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Abstract. The odd-dimensional quantum sphere S2`C1
q is a homogeneous space for the

quantum group SUq.` C 1/. A generic equivariant spectral triple for S2`C1
q on its L2-

space was constructed by Chakraborty and Pal in [4]. We prove regularity for that spectral
triple here. We also compute its dimension spectrum and show that it is simple. We give
a detailed construction of its smooth function algebra and some related algebras that help
proving regularity and in the computation of the dimension spectrum. Following the idea of
Connes for SUq.2/, we first study another spectral triple for S2`C1

q equivariant under torus
group action and constructed by Chakraborty and Pal in [3]. We then derive the results for the
SUq.`C1/-equivariant triple in the case q D 0 from those for the torus equivariant triple. For
the case q ¤ 0, we deduce regularity and dimension spectrum from the case q D 0.

Mathematics Subject Classification (2010). 58B34, 46L87, 19K33.

Keywords. Spectral triples, noncommutative geometry, quantum group.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

2.1 Regular spectral triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
2.2 Topological tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

3 Torus equivariant spectral triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
3.1 The spectral triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
3.2 The smooth function algebra A1

`
. . . . . . . . . . . . . . . . . . . . . . . 397

3.3 The case ` D 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
3.4 Regularity and the dimension spectrum . . . . . . . . . . . . . . . . . . . . . 401

4 SUq.`C 1/-equivariant spectral triple . . . . . . . . . . . . . . . . . . . . . . . . 405
4.1 Left multiplication operators . . . . . . . . . . . . . . . . . . . . . . . . . . 405
4.2 The spectral triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
4.3 The case q D 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
4.4 Regularity and dimension spectrum for q ¤ 0 . . . . . . . . . . . . . . . . . 418
4.5 The smooth function algebra C1.S2`C1

q / . . . . . . . . . . . . . . . . . . . 420
4.6 The operators Zj;q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438



390 A. Pal and S. Sundar

1. Introduction

In noncommutative geometry, the starting point is usually a separable unital C*-
algebra A which is the noncommutative version of a compact Hausdorff space. As-
sociated to this, one has certain invariants like the K-groups and the K-homology
groups. In geometry, what one does next is to equip the topological space with a
smooth structure so that in particular one can then talk about its de Rham cohomol-
ogy. In the noncommutative situation, the parallel is to look for an appropriate dense
subalgebra of A that will play the role of smooth functions on the space. Given this
dense subalgebra, one can compute various cohomology groups associated with it,
namely the Hochschild cohomology, cyclic cohomology and the periodic cyclic co-
homology, which are noncommutative and far-reaching generalizations of ordinary
de Rham homology and cohomology. The question is: how to get hold of this dense
subalgebra? One answer to this lies in the notion of a spectral triple, which plays a
central role in Connes’ formulation of noncommutative geometry.

In ordinary differential geometry, with just a smooth structure on a manifold, one
can hardly go very far. In order that one can talk about shapes and sizes of spaces, one
needs to bring in extra structure. One example is the Riemannian structure, which
gives rise to a Riemannian connection, which in turn enables one to talk about curva-
ture and so on. Other examples of such extra structures are Spin and Spinc structures.
In the presence of these extra structures, one has an operator-theoretic data that com-
pletely encodes the geometry. In noncommutative geometry, one takes this operator-
theoretic data as the initial data and this is what goes by the name spectral triple.

Definition 1.1. Let A be an associative unital *-algebra. An even spectral triple for
A is a triple .H ; �;D/ together with a Z2-grading � on H such that

(1) H is a (complex separable) Hilbert space,

(2) � W A ! L.H / is a *-representation (usually assumed faithful),

(3) D is a self-adjoint operator with compact resolvent such that ŒD; �.a/� 2 L.H /

for all a 2 A,

(4) �.a/� D ��.a/ for all a 2 A and D� D ��D.

If no grading is present, one calls it an odd spectral triple.

The algebra A appearing in this definition is in general different from the C*-
algebra A one starts with. Typically it is a dense subalgebra in A, big enough so that
the K-groups of A and A coincide.

SinceD has compact resolvent, it has finite dimensional kernel. Hence by making
a finite rank perturbation, one can make D invertible. Now if one replaces D with
sgnD, then one gets the notion of a Fredholm module over the algebra A. If A is a
dense *-subalgebra of a C*-algebra A, then this Fredholm module extends uniquely
and gives a Fredholm module over A. In other words, one obtains an element in
the K-homology group of A. This gives a map from the K-theory of A to the set of
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integers via the K-theory–K-homology pairing. Starting from this Fredholm module,
one can construct its Chern character, which gives an element in the periodic cyclic
cohomology of A, which, in turn, gives a map from the K-theory of A to C via the
periodic cyclic cohomology–K-theory pairing. The two maps thus obtained are the
same. This is the content of the index theorem.

The Chern character is often difficult to compute. And that is where the spectral
triple comes into the picture. Under certain hypothesis on the spectral triple, one
can construct a cyclic cocycle, i.e., an element in the periodic cyclic cohomology that
differs from the Chern character by a coboundary, so that it gives rise to the same map
from K-theory to Z. Under a mild hypothesis on an invariant known as the dimension
spectrum, these cocycles are given in terms of certain residue functionals, that can
be relatively easier to compute. This is the Connes–Moscovici local index theorem
([7]), which is one of the major results in noncommutative geometry. It was first
proved in the context of transverse geometry of foliations but is much more general
in nature and has wider applicability. This was illustrated by Connes in [5], where
he made a detailed analysis of the equivariant spectral triple for the quantum SU.2/
group constructed in [2]. A similar analysis was later done by Da̧browski et al. in
[14] for the spectral triple constructed in [8]. Typically, the C*-algebras associated
to quantum groups or their homogeneous spaces are given by a set of generators and
relations. While constructing spectral triples, one does it for the associated coordinate
function algebra, i.e., the *-subalgebra generated by these generators. This algebra is
not closed under the holomorphic function calculus of the C*-algebra. Therefore one
needs to construct the smooth function algebra, to prove regularity and to compute
the dimension spectrum in order to be able to apply the Connes–Moscovici theorem.
This was done in [5], where Connes also defined a symbol map and gave formulae
for computing the residue functionals in terms of the symbol maps.

Odd-dimensional quantum spheres are higher-dimensional analogues of the quan-
tum SU.2/. The .2`C 1/ dimensional sphere S2`C1q is a homogeneous space of the
quantum group SUq.`C1/. In [4], Chakraborty and Pal constructed a generic spectral
triple on the L2-space of the sphere with non-trivial K-homology class and equivari-
ant under the action of SUq.`C 1/. The main aim of the present article is to prove
that this spectral triple is regular. We also introduce the smooth function algebra and
compute the dimension spectrum. The dimension spectrum is shown to be simple so
that the Connes–Moscovici local index theorem is applicable to this triple. The local
index computation will be taken up in a separate article.

Here is a brief outline of the contents of this article. In the next section, we recall a
few basic notions from [7]. We then collect together a few observations and remarks
on tensor products of Fréchet algebras and fix some of the notations. In Section 3,
we first look at the torus equivariant spectral triple for the spheres and introduce a
smooth function algebra, prove regularity and compute the dimension spectrum. The
key here is the short exact sequence

0 �! K ˝ C.T / �! C.S2`C1q / �! C.S2`�1q / �! 0;
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and results by Schweitzer ([12], [13]) on spectral invariance. Using these and the
idea employed by Connes in [5], we build the smooth function algebra over S2`C1q

recursively starting from C1.T /.
In Section 4, we deal with the SUq.` C 1/-equivariant spectral triple. We first

treat the case q D 0. Using a decomposition of the L2-space, we relate it to the torus
equivariant triple with a certain multiplicity. Regularity, smooth function algebra and
properties of the dimension spectrum all then follow from the results in Section 3.
Here again the idea is exactly as in [5] for SUq.2/. In Section 4.4 we treat the case
q ¤ 0. We take a close look at the representation of the algebra, in particular the
images of the generating elements, and after a careful analysis we prove that, modulo
operators that one can neglect for the purpose of computing the dimension spectrum,
things can be deduced from the torus equivariant case again.

2. Preliminaries

2.1. Regular spectral triples. In this section we recall some definitions and notions
from [7]. Let D be a selfadjoint operator on a Hilbert space H which is invertible.
Define Hs D Dom.jDjs/ for s � 0. Then Hs is a decreasing family of vector
subspaces of H . Let H1 ´ T

s�0 Hs . The subspace H1 is a dense subspace of H .

Definition 2.1. An operator T W H1 ! H1 is said to be smoothing if for every
m; n � 0 the operator jDjmT jDjn is bounded. The vector space of smoothing
operators is denoted by OP�1.

For T 2 OP�1, define kT km;n D kjDjmT jDjnk for m; n � 0.

Lemma 2.2. The vector space OP�1 is an involutive subalgebra of L.H / and
equipped with the family of seminorms k � km;n is a Fréchet algebra.

Let ı be the unbounded derivation ŒjDj; � �. More precisely, Dom.ı/ consists of all
bounded operators T that leave Dom.jDj/ invariant and for which ı.T / ´ ŒjDj; T �
extends to a bounded operator.

Lemma 2.3 ([6]). The unbounded derivation ı is a closed derivation, i.e., if Tn is
a sequence in Dom.ı/ such that Tn ! T and ı.Tn/ ! S then T 2 Dom.ı/ and
ı.T / D S .

Define OP0 ´ fT 2 L.H / W T 2 T
n Dom.ın/g. The following lemma says

that elements of OP0 are operators on H1.

Lemma 2.4. Let T be a bounded operator on H . Then the following are equivalent.

(1) The operator T 2 OP0.
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(2) The operator T leaves H1 invariant and ın.T / W H1 ! H1 is bounded for
every n 2 N.

It is easy to see from Lemma 2.4 that OP0 is an algebra and that jDj�mT jDjm is
bounded for every m 2 Z if T 2 OP0. As a consequence it follows that OP�1 is an
ideal in OP0. Now we recall the notions of regularity and dimension spectrum for a
spectral triple.

Definition 2.5. Let .A;H ;D/ be a spectral triple. We say that .A;H ;D/ is regular
if A C ŒD;A� � OP0.

A spectral triple .A;H ;D/ is pC summable if jDj�p is in the ideal of Dixmier
traceable operators L.1;1/. In particular, if .A;H ;D/ is pC summable, then jDj�s
is trace class for s > p. Let .A;H ;D/ be a regular spectral triple which is pC
summable for some p. Let B be the algebra generated by ın.A/ and ın.ŒD;A�/.
We say that the spectral triple .A;H ;D/ has discrete dimension spectrum † � C
if † is discrete and, for every b 2 B, the function Trace.bjDj�z/ initially defined
for Re.z/ > p extends to a meromorphic function with poles only in †. We say the
dimension spectrum is simple if all the poles are simple.

2.2. Topological tensor products. The C*-algebras involved in tensor products
that we deal with in this paper are all nuclear. Therefore no ambiguities arise due to
nonuniqueness of tensor products. Apart from C*-algebras and their tensor products,
we will also deal with Fréchet algebras and their tensor products. Suppose that
A1 and A2 are two Fréchet algebras with topologies coming from the families of
seminorms .k � k�/�2ƒ and .k � k�0/�02ƒ0 . For each pair .�; �0/ 2 ƒ � ƒ0, one
forms the projective cross norm k � k�;�0 , which is a seminorm on the algebraic tensor
product A1 ˝alg A2. The family .k � k�;�0/.�;�0/2ƒ�ƒ0 then gives rise to a topology
on A1 ˝alg A2. Completion with respect to this is a Fréchet algebra and is called the
projective tensor product of A1 and A2. While talking about tensor product of two
Fréchet algebras, we will always mean their projective tensor product and will denote
it by A1 ˝ A2.

We will mainly be concerned with Fréchet algebras sitting inside some L.H /with
Fréchet topology finer than the norm topology. In other words, we will be dealing
with Fréchet algebras with faithful continuous representations on Hilbert spaces. Let
A1, A2 be Fréchet algebras. If �i W Ai ! L.Hi / are continuous representations
for i D 0; 1, where the Hi ’s are Hilbert spaces, then by the universality of the
projective tensor product it follows that there exists a unique continuous representation
�1˝�2 W A1˝A2 ! L.H1˝H2/ such that .�1˝�2/.a1˝a2/ D �1.a1/˝�2.a2/. If
theAi ’s are subalgebras of L.Hi / then we will call the tensor product representation
of A1 ˝ A2 on H1 ˝ H2 the natural representation.

Lemma 2.6. Let .A1;H1;D1/ and .A2;H2;D2/ be regular spectral triples. Assume
that the following conditions hold:
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(1) The algebras A1 and A2 are Fréchet algebras represented faithfully on H1 and
H2, respectively.

(2) The selfadjoint operatorsD1 andD2 are positive with compact resolvent.

(3) For i D 0; 1, the unbounded derivations ıi D ŒDi ; � � leave Ai invariant and
ıi W Ai ! Ai is continuous.

LetD ´ D1 ˝ 1C 1˝D2. Suppose that the natural representation of A1˝A2 on
H1 ˝ H2 is faithful. Then the triple .A1 ˝ A2;H1 ˝ H2;D/ is a regular spectral
triple. More precisely, the unbounded derivation ı ´ ŒD; � � leaves the algebra
A1 ˝ A2 invariant and the map ı W A1˝A2 ! A1˝A2 is continuous.

Proof. Let ı0 D ı1˝ 1C 1˝ ı2. Then ı0 is a continuous linear operator on A1˝A2.
Clearly A1 ˝alg A2 � Dom.ı/ and ı D ı0 on A1 ˝alg A2. Now let a 2 A1˝A2
be given. Choose a sequence .an/ 2 A1 ˝alg A2 such that an ! a in A1˝A2.
Then an ! a in L.H1 ˝ H2/. Since ı0 is continuous and because the inclusion
A1˝A2 � L.H1 ˝ H2/ is continuous, it follows that .ı0.an// D .ı.an// is a
Cauchy sequence in L.H1 ˝ H2/. Since ı is closed, this implies that a 2 Dom.ı/
and ı.a/ D ı0.a/. Now the lemma follows.

The above lemma can be extended to tensor product of finite number of spectral
triples with the appropriate assumptions.

Remark 2.7. Note that the above lemma is not meant to apply to a very general set up.
The assumptions that theDi ’s are positive and the algebrasAi are invariant under the
derivations ıi are rather unusual for a spectral triple. A spectral triple will normally
not satisfy these requirements. For example, positivity of D means that the spectral
triple has trivial K-homology class, giving trivial pairing with K-theory. Also, the
operatorD is not given by the usual product formula for two Dirac operators. We will
use this lemma in Section 4 in a very specific situation, where Di is j zDi j for Dirac
operators zDi and D is the absolute value of the Dirac operator for the product space
that we are interested in. Also the Ai ’s are of very specific nature so that invariance
under ıi is satisfied. The main purpose of the lemma is to derive, in our situation, the
invariance of A1 ˝ A2 under ı and the continuity of this map.

Notations. Let us now collect together some of the notations that will be used
throughout the paper. The symbol H , with or without subscripts, will denote a Hilbert
space. The space of bounded linear operators on H will be denoted by L.H /, and the
space of compact linear operators on H will be denoted by K.H /. We will denote
by † the set f1; 2; : : : ; 2`C 1g and by †` and †j;` the subsets f1; 2; : : : ; `C 1g and
f` � j C 1; ` � j C 2; : : : ; `C 1g, respectively, where 0 � j � `.

