we identify OP,> ®T7° with its image.

For an operator 7', let L7 denote the left multiplication map X + TX. Then for
T e OPODe ,themap L7 : OPp7° — OP}> is continuous. Note that if A is a Fréchet
algebra and a € A, then L, is a continuous linear operator.
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Lemma 4.16. Let T € OPODZ and a € T°. Then the map Lrg, leaves the algebra
OPI_)EO ®T7° invariant. Moreover Ltga = LT ® L, on the algebra OPB?O ®T7°.

Proof. Clearly LTg, = LT ® L, on the algebraic tensor product OPBCEO ®alg I 7°.
Now leta € OPB‘Z" ®T;°. Then there exists a sequence a, € OPB‘Z" ®ale T7° which
converges to a in OPB‘Z" ®T7°. Also ay converges to a in the operator norm. Now
the result follows from the continuity of Lrg, and LT ® L. O

Proposition 4.17. Let
B = Beg + OPBZ" T (4.36)

Then one has the following.
(1) The vector space B is an algebra.
(2) The algebra B is invariant under the derivations § := [|Deg|, -] and [Degq. -]
(3) For b € B, the commutator [F,q,b] € OPBE‘;.

(4) Forb e B, the function Trace(b|D4|™?) is meromorphic with only simple poles
lyingin{1,2,...,20 + 1}.

Proof. Lemma 4.16 and the fact that B, C OP? implies that B is an algebra. As seen
in Theorem 4.11, it follows that B, is invariant under § and [D.,, -]. Also (3) and
(4) hold for b € B.,. Hence to complete the proof it is enough to consider (2), (3)
and (4) for the algebra OPL,%° ®T7°.

Lemma 2.6 and the decomposition |Dey| = [Dy| ® 1 +1 ® N implies that &
leaves the algebra OPB‘ZO ®T7° invariant. Now note that P € OP_N°° , it follows that
left and right multiplication by F; ® P and 1 ® P sends OPBEO ®T7° to OPB:‘; =
OPL* ® OP . Since Fog = Fy ® P —1 ® (I — P), it follows that [Feq, b] is
smoothing for every b € OP,>* ®T°. Now the invariance of OP},°° ®T7° under
[Deg. -] follows from the equation [Deg, b] = 8(b) Feq + |Deg|[Feq. b] and the fact
that OPL,> := OP},7® ® OP > is contained in OP},%° ®T7°.

We prove that for b € OPBzo ®T;° the function Trace(b|D4|™?) is meromorphic
with simple poles and the poles lie in {1,2,...,£}. For w € T?*! let U, =
Uw, ®Uy, ®. .. Uy,, ., bethe unitary operatoron Hx. Clearly Uy |Deg|Uy = |Degl
forw € T2¢*!. Hence it is enough to consider Trace ()| D.4|7%) with b homogeneous
of degree 0.

An element b is homogeneous if and only if it commutes with the operators U,
for all w € T2+, This implies that » must be of the form e, > ¢ (y)e, for some
function ¢, i.e., b = 3, ¢(y)py. An operator of the form ZVEFZZ ¢(y)py is in
OPB‘Z" if and only if ¢(y) is rapidly decaying on I's,. Also, using the description
of T, it follows that an operator of the form ), .\ ¢ (1) p, belongs to T if and
only if ¢ (-) — lim,_,~ ¢(n) is rapidly decreasing. Thus combining these, one can
see that the operator Zy ¢ (y) py belongs to OPB;o ®T;° if and only if ¢ is a linear
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combination of ¢4 with A varying over subsets of X containing X, where each
¢4(y) depends only on y4 and ¢4(y4) is rapidly decreasing on I'4. For an element

b =73, ¢a(y)py, one has

o s $a(ya)
TI‘aCC(b|Deq| ) - ; |]/|Z - ; (|)’A| + |VE\A|)Z.

By Lemma 3.7 it follows that Trace(b|D¢4|™?) is meromorphic with simple poles
lyingin {1,2,...,|2 \ 4|} € {1,2,...,£}. This completes the proof. O

4.5. The smooth function algebra C°°(Sq“+1). In this section we will define a
dense Fréchet C*-algebra C°°(S5‘/+1) of Cp = n(C(S,?Hl)) and show that it is
closed under holomorphic functional calculus. Let By be the C*-algebra generated
by A¢ and Fy. Recall that & denotes the C*-algebra generated by C(T) and Fy.

Lemma 4.18. The C*-algebra & contains K and & /K is isomorphic to the C*-
algebra C(T) & C(T).

Proof. Let |en){en| be the matrix units in K (£2(Z)). Note that [Fy, S*]S =
2leg){eo|. Hence pg = |eg){eo| € &. Now S*" poS" = |em){en|. Hence X C &.
Let Py := 1+—2F°. Then [Py, f]is compact for every f. Thus &/.K is generated by
C(T) and a projection Py which is in the center of & /J. Now consider the map

C(MeC(M>a(fig)— fPy+ g(l— Py (mod K) € &/ K.

We claim that this map is an isomorphism. To prove this, we need to show that if
f Py is compact then f = 0, and if g(1 — Py) is compact then g = 0.