Let � � �† denote the set of maps � from † to Z such that �i 2 N for all
i 2 † n f`C 1g, i.e., �† D N` � Z � N`. For a subset A of †, we will denote by
�A the restriction � jA of � to A. Let �A denote the set f�A W � 2 �g and HA be the
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Hilbert space `2.�A/. We will denote H† by just H , and H†j;`
by Hj . Thus

H† D `2.N/˝ � � � ˝ `2.N/„ ƒ‚ …
` copies

˝`2.Z/˝ `2.N/˝ � � � ˝ `2.N/„ ƒ‚ …
` copies

;

Hj D `2.N/˝ � � � ˝ `2.N/„ ƒ‚ …
j copies

˝`2.Z/:

Note that Hj and Hfj g are different.
Let A 	 †. We will denote by fe�g� the natural orthonormal basis for HA D

`2.�A/ and by p� the rank one projection je� ihe� j. For i 2 A, we will denote by Ni
the number operator on the i -th coordinate on HA, i.e.,

Ni � P
�

�ip� W e� 7! �ie� .defined on HA with i 2 A/:

We will denote by jDAj the operator
P
i2A jNi j on HA.

Let F0 be the following operator on `2.Z/:

F0ek D
´
ek if k � 0;

�ek if k < 0:

For 1 � j � 2`C 1, let Vj be the operator on Hfj g defined by

Vj ´
´
F0 if j D `C 1;

I otherwise.

Let FA denote the operator j̋2AVj on HA and let DA D FAjDAj. Thus

DAe� D
´

�.Pi2A j�i j/e� if `C 1 2 A and �`C1 < 0;
.
P
i2A j�i j/e� otherwise.

We will denote F†j;`
by Fj and D†j;`

by Dj .
Recall that Hfj g is `2.N/ if j ¤ `C 1 and is `2.Z/ if j D `C 1. Suppose that

Fj is a subspace of L.Hfj g/ for each j 2 †. For A 	 †, define

Fj;A D
´

Fj if j 2 A,

C � I if j 62 A,

and FA to be the tensor product
N
j2† Fj;A in L.H†/ (the type of the tensor product

will depend on the specific Fj ’s we look at). This tensor product will often be
identified with

N
j2A Fj 	 L.HA/.

On both `2.N/ and `2.Z/, we will denote by N the number operator defined
by Nen D nen and by S the left shift defined by Sen D en�1. For k 2 Z (for
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k 2 N in the case of `2.N/), let pk denote the projection jekihekj. We will freely
identify `2.Z/ with L2.T /. Thus the right shift on `2.Z/ will be multiplication by
the function t 7! t and will be denoted by z. Let T be the Toeplitz algebra, i.e., the
C*-subalgebra of L.`2.N// generated by S . For a positive integer k, we will denote
by Tk the k-fold tensor product of T, embedded in L.`2.Nk//. Denote by � the
symbol map from T to C.T / that sends S� to z and all compact operators to 0.

3. Torus equivariant spectral triple

3.1. The spectral triple. In this section we recall the spectral triple for the odd-
dimensional quantum spheres given in [3]. We begin with some known facts about
odd-dimensional quantum spheres. Let q 2 Œ0; 1�. The C*-algebra C.S2`C1q /

of the quantum sphere S2`C1q is the universal C*-algebra generated by elements
z1; z2; : : : ; z`C1 satisfying the following relations (see [10]):

zizj D qzj zi ; 1 � j < i � `C 1;

z�
i zj D qzj z

�
i ; 1 � i ¤ j � `C 1;

ziz
�
i � z�

i zi C .1 � q2/ P
k>i

zkz
�
k

D 0; 1 � i � `C 1;

`C1P
iD1

ziz
�
i D 1:

We will denote by A.S2`C1q / the *-subalgebra ofA` generated by the zj ’s. Note that
for ` D 0, the C*-algebra C.S2`C1q / is the algebra of continuous functions C.T / on
the torus and for ` D 1, it is C.SUq.2//.

There is a natural torus group T `C1 action 	 on C.S2`C1q / as follows. For w D
.w1; : : : ; w`C1/, define an automorphism 	w by 	w.zi / D wizi . Let Yk;q be the
following operators on H`:

Yk;q D

8̂̂̂
<
ˆ̂̂:
qN ˝ � � � ˝ qN„ ƒ‚ …

k�1 copies

˝p1 � q2NS� ˝ I ˝ � � � ˝ I„ ƒ‚ …
`C1�k copies

if 1 � k � `;

qN ˝ � � � ˝ qN„ ƒ‚ …
` copies

˝S� if k D `C 1:
(3.1)

Here for q D 0, qN stands for the rank one projectionp0 D je0ihe0j. Then�` W zk 7!
Yk;q gives a faithful representation ofC.S2`C1q / on H` for q 2 Œ0; 1/ (see Lemma 4.1
and Remark 4.5, [10]). We denote the image �`.C.S2`C1q // by A`.q/ or by just A`.

Let fe� W � 2 �†`
g be the standard orthonormal basis for H`. For w D

.w1; w2; : : : ; w`C1/, define Uw.e� / D w
�1

1 w
�2

2 : : : w
�`C1

`C1 e� to be the unitary Uw
on H`, where � D .�1; �2; : : : ; �`C1/ 2 �†`

. Then .�`; U / is a covariant represen-
tation of .C.S2`C1q /;T `C1; 	/. Note that A` � T` ˝ C.T /.
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In [3] all spectral triples equivariant with respect to this covariant representation
were characterised, and an optimal one was constructed. We recall the following
theorem from [3].

Theorem 3.1 ([3]). LetD` be the operator e� ! d.�/e� on H`, where the d� ’s are
given by

d.�/ D
´
�1 C �2 C : : : �` C j�`C1j if �`C1 � 0;

�.�1 C �2 C : : : �` C j�`C1j/ if �`C1 < 0:

Then .A.S2`C1q /;H`;D`/ is a non-trivial .`C1/-summable spectral triple. AlsoD`
commutes with Uw for every w 2 T `C1.

The operator D` is optimal, i.e., if .A.S2`C1q /;H`;D/ is a spectral triple such
that D commutes with Uw for every w, then there exist positive real numbers a and
b such that jDj � aC bjD`j.

In the next few sections, we will introduce a dense subalgebra A1
`

ofA`.q/ closed
under its holomorphic function calculus and establish regularity of the spectral triple
.A1

`
;H`;D`/. We will also compute its dimension spectrum.

3.2. The smooth function algebra A1
`

. In this section we associate a dense Fréchet
C*-subalgebra of A`.q/ D �`.C.S

2`C1
q // which is closed under holomorphic func-

tional calculus. We first show that the C*-algebra A`.q/ is independent of q.

Lemma 3.2. For any q 2 .0; 1/, one has A`.0/ D A`.q/.

Proof. Let us first show thatA`.q/ 	 A`.0/. We prove this by induction on `. Let us
denote the generators Yj;q of A`.q/ by Y .`C1/j;q . Note that for ` D 0, one has Y .1/1;q D
Y
.1/
1;0 and A0.q/ D A0.0/ D C.T / so that the inclusion is trivial. Next, assume the

inclusion for ` � 1. Observe that for 1 � j � `, we have Y .`C1/jC1;q D qN ˝ Y
.`/
j;q and

Y
.`C1/
jC1;0 D p0 ˝ Y

.`/
j;0 . From this last equality and from the induction hypothesis, it

follows that p0 ˝ Y
.`/
j;q 2 A`.0/ for 1 � j � `. Since for 1 � j � `,

Y
.`C1/
jC1;q D qN ˝ Y

.`/
j;q D P

n2N

qn.Y
.`C1/
1;0 /n.p0 ˝ Y

.`/
j;q /.Y

.`C1/
1;0 /�n;

it follows that Y .`C1/j;q 2 A`.0/ for 2 � j � ` C 1. So it remains to show that

Y
.`C1/
1;q 2 A`.0/. Note that Y .`C1/1;q D .

p
I � q2N ˝ I /Y

.`C1/
1;0 and

qN ˝ I D PP
n2N q

n.Y
.`C1/
1;0 /n.p0 ˝ I /.Y

.`C1/
1;0 /�n

D PP
n2N q

n.Y
.`C1/
1;0 /n.Y

.`C1/
2;0 /�.Y .`C1/2;0 /.p0 ˝ I /.Y

.`C1/
1;0 /�n:
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Therefore we have the required inclusion.
For the other inclusion, we will use the following fact: if B denotes the C*-

subalgebra of L.`2.N// generated by the operator X D .1 � q2N /
1
2S�, then B

contains the shift operator S . This is because the operator jX j is invertible and
S� D X jX j�1. Using this fact for the first copy of `2.N/, since Y1;q 2 A`.q/,
one gets Y1;0 2 A`.q/. Next assume that Yi;0 2 A`.q/ for 1 � i � j � 1, where
2 � j � `. Then Pj�1 ´ I �Pj�1

kD1 Yk;0Y
�
k;0

2 A`.q/. Observe that

Pj�1Yj;q D p0 ˝ � � � ˝ p0„ ƒ‚ …
j�1

˝X ˝ I ˝ � � � ˝ I„ ƒ‚ …
`C1�j

;

Yj;0 D p0 ˝ � � � ˝ p0„ ƒ‚ …
j�1

˝S� ˝ I ˝ � � � ˝ I„ ƒ‚ …
`C1�j

:

Therefore using the above fact for the j -th copy of `2.N/ we get Yj;0 2 A`.q/.
Finally, since Y`C1;0 D Y`C1;q.I �P`

kD1 Yk;0Y �
k;0
/, one has Y`C1;0 2 A`.q/.

Write ˛i for Y �
i;0. Note that the C*-subalgebra of A` generated by ˛2; : : : ; ˛`C1

is isomorphic toA`�1 where the map a 7! p0˝a gives the isomorphism. We define
the Fréchet subalgebras A1

`
inductively as follows.

The algebra

A1
0 ´ fPn2Z anzn W .an/ is rapidly decreasingg

is the algebra of smooth functions on T together with the increasing family of semi-
norms k � kp given by k.an/kp D P

.1 C jnj/pjanj. Then A1
0 is a dense Fréchet

C*-subalgebra of A0 D C.T /. Note that kak � kak0 for a 2 A1
0 . Now assume

.A1
`�1; k � km/ be defined such that

(1) the seminorms k � km are increasing and .A1
`�1; k � km/ is a Fréchet algebra,

(2) the subalgebra A1
`�1 is *-closed and dense in A`�1. For every a 2 A1

`�1, one
has ka�km D kakm,

(3) for every a 2 A1
`�1, one has kak � kak0, where k � k denotes the C* norm of

A`�1.

Now define

A1
` ´ ˚P

j;k2N ˛
�j
1 .p0 ˝ ajk/˛

k
1 CP

k�0 �k˛k1 CP
k>0 ��k˛�k

1 W
ajk 2 A1

`�1;
P
j;k.1C j C k/nkajkkm < 1; .�k/ is

rapidly decreasing
�
:

(3.2)

Let a ´ P
j;k ˛

�j
1 .p0 ˝ ajk/˛

k
1 CP

k�0 �k˛k1 CP
k>0 ��k˛�k

1 be an element of
A1
`

. Define for m 2 N, the seminorms kakm as

kakm D max
r;s�m.

P
j;k.1C j C k/rkajkks/CP

k2Z.1C jkj/mj�kj:
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Proposition 3.3. The pair .A1
`
; k � km/ has the following properties:

(1) the seminorms k � km are increasing and .A1
`
; k � km/ is a Fréchet algebra,

(2) the subalgebra A1
`

is *-closed and dense in A`. For every a 2 A1
`

, one has
ka�km D kakm,

(3) for every a 2 A1
`

, one has kak � kak0 where k � k denotes the C* norm of A`.

Proof. The proof is by induction on `. Parts (2) and (3) and the fact that the seminorms
k � km are increasing follow from the definition and the induction hypothesis. One
verifies directly that .A1

`
; k�km/ is a Fréchet algebra using induction and the relations

˛1˛
�
1 D 1;

˛
�j
1 .p0 ˝ ajk/˛

k
1˛

�r
1 .p0 ˝ ars/˛

s
1 D ıkr˛

�j
1 .p0 ˝ ajkars/˛

s
1;

˛�m
1 ˛n1 D

´
.˛�
1 /
m�n �Pn�1

kD0.˛�
1 /
m�nCk.p0 ˝ 1/˛k1 if m � n;

˛n�m
1 �Pm�1

kD0 ˛�k
1 .p0 ˝ 1/˛n�mCk

1 if m < n:

Denote the generators z1; z2; : : : ; z`C1 ofC.S2`C1q /by z.`C1/1 ; z
.`C1/
2 ; : : : ; z

.`C1/
`C1 .

Let �` W C.S2`C1q / ! C.S2`�1q / be the homomorphism given by �`.z
.`C1/
`C1 / D 0 and

�`.z
.`C1/
i / D z

.`/
i for 1 � i � `. Let us denote by the same symbol �` the induced

homomorphism from A` to A`�1. Observe that if one applies the map � on the `-th
copy of T in T` ˝ C.T / followed by evaluation at 1 in the .`C 1/-th copy, then the
restriction of the resulting map to A` is precisely �`.

Proposition 3.4. The dense Fréchet C*-subalgebra A1
`

of A` is closed under holo-
morphic functional calculus in A`. Moreover, the algebra A1

`
contains the genera-

tors Y .`C1/1;q ; : : : ; Y
.`C1/
`C1;q .

Proof. We prove this proposition by induction on `. For ` D 0, by definition
A1
0 D C1.T /. Hence the proposition is clear in this case. Now assume that the

algebra A1
`�1 is closed under holomorphic functional calculus in A`�1 and contains

Y
.`/
1;q ; : : : ; Y

.`/

`;q
. The homomorphism �` W A` ! A`�1 gives the exact sequence

0 �! K.`2.N
`//˝ C.T / �! A` �! A`�1 �! 0:

One also has at the smooth algebra level the “sub” extension

0 �! �.`2.N
`//˝ C1.T / �! A1

` �! A1
`�1 �! 0:

Since �.`2.N`// ˝ C1.T / � K.`2.N`// ˝ C.T / and A1
`�1 � A`�1 are closed

under the respective holomorphic functional calculus, it follows from Theorem 3.2,
part 2, [13] that A1

`
is spectrally invariant in A`. Since kak � kak0 for all a 2

A1
`

, it follows that the Fréchet topology of A1
`

is finer than the norm topology.
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Therefore A1
`

is closed under holomorphic functional calculus in A`. Observe that

Y
.`C1/
i;q D P

n�0 qn˛�n
1 .p0 ˝ Y

.`/
i�1;q/˛n1 for i � 2. Hence Y .`C1/i;q 2 A1

`
for i D

2; : : : ; `C1. Also note that qN ˝I D P
n�0 qn˛�n

1 .p0˝1/˛1. Since A1
`

is closed

under holomorphic functional calculus, it follows that
p
1 � q2NC2 ˝ I 2 A1

`
. As

Y
.`C1/
1;q D ˛�

1 .
p
1 � q2NC2 ˝ I / it follows that Y .`C1/1;q 2 A1

`
. This completes the

proof.

Next we proceed to prove that the spectral triple .A1
`
;H`;D`/ is regular and

compute its dimension spectrum. The proof is by induction. We start with the case
` D 0 to start the induction.