Assume that f Py is compact for f € C(T). Fix anr € Z. Since fPy is
compact, it follows that |{ f Po(en), entr)| = |f(r)| converges to 0 as n — +o0.
Hence f (r) = 0 for every r. This proves that f = 0. Similarly one can show that
if g(1 — Pyp) is compact then g = 0. This completes the proof. O

Lemma 4.19. The C*-algebra By contains K (#;) and the map (a,b) — aPy +
b(1 — Py) (mod XK) from C(quul) &) C(Sge“) to By/ K (Hy) is an isomorphism.

Proof. For £ = 0 this is just Lemma 4.18. So let us prove the statement for £ > 1.
Since A, contains K ({2(N*)) ® C(T), it follows that By contains K (#;). Observe
that [Pg,a;] = 0for 1 <i < £ and [Py, og41] is compact. Therefore it follows that
[P¢,a] is compact for every a € Ay;. Hence the map (a,b) — aPy + b(1 — Py)
(mod K) from Ay & Ay to By/ K is a *-algebra homomorphism onto B;/J. We
will show that the map is one-to-one. For that we have to show that if a Py is compact
witha € Ay thena = 0, and if b(1 — Py) is compact with b € Ay then b = 0.
Suppose now that a Py is compact. Observe that By C T, ® & and aP; =
a(l ® Py). Since a Py is compact, if we apply the symbol map o on the £-th copy
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of T, we get 0y(a) ® Py = 0. Hence a is in the ideal KX (£,(N)®%) ® C(T). For
m,n € N¥, let e,,,, be the “matrix” units. Let d,, = (emm ® 1)a(enn ® 1). Then
Amn = emn ® fmn for some f,,, € C(T). Since a Py is compact, it follows that
fmnPo is compact as P; = I ® Py commutes with e,,, ® I. By the case £ = 0, it
follows that f;,, = 0 and hence a,,, = 0 for every m, n. Thus a = 0. Similarly one
can show that if b(1 — Py) is compact then b = 0. This completes the proof. O

Let B be the C* algebra on #yx generated by Ay ® I, Py ® 1 and 1 ® P and
J = K(H#¢) ® Ty. Note that J is an ideal since By is contained in Ty ® & ® Ty.
The next proposition identifies the quotient B/ J.

Proposition 4.20. Let p: Ay ® Ay & Ay & A¢ — B/ J be the map
(ar,az,a3,a4) = a1 P@P+a P Q(1—P)+a3(1-P)® P +as(1-P)®(1-P)

from Ay ® Ay ® Ay @ Ay into B composed with the canonical projection from B onto
B/J. Then p is an isomorphism.

Proof. First note that since [Py, a] € K fora € Ay, it follows that P, ® [ and I ® P
are in the center of B/J. Hence the map p is an algebra homomorphism. By the
definition of B it follows that p is onto. Thus we have to show p is one-to-one.
Suppose thata = a1 Py® P+ a2 Py @ (1 —P)+a3z(1—P)) ® P +as(1— Py ®
(1—P) e J. Lete: T — C be the map evy oo, where ev; is evaluation at the point
1. Now consider the map id ® €®¢: T, @ €  T; — T, ® &. Note that ] ® e®*
sends J to K (Hy). Hence (I ® €®4)(a) = a, Py +as(1 — Pg) € K (H;). Hence by
Lemma 4.19, it follows that a, = 0 = a4. Since left multiplication by / ® P sends
the ideal J to K (Hx), it follows that (/ ® P)a = a1 Py @ P + az(1 — Py) ® P
is compact. Hence a; Py + as(1 — Py) is compact. Thus again by Lemma 4.19, it
follows that a; = 0 = a3. This completes the proof. O

Now we prove that B is closed under holomorphic functional calculus in B. Let
J:= OPB‘Z" ®77°. Note that

B:={a1 Py QP +a:P®(1—P)+as(1-P)®P
+as(1—P)® (1 —P)+ R:aj,az,a3,a4 € A, R 63}-

Proposition 4.21. The algebra B has the following properties:

(1) Ifa1Pr@ P 4+arPr®(1—P)+as(1—P) QP +as(1—P)®(1—P) e
then a; = 0 fori = 1,2,3,4. Hence B is isomorphic to the direct sum
AP O AP © AP ® AP © J. Equip B with the Fréchet space structure coming
from this direct sum decomposition.

(2) The algebra B is a Fréchet C*-algebra contained in B. Moreover the inclusion
B C B is continuous.



422 A.Pal and S. Sundar
(3) The algebra B is closed under holomorphic functional calculus in B,

Proof. Proposition 4.20 implies (1). Parts (2) and (3) follow from Proposition 3.6.
Now by Proposition 4.20 one has the exact sequence

0—-J—>B—> A A DA D Ay — 0.

At the smooth algebra level we have the exact sequence

050> B 5 AP @ AP & AP @ A — 0.

Since J € J and A;?O C Ay are closed under holomorphic functional calculus, it
follows from Theorem 3.2, part 2, [13] that B is spectrally invariant in B. Since by
part (2), the Fréchet topology of B is finer than the norm topology, it follows that B
is closed in the holomorphic function calculus of B. O

Remark 4.22. One can prove that OPB‘Z" ®T7° is closed under holomorphic func-
tional calculus in K (H#;) ® T in the same manner by applying Theorem 3.2, part 2,
[13] and by using the extension (after tensoring suitably)

0->K—->T—>C(T)—0
at the C*-algebra level and the extension
0—>S(Ur(N)) > T® - C®(T)—0
at the Fréchet algebra level.
Corollary 4.23. Define the smooth function algebra C*°(S 3“1) by
Co(S2H) ={a e BNCy: 0(a) € L(AP)},

where 0 is as in the proof of Proposition 421 and 1. Ay — Ay @ Ag @ A¢ D Ay is
the inclusionmap a — a ® a ® a G a. Then the algebra C“(S;ZH) is closed in B
and is closed under holomorphic functional calculus in Cy.

Proof. Let j: B — £L(Hx) denote the inclusion map. Then, by definition,
C°°(Sq2€+1) = 0_1(L(Ag°)) N j~1(Cy). Since 0 and j are continuous and as L(A7°)
and C; are closed, it follows that C °°(qu£+1) is closed in B. Hence C °°(Sq24+1)
is a Fréchet algebra. Also C®(S2¢1) is *-closed as p is *-preserving. Now let
a e C“(S;K“) be invertible in C¢. Then a is invertible in &£(Hx). By Proposi-
tion4.21, it follows thata~! € ‘B. By the closedness of A7° under holomorphic func-

tional calculus, it follows that §(a™") € ((4%°). Thus one has a™! € C®(S2*1).
We have already seen that the Fréchet topology of B is finer than the norm topology.
The same is therefore true for the topology of C*°(S 5“1). Hence it is closed under
holomorphic functional calculus in Cy. O
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Proposition 4.24. The operators Z; 4 belong to C°°(que+1)_ Hence COO(SqZZ—H) is
a dense subalgebra of C that contains n(QA,(quZHl)).

The proof of this proposition will be given in the next subsection.
We are now in a position to prove the main theorem.

Theorem 4.25. The triple (C*°(S, qz£+1), Hx:, Deg) is a regular spectral triple with
simple dimension spectrum {1,2,...,2¢ + 1}.

Proof. Since the inclusion C*°(S2**!) C B holds, the regularity of the spec-
tral triple (C*°(S2“™!), #x, D.g) follows from the regularity of the spectral triple
(B, Hx, Deg), which is proved in Proposition 4.17. Proposition 4.17 also im-
plies that the spectral triple has simple dimension spectrum which is a subset of
{1,2,...,2¢ + 1}. The fact that every point in {1, 2, ..., 2¢ + 1} is in the dimension
spectrum follows from Lemma 4.12. This completes the proof. O

4.6. The operators Z; ,. We will give a proof of Proposition 4.24 in this section.
The main idea is to exploit the isomorphism between the Hilbert spaces L, (S 5“1)
and H'x, and a detailed analysis of the operators Z; , to show that certain parts of these
operators can be ignored for the purpose of establishing regularity and computing
dimension spectrum. Deciding and establishing which parts of these operators can
be ignored is the key step here. It should be noted here that a similar analysis has been
done by D’Andrea in [9], where L, (S, ;“1) is embedded in a bigger Hilbert space
and certain approximations for the operators Z; , are proved. But the approximation
there is not strong enough to enable the computation of dimension spectrum. Here
we prove stronger versions of those approximations, which make it possible to use
them to compute the dimension spectrum dealt with in the previous subsection.

We start with a few simple lemmas that will be used repeatedly during the com-
putations in this section.

Lemma 4.26. Let A € B C X. Then one has OPB‘;O ®8§‘<B C OPBZO ®8§°\A.

Proof. Since
OPLY = §(Hp) = §(Ha) ® S(Hp\a) = OPLT @S (Hp\4)
and §(Hp\4) S 8;’& 4» We have the required inclusion. O

Let A C X. Let & be a polynomial in | A| variables and let T be the operator on
H4 given by
Te, = P({yi,i € A}g"le,.

Since the function y — P ({y;.i € A})q!"4! is a rapid decay function on I, it
follows that T € OP,.
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Lemma 4.27. Let A C X. Let T and Ty be the following operators on H4:

Tey = ¢*"VOW (ra)ey.  Toey = q*"Wey.
where ¢ and r are some nonnegative functions. If ¢(ya) + ¥ (ya) > |yal, then
T — Ty € OPLT.

Proof. This is a consequence of the inequality |1 — (1 — x)%| <xfor0<x <1.
O

Lemma 4.28. Let A C X. Let T and Ty be operators on Hy given by

Tey = ¢* "V QW () ey, Toey = q*e,
for some nonnegative functions ¢ and . If ¢(ya) + ¥ (ya) > |val, then T — Ty €
OP3.
A
Proof. For 0 < r < 1, one has
[1—(1 —x)_%| <cx for0<x<r,

where ¢ is some fixed constant that depends on r. Using this, it follows that the map
y > q? D1 — (1 — ¢2¥®)=3| s a rapid decay function on 4. O

For j € X, we will denote by &; and & the C*-algebra T if j # ¢ + 1 and
J = £+ 1, respectively. Thus &7° will be T for j # £+ 1 and €*° = B for
J = ¢+ 1. Thus &3° will stand for the space T;° ® €>° ® J;°. Note that for any
subset 4 of X, one has OPBZ" cE&X.