3.3. The case ` D 0. For ` D 0, the spectral triple .A1
0 ;H0;D0/ is unitarily

equivalent to the spectral triple .C1.T /; L2.T /; 1i
d
d�
/. For f 2 C1.T / one has

ŒD0; f � D 1
i
f 0. Let .ek/ be the standard orthonormal basis and let pk be the

projection onto ek . Let F0 ´ sign.D0/. Note that ŒF0; z� D 2p0z and hence by
induction ŒF0; zn� D 2

Pn�1
kD0 pkznpk�n for n � 0. Thus ŒF0; zn� is smoothing

for n � 0. Also kjD0jr ŒF0; zn�jD0jsk � 2.1 C n/rCsC1. Since ŒF0; z�jnj�� D
�ŒF0; zjnj�, it follows that ŒF0; zn� 2 OP�1 for every n. Moreover, kŒF0; zn�kr;s �
2.1 C jnj/rCsC1. Hence we observe that ŒF0; f � 2 OP�1 and kŒF0; f �kr;s �
2kf krCsC1. Let ı be the unbounded derivation ŒjD0j; � �.
Lemma 3.5. Let B ´ ff0 C f1F0 CR W f0; f1 2 C1.T /; R 2 OP�1

D0
g. Then:

(1) If f0 C f1F0 is smoothing then f0 D f1 D 0. Hence B is isomorphic to
the direct sum C1.T / ˚ C1.T / ˚ OP�1

D0
. We give B the Fréchet space

structure coming from this decomposition. This topology on B is generated
by the seminorms .k � km/m2N which are defined by kf0 C f1F0 C Rkm ´
kf0km C kf1km CP

rCs�m kRkr;s .
(2) The vector space B is closed under ı and the derivation ŒD0; � �.
(3) For every b 2 B, ŒF0; b� 2 OP�1. Also the map b ! ŒF0; b� 2 OP�1 is

continuous. The derivations ı and ŒD0; � � are continuous.

(4) The vector space B is an algebra and contains C1.T /.

Proof. First observe that a bounded operator T on `2.Z/ is smoothing if and only if
.hTem; eni/m;n is rapidly decreasing. Now suppose R ´ f0 C f1F0 be smoothing.
Fix an integer r . Observe that hR.en/; erCni converges to Of0.r/C Of1.r/ as n ! C1
and converges to Of0.r/� Of1.r/ as n ! �1. But sinceR is smoothing it follows that
Of0.r/C Of1.r/ D 0 D Of0.r/� Of1.r/. Hence Of0.r/ D Of1.r/ D 0 for every integer r .

Thus f0 D f1 D 0. This proves part (1).
Parts (2), (3) and (4) follow from the observations that ŒD0; f � D 1

i
f 0, ŒF0; f � 2

OP�1, kŒF0; f �kr;s � 2kf krCsC1 and ı.b/ D ŒD0; b�F0 CD0ŒF0; b�. This com-
pletes the proof.
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In particular, it follows from parts (2) and (4) of the above lemma that the spectral
triple .A1

0 ;H0;D0/ is regular.
Let E be the C*-subalgebra of L.`2.Z// generated by C.T / and F0. Note that

the algebra B plays the role of smooth function subalgebra for the C*-algebra E .
Therefore E1 will stand for the algebra B.

3.4. Regularity and the dimension spectrum. In this section we prove regularity
and calculate the dimension spectrum for the spectral triple .A1

`
;H`;D`/. The proof

is by induction on `. Let us denote the derivation ŒjD`j; � � by ı` and let F` stand for
the sign of the operator D`. Observe that F` D 1˝` ˝ F0 D 1˝ F`�1.

Proposition 3.6. Let B` ´ fA0 CA1F` CR W A0; A1 2 A1
`
; R 2 OP�1g. Then:

(1) If A0 C A1F` is smoothing then A0 D A1 D 0. Hence B` is isomorphic
to the direct sum A1

`
˚ A1

`
˚ OP�1. Equip B` with the Fréchet space

structure coming from this decomposition. This topology on B` is induced
by the seminorms .k � km/m2N which are defined by kA0 C A1F` C Rkm ´
kA0km C kA1km CP

rCs�m kRkr;s .
(2) For every b 2 B`, ŒF`; b� 2 OP�1. Also the map b ! ŒF`; b� 2 OP�1 is

continuous.

(3) The vector space B` is closed under the derivations ı` and ŒD`; � �. Moreover
the derivations ı` and ŒD`; � � are continuous.

(4) The vector space B` is an algebra and contains A1
`

.

Proof. The proof is by induction on `. For ` D 0, the proposition is just Lemma 3.5.
Now assume that the proposition is true for ` � 1. Suppose that A0 C A1F` is
smoothing for some A0; A1 2 A1

`
. Then A0 C A1F` 2 T` ˝ E and A0 C A1F` is

compact. Therefore .� ˝ id/.A0 C A1F`/ D 0. Now let

Ai D P
j;k�0

˛
�j
1 .p0 ˝ a

.i/

jk
/˛k1 C P

k�0
�
.i/

k
˛k1 C P

k>0

�
.i/

�k˛
�k
1

for i D 0; 1. Let fi .z/ D P
k2Z �

.i/

k
zk for i D 0; 1. Now .� ˝ id/.A0 CA1F`/ D

f0˝I Cf1˝F`�1. So we have f0˝I Cf1˝F`�1 D 0. Writing F` D 2P`�I , it
follows that .f0Cf1/˝P`�1C.f0�f1/˝.1�P`�1/ D 0. Hencef0 D f1 D 0. This
shows that �.i/

k
D 0 for i D 0; 1. Let bjk D a0

jk
Ca1

jk
F`�1. SinceR ´ A0CA1F`

is smoothing, it follows that for every j , k the matrix entries he.j;�/; R.e.k;� 0//i are
rapidly decreasing in .�; � 0/. Hence bjk is smoothing for every j , k. By induction

hypothesis a.i/
jk

D 0 for every j; k � 0 and for i D 0; 1. Thus A0 D A1 D 0. This
proves part (1).

Observe that

ı`.˛1/ D �˛1; jD`jr˛�k
1 D ˛�k

1 .jD`j C k/r ; ˛k1 jD`js D .jD`j C k/s˛k1 :
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AlsoF` commutes with˛1. To prove .2/, it is enough to show that ŒF`; a� is smoothing
for every a 2 A1

`
and the map a 7! ŒF`; a� is continuous. Let

a D P
m;n�0

˛�m
1 .p0 ˝ amn/˛

n
1 C P

m�0
�m˛

m
1 C P

m>0

��m˛�m
1

be an element in A1
`

. Then ŒF`; a� D P
m;n�0 ˛�m

1 .p0 ˝ ŒF`�1; amn�/˛n1 . By
induction hypothesis, it follows thatp0˝ŒF`�1; amn� is smoothing for everym; n � 0.
Since .OP�1

D`
; k�kr;s/ is a Fréchet space, to show that ŒF`; a� is smoothing it is enough

to show that the infinite sum
P
m;n�0 ˛�m

1 .p0˝ŒF`�1; amn�/˛n1 converges absolutely
in every seminorm k � kr;s . Now observe that

jD`jr˛�m
1 .p0 ˝ ŒF`�1; amn�/˛n1 jD`js

D ˛�m
1 .jD`j Cm/r.p0 ˝ ŒF`�1; amn�/.jD`j C n/s˛n1 :

(3.3)

Since the map a0 2 A1
`�1 7! ŒF`�1; a0� 2 OP�1 is continuous, there exist p 2 N

and Cp > 0 such that kŒF`�1; a0�ki;j � Cpka0kp for every a0 2 A1
`�1 and for

i; j � maxfr; sg. Hence, by eq. (3.3), it follows that

P
m;n

k˛�m
1 .p0 ˝ ŒF`�1; amn�/˛n1kr;s � P

m;n

rP
iD0

sP
jD0

�
r
i

��
s
j

�
mr�ins�j kŒF`�1; amn�ki;j

�
rP
iD0

sP
jD0

�
r
i

��
s
j

�
Cp
� P
m;n

mrnskamnkp
�
:

This shows that ŒF`; a� is smoothing and the above inequality also shows that for
every r; s � 0, there exists t � 0 and a Ct > 0 such that kŒF`; a�kr;s � Ctkakt .
Hence the map a 7! ŒF`; a� is continuous. This proves .2/.

To show (3), it is enough to show that the map a 7! ı`.a/ from A1
`

to B`

makes sense and is continuous. We will use the fact that the unbounded derivation
ı` is a closed derivation. Let a D P

m;n�0 ˛�m
1 .p0 ˝ amn/˛

n
1 C P

m�0 �m˛m1 CP
m>0 ��m˛�m

1 be an element in A1
`

. Since ˛1 and p0˝amn 2 Dom.ı`/ it follows
that each of the terms in the infinite sum is an element in Dom.ı`/. Hence in order
to show a 2 Dom.ı`/, it is enough to show that the sumP

m;n

ı`.˛
�m
1 .p0 ˝ amn/˛

n
1 /C P

m�0
�mı`.˛

m
1 /C P

n>0

��nı`.˛�n
1 /

converges. Observe that ı`.˛�m
1 / D m˛�m

1 , ı`.˛n1 / D �n˛n1 and

ı`.˛
�m
1 .p0 ˝ amn/˛

n
1 / D .m � n/˛�m

1 .p0 ˝ amn/˛
n
1 C ˛�m

1 .p0 ˝ ı`�1.amn//˛n1 :

Since ı`�1 is continuous, it follows that kı`�1.amn/k is rapidly decreasing, where
k � k is the operator norm. (Note that for b 2 B`, one has kbk � kbk0.) Hence the
infinite sumP

m;n

ı`.˛
�m
1 .p0 ˝ amn/˛

n
1 /C P

m�0
�mı`.˛

m
1 /C P

n>0

��nı`.˛�n
1 /
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converges absolutely in the operator norm. Therefore a 2 Dom.ı`/. Since ı`�1 is
continuous for every r there existsp andCp such that kı`�1.a0/kr � Cpka0kp . Write
ı`�1.amn/ as ı`�1.amn/ D a0

mn C a00
mnF` CRmn. Let

A0 D P
m;n

˛�m
1 .p0 ˝ ..m � n/amn C a0

mn//˛
n
1 C P

m�0
m�m˛

m
1 C P

n>0

.�n/��n˛�n
1 ;

A1 D P
m;n

˛�m
1 .p0 ˝ a00

mn/˛
n
1 ;

R D P
m;n

˛�m
1 .p0 ˝Rmn/˛

n
1 :

Then ı`.a/ D A0 C A1F` C R. In every seminorm of A1
`�1 the double sequence

.a0
mn/ and .a00

mn/ are rapidly decreasing. Also Rmn is rapidly decreasing in every
seminorm of OP�1

D`
. Hence A0; A1 2 A1

`
and as in the proof of .2/, it follows that

R is smoothing and given r , s there exists t and Ct such that kRkr;s � Ctkakt . Fix
an r � 0 and choose t > 1 C r and Ct > 1 such that kı`�1.a0/kr � Ctka0kt for
every a0 2 A1

`�1. Now kA0kr � Ctkakt and kA1kr � Ctkakt . This shows that
the map a ! ı`.a/ 2 B` is continuous. Since ŒD`; b� D ı`.b/F` C jD`jŒF`; b�, the
second part of (3) follows as ŒF`; b� is smoothing by .2/. This proves .3/.

Part (4) follows from .2/ and .3/.

We next prove a lemma that will be crucial in the computation of the dimension
spectrum. For an r tuple n D .n1; n2; : : : ; nr/ 2 Nr , we will write jnj for

Pr
iD1 ni .

For r D 0, we let N0 D f0g.

Lemma 3.7. Let r � 0 and s � 1 be integers. Let .a.n//n2Nr be rapidly decreasing.
Then the function


.z/ ´
X

n2Nr ;m2Ns

jnjCjmj�1

a.n/

.jnj C jmj/z

ismeromorphicwith simple poles in f1; 2; : : : ; sgand ReszDs 
.z/ D 1
.s�1/Š

P
n a.n/.

Proof. First observe that for Re z > r C s,


.z/ D
X
N�1

1

N z

� X
jnjCjmjDN

a.n/

�

D
X
N�1

1

N z

� X
jnj�N

a.n/
X

mWjmjDN�jnj
1

�

D
X
N�1

1

N z

� X
jnj�N

a.n/

�
N � jnj C s � 1

s � 1
��
:

Note that for a function .b.n//n2Nr of rapid decay, the sequence .
P

jnj�N b.n//N2N

is of rapid decay. Now
�
N�jnjCs�1

s�1
� D Ps�1

kD0 gk.n/N k , where gk.n/ is a polynomial
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in .n1; n2; : : : ; nr/ and gs�1.n/ D 1
.s�1/Š . Hence modulo a holomorphic function


.z/ D Ps�1
kD0.

P
n gk.n/a.n//�.z � k/. Now the result follows from the fact that

�.z/ is meromorphic with a simple pole at z D 1 with residue 1.

We will next prove that the spectral triple .A1
`
;H`;D`/ is regular and has discrete

dimension spectrum with simple poles at f1; 2; : : : ; `C 1g.

Remark 3.8. Recall that the unitaries Uw for w D .w1; w2; : : : ; w`C1/ 2 T `C1 are
given byUwe� D w

�1

1 w
�2

2 : : : w
�`C1

`C1 e� . A bounded operatorT on H` is said to be ho-

mogeneous of degree .m1; m2; : : : ; m`C1/ ifUwT U �
w D w

m1

1 w
m2

2 : : : w
m`C1

`C1 T . IfT
is homogeneous of degree .m1; m2; : : : ; m`C1/ ¤ .0; : : : ; 0/ then Trace.T jD`j�z/ D
0 if Re.z/ > `C 1 since Uw ’s commute with the operator jD`j.

Proposition 3.9. The spectral triple .A1
`
;H`;D`/ is regular. It has f1; 2; : : : ; `C1g

as the dimension spectrum with only simple poles.

Proof. Regularity of the spectral triple follows from Proposition 3.6. We now prove
that for b 2 B`, the function Trace.bjD`j�z/ is meromorphic with simple poles at
f1; 2; : : : ; `C1g. Since Trace.bjD`j�z/ is holomorphic for b 2 OP�1, we need only
to show that fora 2 A1

`
, the functions Trace.ajD`j�z/ and Trace.aF`jD`j�z/ extend

to meromorphic functions with simple poles at f1; 2; : : : ; `C 1g. Now any element
a 2 A1

`
can be written as a D a0Ca1 where a0 is homogeneous of degree 0 and a1 is

an infinite sum of homogeneous elements of non zero degrees. Hence, by Remark 3.8,
Trace.ajD`j�z/ D Trace.a0jD`j�z/ and Trace.aF`jD`j�z/ D Trace.a0F`jD`j�z/.
Thus it is enough to consider the functions Trace.ajD`j�z/ and Trace.aF`jD`j�z/
where a is homogeneous of degree 0.

It is easy to see that the set of homogeneous elements of degree 0 in A1
`

is

fP`
iD0.

P
n2Ni �in.pn1

˝ pn2
˝ : : : pni

˝ 1// W .�in/ is of rapid decay for all ig;

where pk D S�kp0Sk . Let a D P`
iD0.

P
n �

i
n.pn1

˝ pn2
˝ : : : pni

˝ 1/ be a
homogeneous element of degree 0 in C1.S2`C1q /. Then

Trace.ajD`j�z/ D 2
X̀
iD0

X
n2Ni ; t2N
m2N`�i

�in
.jnj C jmj C t /z

C
X̀
iD0

X
n2Ni

m2N`�i

�in
.jnj C jmj/z :

Now
P
n2N`

�`
n

.jnj/z is holomorphic and hence, modulo a holomorphic function,

Trace.ajD`j�z/ D 2
X̀
iD0

� X
n2Ni ; t2N
m2N`�i

�in
.jnj C jmj C t /z

�
C
`�1X
iD0

� X
n2Ni

m2N`�i

�in
.jnj C jmj/z

�
:
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It follows from Lemma 3.7 that Trace.ajD`j�z/ is meromorphic with simple poles
in the set f1; 2; : : : ; `C 1g. Similarly one can show that Trace.aF`jD`j�z/ is mero-
morphic with simple poles in f1; 2; : : : ; `g. Fix 0 � i � `. Let .�n/n2Ni be such
that

P
n �n D 1. Let a D P

n2Ni �n.pn1
˝ pn2

˝ pni
˝ 1/. Then one has

ReszD`C1�i Trace.ajD`j�z/ D 2
.`�i/Š by Lemma 3.7 and by the above equation.

Hence every k 2 f1; 2; : : : ; `C 1g is in the dimension spectrum. This completes the
proof.

4. SUq.` C 1/-equivariant spectral triple

4.1. Left multiplication operators. Let us recall from [4] some basic facts on rep-
resentations ofC.SUq.`C1// onL2.SUq.`C1// by left multiplication. Irreducible
unitary representations of the quantum group SUq.` C 1/ are indexed by Young
tableaux � D .�1; : : : ; �`C1/ where �i 2 N and �1 � �2 � � � � � �`C1 D 0 (The-
orem 1.5, [15]). Denote by u� the irreducible unitary indexed by �. Basis elements
of the Hilbert space H� on which u� acts can be parametrized by arrays of the form

r D

0
BBBB@
r11 r12 : : : r1;` r1;`C1
r21 r22 : : : r2;`

: : :

r`;1 r`;2
r`C1;1

1
CCCCA ;

where the rij ’s are integers satisfying r1j D �j for j D 1; : : : ; `C 1, rij � riC1;j �
ri;jC1 � 0 for all i , j , and the top row coincides with �. This is known as Gelfand–
Tsetlin tableau, briefly GT tableau. Let fe.�; r/ W r is a GT tableau with top row �g
be an orthonormal basis for H�. Denote the matrix entries of u� with respect to this
basis by u�r;s. Note that the generators uij of the C*-algebra C.SUq.`C 1// are the
matrix entries of the irreducible 1 D .1; 0; : : : ; 0/. The collection fu�r;s W �; r; sg
forms a complete orthogonal set of vectors inL2.SUq.`C1//. Denote by e�r;s, or by
er;s for short (as r and s specify �), the normalized u�r;s’s, i.e., er;s D ku�r;sk�1u�r;s.
Then fer;s W r; sg forms a complete orthonormal basis for L2.SUq.`C 1//.

Let � be the half-sum of positive roots of sl.` C 1/ and �.r/ be the weight of
the weight vector e.�; r/. Let F� be the unique intertwiner in Mor.u�; .u�/cc/ with
TraceF� D TraceF �1

�
(here, for a representation u, its contragradient representation

is denoted by uc ; see [11] for details). Then one has ku�rsk D d
� 1

2

�
q� .r/, where

 .r/ D .�; �.r// D � `
2

`C1P
jD1

r1j C
`C1P
iD2

`C2�iP
jD1

rij ;

d� D TraceF� D P
rWr1D�

q2 .r/:

(4.1)
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Write
�.r;m/ D d

1
2

�
d

� 1
2

� q .r/� .m/: (4.2)

From equation (4.19) in [4], we have

�.uij /e
�
rs D P

�;m;n

Cq.1; �; 
I i; r;m/Cq.1; �; 
I j; s;n/�.r;m/e�mn; (4.3)

where Cq denote the Clebsch–Gordon coefficients.
For our subsequent analysis, we will compute the quantitiesCq.i; r; s/ and�.r;m/

appearing in the above formula. We will use the formulae given in ([11], p. 220),
keeping in mind that for our case (i.e. for SUq.`C 1/), the top right entry of the GT
tableau is zero.

For a positive integer j with 1 � j � `C 1, let

Mj ´ f.m1; m2; : : : ; mj / 2 Nj W 1 � mi � `C 2 � i for 1 � i � j g: (4.4)

For M D .m1; m2; : : : ; mi / 2 Mi , denote by M.r/ the tableau s defined by

sjk D
´
rjk C 1 if k D mj ; 1 � j � i;

rjk otherwise:
(4.5)

With this notation, observe now that Cq.i; r; s/ will be zero unless s is M.r/ for
some M 2 Mi . (One has to keep in mind, however, that not every tableau of the
form M.r/ is a valid GT tableau.)

From ([11], p. 220), we have

Cq.i; r;M.r// D
i�1Q
aD1

R.r; a;ma; maC1/ �R0.r; i; mi /; (4.6)

where

R.r; a; j; k/ D sgn.k � j / q 1
2 .�raj CraC1;k�kCj/

� `C2�aY
iD1
i¤j

Œra;i � raC1;k � i C k�q

Œra;i � ra;j � i C j �q

`C1�aY
iD1
i¤k

ŒraC1;i � ra;j � i C j � 1�q
ŒraC1;i � raC1;k � i C k � 1�q

� 1
2

(4.7)

R0.r; a; j / D q

1
2 .1�jCP`C1�a

iD1
raC1;i �P`C2�a

iD1
i¤j

ra;i /

�
�Q`C1�a

iD1 ŒraC1;i � raj � i C j � 1�qQ`C2�a
iD1
i¤j

Œra;i � raj � i C j �q

� 1
2

;
(4.8)

where, for an integern, Œn�q denotes theq-number .qn�q�n/=.q�q�1/ and sgn.k�j /
is 1 if k � j and is �1 if k < j .
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Remark 4.1. Let us look at the denominators in the above expressions. The integers
ra;i � ra;j and j � i are of the same sign. Therefore for i ¤ j , the quantity
ra;i �ra;j � iCj is nonzero. Similarly raC1;i �raC1;k and k� i are of the same sign.
So if i ¤ k, then raC1;i � raC1;k � i Ck� 1 can be zero only when raC1;i D raC1;k
and k D i C 1. Now if r and M.r/ are GT tableaux, then M.r/aC1;maC1

D
raC1;maC1

C 1 and M.r/aC1;i D raC1;i for i ¤ maC1. Therefore if maC1 D
i C 1, then raC1;i � .raC1;maC1

C 1/ � 0, i.e., raC1;i � raC1;maC1
� 1. Hence

raC1;i �raC1;maC1
� iCmaC1�1 � 1. In other words, all the q-numbers appearing

in the denominator in eq. (4.6) are nonzero. Thus no problem arises from division by
zero.

Remark 4.2. This is essentially a repetition of Remark 4.1 of [4]. The formulae
(4.7) and (4.8) are obtained from eqs. (45) and (46), p. 220, [11] by replacing q with
q�1. Equation (45) is a special case of the more general formula (48), p. 221, [11].
However, there is a small error in eq. (48) there. The correct form can be found in
eqs. (3.1), (3.2a), (3.2b) in [1]. Here we have incorporated that correction in eqs. (4.7)
and (4.8).

We next compute the quantities R.r; a; j; k/ and R0.r; a; j /.
For a positive integer n, denote by Q.n/ the number .1 � q2n/1=2. Then for any

two integers m and n, one hasˇ̌̌
ˇ Œm�qŒn�q

ˇ̌̌
ˇ D q�jmjCjnj

�
Q.jmj/
Q.jnj/

�2
:

The next two lemmas are obtained from eqs. (4.7) and (4.8) using the above equality
repeatedly and the fact that ra;i � raC1;i � ra;iC1 for all a and i .

Lemma 4.3. For aGT tableau r D .rab/, denote byHab.r/ andVab.r/ the following
differences: Hab.r/ ´ raC1;b � ra;bC1 and Vab.r/ ´ rab � raC1;b . Then one has

R.r; a; j; k/ D sgn.k � j /qP.r;a;j;k/CS.r;a;j;k/L.r; a; j; k/; (4.9)

where

P.r; a; j; k/ D P
j^k�i<j_k

Hai .r/C 2
P

k<i<j

Vai .r/; (4.10)

S.r; a; j; k/ D
´
2.j � k � 1/C 1 if j > k;

0 if j � k;
(4.11)

L.r; a; j; k/ D
`C2�aY

iD1
i¤j

Q.jra;i � raC1;k � i C kj/
Q.jra;i � ra;j � i C j j/

�
`C1�aY

iD1
i¤k

Q.jraC1;i � ra;j � i C j � 1j/
Q.jraC1;i � raC1;k � i C k � 1j/ :

(4.12)
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Lemma 4.4. One has

R0.r; a; j / D qP
0.r;a;j /L0.r; a; j /; (4.13)

where

P 0.r; a; j / D P
j�i<`C2�a

Hai .r/; (4.14)

L0.r; a; j / D
Q`C1�a
iD1 Q.jraC1;i � ra;j � i C j � 1j/Q`C2�a

iD1
i¤j

Q.jra;i � ra;j � i C j j/
: (4.15)

Combining Lemmas 4.3 and 4.4, we get the following expression for the CG
coefficient Cq.i; r;M/.

Lemma 4.5. For a moveM 2 Mi , let sgn.M/ denote the product
Qi�1
aD1 sgn.maC1�

ma/. Then one has

Cq.i; r;M/ D sgn.M/qB.M/CC.r;M/
� i�1Q
aD1

L.r; a;ma; maC1/
�
L0.r; i; mi /;

(4.16)
where

B.M/ D P
j Wmj>mj C1

.2.mj �mjC1 � 1/C 1/; (4.17)

C.r;M/ D
i�1P
aD1

� P
ma^maC1�b<ma_maC1

Hab.r/C 2
P

maC1<b<ma

Vab.r/
�

C P
mi �b<`C2�i

Hib.r/

(4.18)

Lemma 4.6.
�Qi�1

aD1L.r; a;ma; maC1/
�
L0.r; i; mi / D 1C o.q/:

Proof. This is a consequence of the following two inequalities:

j1 � .1 � x/ 1
2 j < x for 0 � x � 1;

and, for 0 < r < 1,

j1 � .1 � x/� 1
2 j < cx for 0 � x � r;

where c is some fixed constant that depends on r .

Next we come to the computation of �.r;m/. Since Cq.i; r;m/ is 0 unless m

is of the form M.r/ for some move M D .m1; : : : ; mi /, we need only to compute
�.r;M.r//, which we denote by �.r;M/.
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Since

 .s/ D �`
2

`C1P
jD1

s1j C
`C1P
iD2

`C2�iP
jD1

sij ;

we have

q .r/� .M.r//

D q
� `

2

P`C1
j D1

r1j CP`C1
iD2

P`C2�i
j D1

rij C `
2 .
P`C1

j D1
r1j C1/�.P`C1

iD2

P`C2�i
j D1

rij Ci�1/

D q
`
2 �iC1:

Let � D .�1; : : : ; �`; 0/ be the top row of r . Then

minf .s/ W s1 D �g D �`
2

P̀
1

�i C P̀
kD2

.k � 1/�k :

Hence

d� D P
sWs1D�

q2 .s/ D q�`P`
1 �i C2P`

kD2.k�1/�k .1C q2�.q2//;

where � is a polynomial. Therefore

d� D q�`P`
1 �i C2P`

kD2.k�1/�k .1C o.q//:

It follows that �
d�

d�Cem1

� 1
2 D q

`
2 �m1C1.1C o.q//:

Thus
�.r;M.r// D q`C2�i�m1.1C o.q//: (4.19)

Next, observe that

B.M/C `C 2 � i �m1
D P
j Wmj>mj C1

.2.mj �mjC1 � 1/C 1/ � .m1 �mi /C `C 2 � i �mi

D 2
P

j Wmj>mj C1

.mj �mjC1/ � P
j Wmj>mj C1

1 �
i�1P
jD1

.mj �mjC1/C `C 2 � i �mi

D 2
P

j Wmj>mj C1

.mj �mjC1/ �
i�1P
jD1

.mj �mjC1/ � P
j Wmj>mj C1

1C `C 2 � i �mi

D
i�1P
jD1

jmj �mjC1j � #f1 � j � i � 1 W mj > mjC1g C `C 2 � i �mi :
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Thus if we write

A.M/ D
i�1P
jD1

jmj �mjC1j � #f1 � j � i � 1 W mj > mjC1g; (4.20)

K.M/ D `C 2 � i �mi ; (4.21)

then bothA.M/ andK.M/ are nonnegative andB.M/C`C2� i �m1 D A.M/C
K.M/. Thus we have

�.uij /e
�
rs D P

M2Mi
M 02Mj

Cq.i; r;M.r//�.r;M/Cq.j; s;M
0.s//eM.r/;M 0.s/

D P
M2Mi

M 02Mj

sgn.M/ sgn.M 0/qA.M/CK.M/CC.r;M/CB.M 0/CC.s;M 0/

� .1C o.q//eM.r/;M 0.s/:

(4.22)

4.2. The spectral triple. Let us briefly recall from [4] the description of the L2-
space of the sphere sitting inside L2.SUq.` C 1//. Let u1 denote the fundamental
unitary for SUq.` C 1/, i. e. the irreducible unitary representation corresponding
to the Young tableaux 1 D .1; 0; : : : ; 0/. Similarly write v1 for the fundamental
unitary for SUq.`/. Fix some bases for the corresponding representation spaces.
Then C.SUq.` C 1// is the C*-algebra generated by the matrix entries fu1

ij g and

C.SUq.`// is the C*-algebra generated by the matrix entries fv1
ij g. Now define � by

�.u1
ij / D

8̂<
:̂
I if i D j D 1;

v1
i�1;j�1 if 2 � i; j � `C 1;

0 otherwise.

(4.23)

Then C.SUq.`C 1/n SUq.`// is the C*-subalgebra of C.SUq.`C 1// generated by
the entries u1;j for 1 � j � `C1. Define W C.S2`C1q / ! C.SUq.`C1/n SUq.`//
by

 .zi / D q�iC1u�
1;i :

This gives an isomorphism between C.SUq.`C 1/n SUq.`// and C.S2`C1q / and the
diagram

C.S2`C1q /

 

��

� �� C.S2`C1q /˝ C.SUq.`C 1//

 ˝id
��

C.SUq.`C 1/n SUq.`//
�

�� C.SUq.`C 1/n SUq.`//˝ C.SUq.`C 1//

commutes, where 	 W C.S2`C1q / ! C.S2`C1q / ˝ C.SUq.` C 1// is the homomor-
phism given by 	.zi / D P

k zk ˝ u�
k;i

that gives an action of the quantum group
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SUq.`C1/ onS2`C1q . In other words, .C.S2`C1q /;SUq.`C1/; 	/ is the quotient space
SUq.` C 1/n SUq.`/. This choice of  makes L2.SUq.` C 1/n SUq.`// a span of
certain rows of the er;s’s, as the following two propositions say.

Proposition 4.7 ([4]). Assume that ` > 1. The right regular representation u of G
keeps the subspace L2.SUq.` C 1/n SUq.`// invariant, and the restriction of u to
L2.SUq.` C 1/n SUq.`// decomposes as a direct sum of exactly one copy of each
of the irreducibles given by the Young tableaux �n;k ´ .nC k; k; k; : : : ; k; 0/, with
n; k 2 N.

Proposition 4.8 ([4]). Let rnk denote the GT tableaux given by

rnkij D

8̂<
:̂
nC k if i D j D 1;

0 if i D 1; j D `C 1;

k otherwise;

wheren; k 2 N. LetGn;k0 be the set of allGT tableauxwith top row .nCk; k; : : : ; k; 0/.
Then the family of vectors

fernk ;s W n; k 2 N; s 2 Gn;k0 g
forms a complete orthonormal basis for L2.SUq.`C 1/n SUq.`//.

We will denote
S
n;k Gn;k0 by G0. Since the top row of rnk determines rnk

completely and for ernk ;s the top row of s equals the top row of rnk , one can index
the orthonormal basis ernk ;s just by s 2 G0. It was shown in [4] that the restriction
of the left multiplication to C.SUq.` C 1/n SUq.`// Š C.S2`C1q / keeps invariant
L2.SUq.`C 1/n SUq.`// Š L2.S

2`C1
q /. We will continue to denote this restriction

by� . The operators�.zj / D q�jC1�.u�
1;j /will be denoted byZj;q . The C*-algebra

�.C.S2`C1q // will be denoted by C`.
The following theorem gives a generic equivariant spectral triple for the spheres

S2`C1q constructed in [4].

Theorem 4.9 ([4]). LetDeq be the operator on L2.S2`C1q / given by

Deqernk ;s D
´
kernk ;s if n D 0;

�.nC k/ernk ;s if n > 0:
(4.24)

Then .A.S2`C1q /; L2.S
2`C1
q /;Deq/ is an equivariant nondegenerate .2`C 1/-sum-

mable odd spectral triple.