Lemma4.29. Let A C ¥, a,b,m,n € Nandn > 0. Let Ty and T, be the operators
on Hy given by

Tiey = Q(lyal + a(Yer )+ + b(yes1)- +mey,
Tre, = Q(|yal + a(yes1)+ + b(ver1)— +n) ey

Then Ty and T are in €.
Proof. First note that if 7| and 7" are operators given by
Tiey = Q(lyal + alyer1l +m)ey,  Ti'ey = Q(|yal + blyes1l +m)ey,

then Ty = PxT| + (I — Px)T]’, where Py = % By the two previous lemmas,
[ —T{and I — T, are in OP,%, where B = AU {£ + 1}. Since OP;"’ is contained
in &, it follows that 7|, 7, € &°. Since Py € §¥, we get T} € EF.

For T the proof is similar. O
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We next proceed with a detailed analysis of the operators Z; ;. First recall that
¢ Gy
U*e, = £, = (-1)Zi= Dt ther e, o (4.37)

where s is given by

20+1 ¢

n=We1)-+ > vi. k=2 vi+ e+, (4.38)

i=l+2 i=1

m—1 L 20+2—m
dm = Y Vi, Cm= 2 Vi+lverl+ X vy forl<m=<t (439

i=1 i=1 i=0+2

¢

dep1 = cer1 = 2 Vi + (Ver1)- (4.40)

i=1
We will use this correspondence between e« ¢ and S;, freely in what follows.
From equation (4.22), we get
m(uij)epmis = Y Co(L.r™* Ny )Cq(j.s. M)k(r™  Ny1)emntik ps)
Memf

+ Y Ce(r™* No)Cq(j.s. M)k(r™* No1)epni—1 ays)-
MeM~
J

Therefore

Z}gepnis =q 7T Y Cu(1rmk Ny DCy (s, M)k (r™®, Ny 1)enix ps)
Memf
+g 77T > Co(1 k™R No 1) Cy(j s, M)kc(r™*, No1)eni—1 aps)-
MeM;
Thus we have Z7 | = ZMer Sy T+ ZMGM]_— Sy Trz» where the operators S

and T]a; are given by

Sprernis = Cpntik p(sy, M € M, (4.41)
Syepnikg = Cpnk—1 p(s)> M e D\/Ij_, (4.42)
Tovepnics = q 7T Cq(1r™* Ny 1)Cy(j.s. M)k (r™* Ny Depnicg, M € MT,
(4.43)
Tagernis = q 7T Ce(1,r™*, No)Cq(j.s. M)k (r™* No1)enis, M € M;.
(4.44)

Lemma 4.30. Let S Ail be as above. Then US Aj,; U*eé&.
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Proof. Let us first look at the case M € M*E, where 1 < j < {£. Then one has
Sf[éy = £,/ where )’ is given by

m; =landmijy; =L+ 1—1,
Mogio—; = landmoypys; =L +2—2L+3—1),
, mi=4L+2—iandm;;; =1,
vi yi—1 if §m; =40+4+2—iandi = j,

Mopyo—i = +2—(20+2—1i)and mypy3—; = 1,
Vi otherwise.

Vi + 1 ﬁ{

Note that since 1 < j < ¢, we have y,,; = y¢+1, and n(y’) — n(y) depends just
on M and not on y. Therefore US Ai,l U* is a constant times simple tensor product of
shift operators. Thus in this case USAj;U* ETERIRTFX CEY.

Next we look at the case M € D\/IE’E_H. Then define y’ and y” as follows:

i+ 1 if{mi=1andm,-+1=K—i—1—i, .
Mogio—; = land mopys; =L +2—2L+3—1),
; mi =€ +2—iandm;yq =1,
T o1 i {mppea = 42— QU2 1) and maggsy = 1,
i=L4+1,
Vi otherwise.
m; =landmjy; =L+ 1—1,
vi+1 if Smopypy =landmypyz; =€ +2—204+3—1),
i=4¢,
yi = m; =L+2—iandm;ji =1,
vi—1 if Smopyp i =€ 4+2—2L+2—i)andmypiz—; =1,
i=4+1,
Vi otherwise.

Then one has
&y ifypq <0,
Sﬁfy =17 . *
£ if yers > 0.