Our main aim in the rest of the paper is to precisely formulate the smooth function
algebra for this spectral triple, to establish its regularity, and to compute the dimension
spectrum.
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4.3. The case q D 0. The L2-spaces L2.S2`C1q / for different values of q can be
identified by considering the elements of their canonical orthonormal bases which are
parametrized by the same set. Thus we will assume we are working with one single
Hilbert space H with orthonormal basis given by ern;ks, where rn;k is as defined
earlier and s is given by

s D

0
BBBBBB@

c1 D nC k k k : : : k k d1 D 0

c2 k k : : : k d2
: : : : : :

c`�1 k d`�1
c` d`

c`C1 D d`C1

1
CCCCCCA ; (4.25)

where c1 � c2 � � � � � c` � k, d1 � d2 � � � � � d` � k and d` � d`C1 � c`. Since
specifying the GT tableau s determines rn;k as well and thus completely specifies
the basis element ern;ks, we will sometimes use just s in place of the basis element
ern;ks.

Let us denote by Mj̇ the following subsets of Mj :

MC
j D f.m1; : : : ; mj / 2 Mj W mi 2 f1; `C 2 � ig for 1 � i � j; m1 D 1g;

M�
j D f.m1; : : : ; mj / 2 Mj W mi 2 f1; `C 2 � ig for 1 � i � j; m1 D `C 1g:

Let us denote by Ni;j the following element of Mj :

Ni;j D .1; : : : ; 1„ ƒ‚ …
i

; `C 1 � i; ` � i; : : : ; `C 2 � j /; 0 � i � j � `C 1:

We will denote Ni;`C1 by just Ni . Then from (4.22), we get

�.u1j /ern;ks D P
M2MC

j

sgn.M/q`CkCB.M/CC.s;M/.1C o.q//ernC1;k ;M.s/

C P
M2M�

j

sgn.M/qB.M/CC.s;M/.1C o.q//ern;k�1;M.s/:
(4.26)

Therefore

Z�
j;qern;ks D P

M2MC
j

sgn.M/q�jC1C`CkCB.M/CC.s;M/.1C o.q//ernC1;k ;M.s/

C P
M2M�

j

sgn.M/q�jC1CB.M/CC.s;M/.1C o.q//ern;k�1;M.s/:

(4.27)

Let us first look at the cases 1 � j � `. Then the power of q in the first summation
is positive. Therefore none of the terms would survive for q D 0. For terms in the
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second summation, assume that M 2 Mj with m1 D ` C 1 and mi D 1 for some
i � j . Let a D minf2 � i � j W mi D 1g. Then mi D `C 2 � i for 1 � i � a � 1
so that

B.M/ �
a�2P
iD1
.2..`C 2 � i/ � .`C 1 � i/ � 1/C 1/C 2.`C 3 � a � 1 � 1/C 1

D a � 2C 2.` � aC 1/C 1

D 2` � aC 1:

Hence B.M/ C 1 � j > 0 and so such terms will not survive for q D 0.
Therefore, the only term that will survive is the one corresponding to M D N0;j D
.`C 1; `; `� 1; : : : ; `C 2� j /. In this case we have B.M/ D j � 1, C.s;M/ D dj
and sgn.M/ D .�1/j�1. Therefore

Z�
j;0ern;ks D

´
.�1/j�1ern;k�1;N0;j .s/

if dj D 0;

0 if dj > 0:
(4.28)

Next let us look at the case j D `C 1. Here the first sum will be over allM with
m1 D 1 D m`C1. If mi ¤ 1 for some i , then B.M/ > 0 and therefore the power of
q will be positive, so that the term will not survive for q D 0. Ifmi D 1 for all i , i.e.,
if M D N`, then we have B.M/ D 0 D C.s;M/ and sgn.M/ D 1. Therefore for
q D 0, the first summation will become ernC1;k ;N`.s/

provided that k D 0.

The second sum is over all M with m1 D ` C 1. Let a D minf2 � i �
` C 1 W mi D 1g. Then, as before, B.M/ � 2` � a C 1. Therefore if a � `,
then �`C B.M/ � ` � a C 1 > 0, so that the term will not survive for q D 0. If
a D `C1, i.e., ifM D N0, thenB.M/ D `,C.s;M/ D d`C1 and sgn.M/ D .�1/`.
So, for q D 0, the second summation will become .�1/`ern;k�1;N0.s/

if k > 0 and
d`C1 D 0. Thus we have

Z�
`C1;0ern;ks D

8̂<
:̂
ernC1;k ;N`.s/

if k D 0;

.�1/`ern;k�1;N0.s/
if k > 0; d`C1 D 0;

0 if k > 0; d`C1 > 0:
(4.29)

Next we will establish a natural unitary map between L2.S2`C1q / and

H† � `2.N/˝ � � � ˝ `2.N/„ ƒ‚ …
` copies

˝`2.Z/˝ `2.N/˝ � � � ˝ `2.N/„ ƒ‚ …
` copies

:

For t 2 R, let tC denote the positive part maxft; 0g and let t� denote the negative part
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maxf.�t /; 0g of t . Let us now observe that for any � 2 �†, the tableau

s.�/ ´

0
BBBBBBB@

P2`C1
1 j�i j P`

1 �i C .�`C1/C : : :
P`
1 �i C .�`C1/C 0P2`

1 j�i j P`
1 �i C .�`C1/C : : : �1

: : : : : :P`C3
1 j�i j P`

1 �i C .�`C1/C
P`�2
1 �iP`C2

1 j�i j P`�1
1 �iP`

1 �i C .�`C1/�

1
CCCCCCCA
:

is in G0. Conversely, let s 2 Gn;k0 for some n; k 2 N so that ern;ks is a basis element
of L2.S2`C1q /. Note that s is of the form (4.25). Define � 2 �† as follows:

(1) if k > d`C1, then

�i D diC1 � di for 1 � i � ` � 1;
�i D c2`C2�i � c2`C3�i for `C 3 � i � 2`C 1;

�` D d`C1 � d`; �`C1 D k � d`C1; �`C2 D c` � k;
(2) if k � d`C1, then

�i D diC1 � di for 1 � i � ` � 1;
�i D c2`C2�i � c2`C3�i for `C 3 � i � 2`C 1;

�` D k � d`; �`C1 D k � d`C1; �`C2 D c` � d`C1:
Then s.�/ D s. Thus we have a bijective correspondence between G0 and �†. We
will often denote a basis element ern;ks by 
� using this bijective correspondence.

Lemma 4.10. Let � 2 �†. For n 2 Z, let

Z
.n/

`C1;0 ´
´
Zn
`C1;0 if n � 0;

.Z�
`C1;0/

�n if n < 0:

Define


 0
� ´ Z

�1

1;0 : : : Z
�`

`;0
Z
.�`C1/

`C1;0

0
BBBB@

P2`C1
`C2 �i 0 : : : 0 0P2`
`C2 �i 0 : : : 0

: : :

�`C2 0

0

1
CCCCA :

Then f
 0
� W � 2 �†g is an orthonormal basis for L2.S2`C1q /.

Proof. It follows from eqs. (4.28) and (4.29) that the actions of Zj;0 for 1 � j � `
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on the basis elements ern;ks are as follows:

Zj;0 W

0
BBBBBBBBBB@

nC k k : : : k k 0

c2 k : : : k 0

: : : : : :

cj k : : : k 0

cjC1 k : : : djC1
: : : : : :

c` d`
d`C1

1
CCCCCCCCCCA

�!

.�1/j�1

0
BBBBBBBBBB@

1C nC k 1C k : : : 1C k 1C k 0

1C c2 1C k : : : 1C k 0

: : : : : :

1C cj 1C k : : : 1C k 0

1C cjC1 1C k : : : 1C djC1
: : : : : :

1C c` 1C d`
1C d`C1

1
CCCCCCCCCCA

and is 0 for s with dj > 0.
Similarly the action of Z`C1;0 on the basis elements are as follows:0

BBBBBB@

n 0 : : : 0 0

c2 0 : : : 0

: : : : : :

c`�1 0 0

c` 0

d`C1

1
CCCCCCA �!

0
BBBBBB@

n � 1 0 : : : 0 0

c2 � 1 0 : : : 0

: : : : : :

c`�1 � 1 0 0

c` � 1 0

d`C1 � 1

1
CCCCCCA

if d`C1 > 0, and0
BBBBBB@

nC k k : : : k 0

c2 k : : : 0

: : : : : :

c`�1 k 0

c` 0

0

1
CCCCCCA �! .�1/`

0
BBBBBB@

1C nC k 1C k : : : 1C k 0

1C c2 1C k : : : 0

: : : : : :

1C c`�1 1C k 0

1C c` 0

0

1
CCCCCCA

if d`C1 D 0. Similarly the action of Z�
`C1;0 on the basis elements are as follows:0

BBBBBB@

n 0 : : : 0 0

c2 0 : : : 0

: : : : : :

c`�1 0 0

c` 0

d`C1

1
CCCCCCA �!

0
BBBBBB@

1C n 0 : : : 0 0

1C c2 0 : : : 0

: : : : : :

1C c`�1 0 0

1C c` 0

1C d`C1

1
CCCCCCA
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and, for k > 0,0
BBBBBB@

nC k k : : : k 0

c2 k : : : 0

: : : : : :

c`�1 k 0

c` 0

0

1
CCCCCCA �! .�1/`

0
BBBBBB@

nC k � 1 k � 1 : : : k � 1 0
c2 � 1 k � 1 : : : 0

: : : : : :

c`�1 � 1 k � 1 0

c` � 1 0

0

1
CCCCCCA :

Then it follows from the above that

Z
�1

1;0
: : : Z

�`

`;0
Z

.�`C1/

`C1;0

0
BBBB@

P2`C1

`C2
�i 0 : : : 0 0P2`

`C2 �i 0 : : : 0

: : :

�`C2 0

0

1
CCCCA

D .�1/�.�/

0
BBBBBBB@

P2`C1
1 j�i j P`

1 �i C .�`C1/C : : :
P`

1 �i C .�`C1/C 0P2`
1 j�i j P`

1 �i C .�`C1/C : : : �1

: : : : : :P`C3
1 j�i j P`

1 �i C .�`C1/C
P`�2

1 �iP`C2
1 j�i j P`�1

1 �iP`
1 �i C .�`C1/�

1
CCCCCCCA
;

(4.30)

where �.�/ ´ P`
iD1.i � 1/�i C `.�`C1/C. Thus 
 0

� D .�1/�.�/
� . Therefore it
follows that f
 0

� W � 2 �†g is an orthonormal basis for L2.S2`C1q /.

The map U W L2.S2`C1q / ! H† given by U
 0
� D e� sets up a unitary isomor-

phism between L2.S2`C1q / and H†. Let P denote the projection onto the span of
e0 ˝ � � � ˝ e0 in `2.N`/. Then we have

UZj;0U
� D Yj;0 ˝ I D Yj;0 ˝ P C Yj;0 ˝ .I � P /; (4.31)

and

UDeqU
� D D` ˝ P � jD`j ˝ .I � P / � I ˝ zN; (4.32)

where zN is the operator em1
˝� � �˝em`

7! .
P
mi / em1

˝� � �˝em`
. In other words,

with respect to the decomposition

H† D H` ˚ .H` ˝ `2.N
` n f0; : : : ; 0g//;

one has
UZj;0U

� D Yj;0 ˚ .Yj;0 ˝ I /;

and
UDeqU

� D D` ˚ .�jD`j ˝ I � I ˝ zN/:
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Next we will define the smooth function algebra C1
eq .S

2`C1
0 / and prove that

the spectral triple .C1
eq .S

2`C1
0 /;H ;Deq/ is regular with simple dimension spectrum

f1; 2; : : : ; 2`C 1g.
It follows from decomposition (4.31) that if we identify L2.S2`C1q / with H†,

then the C*-algebra generated by the Zj;0’s is A` ˝ I , where A` is the C*-algebra
generated by the Yj ’s in L.H`/. Therefore it is natural to define

C1
eq .S

2`C1
0 / D fa˝ I W a 2 A1

` g: (4.33)

Theorem 4.11. The triple .C1
eq .S

2`C1
0 /;H†;Deq/ is a regular spectral triple with

simple dimension spectrum f1; 2; : : : ; 2`C 1g.

Proof. Since A1
`

is closed under holomorphic function calculus in A`, it follows

that C1
eq .S

2`C1
0 / is closed under holomorphic function calculus in C �.fZj;0 W 1 �

j � `C 1g/ D A` ˝ I . In order to show regularity, let us introduce the algebra

Beq ´ fa˝ P C b ˝ .I � P / W a; b 2 B`g (4.34)

Clearly Beq containsC1
eq .S

2`C1
0 /. We will show that Beq is closed under deriva-

tions with both jDeqj as well asDeq . This will prove regularity of the spectral triple
.C1
eq .S

2`C1
0 /;H ;Deq/.

Note that jDeqj D jD`j˝ICI˝ zN . Since I˝ zN commutes with every element
of Beq , we get ı.a˝P C b˝ .I �P // D ŒjD`j; a�˝P C ŒjD`j; b�˝ .I �P / and
ŒDeq; a˝P Cb˝ .I �P /� D ŒD`; a�˝P � ŒjD`j; b�˝ .I �P /. Since B` is closed
under derivations with jD`j and D`, it follows that Beq is closed under derivations
with jDeqj and Deq .

Next we compute the dimension spectrum of the spectral triple. Forw 2 T `C1, let
zUw ´ Uw˝I . Then jDeqj commutes with zUw . Hence again it is enough to consider
homogeneous elements of degree 0. Now by Lemma 3.7 it follows that for b 2 Beq

with b homogeneous of degree 0 the function Trace.bjDeqj�z/ is meromorphic with
simple poles and the poles lie in f1; 2; : : : ; 2` C 1g. To show that every point of
f1; 2; : : : ; 2`C 1g is in the dimension spectrum, observe that

Trace.jDeqj�z/ D †2`kD0.2c
2`
k � c2`�1k /�.z � k/; (4.35)

where cr
k

is defined as the coefficient of N k in
�
NCr
r

�
. Note that for 0 � k � r one

has cr
k
> 0. Also note the recurrence rcr

k
D cr�1

k�1 C rcr�1
k

. Hence cr
k

� cr�1
k

. Now
from eq. (4.35) it follows that ReszDkC1 Trace.jDeqj�z/ D 2c2`

k
� c2`�1

k
> 0 for

0 � k � 2`. This proves that every point of f1; 2; : : : ; 2`C 1g is in the dimension
spectrum, which completes the proof.

We will need the fact that Trace.jDeqj�z/ is meromorphic with simple poles at
f1; 2; : : : ; 2`C 1g with nonzero residue and hence we state it as a separate lemma.
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Lemma 4.12. The function Trace.jDeqj�z/ is meromorphic with simple poles at
f1; 2; : : : ; 2` C 1g. Also the residue ReszDk Trace.jDeqj�z/ is nonzero for k 2
f1; 2; : : : ; 2`C 1g.

4.4. Regularity and dimension spectrum for q ¤ 0. Consider the smooth subal-
gebra of the Toeplitz algebra defined as

T1 D ˚ P
j;k2N �jk S

�jp0Sk CP
k�0 �kSk CP

k>0 ��kS�k W �jk; .�k/ are

rapidly decreasing
�
:

For a ´ P
j;k2N �jk S

�jp0Sk CP
k�0 �kSk CP

k>0 ��kS�k 2 T1, define the
seminorm k �km by kakm ´ P

.1Cjj jC jkj/mj�kl jC
P
.1Cjkj/mj�kj. Equipped

with this family of seminorms, T1 is a Fréchet algebra. We will denote by T1
k

the
k-fold tensor product of T1.

Lemma 4.13. The triple .T1; `2.N/; N / is a regular spectral triple. More precisely,
T1 is contained in Dom.ı/, where ı is the unbounded derivation ŒN; � � and leaves
the algebra T1 invariant. Also the map ı W T1 ! T1 is continuous.

Proof. Note that ŒN; S� D �S and ŒN; p� D 0. Now the lemma follows from the
fact that the unbounded derivation ı is closed.

For ˛ 2 N2 [ Z, let

W˛ D

8̂<
:̂
S�mp0Sn if ˛ D .m; n/;

S r if ˛ D r � 0;

S�r if ˛ D r < 0:

For ˛ 2 N2 [ Z, define j˛j to be jmj C jnj if ˛ D .m; n/ 2 N2 and the usual
absolute value j˛j if ˛ 2 Z. For an ` tuple ˛ D .˛1; ˛2; : : : ; ˛`/ in .N2 [ Z/`,
let j˛j D P j˛i j and W˛ ´ W˛1

˝W˛2
˝ : : : W˛`

. We need the following simple
lemma whose proof we omit since it is easy to prove.

Lemma 4.14. The natural tensor product representation of T1
`

on `2.N/˝` is injec-
tive. Thus we identify T1

`
with its range which is fP x˛W˛ W P.1C j˛j/pjx˛j < 1

for every pg.

Remark 4.15. The tensor product representation of OP�1
D`

˝T1
`

on L.H†/ is in-
jective since OP�1

D`
´ �.H`/, and hence we identify OP�1

D`
˝T1

`
with its image.

For an operator T , let LT denote the left multiplication map X 7! TX . Then for
T 2 OP0D`

, the mapLT W OP�1
D`

! OP�1
D`

is continuous. Note that ifA is a Fréchet
algebra and a 2 A, then La is a continuous linear operator.
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Lemma 4.16. Let T 2 OP0D`
and a 2 T1

`
. Then the map LT˝a leaves the algebra

OP�1
D`

˝T1
`

invariant. Moreover LT˝a D LT ˝ La on the algebra OP�1
D`

˝T1
`

.

Proof. Clearly LT˝a D LT ˝ La on the algebraic tensor product OP�1
D`

˝algT
1
`

.
Now let a 2 OP�1

D`
˝T1

`
. Then there exists a sequence an 2 OP�1

D`
˝algT

1
`

which
converges to a in OP�1

D`
˝T1

`
. Also an converges to a in the operator norm. Now

the result follows from the continuity of LT˝a and LT ˝ La.

Proposition 4.17. Let
B ´ Beq C OP�1

D`
˝T1

` (4.36)

Then one has the following.

(1) The vector space B is an algebra.

(2) The algebra B is invariant under the derivations ı ´ ŒjDeqj; � � and ŒDeq; � �.
(3) For b 2 B, the commutator ŒFeq; b� 2 OP�1

Deq
.

(4) For b 2 B, the function Trace.bjDeqj�z/ is meromorphic with only simple poles
lying in f1; 2; : : : ; 2`C 1g.

Proof. Lemma 4.16 and the fact that B` � OP0 implies that B is an algebra. As seen
in Theorem 4.11, it follows that Beq is invariant under ı and ŒDeq; � �. Also .3/ and
.4/ hold for b 2 Beq . Hence to complete the proof it is enough to consider .2/; .3/
and .4/ for the algebra OP�1

D`
˝T1

`
.

Lemma 2.6 and the decomposition jDeqj D jD`j ˝ 1 C 1 ˝ QN implies that ı
leaves the algebra OP�1

D`
˝T1

`
invariant. Now note that P 2 OP�1

QN , it follows that
left and right multiplication by F` ˝ P and 1˝ P sends OP�1

D`
˝T1

`
to OP�1

Deq
�

OP�1
D`

˝ OP�1
QN . Since Feq D F` ˝ P � I ˝ .I � P /, it follows that ŒFeq; b� is

smoothing for every b 2 OP�1
D`

˝T1. Now the invariance of OP�1
D`

˝T1
`

under
ŒDeq; � � follows from the equation ŒDeq; b� D ı.b/Feq C jDeqjŒFeq; b� and the fact
that OP�1

Deq
´ OP�1

D`
˝ OP�1

QN is contained in OP�1
D`

˝T1
`

.
We prove that for b 2 OP�1

D`
˝T1

`
the function Trace.bjDeqj�z/ is meromorphic

with simple poles and the poles lie in f1; 2; : : : ; `g. For w 2 T 2`C1, let Uw D
Uw1

˝Uw2
˝: : : Uw2`C1

be the unitary operator on H†. ClearlyUw jDeqjU �
w D jDeqj

forw 2 T 2`C1. Hence it is enough to consider Trace.bjDeqj�z/withb homogeneous
of degree 0.

An element b is homogeneous if and only if it commutes with the operators Uw
for all w 2 T 2`C1. This implies that b must be of the form e� 7! �.�/e� for some
function �, i.e., b D P

� �.�/p� . An operator of the form
P
�2	†`

�.�/p� is in

OP�1
D`

if and only if �.�/ is rapidly decaying on �†`
. Also, using the description

of T1, it follows that an operator of the form
P
n2N �.n/pn belongs to T1 if and

only if �. � / � limn!1 �.n/ is rapidly decreasing. Thus combining these, one can
see that the operator

P
� �.�/p� belongs to OP�1

D`
˝T1

`
if and only if � is a linear
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combination of �A with A varying over subsets of † containing †`, where each
�A.�/ depends only on �A and �A.�A/ is rapidly decreasing on �A. For an element
b D P

� �A.�/p� , one has

Trace.bjDeqj�z/ D
X
�

�A.�/

j� jz D
X
�

�A.�A/

.j�Aj C j�†nAj/z :

By Lemma 3.7 it follows that Trace.bjDeqj�z/ is meromorphic with simple poles
lying in f1; 2; : : : ; j† n Ajg 	 f1; 2; : : : ; `g. This completes the proof.

4.5. The smooth function algebra C 1.S 2`C1
q /. In this section we will define a

dense Fréchet C*-algebra C1.S2`C1q / of C` D �.C.S2`C1q // and show that it is
closed under holomorphic functional calculus. Let B` be the C*-algebra generated
by A` and F`. Recall that E denotes the C*-algebra generated by C.T / and F0.

Lemma 4.18. The C*-algebra E contains K and E=K is isomorphic to the C*-
algebra C.T /˚ C.T /.

Proof. Let jemihenj be the matrix units in K.`2.Z//. Note that ŒF0; S��S D
2je0ihe0j. Hence p0 � je0ihe0j 2 E . Now S�mp0Sn D jemihenj. Hence K � E .
Let P0 ´ 1CF0

2
. Then ŒP0; f � is compact for every f . Thus E=K is generated by

C.T / and a projection P0 which is in the center of E=K . Now consider the map

C.T /˚ C.T / 3 .f; g/ 7! fP0 C g.1 � P0/ .mod K/ 2 E=K:

We claim that this map is an isomorphism. To prove this, we need to show that if
fP0 is compact then f D 0, and if g.1 � P0/ is compact then g D 0.

Assume that fP0 is compact for f 2 C.T /. Fix an r 2 Z. Since fP0 is
compact, it follows that jhfP0.en/; enCrij D j Of .r/j converges to 0 as n ! C1.
Hence Of .r/ D 0 for every r . This proves that f D 0. Similarly one can show that
if g.1 � P0/ is compact then g D 0. This completes the proof.

Lemma 4.19. The C*-algebra B` contains K.H`/ and the map .a; b/ 7! aP` C
b.1�P`/ .mod K/ from C.S2`C1q /˚C.S2`C1q / to B`=K.H`/ is an isomorphism.

Proof. For ` D 0 this is just Lemma 4.18. So let us prove the statement for ` � 1.
Since A` contains K.`2.N`//˝C.T /, it follows that B` contains K.H`/. Observe
that ŒP`; ˛i � D 0 for 1 � i � ` and ŒP`; ˛`C1� is compact. Therefore it follows that
ŒP`; a� is compact for every a 2 A`. Hence the map .a; b/ 7! aP` C b.1 � P`/

.mod K/ from A` ˚ A` to B`=K is a *-algebra homomorphism onto B`=K . We
will show that the map is one-to-one. For that we have to show that if aP` is compact
with a 2 A` then a D 0, and if b.1 � P`/ is compact with b 2 A` then b D 0.

Suppose now that aP` is compact. Observe that B` � T` ˝ E and aP` D
a.I ˝ P0/. Since aP` is compact, if we apply the symbol map � on the `-th copy
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of T, we get �`.a/ ˝ P0 D 0. Hence a is in the ideal K.`2.N/˝`/ ˝ C.T /. For
m; n 2 N`, let emn be the “matrix” units. Let amn D .emm ˝ 1/a.enn ˝ 1/. Then
amn D emn ˝ fmn for some fmn 2 C.T /. Since aP` is compact, it follows that
fmnP0 is compact as P` D I ˝ P0 commutes with enn ˝ I . By the case ` D 0, it
follows that fmn D 0 and hence amn D 0 for everym; n. Thus a D 0. Similarly one
can show that if b.1 � P`/ is compact then b D 0. This completes the proof.

Let B be the C* algebra on H† generated by A` ˝ I , P` ˝ 1 and 1 ˝ P and
J ´ K.H`/ ˝ T`. Note that J is an ideal since B` is contained in T` ˝ E ˝ T`.
The next proposition identifies the quotient B=J .

Proposition 4.20. Let � W A` ˚ A` ˚ A` ˚ A` ! B=J be the map

.a1; a2; a3; a4/ 7! a1P`˝PCa2P`˝.1�P /Ca3.1�P`/˝PCa4.1�P`/˝.1�P /
fromA`˚A`˚A`˚A` into B composed with the canonical projection from B onto
B=J . Then � is an isomorphism.

Proof. First note that since ŒP`; a� 2 K for a 2 A`, it follows that P`˝I and I ˝P

are in the center of B=J . Hence the map � is an algebra homomorphism. By the
definition of B it follows that � is onto. Thus we have to show � is one-to-one.

Suppose that a D a1P`˝P Ca2P`˝ .1�P /Ca3.1�P`/˝P Ca4.1�P`/˝
.1�P / 2 J . Let � W T ! C be the map ev1 B � , where ev1 is evaluation at the point
1. Now consider the map id ˝ �˝` W T` ˝ E ˝ T` ! T` ˝ E . Note that I ˝ �˝`
sends J to K.H`/. Hence .I ˝ �˝`/.a/ D a2P`Ca4.1�P`/ 2 K.H`/. Hence by
Lemma 4.19, it follows that a2 D 0 D a4. Since left multiplication by I ˝ P sends
the ideal J to K.H†/, it follows that .I ˝ P /a D a1P` ˝ P C a3.1 � P`/ ˝ P

is compact. Hence a1P` C a3.1 � P`/ is compact. Thus again by Lemma 4.19, it
follows that a1 D 0 D a3. This completes the proof.

Now we prove that B is closed under holomorphic functional calculus in B. Let
J ´ OP�1

D`
˝T1

`
. Note that

B ´˚
a1P` ˝ P C a2P` ˝ .1 � P /C a3.1 � P`/˝ P

C a4.1 � P`/˝ .1 � P /CR W a1; a2; a3; a4 2 A1
` ; R 2 J

�
:

Proposition 4.21. The algebra B has the following properties:

(1) If a1P`˝P Ca2P`˝ .1�P /Ca3.1�P`/˝P Ca4.1�P`/˝ .1�P / 2 J
then ai D 0 for i D 1; 2; 3; 4. Hence B is isomorphic to the direct sum
A1
`

˚A1
`

˚A1
`

˚A1
`

˚ J. Equip B with the Fréchet space structure coming
from this direct sum decomposition.

(2) The algebra B is a Fréchet C*-algebra contained in B. Moreover the inclusion
B � B is continuous.
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(3) The algebra B is closed under holomorphic functional calculus in B.

Proof. Proposition 4.20 implies .1/. Parts (2) and (3) follow from Proposition 3.6.
Now by Proposition 4.20 one has the exact sequence

0 ! J ! B ! A` ˚ A` ˚ A` ˚ A` ! 0:

At the smooth algebra level we have the exact sequence

0 ! J ! B
�! A1

` ˚ A1
` ˚ A1

` ˚ A1
` ! 0:

Since J � J and A1
`

� A` are closed under holomorphic functional calculus, it
follows from Theorem 3.2, part 2, [13] that B is spectrally invariant in B. Since by
part (2), the Fréchet topology of B is finer than the norm topology, it follows that B
is closed in the holomorphic function calculus of B.

Remark 4.22. One can prove that OP�1
D`

˝T1
`

is closed under holomorphic func-
tional calculus in K.H`/˝ T` in the same manner by applying Theorem 3.2, part 2,
[13] and by using the extension (after tensoring suitably)

0 ! K ! T ! C.T / ! 0

at the C*-algebra level and the extension

0 ! �.`2.N// ! T1 ! C1.T / ! 0

at the Fréchet algebra level.

Corollary 4.23. Define the smooth function algebra C1.S2`C1q / by

C1.S2`C1q / D fa 2 B \ C` W �.a/ 2 �.A1
` /g;

where � is as in the proof of Proposition 4.21 and � W A` ! A` ˚ A` ˚ A` ˚ A` is
the inclusion map a 7! a˚ a˚ a˚ a. Then the algebra C1.S2`C1q / is closed in B
and is closed under holomorphic functional calculus in C`.

Proof. Let j W B ! L.H†/ denote the inclusion map. Then, by definition,
C1.S2`C1q / D ��1.�.A1

`
//\ j�1.C`/. Since � and j are continuous and as �.A1

`
/

and C` are closed, it follows that C1.S2`C1q / is closed in B. Hence C1.S2`C1q /

is a Fréchet algebra. Also C1.S2`C1q / is *-closed as � is *-preserving. Now let
a 2 C1.S2`C1q / be invertible in C`. Then a is invertible in L.H†/. By Proposi-
tion 4.21, it follows that a�1 2 B. By the closedness ofA1

`
under holomorphic func-

tional calculus, it follows that �.a�1/ 2 �.A1
`
/. Thus one has a�1 2 C1.S2`C1q /.

We have already seen that the Fréchet topology of B is finer than the norm topology.
The same is therefore true for the topology of C1.S2`C1q /. Hence it is closed under
holomorphic functional calculus in C`.
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Proposition 4.24. The operatorsZj;q belong to C1.S2`C1q /. Hence C1.S2`C1q / is

a dense subalgebra of C` that contains �.A.S2`C1q //.

The proof of this proposition will be given in the next subsection.
We are now in a position to prove the main theorem.

Theorem 4.25. The triple .C1.S2`C1q /;H†;Deq/ is a regular spectral triple with
simple dimension spectrum f1; 2; : : : ; 2`C 1g.

Proof. Since the inclusion C1.S2`C1q / � B holds, the regularity of the spec-
tral triple .C1.S2`C1q /;H†;Deq/ follows from the regularity of the spectral triple
.B;H†;Deq/, which is proved in Proposition 4.17. Proposition 4.17 also im-
plies that the spectral triple has simple dimension spectrum which is a subset of
f1; 2; : : : ; 2`C 1g. The fact that every point in f1; 2; : : : ; 2`C 1g is in the dimension
spectrum follows from Lemma 4.12. This completes the proof.

4.6. The operators Zj;q . We will give a proof of Proposition 4.24 in this section.
The main idea is to exploit the isomorphism between the Hilbert spaces L2.S2`C1q /

and H† and a detailed analysis of the operatorsZj;q to show that certain parts of these
operators can be ignored for the purpose of establishing regularity and computing
dimension spectrum. Deciding and establishing which parts of these operators can
be ignored is the key step here. It should be noted here that a similar analysis has been
done by D’Andrea in [9], where L2.S2`C1q / is embedded in a bigger Hilbert space
and certain approximations for the operatorsZj;q are proved. But the approximation
there is not strong enough to enable the computation of dimension spectrum. Here
we prove stronger versions of those approximations, which make it possible to use
them to compute the dimension spectrum dealt with in the previous subsection.