Therefore in this case, one has US Ai,l U* e ‘J’Z’o R EX ® ‘TZ" C &P O

We will next take a closer look at the operators TIS;. For this, we need to compute
the quantitites involved in eqs. (4.43) and (4.44) more precisely than we have done
earlier. We start with the computation of k. From eq. (4.1), we get

(+1)

n,k __{ .
™) = 2(n+k+(€ Dk) + 5

k:—gm—k)
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Therefore

Y =y (N ") =y ) —y T = 20 @4s)

|<’\l\)|<’\

Y (") — Y (Noa (r™F)) = y(r™*) —y (rmF 1) =

Letus write A = (n + k, k, ..., k,0). We will next compute d), where d is given
by (4.1). Onehas d) = ) qz‘/’(s), where the sum is over all those s for which the
top row is A. Such an s is of the form (4.25) and one has

(4.46)

Y(s) = —%E(n +Llk) + - (K -1l -2k + Z (ci +di) +dgsa.

=2
Thus we have

d; = q—an+k)—2(e—1)k ) q2(2f=2(ci+d,-)+dg+])
k=cp=cp_1==cp=n+k
O<dp=d3=<-+=dy=<k
de=dgyi1=cq
Now for any x, we have
Y xCiealeid) i)
k<ce<cp_y<~=co<n+k

0<dr<d3<-=<d¢<k
dg=<dgy1=ce

_ » Y(Ciae +de+1)) ( ) v (2o d,-)) (4.47)

k<dyyi1<c¢<cg_1<-=<cr<n+k 0<dr<d3<-<dy<k
(Z ¢ (Z di+de+1)
I W
k<ce<cy_1<+=<cr<n+k 0<dr<d3<-=<dy<dyy1<k

If we now use the identity

Z (Z, ltl)—xjkl_[(l_xn k+l)
1 —xt ’

k<ti<tr<-<tj<n i=1

we get

3 yCima(eitd)+det)
k<ce<cg_1<~=cr<n+k
0<dy<d3<-=<d¢<k
d¢=d¢y1=cq

-1

1—x"t 1 — xk+i
Kk
1_[( 1 —xi )11:[1( 1 —xi )
£—1 i 4 14
1 — xnt 1 — xk 1+l)
-1k
el
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-1
1— xn+t
_ -k ( )
o l_[ 1 —xt
-1 k+i k+¢
— DR (_1 ‘x"J,”) I (1 —x +)(1 — )
: 1 —xt ! 1—x? 1 —xt

i= i=1

-1

(l—x ) xe(xk(l_xn-i-e)_'_l_xk)

:1

e§-
._.._.

Thus
-1 . .
Ittt O +1i) Ok +i)\O(n +k +{)
Go=a e 1:[1( oo ) 4w
Write
=m+1+kk,....,k,0), MVM=m+k—-1,k—1,....,k—1,0).
Then one has
d%d_% _ a2 +1) On+k+1)
rh =4 Qn+0) Qn+k+L+1)
d%d_% _ _e/zQ(k—FE—l) Om+k+19
ATAT ok) Qmn+k+E—1)
Combining these with (4.45) and (4.46), we get
n,k nk\y _ lQ(n+1) Q(ﬂ+k+£)
K N ) =4 T D otk L+ 1) (4.49)
K(r"’k,No,l(r"’k)) — Q(k +4— 1) Q(I’l +k+ E) (450)

0(k) On+k+L-1)

Lemma 4.31. Let M € M and Ty be as in eq. (4.43). Then UTfU* €
OPD QTP if j<lorifj —K—J,—landM;éNg

Proof. From Lemma4.5 and eqs. (4.43) and (4.49), we get, for M = (my,...,m;) €
M7

.] b
Sgn(M)qZ—j+1+C(r"~k,N1,1)+B(N1,1)+C(s,M)+B(M)

‘ On+1) On+k+19)
Omn+0)0m+k+L+1) 4.51)

+ —
TMern.ks =

j—1
-L’(r”’k, 1, 1)( ]_[1 L(s,a,ma,ma+1))L’(s,j,mj)e,n,ks.
a=

Since C(r™*, Ni,1) = k and B(N;,1) = 0, we get

TA-;er",ks — sgn(M)qZ_j+1+B(M)+k+C(S’M)¢(s,M)e,.n,ks,
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with ¢ (s, M) a product of terms of the form Q (v (y))*! where ¥ (y) = |ya| +
¢(Yg+1)+ + m for some subset A C X, ¢ € {0, 1} and some integer m that does not
depend on s. Therefore

UTA—lf-U*ey — Sgn(M)qZ—j-i-1+B(M)+k+C(s,M)¢(s’M)ey’

where k and s are given by eqs. (4.38)—(4.40). Since ¢ (s, M) a product of terms of the
form Q (¥ (y))*!, it follows from Lemma 4.29 that the operator ey, = ¢(s, M)e,
is in &3°. Next look at the operator e, +> gk+tCe-Me, - Assume that there is
some i < j suchthat m; # 1. Let p = min{2 < i < j : m; # 1}. Then
C(s,M) > Hp_1,1(s) > (Yg+1)—. Therefore

{
k+C(s,M)>k+ (yer1)-= 2 vi +vesl
i=1
Hence UTAJ;U* IS OPBCZO ®T7°. Next assume that j < £andm; = 1foralli < j.
In this case, C(s, M) > H; 1(s) > (y¢+1)—. Therefore again we have

L
k+Cs.M)=k+ (yes1)- = 2 vi + Vet
i=1
and hence U T]\}L U* e OPB‘;’ ®77°. Combining the two cases, we have the required
result. O

Lemma 4.32. Let M € IM]._ and Ty, be asineq. (4.44). Then UT,, U™ € OPB‘ZO ®‘TE’°
if M # No,;.

Proof. From Lemma4.5 and egs. (4.44) and (4.50), we get, for M = (my,...,mj) €
M7,
J
Tojepnis = Sgn(M)q—j+1+C(r"~k,No,1)+B(No,1)+C(s,M)+B(M)
- Ok+¢—-1) Qn+k+1
(k) Om+k+4L-1)

j—1
“(IT L(s.a,ma,may1))L'(s. j.mj)epnis.

a=1

Ie.nk
L'(r"™*, 1, +1) (4.52)

Since C(r"*, No,1) = 0and B(Ny,1) = 0, we get
Tyrepnis = sgn(M)g 7 H1HCEMTBMD (5 Me i,

with ¢ (s, M) a product of terms of the form Q (v (y))*! where ¥ (y) = |ya| +
¢(Yg+1)+ + m for some subset A C X, ¢ € {0, 1} and some integer m that does not
depend on s. Therefore

UTyU*e, = sgn(M)q/ T1HCEMFTBM) 45 Me,,
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where k and s are given by egs. (4.38)—(4.40). As in the proof of Lemma 4.31, it is

now enough to shoe that C(s, M) > Zle Yi + |Ye+1]- Now assume that m; = 1
forsomei < {.Let p = min{2 <i < j : m; = 1}. Then p < £. We then have

p—2
C(s,M)> 3 Hjg11-i(8) + Hp—1,1(5) + Hp—1,042-p(5) + Vp—1,042-p ()

i=1
p—2 L p—1
> > Vi+ er)- + Vo + ( Vi )+ — X Vi)

4
="y + lyesl.
i=1

The result follows. O

Remark 4.33. As mentioned in the beginning of this subsection, weaker versions
of the two lemmas above have been proved by D’Andrea in [9]. In our notation,

he proves that the part of Z; , be ignored is of the order gk = qu=l viter)
whereas we prove here that one can actually ignore terms of a slightly higher order,

namely qu=1 vit+lvet1l | which makes it possible to compute Z 7,4 modulo the ideal
OPB‘Z" ®T°.

Lemma 4.34. Define operators X on L, (S, 5“‘1) by

o JEDTTY 0 = dpepnia g o) ifl=j=t-1
e (—D"1q Q(dpr1 — de) Q(k — dp)epni y, 5 ifJ =1L
(4.53)
Then one has
UZ;qU* —-UX;U" € OPB?" RT°.
Proof. In view of the two forgoing lemmas, it is enough to show that
US;,OJ, TJQOJ U*-UX,;U* € OP5‘2° TP forl <j <L (4.54)

Let us first look at the case 1 < j < £ — 1. Observe that

sgn(No,j) = (=17,
C(r™*, No,1) = 0 = B(No,1).
C(s, No,j) = d;,
B(No,j) = — L
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Therefore from (4.52), we get

_ 1 . 0k+£—-1) Qn+k+10)
T * = (—1 j—1_d Q( L/ n,k 1 1
Ul Urey = D4 = Gk w == - LEFD
j-1
(T1 LGs,a,€4+2—a b+ 1—a)L'(s,j.L+2—j)ey.
a=1

(4.55)
From (4.15), one gets

L'(r™* 1,04 1)

_ (ﬁ Q(lk—O—i+€+1—1|)) O(k—0—1+L+1—1])
- Ok —0—i+L+1) JO(n+k—0-1+C+1) (456)

L

:(H Ok +L—i) )Q(k+£—1): 0(k)
Hok+i—i+n)on+k+0 ~ Qn+k+0

Similarly, from (4.12) one gets, for 1 <a <{—1,

L(s,a,{+2—a,f+1—a)

41— _
— Ha O(sa,i —Sat1,441-a —1 + L+ 1—al)

O(I5a,i — Saj+2—a—1i +L+2—al)

i=1

I .
T O(sat1i—Saur2-a—i+l+2—a—1)

.i=1 O(Isa+1,i — Sa+14+1-a —1 + L+ 1—a—1])

_ O(ca—dg+1 +L—a) Q(ca+1 —dqg + L —a)
Q(ca—da +L+1—-a) Qcagy1 —dat1 +L—a—1)
ST Qo i Ll a) [ O —do i Lt —a)

s Ok —ds—i+L+2—a) s Ok —dgy1—i+4L—a)

_ Q(cqg —dat1 +{—a) O(ca+1—da +L—a)

O(cag—da+L+1—a) Qca41 —dagy1 +€—a—1)

‘i:[ Ok —dyr —i + £ —a) ﬁQ(k—da—i+€+1—a)
L0k —dg—i+l+1-a) ) Ok —dor1—i+L(—a)
_ O(ca—dagy1 L —a) O(ca+1—da +L—a)
C O(ca—da+L+1—a)Q(car1 —dapr1 +€—a—1)

Qk —dgy1 +L€—a—1)

 Qk—da+l—a)