We start with a few simple lemmas that will be used repeatedly during the com-
putations in this section.

Lemma 4.26. Let A 	 B 	 †. Then one has OP�1
DB

˝E1
†nB 	 OP�1

DA
˝E1

†nA.

Proof. Since

OP�1
DB

D �.HB/ D �.HA/˝ �.HBnA/ D OP�1
DA

˝�.HBnA/

and �.HBnA/ 	 E1
BnA, we have the required inclusion.

Let A 	 †. Let P be a polynomial in jAj variables and let T be the operator on
HA given by

Te� D P .f�i ; i 2 Ag/qj�Aje� :

Since the function � 7! P .f�i ; i 2 Ag/qj�Aj is a rapid decay function on �A, it
follows that T 2 OP�1

DA
.
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Lemma 4.27. Let A 	 †. Let T and T0 be the following operators on HA:

Te� D q
.�A/Q. .�A//e� ; T0e� D q
.�A/e� ;

where � and  are some nonnegative functions. If �.�A/ C  .�A/ > j�Aj, then
T � T0 2 OP�1

DA
.

Proof. This is a consequence of the inequality j1 � .1 � x/
1
2 j < x for 0 � x � 1.

Lemma 4.28. Let A 	 †. Let T and T0 be operators on HA given by

Te� D q
.�A/Q. .�A//
�1e� ; T0e� D q
.�A/e�

for some nonnegative functions � and  . If �.�A/C  .�A/ > j�Aj, then T � T0 2
OP�1

DA
.

Proof. For 0 < r < 1, one has

j1 � .1 � x/� 1
2 j < cx for 0 � x � r;

where c is some fixed constant that depends on r . Using this, it follows that the map
� 7! q
.�/j1 � .1 � q2 .�//� 1

2 j is a rapid decay function on �A.

For j 2 †, we will denote by Ej and E the C*-algebra T if j ¤ ` C 1 and
j D ` C 1, respectively. Thus E1

j will be T1 for j ¤ ` C 1 and E1 D B for
j D `C 1. Thus E1

† will stand for the space T1
`

˝ E1 ˝ T1
`

. Note that for any
subset A of †, one has OP�1

DA
	 E1

† .

Lemma 4.29. LetA 	 †, a; b;m; n 2 N and n > 0. Let T1 and T2 be the operators
on H† given by

T1e� D Q.j�Aj C a.�`C1/C C b.�`C1/� Cm/e� ;

T2e� D Q.j�Aj C a.�`C1/C C b.�`C1/� C n/�1e� :

Then T1 and T2 are in E1
† .

Proof. First note that if T 0
1 and T 00

1 are operators given by

T 0
1e� D Q.j�Aj C aj�`C1j Cm/e� ; T 00

1 e� D Q.j�Aj C bj�`C1j Cm/e� ;

then T1 D P†T
0
1 C .I �P†/T 00

1 , where P† D ICF†

2
. By the two previous lemmas,

I � T 0
1 and I � T 0

2 are in OP�1
DB

, where B D A[ f`C 1g. Since OP�1
DB

is contained
in E1

† , it follows that T 0
1; T

0
2 2 E1

† . Since P† 2 E1
† , we get T1 2 E1

† .
For T2 the proof is similar.
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We next proceed with a detailed analysis of the operators Zj;q . First recall that

U �e� D 
 0
� D .�1/

P`
iD1.i�1/�i C`.�`C1/Cern;k ;s; (4.37)

where s is given by

n D .�`C1/� C
2`C1P
iD`C2

�i ; k D P̀
iD1

�i C .�`C1/C; (4.38)

dm D
m�1P
iD1

�i ; cm D P̀
iD1

�i C j�`C1j C
2`C2�mP
iD`C2

�i for 1 � m � `: (4.39)

d`C1 D c`C1 D P̀
iD1

�i C .�`C1/�: (4.40)

We will use this correspondence between ern;k ;s and 
 0
� freely in what follows.

From equation (4.22), we get

�.u1j /ern;ks D P
M2MC

j

Cq.1; r
n;k; N1;1/Cq.j; s;M/�.rn;k; N1;1/ernC1;k ;M.s/

C P
M2M�

j

Cq.1; r
n;k; N0;1/Cq.j; s;M/�.rn;k; N0;1/ern;k�1;M.s/:

Therefore

Z�
j;qern;ks D q�jC1 P

M2MC
j

Cq.1; r
n;k; N1;1/Cq.j; s;M/�.rn;k; N1;1/ernC1;k ;M.s/

C q�jC1 P
M2M�

j

Cq.1; r
n;k; N0;1/Cq.j; s;M/�.rn;k; N0;1/ern;k�1;M.s/:

Thus we haveZ�
j;q D P

M2MC
j

SC
MT

C
M CP

M2M�
j
S�
MT

�
M , where the operators SṀ

and TṀ are given by

SC
M ern;ks D ernC1;k ;M.s/; M 2 MC

j ; (4.41)

S�
M ern;ks D ern;k�1;M.s/; M 2 M�

j ; (4.42)

TC
M ern;ks D q�jC1Cq.1; rn;k; N1;1/Cq.j; s;M/�.rn;k; N1;1/ern;ks; M 2 MC

j ;

(4.43)

T �
M ern;ks D q�jC1Cq.1; rn;k; N0;1/Cq.j; s;M/�.rn;k; N0;1/ern;ks; M 2 M�

j :

(4.44)

Lemma 4.30. Let SṀ be as above. Then USṀU
� 2 E1

† .
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Proof. Let us first look at the case M 2 Mj̇ , where 1 � j � `. Then one has

SṀ 
� D 
� 0 where � 0 is given by

� 0
i D

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

�i C 1 if

´
mi D 1 and miC1 D `C 1 � i;
m2`C2�i D 1 and m2`C3�i D `C 2 � .2`C 3 � i/;

�i � 1 if

8̂<
:̂
mi D `C 2 � i and miC1 D 1;

mi D `C 2 � i and i D j;

m2`C2�i D `C 2 � .2`C 2 � i/ and m2`C3�i D 1;

�i otherwise.

Note that since 1 � j � `, we have � 0
`C1 D �`C1, and �.� 0/ � �.�/ depends just

on M and not on � . Therefore USṀU
� is a constant times simple tensor product of

shift operators. Thus in this case USṀU
� 2 T1

`
˝ I ˝ T1

`
	 E1

† .
Next we look at the case M 2 M˙

`C1. Then define � 0 and � 00 as follows:

� 0
i D

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

�i C 1 if

´
mi D 1 and miC1 D `C 1 � i;
m2`C2�i D 1 and m2`C3�i D `C 2 � .2`C 3 � i/;

�i � 1 if

8̂<
:̂
mi D `C 2 � i and miC1 D 1;

m2`C2�i D `C 2 � .2`C 2 � i/ and m2`C3�i D 1;

i D `C 1;

�i otherwise.

� 00
i D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

�i C 1 if

8̂<
:̂
mi D 1 and miC1 D `C 1 � i;
m2`C2�i D 1 and m2`C3�i D `C 2 � .2`C 3 � i/;
i D `;

�i � 1 if

8̂<
:̂
mi D `C 2 � i and miC1 D 1;

m2`C2�i D `C 2 � .2`C 2 � i/ and m2`C3�i D 1;

i D `C 1;

�i otherwise.

Then one has

SṀ 
� D
´

� 0 if �`C1 � 0;


� 00 if �`C1 > 0:

Therefore in this case, one has USṀU
� 2 T1

`
˝ E1 ˝ T1

`
	 E1

† .

We will next take a closer look at the operators TṀ . For this, we need to compute
the quantitites involved in eqs. (4.43) and (4.44) more precisely than we have done
earlier. We start with the computation of �. From eq. (4.1), we get

 .rn;k/ D �`
2
.nC k C .` � 1/k/C `.`C 1/

2
k D �`

2
.n � k/:
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Therefore

 .rn;k/ �  .N1;1.rn;k// D  .rn;k/ �  .rnC1;k/ D `

2
; (4.45)

 .rn;k/ �  .N0;1.rn;k// D  .rn;k/ �  .rn;k�1/ D `

2
: (4.46)

Let us write � D .nC k; k; : : : ; k; 0/. We will next compute d�, where d� is given
by (4.1). One has d� D P

s q
2 .s/, where the sum is over all those s for which the

top row is �. Such an s is of the form (4.25) and one has

 .s/ D �1
2
`.nC `k/C 1

2
.` � 1/.` � 2/k C P̀

iD2
.ci C di /C d`C1:

Thus we have

d� D q�`.nCk/�2.`�1/k P
k�c`�c`�1�����c2�nCk

0�d2�d3�����d`�k

d`�d`C1�c`

q2.
P`

iD2.ci Cdi /Cd`C1/

Now for any x, we haveP
k�c`�c`�1�����c2�nCk
0�d2�d3�����d`�k

d`�d`C1�c`

x.
P`

iD2.ci Cdi /Cd`C1/

D
� P
k�d`C1�c`�c`�1�����c2�nCk

x.
P`

iD2 ci Cd`C1/
�� P

0�d2�d3�����d`�k
x.
P`

iD2 di /
�

C
� P
k�c`�c`�1�����c2�nCk

x
.
P̀

iD2

ci /
�� P

0�d2�d3�����d`�d`C1<k

x
.
P̀

iD2

di Cd`C1/
�
:

(4.47)

If we now use the identity

X
k�t1�t2�����tj �n

x.
Pj

iD1
ti / D xjk

jY
iD1

�
1 � xn�kCi

1 � xi
�
;

we get X
k�c`�c`�1�����c2�nCk
0�d2�d3�����d`�k

d`�d`C1�c`

x.
P`

iD2.ci Cdi /Cd`C1/

D x`k
Ỳ
iD1

�
1 � xnCi

1 � xi
� `�1Y
iD1

�
1 � xkCi

1 � xi
�

C x.`�1/k
`�1Y
iD1

�
1 � xnCi

1 � xi
� Ỳ
iD1

�
1 � xk�1Ci

1 � xi
�
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D x.`�1/k
`�1Y
iD1

�
1 � xnCi

1 � xi
� `�1Y
iD1

�
1 � xkCi

1 � xi
�

1

1 � x` .x
k.1 � xnC`/C 1 � xk/

D x.`�1/k
`�1Y
iD1

�
1 � xnCi

1 � xi
� `�1Y
iD1

�
1 � xkCi

1 � xi
��
1 � xnCkC`

1 � x`
�
:

Thus

d
1
2

�
D q� `.nCk/

2

`�1Y
iD1

�
Q.nC i/

Q.i/

Q.k C i/

Q.i/

�
Q.nC k C `/

Q.`/
: (4.48)

Write

�0 D .nC 1C k; k; : : : ; k; 0/; �00 D .nC k � 1; k � 1; : : : ; k � 1; 0/:
Then one has

d
1
2

�
d

� 1
2

�0 D q`=2
Q.nC 1/

Q.nC `/

Q.nC k C `/

Q.nC k C `C 1/
;

d
1
2

�
d

� 1
2

�00 D q�`=2Q.k C ` � 1/
Q.k/

Q.nC k C `/

Q.nC k C ` � 1/ :

Combining these with (4.45) and (4.46), we get

�.rn;k; N1;1.r
n;k// D q`

Q.nC 1/

Q.nC `/

Q.nC k C `/

Q.nC k C `C 1/
; (4.49)

�.rn;k; N0;1.r
n;k// D Q.k C ` � 1/

Q.k/

Q.nC k C `/

Q.nC k C ` � 1/ : (4.50)

Lemma 4.31. Let M 2 MC
j and TC

M be as in eq. (4.43). Then UTC
MU

� 2
OP�1

D`
˝T1

`
if j � ` or if j D `C 1 andM ¤ N`.

Proof. From Lemma 4.5 and eqs. (4.43) and (4.49), we get, forM D .m1; : : : ; mj / 2
MC
j ,

TC
M ern;ks D sgn.M/q`�jC1CC.rn;k ;N1;1/CB.N1;1/CC.s;M/CB.M/

� Q.nC 1/

Q.nC `/

Q.nC k C `/

Q.nC k C `C 1/

� L0.rn;k; 1; 1/
� j�1Q
aD1

L.s; a;ma; maC1/
�
L0.s; j;mj / ern;ks:

(4.51)

Since C.rn;k; N1;1/ D k and B.N1;1/ D 0, we get

TC
M ern;ks D sgn.M/q`�jC1CB.M/CkCC.s;M/�.s;M/ern;ks;
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with �.s;M/ a product of terms of the form Q. .�//˙1 where  .�/ D j�Aj C
c.�`C1/˙ Cm for some subset A 	 †, c 2 f0; 1g and some integer m that does not
depend on s. Therefore

UTC
MU

�e� D sgn.M/q`�jC1CB.M/CkCC.s;M/�.s;M/e� ;

where k and s are given by eqs. (4.38)–(4.40). Since�.s;M/ a product of terms of the
form Q. .�//˙1, it follows from Lemma 4.29 that the operator e� 7! �.s;M/e�
is in E1

† . Next look at the operator e� 7! qkCC.s;M/e� . Assume that there is
some i � j such that mi ¤ 1. Let p D minf2 � i � j W mi ¤ 1g. Then
C.s;M/ � Hp�1;1.s/ � .�`C1/�. Therefore

k C C.s;M/ � k C .�`C1/� D P̀
iD1

�i C j�`C1j:

Hence UTC
MU

� 2 OP�1
D`

˝T1
`

. Next assume that j � ` and mi D 1 for all i � j .
In this case, C.s;M/ � Hj;1.s/ � .�`C1/�. Therefore again we have

k C C.s;M/ � k C .�`C1/� D P̀
iD1

�i C j�`C1j

and hence UTC
MU

� 2 OP�1
D`

˝T1
`

. Combining the two cases, we have the required
result.

Lemma 4.32. LetM 2M�
j andT �

M be as in eq. (4.44). ThenUT �
MU

� 2OP�1
D`

˝T1
`

ifM ¤ N0;j .

Proof. From Lemma 4.5 and eqs. (4.44) and (4.50), we get, forM D .m1; : : : ; mj / 2
M�
j ,

T �
M ern;ks D sgn.M/q�jC1CC.rn;k ;N0;1/CB.N0;1/CC.s;M/CB.M/

� Q.k C ` � 1/
Q.k/

Q.nC k C `/

Q.nC k C ` � 1/L
0.rn;k; 1; `C 1/

� � j�1Q
aD1

L.s; a;ma; maC1/
�
L0.s; j;mj /ern;ks:

(4.52)

Since C.rn;k; N0;1/ D 0 and B.N0;1/ D 0, we get

T �
M ern;ks D sgn.M/q�jC1CC.s;M/CB.M/�.s;M/ern;ks;

with �.s;M/ a product of terms of the form Q. .�//˙1 where  .�/ D j�Aj C
c.�`C1/˙ Cm for some subset A 	 †, c 2 f0; 1g and some integer m that does not
depend on s. Therefore

UT �
MU

�e� D sgn.M/q�jC1CC.s;M/CB.M/�.s;M/e� ;
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where k and s are given by eqs. (4.38)–(4.40). As in the proof of Lemma 4.31, it is
now enough to shoe that C.s;M/ � P`

iD1 �i C j�`C1j. Now assume that mi D 1

for some i � `. Let p D minf2 � i � j W mi D 1g. Then p � `. We then have

C.s;M/ �
p�2P
iD1

Hi;`C1�i .s/CHp�1;1.s/CHp�1;`C2�p.s/C Vp�1;`C2�p.s/

�
p�2P
iD1

�i C .�`C1/� C �p�1 C � P̀
iD1

�i C .�`C1/C �
p�1P
iD1

�i
�

D
X̀
iD1

�i C j�`C1j:

The result follows.