(4.57)
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and from (4.15), for j <{—1,

L'(s,j,l+2—)
t+1—j . .
B 1_[] O(sj+1,i = Sjera—j —1 +L+2—j—1))
O(sji = Sjet2—j —i +L+2—jI)

i=1
_ O+ —di+E=-]) (1—[ Q(k—d‘+€+1—j—i)) Q(djy1—dj)

O(cj—dj +L+1—) Ok —dj +4+2—j—i)) Qlk—dj +1)
_ On—di+t—j) Qdj+1—d))

O(cj—dj+L+1—j) 0k —dj+L—j)

From the above two equations, we get

j—1
(l_[L(s,a,€+2—a,€—l— 1 —a))L’(s,j,€+2—j)

=Q(dj+1—d,~)(ﬁ O(ca —day1 + L —a) )
Ok +£—-1D)\ - Ocar1 —dar1 +L—a—1)

(1—[ O(cgy1 —da + L —a) )
O(cg—dag +L+1—a)
Now substituting all these in eq. (4.55), we get

_ dis1—d;)
Mo, UTer = (ED7 4 Qn+k+1£—1)

j—1
O(ca —day1 +L—a)
' (H Q(ca+1 —dag+1 +4 —a— 1))

O(cag+1—dg +1L—a)
(l_[Q(Ca—d +€+1—a))

(4.58)

Now note thatfor 1 <a < j —1,

¢
di +co—dag1 +L—a> Z + |ves1l,

{
dj +cay1—dagy1 +l—a—1> Yo vi + Vel
i=1
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and, for1 <a <j,
dj +cop1—dg +4—a > Yi + |Ves1l,

di+co—da+l+1—a>Y yi+ |yl

iMs I~

~.

anddj +n+k+{€—-1> Zle ¥i + |ye+1]|. Therefore by using Lemmas 4.27 and
4.28, we can write, modulo an operator in OPBZ" QT

UTy, U%ey = (~1)'q% Q(dj1 — dj) ¢y.
Using eq. (4.42), we get
USy, ,U*ey = (1)) ley,

where
g i
' yi—1 ifi =
Observe also that
UX;U*ey = q% Q(dj11 —dj) ey,

where y’ is as above. Therefore we get (4.54) for j < £ — 1.
In the case j = £, one has

O(se+1,1 —se2))  O(devr —dyp)

E D = O =52t 1D Qe —de + 1)

As a result, it follows that

-1
(]‘[ L(s,al+2—al+1 —a))L’(s,€,2)

a=1
£-1

_ Q(k—dy) Q(cag —dag+1 +L—a)
B Q(k—i—ﬂ—l)(l_[ Q(ca+1 —da+1 —I—Z—a—l))

L
Q(Ca-i-l _da +€—a)
'(H Q(ca—da+z+1—a))'

a=1

a=1
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As before, substituting all these in eq. (4.55), one gets
Q(k —dy)
Omn+k+£-1)
Q(Ca_da-H +€—a) )
O(ca+1 —dat1 +€—a—1)

_(“ Q(ca+1—da+e—a))e
A O0ca—da+l+1-a)) "

UTﬁO,eU*ey — (_1)6—1qd(z

-1

(11

a=1

(4.59)

Application of Lemmas 4.27 and 4.28, now enables us to write the following equality
modulo an operator in OPL_):o ®T7°:

UTy, ,U*ey = (=1)""'q% Q(k —d) Q(de11 — dp) ey
Using eq. (4.42), we get
USy, U*ey = (=1)' ey,
where
A P )
Observe also that
UXU ey = g% Q(k — do) Q(des1 — dyp) ey,

where y’ is as above. Therefore we obtain (4.54) for j = £. O

Lemma 4.35. Let X; be as in Lemma 4.34. Then one has UX;U* =Y ® I €
OPB?O QTP for1 < j <UL

Proof. It follows from eqs. (4.37)—(4.40) that for j < £—1, oneinfacthas UX;U* —
Yj’fq ® I = 0. For j = £, one has
—1_
UX;U* =Y}, @ Dey = (%=1 Qv + (ver1)-) Q(ve + (vex1)+))ey,
where p; = y; — 1ifi = £ and p; = y; for all other i. Thus
UX;U* — Y}, ® | € OPp° @T, sgn(UX;U* — Y}, ® I) € EF.
Therefore UX;U™* — Yj’:‘q ®1I € OPB‘;o ®T7°. O

From the two lemmas above (Lemmas 4.34 and 4.35), it follows that one has
UZ]*.qu* IS C°°(Sq2“1) for 1 < j < {. Thus we now need only to take care of the
case ] = £ + 1.
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Lemma 4.36. UZ?