Remark 4.33. As mentioned in the beginning of this subsection, weaker versions
of the two lemmas above have been proved by D’Andrea in [9]. In our notation,

he proves that the part of Zj;q be ignored is of the order qk D q
P`

iD1 �i C.�`C1/C ,
whereas we prove here that one can actually ignore terms of a slightly higher order,

namely q
P`

iD1 �i Cj�`C1j, which makes it possible to compute Zj;q modulo the ideal
OP�1

D`
˝T1

`
.

Lemma 4.34. Define operators Xj on L2.S2`C1q / by

ern;k ;s 7!
´
.�1/j�1qdjQ.djC1 � dj /ern;k�1;N0;j .s/

if 1 � j � ` � 1;
.�1/`�1qd`Q.d`C1 � d`/Q.k � d`/ern;k�1;N0;`.s/

if j D `:

(4.53)
Then one has

UZ�
j;qU

� � UXjU � 2 OP�1
D`

˝T1
` :

Proof. In view of the two forgoing lemmas, it is enough to show that

US�
N0;j

T �
N0;j

U � � UXjU � 2 OP�1
D`

˝T1
` for 1 � j � `: (4.54)

Let us first look at the case 1 � j � ` � 1. Observe that

sgn.N0;j / D .�1/j�1;
C.rn;k; N0;1/ D 0 D B.N0;1/;

C.s; N0;j / D dj ;

B.N0;j / D j � 1:
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Therefore from (4.52), we get

UT �
N0;j

U �e� D .�1/j�1qdj
Q.k C ` � 1/

Q.k/

Q.nC k C `/

Q.nC k C ` � 1/L
0.rn;k; 1; `C 1/

� � j�1Q
aD1

L.s; a; `C 2 � a; `C 1 � a/�L0.s; j; `C 2 � j / e� :
(4.55)

From (4.15), one gets

L0.rn;k; 1; `C 1/

D
� Ỳ
iD2

Q.jk � 0 � i C `C 1 � 1j/
Q.jk � 0 � i C `C 1j/

�
Q.jk � 0 � 1C `C 1 � 1j/
Q.jnC k � 0 � 1C `C 1j/

D
� Ỳ
iD2

Q.k C ` � i/
Q.k C ` � i C 1/

�
Q.k C ` � 1/
Q.nC k C `/

D Q.k/

Q.nC k C `/
:

(4.56)

Similarly, from (4.12) one gets, for 1 � a � ` � 1,

L.s; a; `C 2 � a; `C 1 � a/

D
`C1�aY
iD1

Q.jsa;i � saC1;`C1�a � i C `C 1 � aj/
Q.jsa;i � sa;`C2�a � i C `C 2 � aj/

�
`�aY
iD1

Q.jsaC1;i � sa;`C2�a � i C `C 2 � a � 1j/
Q.jsaC1;i � saC1;`C1�a � i C `C 1 � a � 1j/

D Q.ca � daC1 C ` � a/
Q.ca � da C `C 1 � a/

Q.caC1 � da C ` � a/
Q.caC1 � daC1 C ` � a � 1/ (4.57)

�
`C1�aY
iD2

Q.k � daC1 � i C `C 1 � a/
Q.k � da � i C `C 2 � a/

`�aY
iD2

Q.k � da � i C `C 1 � a/
Q.k � daC1 � i C ` � a/

D Q.ca � daC1 C ` � a/
Q.ca � da C `C 1 � a/

Q.caC1 � da C ` � a/
Q.caC1 � daC1 C ` � a � 1/

�
`�aY
iD1

Q.k � daC1 � i C ` � a/
Q.k � da � i C `C 1 � a/

`�aY
iD2

Q.k � da � i C `C 1 � a/
Q.k � daC1 � i C ` � a/

D Q.ca � daC1 C ` � a/
Q.ca � da C `C 1 � a/

Q.caC1 � da C ` � a/
Q.caC1 � daC1 C ` � a � 1/

� Q.k � daC1 C ` � a � 1/
Q.k � da C ` � a/ ;
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and from (4.15), for j � ` � 1,

L0.s; j; `C 2 � j /

D
`C1�jY
iD1

Q.jsjC1;i � sj;`C2�j � i C `C 2 � j � 1j/
Q.jsj;i � sj;`C2�j � i C `C 2 � j j/

D Q.cjC1 � dj C ` � j /
Q.cj � dj C `C 1 � j /

� `�jY
iD2

Q.k � dj C `C 1 � j � i/
Q.k � dj C `C 2 � j � i/

�
Q.djC1 � dj /
Q.k � dj C 1/

D Q.cjC1 � dj C ` � j /
Q.cj � dj C `C 1 � j /

Q.djC1 � dj /
Q.k � dj C ` � j / :

From the above two equations, we get

� j�1Y
aD1

L.s; a; `C 2 � a; `C 1 � a/
�
L0.s; j; `C 2 � j /

D Q.djC1 � dj /
Q.k C ` � 1/

� j�1Y
aD1

Q.ca � daC1 C ` � a/
Q.caC1 � daC1 C ` � a � 1/

�

�
� jY
aD1

Q.caC1 � da C ` � a/
Q.ca � da C `C 1 � a/

�
:

Now substituting all these in eq. (4.55), we get

UT �
N0;j

U �e� D .�1/j�1qdj
Q.djC1 � dj /

Q.nC k C ` � 1/

�
� j�1Y
aD1

Q.ca � daC1 C ` � a/
Q.caC1 � daC1 C ` � a � 1/

�

�
� jY
aD1

Q.caC1 � da C ` � a/
Q.ca � da C `C 1 � a/

�
e� :

(4.58)

Now note that for 1 � a � j � 1,

dj C ca � daC1 C ` � a � P̀
iD1

�i C j�`C1j;

dj C caC1 � daC1 C ` � a � 1 � P̀
iD1

�i C j�`C1j;
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and, for 1 � a � j ,

dj C caC1 � da C ` � a � P̀
iD1

�i C j�`C1j;

dj C ca � da C `C 1 � a � P̀
iD1

�i C j�`C1j;

and dj C nC kC `� 1 � P`
iD1 �i C j�`C1j. Therefore by using Lemmas 4.27 and

4.28, we can write, modulo an operator in OP�1
D`

˝T1
`

,

UT �
N0;j

U �e� D .�1/j�1qdjQ.djC1 � dj / e� :

Using eq. (4.42), we get

US�
N0;j

U �e� D .�1/j�1e� 0 ;

where

� 0
i D

´
�i if i ¤ j;

�i � 1 if i D j:

Observe also that

UXjU
�e� D qdjQ.djC1 � dj / e� 0 ;

where � 0 is as above. Therefore we get (4.54) for j � ` � 1.

In the case j D `, one has

L0.s; `; 2/ D Q.js`C1;1 � s`;2j/
Q.js`;1 � s`;2 C 1j/ D Q.d`C1 � d`/

Q.c` � d` C 1/
:

As a result, it follows that

� `�1Y
aD1

L.s; a; `C 2 � a; `C 1 � a/
�
L0.s; `; 2/

D Q.k � d`/
Q.k C ` � 1/

� `�1Y
aD1

Q.ca � daC1 C ` � a/
Q.caC1 � daC1 C ` � a � 1/

�

�
� Ỳ
aD1

Q.caC1 � da C ` � a/
Q.ca � da C `C 1 � a/

�
:
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As before, substituting all these in eq. (4.55), one gets

UT �
N0;`

U �e� D .�1/`�1qd`
Q.k � d`/

Q.nC k C ` � 1/� `�1Y
aD1

Q.ca � daC1 C ` � a/
Q.caC1 � daC1 C ` � a � 1/

�

�
� Ỳ
aD1

Q.caC1 � da C ` � a/
Q.ca � da C `C 1 � a/

�
e� :

(4.59)

Application of Lemmas 4.27 and 4.28, now enables us to write the following equality
modulo an operator in OP�1

D`
˝T1

`
:

UT �
N0;`

U �e� D .�1/`�1qd`Q.k � d`/Q.d`C1 � d`/ e� :
Using eq. (4.42), we get

US�
N0;`

U �e� D .�1/`�1e� 0 ;

where

� 0
i D

´
�i if i ¤ `;

�i � 1 if i D `:

Observe also that

UX`U
�e� D qd`Q.k � d`/Q.d`C1 � d`/ e� 0 ;

where � 0 is as above. Therefore we obtain (4.54) for j D `.

Lemma 4.35. Let Xj be as in Lemma 4.34. Then one has UXjU � � Y �
j;q ˝ I 2

OP�1
D`

˝T1
`

for 1 � j � `.

Proof. It follows from eqs. (4.37)–(4.40) that for j � `�1, one in fact hasUXjU � �
Y �
j;q ˝ I D 0. For j D `, one has

.UXjU
� � Y �

j;q ˝ I /e� D �
q
P`�1

iD1 �iQ.�` C .�`C1/�/Q.�` C .�`C1/C/
�
e O� ;

where O�i D �i � 1 if i D ` and O�i D �i for all other i . Thus

jUXjU � � Y �
j;q ˝ I j 2 OP�1

D`
˝T1

` ; sgn.UXjU
� � Y �

j;q ˝ I / 2 E1
† :

Therefore UXjU � � Y �
j;q ˝ I 2 OP�1

D`
˝T1

`
.

From the two lemmas above (Lemmas 4.34 and 4.35), it follows that one has
UZ�

j;qU
� 2 C1.S2`C1q / for 1 � j � `. Thus we now need only to take care of the

case j D `C 1.
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Lemma 4.36. UZ�
`C1;qU

� 2 C1.S2`C1q /.

Proof. Using Lemmas 4.31 and 4.32, it is enough to show that

U.SC
N`
TC
N`

C S�
N0;`C1

T �
N0;`C1

/U � 2 C1.S2`C1q /: (4.60)

From (4.51), we get

TC
N`
ern;ks D qk

Q.nC 1/

Q.nC `/

Q.nC k C `/

Q.nC k C `C 1/

� L0.rn;k; 1; 1/
� Ỳ
aD1

L.s; a; 1; 1/

�
ern;ks:

(4.61)

From (4.12), we get for 1 � a � ` � 1,

L.s; a; 1; 1/

D
`C2�aY
iD2

Q.jsa;i � saC1;1 � i C 1j/
Q.jsa;i � sa;1 � i C 1j/

`C1�aY
iD2

Q.jsaC1;i � sa;1 � i C 1 � 1j/
Q.jsaC1;i � saC1;1 � i C 1 � 1j/

D
`C1�aY
iD2

Q.caC1 � k C i � 1/
Q.ca � k C i � 1/

`�aY
iD2

Q.ca � k C i/

Q.caC1 � k C i/

� Q.caC1 � da C `C 1 � a/
Q.ca � da C `C 1 � a/

Q.ca � daC1 C `C 1 � a/
Q.caC1 � daC1 C `C 1 � a/

D
`�aY
iD1

Q.caC1 � k C i/

Q.ca � k C i/

`�aY
iD2

Q.ca � k C i/

Q.caC1 � k C i/

� Q.caC1 � da C `C 1 � a/
Q.ca � da C `C 1 � a/

Q.ca � daC1 C `C 1 � a/
Q.caC1 � daC1 C `C 1 � a/

D Q.caC1 � k C 1/

Q.ca � k C 1/

Q.caC1 � da C `C 1 � a/
Q.ca � da C `C 1 � a/

Q.ca � daC1 C `C 1 � a/
Q.caC1 � daC1 C `C 1 � a/ ;

and for a D `,

L.s; `; 1; 1/ D Q.js`;2 � s`C1;1 � 2C 1j/
Q.js`;2 � s`;1 � 2C 1j/ D Q.d`C1 � d` C 1/

Q.c` � d` C 1/
:
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Also from (4.15), we have

L0.rn;k; 1; 1/ D
 Q`

iD1Q.jk � n � k � i C 1 � 1j/Q`
iD2Q.jk � n � k � i C 1j/

!

� 1

Q.j0 � n � k � ` � 1C 1j/

D
� Ỳ
iD2

Q.nC i/

Q.nC i � 1/
�

Q.nC 1/

Q.nC k C `/

D Q.nC `/

Q.nC k C `/
:

Plugging these in eq. (4.61) and using (4.37), we get

UTC
N`
U �e� D qk

Q.nC 1/

Q.nC `/

Q.nC k C `/

Q.nC k C `C 1/

Q.nC `/

Q.nC k C `/

�
� `�1Y
aD1

Q.caC1 � k C 1/

Q.ca � k C 1/

Q.caC1 � da C `C 1 � a/
Q.ca � da C `C 1 � a/

� Q.ca � daC1 C `C 1 � a/
Q.caC1 � daC1 C `C 1 � a/

�
Q.d`C1 � d` C 1/

Q.c` � d` C 1/
e� :

Thus as earlier, modulo an operator in OP�1
D`

˝T1
`

, we have the equality

UTC
N`
U �e� D qke� : (4.62)

Next note that B.N0/ D `, C.s; N0/ D d`C1 and sgn.N0/ D .�1/` so that we
get from (4.52)

T �
N0
ern;ks D .�1/`qd`C1

Q.k C ` � 1/
Q.k/

Q.nC k C `/

Q.nC k C ` � 1/
� L0.rn;k; 1; `C 1/

� Q̀
aD1

L.s; a; `C 2 � a; `C 1 � a/�ern;ks:

(4.63)

Now using (4.37), (4.56), (4.57) and the fact that

L.s; `; 2; 1/ D Q.js`;1 � s`C1;1 � 1C `C 1 � `j/
Q.js`;1 � s`;2 � 1C `C 2 � `j/ D Q.c` � d`C1/

Q.c` � d` C 1/
;
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we get

UT �
N0
U �e� D .�1/`qd`C1

Q.k C ` � 1/
Q.k/

Q.nC k C `/

Q.nC k C ` � 1/
Q.k/

Q.nC k C `/

�
� `�1Y
aD1

Q.ca � daC1 C ` � a/
Q.ca � da C `C 1 � a/

Q.caC1 � da C ` � a/
Q.caC1 � daC1 C ` � a � 1/

� Q.k � daC1 C ` � a � 1/
Q.k � da C ` � a/

�
Q.c` � d`C1/
Q.c` � d` C 1/

e� :

Thus modulo OP�1
D`

˝T1
`

, we have the equality

UT �
N0
U �e� D .�1/`qd`C1e� : (4.64)

Define operators T˙ on L2.S2`C1q / by

TC
� D qk
� ; T �
� D .�1/`qd`C1
� :

By eqs. (4.62) and (4.64), it is enough to look at the operators SC
N`
TC C S�

N0
T �.

Now observe that

S�
N0

� D

´

� 0 if �`C1 > 0;

� 00 if �`C1 � 0;

SC
N`

� D

´

� 000 if �`C1 > 0;

� 0 if �`C1 � 0;

where

� 0
i D

´
�i � 1 if i D `C 1;

�i otherwise;
� 00
i D

´
�i � 1 if ` � i � `C 2;

�i otherwise;

and

� 000
i D

8̂<
:̂
�i C 1 if i D ` or i D `C 2;

�i � 1 if i D `C 1;

�i otherwise:

Therefore

.SC
N`
TC C S�

N0
T �/
� D

´
qk
� 000 C .�1/`qd`C1
� 0 if �`C1 > 0;
qk
� 0 C .�1/`qd`C1
� 00 if �`C1 � 0:

So if we now define

T 
� D
´
.�1/`q

P`
iD1 �i 
� 0 if �`C1 > 0;

q
P`

iD1 �i 
� 0 if �`C1 � 0;
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then one gets from the above equation that U.SC
N`
TC C S�

N0
T � � T /U � is in

OP�1
D`

˝T1
`

. Thus it is enough to show that UT U � 2 C1.S2`C1q /. Now note
that

�.�/ � �.� 0/ D
´
` if �`C1 > 0;
0 if �`C1 � 0:

Therefore it follows that UT U �e� D q
P`

iD1 �i e� 0 , i.e., UT U � D Y �
`C1;q ˝ I . Thus

we get the required result.

Putting together Lemmas 4.34, 4.35 and 4.36, we get Proposition 4.24.
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