T UT € (S,

Proof. Using Lemmas 4.31 and 4.32, it is enough to show that

UGSy, Ty + Sho psr Tig e VU € CO(STD). (4.60)

From (4.51), we get

Om+1) Om+k+1Y)
Om+4)Qn+k+L€+1)

{
L 1)( []LGs.a.1, 1)) Cpnig.
a=1

+ —
TNeern,ks =dq

(4.61)

From (4.12), we getfor 1 <a <{—1,

L(s,a,1,1)
42— (41— ,
+1—[“Q(|sal—sa+u—z+1|> *1—[ O(ISas1 = Saa —i +1—1))
i=2 Q(Isai = Sa1 =1+ 1)) iz O(Sa+1,i = Sa+11 —i +1=1])
e+1- _ .
haQ(Ca-l—l—k-l‘l—l)l—[ Q(ca —k+1i)

_ Qca—k+i-1) Q(ca+1 k+1i)
'Q(ca+1—da+€+1—a) Q(ca— a+1+L+1—-a)
O(g—dag+t+1—-a) Ocg+1—dat1 +L+1—a)

l—IQ(Ca+1 k+l)l—[ OQ(ca —k +1)

=1 O(cq —k +1i) O(ca+1 —k +1i)

Q(ca+1_da+€+1_a) Q(Ca_da+1+£+1_a)

U 0(a—da+L+1—a) O(Cas1—dat1 +L+1—a)
_ O(car1—k+1) O(cay1—dag +€+1—a) Olca—dar1+L+1—a)
 Qea—k+1) Qca—da+Ll+1—a) Q(car1 —das1 +L+1—a)

and fora = £,

L(s,£,1,1) = Ose2 —ser1,1 —2+ 1)) _ QWi —de +1)

Q(lsgo—s¢1—2+1)) Ocg—de+1)
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Also from (4.15), we have

¢ .
L™ 1,1 = (1_[,-=1 Ok —n—k—-i+1- 1I))

[T, Ok —n—k —i +1])
1
0(0—n—k—€—1+1)
V4

=( O(n+i) ) Q(n+1)

o +i=1)/)on+k+0)
Omn+4)

QO+ k40

Plugging these in eq. (4.61) and using (4.37), we get

Om+1) Omn+k+10) On+14)
O+ Qn+k+L+1)Q0(n+k+10)
(‘ﬁ Ocat1 —k+1) Q(cart —da + L +1-0)
a=1 Q(a—k+1) Qg—dag+L+1-a)

~ Q(ca—dap1 +L+1—a) )Q(d£+1—d£+1)e
O(Cat1 —dap1 +L+1-a)) Q(co—deg+1) 7

UTy U'ey =q

Thus as earlier, modulo an operator in OPB‘;’ ®77°, we have the equality
UTy U*ey =g e,. (4.62)

Next note that B(Ny) = £, C(s, No) = dg4; and sgn(No) = (—1)* so that we
get from (4.52)

Ok +£—-1) Qn+k+10
Q(k) Omn+k+4L-1)

T]Voer"’ks = (_l)eqd[+l
L
LR L+ D)( ] Ls,a, b +2—a, b+ 1—a))enky.
a=1
(4.63)

Now using (4.37), (4.56), (4.57) and the fact that

Olse,1 —Se1,1—1+L+1-4£)) _ O(cg —dgy1)
Olse,1 —se2—1+L4+2—1L)) Qcg—de+ 1)’

L(s.£,2,1) =
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we get

Ok +£—-1) Qn+k+10 Q(k)
0(k) OQn+k+L—-1)Q0mn+k+19

( Q(ca —dat1 + L —a) Q(cat1 —da + Ll —a)
12 0(a—da+E+1—a) Q(casr —dagr +L—a—1)

'Q(k—da+1+€—a—1)) O(ce —diy1) .
Ok —d, +0—a) O —de+1)

Thus modulo OP,>* ®T7°, we have the equality

UTy,U*ey = (=1 g%+

-1

UTy U*ey = (—1)'q%1e,. (4.64)
Define operators 7+ on Ly(S2¢™1) by
T+§y = qkéy» T ¢ = (‘UZCI‘QHS)’-

By eqs. (4.62) and (4.64), it is enough to look at the operators SI“\;E Tt + S;,O T.
Now observe that

- g )& iven >0 oy JE iy >0,
Nogi’ - : Nﬁy = .
&y if ye41 <0, & ity <0,

where
V= yi—1 ifi =£L+1, Y = yi—1 ifl<i<{+2,
l Yi otherwise, ' Vi otherwise,
and
yi+1 ifi=~Lori=40+2,
l_’//: yi—1 ifi =041,
Vi otherwise.
Therefore

gk &y + (—D)bqder1E, if ypq >0,

(ST TH+ 8y TTE, = _
Ne No g q* &, + (=Dfq%r1g,  ifye <O0.

So if we now define

TE (—1)gZi=1 Vigy, ifygeq >0,
y = 14 . .
qzi=17ig, if ygr1 <0,
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then one gets from the above equation that U(S;,’KT+ + S;OT— — T)U* is in
OPL> ®T(°. Thus it is enough to show that UT U™ € C°°(Sq2€+1), Now note
that
t ifyp >0,
N —
n(y)—n@y') = {0 e <0,

Therefore it follows that UT U*e, = q2f=1 Viey,ie, UTU* = YZ*Jrl J ® I. Thus

we get the required result. O

Putting together Lemmas 4.34, 4.35 and 4.36, we get Proposition 4.24.
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